Sample records for eddy shedding variability

  1. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    NASA Astrophysics Data System (ADS)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  2. Baroclinic Instability and Energy Transfer underlying the Kuroshio eddy shedding process in Luzon Strait

    NASA Astrophysics Data System (ADS)

    Lu, J.

    2016-02-01

    The Kuroshio eddy shedding in Luzon Strait has been intensively studied, due to its important role in the energy budgets of the special gap-passing western boundary current and its potential influence to South China Sea. In this study, the eddy-mean flow interaction is first diagnosed with two classical "stationary" methods. Both show that, in a "time-averaged" sense, baroclinic instability and energy transfer provides the energy source for Kuroshio anticyclonic eddy shedding and the accompanied cyclonic eddy growth in Luzon Strait (this eddy pair will be called AC/C-Es for short). To take into account the "nonstationary and intermittent" nature, the temporal evolutions of energy transfer during a typical Kuroshio eddy shedding process are investigated using the localized multi-scale-window energy and vorticity analysis, or MS-EVA for short. Two stages are roughly distinguished according to the evolutionary nature of this process: the growing stage and the shedding stage. In the growing stage, the energy source straddles both the AC/C-Es, indicating mean flow supplies potential energy to both AC/C-Es for growth; the energy transfer hot spot persistently strengthens and expands horizontally as well as vertically from 200-300m to 100-400m depth range, culminating in a maximum of approximately 1.5×10-7 m2s-3. In the shedding stage, the energy source moves onto the accompanied cyclonic eddy, i.e., the mean flow now supplies energy mainly to the cyclonic eddy, making it strong enough to cut off the anticyclonic eddy from Kuroshio, leading to the Kuroshio eddy shedding.

  3. Internal and forced eddy variability in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.

    2009-04-01

    Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.

  4. Nonlinear multiscale interactions and internal dynamics underlying a typical eddy-shedding event at Luzon Strait

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-Bing; Liang, X. San; Gan, Jianping

    2016-11-01

    Eddy-shedding is a highly nonlinear process that presents a major challenge in geophysical fluid dynamics. Using the newly developed localized multiscale energy and vorticity analysis (MS-EVA), this study investigates an observed typical warm eddy-shedding event as the Kuroshio passes the Luzon Strait, in order to gain insight into the underlying internal dynamics. Through multiscale window transform (MWT), it is found that the loop-form Kuroshio intrusion into the South China Sea (SCS) is not a transient feature, but a quasi-equilibrium state of the system. A mesoscale reconstruction reveals that the eddy does not have its origin at the intrusion path, but comes from the Northwest Pacific. It propagates westward, preceded by a cyclonic (cold) eddy, through the Kuroshio into the SCS. As the eddy pair runs across the main current, the cold one weakens and the warm one intensifies through a mixed instability. In its development, another cold eddy is generated to its southeast, which also experiences a mixed instability. It develops rapidly and cuts the warm eddy off the stream. Both the warm and cold eddies then propagate westward in the form of a Rossby wave (first baroclinic mode). As the eddies approach the Dongsha Islands, they experience another baroclinic instability, accompanied by a sudden accumulation of eddy available potential energy. This part of potential energy is converted to eddy kinetic energy through buoyancy conversion, and is afterward transferred back to the large-scale field through inverse cascading, greatly reducing the intensity of the eddy and eventually leading to its demise.

  5. The ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone: A review

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. M.; Moyano, M.; Hernandez-Leon, S.

    2009-12-01

    In this paper we review information on the ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone (C-ACTZ). This CTZ shows the singularity that the Canary Archipelago interrupts the main flow of the Canary Current and Trade Winds, introducing large mesoscale variability, in the form of island warm wakes and cyclonic and anticyclonic eddies downstream of the islands. Besides, upwelling filaments stretch towards the archipelago from the African coastal upwelling, transporting phytoplankton, zooplankton and fish larvae. They also interact with eddies shed from the islands to exchange water properties and biogenic material. All these mesoscale features influence the composition, structure, abundance and distribution of the larval fish community (LFC) of the region. The Canary Current (CC) and eddies shed from the islands drag larvae of island neritic fish species into the oceanic region and contribute, along warm wakes, to the horizontal distribution of fish larvae. Upwelling and upwelling filaments transport larvae of African neritic species into the oceanic region. These larvae dominate the LFC and account for the relatively high average larval fish abundance found in the C-ACTZ during the summer upwelling season. Filaments originated in the region of Cape Juby-Cape Bojador are entrained around a quasi-permanent cyclonic eddy, trapped between Gran Canaria Island and the African coast, forming a system through which most of the African neritic larvae may return to the African shelf. However, some larvae reach the eastern islands of the Canary archipelago and they may be spread all over the neritic region of the archipelago by eddies shed from the islands. Also in summer, the distribution of the LFC of the C-ACTZ is vertically stratified and fish larvae seem to carry out little or not diel vertical migration. Overall, this study highlights the strong relationship between mesoscale oceanographic processes and the LFC in the C-ACTZ.

  6. On the Variability of the East Australian Current: Jet Structure, Meandering, and Influence on Shelf Circulation

    NASA Astrophysics Data System (ADS)

    Archer, Matthew R.; Roughan, Moninya; Keating, Shane R.; Schaeffer, Amandine

    2017-11-01

    Given the importance of western boundary currents over a wide range of scales in the ocean, it is crucial that we understand their dynamics to accurately predict future changes. For this, we need detailed knowledge of their structure and variability. Here we investigate the jet structure of the East Australian Current (EAC), using observations from HF radars and moorings deployed at 30°S-31°S. Meandering, core velocity, width, and eddy kinetic energy (EKE) are quantified from 4 years of hourly 1.5 km resolution surface current maps (2012-2016), to obtain the most detailed representation of the surface EAC jet to date. The EAC flows predominantly over the ˜1,500 m isobath 50 km offshore but makes large amplitude displacements eastward every 65-100 days—the time scale associated with mesoscale eddy shedding at the EAC separation. Smaller-amplitude, higher-frequency meanders occur every 20-45 days. Using a coordinate frame that follows the jet, we show core velocity and EKE exhibit seasonality in both magnitude and variance, being maximum in summer (1.55 m s-1 mean core velocity), minimum in winter (0.8 m s-1). However, it is the eddy-shedding time scale that dominates jet variability. As the EAC moves shoreward, shelf temperature and along-stream velocity vary linearly with jet movement, within ˜35 km of the core. The EAC is within this range 75% of the time, demonstrating its importance to the shelf circulation. Temperature and velocity fluctuations at the 70 m (100 m) isobath are more influenced by wind (EAC encroachment), with the strongest response occurring when wind and EAC act constructively.

  7. Temporal variability of mass transport across Canary Islands Channels

    NASA Astrophysics Data System (ADS)

    Marrero-Díaz, Ángeles; Rodríguez-Santana, Ángel; José Machín, Francisco; García-Weil, Luis; Sangrà, Pablo; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2014-05-01

    The equatorward flowing Canary Current (CC) is the main feature of the circulation in the Canary Islands region. The CC flow perturbation by the Canary Islands originate the Canary Eddy Corridor which is the major pathway for long lived eddies in the subtropical North Atlantic (Sangrà et al., 2009, DSR). Therefore the variability of the CC passing through the Canary Archipelago will have both local and regional importance. Past studies on the CC variability trough the Canary Islands point out a clearly seasonal variability (Fraile-Nuez et al, 2010 (JGR); Hernández-Guerra et al, 2002 (DSR)). However those studies where focused on the eastern islands channels missing the variability through the western island channels which are the main source of long lived eddies. In order to fill this gap from November 2012 until September 2013 we conducted trimonthly surveys crossing the whole islands channels using opportunity ships (Naviera Armas Ferries). XBT and XCTD where launched along the cross channels transects. Additionally a closed box circling the Archipelago was performed on October 2013 as part of the cruise RAPROCAN-2013 (IEO) using also XBT and XCTD. Dynamical variables where derived inferring salinity from S(T,p) analytical relationships for the region updated with new XCTD data. High resolution, vertical sections of temperature, potential density, geostrophic velocity and transport where obtained. Our preliminary results suggest that the CC suffer a noticeable acceleration in those islands channels where eddy shedding is more frequent. They also indicate a clearly seasonal variability of the flows passing the islands channels. With this regard we observed significant differences on the obtained seasonal variability with respect the cited past studies on the eastern islands channel (Lanzarote / Fuerteventura - Africa coast). This work was co-funded by Canary Government (TRAMIC project: PROID20100092) and the European Union (FEDER).

  8. Spatial-frequency variability of the eddy kinetic energy in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cecilio, C. M.; Gherardi, D. F.; Souza, R.; Correa-Ramirez, M.

    2013-05-01

    In the South Atlantic Ocean (SAO) part of the inter-oceanic flow is accomplished through the issuance of anticyclonic eddies by the Agulhas Retroflection. This region, known as Agulhas Leakage (AL), is responsible by the intermittent shedding of eddies in the SAO. The propagation of these eddies into the SAO induces wave processes that allows the interaction between modes of variability of different basins, ranging from high to low frequency. Modelling studies suggests that the Indian-Atlantic inter-ocean exchange is strongly related to the structure of the wind field, in particular with the position of the maximum Southern Hemisphere westerly winds. This study aims to investigate the variations of the large-scale and regional mesoscale eddy field over the SAO using a frequency domain technique, Multiple Taper Method with Singular Value Decomposition (MTM-SVD). The MTM-SVD approach is applied to examine the individual and joint spatiotemporal variability modes of eddy kinetic energy (EKE) and winds stress. The EKE is estimated from geostrophic velocity anomalies data distributed by Aviso and winds stress from winds dataset of Cross-Calibrated Multi-Platform (CCMP) project from PO.DAAC. The impact of the AL in the SAO, was assessed first for the entire region and subsequently applied in the regions of higher mesoscale activity, which are the Brazil-Malvinas Confluence (BMC), the AL, and the Brazilian Current (BC) region. The results of local fractional variance (LFV) of EKE obtained by the MTM-SVD method show a strong significant annual variability in SAO and BC region while in BMC and in AL this frequency is weaker. In the most energetic mesoscale activity regions (BMC and AL) the pattern of variability is distinct. In the BMC region the interannual variability is dominated while in the AL region the most part of variability is associated by high frequency. The joint LFV spectrum of wind and EKE show an out-of-phase relationship between the AL region and BMC region in the interannual frequencies (3 to 5 years). The dominant frequencies can be seen in 1,5 to 3 years period band and in the intrasazonal frequencies, 0,3 to 0,5 years. The results suggests that the EKE variability patterns are different in the SAO wich might be related to the influence of eddies from AL.

  9. Thin film eddy current impulse deicer

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.; Zieve, Peter B.

    1990-01-01

    Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.

  10. Mean-Eddy-Turbulence Interaction through Canonical Transfer Analysis: Theory and Application to the Kuroshio Extension Energetics Study

    NASA Astrophysics Data System (ADS)

    Liang, X. S.

    2016-02-01

    Central at the processes of mean-eddy-turbulence interaction, e.g., mesoscale eddy shedding, relaminarization, etc., is the transfer of energy among different scales. The existing classical transfers, however, do not take into account the issue of energy conservation and, therefore, are not faithful representations of the real interaction processes, which are fundamentally a redistribution of energy among scales. Based on a new analysis machinery, namely, multiscale window transform (Liang and Anderson, 2007), we were able to obtain a formula for this important processes, with the property of energy conservation a naturally embedded property. This formula has a form reminiscent of the Poisson bracket in Hamiltonian dynamics. It has been validated with many benchmark processes, and, particularly, has been applied with success to control the eddy shedding behind a bluff body. Presented here will be an application study of the instabilities and mean-eddy interactions in the Kuroshio Extension (KE) region. Generally, it is found that the unstable KE jet fuels the mesoscale eddies, but in the offshore eddy decaying region, the cause-effect relation reverses: it is the latter that drive the former. On the whole the eddies act to decelerate the jet in the upstream, whereas accelerating it downstream.

  11. The Dynamics of Cuba Anticyclones (CubANs) and Interaction With the Loop Current/Florida Current System

    NASA Astrophysics Data System (ADS)

    Kourafalou, Vassiliki; Androulidakis, Yannis; Le Hénaff, Matthieu; Kang, HeeSook

    2017-10-01

    Mesoscale anticyclonic eddies along the northern Cuban coast (CubANs) have been identified in the Straits of Florida, associated with the northward shift of the Florida Current (FC) and the anticyclonic curvature of the Loop Current (LC) at the western entrance of the Straits. The dynamics of CubAN eddies and their interaction with the LC/FC system are described for the first time using satellite, drifter and buoy data, and a high-resolution model. It is shown that the evolution of CubANs to the south of the FC front complements the evolution of cyclonic eddies to the north of the FC, advancing previous studies on synergy between FC meandering and eddy activity. Two types of CubAN eddies are characterized: (a) a main anticyclonic cell (type "A") within the core of the LC during retracted phase conditions, associated with the process of LC Eddy (LCE) shedding from an extended LC, and (b) an individual, distinct anticyclonic eddy that is released from the main LC core and is advected eastward, along the northern Cuban coast (type "B"). There are also mixed cases, when the process of LCE shedding has started, so a type "A" CubAN is being formed, in the presence of one or more eastward progressing type "B" eddies. CubAN evolution is associated with an increased mixed layer and weaker stratification of the upper ocean along the eddy's track. The cyclonic activity along the Cuban coast and wind-induced upwelling events also contribute to the evolution and fate of the CubAN eddies.

  12. Eddy formation behind a coastal cape in a flow generated by transient longshore wind (Numerical experiments)

    NASA Astrophysics Data System (ADS)

    Zhurbas, V. M.; Kuzmina, N. P.; Lyzhkov, D. A.

    2017-05-01

    It is shown that the process of eddy formation behind a coastal cape essentially depends on the method by which longshore flow is generated. Numerical simulations of the flow around a cape generated by transient longshore wind have revealed different modes of eddy formation in a rotating stratified environment depending on such dimensionless parameters as the Burger and Kibel-Rossby numbers, Bu and Ro, respectively. At Ro < 0.6, depending on the magnitude of Bu, either a trapped anticyclonic or cyclonic eddy (at Bu < 0.2) or periodic eddy shedding (at Bu < 0.2) forms. The eddies are weakened and stretched along the coastline at 0.4-0.6 < Ro < 1.4 and ultimately disappear at Ro < 1.4.

  13. The eddy cannon

    NASA Astrophysics Data System (ADS)

    Pichevin, Thierry; Nof, Doron

    1996-09-01

    A new nonlinear mechanism for the generation of "Meddies" by a cape is proposed. The essence of the new process is that the flow-force associated with any steady current that curves back on itself around a cape cannot be balanced without generating and shedding eddies. The process is modeled as follows. A westward flowing density current advances along a zonal wall and turns eastward after reaching the edge of the wall (i.e. the Cape of St Vincent). Integration of the steady (and inviscid) momentum equation along the wall gives the long-shore flow-force and shows that, no matter what the details of the turning process are, such a scenario is impossible. It corresponds to an unbalanced flow-force and, therefore, cannot exist. Namely, in an analogy to a rocket, the zonal longshore current forces the entire system to the west. A flow field that can compensate for such a force is westward drifting eddies that push the system to the east. In a similar fashion to the backward push associated with a firing cannon, the westward moving eddies (bullets) balance the integrated momentum of the flow around the cape. Nonlinear solutions are constructed analytically using an approach that enables one to compute the eddies' size and generation frequency without solving for the incredibly complicated details of the generation process itself. The method takes advantage of the fact that, after each eddy is generated, the system returns to its original structure. It is based on the integration of the momentum equation (for periodic flows) over a control volume and a perturbation expansion in ɛ, the ratio between the eddies' westward drift and the parent current speed. It is found that, because of the relatively small size of the Mediterranean eddies, β is not a sufficiently strong mechanism to remove the eddies (from the Cape of St Vincent) at the observed frequency. It is, therefore, concluded that westward advection must also take place. Specifically, it is found that an advection of 2 cm s -1 will remove (and generate) a Meddy once every 50 days or so and an advection of 5 cm s -1 will remove a Meddy every 17 days. "Kitchen-type" laboratory experiments on a rotating table show that, indeed, a flow that curves back on itself produces an eddy next to the tip of the cape. However, since neither significant β nor advection was present in the laboratory, the laboratory eddy was not shed during the limited time that the experiment was in progress. Numerical simulations (using the Bleck and Boudra isopycnic model) demonstrate, however, that eddies are constantly shed as predicted by the model.

  14. Eddy Generation and Shedding in a Tidally Energetic Channel

    NASA Astrophysics Data System (ADS)

    McIlvenny, J.; Gillibrand, P. A.; Walters, R. A.

    2016-02-01

    The Pentland Firth in northern Scotland, and its subsidiary channel the Inner Sound, are currently under scrutiny as the first tidal energy array in the world is installed during 2016. The tidal flows in the channel and sound have been intensively observed and modelled in recent years, and the turbulent nature of the flow, with features of eddy generation and shedding, is becoming increasingly well known. Turbulence and eddies pose potential risks to the turbine infrastructure through enhanced stress on the blades, while understanding environmental effects of energy extraction also requires accurate simulation of the hydrodynamics of the flow. Here, we apply a mixed finite element/finite volume hydrodynamic model to the northern Scottish shelf, with a particular focus on flows through the Pentland Firth and the Inner Sound. We use an unstructured grid model, which allows the open boundaries to be far removed from the region of interest, while still allowing a grid spacing of 40m in the Inner Sound. The model employs semi-implicit techniques to solve the momentum and free surface equations, and semi-Lagrangian methods to solve the material derivative in the momentum equation, making it fast, robust and accurate and suitable for simulating flows in irregular coastal ocean environments. The model is well suited to address questions relating to tidal energy potential. We present numerical simulations of tidal currents in The Pentland Firth and Inner Sound. Observed velocities in the Inner Sound, measured by moored ADCP deployments, reach speeds of up to 5 m s-1 and the model successfully reproduces these strong currents. In the simulations, eddies are formed by interactions between the strong flow and the northern and southern headlands on the island of Stroma; some of these eddies are trapped and remain locked in position, whereas others are shed and transported away from the generation zone. We track the development and advection of eddies in relation to the site of the tidal energy farm, and we compare the simulated locations of eddies with observed seabed sediment distributions in the Inner Sound. Simulations with and without the presence of tidal turbines in the Inner Sound are presented, and the potential impact of the turbines on sediment dynamics is considered.

  15. Mechanisms of the 40-70 Day Variability in the Yucatan Channel Volume Transport

    NASA Astrophysics Data System (ADS)

    van Westen, René M.; Dijkstra, Henk A.; Klees, Roland; Riva, Riccardo E. M.; Slobbe, D. Cornelis; van der Boog, Carine G.; Katsman, Caroline A.; Candy, Adam S.; Pietrzak, Julie D.; Zijlema, Marcel; James, Rebecca K.; Bouma, Tjeerd J.

    2018-02-01

    The Yucatan Channel connects the Caribbean Sea with the Gulf of Mexico and is the main outflow region of the Caribbean Sea. Moorings in the Yucatan Channel show high-frequent variability in kinetic energy (50-100 days) and transport (20-40 days), but the physical mechanisms controlling this variability are poorly understood. In this study, we show that the short-term variability in the Yucatan Channel transport has an upstream origin and arises from processes in the North Brazil Current. To establish this connection, we use data from altimetry and model output from several high resolution global models. A significant 40-70 day variability is found in the sea surface height in the North Brazil Current retroflection region with a propagation toward the Lesser Antilles. The frequency of variability is generated by intrinsic processes associated with the shedding of eddies, rather than by atmospheric forcing. This sea surface height variability is able to pass the Lesser Antilles, it propagates westward with the background ocean flow in the Caribbean Sea and finally affects the variability in the Yucatan Channel volume transport.

  16. South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data

    NASA Astrophysics Data System (ADS)

    Florenchie, P.; Verron, J.

    1998-10-01

    Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.

  17. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard

    NASA Astrophysics Data System (ADS)

    Crews, L.; Sundfjord, A.; Albretsen, J.; Hattermann, T.

    2018-01-01

    Mesoscale eddies are known to transport heat and biogeochemical properties from Arctic Ocean boundary currents to basin interiors. Previous hydrographic surveys and model results suggest that eddy formation may be common in the Atlantic Water (AW) inflow area north of Svalbard, but no quantitative eddy survey has yet been done for the region. Here vorticity and water property signatures are used to identify and track AW eddies in an eddy-resolving sea ice-ocean model. The boundary current sheds AW eddies along most of the length of the continental slope considered, from the western Yermak Plateau to 40°E, though eddies forming east of 20°E are likely more important for slope-to-basin transport. Eddy formation seasonality reflects seasonal stability properties of the boundary current in the eastern portion of the study domain, but on and immediately east of the Yermak Plateau enhanced eddy formation during summer merits further investigation. AW eddies tend to be anticyclonic, have radii close to the local deformation radius, and be centered in the halocline. They transport roughly 0.16 Sv of AW and, due to their warm cores, 1.0 TW away from the boundary current. These findings suggest eddies may be important for halocline ventilation in the Eurasian Basin, as has been shown for Pacific Water eddies in the Canadian Basin.

  18. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns

    PubMed Central

    Chérubin, Laurent Marcel; Garavelli, Lysel

    2016-01-01

    The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum) in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns. PMID:26942575

  19. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns.

    PubMed

    Chérubin, Laurent Marcel; Garavelli, Lysel

    2016-01-01

    The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum) in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns.

  20. Nonperiodic eddy pulsations

    USGS Publications Warehouse

    Rubin, David M.; McDonald, Richard R.

    1995-01-01

    Recirculating flow in lateral separation eddies is typically weaker than main stem flow and provides an effective environment for trapping sediment. Observations of recirculating flow and sedimentary structures demonstrate that eddies pulsate in size and in flow velocity even when main stem flow is steady. Time series measurements of flow velocity and location of the reattachment point indicate that these pulsations are nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is sufficient to cause the leeside flow to change from a periodic sequence of vortices to a nonperiodically pulsating lateral separation eddy, even if flow conditions are otherwise unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is added. First, vortices that are shed from the cylinder deform and become irregular as they impact the plate or interfere with remnants of other vortices near the reattachment point. Second, these deformed vortices and other flow structures are recirculated in the lateral separation eddy, thereby influencing the future state (pressure and momentum distribution) of the recirculating flow. The vortex deformation process was confirmed experimentally by documenting spatial differences in leeside flow; vortex shedding that is evident near the separation point is undetectable near the reattachment point. Nonlinear forecasting techniques were used in an attempt to distinguish among several possible kinds of nonperiodic flows. The computational techniques were unable to demonstrate that any of the nonperiodic flows result from low-dimensional nonlinear processes.

  1. Malvinas Current variations: dissipation of mesoscale activity over the Malvinas Plateau and recurrent blocking events in the Argentine Basin.

    NASA Astrophysics Data System (ADS)

    Provost, C.; Artana, C.; Ferrari, R.; Koenig, Z.; Saraceno, M.; Piola, A. R.

    2016-12-01

    The Malvinas Current (MC) is an offshoot of the Antarctic Circumpolar Current (ACC). Downstream of Drake Passage, the northern fronts of the ACC veer northward, cross over the North Scotia Ridge (NSR) and the Malvinas Plateau and enter the Argentine Basin. We investigate the variations of the MC circulation between the NSR and 41°S and their possible relations with the ACC circulation using data from Argo floats and satellite altimetry. The data depict meandering and eddy-shedding of the northern ACC jets as they cross the NSR. The satellite fields (altimetry and high resolution sea surface temperature images) show that these eddies are trapped, break down and dissipate over the Malvinas Plateau, suggesting that this region is a hot spot for dissipation of mesoscale variability. Variations of sea level anomalies (SLA) across the NSR do not impact the MC further north, except for intra-seasonal variability associated with coastal trapped waves. Altimetry and float trajectories show events during which a large fraction of the MC is cut off from the ACC. During these blocking events, the MC does not collapse as a robust cyclonic cell is established to the north of the cut-off. The MC becomes the western boundary current of the cell and small cyclonic eddies locally reinforce the circulation. Blocking events at around 48.5°S are a recurrent feature of the MC circulation. Over the 23 year altimetry record, we detected 26 events during which the MC surface transport at 48.5°S was reduced to less than half its long term mean. Blocking events last from 10 to 35 days and do not present any significant trend. These events were tracked back to positive SLA that built up over the Argentine Abyssal Plain.

  2. Physical connectivity between Pulley Ridge and Dry Tortugas coral reefs under the influence of the Loop Current/Florida Current system

    NASA Astrophysics Data System (ADS)

    Kourafalou, V. H.; Androulidakis, Y. S.; Kang, H.; Smith, R. H.; Valle-Levinson, A.

    2018-07-01

    The Pulley Ridge and Dry Tortugas coral reefs are among the most pristine, but also fragile, marine ecosystems of the continental United States. Understanding connectivity processes between them and with surrounding shelf and deep areas is fundamental for their management. This study focuses on the physical processes related to the connectivity of these reefs. Unprecedented in situ time series were used at these specific reef locations, together with satellite observations and numerical simulations, to investigate the dynamics controlling local circulation on the Southwestern Florida Shelf (SWFS) under oceanic influence. The approach of the Loop Current and Florida Current (LC/FC) system to the SWFS slope can induce 0.5 to 1 m/s offshore flows impacting the Pulley Ridge and Dry Tortugas reefs. On the other hand, when the LC/FC system retreats from the slope, onshore flows can carry open-sea waters over the coral reefs. Local formation of cyclonic eddies is possible near the Dry Tortugas reefs in the LC approach case and passage of upstream LC Frontal Eddies is possible in the LC retreat case. Offshore currents ∼1 m/s over the SWFS slope were also found during periods of anticyclonic LC Eddy separation. A novel finding is the shedding and northward propagation of mesoscale anticyclonic eddies from the core of the LC along the West Florida Shelf. Eddy shedding may have a broader effect on the dynamics of the shelf around the study reef areas. Long periods of LC/FC domination over these coral reefs (reaching several weeks to months) are characterized by strong (∼1 m/s) along-shelf currents and continuous upwelling processes, which may weaken the slope stratification and bring colder, deeper waters over the shelf-break and toward the shallower shelf region.

  3. Impacts of two super typhoons on the Kuroshio and marginal seas on the Pacific coast of Japan

    NASA Astrophysics Data System (ADS)

    Tada, Hiroaki; Uchiyama, Yusuke; Masunaga, Eiji

    2018-02-01

    High-resolution downscaling ocean modeling was conducted to investigate the impacts of two super typhoons on the Kuroshio in the fall of 2014 off the Kyushu and Shikoku Islands, Japan. The model result was compared with field observations and satellite altimetry. The synoptic and mesoscale oceanic structures around the Kuroshio exhibit a good reproducibility. The typhoons generated near-inertial oscillations (NIOs) and near-inertial internal waves (NIIWs) around the Kuroshio path, particularly on the right side of the typhoon tracks. The NIOs developed in the mixed layer to alter the direction of the Kuroshio by 30°. The associated velocity off the Shikoku and Kyushu Islands was significantly decelerated by 0.2 ms-1. The velocity almost vanished off Kyushu Island and thus induced an unstable fluctuating path shortly after both typhoons passed over that region. The NIIWs were also excited at the thermocline, resulting in the oscillation of the Kuroshio path occurred in the entire water column. In contrast, off Shikoku Island, the typhoons shifted the Kuroshio path northward to enhance the interactions with the topographies. This shift caused considerable eddy shedding from the capes that resulted in mesoscale counterclockwise circulations as cyclonic quasi-standing eddies with a shedding period of 3 days in the north of the Kuroshio path. The magnitude, direction, and meridional location of the path of the Kuroshio prominently fluctuated with the propagation of these eddies, manifested off Shikoku Island. Furthermore, these eddies induced sporadic northward intrusions of the Kuroshio warm water through the Kii Channel into the Seto Inland Sea (SIS), where a weak but persisting southward outflow prevails under normal conditions. Therefore, the process could collectively be called the "typhoon-Kuroshio-eddy interaction", which conceptually differs from the "typhoon-eddy-Kuroshio interaction" in the previous studies, where the Kuroshio was modulated by eddy collision. The wind stress curl and intrusions associated with the typhoons jointly provoked the inversion of the counterclockwise SIS residual circulation. The resultant spatially averaged volume flux was 8 times as high as that under normal conditions.

  4. Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro

    2017-10-01

    The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.

  5. Malvinas Current variability from Argo floats and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Artana, Camila; Ferrari, Ramiro; Koenig, Zoé; Saraceno, Martin; Piola, Alberto R.; Provost, Christine

    2016-07-01

    The Malvinas Current (MC) is an offshoot of the Antarctic Circumpolar Current (ACC). Downstream of Drake Passage, the northern fronts of the ACC veer northward, cross over the North Scotia Ridge (NSR) and the Malvinas Plateau, and enter the Argentine Basin. We investigate the variations of the MC circulation between the NSR and 41°S and their possible relations with the ACC circulation using data from Argo floats and satellite altimetry. The data depict meandering and eddy shedding of the northern ACC jets as they cross the NSR. The altimetry fields show that these eddies are trapped, break down, and dissipate over the Malvinas Plateau, suggesting that this region is a hot spot for dissipation of mesoscale variability. Variations of sea level anomalies (SLA) across the NSR do not impact the MC further north, except for intra-seasonal variability associated with coastal trapped waves. Altimetry and float trajectories show events during which a large fraction of the MC is cut off from the ACC. Blocking events at around 48.5°S are a recurrent feature of the MC circulation. Over the 23 year altimetry record, we detected 26 events during which the MC surface transport at 48.5°S was reduced to less than half its long-term mean. Blocking events last from 10 to 35 days and do not present any significant trend. These events were tracked back to positive SLA that built up over the Argentine Abyssal Plain. Future work is needed to understand the processes responsible for these blocking events.

  6. The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias

    NASA Astrophysics Data System (ADS)

    Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.

    2016-02-01

    Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.

  7. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  8. Long-term Trends and Variability of Eddy Activities in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, M.; von Storch, H.

    2017-12-01

    For constructing empirical downscaling models and projecting possible future states of eddy activities in the South China Sea (SCS), long-term statistical characteristics of the SCS eddy are needed. We use a daily global eddy-resolving model product named STORM covering the period of 1950-2010. This simulation has employed the MPI-OM model with a mean horizontal resolution of 10km and been driven by the NCEP reanalysis-1 data set. An eddy detection and tracking algorithm operating on the gridded sea surface height anomaly (SSHA) fields was developed. A set of parameters for the criteria in the SCS are determined through sensitivity tests. Our method detected more than 6000 eddy tracks in the South China Sea. For all of them, eddy diameters, track length, eddy intensity, eddy lifetime and eddy frequency were determined. The long-term trends and variability of those properties also has been derived. Most of the eddies propagate westward. Nearly 100 eddies travel longer than 1000km, and over 800 eddies have a lifespan of more than 2 months. Furthermore, for building the statistical empirical model, the relationship between the SCS eddy statistics and the large-scale atmospheric and oceanic phenomena has been investigated.

  9. Cleavage of a Gulf of Mexico Loop Current eddy by a deep water cyclone

    NASA Astrophysics Data System (ADS)

    Biggs, D. C.; Fargion, G. S.; Hamilton, P.; Leben, R. R.

    1996-09-01

    Eddy Triton, an anticyclonic eddy shed by the Loop Current in late June 1991, drifted SW across the central Gulf of Mexico in the first 6 months of 1992, along the ``southern'' of the three characteristic drift paths described by Vukovich and Crissman [1986] from their analyses of 13 years of advanced very high resolution radiometer sea surface temperature data. An expendable bathythermograph (XBT) and conductivity-temperature-depth (CTD) transect of opportunity through Triton at eddy age 7 months in January 1992 found that eddy interior stood 23 dyn. cm higher than periphery; this gradient drove an anticyclonic swirl transport of 9-10 Sv relative to 800 dbar. At eddy age 9-10 months and while this eddy was in deep water near 94°W, it interacted with a mesoscale cyclonic circulation and was cleaved into two parts. The major (greater dynamic centimeters) piece drifted NW to end up in the ``eddy graveyard'' in the NW corner of the gulf, while the minor piece drifted SW and reached the continental margin of the western gulf off Tuxpan. This southern piece of Eddy Triton then turned north to follow the 2000-m isobath to about 24°N and later coalesced with what remained of the major fragment. Because Eddy Triton's cleavage took place just before the start of marine mammals (GulfCet) and Louisiana-Texas physical oceanography (LATEX) field programs, the closely spaced CTD, XBT, and air dropped XBT (AXBT) data that were gathered on the continental margin north of 26°N in support of these programs allow a detailed look at the northern margin of the larger fragment of this eddy. Supporting data from the space-borne altimeters on ERS 1 and TOPEX/POSEIDON allow us to track both pieces of Eddy Triton in the western Gulf and follow their spin down in dynamic height, coalescence, and ultimate entrainment in January 1993 into another anticyclonic eddy (Eddy U).

  10. Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea

    NASA Astrophysics Data System (ADS)

    Kamidaira, Yuki; Uchiyama, Yusuke; Mitarai, Satoshi

    2017-07-01

    In this study, an oceanic downscaling model in a double-nested configuration was used to investigate the role played by the Kuroshio warm current in preserving and maintaining biological diversity in the coral coasts around the Ryukyu Islands (Japan). A comparison of the modeled data demonstrated that the innermost submesoscale eddy-resolving model successfully reproduced the synoptic and mesoscale oceanic structures even without data assimilation. The Kuroshio flows on the shelf break of the East China Sea approximately 150-200 km from the islands; therefore, eddy-induced transient processes are essential to the lateral transport of material within the strip between the Kuroshio and the islands. The model indicated an evident predominance of submesoscale anticyclonic eddies over cyclonic eddies near the surface of this strip. An energy conversion analysis relevant to the eddy-generation mechanisms revealed that a combination of both the shear instability due to the Kuroshio and the topography and baroclinic instability around the Kuroshio front jointly provoke these near-surface anticyclonic eddies, as well as the subsurface cyclonic eddies that are shed around the shelf break. Both surface and subsurface eddies fit within the submesoscale, and they are energized more as the grid resolution of the model is increased. An eddy heat flux (EHF) analysis was performed with decomposition into the divergent (dEHF) and rotational (rEHF) components. The rEHF vectors appeared along the temperature variance contours by following the Kuroshio, whereas the dEHF properly measured the transverse transport normal to the Kuroshio's path. The diagnostic EHF analysis demonstrated that an asymmetric dEHF occurs within the surface mixed layer, which promotes eastward transport toward the islands. Conversely, below the mixed layer, a negative dEHF tongue is formed that promotes the subsurface westward warm water transport.

  11. Eddy Properties and their Spatiotemporal Variability in the North Indian Ocean from Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Dandapat, S.; Chakraborty, A.

    2016-12-01

    A comprehensive study on the statistics and variability of mesoscale eddies in the North Indian Ocean (NIO) are investigated using satellite altimetry data for the period of 1993-2014. A hybrid algorithm based on the physical and geometrical properties of mesoscale eddies is applied to detect the eddies and track their propagation. The potential eddies with radius larger than 50 km and lifespan longer than 30 days are considered for the analysis. The NIO consists of two unique tropical basins with the high number of eddy generations and activity: the Arabian Sea (AS) and the Bay of Bengal (BOB). It is noticed that the occurrence of cyclonic eddies (CEs) are found to be significant in AS, while the anticyclonic eddies (ACEs) dominate the BOB. In both the oceans eddies mostly propagate westward. The AS eddies showed the higher mean values, propagation speed, mean radius, mean lifetime than BOB eddies. In the AS, it is found that eddies formed on the western side of the basin persist longer and move towards north where as the number of eddies in the eastern coast of the basin is fewer and short lived. In the BOB, two highly eddy productive zones are identified: offshore of Visakhapatnam and the northern part of western BOB. The occurrence of ACEs dominate the offshore of Visakhapatnam, whereas the CEs in the northern part of western BOB. The ACEs are larger but the CEs have longer lifetime and are more energetic in the BOB. Along with the statistical properties, we also examined the eddy temporal variability in seasonal scale and their structural properties from ARGO data in the NIO. The seasonal variations are found to be significant in AS and BOB and in both the oceans significant correlation has been found between the eddy genesis and local wind stress curl. The strong positive wind stress curl during summer favors the formation of more CEs. In general, both ACEs and CEs in the NIO have single-core vertical structure with the core at a depth of about 100-200 dbar.

  12. Numerical Simulations of Europa Hydrothermal Plumes

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Lenferink, E.

    2009-12-01

    The liquid water interiors of Europa and other icy moons of the outer solar system are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MITGCM. We assume in this experiment that Europa's ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. A series of experiments was performed to explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 1 and 10 GW, and values of the Coriolis parameter f between 30% and 90% of the Europa average value. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 20-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1.5 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 30 and 160 microkelvin. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a "natural Rossby number" which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations. The time elapsed between startup of the source and the beginning of eddy-shedding is much less variable than predicted; also, the plume temperature varies with ocean depth H when our theory says it should not. Both of these results can be explained by noting that the theory assumes that mixing between plume fluid and ambient fluid occurs only very near the heat source, but this does not appear to be true in the simulations. 3-d view of simulated Europa plume. Boundary indicated by 3-d surface; flat surfaces at left and top show temperature in sections through the plume.

  13. Ship and satellite observations of chlorophyll stocks in interacting cyclone-anticyclone eddy pairs in the western Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Biggs, Douglas, C.; Mueller-Karger, Frank E.

    1994-01-01

    When anticyclonic eddies shed by the Loop Current of the Gulf of Mexico reach the western margin of the gulf, they influence the surface circulation over the continental slope and rise. Of particular interest is the generation of cyclone (cold-core)-anticyclone (warm-core) pairs when aging Loop Current eddies interact with the continental margin. In this paper we describe the physical and biological characteristics of these cyclone-anticyclone pairs. Our objective was to determine how eddy pairs affect the distribution of phytoplankton in the region and how satellite ocean color measurements are applicable to tracing of the eddies. We present shipboard data collected between 1980 and 1982 on the hydrography, chlorophyll stocks, and nutrient concentrations of eddy pairs in the western Gulf of Mexico and compare these data with coastal zone color scanner (CZCS) images collected during the time frame of the cruises. Surface pigment concentrations followed a seasonal cycle, with low concentrations (0.05-0.1 mg m(exp -3)) found within cyclones and anticyclones from April through early November and higher concentrations (greater than 0.1 mg(exp -3)) found in the winter. CZCS pigment concentrations were locally high in the flow confluence of cyclone-anticyclone pairs. The CZCS imagery shows that some cyclone-anticyclone geometries transport high-chlorophyll shelf water seaward at least 100-200 km off-shelf.

  14. Interactions between the Somali Current eddies during the summer monsoon: insights from a numerical study

    NASA Astrophysics Data System (ADS)

    Akuetevi, C. Q. C.; Barnier, B.; Verron, J.; Molines, J.-M.; Lecointre, A.

    2016-02-01

    Three hindcast simulations of the global ocean circulation differing by resolution (1/4 or 1/12°) or parametrization or atmospheric forcing are used to describe the interactions between the large anticyclonic eddies generated by the Somali Current system during the Southwest Monsoon. The present investigation of the Somalian coherent eddy structures allows us to identify the origin and the subsequent development of the cyclones flanked upon the Great Whirl (GW) previously identified by Beal and Donohue (2013) in satellite observations and to establish that similar cyclones are also flanked upon the Southern Gyre (SG). These cyclones are identified as potential actors in mixing water masses within the large eddies and offshore the coast of Somalia. All three simulations bring to light that during the period when the Southwest Monsoon is well established, the SG moves northward along the Somali coast and encounters the GW. The interaction between the SG and the GW is a collision without merging, in a way that has not been described in observations up to now. During the collision the GW is pushed to the east of Socotra Island, sheds several smaller patches of anticyclonic vorticity, and often reforms into the Socotra Eddy, thus proposing a formation mechanism for that eddy. During this process the GW gives up its place to the SG. This process is robust throughout the three simulations.

  15. Topographic-baroclinic instability and formation of Kuroshio current loop

    NASA Astrophysics Data System (ADS)

    Guo, Jingsong; Zhang, Zhixin; Xia, Changshui; Guo, Binghuo; Yuan, Yeli

    2018-03-01

    Using time-series figures of sea-level anomaly and geostrophic currents from merged absolute dynamic topography, we analyzed the formation and evolution of the Kuroshio current loop (KCL). The main results are as follows. Perturbation origins of the KCLs are in three areas (eastern, western, and southern) surrounding the Hengchun Submarine Ridge. There are two basic types of KCL formation, i.e., "Kuroshio bend pushing" and "Kuroshio Branch rewinding", plus their combination. The KCLs propagate westward at 1.6-4.5 cm/s. There are two forms of KCL evolution into a shed eddy. The first is such that the northern KCL section initially divides to become an eddy joining the Kuroshio Branch current, which then separates from that current to become a shed eddy. The second form is such that the northern and southern sections of the KCL are separated almost simultaneously in westward elongated process. To understand the KCL formation mechanism, we derive linear equations in phase space from the governing equations in σ-coordinates, ultimately obtaining two groups of analytical solutions for interactions between waves, topography, and the basic current field. The solutions lead to the following results. The KCL propagates westward with the group velocity of the Kuroshio center region. The Kuroshio generally sweeps over the Hengchun Submarine Ridge, especially in winter, such that there is topographic-baroclinic instability. The analytical solutions effectively reveal the dynamic mechanism of the two basic types of KCL formation.

  16. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    PubMed

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

  17. Impacts of mesoscale eddies on biogeochemical cycles in the South China Sea

    NASA Astrophysics Data System (ADS)

    Xiu, P.; Chai, F.; Guo, M.

    2016-02-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic eddies are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic eddies are with lower concentrations compared with surrounding waters, which is generally controlled by the eddy pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies are also revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures are not linearly coupled at the eddy core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find eddy pumping mechanisms are generally dominant in winter and eddy advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by eddy pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.

  18. Description of the Lofoten Basin Eddy using three years of Seaglider observations

    NASA Astrophysics Data System (ADS)

    Yu, Lusha; Bosse, Anthony; Fer, Ilker; Arild Orvik, Kjell; Magnus Bruvik, Erik; Hessevik, Idar; Kvalsund, Karsten

    2017-04-01

    The Lofoten Basin of the Norwegian Sea is an area where the warm Atlantic Water is subject to the greatest heat losses anywhere in the Nordic Seas. The region is recognized as an area of intense mesoscale activity, including eddies shed from the Norwegian slope current and a long-lived, deep, anticyclonic eddy residing in the central part of the basin (the Lofoten Basin Eddy, LBE). Here we use observations from Seagliders, collected in five missions between July 2012 and April 2015, to describe the LBE in unprecedented detail. The missions were concentrated to sample the LBE repeatedly, allowing for multiple realizations of radial sections across the eddy. The LBE has a mean radius of 18 ± 4 km, and propagates cyclonically with a mean speed of approximately 3-4 cm s-1. The anticyclonic azimuthal peak velocity varies between 0.5 and 0.7 m s-1, located between 680 and 860 m depth, and 16 and 25 km radial distance to the eddy center. The contribution of geostrophy in the cyclogeostrophic balance is approximately 50%, which indicates the importance of the non-linear effects. The relative vorticity representative of the core exhibits large values between -0.7f to -0.9f, where f is the local Coriolis parameter. The eddy core is long-lived (at least two years from May 2013 to March 2015), has characteristic values of Conservative Temperature of 4.8°C and Absolute Salinity of 35.34 g kg-1, and deepens to approximately 730 m in wintertime. A comparison of the eddy properties to those inferred from automated tracking of satellite altimeter observations shows that while the location of eddy center is detected accurately to within 5 km, the altimeter inferred vorticity is underestimated and the radius overestimated, each approximately by a factor of 2, because of excessive smoothing relative to the small eddy radius.

  19. Time variable eddy mixing in the global Sea Surface Salinity maxima

    NASA Astrophysics Data System (ADS)

    Busecke, J. J. M.; Abernathey, R.; Gordon, A. L.

    2016-12-01

    Lateral mixing by mesoscale eddies is widely recognized as a crucial mechanism for the global ocean circulation and the associated heat/salt/tracer transports. The Salinity in the Upper Ocean Processes Study (SPURS) confirmed the importance of eddy mixing for the surface salinity fields even in the center of the subtropical gyre of the North Atlantic. We focus on the global salinity maxima due to their role as indicators for global changes in the hydrological cycle as well as providing the source water masses for the shallow overturning circulation. We introduce a novel approach to estimate the contribution of eddy mixing to the global sea surface salinity maxima. Using a global 2D tracer experiments in a 1/10 degree MITgcm setup driven by observed surface velocities, we analyze the effect of eddy mixing using a water mass framework, thus focussing on the diffusive flux across surface isohalines. This enables us to diagnose temporal variability on seasonal to inter annual time scales, revealing regional differences in the mechanism causing temporal variability.Sensitivity experiments with various salinity backgrounds reveal robust inter annual variability caused by changes in the surface velocity fields potentially forced by large scale climate.

  20. Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun

    2017-04-01

    The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.

  1. Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies

    NASA Astrophysics Data System (ADS)

    Dufois, François; Hardman-Mountford, Nick J.; Fernandes, Michelle; Wojtasiewicz, Bozena; Shenoy, Damodar; Slawinski, Dirk; Gauns, Mangesh; Greenwood, Jim; Toresen, Reidar

    2017-04-01

    The South Indian Ocean subtropical gyre has been described as a unique environment where anticyclonic ocean eddies highlight enhanced surface chlorophyll in winter. The processes responsible for this chlorophyll increase in anticyclones have remained elusive, primarily because previous studies investigating this unusual behavior were mostly based on satellite data, which only views the ocean surface. Here we present in situ data from an oceanographic voyage focusing on the mesoscale variability of biogeochemical variables across the subtropical gyre. During this voyage an autonomous biogeochemical profiling float transected an anticyclonic eddy, recording its physical and biological state over a period of 6 weeks. We show that several processes might be responsible for the eddy/chlorophyll relationship, including horizontal advection of productive waters and deeper convective mixing in anticyclonic eddies. While a deep chlorophyll maximum is present in the subtropical Indian Ocean outside anticyclonic eddies, mixing reaches deeper in anticyclonic eddy cores, resulting in increased surface chlorophyll due to the stirring of the deep chlorophyll maximum and possibly resulting in new production from nitrate injection below the deep chlorophyll maximum.

  2. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Huei; Jan, Sen; Mensah, Vigan; Andres, Magdalena; Rainville, Luc; Yang, Yiing Jang; Cheng, Yu-Hsin

    2018-01-01

    Variability of the Kuroshio east of Taiwan was observed at a cross-stream transect 50 km south of the PCM-1 line with an array of three moored ADCPs measuring for 23 months, supplemented with eleven repeated shipboard surveys. Observations of the Kuroshio's velocity structure reveal the absence of an obvious regular seasonal signal, but significant variability at 70-200 day period for both maximum velocity axis migration and transport due to interactions with mesoscale eddies. Empirical orthogonal function (EOF) analysis shows the migration and transport modes explain 46% and 29% of the total variance, respectively, which is in contrast to the findings at the PCM-1 line where the transport mode explained more variance than did the migration mode. The Kuroshio transport in the upper 500 m across a 150 km section is 17.2 Sv with a standard deviation of 5 Sv. The estimated Kuroshio transport is 4.3 Sv lower than that reported for the PCM-1 line, likely due to the interannual variations related to abundance of mesoscale eddies in the Subtropical Counter Current (STCC) region. Transport variability east of Taiwan is mostly caused by Kuroshio-eddy interactions. When single anticyclonic (cyclonic) eddies encounter the Kuroshio, they enhance (reduce) poleward transport, presumably by increasing (decreasing) the sea level anomaly (SLA) along the eastern flank of the Kuroshio (correlation = 0.82). When a pair of eddies impinges on the Kuroshio, the upstream confluence and diffluence caused by the dipole eddies increases and decreases the Kuroshio transport, respectively. Furthermore, the eastward (westward) currents that result from either the single eddy or the dipole eddy produce flow divergence (convergence) adjacent to the Kuroshio's eastern edge, favoring the offshore (onshore) migration of the Kuroshio axis.

  3. Improving Representation of Convective Transport for Scale-Aware Parameterization, Part II: Analysis of Cloud-Resolving Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.

    2015-04-27

    Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continental and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraftmore » eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of 38 mid-latitude continental convection. We show that the single updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as 3 updrafts can account for the internal variability of updrafts well. Based on evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.« less

  4. Eddy energy sources and mesoscale eddies in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Stepanov, Dmitry V.; Diansky, Nikolay A.; Fomin, Vladimir V.

    2018-05-01

    Based on eddy-permitting ocean circulation model outputs, the mesoscale variability is studied in the Sea of Okhotsk. We confirmed that the simulated circulation reproduces the main features of the general circulation in the Sea of Okhotsk. In particular, it reproduced a complex structure of the East-Sakhalin current and the pronounced seasonal variability of this current. We established that the maximum of mean kinetic energy was associated with the East-Sakhalin Current. In order to uncover causes and mechanisms of the mesoscale variability, we studied the budget of eddy kinetic energy (EKE) in the Sea of Okhotsk. Spatial distribution of the EKE showed that intensive mesoscale variability occurs along the western boundary of the Sea of Okhotsk, where the East-Sakhalin Current extends. We revealed a pronounced seasonal variability of EKE with its maximum intensity in winter and its minimum intensity in summer. Analysis of EKE sources and rates of energy conversion revealed a leading role of time-varying (turbulent) wind stress in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk in winter and spring. We established that a contribution of baroclinic instability predominates over that of barotropic instability in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk. To demonstrate the mechanism of baroclinic instability, the simulated circulation was considered along the western boundary of the Sea of Okhotsk from January to April 2005. In April, the mesoscale anticyclonic eddies are observed along the western boundary of the Sea of Okhotsk. The role of the sea ice cover in the intensification of the mesoscale variability in the Sea of Okhotsk was discussed.

  5. The Energy Cascade Associated with the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Castanheira, J. M.; Marques, C. A. F.

    2017-12-01

    The North Atlantic Oscillation or Arctic Oscillation (NAO/AO), in a more hemispheric expression, is the dominant mode of variability of the extratropical atmospheric circulation. In the literature which analyses the association of low frequency variability of the NAO/AO with other climate variables, it is very common to find the idea of circulation and climate impacts of the NAO/AO. It is usually suggested that the NAO influences the position of North Atlantic storm tracks and the related transport of heat and moisture. However, in spite of the long time since the NAO variability mode was uncovered (Walker and Bliss, 1932), its underlying dynamical mechanisms are not well understood yet. In fact, it is not yet consensual that the NAO influences the position of the storm tracks, being possible that the relationship is in the opposite way with the storm track activity influencing de NAO. In this communication we will present an analysis of anomalies of the energy cascade associated with the NAO. A detailed version of the Lorenz energy cycle, which decomposes the energy flows into baroclinic and barotropic terms and into zonal mean and eddy components, was applied to the 6-hourly ERA-I reanalysis for the period of 1979 to 2016. The obtained results show that the positive NAO phase is preceded by an significant increase of synoptic baroclinic eddy activity. The eddy available potential energy is converted into kinetic energy and transferred to barotropic synoptic eddies. Then, the kinetic energy is transferred upscale into the barotropic planetary waves, which reproduce the NAO pattern. Therefore, we conclude that the synoptic baroclinic eddy activity forces the NAO variability. No clear signal was found for a modulating role of the NAO in the baroclinic eddy activity.

  6. A note on: "A Gaussian-product stochastic Gent-McWilliams parameterization"

    NASA Astrophysics Data System (ADS)

    Jansen, Malte F.

    2017-02-01

    This note builds on a recent article by Grooms (2016), which introduces a new stochastic parameterization for eddy buoyancy fluxes. The closure proposed by Grooms accounts for the fact that eddy fluxes arise as the product of two approximately Gaussian variables, which in turn leads to a distinctly non-Gaussian distribution. The directionality of the stochastic eddy fluxes, however, remains somewhat ad-hoc and depends on the reference frame of the chosen coordinate system. This note presents a modification of the approach proposed by Grooms, which eliminates this shortcoming. Eddy fluxes are computed based on a stochastic mixing length model, which leads to a frame invariant formulation. As in the original closure proposed by Grooms, eddy fluxes are proportional to the product of two Gaussian variables, and the parameterization reduces to the Gent and McWilliams parameterization for the mean buyoancy fluxes.

  7. A point vortex model for the formation of ocean eddies by flow separation

    NASA Astrophysics Data System (ADS)

    Southwick, O. R.; Johnson, E. R.; McDonald, N. R.

    2015-01-01

    A simple model for the formation of ocean eddies by flow separation from sharply curved horizontal boundary topography is developed. This is based on the Brown-Michael model for two-dimensional vortex shedding, which is adapted to more realistically model mesoscale oceanic flow by including a deforming free surface. With a free surface, the streamfunction for the flow is not harmonic so the conformal mapping methods used in the standard Brown-Michael approach cannot be used and the problem must be solved numerically. A numerical scheme is developed based on a Chebyshev spectral method for the streamfunction partial differential equation and a second order implicit timestepping scheme for the vortex position ordinary differntial equations. This method is used to compute shed vortex trajectories for three background flows: (A) a steady flow around a semi-infinite plate, (B) a free vortex moving around a semi-infinite plate, and (C) a free vortex moving around a right-angled wedge. In (A), the inclusion of surface deformation dramatically slows the vortex and changes its trajectory from a straight path to a curved one. In (B) and (C), without the inclusion of flow separation, free vortices traverse fully around the tip along symmetrical trajectories. With the effects of flow separation included, very different trajectories are found: for all values of the model parameter—the Rossby radius—the free and shed vortices pair up and move off to infinity without passing around the tip. Their final propagation angle depends strongly and monotonically on the Rossby radius.

  8. Eddy Viscosity for Variable Density Coflowing Streams,

    DTIC Science & Technology

    EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.

  9. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector

    NASA Astrophysics Data System (ADS)

    Madonna, E.; Li, C.; Grams, C. M.; Woollings, T.

    2017-12-01

    Understanding the variability of the North Atlantic eddy-driven jet is key to unravelling the dynamics, predictability and climate change response of extratropical weather in the region. This study aims to 1) reconcile two perspectives on wintertime variability in the North Atlantic-European sector and 2) clarify their link to atmospheric blocking. Two common views of wintertime variability in the North Atlantic are the zonal-mean framework comprising three preferred locations of the eddy-driven jet (southern, central, northern), and the weather regime framework comprising four classical North Atlantic-European regimes (Atlantic ridge AR, zonal ZO, European/Scandinavian blocking BL, Greenland anticyclone GA). We use a k-means clustering algorithm to characterize the two-dimensional variability of the eddy-driven jet stream, defined by the lower tropospheric zonal wind in the ERA-Interim reanalysis. The first three clusters capture the central jet and northern jet, along with a new mixed jet configuration; a fourth cluster is needed to recover the southern jet. The mixed cluster represents a split or strongly tilted jet, neither of which is well described in the zonal-mean framework, and has a persistence of about one week, similar to the other clusters. Connections between the preferred jet locations and weather regimes are corroborated - southern to GA, central to ZO, and northern to AR. In addition, the new mixed cluster is found to be linked to European/Scandinavian blocking, whose relation to the eddy-driven jet was previously unclear. The results highlight the necessity of bridging from weather to climate scales for a deeper understanding of atmospheric circulation variability.

  10. Kuroshio Transport East of Taiwan and the Effect of Mesoscale Eddies

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Kuroshio Transport East of Taiwan and the Effect of...The objective of this project is to characterize variability in the Kuroshio east of Taiwan and to understand (1) how this variability is related to...Mindanao Current and (2) how westward-propagating mesoscale eddies that arrive east of Taiwan from the ocean interior affect Kuroshio variability. This

  11. Interactions between the Somali Current eddies during the summer monsoon: insights from a numerical study

    NASA Astrophysics Data System (ADS)

    Barnier, B.; Akuetevi, C. Q.; Verron, J. A.; Molines, J. M.; Lecointre, A.

    2016-02-01

    During the summer monsoon, the ocean circulation of the northwestern Indian Ocean is characterized by large anticyclonic circulation features that are part of the Somali Current system. In the vicinity of the equator is the Southern Gyre (SG), a large retroflection loop of the East African Coastal Current, generated after this current (pushed by the southwesterly winds) has crossed the equator. North of it is the Great Whirl (GW), a large anticyclone which exhibits intense swirling currents. Eddy-resolving hindcast simulations of the global ocean circulation are used to study the fast interactions between these large anticyclonic eddies. The present investigation identifies the origin and the subsequent development of the cyclones flanked upon the Great Whirl (GW) previously identified by in satellite observations and establishes that similar cyclones are also flanked upon the Southern Gyre (SG). These cyclones are identified as major actors in mixing water masses within the large eddies and offshore the coast of Somali. All simulations bring to light that during the period when the Southwest Monsoon is well established, the SG moves northward along the Somali coast and encounters the GW. The interaction between the SG and the GW is a collision without merging, collision during which the GW is pushed to the east of Socotra Island, sheds several smaller patches of anticyclonic vorticity, and often reforms into the Socotra Eddy, thus proposing a formation mechanism for the Socotra Eddy. During this process, the GW gives up its place to the SG which in turn becomes a new Great Whirl. This process is robust throughout the three simulations.

  12. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  13. Challenges in modelling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman

    NASA Astrophysics Data System (ADS)

    Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.

    2015-07-01

    We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color) shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA) and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.

  14. Long-term change of the atmospheric energy cycles and weather disturbances

    NASA Astrophysics Data System (ADS)

    Kim, WonMoo; Choi, Yong-Sang

    2017-11-01

    Weather disturbances are the manifestation of mean atmospheric energy cascading into eddies, thus identifying atmospheric energy structure is of fundamental importance to understand the weather variability in a changing climate. The question is whether our observational data can lead to a consistent diagnosis on the energy conversion characteristics. Here we investigate the atmospheric energy cascades by a simple framework of Lorenz energy cycle, and analyze the energy distribution in mean and eddy fields as forms of potential and kinetic energy. It is found that even the widely utilized independent reanalysis datasets, NCEP-DOE AMIP-II Reanalysis (NCEP2) and ERA-Interim (ERA-INT), draw different conclusions on the change of weather variability measured by eddy-related kinetic energy. NCEP2 shows an increased mean-to-eddy energy conversion and enhanced eddy activity due to efficient baroclinic energy cascade, but ERA-INT shows relatively constant energy cascading structure between the 1980s and the 2000s. The source of discrepancy mainly originates from the uncertainties in hydrological variables in the mid-troposphere. Therefore, much efforts should be made to improve mid-tropospheric observations for more reliable diagnosis of the weather disturbances as a consequence of man-made greenhouse effect.

  15. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  16. Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman

    NASA Astrophysics Data System (ADS)

    Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.

    2016-02-01

    Recent years have shown an increase in harmful algal blooms in the Northwest Arabian Sea and Gulf of Oman, raising the question of whether climate change will accelerate this trend. This has led us to examine whether the Earth System Models used to simulate phytoplankton productivity accurately capture bloom dynamics in this region - both in terms of the annual cycle and interannual variability. Satellite data (SeaWIFS ocean color) show two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. On a regional scale, interannual variability of the wintertime bloom is dominated by cyclonic eddies which vary in location from one year to another. Two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The models fail to capture both the magnitude of the wintertime bloom and its modulation by eddies in part because of their failure to capture the observed sharp thermocline and/or nutricline in this region. When CM2.6 is able to capture such features in the Southern part of the basin, eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). For the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf - something that is poorly done in global models.

  17. Increasing of eddy activity in the northeastern Pacific during 1993-2011

    NASA Astrophysics Data System (ADS)

    Ding, M.; Lin, P.; Liu, H.; Chai, F.

    2017-12-01

    We study the long-term behaviors of eddy activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them based on the 3rd version of the mesoscale eddy trajectories dataset released by Chelton et al. (2013) combined with other observation and reanalysis datasets. Both the eddy kinetic energy (EKE) and eddy occurrence number (EON) present prominent increasing trends, with inter-annual and decadal variabilities northeast of the Hawaii-Emperor seamounts. The increasing trend of the EON is mainly due to prolongation of the eddy lifetime associated with the eddy intensification, particularly for anticyclonic eddies (AEs). Weakened surface winds tend to prolong the eddy lifetimes, as the eddy attenuation time scale is inversely proportional to the wind speed. The enhanced anticyclonic wind stress curl (WSC) anomalies inject more energy into the AE over the study region and provide a more suitable environment for AEs growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO), may also modulate eddy activities in the NEP by exerting fluctuations in the surface wind system.

  18. Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density

    NASA Astrophysics Data System (ADS)

    Pilinski, M.; Crowley, G.

    2014-12-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.

  19. Seasonal variability in global eddy diffusion and the effect on neutral density

    NASA Astrophysics Data System (ADS)

    Pilinski, M. D.; Crowley, G.

    2015-04-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.

  20. Mesoscale Numerical Simulations of the IAS Circulation

    NASA Astrophysics Data System (ADS)

    Mooers, C. N.; Ko, D.

    2008-05-01

    Real-time nowcasts and forecasts of the IAS circulation have been made for several years with mesoscale resolution using the Navy Coastal Ocean Model (NCOM) implemented for the IAS. It is commonly called IASNFS and is driven by the lower resolution Global NCOM on the open boundaries, synoptic atmospheric forcing obtained from the Navy Global Atmospheric Prediction System (NOGAPS), and assimilated satellite-derived sea surface height anomalies and sea surface temperature. Here, examples of the model output are demonstrated; e.g., Gulf of Mexico Loop Current eddy shedding events and the meandering Caribbean Current jet and associated eddies. Overall, IASNFS is ready for further analysis, application to a variety of studies, and downscaling to even higher resolution shelf models. Its output fields are available online through NOAA's National Coastal Data Development Center (NCDDC), located at the Stennis Space Center.

  1. Asymmetry in convection and restratification in the Nordic Seas: an idealized model study

    NASA Astrophysics Data System (ADS)

    Ypma, Stefanie L.; Brüggemann, Nils; Pietrzak, Julie D.; Katsman, Caroline A.

    2017-04-01

    The Nordic Seas are an important production region for dense water masses that feed the lower limb of the Atlantic Meridional Overturning Circulation. They display a pronounced hydrographic asymmetry, with a warm eastern basin, and a cold western basin. Previous studies have shown that this asymmetry is set by the interplay between large eddies shed near the coast of Norway where the continental slope steepens, and the Mohn-Knipovich ridge that separates the Lofoten Basin in the east from the Greenland Basin in the west. While it is known from earlier studies that eddies play a crucial role for the yearly cycle of wintertime convection and summertime restratification in marginal seas like the Labrador Sea, the situation in the Nordic Seas is different as the large eddies can only restratify the eastern part of the Nordic Seas due to the presence of the ridge. Possibly due to this asymmetry in eddy activity and a weaker stratification as a result, the western basin is more sensitive for intense deep convection. The question remains how this area is restratified after a deep convection event in the absence of large eddies and how the dense water is able to leave the basin. An high resolution, idealized model configuration of the MITgcm is used that reproduces the main characteristics of the Nordic Seas, including a warm cyclonic boundary current, a strong eddy field in the east and the hydrographic asymmetry between east and west. The idealized approach enables multiple sensitivity studies to changes in the eddy field and the boundary current and provides the possibility to investigate cause and effect, while keeping the set-up simple. We will present results of tracer studies where the sensitivity of the spreading and the restratification of dense water to the formation location in both basins is studied.

  2. Multi-platform validation of a high-resolution model in the Western Mediterranean Sea: insight into spatial-temporal variability

    NASA Astrophysics Data System (ADS)

    Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.

  3. Temporal evolution of near-surface chlorophyll over cyclonic eddy lifecycles in the southeastern Pacific

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Xu, Fanghua; Zhou, Kuanbo; Xiu, Peng; Lin, Yanluan

    2017-08-01

    Temporal evolution of near-surface chlorophyll (CHL) associated with mesoscale eddies over entire eddy lifespan is complicated. Based on satellite measurements and a reanalysis data set, we identify and quantify major temporal and spatial CHL responses in cyclonic eddies in the southeastern Pacific, and explore the associated mechanisms. Only few temporal CHL variations can be directly linked to the four primary mechanisms: "eddy pumping," "eddy trapping," "eddy stirring," and "eddy-induced Ekman pumping." About 80% of the temporal CHL variations are too complex to be explained by a single mechanism. Five characteristic CHL responses, including classic dipoles (CD), positive-dominant dipoles (PD), negative-dominant dipoles (ND), positive monopoles (PM), and negative monopoles (NM) are identified using the self-organizing map (SOM). CD, a dominant response induced primarily by "eddy stirring," has a continued increasing of frequency of occurrence with time, although its contribution to the total CHL variability remains low. As the secondary prominent response, NM has two peaks of frequency of occurrence at eddy formation and maturation stages, mainly accounted by "eddy trapping" after eddy breakup and "eddy-induced Ekman pumping," respectively. The sum of frequency of occurrence of PD and PM are comparable to that of NM. The initial positive CHL at eddy formation stage is associated with "eddy trapping." The significant positive CHL increase from the eddy intensification to early decay stage is mainly attributed to "eddy pumping." Although the frequency of occurrence of ND is the smallest, its contribution to negative CHL anomalies is unnegligible.

  4. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  5. The influence of ENSO on an oceanic eddy pair in the South China Sea

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoqing; Dong, Changming; Qi, Yiquan

    2017-03-01

    An eddy pair off the Vietnam coast is one of the most important features of the summertime South China Sea circulation. Its variability is of interest due to its profound impact on regional climate, ecosystems, biological processes, and fisheries. This study examines the influence of the El Niño-Southern Oscillation (ENSO), a basin-scale climatic mode, on the interannual variability of this regional eddy pair using satellite observational data and historical hydrographic measurements. Over the last three decades, the eddy pair strengthened in 1994 and 2002, and weakened in 2006, 2007, and 2008. It was absent in 1988, 1995, 1998, and 2010, coinciding with strong El Nino-to-La Nina transitions. Composite analyses showed that the strong transition events of ENSO led to radical changes in the summer monsoon, through the forcing of a unique sea surface temperature anomaly structure over the tropical Indo-Pacific basin. With weaker zonal wind, a more northward wind direction, and the disappearance of a pair of positive and negative wind stress curls, the eastward current jet turns northward along the Vietnam coast and the eddy pair disappears.

  6. Transport induced by mean-eddy interaction: II. Analysis of transport processes

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-03-01

    We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.

  7. Kuroshio Transport East of Taiwan and the Effect of Mesoscale Eddies

    DTIC Science & Technology

    2015-05-31

    Services, 183 Oyster Pond Road, Fenno MS #39 Woods Hole, MA 02543-1531 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S...Kuroshio and the southward-flowing Mindanao Current and (2) how westward-propagating mesoscale eddies that arrive east of Taiwan from the ocean ...of Taiwan from the ocean interior affect Kuroshio variability. This will establish the advective versus the eddy- driven contributions to Kuroshio

  8. An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions

    NASA Astrophysics Data System (ADS)

    Martin, Adrian P.; Lévy, Marina; van Gennip, Simon; Pardo, Silvia; Srokosz, Meric; Allen, John; Painter, Stuart C.; Pidcock, Roz

    2015-09-01

    Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100 km-1 km). The causes and consequences of physical processes at these scales ("eddy advection") influencing biogeochemistry have received much attention. Less studied, the nonlinear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed "eddy reactions." Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modeling work has previously suggested that the neglected eddy reactions may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing, and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates and not taken as a justification for ignoring eddy reactions. Compared to modeling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions.

  9. The Solomon Sea eddy activity from a 1/36° regional model

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is expected to provide observations of small-scale sea level variability, spectral analysis is performed from the 1/36° resolution realistic model in order to characterize the finer scale signals in the Solomon sea region. The preliminary SSH spectral analysis shows a k-4 slope, in good agreement with the suface quasigeostrophic (SQG) turbulence theory. Keywords: Solomon Sea; meso-scale activity; eddy detection, tracking and properties; wavenumber spectrum.

  10. An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.

    2014-01-01

    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.

  11. Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.

    2018-03-01

    Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.

  12. Advanced ice protection systems test in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.

    1991-01-01

    Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

  13. The Energetics of Transient Eddies in the Martian Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph Michael; Szunyogh, Istvan; Lemmon, Mark T.

    2016-10-01

    The energetics of northern hemisphere transient waves in the Mars Analysis Correction Data Assimilation is analyzed. Three periods between the fall and spring equinoxes (Ls=200°-230°, 255°-285°, and 330°-360°) during three Mars Years are selected to exemplify the fall, winter, and spring wave activity. Fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the solsticial pause in eddy activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout the northern hemisphere eddy period with little reduction in amplitude during the solsticial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical shear profile of the westerly jet around winter solstice.

  14. 2-D eddy resolving simulations of flow past a circular array of cylindrical plant stems

    NASA Astrophysics Data System (ADS)

    Chang, Kyoungsik; Constantinescu, George; Park, Sanghyun

    2018-04-01

    In the present study, 2-D large eddy simulations (LES) are conducted for flow past a porous circular array with a solid volume fraction (SVF) of 8.8%, 15.4% and 21.5%. Such simulations are relevant to understanding flow in natural streams and channels containing patches of emerged vegetation. In the simulations discussed in the paper, the porous cylinder of diameter D contains a variable number of identical solid circular cylinders (rigid plant stems) of diameter d = 0.048 D. Most of the simulations are conducted at a Reynolds number of 2 100 based on the diameter D and the velocity of the steady uniform incoming flow. Though in all cases wake billows are shed in the regions where the separated shear layers (SSLs) forming on the sides of the porous cylinder interact, the effect of these wake billows on the mean drag is different. While in the high SVF case (21.5%), the total drag force oscillates quasi-regularly in time, similar to the canonical case of a large solid cylinder, in the cases with a lower SVF the shedding of the wake billows takes place sufficiently far from the cylinder such that the unsteady component of the total drag force is negligible. The mean amplitude of the oscillations of the drag force on the individual cylinders is the largest in a streamwise band centered around the center of the porous cylinder, where the wake to wake interactions are the strongest. In all cases the maximum drag force on the individual cylinders is the largest for the cylinders directly exposed to the flow, but this force is always smaller than the one induced on a small isolated cylinder and the average magnitude of the force on the cylinders directly exposed to the flow decreases monotonically with the increase in the SVF. Predictions of the global drag coefficients, Strouhal numbers associated with the wake vortex shedding and individual forces on the cylinders in the array from the present LES are in very good agreement with those of 2-D direct numerical simulations conducted on finer meshes, which suggests LES is a better option to numerically investigate flow in channels containing canopy patches, given that LES is computationally much less expensive than DNS at high Reynolds number. To prove this point, the paper also discusses results of 2-D LES conducted at a much higher Reynolds number, where the near-wake flow is strongly turbulent. For the higher Reynolds number cases, where the influence of the turbulence model is important, the effect of the sub-grid scale model and the predictive capabilities of the unsteady Reynolds averaged Navier-Stokes (RANS) approach to predict flow past porous cylinders are discussed.

  15. A simulation of the global ocean circulation with resolved eddies

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    1988-12-01

    A multilevel primitive-equation model has been constructed for the purpose of simulating ocean circulation on modern supercomputing architectures. The model is designed to take advantage of faster clock speeds, increased numbers of processors, and enlarged memories of machines expected to be available over the next decade. The model allows global eddy-resolving simulations to be conducted in support of the World Ocean Circulation Experiment. Furthermore, global ocean modeling is essential for proper representation of the full range of oceanic and climatic phenomena. The first such global eddy-resolving ocean calculation is reported here. A 20-year integration of a global ocean model with ½° grid spacing and 20 vertical levels has been carried out with realistic geometry and annual mean wind forcing. The temperature and salinity are constrained to Levitus gridded data above 25-m depth and below 710-m depth (on time scales of 1 month and 3 years, respectively), but the values in the main thermocline are unconstrained for the last decade of the calculation. The final years of the simulation allow the spontaneous formation of waves and eddies through the use of scale-selective viscosity and diffusion. A quasi-equilibrium state shows many realistic features of ocean circulation, including unstable separating western boundary currents, the known anomalous northward heat transport in the South Atlantic, and a global compensation for the abyssal spread of North Atlantic Deep Water via a long chain of thermocline mass transport from the tropical Pacific, through the Indonesian archipelago, across the Indian Ocean, and around the southern tip of Africa. This chain of thermocline transport is perhaps the most striking result from the model, and eddies and waves are evident along the entire 20,000-km path of the flow. The modeled Gulf Stream separates somewhat north of Cape Hatteras, produces warm- and cold-core rings, and maintains its integrity as a meadering thermal front as far east as the Mid-Atlantic Ridge. The Florida Current near the Yucatan peninsula sheds warm-core rings into the Gulf of Mexico. The East Australia Current produces warm rings which travel southward where the main current turns eastward. The Kuroshio and Oyashio currents are modeled as separate and distinct, each capable of producing warm and cold rings, but neither of them being distinguishable more than 1500 km offshore. A number of frontal regions in the Antarctic Circumpolar Current also exhibit spontaneous variability. Some specific areas of vigorous eddy activity have been identified in the South Atlantic by examining regional enlargements of the southwest Atlantic and of the southeast Atlantic over a simulated span of 225 days, using color raster animations of the volume transport stream function and of the temperature at 160-m depth. The Agulhas Current spawns mainly warm-core rings which enter the large-scale gyre circulation of the South Atlantic after rounding the tip of Africa and moving to the northwest. The Drake Passage has two thermal fronts, the northern of which is strongly unstable and generates ring pairs at about a 140-day period, whose net effect is to transport heat poleward. The confluence of the Brazil Current and the Malvinas (Falkland) Current forces each to turn abruptly eastward and exhibit ring formation near the continental shelf break, with unstable meandering farther downstream. It appears that each separated jet has a distinct core for generating unstable waves with periods of roughly 60 days. More quantitative results on global dynamics will be forthcoming as seasonally forced simulations, including ones with ⅓° × ⅖° grid spacing, are obtained and as the simulated variability and eddy transports are analyzed in a systematic fashion.

  16. Satellite observations of eddies in the Baltic, Black and Caspian seas

    NASA Astrophysics Data System (ADS)

    Karimova, S.

    2012-04-01

    In the present paper mesoscale and sub-mesoscale eddies in the Baltic, Black and Caspian seas are studied by means of satellite radiometer and radar images. Using these data makes it possible to investigate the vortical structures of a wide spatial range, from the basin scale through mesoscale to a small scale with a few kilometers in size. Over 2000 Envisat ASAR and ERS-2 SAR images with two-year time coverage (2009-2010) and spatial resolution of 75 m obtained in different parts of the Baltic, Black and Caspian Seas were applied to study submesoscale (with a diameter less than ca. 20 km) eddies in the basins mentioned. As a result of the analysis performed the role of different mechanisms (ones due to surfactant films, wave/current interactions and thermal fronts) in eddy visualization in SAR imagery was revealed. In every basin studied the main eddy characteristics such as number of eddies, frequency of their occurrence in SAR imagery, sign of vorticity, typical length scale and lifetime as well as spatial distribution patterns were investigated. Spatio-temporal parameters of the vortices were subjected to statistical analysis. Interannual and seasonal variabilities of the eddy parameters were traced. Hypotheses about the most important mechanisms of generation of the eddies observed were proposed. Among them there are barotropic, baroclinic and topographic instabilities, convection in the surface layer and heterogeneous wind forcing. Satellite infrared and visible images were used for retrieving statistical information on the Black Sea mesoscale vortical structures. The dataset used included ~5000 AVHRR NOAA Sea Surface Temperature (SST) images covering the entire Black Sea with time coverage since September, 2004 to December, 2010 and ~1500 MODIS Aqua (SST, normalized water-leaving radiance at 551 nm, chlorophyll-a concentration) images obtained in 2006-2010. Spatial resolution of the images was 1 km. Analysis performed revealed that numerous vortical structures could be detected in the imagery mentioned. These structures were very different in their spatio-temporal scales and mechanisms of generation. It was discovered that the eddy types which could be especially frequently observed were the Rim Current meanders and rings, quasi-permanent anticyclonic eddies, near-shore anticyclonic eddies, mushroom-like currents (eddy dipoles), eddies of the Anatolian coast, and eddy chains. For each type of non-stationary eddies (the last four groups of eddies just mentioned), their spatio-temporal characteristics were retrieved such as areas of the most frequent generation and typical length scale as well as their seasonality and interannual variability. This work was implemented within the framework of the Federal Target Program "Scientific and scientific-pedagogical personnel of innovative Russia" in 2009-2013 and partly supported by the Russian Foundation for Basic Research (grants #10-05-00428, #11-07-12025).

  17. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  18. Eddy current nondestructive testing device for measuring variable characteristics of a sample utilizing Walsh functions

    DOEpatents

    Libby, Hugo L.; Hildebrand, Bernard P.

    1978-01-01

    An eddy current testing device for measuring variable characteristics of a sample generates a signal which varies with variations in such characteristics. A signal expander samples at least a portion of this generated signal and expands the sampled signal on a selected basis of square waves or Walsh functions to produce a plurality of signal components representative of the sampled signal. A network combines these components to provide a display of at least one of the characteristics of the sample.

  19. Tools and Methods for Visualization of Mesoscale Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.

    2017-12-01

    Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available datasets, to specify the variables (such as temperature or salinity) to display on the isosurfaces, and to choose the scale and orientation of the view. These techniques allow an oceanographer to browse the data based on eddy paths and individual eddies rather than slices or volumes of data.

  20. Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model

    NASA Astrophysics Data System (ADS)

    Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei

    2012-04-01

    A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.

  1. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  2. Multi-Scale Modeling and the Eddy-Diffusivity/Mass-Flux (EDMF) Parameterization

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2015-12-01

    Turbulence and convection play a fundamental role in many key weather and climate science topics. Unfortunately, current atmospheric models cannot explicitly resolve most turbulent and convective flow. Because of this fact, turbulence and convection in the atmosphere has to be parameterized - i.e. equations describing the dynamical evolution of the statistical properties of turbulence and convection motions have to be devised. Recently a variety of different models have been developed that attempt at simulating the atmosphere using variable resolution. A key problem however is that parameterizations are in general not explicitly aware of the resolution - the scale awareness problem. In this context, we will present and discuss a specific approach, the Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, that not only is in itself a multi-scale parameterization but it is also particularly well suited to deal with the scale-awareness problems that plague current variable-resolution models. It does so by representing small-scale turbulence using a classic Eddy-Diffusivity (ED) method, and the larger-scale (boundary layer and tropospheric-scale) eddies as a variety of plumes using the Mass-Flux (MF) concept.

  3. Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem

    NASA Astrophysics Data System (ADS)

    Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.

    2017-12-01

    The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.

  4. right-sized dimple evaluator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Sal

    2017-08-24

    The code (aka computer program written as a Matlab script) uses a unique set of n independent equations to solve for n turbulence variables. The code requires the input of a characteristic dimension, a characteristic fluid velocity, the fluid dynamic viscosity, and the fluid density. Most importantly, the code estimates the size of three key turbulent eddies: Kolmogorov, Taylor, and integral. Based on the eddy sizes, dimples dimensions are prescribed such that the key eddies (principally Taylor, and sometimes Kolmogorov), can be generated by the dimple rim and flow unimpeded through the dimple’s concave cavity. It is hypothesized that turbulentmore » eddies are generated by the dimple rim at the dimple-surface interface. The newly-generated eddies in turn entrain the movement of surrounding regions of fluid, creating more mixing. The eddies also generate lift near the wall surrounding the dimple, as they accelerate and reduce pressure in the regions near and at the dimple cavity, thereby minimizing the fluid drag.« less

  5. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  6. Variable-Force Eddy-Current Damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1986-01-01

    Variable damping achieved without problems of containing viscous fluids. Eddy-current damping obtained by moving copper or aluminum conductors through magnetic fields. Position of magnet carrier determines amount of field engagement and, therefore, amount of damping. Three advantages of concept: Magnitudes of stiffness and damping continously varied from maximum to zero without bringing rotor or shaft to stop; used in rotating machines not having viscous fluids available such as lubricating oils; produces sizable damping forces in machines that pump liquid hydrogen at - 246 degrees C and liquid oxygen at - 183 degrees C and are compact in size.

  7. The Leeuwin Current and its eddies: An introductory overview

    NASA Astrophysics Data System (ADS)

    Waite, A. M.; Thompson, P. A.; Pesant, S.; Feng, M.; Beckley, L. E.; Domingues, C. M.; Gaughan, D.; Hanson, C. E.; Holl, C. M.; Koslow, T.; Meuleners, M.; Montoya, J. P.; Moore, T.; Muhling, B. A.; Paterson, H.; Rennie, S.; Strzelecki, J.; Twomey, L.

    2007-04-01

    The Leeuwin Current (LC) is an anomalous poleward-flowing eastern boundary current that carries warm, low-salinity water southward along the coast of Western Australia. We present an introduction to a new body of work on the physical and biological dynamics of the LC and its eddies, collected in this Special Issue of Deep-Sea Research II, including (1) several modelling efforts aimed at understanding LC dynamics and eddy generation, (2) papers from regional surveys of primary productivity and nitrogen uptake patterns in the LC, and (3) the first detailed field investigations of the biological oceanography of LC mesoscale eddies. Key results in papers collected here include insight into the source regions of the LC and the Leeuwin Undercurrent (LUC), the energetic interactions of the LC and LUC, and their roles in the generation of warm-core (WC) and cold-core (CC) eddies, respectively. In near-shore waters, the dynamics of upwelling were found to control the spatio-temporal variability of primary production, and important latitudinal differences were found in the fraction of production driven by nitrate (the f-ratio). The ubiquitous deep chlorophyll maximum within LC was found to be a significant contributor to total water column production within the region. WC eddies including a single large eddy studied in 2000 contained relatively elevated chlorophyll a concentrations thought to originate at least in part from the continental shelf/shelf break region and to have been incorporated during eddy formation. During the Eddies 2003 voyage, a more detailed study comparing the WC and CC eddies illuminated more mechanistic details of the unusual dynamics and ecology of the eddies. Food web analysis suggested that the WC eddy had an enhanced "classic" food web, with more concentrated mesozooplankton and larger diatom populations than in the CC eddy. Finally, implications for fisheries management are addressed.

  8. Role of wind forcing and eddy activity in the intraseasonal variability of the barrier layer in the South China Sea

    NASA Astrophysics Data System (ADS)

    Liang, Zhanlin; Xie, Qiang; Zeng, Lili; Wang, Dongxiao

    2018-03-01

    In addition to widely discussed seasonal variability, the barrier layer (BL) of the South China Sea (SCS) also exhibits significant intraseasonal variability (ISV) and plays an important role in the upper heat and salt balances. The characteristics and mechanisms of spatiotemporal variations in the BL are investigated using an eddy-resolving ocean model OFES (OGCM For the Earth Simulator) ouput and related atmospheric and oceanic processes. The active intraseasonal BL variability in the SCS occurs mainly during the late summer/autumn and winter and exhibits remarkable differences between these two periods. The BL ISV in late summer/autumn occurs in the southern basin, while in winter, it is limited to the northwestern basin. To further discuss the evolution and driving thermodynamic mechanisms, we quantify the processes that control the variability of intraseasonal BL. Different mechanisms for the intraseasonal BL variability for these two active periods are investigated based on the case study and composite analysis. During late summer/autumn, the active BL in the southern basin is generated by advected and local freshwater, and then decays rapidly with the enhanced wind. In winter, anticyclonic eddy activity is associated with the evolution of the BL by affecting the thermocline and halocline variations, while wind stress and wind stress curl have no obvious influence on BL.

  9. Dynamic behavior of turbulent flow in a widely-spaced co-axial jet diffusion flame combustor

    NASA Astrophysics Data System (ADS)

    Sturgess, G. J.; Syed, S. A.

    1983-01-01

    Reacting flows in a bluff-body stabilized diffusion flame research combustor operated by the Wright Aeronautical Propulsion Laboratory exhibit the presence of coherent structures where, because of dynamic behavior the flame consists of large, discrete flame eddies passing down the combustion tunnel separated in time by axial regions where no flame is visible. It is proposed that the formation of these structures and their subsequent behavior are the result of vortex-shedding from the flameholder and, in the main, interaction with the organ-pipe natural frequencies of the long combustion tunnel. A simulation of the flow is made based on a finite difference solution of the time-average, steady state, elliptic form of the Reynolds equations using the two-equation turbulence model and a 'mixed is burned' combustion model for closure. The simulation of the eddies and, in conjunction with a universal Strouhal number-Reynolds number correlation, provides successful prediction of the flame frequencies.

  10. Variability of the Somali Current and eddies during the southwest monsoon regimes

    NASA Astrophysics Data System (ADS)

    Trott, Corinne B.; Subrahmanyam, Bulusu; Murty, V. S. N.

    2017-09-01

    The meso-scale eddies and currents in the Arabian Sea are analyzed using different satellite observations, Simple Oceanic Data Assimilation (SODA) reanalysis, and Ocean Reanalysis System 4 (ORAS4) from 1993 to 2016 to investigate the impacts of Southwest (SW) Monsoon strength on Somali Current (SC) mesoscale circulations such as the Great Whirl (GW), the Socotra Eddy (SE), the Southern Gyre (SG), and smaller eddies. Increased Ekman pumping during stronger SW monsoons strengthens coastal upwelling along the Somali coast. The Arabian Sea basin-wide anticyclonic circulation and presence of the GW form mesoscale circulation patterns favourable to advection of upwelled waters eastward into the central Arabian Sea. In September, after the SW monsoon winds reach peak strength in July and August, a higher number of discrete anticyclonic eddies with higher (> 20 cm) sea surface height anomalies develop in strong and normal intensity SW monsoon seasons than weaker SW monsoon seasons.

  11. Jet and storm track variability and change: adiabatic QG zonal averages and beyond... (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, W. A.

    2013-12-01

    The zonally averaged structures of extratropical jets and stormtracks, their slow variations, and their responses to climate change are all tightly constrained on the one hand by thermal wind balance and the necessary application of eddy torques to produce zonally averaged meridional motion, and, on the other hand, by the necessity that eddies propagate upshear to extract energy from the mean flow. Combining these constraints with the well developed theory of linear Rossby-wave propagation on zonally symmetric basic states has led to a large and growing number of plausible mechanisms to explain observed and modeled jet/storm track variability and responses to climate change and idealized forcing. Hidden within zonal averages is the reality that most baroclinic eddy activity is destroyed at the same latitude at which is generated: from one end to another of the fixed stormtracks in the Northern Hemisphere and baroclinic wave packets in the Southern Hemisphere. Ignored within adiabatic QG theory is the reality that baroclinic eddies gain significant energy from latent heating that involves sub-syntopic scale structures and dynamics. Here we use results from high-resolution regional and global simulations of the Northern Hemisphere storm tracks to explore the importance of non-zonal and diabatic dynamics in influencing jet change and variability and their influences on the much-studied zonal means.

  12. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru

    NASA Astrophysics Data System (ADS)

    Stramma, L.; Bange, H. W.; Czeschel, R.; Lorenzo, A.; Frank, M.

    2013-06-01

    Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study three eddies along a section at 16°45' S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s-1. The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP and the observed heat and salt anomalies (AHA, ASA) show a much larger variability than the mean AHA and ASA. We found that the eddies contributed significantly to productivity by maintaining pronounced subsurface maxima of chlorophyll. Based on a comparison of the coastal (young) mode water eddy and the open ocean (old) mode water eddy we conclude that the aging of eddies when they detach from the coast and move westward to the open ocean considerably influences the eddies' properties: chlorophyll maxima are weaker and nutrients are subducted. The coastal mode water eddy was found to be a hotspot of nitrogen loss in the OMZ, whereas, the open ocean cyclonic eddy was of negligible importance for nitrogen loss. Our results show that the important role the eddies play in the ETSP can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys.

  13. Shear driven droplet shedding and coalescence on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Moghtadernejad, S.; Tembely, M.; Jadidi, M.; Esmail, N.; Dolatabadi, A.

    2015-03-01

    The interest on shedding and coalescence of sessile droplets arises from the importance of these phenomena in various scientific problems and industrial applications such as ice formation on wind turbine blades, power lines, nacelles, and aircraft wings. It is shown recently that one of the ways to reduce the probability of ice accretion on industrial components is using superhydrophobic coatings due to their low adhesion to water droplets. In this study, a combined experimental and numerical approach is used to investigate droplet shedding and coalescence phenomena under the influence of air shear flow on a superhydrophobic surface. Droplets with a size of 2 mm are subjected to various air speeds ranging from 5 to 90 m/s. A numerical simulation based on the Volume of Fluid method coupled with the Large Eddy Simulation turbulent model is carried out in conjunction with the validating experiments to shed more light on the coalescence of droplets and detachment phenomena through a detailed analysis of the aerodynamics forces and velocity vectors on the droplet and the streamlines around it. The results indicate a contrast in the mechanism of two-droplet coalescence and subsequent detachment with those related to the case of a single droplet shedding. At lower speeds, the two droplets coalesce by attracting each other with successive rebounds of the merged droplet on the substrate, while at higher speeds, the detachment occurs almost instantly after coalescence, with a detachment time decreasing exponentially with the air speed. It is shown that coalescence phenomenon assists droplet detachment from the superhydrophobic substrate at lower air speeds.

  14. Multi-Decadal Variability in the Bering Sea: A Synthesis of Model Results and Observations from 1948 to the Present

    DTIC Science & Technology

    2013-12-01

    stated that the development and use of high-resolution Arctic climate and systems models are important stepping stones for dedicated studies of...W., J. L. Clement Kinney, D. C. Marble , and J. Jakacki, 2008: Towards eddy resolving models of the Arctic Ocean: Ocean Modeling in an Eddying

  15. Improving our process understanding of methane emissions from a mid-latitude reservoir by combining eddy covariance monitoring with spatial surveys

    EPA Science Inventory

    Reservoirs are a globally important source of methane (CH4) to the atmosphere, but measuring CH4 emission rates from reservoirs is difficult due to the spatial and temporal variability of the various emission pathways, including ebullition and diffusion. We used the eddy covarian...

  16. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    NASA Technical Reports Server (NTRS)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  17. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  18. Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Lee, S.; Moriarty, P. J.

    In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performingmore » this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.« less

  19. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  20. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  1. Interannual variability of the North Pacific winter storm track and its relationship with extratropical atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojiao; Zhang, Yaocun

    2018-01-01

    Interannual variability of the North Pacific storm track and the three-dimensional atmosphere circulation during winter are investigated using NCEP/NCAR reanalysis data during 1950-2015. Results show that year-to-year variations of the storm track exhibit two principal modes, i.e. the monopole intensity change and the meridional shift of the storm track, respectively. The intensity change mode is linked to weakening of the Siberian high, northward shift of the western Pacific jet stream and Aleutian Low, and well corresponding to the Western Pacific teleconnection. The meridional shift mode is related to intensification and south-eastward extension of western Pacific jet stream and Aleutian Low, and linked to the Pacific-North America teleconnection. The internal atmospheric dynamics responsible for the storm track variability is further investigated from the perspective of wave-flow energy conversion. For the intensity change mode, accompanied by the enhanced baroclinity over the entrance region of the storm track, more energy is converted from mean available potential energy to eddy available potential energy and then transferred to eddy kinetic energy, which is favorable for the overall enhancement of the storm track intensity. For the meridional shift mode, more energy is transformed from mean available potential energy to eddy available potential energy and further transferred to eddy kinetic energy over the southern (northern) areas of the storm track, contributing to the southward (northward) shift of the storm track. Additionally, the increased (decreased) conversion from mean-flow kinetic energy to eddy kinetic energy over the north-eastern Pacific region is also in favor of the southward (northward) shift of the storm track.

  2. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  3. High Efficiency, Low Distortion 3D Diffusion Tensor Imaging with Variable Density Spiral Fast Spin Echoes (3D DW VDS RARE)

    PubMed Central

    Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.

    2009-01-01

    We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618

  4. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

    NASA Astrophysics Data System (ADS)

    Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.

    2017-10-01

    Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

  5. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic.

    PubMed

    Gaube, Peter; Barceló, Caren; McGillicuddy, Dennis J; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat

    2017-01-01

    Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50-100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features.

  6. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic

    PubMed Central

    Barceló, Caren; McGillicuddy, Dennis J.; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat

    2017-01-01

    Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50–100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features. PMID:28249020

  7. Moisture and wave-mean flow interactions in the general circulation of Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Yamada, Ray

    Baroclinic eddies play an important role in shaping the midlatitude climate and its variability. They are the dominant means by which heat, momentum, and water vapor are transported in the atmosphere, but their turbulent nature makes it challenging to grasp their aggregate effect on the mean circulation. Wave-mean flow diagnostics provide an effective means for understanding the interactions between eddies and the mean circulation. These diagnostics are derived by dynamically motivated averaging of the equations of motion, which exposes the total explicit eddy effect on the mean circulation tendency. Most of the classic formulations of these diagnostics have been limited by the fact that they do not account for the eddy flux of water vapor, which can drive circulation through latent heat released from condensation. In the first part of this thesis, a moist isentropic generalization of the Eliassen-Palm (EP) flux diagnostic is developed. Moist isentropes are often not invertible with height, which prevents the standard techniques used to derive the dry diagnostic from being applied in the moist case. This issue is resolved by using a conditional-averaging approach to define a weak coordinate transformation. The primitive equations, EP flux, and EP theorem are derived in generality for non- invertible coordinates, without assumptions of quasi-geostrophy or small wave-amplitude. It is shown that, in the reanalysis climatology, the moist EP flux is twice as strong as the dry EP flux and has a greater equatorward extent. Physically, the increase in momentum exchange is tied to an enhancement of the form drag associated with the horizontal structure of midlatitude eddies, where the poleward flow of moist air is located in regions of strong eastward pressure gradients. The second part of this thesis studies the effect of latent heating on the mean flow adjustment in idealized baroclinic life cycles. The life cycles are simulated in an idealized moist general circulation model (GCM) with no convective parameterizations and diabatic heating is due entirely to the latent heat released from large-scale condensation. A series of life cycle simulations are run varying only the initially prescribed value of the relative humidity. It is shown that increasing relative humidity acts to decrease the baroclinic shear of the adjusting zonal jet. By solving a moist elliptic equation for the Eulerian-mean circulation forced by the eddy fluxes, it is shown that the eddy moisture flux drives an indirect Eulerian circulation on the equatorward flank of the jet. This in turn increases the strength and equatorward extent of the developing surface westerlies. The reduction of baroclinicity is consistent with the earlier idea that moisture fluxes increase the EP flux and form drag associated with baroclinic eddies. The final topic of this thesis is about the extratropical internal variability of the atmosphere. The annular mode (AM) has long been considered the dominant mode of atmospheric variability driven by midlatitude storms. It describes a north-south vacillation of the eddy-driven jet on intraseasonal timescales which are considerably longer than the life cycle of typical synoptic storms. This low-frequency variability of the AM is thought to be supported by a mean-eddy feedback, in which a poleward shift of the jet is supported by a poleward shift of the baroclinic zone. However, it is shown that the atmospheric energy transport and isentropic circulation shift equatorward in the monthly AM composites. This shift is mainly the result of a poleward shift of the Ferrel cell. An alternative mean-eddy feedback mechanism based on the idea of the jet acting as a mixing barrier is proposed as an explanation for the small response of the eddy energy flux.

  8. A Study of the Southern Ocean: Mean State, Eddy Genesis & Demise, and Energy Pathways

    NASA Astrophysics Data System (ADS)

    Zajaczkovski, Uriel

    The Southern Ocean (SO), due to its deep penetrating jets and eddies, is well-suited for studies that combine surface and sub-surface data. This thesis explores the use of Argo profiles and sea surface height ( SSH) altimeter data from a statistical point of view. A linear regression analysis of SSH and hydrographic data reveals that the altimeter can explain, on average, about 35% of the variance contained in the hydrographic fields and more than 95% if estimated locally. Correlation maxima are found at mid-depth, where dynamics are dominated by geostrophy. Near the surface, diabatic processes are significant, and the variance explained by the altimeter is lower. Since SSH variability is associated with eddies, the regression of SSH with temperature (T) and salinity (S) shows the relative importance of S vs T in controlling density anomalies. The AAIW salinity minimum separates two distinct regions; above the minimum density changes are dominated by T, while below the minimum S dominates over T. The regression analysis provides a method to remove eddy variability, effectively reducing the variance of the hydrographic fields. We use satellite altimetry and output from an assimilating numerical model to show that the SO has two distinct eddy motion regimes. North and south of the Antarctic Circumpolar Current (ACC), eddies propagate westward with a mean meridional drift directed poleward for cyclonic eddies (CEs) and equatorward for anticyclonic eddies (AEs). Eddies formed within the boundaries of the ACC have an effective eastward propagation with respect to the mean deep ACC flow, and the mean meridional drift is reversed, with warm-core AEs propagating poleward and cold-core CEs propagating equatorward. This circulation pattern drives downgradient eddy heat transport, which could potentially transport a significant fraction (24 to 60 x 1013 W) of the net poleward ACC eddy heat flux. We show that the generation of relatively large amplitude eddies is not a ubiquitous feature of the SO but rather a phenomenon that is constrained to five isolated, well-defined "hotspots". These hotspots are located downstream of major topographic features, with their boundaries closely following f/H contours. Eddies generated in these locations show no evidence of a bias in polarity and decay within the boundaries of the generation area. Eddies tend to disperse along f/H contours rather than following lines of latitude. We found enhanced values of both buoyancy (BP) and shear production (SP) inside the hotspots, with BP one order of magnitude larger than SP. This is consistent with baroclinic instability being the main mechanism of eddy generation. The mean potential density field estimated from Argo floats shows that inside the hotspots, isopycnal slopes are steep, indicating availability of potential energy. The hotspots identified in this thesis overlap with previously identified regions of standing meanders. We provide evidence that hotspot locations can be explained by the combined effect of topography, standing meanders that enhance baroclinic instability, and availability of potential energy to generate eddies via baroclinic instabilities.

  9. The Influence of a Western Boundary Current on Continental Shelf Processes Along Southeastern Australia.

    NASA Astrophysics Data System (ADS)

    Roughan, M.

    2016-02-01

    The East Australian Current (EAC) flows as a jet over the narrow shelf of southeastern Australia, dominating shelf circulation, and shedding vast eddies at the highly variable separation point. These characteristics alone make it a dynamically challenging region to measure, model and predict. In recent years a significant effort has been placed on understanding continental shelf processes along the coast of SE Australia, adjacent to the EAC, our major Western Boundary Current. We have used a multi-pronged approach by combining state of the art in situ observations and data assimilation modelling. Observations are obtained from a network of moorings, HF Radar and ocean gliders deployed in shelf waters along SE Australia, made possible through Australia's Integrated Marine Observing System (IMOS). In addition, we have developed a high resolution reanalysis of the East Australian Current using ROMS and 4DVar data Assimilation. In addition to the traditional data streams (SST, SSH and ARGO) we assimilate the newly available IMOS observations in the region. These include velocity and hydrographic observations from the EAC transport array, 1km HF radar measurements of surface currents, CTD casts from ocean gliders, and temperature, salinity and velocity measurements from a network of shelf mooring arrays. We use these vast data sets and numerical modelling tools combined with satellite remote sensed data to understand spatio-temporal variability of shelf processes and water mass distributions on synoptic, seasonal and inter-annual timescales. We have quantified the cross shelf transport variability inshore of the EAC, the driving mechanisms, the seasonal cycles in shelf waters and to some extent variability in the biological (phytoplankton) response. I will present a review of some of the key results from a number of recent studies.

  10. Universal Inverse Power-Law Distribution for Fractal Fluctuations in Dynamical Systems: Applications for Predictability of Inter-Annual Variability of Indian and USA Region Rainfall

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2017-01-01

    Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate (O'Gorman in Curr Clim Change Rep 1:49-59, 2015).

  11. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed Central

    Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-01-01

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077

  12. A multidisciplinary glider survey of an open ocean dead-zone eddy

    NASA Astrophysics Data System (ADS)

    Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Löscher, Carolin; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Testor, Pierre; Viera, Nuno

    2016-04-01

    The physical (temperature, salinity) and biogeochemical (oxygen, nitrate, chlorophyll fluorescence, turbidity) structure of an anticyclonic modewater eddy, hosting an open ocean dead zone, is investigated using observational data sampled in high temporal and spatial resolution with autonomous gliders in March and April 2014. The core of the eddy is identified in the glider data as a volume of fresher (on isopycnals) water in the depth range from the mixed layer base (about 70m) to about 200m depth. The width is about 80km. The core aligns well with the 40 μmolkg-1 oxygen contour. From two surveys about 1 month apart, changes in the minimal oxygen concentrations (below 5μmolkg-1) are observed that indicate that small scale processes are in operation. Several scales of coherent variability of physical and biogeochemical variable are identified - from a few meters to the mesoscale. One of the gliders carried an autonomous Nitrate (N) sensor and the data is used to analyse the possible nitrogen pathways within the eddy. Also the highest N is accompanied by lowest oxygen concentrations, the AOU:N ratio reveals a preferred oxygen cycling per N.

  13. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  14. Model development and validation of geometrically complex eddy current coils using finite element methods

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Eviston, Connor

    2017-02-01

    Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.

  15. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    NASA Astrophysics Data System (ADS)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent has two cores: an intermediate one mainly containing diluted Antarctic Intermediate Water (AAIW), and a deep one consisting of North Atlantic Deep Water (NADW). In the intermediate core, T-S properties are strongly correlated with current velocity, probably because of the strong salinity gradient at the interface between Red Sea Water (RSW) and AAIW. In the deep core, velocity and hydrographic time series do not correlate on a daily basis, but they do at longer time scales.

  16. Variability of the Labrador Sea Surface Eddy Kinetic Energy Observed by Altimeter From 1993 to 2012

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Yan, Xiao-Hai

    2018-01-01

    A merged along track altimeter data set is used to study the variability of eddy kinetic energy (EKE) in the Labrador Sea from 1993 to 2012. The EKE near the west Greenland current (WGC) has strong interannual variability without long-term trend from 1993 to 2012. The propagation direction of the Irminger Rings (IRs) originating from the WGC can be inferred from the EKE derived from altimeter, and the southward propagation of the IRs varies interannually. The central Labrador Sea EKE increases significantly from 1993 to 2012. The central Labrador Sea temperature difference between the end and the beginning of the winter convections is defined as restratification index to measure the restratification strengths. The relation between the central Labrador Sea EKE and the restratification index shows that the enhanced eddy activity originating from the west of the central Labrador Sea may cool the central Labrador Sea significantly. The interannual variability of the WGC EKE is likely to be driven by the large scale Subpolar Gyre (SPG) circulation variability and the North Atlantic Oscillation (NAO). The NAO also affects the central Labrador Sea EKE through its fingerprint in the local wind stress and surface heat flux. The NAO affects the WGC EKE by changing the SPG circulation strength, which will subsequently affect the WGC EKE through unknown physical processes.

  17. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    NASA Technical Reports Server (NTRS)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  18. Annular modes and apparent eddy feedbacks in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan

    2016-04-01

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  19. Annular modes and apparent eddy feedbacks in the Southern Hemisphere.

    PubMed

    Byrne, Nicholas J; Shepherd, Theodore G; Woollings, Tim; Plumb, R Alan

    2016-04-28

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  20. Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current

    NASA Astrophysics Data System (ADS)

    Schaeffer, A.; Roughan, M.; Wood, J. E.

    2014-08-01

    Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.

  1. Interannual surface variability of the Southern Pacific Ocean in relation to the SAM pattern

    NASA Astrophysics Data System (ADS)

    Cotroneo, Yuri; Menna, Milena; Falco, Pierpaolo; Poulain, Pierre Marie

    2017-04-01

    Drifter and satellite data are used to define the response of the Pacific Sector of the Southern Ocean (PSSO) to the large scale climatic pattern (Southern Annular Mode index - SAMI) in the period 1995-2015. The SAMI, defined as the mean sea level pressure difference between the 40° S and 65°S latitudes (Marshall et al., 2003), affects the eddy activity of the Southern Ocean and consequently the large-scale zonal transport in the Antarctic Circumpolar Current (ACC; Meredith and Hoggs, 2006; Hogg et al., 2014). Drifter data were primarily corrected for the wind-induced slip and currents (Ekman), then used to estimate annual values of the Eddy Kinetic Energy (EKE) fields in bins of 2°x2° over the PSSO. Time series of the drifter EKEs were compared with the EKEs derived from altimeter data over the entire study area and with the temporal evolution of SAMI. A more quantitative evaluation of the surface eddy field response to the SAMI was performed counting the number and type (cyclonic or anticyclonic)of eddies produced in the whole PSSO and in correspondence of the Sub-Antarctic Front (SAF) and Polar Front (PF). The mean latitude of each front was determined using thermal criteria applied to a long time series of in situ XBT data collected by the Italian Antarctic Programme along the track between New Zealand and Antarctica from 1994 to 2016. Eddy counting was based on the results of the identification and tracking method performed by Chelton et al. (2011), retaining only those eddies with lifetimes of 4 weeks or longer. The drifter derived EKE shows a similar and quicker response to the SAMI variability with respect to the altimetry derived EKE; the time lag is of one year for drifters and of two years for the altimetry. Both the datasets reveal an anomalous behaviour of the EKE during the period 2003-2006. The SAMI variability induces a specific effect on the different frontal zones with changes in the number and type of eddy generated. Moreover the anomalous behaviour showed by the time series of EKEs in the period 2003-2006, is observed close to the SAF and PF as well.

  2. An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project

    NASA Astrophysics Data System (ADS)

    Masina, Simona; Storto, Andrea; Ferry, Nicolas; Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Zuo, Hao; Drevillon, Marie; Parent, Laurent

    2017-08-01

    A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993-2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state.

  3. A nonlinear self-similar solution to barotropic flow over rapidly varying topography

    NASA Astrophysics Data System (ADS)

    Ibanez, Ruy; Kuehl, Joseph

    2016-11-01

    Beginning from the Shallow Water Equations (SWE), a nonlinear self-similar analytic solution is derived for barotropic flow over rapidly varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. Attention is paid to the northern Gulf of Mexico slope with application to pollutant dispersion and the Norwegian Coastal Current which sheds eddies into the Lofoten Basin that are believe to influence deep water formation. The solution is found to extend the topographic β-plume solution (Kuehl 2014, GRL) in two ways: 1) The solution is valid for intensifying jets. 2) The influence of nonlinear advection is included. The SWE are scaled to the case of a topographically controlled jet, then solved by introducing a similarity variable η = Cxy . The nonlinear solution, valid for topographies h =h0 - αxy3 , takes the form of the Lambert W Function for velocity. The linear solution, valid for topographies h =h0 - αxyγ , takes the form of the Error Function for transport. Kuehl's results considered the case - 1 <= γ < 1 which admits expanding jets, while the new result consider the case γ < - 1 which admits intensifying jets.

  4. Three-dimensional transient rip currents: Bathymetric excitation of low-frequency intrinsic variability

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; McWilliams, James C.; Akan, Cigdem

    2017-07-01

    The ROMS-WEC model [Uchiyama et al., 2010] based on an Eulerian wave-averaged vortex-force asymptotic theory of McWilliams et al. (2004) is applied to analyze 3-D transient wave-driven rip currents and associated intrinsic very low-frequency (VLF) variability in the surf zone on a surveyed bathymetry under spatiotemporally uniform offshore incident waves. The 3-D rip currents are substantially depth-dependent due to the vertical recirculation, composed of pairs of counter-rotating longitudinal overturning roll cells that promote surface convergence. The vortex force plays an important role in vorticity budget, preconditioning overall vorticity reduction. These rip currents are intrinsically unstable and contribute about 70% to kinetic energy (KE) as eddy kinetic energy (EKE), consistent with observations. The dominant fluctuation period fits the VLF band, at about 18 min. The current effect on waves (CEW) alters not only the mean rip structure, but also the associated turbulence as the modified cross-shore EKE profile with considerable accentuation in the inner surf zone. Increased alongshore bathymetric variability proportionally intensifies KE and intrinsic EKE, whereas it reduces the VLF period. With a guide of a pseudo 2D model, we reveal that vortex tilting effect due to the horizontal vorticity inherent in the 3-D rip currents promotes collapse of the 3-D eddies through an enhanced forward kinetic energy cascade, leading to short-lived, laterally-stretched 3-D eddies resulting in elongated filaments that decay more quickly than coherent, long-lived, circular 2-D eddies.

  5. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2017-04-01

    In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1

  6. The Performance of the US Navy’s RELO Ensemble, NCOM, HYCOM During the Period of GLAD At-Sea Experiment in the Gulf of Mexico

    DTIC Science & Technology

    2013-01-01

    be found in Lermusiaux et al. (2006a, 2006b). Yin and Oey ( 2007 ) employed 20 members using the breeding method to study an eddy shedding event in the... 2007 ). Only a very brief description is provided here. Let Zf ¼ 1ffiffiffiffiffiffiffiffiffi k1 p ½zf1; zf2;…; zfk; Za...2003; Buizza et al., 2005; Wei et al., 2006, 2008; Bowler et al., 2009; McLay et al., 2007 ; Reynolds et al., 2011). If we compare the RMS errors of

  7. Toward relaxed eddy accumulation measurements of sediment-water exchange in aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Lemaire, Bruno J.; Noss, Christian; Lorke, Andreas

    2017-09-01

    Solute transport across the sediment-water interface has major implications for water quality and biogeochemical cycling in aquatic ecosystems. Existing measurement techniques, however, are not capable of resolving sediment-water fluxes of most constituents under in situ flow conditions. We investigated whether relaxed eddy accumulation (REA), a micrometeorological technique with conditional sampling of turbulent updrafts and downdrafts, can be adapted to the aquatic environment. We simulated REA fluxes by reanalyzing eddy covariance measurements from a riverine lake. We found that the empirical coefficient that relates mass fluxes to the concentration difference between both REA samples is invariant with scalar and flow and responds as predicted by a joint Gaussian distribution of linearly correlated variables. Simulated REA fluxes differed on average by around 30% from eddy covariance fluxes (mean absolute error). Assessment of the lower quantification limit suggests that REA can potentially be applied for measuring benthic fluxes of a new range of constituents that cannot be assessed by standard eddy covariance methods.

  8. Understanding the Effects of Lower Boundary Conditions and Eddy Diffusion on the Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.

    2017-12-01

    The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations and direct observations of errors between the model and data such as GUVI O/N2 ratios and TEC data. In each case, the model results will be compared to data to determine the improvement.

  9. Circulation and multiple-scale variability in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Dong, Changming; Idica, Eileen Y.; McWilliams, James C.

    2009-09-01

    The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent ( i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy, the Central-SCB Eddy, and the Catalina-Clemente Eddy. Comparisons with observational data reveal that ROMS reproduces a realistic mean state of the SCB oceanic circulation, as well as its interannual (mainly as a local manifestation of an ENSO event), seasonal, and intraseasonal (eddy-scale) variations. We find high correlations of the wind curl with both the alongshore pressure gradient (APG) and the eddy kinetic energy level in their variations on time scales of seasons and longer. The geostrophic currents are much stronger than the wind-driven Ekman flows at the surface. The model exhibits intrinsic eddy variability with strong topographically related heterogeneity, westward-propagating Rossby waves, and poleward-propagating coastally-trapped waves (albeit with smaller amplitude than observed due to missing high-frequency variations in the southern boundary conditions).

  10. Upper Ocean Meso-Submesoscale Eddy Variability in the Northwestern Pacific from Repeat ADCP Measurements and 1/48-deg MITgcm Simulation

    NASA Astrophysics Data System (ADS)

    Qiu, B.; Nakano, T.; Chen, S.; Wang, J.; Fu, L. L.; Klein, P.

    2016-12-01

    With the use of Ka-band radar interferometry, the Surface Water and Ocean Topography (SWOT) satellite will improve the measured sea surface height (SSH) resolution down to the spectral wavelength of 15km, allowing us to investigate for the first time the upper oceancirculation variability at the submesoscale range on the global scale. By analyzing repeat shipboardAcoustic Doppler Current Profiler (ADCP) measurements along 137°E, as well as the 1/48-deg MITgcm simulation output, in the northwest Pacific, we demonstrate that the observed/modeled upper ocean velocities are comprised of balanced geostrophic motions and unbalanced ageostrophic wave motions. The length scale, Lc, that separates the dominance between these two types of motions is found to depend sensitively on the energy level of local mesoscale eddy variability. In the eddy-abundant western boundary current region of Kuroshio, Lc can be shorter than 15km, whereas Lc exceeds 200km along the path of relatively stable North Equatorial Current. Judicious separation between the balanced and unbalanced surface ocean signals will both be a challenge and opportunity for the SWOT mission.

  11. Frequency-dependent behavior of the barotropic and baroclinic modes of zonal jet variability

    NASA Astrophysics Data System (ADS)

    Sheshadri, A.; Plumb, R. A.

    2016-12-01

    Stratosphere-troposphere interactions are frequently described in terms of the leading modes of variability, i.e. the annular modes. An idealized dynamical core model is used to explore the differences between the low- and high- frequency (periods greater and less than 30 days) behavior of the first two principal components of zonal mean zonal wind and eddy kinetic energy, i.e., the barotropic/baroclinic annular modes of variability of the extratropical circulation. The modes show similar spatial characteristics in the different frequency ranges considered, however the ranking of the modes switches in some cases from one range to the other. There is some cancelation in the signatures of eddy heat flux and eddy kinetic energy in the leading low-pass and high-pass filtered zonal wind mode, partly explaining their small signature in the total. At low frequencies, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and the persistence of zonal wind anomalies appears to be sustained primarily by a baroclinic, rather than a barotropic, feedback. On shorter time scales, the behavior is more complicated and transient.

  12. Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren

    2017-09-01

    An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.

  13. Turbulent Eddies in a Compressible Jet in Crossflow Measured using Pulse-Burst PIV

    NASA Astrophysics Data System (ADS)

    Beresh, Steven; Wagner, Justin; Henfling, John; Spillers, Russell; Pruett, Brian

    2015-11-01

    Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely-spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to convect through the field of view at repeatable spacings. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  14. Modeling the Wake of the Marquesas Archipelago

    NASA Astrophysics Data System (ADS)

    Raapoto, H.; Martinez, E.; Petrenko, A.; Doglioli, A. M.; Maes, C.

    2018-02-01

    In this study, a high-resolution (˜2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic, and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals the generation of cyclonic and anticyclonic eddies in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topographically induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.

  15. Modelling the Wake of the Marquesas Archipelago

    NASA Astrophysics Data System (ADS)

    Raapoto, H.; Martinez, E. C.; Petrenko, A. A.; Doglioli, A. M.; Maes, C.

    2017-12-01

    In this study, a high-resolution ( 2.5 km) numerical model was set up to investigate the fine-scale activity within the region of the Marquesas archipelago where a strong biological enhancement occurs. This has never been performed before. The robustness of the model results is assessed by comparison with remote sensing and in situ observations. Our results highlight regions of warm waters leeward of the different islands with high eddy kinetic energy (EKE) on their sides. The analysis of energy conversion terms reveals contributions to EKE variability by wind, baroclinic and barotropic instabilities. The use of a geometry-based eddy detection algorithm reveals eddy generation in the wake of the largest islands, with both an inshore and offshore effect. Maximum eddy activity occurs in austral winter following the seasonality of both wind stress and EKE intensity. Most eddies have a radius between 20 and 30 km and are generally cyclonic rather than anticyclonic. Significant vertical velocities are observed in the proximity of the islands, associated with topography induced flow separation. Eddy trapping inshore waters are advected offshore in the wake of the islands. The overall influence of these fine-scale dynamics could explain the strong biological enhancement of the archipelago.

  16. Effects of rear cavities on the wake behind an accelerating D-shaped bluff body

    NASA Astrophysics Data System (ADS)

    Lorite-Díez, M.; Jiménez-González, J. I.; Gutiérrez-Montes, C.; Martínez-Bazán, C.

    2018-04-01

    We investigate experimentally and numerically the transient development of the wake induced by a constant acceleration of a D-shaped bluff body, starting from rest and reaching a permanent regime of Reynolds number Re = 2000, under different values of acceleration and implementing three distinct rear geometrical configurations. Thus, alongside the classical blunt base, two control passive devices, namely, a straight cavity and an optimized, curved cavity, recently designed using adjoint optimization techniques, have also been used to assess their performance in transient flow conditions. Particle image velocimetry measurements were performed in a towing tank to characterize the near wake development in the early transient stages. It has been observed that the flow first develops symmetric shear layers with primary eddies attracted toward the base of the body due to the flow suction generated by the accelerated motion. Eventually, the interaction between the upper and lower shear layers provokes the destabilization of the flow and the symmetry breaking of the wake, finally giving rise to an alternate transitional vortex shedding regime. The transition between these phases is sped-up when the optimized cavity is used, reaching earlier the permanent flow conditions. In particular, the use of the optimized geometry has been shown to limit the growth of the primary eddies, decreasing both the recirculation and vortex formation length and providing with a more regularized, more organized vortex shedding. In addition, numerical simulations have been performed to evaluate the distribution of forces induced by the addition of rear cavities. In general, the aforementioned smoother and faster transition related to the use of optimized cavity translates into a lower averaged value of the drag coefficient, together with less energetic force fluctuations, regardless of the acceleration value.

  17. Regimes of turbulence without an energy cascade

    PubMed Central

    Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.

    2016-01-01

    Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics. PMID:27761005

  18. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, Elia; Obabko, Aleks; Fischer, Paul

    Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less

  19. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    NASA Astrophysics Data System (ADS)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  20. Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives

    DOE PAGES

    Merzari, Elia; Obabko, Aleks; Fischer, Paul; ...

    2016-11-03

    Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less

  1. Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Sale, Danny; Aliseda, Alberto

    2014-11-01

    Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.

  2. Eddy diffusivity of quasi-neutrally-buoyant inertial particles

    NASA Astrophysics Data System (ADS)

    Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea

    2018-04-01

    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.

  3. The Lofoten Basin eddy: Three years of evolution as observed by Seagliders

    NASA Astrophysics Data System (ADS)

    Yu, Lu-Sha; Bosse, Anthony; Fer, Ilker; Orvik, Kjell A.; Bruvik, Erik M.; Hessevik, Idar; Kvalsund, Karsten

    2017-08-01

    The Lofoten Basin in the Norwegian Sea is an area where the warm Atlantic Water is subject to the greatest heat losses anywhere in the Nordic Seas. A long-lived, deep, anticyclonic eddy is located in the central part of the basin (the Lofoten Basin Eddy, LBE). Here we use observations from Seagliders, collected between July 2012 and July 2015, to describe LBE in unprecedented detail. The missions were designed to sample LBE repeatedly, allowing for multiple realizations of radial sections across the eddy. LBE has a mean radius of 18 ± 4 km and propagates cyclonically with a mean speed of approximately 3-4 cm s-1. The anticyclonic azimuthal peak velocity varies between 0.5 and 0.7 m s-1, located between 700 and 900 m depth. The average contribution of geostrophy in the cyclogeostrophic balance is 44%. The relative vorticity of the core is close to the local Coriolis parameter. The evolution of core water properties shows substantial interannual variability, influenced by surface buoyancy flux and advection of anomalous low-salinity near-surface waters that may affect the vertical extent of winter convection. A comparison of the eddy properties to those inferred from automated tracking of satellite altimeter observations shows that the location of eddy center is successfully detected to within one half eddy radius, but vorticity is underestimated and the radius overestimated, each approximately by a factor of 2, because of excessive smoothing relative to the small eddy radius.

  4. Sand deposition in shoreline eddies along five Wild and Scenic Rivers, Idaho

    USGS Publications Warehouse

    Andrews, E.D.; Vincent, K.R.

    2007-01-01

    Sand bars deposited along the lateral margin of a river channel are frequently a focus of recreational activities. Sand bars are appealing sites on which to camp, picnic, fish and relax because they are relatively flat, soft, non-cohesive sand, free of vegetation and near the water's edge. The lack of vegetation and cohesion make sand bars easily erodible. Without appreciable deposition of new material, number and size of bars through a given reach of river will decline substantially over a period of years. We studied 63 beaches and their associated eddies located throughout 10 selected reaches within the designated Wild and Scenic River sections of the Lochsa, Selway, Middle Fork Clearwater, Middle Fork Salmon and Salmon Rivers in Idaho to determine the relation of beaches to the frequency and magnitude of streamflows that deposit appreciable quantities of sand. At present, these rivers have been altered little, if at all, by flow regulation, and only the Salmon River has substantial diversion upstream of a study reach. The river reaches studied have an abundance of sand bar beaches of appreciable size, in spite of suspended sand concentrations that rarely exceeded a few hundred milligrams per litre even during the largest floods. Calculated mean annual rates of deposition in an eddy vary from 5.8 to more than 100 cm depending primarily on: (1) the duration of streamflows that inundate the eddy sand bar depositions; (2) the rate of the flow exchange between the channel and an eddy and (3) the concentrations of suspended sand in the primary channel. The annual thickness of sand deposition in an eddy varies greatly from year to year depending on the duration of relatively large streamflows. Maximum annual sand depositions in an eddy are three to nine times the estimated long-term mean values. Relatively large, sustained floods deposit an appreciable portion of total deposition over a period of years. For the period of record, 1930-2002, the seven largest annual depositions, which represent more than 40% of all material deposited over the Lochsa River 21.9 km eddy, occurred in the years with the seven largest instantaneous annual peak floods. Beach area and volume for most beaches, however, are less variable year-to-year than the variation in annual deposition would indicate. Accumulative 10-year weighed deposition rate was computed to estimate the effective variability of beach deposition. Although less variable than the annual deposition, the cumulative 10-year deposition calculated for the longest hydrologic records, 71 years, existing on the Idaho Wild and Scenic Rivers varied by more than an order of magnitude from less than 20 cm to more than 220 cm.

  5. Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM

    NASA Astrophysics Data System (ADS)

    Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei

    2018-02-01

    To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.

  6. Low-frequency variability of the Atlantic MOC in the eddying regime : the intrinsic component.

    NASA Astrophysics Data System (ADS)

    Gregorio, S.; Penduff, T.; Barnier, B.; Molines, J.-M.; Le Sommer, J.

    2012-04-01

    A 327-year 1/4° global ocean/sea-ice simulation has been produced by the DRAKKAR ocean modeling consortium. This simulation is forced by a repeated seasonal atmospheric forcing but nevertheless exhibits a substantial low-frequency variability (at interannual and longer timescales), which is therefore of intrinsic origin. This nonlinearly-generated intrinsic variability is almost absent from the coarse-resolution (2°) version of this simulation. Comparing the 1/4° simulation with its fully-forced counterpart, Penduff et al. (2011) have shown that the low-frequency variability of local sea-level is largely generated by the ocean itself in eddying areas, rather than directly forced by the atmosphere. Using the same simulations, the present study quantifies the imprint of the intrinsic low-frequency variability on the Meridional Overturning Circulation (MOC) at interannual-to-decadal timescales in the Atlantic. We first compare the intrinsic and atmospherically-forced interannual variances of the Atlantic MOC calculated in geopotential coordinates. This analysis reveals substantial sources of intrinsic MOC variability in the South Atlantic (driven by the Agulhas mesoscale activity according to Biastoch et al. (2008)), but also in the North Atlantic. We extend our investigation to the MOC calculated in isopycnal coordinates, and identify regions in the basin where the water mass transformation exhibits low-frequency intrinsic variability. In this eddy-permitting regime, intrinsic processes are shown to generate about half the total (geopotential and isopycnal) MOC interannual variance in certain key regions of the Atlantic. This intrinsic variability is absent from 2° simulations. Penduff, T., Juza, M., Barnier, B., Zika, J., Dewar, W.K., Treguier, A.-M., Molines, J.-M., Audiffren, N., 2011: Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 5652-5670. doi: 10.1175/JCLI-D-11-00077.1. Biastoch, A., Böning, C. W., Lutjeharms, J. R. E., 2008: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489-492, doi: 10.1038/nature07426.

  7. Tracer Sampling In The Arctic From The Nuclear Submarine USS L. Mendel Rivers During SCICEX 2000: Evidence Of Eddies

    NASA Astrophysics Data System (ADS)

    Kadko, D. C.; Aagaard, K.

    2006-12-01

    Observations suggest that the central Arctic Ocean is surprisingly energetic and variable, given the weak mean flow and the very strong halocline, which isolates the surface from the deeper ocean. One source of variability is numerous, generally anticyclonic eddies, many of which are centered in the halocline and likely generated within the boundary current. These and other eddies may be an important means of transporting properties in regions of weak mean flow, since they are found far from their origin, show anomalous water properties, and have a life time of years, mixing only slowly with ambient waters. Tracers additional to temperature and salinity will likely prove useful in identifying eddy sources and ages. Here we report radium isotope, temperature, and salinity data obtained from the USS L. Mendel Rivers - PACSUBICEX 3-00 SCICEX Accommodation cruise in October, 2000. The radium activity ratios are linked to shelf sources, and provide estimates of time elapsed since the waters left the shelf. The generally decreasing 228Ra/226Ra ratio in the halocline observed across the Canada Basin from Barrow to the North Pole is consistent with distance from Pacific shelf sources. Additionally, isolated anomalously high 228Ra/226Ra ratios within both the Canada and Eurasian basins suggest water parcels that have been rapidly (relative to the 5.77 year 228Ra half-life) transported from the shelves into the interior. The density field indicates that eddies are the means of this efficient transport of shelf properties into the central Arctic Ocean.

  8. A Three-Wave Model of the Stratosphere with Coupled Dynamics, Radiation and Photochemistry. Appendix M

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Zhou, Shuntai; Ko, Malcolm K. W.; Sze, Nien-Dak; Salstein, David; Cady-Pereira, Karen

    1997-01-01

    A zonal mean chemistry transport model (2-D CTM) coupled with a semi-spectral dynamical model is used to simulate the distributions of trace gases in the present day atmosphere. The zonal-mean and eddy equations for the velocity and the geopotential height are solved in the semi-spectral dynamical model. The residual mean circulation is derived from these dynamical variables and used to advect the chemical species in the 2- D CTM. Based on a linearized wave transport equation, the eddy diffusion coefficients for chemical tracers are expressed in terms of the amplitude, frequency and growth rate of dynamical waves; local chemical loss rates; and a time constant parameterizing small scale mixing. The contributions to eddy flux are from the time varying wave amplitude (transient eddy), chemical reactions (chemical eddy) and small scale mixing. In spite of the high truncation in the dynamical module (only three longest waves are resolved), the model has simulated many observed characteristics of stratospheric dynamics and distribution of chemical species including ozone. Compared with the values commonly used in 2-D CTMs, the eddy diffusion coefficients for chemical species calculated in this model are smaller, especially in the subtropics. It is also found that the chemical eddy diffusion has only a small effects in determining the distribution of most slow species, including ozone in the stratosphere.

  9. Geostrophic Turbulence in the Frequency-Wavenumber Domain: Eddy-Driven Low-Frequency Variability

    DTIC Science & Technology

    2014-01-01

    in ASFMRS. Previous studies of oceanic frequency– wavenumber spectra include Wunsch and Stammer (1995), Chelton and Schlax (1996), Farrar (2008...ASFMRS. However, the realistic eddying ocean model utilized here is the Hy- brid Coordinate Ocean Model (HYCOM; Chassignet et al. 2007 ), in place of...the Naval Research Laboratory (NRL) Layered Ocean Model (NLOM; Hurlburt and AUGUST 2014 ARB I C ET AL . 2051 Thompson 1980; Shriver et al. 2007 ) used

  10. The relationship between eddy-transport and second-order closure models for stratified media and for vortices

    NASA Technical Reports Server (NTRS)

    Donaldson, C. D.

    1973-01-01

    The question is considered of how complex a model should be used for the calculation of turbulent shear flows. At the present time there are models varying in complexity from very simple eddy-transport models to models in which all the equations for the nonzero second-order correlations are solved simultaneously with the equations for the mean variables. A discussion is presented of the relationship between these two models of turbulent shear flow. Two types of motion are discussed: first, turbulent shear flow in a stratified medium and, second, the motion in a turbulent line vortex. These two cases are instructive because in the first example eddy-transport methods have proven reasonably effective, whereas in the second, they have led to erroneous conclusions. It is not generally appreciated that the simplest form of eddy-transport theory can be derived from second-order closure models of turbulent flow by a suitably limiting process. This limiting process and the suitability of eddy-transport modeling for stratified media and line vortices are discussed.

  11. Seasonal and Interannual Variability of Eddy Field and Surface Circulation in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Al Saafani, M. A.; Shenoi, S. S. C.

    2006-07-01

    The circulation in the Gulf of Aden is inferred from three different data sets: h istorical sh ip drifts , hydrography , and satellite altimeter derived sea level (Topex/Poseidon, Jason and ERS) . The circulation in th is semi-enclosed basin is marked with strong seasonality with reversals in the direction of flows twice a year follow ing the reversal in mon soonal winds. During the win ter mon soon (November - February) there is an inflow from Arabian Sea; an extension of Arabian Coastal Current (ACC) . During sou thwest mon soon (June - August) the flow is generally towards east especially along the northern coast of Gulf of Aden. The geostrophic currents also show that the circulation in the gulf is embedded with mesoscale eddies. These westward propagating eddies appear to enter the Gulf of Aden from the western Arabian Sea in win ter. The relative contribu tion of mesoscale eddies to the circulation in the gulf were estimated using altimeter derived Sea level anomaly (SLA) for the years 1993 to 2003 . The effect of these mesoscale eddies extend over the entire water colu mn . The propagation speeds, of these eddies, estimated using weekly spaced altimeter derived SLA (2002 - 2003) is ~ 4 .0 - 5 .3 cm s . The sum of the speeds of second mode Ro ssby wave and the mean current (4.8 cm s ) matches with the propagation speeds of eddies estimated using SLA . Hence, second mode baroclin ic Rossby waves appear to be responsib le for the westward propagation of eddies in the Gulf of Aden. The presence of these eddies in the temperaturesalin ity climato logy confirms that they are no t transient features.

  12. Influence of Kuroshio Oceanic Eddies on North Pacific Weather Patterns

    NASA Astrophysics Data System (ADS)

    Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J. S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z.

    2016-02-01

    High-resolution satellite observations reveal energetic meso-scale ocean eddy activity and positive correlation between meso-scale sea surface temperature (SST) and surface wind along oceanic frontal zones, such as the Kuroshio and Gulf Stream, suggesting a potential role of meso-scale oceanic eddies in forcing the atmosphere. Using a 27 km horizontal resolution Weather Research Forecasting (WRF) model forced with observed daily SST at 0.09° spatial resolution during boreal winter season, two ensembles of 10 WRF simulations, in one of which meso-scale SST variability induced by ocean eddies was suppressed, were conducted in the North Pacific to study the local and remote influence of meso-scale oceanic eddies in the Kuroshio Extention Region (KER) on the atmosphere. Suppression of meso-scale oceanic eddies results in a deep tropospheric response along and downstream of the KER, including a significant decrease (increase) in winter season mean rainfall along the KER (west coast of US), a reduction of storm genesis in the KER, and a southward shift of the jet stream and North Pacific storm track in the eastern North Pacific. The simulated local and remote rainfall response to meso-scale oceanic eddies in the KER is also supported by observational analysis. A mechanism invoking moist baroclinic instability is proposed as a plausible explanation for the linkage between meso-scale oceanic eddies in the KER and large-scale atmospheric response in the North Pacific. It is argued that meso-scale oceanic eddies can have a rectified effect on planetary boundary layer moisture, the stability of the lower atmosphere and latent heat release, which in turn affect cyclogenesis. The accumulated effect of the altered storm development downstream further contributes to the equivalent barotropic mean flow change in the eastern North Pacific basin.

  13. How does mesoscale impact deep convection? Answers from ensemble Northwestern Mediterranean Sea simulations.

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre

    2017-04-01

    Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.

  14. Field-scale and Regional Variability in Evapotranspiration over Crops in California using Eddy Covariance and Surface Renewal

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Clay, J. M.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Monteiro, R. O. C.; Monteiro, P. F. C.; Shapiro, K.; Rice, S.; Snyder, R. L.; Daniele, Z.; Paw U, K. T.

    2016-12-01

    Evapotranspiration (ET) estimated using a single crop coefficient and a grass reference largely ignores variability due to heterogeneity in microclimate, soils, and crop management. We employ a relatively low cost energy balance residual method using surface renewal and eddy covariance measurements to continuously estimate half-hourly and daily ET across more than 15 fields and orchards spanning four crops and two regions of California. In the Sacramento-San Joaquin River Delta, measurements were taken in corn, pasture, and alfalfa fields, with 4-5 stations in each crop type spread across the region. In the Southern San Joaquin Valley, measurements were taken in three different pistachio orchards, with one orchard having six stations instrumented to examine salinity-induced heterogeneity. We analyze field-scale and regional variability in ET and measured surface energy balance components. Cross comparisons between the eddy covariance and the surface renewal measurements confirm the robustness of the surface renewal method. A hybrid approach in which remotely sensed net radiation is combined with in situ measurements of sensible heat flux is also investigated. This work will provide ground-truth data for satellite and aerial-based ET estimates and will inform water management at the field and regional scales.

  15. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.

    2016-02-01

    Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  16. Eddy-driven low-frequency variability: physics and observability through altimetry

    NASA Astrophysics Data System (ADS)

    Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.

    2015-04-01

    Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.

  17. How potentially predictable are midlatitude ocean currents?

    PubMed Central

    Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi

    2016-01-01

    Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954

  18. Characterizing spatial and temporal variability in methane gas-flux dynamics of subtropical wetlands in the Big Cypress National Preserve, Florida

    NASA Astrophysics Data System (ADS)

    Sirianni, M.; Comas, X.; Shoemaker, B.

    2017-12-01

    Wetland methane emissions are highly variable both in space and time, and are controlled by changes in certain biogeochemical controls (i.e. organic matter availability; redox potential) and/or other environmental factors (i.e. soil temperature; water level). Consequently, hot spots (areas with disproportionally high emissions) may develop where biogeochemical and environmental conditions are especially conducive for enhancing certain microbial processes such as methanogenesis. The Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. In addition to rainfall, hydroperiod, fire regime, elevation above mean sea level, dominant vegetation type and underlying geological controls contribute to the development and evolution of organic and calcitic soils found throughout the Preserve. Currently, the U.S. Geological Survey employs eddy covariance methods within the Preserve to quantify carbon and methane exchanges over several spatially extensive vegetation communities. While eddy covariance towers are a convenient tool for measuring gas exchanges at the ecosystem scale, their spatially extensive footprint (hundreds of meters) may mask smaller scale spatial variabilities that may be conducive to the development of hot spots. Similarly, temporal resolution (i.e. sampling effort) at scales smaller that the eddy covariance measurement footprint is important since low resolution data may overlook rapid emission events and the temporal variability of discrete hot spots. In this work, we intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a unique combination of ground penetrating radar (GPR), capacitance probes, gas traps, and time-lapse photography. By using an array of methods that vary in spatio-temporal resolution, we hope to better understand the uncertainties associated with measuring wetland methane fluxes across different spatial and temporal scales. Our results have implications for characterizing and refining methane flux estimates in subtropical peat soils that could be used for climate models.

  19. Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2016-01-01

    Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.

  20. Computational and Experimental Study of the Transient Transport Phenomena in a Full-Scale Twin-Roll Continuous Casting Machine

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong

    2017-02-01

    To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.

  1. Thermohaline circulation: a missing equation and its climate-change implications

    NASA Astrophysics Data System (ADS)

    Ou, Hsien-Wang

    2018-01-01

    We formulate a box model of coupled ocean-atmosphere to examine the differential fields interactive with the thermohaline circulation (THC) and their response to global warming. We discern a robust convective bound on the atmospheric heat transport, which would divide the climate regime into warm and cold branches; but unlike the saline mode of previous box models, the cold state, if allowed, has the same-signed—though weaker—density contrast and THC as the present climate, which may explain its emergence from coupled general circulation models. We underscore the nondeterminacy of the THC due to random eddy shedding and apply the fluctuation theorem to constrain the shedding rate, thus closing the problem. The derivation reveals an ocean propelled toward the maximum entropy production (MEP) on millennial timescale (termed "MEP-adjustment"), the long timescale arising from the compounding effect of microscopic fluctuations in the shedding rate and their slight probability bias. Global warming may induce hysteresis between the two branches, like that seen in GCMs, but the cold transition is far more sensitive to the moistening than the heating effects as the latter would be countered by the hydrological feedback. The uni- or bi-modality of the current state—hence whether the THC may recover after the cold transition—depends on the global-mean convective flux and may not be easily assessed due to its observed uncertainty.

  2. Variables Affecting Probability of Detection in Bolt Hole Eddy Current Inspection

    NASA Astrophysics Data System (ADS)

    Lemire, H.; Krause, T. W.; Bunn, M.; Butcher, D. J.

    2009-03-01

    Physical variables affecting probability of detection (POD) in a bolt-hole eddy current inspection were examined. The POD study involved simulated bolt holes in 7075-T6 aluminum coupons representative of wing areas on CC-130 and CP-140 aircraft. The data were obtained from 24 inspectors who inspected 468 coupons, containing a subset of coupons with 45 electric discharge machined notches and 72 laboratory grown fatigue cracks located at the inner surface corner of the bi-layer structures. A comparison of physical features of cracks and notches in light of skin depth effects and probe geometry was used to identify length rather than depth as the significant variable producing signal variation. Probability of detection based on length produced similar results for the two discontinuity types, except at lengths less than 0.4 mm, where POD for cracks was found to be higher than that of notches.

  3. Parametric study of power absorption from electromagnetic waves by small ferrite spheres

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.

    1989-01-01

    Algebraic expressions in terms of elementary mathematical functions are derived for power absorption and dissipation by eddy currents and magnetic hysteresis in ferrite spheres. Skin depth is determined by using a variable inner radius in descriptive integral equations. Numerical results are presented for sphere diameters less than one wavelength. A generalized power absorption parameter for both eddy currents and hysteresis is expressed in terms of the independent parameters involving wave frequency, sphere radius, resistivity, and complex permeability. In general, the hysteresis phenomenon has a greater sensitivity to these independent parameters than do eddy currents over the ranges of independent parameters studied herein. Working curves are presented for obtaining power losses from input to the independent parameters.

  4. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  5. Biogeochemical characteristics of mesoscale eddies in the generation zone off Valparaíso, Chile

    NASA Astrophysics Data System (ADS)

    Villegas, Valerie; Cornejo, Marcela; Molina, Verónica; Silva, Nelson; Hormazábal, Samuel

    2016-04-01

    The coastal area off Valparaiso is characterized by an intense mesoscale activity associated with eddies, which transport highly productive-coastal waters to the oligotrophic areas of the Subtropical Gyre. Among these, the Intrathermocline Anticyclonic Eddies (ITE's) which are forming in the eastern South Pacific, transport low oxygen- and high nutrients- subsurface water of Equatorial Subsurface Water (ESSW). These eddies have been well characterized in terms of generation rate, direction, speed and water transport. However, biogeochemical conditions in their origin and its temporal variability are not well assessed. The present study aims to determine the variability, spatially and temporally, of the biogeochemical properties in the water column at the eddies generation zone, off Punta Ángeles, Valparaíso (33° S). For this, a monthly time series was conducted between January and August 2016 where a cross-shore transect with six-stations was deployed (from coast to 16 nm). Each station was sampled with CTD-OF, while only in station 5 (1300 m depth) was sampled in 16 depth for biogeochemical variables: nutrients (NO3-, NO2-, PO4-3, Si(OH)4), greenhouse gases (CO2, CH4 and N2O), chlorophyll a, stable isotopes in particulate organic material (13C, 15N), content of organic carbon and nitrogen in POM. The spatial and temporal distribution shows the presence of subsurface cores (100 - 300 m) with water with high salinity (> 34.7 psu) and low oxygen content (< 0.5 mLṡL-1), associated with mesoscale subsurface structures. The largest vertical and horizontal extension of these structures was observed in January 2015. These subsurface structures showed a significant deficit of reactive nitrogen (N* < -10 μM), nitrite accumulation (> 0.6 μM) and the highest supersaturations of CO2 (110 - 344%) and N2O (107 - 407%). Along with this, the eddies generation zone presented a temporal variability of air-sea gases fluxes with the highest in the austral summer and autumn (from 67.64 to 9.12 mmolṡm-2ṡd-1, from 3.00 to 0.94 μmolṡm-2ṡd-1, and from 19.62 to 5.77 μmolṡm-2ṡd-1, for CO2, CH4 and N2O, respectively), while between June and August, the ocean-atmosphere flows were close to equilibrium (from 0.09 to -1.93 mmolṡm-2ṡd-1, from 0.40 to 0.03 μmolṡm-2ṡd-1, and from 0,29 to -0.02 μmolṡm-2ṡd-1, for CO2, CH4 and N2O, respectively). Acknowledgment: This work is part of the PIA 037.474 Project (PUCV) and the Instituto Milenio de Oceanografía (IMO-Chile).

  6. Large-Eddy Simulations of Dust Devils and Convective Vortices

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei

    2016-11-01

    In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

  7. Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping

    Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies existmore » in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.« less

  8. Fronts and eddies: Engines for biogeochemical variability of the Central Red Sea during winter-spring periods

    NASA Astrophysics Data System (ADS)

    Zarokanellos, Nikolaos; Jones, Burton

    2017-04-01

    The central Red Sea (CRS) has been shown to be characterized by significant eddy activity throughout the year. In winter, weakened stratification may lead to enhanced vertical exchange contributing to physical and biogeochemical processes. In winter 2014-2015 we began an extended glider time series to monitor a region in the northern CRS where eddy activity is significant. Remote sensing and glider observations that include CTD, oxygen, CDOM and chlorophyll fluorescence, and multi-wavelength optical backscatter, have been used to characterize the effects of winter mixing and eddy activity in this region. During winter, deep mixing driven by surface cooling and strong winds combined with eddy features, can supply nutrients into the upper layer dramatically modifies the environment from its typically stratified conditions. These mixing events disperse the phytoplankton from the deep chlorophyll maximum throughout the upper mixed layer, and increase the chlorophyll signature detected by ocean color imagery. In addition to the mixing, cyclonic eddies in the region can enhance the vertical displacement of deeper, nutrient containing water toward the euphotic zone contributing to increased chlorophyll concentration and biological productivity. Remote sensing analyses indicate that these eddies also contribute to significant horizontal dispersion including the exchange between the open sea and coastal coral reef ecosystems. During the winter mixing periods, diel fluctuations in phytoplankton biomass have been observed indicative of solar driven plankton dynamics. The biogeochemical response to the subsurface physical processes provides a sensitive indicator to the processes that result from the mixing and eddy dynamics - processes that are not necessarily detectable via remote sensing. In order to understand the seasonal responses, but also the interannual influences on these processes, sustained in situ autonomous platform measurements are essential.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  10. Numerical Investigations of Subduction of Eighteen Degree Water in the Subtropical Northwest Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Zhai, P.; He, R.

    2016-02-01

    Mode waters are upper-ocean water masses with nearly uniform water properties over a thickness of a few hundred meters. Subduction of mode waters plays an important role in changing atmospheric and oceanic long-term variability because they store "memory" of wintertime air-sea interaction. In this study, we investigated dynamic processes associated with subduction of the Eighteen Degree Water (EDW, the principal mode water) in the subtropical Northwest Atlantic during January to June 2007. Numerical simulations of the temporal and spatial evolutions of EDW were performed using both uncoupled (ocean only) and air-sea coupled configurations and results were contrasted. We find the coupled simulation produced deeper mixed layer depth, stronger eddy kinetic energy, and larger subduction areas than their counterparts in the uncoupled ocean simulation. In both configurations, mesoscale eddies enhance the total subduction and eddy-induced subduction has the same order as the mean component. Resolving strong air-sea coupling and mesoscale eddies is therefore important for understanding EDW dynamics.

  11. Quantifying variability in field scale evapotranspiration measurements in an irrigated agricultural region under advection

    USDA-ARS?s Scientific Manuscript database

    This study compares the evapotranspiration (ET) measurements from eddy covariance, lysimetry, and water balance using a network of neutron probe sensors and investigates the role of within-field variability in the vegetation density in explaining the differences among the ET estimates from the vario...

  12. A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.

    1996-01-01

    Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.

  13. The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability

    NASA Technical Reports Server (NTRS)

    Zhou, Shuntai; Stone, Peter H.

    1993-01-01

    Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.

  14. Interannual variability of terrestrial NEP and its attributions to carbon uptake amplitude and period

    NASA Astrophysics Data System (ADS)

    Niu, S.

    2015-12-01

    Earth system exhibits strong interannual variability (IAV) in the global carbon cycle as reflected in the year-to-year anomalies of the atmospheric CO2 concentration. Although various analyses suggested that land ecosystems contribute mostly to the IAV of atmospheric CO2 concentration, processes leading to the IAV in the terrestrial carbon (C) cycle are far from clear and hinder our effort in predicting the IAV of global C cycle. Previous studies on IAV of global C cycle have focused on the regulation of climatic variables in tropical or semiarid areas, but generated inconsistent conclusions. Using long-term eddy-flux measurements of net ecosystem production (NEP), atmospheric CO2 inversion NEP, and the MODIS-derived gross primary production (GPP), we demonstrate that seasonal carbon uptake amplitude (CUA) and period (CUP) are two key processes that control the IAV in the terrestrial C cycle. The two processes together explain 78% of the variations in the IAV in eddy covariance NEP, 70% in global atmospheric inversed NEP, and 53% in the IAV of GPP. Moreover, the three lines of evidence consistently show that variability in CUA is much more important than that of CUP in determining the variation of NEP at most eddy-flux sites, and most grids of global NEP and GPP. Our results suggest that the maximum carbon uptake potential in the peak-growing season is a determinant process of global C cycle internnual variability and carbon uptake period may play less important role than previous expectations. This study uncovers the most parsimonious, proximate processes underlying the IAV in global C cycle of the Earth system. Future research is needed to identify how climate factors affect the IAV in terrestrial C cycle through their influence on CUA and CUP.

  15. Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.

    2015-12-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  16. Upwelling and downwelling induced by mesoscale circulation in the DeSoto Canyon region

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Chassignet, E.; Morey, S. L.; Dukhovskoy, D. S.

    2014-12-01

    Ocean dynamics are complex over irregular topography areas, and the northeastern Gulf of Mexico, specifically the DeSoto Canyon region, is a challenge for modelers and oceanographers. Vertical movement of waters, especially upwelling, is observed to take place over the canyon's head and along the coast; however, it is not well understood. We focus on upwelling/downwelling processes induced by the Loop Current and its associated eddy field using multi-decadal Hybrid Coordinate Ocean Model simulations. The Loop Current, part of the Gulf Stream, can develop northward into the Gulf through the Yucatan Channel and exit through the Florida Straits. It can reach the continental slope of the study domain and directly depress the isopycnals. Cyclonic eddies in front of the Loop Current also induce upwelling underneath. On the other hand, the Loop Current sometimes impinges on the West Florida Shelf and generates a high pressure disturbance, which travels northward along the shelf into the study region. Consequently, large-scale downwelling occurs across the continental slopes. Our analysis of sea surface height shows that the Loop Current pressure disturbance tends to propagate along the shallow isobaths of 100 to 300 m in the topographic wave direction from south of the West Florida Shelf to the Mississippi Delta. In addition, after shedding a large anticyclonic eddy, the Loop Current retracts southward and can touch the southeastern corner of the West Florida Shelf. This can result in a higher pressure disturbance, and therefore stronger large-scale downwelling in the DeSoto Canyon region.

  17. Interannual Variation of Sea Level in the South Atlantic Based on Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Grodsky, S. A.; Carton, J. A.

    2006-07-01

    13 years of altimeter month ly sea level ar e used to explore interannual variability of the South Atlantic. The strongest v ariability outside the eastern and western boundaries is conf ined to a relatively narrow zonally oriented band b etw een 35°S and 25°S, the Agulhas eddy corridor. On th eir way across th e South Atlantic th e Agulh as eddies g ain energy on the southern flank of the eddy corridor via baro tropic conversions by deceler ating the South Atlan tic Curren t. On interannual time scales the sea level in the corridor fluctu ates out of phase in the w est and east r evealing noticeab le v ariations of 10 cm amp litude at 4 to 5 year periods.

  18. Eddy response to variable atmospheric forcing in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ward, M. L.; McC. Hogg, A.

    2009-04-01

    Satellite altimeter data of the Southern Ocean (SO) reveal an anomalous peak in eddy kinetic energy (EKE) in the Antarctic Circumpolar Current (ACC) in 2000-2002. This peak has been attributed to a delayed response to an earlier peak in the Southern Annular Mode (SAM) and its associated circumpolar eastward winds that occurred around 1998, where the delay is due to the formation and adjustment of the eddy field associated with the increased winds (Meredith & Hogg, 2006). A more recent analysis reveals that the EKE response varies regionally, with the strongest response in the Pacific, and it has been suggested that this variability is due to the additional influence of ENSO. The 2000-2002 peak in EKE is therefore attributed to the coincident peak in SAM and ENSO 2-3 years earlier, and that the EKE response was weaker in past years when modes were out of phase (Morrow & Pasquet, 2008). We investigate this issue by applying SAM-like and ENSO-like wind forcings to Q-GCM, the eddy-resolving model used in Meredith & Hogg and configured for the Southern Ocean. We analyze the EKE response to each individual forcing as well as a simultaneous forcing of the two, both in and out of phase. From these results, we are able to quantify both the global and regional response to each forcing, and the degree to which each mode is responsible for the EKE strength and distribution across the ACC.

  19. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.

  20. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong

    2016-02-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. In Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.

  1. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE PAGES

    Zhang, Kai; Zhao, Chun; Wan, Hui; ...

    2016-02-12

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less

  2. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Zhao, Chun; Wan, Hui

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less

  3. Control of low-speed turbulent separated flow over a backward-facing ramp. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Lin, John C.

    1992-01-01

    The relative performance and flow phenomena associated with several devices for controlling turbulent separated flow were investigated at low speeds. Relative performance of the devices was examined for flow over a curved, backward-facing ramp in a wind tunnel, and the flow phenomena were examined in a water tunnel using dye-flow visualization. Surface static pressure measurements and oil-flow visualization results from the wind tunnel tests indicated that transverse grooves, longitudinal grooves, submerged vortex generators, vortex generator jets (VGJ's), Viets' fluidic flappers, elongated arches at positive angle of attack, and large-eddy breakup devices (LEBU's) at positive angle of attack placed near the baseline separation location reduce flow separation and increase pressure recovery. Spanwise cylinders reduce flow separation but decrease pressure recovery downstream. Riblets, passive porous surfaces, swept grooves, Helmholtz resonators, and arches and LEBU's with angle of attack less than or = 0 degrees had no significant effect in reducing the extent of the separation region. Wall-cooling computations indicated that separation delay on a partially-cooled ramp is nearly the same as on a fully-cooled ramp, while minimizing the frictional drag increase associated with the wall cooling process. Dry-flow visualization tests in the water tunnel indicated that wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone vortex generators oriented in the reverse direction and doublet vortex generators shed streamwise counterrotating vortices; a spanewise cylinder located near the wall and LEBU's at angle of attack = -10 degrees produced eddies or transverse vortices which rotated with the same sign as the mean vorticity in a turbulent boundary layer; and the most effective VGJ's produced streamwise co-rotating vortices. Comparative wind-tunnel test results indicated that transferring momentum from the outer region of a turbulent boundary layer through the action of embedded streamwise vortices is more effective than by transverse vortices for the separation control application studied herein.

  4. Currents and Hydrographic Variability in Orphan Basin, 2004-2010

    NASA Astrophysics Data System (ADS)

    Loder, J. W.; Geshelin, Y.; Yashayaev, I.

    2010-12-01

    Orphan Basin is a deep (>3000m) and broad (>200km) indentation of the continental margin north of Flemish Cap which partially lies in the exit pathways of the Labrador Current (LC) and Deep Western Boundary Current (DWBC) from the Labrador Sea. Since 2004, the Bedford Institute of Oceanography has been carrying out a moored measurement and annual survey program to describe and understand currents and hydrographic variability in the area, with focus on ocean climate variability and energetic features relevant to oil and gas exploration. The observations have identified seasonal and interannual variability in water mass properties that can be linked to upstream variability on the AR7W line in the Labrador Sea, thereby helping to understand the fate of Labrador Sea Water and other DWBC waters. The moored measurements have confirmed the expectation that low-frequency currents and drift are equatorward and generally weak across the basin, but with some near-bottom intensification of the flow associated with the DWBC and a stronger barotropic intensification associated with the LC over the slope. The measurements have also identified two energetic and unexpected types of current features at higher frequencies - tall and isolated mesoscale eddies, and strong upper-ocean inertial oscillations. The eddies extend over the entire water column and drift with the flow in water depths of 2200-2800m, with radii of order 20 km, peak (cyclonic) currents of about 0.5 m/s at mid depths, and a local occurrence rate of about one eddy every few months. The intermittent inertial oscillations penetrate to 300-m depth, with near-surface speeds up to 1 m/s, persistence over periods up to 10-30 days, and horizontal coherence over distances exceeding 80 km. This presentation will provide an overview of the observed variability in Orphan Basin during 2004-2010 with focus on the features noted above.

  5. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGES

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  6. Satellite-observed variability of phytoplankton size classes associated with a cold eddy in the South China Sea.

    PubMed

    Lin, Junfang; Cao, Wenxi; Wang, Guifen; Hu, Shuibo

    2014-06-15

    Ocean-color remote sensing has been used as a tool to detect phytoplankton size classes (PSCs). In this study, a three-component model of PSC was reparameterized using seven years of pigment measurements acquired in the South China Sea (SCS). The model was then used to infer PSC in a cyclonic eddy which was observed west of Luzon Island from SeaWiFS chlorophyll-a (chla) and sea-surface height anomaly (SSHA) products. Enhanced productivity and a shift in the PSC were observed, which were likely due to upwelling of nutrient-rich water into the euphotic zone. The supply of nutrients promoted the growth of larger cells (micro- and nanoplankton), and the PSC shifted to greater sizes. However, the picoplankton were still important and contributed ∼48% to total chla concentration. In addition, PSC time series revealed a lag period of about three weeks between maximum eddy intensity and maximum chlorophyll, which may have been related to phytoplankton growth rate and duration of eddy intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Variations of Luzon Undercurrent from observations and numerical model simulations

    NASA Astrophysics Data System (ADS)

    Wang, Qingye; Zhai, Fangguo; Hu, Dunxin

    2014-06-01

    Significant intraseasonal variability (ISV) of about 45-80 days and seasonal variation of the Luzon Undercurrent (LUC) at 18°N are studied using direct current measurements and a high-resolution global Hybrid Coordinate Ocean Model. The variations of the LUC are vertically coherent with those of Kuroshio Current both on intraseasonal and seasonal time scales. The ISV of the LUC is dominated by eddies with diameters of about 200-300 km and extending from sea surface to intermediate layer east of Luzon Island. The LUC becomes strong (weak) when cyclonic (anticyclonic) eddies occur. The eddies east of Luzon Island mainly originate from the bifurcation point (˜13°N) of the North Equatorial Current. These eddies propagate northwestward at a typical propagation speed of about 0.16 m s-1 along the east coast of Philippines, gradually strengthen and pass the Luzon coast, and continue northward to Luzon strait. On seasonal time scale, the LUC is strong (weak) in boreal winter (summer), and this variation is related to the seasonal evolution of large-scale ocean circulation east of Philippines mainly controlled by local wind forcing.

  8. Lateral eddy diffusivity estimates from simulated and observed drifter trajectories: a case study for the Agulhas Current system

    NASA Astrophysics Data System (ADS)

    Rühs, Siren; Zhurbas, Victor; Durgadoo, Jonathan V.; Biastoch, Arne

    2017-04-01

    The Lagrangian description of fluid motion by sets of individual particle trajectories is extensively used to characterize connectivity between distinct oceanic locations. One important factor influencing the connectivity is the average rate of particle dispersal, generally quantified as Lagrangian diffusivity. In addition to Lagrangian observing programs, Lagrangian analyses are performed by advecting particles with the simulated flow field of ocean general circulation models (OGCMs). However, depending on the spatio-temporal model resolution, not all scale-dependent processes are explicitly resolved in the simulated velocity fields. Consequently, the dispersal of advective Lagrangian trajectories has been assumed not to be sufficiently diffusive compared to observed particle spreading. In this study we present a detailed analysis of the spatially variable lateral eddy diffusivity characteristics of advective drifter trajectories simulated with realistically forced OGCMs and compare them with estimates based on observed drifter trajectories. The extended Agulhas Current system around South Africa, known for its intricate mesoscale dynamics, serves as a test case. We show that a state-of-the-art eddy-resolving OGCM indeed features theoretically derived dispersion characteristics for diffusive regimes and realistically represents Lagrangian eddy diffusivity characteristics obtained from observed surface drifter trajectories. The estimates for the maximum and asymptotic lateral single-particle eddy diffusivities obtained from the observed and simulated drifter trajectories show a good agreement in their spatial pattern and magnitude. We further assess the sensitivity of the simulated lateral eddy diffusivity estimates to the temporal and lateral OGCM output resolution and examine the impact of the different eddy diffusivity characteristics on the Lagrangian connectivity between the Indian Ocean and the South Atlantic.

  9. Wave Energetics of the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph Michael

    A comprehensive assessment of the energetics of transient waves is presented for the atmosphere of Mars using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. Each hemisphere is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for each of the three Mars years available. Northern hemisphere fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the winter solstitial pause in wave activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout each year with little reduction in amplitude during the solstitial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical temperature profile around winter solstice. Traveling waves are typically triggered by geopotential flux convergence. Individual waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation. The southern hemisphere energetics is similar to the northern hemisphere in timing, but wave energetics is much weaker as a result of the high and zonally asymmetric topography. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a GDS. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.

  10. Revisiting drought impact on tropical forest photosynthesis: a novel multi-scale integrated approach reveals new insights

    NASA Astrophysics Data System (ADS)

    Detto, M.; Wu, J.; Xu, X.; Serbin, S.; Rogers, A.

    2017-12-01

    A fundamental unanswered question for global change ecology is to determine the vulnerability of tropical forests to climate change, particularly with increasing intensity and frequency of drought events. This question, despite its apparent simplicity, remains difficult for earth system models to answer, and is controversial in remote sensing literature. Here, we leverage unique multi-scale remote sensing measurements (from leaf to crown) in conjunction with four-continuous-year (2013-2017) eddy covariance measurements of ecosystem carbon fluxes in a tropical forest in Panama to revisit this question. We hypothesize that drought impacts tropical forest photosynthesis through variation in abiotic drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with physiological traits that govern photosynthesis, and biotic variation in ecosystem photosynthetic capacity associated with changes in the traits themselves. Our study site, located in a seasonal tropical forest on Barro Colorado Island (BCI), Panama, experienced a significant drought in 2015. Local eddy covariance derived photosynthesis shows an abrupt increase during the drought year. Our specific goal here is to assess the relative impact of abiotic and biotic drivers of such photosynthesis response to interannual drought. To this goal, we derived abiotic drivers from eddy tower-based meteorological measurements. We will derive the biotic drivers using a recently developed leaf demography-ontogeny model, where ecosystem photosynthetic capacity can be described as the product of field measured, age-dependent leaf photosynthetic capacity and local tower-camera derived ecosystem-scale inter-annual variability in leaf age demography of the same time period (2013-2017). Lastly, we will use a process-based model to assess the separate and joint effects of abiotic and biotic drivers on eddy covariance derive photosynthetic interannual variability. Collectively, this novel multi-scale integrated study aims to improve ecophysiological understanding of tropical forest response to interannual climate variability, highlighting the importance to combine state-of-the-art technology and theories to improve future projections of carbon dynamics in the tropics.

  11. Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.

    2017-06-01

    Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.

  12. Simulated life cycles of persistent anticyclonic anomalies over the North Pacific: Role of synoptic-scale eddies

    NASA Technical Reports Server (NTRS)

    Higgins, R. W.; Schubert, S. D.

    1994-01-01

    This study examines the role of synoptic-scale eddies during the development of persistent anticyclonic height anomalies over the central North Pacific in a general circulation model under perpetual January conditions. The General Circulation Model (GCM) replicates the basic characteristics of the evolution of the anomaly patterns found in observations. The life cycle is characterized by the rapid establishment of the major anomaly center and considerably longer maintenance and decay phases, which include the development of downstream anomaly centers. The simulation also shows a realistic evolution of synoptic-scale activity beginning with enhanced activity off the east coast of Asia prior to onset, followed by a northward shift of the Pacific storm track, which lasts throughout the maintenance phase. The initial enhancement of synoptic-scale eddy activity is associated with a large-scale cyclonic anomaly that developes over Siberia several days prior to the onset of the main anticyclonic anomaly over the central North Pacific. The observations, however, show considerable interdecadel variability in the details of the composite onset behavior; it is unclear whether this variability is real or whether it reflects differences in the data assimilation systems. The role of the time mean flow and synoptic-scale eddies in the development of the persistent Pacific anomalies is studied within the context of a kinetic energy budget in which the flow is decomposed into the time-mean, low-frequency (timescales longer than 10 days), and synoptic (timescales less than 6 days) components. The budget, which is carried out for the simulation at 500 mb, shows that the initial growth of the persistent anticyclonic anomalies is associated with barotropic conversions of energy, with approximately equal contributions coming from the mean flow and the synoptic-scale eddies. After onset the barotropic conversion from the mean flow dominates, whereas the decay phase is associated with baroclinic processes within the low-frequency flow.

  13. Biogeochemical responses to meso- and submesoscale oceanic variability in the Kuroshio region

    NASA Astrophysics Data System (ADS)

    Suzue, Y.; Uchiyama, Y.; Yamazaki, H.

    2016-02-01

    Influences of the Kuroshio and associated meso- and submesoscale variability due to frontally- and topographically-induced eddies on biogeochemical processes in the Kuroshio region off Japan are examined with a synoptic downscaling ocean modeling using the UCLA version of ROMS (Shchepetkin and McWilliams, 2005; 2008) coupled with an NPZD (nutrient, phyto/zooplanktons and detritus) nitrogen-based biogeochemical model (e.g., Fasham et al., 1990). The hydrodynamic model is initialized and forced by the JCOPE2 assimilative oceanic reanalysis (Miyazawa et al., 2009) with a horizontal grid resolution of 1/12o (dx ≈ 10 km) to convey the basin-scale information including the transient Kuroshio path though the parent ROMS-L1 model (dx = 3 km) and the child ROMS-L2 model (dx = 1 km) successively with the one-way offline nesting technique (Mason et al., 2011). The JMA GPV-MSM assimilative atmospheric reanalysis (dx = 6 km) is used to force both the ROMS models, while the NPZD model is configured according to Gruber et al. (2006). The model result is extensively compared with satellite (e.g., AVISO, MODIS/Aqua Chl.a) and in-situ data (e.g., the JMA's ship measurement) to confirm good agreement. The submesoscale eddy-resolving L2 output exhibits that intermediate water containing abundant nutrients occasionally surfaces by localized upwelling associated with cyclonic eddies, and that high Chl.a concentration appears around the Kuroshio Front. Furthermore, it is found that meso- and submesoscale eddies developed between the Kuroshio and the coastline also influence on the nearshore biogeochemical productivity.

  14. Investigating physical controls on methane and carbon ...

    EPA Pesticide Factsheets

    Reservoirs are a globally important source of carbon to the atmosphere. Several recent studies have found that both carbon dioxide (CO2) and methane (CH4) emissions from reservoirs are currently being underestimated by up to 50%. This underestimation is due to inadequate characterization of both spatial variability (e.g. ebullition and CO2 surface water concentration hot spots) and temporal variability (e.g. diurnal patterns, seasonal differences, and pulses driven by weather events or other disturbances). Use of the eddy covariance technique to measure CO2 and CH4 fluxes over reservoirs can help address the issues of spatial and temporal coverage. Here we present results from two eddy covariance measurement campaigns monitoring CO2 and CH4 fluxes over reservoirs in southwestern Ohio, US. The first campaign was part of a study looking at the effects of water level drawdown on reservoir methane ebullition. The eddy covariance results showed a clear response of CH4 emissions to the change in water level, increasing from a baseline of 3440 mg CH4 m-2 d-1 to a maximum of 6740 mg CH4 m-2 d-1 during the drawdown. These results agreed well with the emission rates measured via bubble samplers deployed in the same area as the tower. Conversely, the CO2 fluxes did not show a strong response to the drawdown. In the second campaign the eddy covariance system was deployed longer term at a mid-sized (2.4 km2) lake. Analyses of diurnal patterns in CO2 and CH4 emissions as well

  15. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  16. Energetics of the Brazil Current in the Rio Grande Cone region

    NASA Astrophysics Data System (ADS)

    Brum, André Lopes; Azevedo, José Luiz Lima de; Oliveira, Leopoldo Rota de; Calil, Paulo Henrique Rezende

    2017-10-01

    The energetics of the Brazil Current (BC) in the region of the Rio Grande Cone (RGC, 30-35.5°S), a topographic rise in the southwest portion of the Brazilian continental margin, are analyzed using 16 years of numerical data from the Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES). The main focus of this study is the eddy-mean flow interactions of the BC and the local energy budgets in the study region. The kinetic and potential energy balance equations are derived for mean and eddy flows, and the resulting terms are presented and discussed. The eddy-mean flow interactions exhibit complex spatial distributions, and the intensities of the energy budgets decrease with increasing depth. However, only the mean potential energy (MPE) budget decreases southward. Eddy kinetic energy (EKE) and eddy potential energy (EPE) exhibit similar horizontal distribution patterns. Additionally, the baroclinic and barotropic conversion rates increase downstream of the bump, where the eddy energy field exhibits along-stream variability that increases southward. Barotropic conversion is more intense between 50 and 200 m, where mean kinetic energy (MKE) and EKE are concentrated, and it exhibits a horizontal cross-stream variation pattern, with mean-to-eddy energy conversion observed on the offshore side of the BC. This result indicates that the turbulence associated with the stream jet increases as the BC moves away from the coast, with the conversion term acting to stabilize the flow. Baroclinic conversion exhibits a high intensity below 300 m (where MPE and EPE display peaks), and it has a greater influence on the eddy-mean flow interaction than does the barotropic conversion. The RGC directly affects the local dynamics of the BC by increasing the eddy field as soon as the BC reaches the bump. The energy diagrams illustrate a stream characterized by evolving barotropic and baroclinic instability processes throughout the water column. This result indicates an intrinsically unstable jet in the study region. Moreover, baroclinic instability is the main source of EKE in the RGC region.

  17. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  18. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-04-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving).

  19. E. coli O157 from sheep in northeast Scotland: prevalence, concentration shed, and molecular characterization by multilocus variable tandem repeat analysis.

    PubMed

    Solecki, Olivia; MacRae, Marion; Strachan, Norval; Lindstedt, Bjørn-Arne; Ogden, Iain

    2009-09-01

    We report the prevalence, concentrations, and strain diversity of Escherichia coli O157 shed by sheep fed on root crops during a winter period in northeast Scotland. E. coli O157 was isolated on 6 farms from 14 studied during January to March 2005. The individual sheep prevalence was 5.8% and concentration excreted was <10(2) colony-forming units/g for all but one fecal sample. Verocytotoxigenic E. coli O157, determined by polymerase chain reaction and verocell assay, was recovered from 27% of samples. Four farms had sheep shedding the same strain as determined by multiple-locus variable analysis and no within-farm diversity was observed. The low numbers shed and the high levels of atoxigenic strains indicate a lower risk to human health from these animals compared to many ruminants grazing pasture during summer months. These data will be valuable for quantitative risk assessments and provide preliminary information that feeding sheep on root crops may be a practical intervention to reduce E. coli O157 infection in animals and ultimately humans.

  20. Physical and biological characteristics of the winter-summer transition in the Central Red Sea

    NASA Astrophysics Data System (ADS)

    Zarokanellos, Nikolaos D.; Papadopoulos, Vassilis P.; Sofianos, Sarantis. S.; Jones, Burton H.

    2017-08-01

    The Central Red Sea (CRS) lies between two distinct hydrographic and atmospheric regimes. In the southern Red Sea, seasonal monsoon reversal regulates the exchange of water between the Red Sea and the Indian Ocean. In the northern Red Sea, intermediate and occasionally deep water are formed during winter to sustain the basin's overturning circulation. Highly variable mesoscale eddies and the northward flowing eastern boundary current (EBC) determine the physical and biogeochemical characteristics of the CRS. Ship-based and glider observations in the CRS between March and June 2013 capture key features of the transition from winter to summer and depict the impact of the eddy activity on the EBC flow. Less saline and relatively warmer water of Indian Ocean origin reaches the CRS via the EBC. Initially, an anticyclonic eddy with diameter of 140 km penetrating to 150m depth with maximum velocities up to 30-35 cm s-1 prevails in the CRS. This anticyclonic eddy appears to block or at least redirect the northward flow of the EBC. Dissipation of the eddy permits the near-coastal, northward flow of the EBC and gives place to a smaller cyclonic eddy with a diameter of about 50 km penetrating to 200 m depth. By the end of May, as the northerly winds become stronger and persistent throughout the basin, characteristic of the summer southwest monsoon wind regime, the EBC, and its associated lower salinity water became less evident, replaced by the saltier surface water that characterizes the onset of the summer stratification in the CRS.

  1. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2018-06-01

    The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.

  2. Investigating spatial variability in gas-flux dynamics within Big Cypress National Preserve, Florida using hydrogeophysical methods

    NASA Astrophysics Data System (ADS)

    Sirianni, M.; Comas, X.; Shoemaker, B.; Job, M. J.; Cooper, H.

    2016-12-01

    Globally, wetland soils play an important role in regulating climate change by functioning as a source or sink for atmospheric carbon, particularly in terms of methane and carbon dioxide. While many historic studies defined the function of wetland soils in the global carbon budget, the gas-flux dynamics of subtropical wetlands is largely unknown. Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. The U.S. Geological Survey employs eddy covariance methods at several locations within the Preserve to quantify carbon and methane exchanges at ecosystem scales. While eddy covariance towers are a convenient tool for measuring gas fluxes, their footprint is spatially extensive (hundreds of meters); and thus spatial variability at smaller scales is masked by averaging or even overlooked. We intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a combination of geophysical, hydrologic and ecologic techniques. Preliminary results suggest that gas releases from flooded calcitic soils are much greater than organic soils. These results - and others - will help build a better understanding of the role of subtropical wetlands in the global carbon budget.

  3. Methane eddy covariance flux measurements from a low flying aircraft: Bridging the scale gap between local and regional emissions estimates

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.

    2017-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.

  4. Direct Measurements of the Baroclinic Instability in the Ocean

    NASA Astrophysics Data System (ADS)

    Sadek, Mahmoud; Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey

    2016-11-01

    The ocean is mechanically driven by wind and buoyancy at the surface which produce sloping isopycnals with a reservoir of available potential energy (APE). Large scale APE can be converted to kinetic energy via the baroclinic instability, which produces mesoscale eddies. Mesoscale eddies are ubiquitous in mid- and high-latitudes, and play a primary role in determining the strength and trajectories of currents and in generating intrinsic climate variability. The widespread belief that mesoscale eddies are generated through baroclinic instability is based on general accord between observations and linear stability analysis and the predicted behavior of nonlinear models. However, these models are unable to give us quantitative evidence of the extent to which the instability is responsible for eddy generation at various locations in the ocean. To this end, we implement a new coarse-graining framework, recently developed to study flow on a sphere, to directly analyze the baroclinic instability as a function of scale and geographic location, and implement it using strongly eddying high-resolution simulations in the North Atlantic and in the Southern Ocean. The results give us new information about location and intensity of the instability in both physical and spectral space. Partial support was provided by National Science Foundation (NSF) Grant OCE-1259794, US Department of Energy (US DOE) Grant DE-SC0014318, and the LANL LDRD program through Project Number 20150568ER.

  5. Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.

    2016-02-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  6. A numerical study of the laminar necklace vortex system and its effect on the wake for a circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2012-07-01

    Large eddy simulation (LES) is used to investigate the structure of the laminar horseshoe vortex (HV) system and the dynamics of the necklace vortices as they fold around the base of a circular cylinder mounted on the flat bed of an open channel for Reynolds numbers defined with the cylinder diameter, D, smaller than 4460. The study concentrates on the analysis of the structure of the HV system in the periodic breakaway sub-regime, which is characterized by the formation of three main necklace vortices. Over one oscillation cycle of the previously observed breakaway sub-regime, the corner vortex and the primary vortex merge (amalgamate) and a developing vortex separates from the incoming laminar boundary layer (BL) to become the new primary vortex. Results show that while the classical breakaway sub-regime, in which one amalgamation event occurs per oscillation cycle, is present when the nondimensional displacement thickness of the incoming BL at the location of the cylinder is relatively large (δ*/D > 0.1), a new type of breakaway sub-regime is present for low values of δ*/D. This sub-regime, which we call the double-breakaway sub-regime, is characterized by the occurrence of two amalgamation events over one full oscillation cycle. LES results show that when the HV system is in one of the breakaway sub-regimes, the interactions between the highly coherent necklace vortices and the eddies shed inside the separated shear layers (SSLs) are very strong. For the relatively shallow flow conditions considered in this study (H/D ≅ 1, H is the channel depth), at times, the disturbances induced by the legs of the necklace vortices do not allow the SSLs on the two sides of the cylinder to interact in a way that allows the vorticity redistribution mechanism to lead to the formation of a new wake roller. As a result, the shedding of large-scale rollers in the turbulent wake is suppressed for relatively large periods of time. Simulation results show that the wake structure changes randomly between time intervals when large-scale rollers are forming and are convected in the wake (von Karman regime), and time intervals when the rollers do not form. When the wake is in the von Karman regime, the shedding frequency of the rollers is close to that observed for flow past infinitely long cylinders.

  7. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    NASA Technical Reports Server (NTRS)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  8. A regime perspective on the North Atlantic eddy-driven jet stream response to sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Maycock, A.; Masukwedza, G.; Hitchcock, P.

    2017-12-01

    The winter North Atlantic eddy-driven jet (NAJ) has been shown to exhibit three preferred latitudinal positions. Here we examine, for the first time, the influence of major Sudden Stratospheric Warmings (SSWs) on the regime behaviour of the NAJ using an ensemble of climate model experiments with stratospheric conditions nudged towards a major SSW, but with each ensemble member having freely evolving tropospheric conditions. The SSW experiment is compared to a control ensemble in which stratospheric variability is absent. The experiments show that the SSW leads to an increased occupancy of the southerly NAJ state and reduced occupancy of the northerly state. This effect is distinct from the mean southward shift of the NAJ identified in many previous studies, and instead suggests changes to the characteristics of NAJ variability as a result of SSWs. These results may aid in understanding the mechanisms by which SSWs impact on Euro-Atlantic climate.

  9. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-06-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2 year old to 2.5 mm day-1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude, that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. Stand transpiration rates of some studied oil palm stands compared to or even exceed values reported for different tropical forests, indicating a high water use of oil palms under certain site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.

  10. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-10-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g., due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. The stand transpiration of some of the studied oil palm stands was as high or even higher than values reported for different tropical forests, indicating a high water use of oil palms under yet to be explained site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.

  11. Shiga Toxin-Producing Escherichia coli O157 Shedding Dynamics in an Australian Beef Herd

    PubMed Central

    Ahlstrom, Christina; Muellner, Petra; Lammers, Geraldine; Jones, Meghan; Octavia, Sophie; Lan, Ruiting; Heller, Jane

    2017-01-01

    Shiga toxin-producing Escherichia coli (STEC) O157 is an important foodborne pathogen that can be transmitted to humans both directly and indirectly from the feces of beef cattle, its primary reservoir. Numerous studies have investigated the shedding dynamics of E. coli O157 by beef cattle; however, the spatiotemporal trends of shedding are still not well understood. Molecular tools can increase the resolution through the use of strain typing to explore transmission dynamics within and between herds and identify strain-specific characteristics that may influence pathogenicity and spread. Previously, the shedding dynamics and molecular diversity, through the use of multilocus variable number of tandem repeat analysis (MLVA) of STEC O157, were separately investigated in an Australian beef herd over a 9-month study period. Variation in shedding was observed over time, and 33 MLVA types were identified. The study presented here combines the two datasets previously published with an aim to clarify the relationship between epidemiological variables and strain types. Three major genetic clusters (GCs) were identified that were significantly associated with the location of the cattle in different paddocks. No significant association between GCs and individual cow was observed. Results from this molecular epidemiological study provide evidence for herd-level clonal replacement over time that may have been triggered by movement to a new paddock. In conclusion, this study has provided further insight into STEC O157 shedding dynamics and pathogen transmission. Knowledge gaps remain regarding the relationship of strain types and the shedding dynamics of STEC O157 by beef cattle that could be further clarified through the use of whole-genome sequencing. PMID:29230401

  12. A model study of sediment transport across the shelf break

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2017-04-01

    A variety of dynamical processes can contribute to the transport of material (e.g., particulate matter) across the shelf break - the region separating the continental shelf from the continental slope. Among these processes are (i) the reflection of internal waves on the outer shelf and upper slope, and (ii) the instability of hydrographic fronts, roughly aligned with isobaths, that are often present at the shelf break. On the one hand, internal waves reflecting on a sloping boundary can produce bottom shear stresses that are large enough to resuspend non-cohesive sediments into the water column. On the other hand, eddies shed from unstable shelf break fronts can incorporate into their core particle-rich waters from the outer shelf and upper slope, and transport these waters offshore. Here we present numerical experiments with a three-dimensional numerical model of ocean circulation and sediment transport, which illustrate the joint effect of internal waves and eddies on sediment transport across the shelf break. The model is based on the primitive equations and terrain-following coordinates. The model domain is square and idealized, comprising a flat continental shelf, a constant continental slope, and a flat abyssal basin. The model grid has O(1 km) horizontal resolution, so that (sub)mesoscale eddies observed in the vicinity of shelf breaks, such as south of New England, can be represented in detail. Internal waves are excited through the specification of a periodic variation in the across-slope component of velocity at the offshore boundary of the domain, and eddies are generated from the baroclinic instability of a shelf break jet that is initially in strict thermal wind balance. Numerical experiments are conducted that are characterized by (i) different slopes of internal wave characteristics relative to the continental slope, representing sub-critical, critical, and super-critical regimes, and (ii) different values for the dimensionless ratios that emerge from the linear stability analysis of shelf break fronts. Emphasis is placed on the physical conditions that are conducive to the formation and maintenance of bottom and intermediate nepheloid layers - the particle-rich layers that are often observed near oceanic margins in the traces of optical instruments.

  13. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.

  14. An objective algorithm for estimating maximum oceanic mixed layer depth using seasonality indices derived from Argo temperature/salinity profiles

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Yu, Fangjie

    2015-01-01

    In this study, we propose a new algorithm for estimating the annual maximum mixed layer depth (M2LD) analogous to a full range of local "ventilation" depth, and corresponding to the deepest surface to which atmospheric influence can be "felt." Two "seasonality indices" are defined, respectively, for temperature and salinity through Fourier analysis of their time series using Argo data, on the basis of which a significant local minimum of the index corresponding to a maximum penetration depth can be identified. A final M2LD is then determined by maximizing the thermal and haline effects. Unlike most of the previous schemes which use arbitrary thresholds or subjective criteria, the new algorithm is objective, robust, and property adaptive provided a significant periodic geophysical forcing such as annual cycle is available. The validity of our methodology is confirmed by the spatial correlation of the tropical dominance of saline effect (mainly related to rainfall cycle) and the extratropical dominance of thermal effect (mainly related to solar cycle). It is also recognized that the M2LD distribution is characterized by the coexistence of basin-scale zonal structures and eddy-scale local patches. In addition to the fundamental buoyancy forcing caused mainly by latitude-dependent solar radiation, the impressive two-scale pattern is found to be primarily attributable to (1) large-wave climate due to extreme winds (large scale) and (2) systematic eddy shedding as a result of persistent winds (mesoscale). Moreover, a general geographical consistency and a good quantitative agreement are found between the new algorithm and those published in the literature. However, a major discrepancy in our result is the existence of a constantly deeper M2LD band compared with other results in the midlatitude oceans of both hemispheres. Given the better correspondence of our M2LDs with the depth of the oxygen saturation limit, it is argued that there might be a systematic underestimation with existing criteria in these regions. Our results demonstrate that the M2LD may serve as an integrated proxy for studying the coherent multidisciplinary variabilities of the coupled ocean-atmosphere system.

  15. On the nonlinear forced response of the North Atlantic atmosphere to meridional shifts of the Gulf Stream path

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.

    2016-12-01

    This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.

  16. What can we learn about ammonia fluxes from open-path eddy covariance measurements?

    NASA Astrophysics Data System (ADS)

    Pan, D.; Zondlo, M. A.; Benedict, K. B.; Schichtel, B. A.; Ham, J. M.; Shonkwiler, K. B.; Collett, J. L., Jr.

    2016-12-01

    Ammonia (NH3) is an important component of bio-atmospheric N cycle with implications of regional air quality, human and ecosystem health degradation, and global climate change. NH3 fluxes have high spatiotemporal variability controlled by several factors, such as atmospheric NH3 concentration, meteorological conditions, and compensation point of underlying surfaces. Quantifying NH3 fluxes is further complicated by severe measurement challenges including adsorption to instrument surfaces, low mole fractions, and gas-particle phase partitioning. To overcome these challenges, we have developed an open-path, eddy covariance NH3 instrument that minimizes these sampling issues. Eddy covariance measurements in 2015 and 2016 in the Rocky Mountain National Park (RMNP), Colorado showed the capabilities of the system to measure fluxes in clean and moderate-polluted regions. Interesting patterns of NH3 fluxes and NH3 concentration variations were observed, such as deposition of NH3 associated plumes from urban and agricultural areas and reemission of a similar magnitude when clean free-tropospheric air passing the site. Observed downward fluxes during midnight and upward fluxes in early morning also indicated NH3 fluxes related to dew formation and evaporation events. More details about these patterns and their relationships with ambient temperature, relative humidity, and other fluxes will be presented. These measurements also provided an opportunity to evaluate our current understanding of transport and deposition of NH3. Micrometeorological method, backward trajectory model, and bidirectional NH3 flux model were used to analyze observed variability of NH3 concentrations and fluxes. Implications of these results and how eddy covariance measurements combined with other measurements may provide insights to better quantify NH3 fluxes will be discussed.

  17. Front-Eddy Influence on Water Column Properties, Phytoplankton Community Structure, and Cross-Shelf Exchange of Diatom Taxa in the Shelf-Slope Area off Concepción (˜36-37°S)

    NASA Astrophysics Data System (ADS)

    Morales, Carmen E.; Anabalón, Valeria; Bento, Joaquim P.; Hormazabal, Samuel; Cornejo, Marcela; Correa-Ramírez, Marco A.; Silva, Nelson

    2017-11-01

    In eastern boundary current systems (EBCSs), submesoscale to mesocale variability contributes to cross-shore exchanges of water properties, nutrients, and plankton. Data from a short-term summer survey and satellite time series (January-February 2014) were used to characterize submesoscale variability in oceanographic conditions and phytoplankton distribution across the coastal upwelling and coastal transition zones north of Punta Lavapié, and to explore cross-shelf exchanges of diatom taxa. A thermohaline front (FRN-1) flanked by a mesoscale anticyclonic intrathermocline eddy (ITE-1), or mode-water eddy, persisted during the time series and the survey was undertaken during a wind relaxation event. At the survey time, ITE-1 contributed to an onshore intrusion of warm oceanic waters (southern section) and an offshore advection of cold coastal waters (northern section), with the latter forming a cold, high chlorophyll-a filament. In situ phytoplankton and diatom biomasses were highest at the surface in FRN-1 and at the subsurface in ITE-1, whereas values in the coastal zone were lower and dominated by smaller cells. Diatom species typical of the coastal zone and species dominant in oceanic waters were both found in the FRN-1 and ITE-1 interaction area, suggesting that this mixture was the result of both offshore and onshore advection. Overall, front-eddy interactions in EBCSs could enhance cross-shelf exchanges of coastal and oceanic plankton, as well as sustain phytoplankton growth in the slope area through localized upward injections of nutrients in the frontal zone, combined with ITE-induced advection and vertical nutrient inputs to the surface layer.

  18. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, Robert G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  19. Analysis of the variability of the North Atlantic eddy-driven jet stream in CMIP5

    NASA Astrophysics Data System (ADS)

    Iqbal, Waheed; Leung, Wai-Nang; Hannachi, Abdel

    2017-09-01

    The North Atlantic eddy-driven jet is a dominant feature of extratropical climate and its variability is associated with the large-scale changes in the surface climate of midlatitudes. Variability of this jet is analysed in a set of General Circulation Models (GCMs) from the Coupled Model Inter-comparison Project phase-5 (CMIP5) over the North Atlantic region. The CMIP5 simulations for the 20th century climate (Historical) are compared with the ERA40 reanalysis data. The jet latitude index, wind speed and jet persistence are analysed in order to evaluate 11 CMIP5 GCMs and to compare them with those from CMIP3 integrations. The phase of mean seasonal cycle of jet latitude and wind speed from historical runs of CMIP5 GCMs are comparable to ERA40. The wind speed mean seasonal cycle by CMIP5 GCMs is overestimated in winter months. A positive (negative) jet latitude anomaly in historical simulations relative to ERA40 is observed in summer (winter). The ensemble mean of jet latitude biases in historical simulations of CMIP3 and CMIP5 with respect to ERA40 are -2.43° and -1.79° respectively. Thus indicating improvements in CMIP5 in comparison to the CMIP3 GCMs. The comparison of historical and future simulations of CMIP5 under RCP4.5 and RCP8.5 for the period 2076-2099, shows positive anomalies in the jet latitude implying a poleward shifted jet. The results from the analysed models offer no specific improvements in simulating the trimodality of the eddy-driven jet.

  20. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae).

    PubMed

    Timerman, David; Greene, David F; Urzay, Javier; Ackerman, Josef D

    2014-12-06

    In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind-stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae)

    PubMed Central

    Timerman, David; Greene, David F.; Urzay, Javier; Ackerman, Josef D.

    2014-01-01

    In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind–stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. PMID:25297315

  2. Effect of tip flange on tip leakage flow of small axial flow fans

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Jin, Yingzi; Jin, Yuzhen

    2014-02-01

    Aerodynamic performance of an axial flow fan is closely related to its tip clearance leakage flow. In this paper, the hot-wire anemometer is used to measure the three dimensional mean velocity near the blade tips. Moreover, the filtered N-S equations with finite volume method and RNG k-ɛ turbulence model are adopted to carry out the steady simulation calculation of several fans that differ only in tip flange shape and number. The large eddy simulation and the FW-H noise models are adopted to carry out the unsteady numerical calculation and aerodynamic noise prediction. The results of simulation calculation agree roughly with that of tests, which proves the numerical calculation method is feasible.The effects of tip flange shapes and numbers on the blade tip vortex structure and the characteristics are analyzed. The results show that tip flange of the fan has a certain influence on the characteristics of the fan. The maximum efficiencies for the fans with tip flanges are shifted towards partial flow with respect to the design point of the datum fan. Furthermore, the noise characteristics for the fans with tip flanges have become more deteriorated than that for the datum fan. Tip flange contributes to forming tip vortex shedding and the effect of the half-cylinder tip flange on tip vortex shedding is obvious. There is a distinct relationship between the characteristics of the fan and tip vortex shedding. The research results provide the profitable reference for the internal flow mechanism of the performance optimization of small axial flow fans.

  3. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  4. Photochemical control of the distribution of Venusian water

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Gao, Peter; Esposito, Larry; Yung, Yuk; Bougher, Stephen; Hirtzig, Mathieu

    2015-08-01

    We use the JPL/Caltech 1-D photochemical model to solve continuity diffusion equation for atmospheric constituent abundances and total number density as a function of radial distance from the planet Venus. Photochemistry of the Venus atmosphere from 58 to 112 km is modeled using an updated and expanded chemical scheme (Zhang et al., 2010, 2012), guided by the results of recent observations and we mainly follow these references in our choice of boundary conditions for 40 species. We model water between 10 and 35 ppm at our 58 km lower boundary using an SO2 mixing ratio of 25 ppm as our nominal reference value. We then vary the SO2 mixing ratio at the lower boundary between 5 and 75 ppm holding water mixing ratio of 18 ppm at the lower boundary and finding that it can control the water distribution at higher altitudes. SO2 and H2O can regulate each other via formation of H2SO4. In regions of high mixing ratios of SO2 there exists a "runaway effect" such that SO2 gets oxidized to SO3, which quickly soaks up H2O causing a major depletion of water between 70 and 100 km. Eddy diffusion sensitivity studies performed characterizing variability due to mixing that show less of an effect than varying the lower boundary mixing ratio value. However, calculations using our nominal eddy diffusion profile multiplied and divided by a factor of four can give an order of magnitude maximum difference in the SO2 mixing ratio and a factor of a few difference in the H2O mixing ratio when compared with the respective nominal mixing ratio for these two species. In addition to explaining some of the observed variability in SO2 and H2O on Venus, our work also sheds light on the observations of dark and bright contrasts at the Venus cloud tops observed in an ultraviolet spectrum. Our calculations produce results in agreement with the SOIR Venus Express results of 1 ppm at 70-90 km (Bertaux et al., 2007) by using an SO2 mixing ratio of 25 ppm SO2 and 18 ppm water as our nominal reference values. Timescales for a chemical bifurcation causing a collapse of water concentrations above the cloud tops (>64 km) are relatively short and on the order of a less than a few months, decreasing with altitude to less than a few days.

  5. Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.

    1999-01-01

    Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s. Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(exp 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely sensed estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient-replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24 +/- 0.1 mol N/sq m (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.

  6. Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; McGillicuddy, Dennis J., Jr.; Fields, Erik A.

    1999-01-01

    Satellite altimetry and hydrographic observations are used to characterize the mesoscale eddy field in the Sargasso Sea near Bermuda and to address the role of physical processes on the supply of new nutrients to the euphotic zone. The observed sea level anomaly (SLA) field is dominated by the occurrence of westward propagating features with SLA signatures as large as 25 cm, Eulerian temporal scales of roughly a month, lifetimes of several months, spatial scales of approximately 200 km, and a propagation of approximately 5 cm/s . Hydrographic estimates of dynamic height anomaly (referenced to 4000 dbar) are well correlated with satellite SLA (r(sup 2) = 0.65), and at least 85% of the observed dynamic height variability is associated with the first baroclinic mode of motion. This allows us to apply the satellite observations to remotely estimate isopycnal displacements and the flux of nutrients into the euphotic zone due to eddy pumping. Eddy pumping is the process by which mesoscale eddies induce isopycnal displacements that lift nutrient- replete waters into the euphotic zone, driving new primary production. A kinematic approach to the estimation of the eddy pumping results in a flux of 0.24+/-0.1 mol N/sq m/yr (including a scale estimate for the small contribution due to 18 deg water eddies). This flux is more than an order of magnitude larger than the diapycnal diffusive flux as well as scale estimates for the vertical transport due to isopycnal mixing along sloping isopycnal surfaces. Eddy pumping and wintertime convection are the two dominant mechanisms transporting new nutrients into the euphotic zone, and the sum of all physical new nutrient supply fluxes effectively balances previous geochemical estimates of annual new production for this site. However, if biological transports (e.g., nitrogen fixation, etc.) are significant, the new nitrogen supply budget will be in excess of geochemical new production estimates. This suggests that the various physical and biological transport fluxes, as well as geochemical inferences of new production, still need to be reconciled and many outstanding questions remain.

  7. Quantifying residual, eddy, and mean flow effects on mixing in an idealized circumpolar current

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-07-13

    Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less

  8. Large-Eddy Simulation of Wind-Plant Aerodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Lee, S.; Moriarty, P. J.

    In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation, and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done large-eddy simulations of wind plants with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology formore » performing this type of simulation. We used the OpenFOAM CFD toolbox to create our solver. The simulated time-averaged power production of the turbines in the plant agrees well with field observations, except with the sixth turbine and beyond in each wind-aligned. The power produced by each of those turbines is overpredicted by 25-40%. A direct comparison between simulated and field data is difficult because we simulate one wind direction with a speed and turbulence intensity characteristic of Lillgrund, but the field observations were taken over a year of varying conditions. The simulation shows the significant 60-70% decrease in the performance of the turbines behind the front row in this plant that has a spacing of 4.3 rotor diameters in this direction. The overall plant efficiency is well predicted. This work shows the importance of using local grid refinement to simultaneously capture the meter-scale details of the turbine wake and the kilometer-scale turbulent atmospheric structures. Although this work illustrates the power of large-eddy simulation in producing a time-accurate solution, it required about one million processor-hours, showing the significant cost of large-eddy simulation.« less

  9. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  10. Distribution of picoplankton in the northeastern South China Sea with special reference to the effects of the Kuroshio intrusion and the associated mesoscale eddies.

    PubMed

    Li, Jiajun; Jiang, Xin; Li, Gang; Jing, Zhiyou; Zhou, Linbin; Ke, Zhixin; Tan, Yehui

    2017-07-01

    We investigated picoplankton distribution patterns and environmental variables along an east-to-west transect in the northeastern South China Sea (SCS) during late winter 2016, giving us the opportunity to examine the impacts of the Kuroshio intrusion and the associated eddies. The results indicated that the subsurface (50-75m) phytoplankton biomass chlorophyll (Chl a) maximum (SCM) disappeared and was replaced by higher Chl a in the middle part of the transect due to the impacts of the Kuroshio intrusion and mesoscale eddies. Both flow cytometry and pyrosequencing data revealed that picoplankton abundance and community structure were significantly influenced by perturbations in complex physical processes. Picoeukaryotes represented most of the total phytoplankton biomass, and their maximum abundance (>10 4 cellsmL -1 ) occurred within cyclonic eddy-affected regions (Stations 11 and 12), whereas the abundance of Prochlorococcus was the lowest in these regions. Prochlorococcus showed a higher abundance in the Kuroshio-affected area, while Synechococcus was mostly distributed at the upper well-lit depths, with its maximum abundance observed in surface waters (0-30m) adjacent to the cyclonic eddy center. Heterotrophic bacteria (HBA) displayed high abundance along the transect, consistent with the total phytoplankton biomass. Phylogenetic analysis revealed 26 bacterial phyla, with major components belonging to Proteobacteria, Cyanobacteria, Actinobacteria, and Bacteroidetes, as well as SAR406. Notably, relatively more Rhodobacterales, Flavobacteriales, Alteromonadales, and Vibrionales that were distributed in surface waters of the cyclonic eddy center were specifically associated with the phytoplankton (mainly picoeukaryotes) bloom. Our study highlights the impacts of the Kuroshio intrusion in regulating the microbial ecology of the northeastern SCS and the potential coupling between phytoplankton and bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Satellite and hydrographic observations of the Bering Sea ‘Green Belt’

    NASA Astrophysics Data System (ADS)

    Okkonen, Stephen R.; Schmidt, G. M.; Cokelet, E. D.; Stabeno, P. J.

    2004-05-01

    Green Belt is the aptly named region of high productivity occurring principally along and above the shelf-slope boundary in the Bering Sea. TOPEX altimeter measurements of sea-surface topography, SeaWiFS imagery of chlorophyll a concentration, and shipboard measurements of salinity and fluorescence are used to describe the surface structure of the Green Belt and its relationship to the Bering Slope Current eddy field during the 2000, 2001, and 2002 spring blooms. During spring 2000, high surface chlorophyll a concentrations (>10 mg m -3) were observed within a ˜200-km wide band adjacent to and seaward of the shelf break in the northwest Bering Sea. This high concentration chlorophyll band was associated with an anticyclonic eddy group that propagated along isobaths above the continental slope and entrained chlorophyll from the shelf-slope front. During spring 2001, anticyclonic eddies in the northwest Bering Sea had propagated off-slope prior to the onset of the spring bloom and were too far from the shelf-slope front to entrain frontal chlorophyll during the bloom. A second chlorophyll front associated with the leading edge of the off-slope eddies was observed. Between these two fronts was a region of relatively low chlorophyll a concentration (˜1 mg m -3). The eddy field during the 2002 spring bloom was observed to propagate northwestward adjacent to the shelf-break and entrain chlorophyll from the shelf-slope region in a manner similar to what was observed during the 2000 spring bloom. These observations suggest that eddies are important, if not the principal, agents that cause variability in the distribution of chlorophyll during the spring bloom in the central Bering Sea.

  12. Annular Mode Dynamics: Eddy Feedbacks and the Underlying Mechanisms

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, P.; Ma, D.; Kuang, Z.

    2017-12-01

    Annular modes are the leading modes the extratropical circulation variability in both hemispheres on intraseasonal to interannual timescales. Temporal persistence and an equivalent-barotropic dipolar wind anomaly are the key spatio-temporal characteristics of the annular modes. The potential source(s) of this persistence, and in particular, whether there is a contribution from a positive eddy-jet feedback, are still unclear (e.g., Lorenz and Hartmann, 2001; Byrne et al., 2016). The mechanism of this feedback, and how it depends on processes such as surface friction, is also not well understood (e.g., Robinson, 2000; Gerber et al., 2007). In this study, we utilize the recently calculated Linear Response Function (LRF) of an idealized GCM (Hassanzadeh and Kuang, 2016). The LRF enables us to accurately calculate the response of eddy momentum/heat fluxes to the zonal-mean zonal wind and temperature anomalies of the annular mode. Using this information: 1) We confirm the existence of a positive eddy-jet feedback in the annular mode of the idealized GCM and accurately quantify the magnitude of this feedback; 2) We quantify the contribution of key processes (e.g., eddy momentum/heat fluxes and surface friction) to the annular mode dynamics in the idealized GCM. We show that as proposed by Robinson (2000), the baroclinic component of the annular mode and surface friction are essential for the positive eddy-jet feedback. Results show that this feedback increases the persistence of the annular mode by a factor of two. We also show that the barotropic component of the annular mode alone does not lead to persistence. In fact, the eddy-jet feedback for the barotropic component is negative because of the dominance of the barotropic governor effect. 3) Using the results of 1, we evaluate the underlying assumptions and accuracy of the statistical methods previously developed for quantifying the eddy-jet feedback (Lorenz and Hartmann, 2001; Simpson et al., 2013) and introduce a new statistical method that shows superior accuracy. We apply the new method to reanalysis data to quantify the eddy-jet feedback for the Southern Annular Mode. The key findings of 1-3 and their implications for our understanding of the annular mode dynamics will be discussed in this presentation.

  13. Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Thompson, Andrew F.

    2017-12-01

    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent.

  14. On the seasonal response of the Lower St Lawrence Estuary to buoyancy forcing by regulated river runoff

    NASA Astrophysics Data System (ADS)

    Koutitonsky, V. G.; Wilson, R. E.; El-Sabh, M. I.

    1990-10-01

    The seasonal current fluctuations recorded from May to September 1979 in the Lower St Lawrence Estuary (LSLE) were re-examined using complex empirical orthogonal functions analysis. The first mode explained 88% of the seasonal variability, and revealed the presence of an estuary-wide anticyclonic eddy near the mouth, which lasted for 40 days in June and July. Careful inspection of the (regulated) 1979 freshwater runoff and salinity time series indicated that light surface water pulses from the St Lawrence River and the Saguenay fjord arrived in the LSLE during that time. Their duration was about 40 days. The contention is that the anticyclonic eddy results from buoyancy forcing by these light water pulses, isolated in the LSLE by denser waters upwelled upstream and by the buoyancy front at the mouth. A reduced gravity model is used to show that when the width of the LSLE becomes greater than two internal Rossby radii, an initial dynamic height elevation will adjust through geostrophy to an anticyclonic eddy. This seems to occur downstream of Rimouski. The eddy will form within a time scale 0 (f -1), and in the absence of instabilities in the current field, it will conserve potential energy for extended periods of time. During August, the advected river runoff decreased, unstable wave activity developed, and denser Gulf waters entered the LSLE from the north shore producing a cyclonic eddy near the mouth. Concurrent satellite thermal imagery tends to support these findings.

  15. The Dynamics of Hadley Circulation Variability and Change

    NASA Astrophysics Data System (ADS)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to radiative forcings. It is found that it is primarily the eddy response to greenhouse-gas-like forcings that causes Hadley cell expansion. However, the mean flow changes in the Hadley circulation itself crucially mediate this eddy response such that the full response comes about due to eddy-mean flow interactions. A theoretical scaling for the Hadley cell width based on moist static energy is developed to provide an improved framework to understand climate change responses of the general circulation. The scaling predicts that expansion is driven by increases in the surface latent heat flux and the width of the rising branch of the circulation and opposed by increases in tropospheric radiative cooling. A reduction in subtropical moist static energy flux divergence by the eddies is key, as it tilts the energetic balance in favor of expansion.

  16. Transient interaction between a reaction control jet and a hypersonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan

    2018-04-01

    This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.

  17. Vortex pairing and reverse cascade in a simulated two-dimensional rocket motor-like flow field

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Kalyana; Chakraborty, Debasis

    2017-07-01

    Two-dimensional large eddy simulation of a flow experiment intended for studying and understanding transition and parietal vortex shedding has brought to light some interesting features that have never been seen in previous similar simulations and have implications for future computational work on combustion instabilities in rocket motors. The frequency spectrum of pressure at head end shows a peak at the expected value associated with parietal vortex shedding but an additional peak at half this frequency emerges at downstream location. Using vorticity spectra at various distances away from the wall, it is shown that the frequency halving is due to vortex pairing as hypothesized by Dunlap et al. ["Internal flow field studies in a simulated cylindrical port rocket chamber," J. Propul. Power 6(6), 690-704 (1990)] for a similar experiment. As the flow transitions to turbulence towards the nozzle end, inertial range with Kolmogorov scaling becomes evident in the velocity spectrum. Given that the simulation is two-dimensional, such a scaling could be associated with a reverse energy cascade as per Kraichnan-Leith-Bachelor theory. By filtering the simulated flow field and identifying where the energy backscatters into the filtered scales, the regions with a reverse cascade are identified. The implications of this finding on combustion modeling are discussed.

  18. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo

    NASA Astrophysics Data System (ADS)

    Tang, Angela C. I.; Stoy, Paul C.; Hirata, Ryuichi; Musin, Kevin K.; Aeries, Edward B.; Wenceslaus, Joseph; Melling, Lulie

    2018-05-01

    Tropical biogenic sources are a likely cause of the recent increase in global atmospheric methane concentration. To improve our understanding of tropical methane sources, we used the eddy covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m-2·day-1, was similar to eddy covariance FCH4 measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the surface and that water table alone explained some 20% of observed FCH4 variability once standing water emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to better constrain tropical biogenic methane sources.

  19. Longitudinal study of Escherichia coli O157 shedding and super shedding in dairy heifers.

    PubMed

    Williams, K J; Ward, M P; Dhungyel, O P

    2015-04-01

    A longitudinal study was conducted to assess the methods available for detection of Escherichia coli O157 and to investigate the prevalence and occurrence of long-term shedding and super shedding in a cohort of Australian dairy heifers. Samples were obtained at approximately weekly intervals from heifers at pasture under normal management systems. Selective sampling techniques were used with the aim of identifying heifers with a higher probability of shedding or super shedding. Rectoanal mucosal swabs (RAMS) and fecal samples were obtained from each heifer. Direct culture of feces was used for detection and enumeration. Feces and RAMS were tested by enrichment culture. Selected samples were further tested retrospectively by immunomagnetic separation of enriched samples. Of 784 samples obtained, 154 (19.6%) were detected as positive using culture methods. Adjusting for selective sampling, the prevalence was 71 (15.6%) of 454. In total, 66 samples were detected as positive at >10(2) CFU/g of which 8 were >10(4) CFU/g and classed as super shedding. A significant difference was observed in detection by enriched culture of RAMS and feces. Dairy heifers within this cohort exhibited variable E. coli O157 shedding, consistent with previous estimates of shedding. Super shedding was detected at a low frequency and inconsistently from individual heifers. All detection methods identified some samples as positive that were not detected by any other method, indicating that the testing methods used will influence survey results.

  20. Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Hilley, G. E.

    2014-09-01

    One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June-October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24-25 October soil CO2 flux surveys were 165, 172, and 231 t d- 1, respectively. The average (June-October) CO2 emission rate estimated for this area was 123 t d- 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time-frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July-August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d- 1, which may suggest that emissions returned to 1998-2009 levels, following an increase from 2009 to 2011.

  1. Regional circulation around New Caledonia from two decades of observations

    NASA Astrophysics Data System (ADS)

    Cravatte, Sophie; Kestenare, Elodie; Eldin, Gérard; Ganachaud, Alexandre; Lefèvre, Jérôme; Marin, Frédéric; Menkes, Christophe; Aucan, Jérôme

    2015-08-01

    The regional and near-coastal circulation around New Caledonia is investigated using a compilation of more than 20 years of observations. Velocity profiles acquired by Shipboard Acoustic Doppler Current Profiler (SADCP) during 109 research cruises and ship transits since 1991 are analyzed and compared with absolute geostrophic currents inferred from hydrographic profiles and Argo floats drifts. In addition, altimetric surface currents are used to explore the variability of the circulation at various timescales. By making the best use of the strength of these various observations, this study provides an unprecedented detailed picture of the mean circulation around New Caledonia and of its variability in the upper layers. New Caledonia, together with the Vanuatu Archipelago and the Fiji Islands, acts as a 750-km long obstacle to the westward South Equatorial Current (SEC) entering the Coral Sea. On average, the SEC bifurcates against New Caledonia's east coast into a northwestward boundary current, the East Caledonian Current, beginning east of the Loyalty Islands and extending to at least 1000 m depth, and into a weak southeastward current. The latter, the Vauban Current, flows into the Loyalty channel against the mean trade winds where it extends to at least 500 m depth. It is highly variable at intraseasonal timescales; it often reverses and its variability is mainly driven by incoming mesoscale eddies east and south of New Caledonia. West of the Island, the southeastward Alis Current of New Caledonia (ACNC) flows along the reef slope in the 0-150 m layer. It overlays a weaker northwestward current, creating an unusual coastal circulation reminiscent of the current system along the Australian west coast. The ACNC is a persistent feature of the observations, even if its transport is also strongly modulated by the presence of offshore eddies. This study highlights the fact, if needed, that a snapshot view of the currents provided by a single transect can be strongly impacted by mesoscale eddies, and should be put into context, e.g. by using simultaneous altimetric data.

  2. Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Hilley, George E.

    2014-01-01

    One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June–October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24–25 October soil CO2 flux surveys were 165, 172, and 231 t d− 1, respectively. The average (June–October) CO2 emission rate estimated for this area was 123 t d− 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time–frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July–August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d− 1, which may suggest that emissions returned to 1998–2009 levels, following an increase from 2009 to 2011.

  3. Spatial and temporal variability of N2O emission on grazed pastures - influence of management and meteorological drivers

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Voglmeier, Karl; Jocher, Markus

    2017-04-01

    Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.

  4. Reactive Iron Delivery to the Central Gulf of Alaska via Two Mesoscale Eddies (Invited)

    NASA Astrophysics Data System (ADS)

    Lippiatt, S. M.; Brown, M. T.; Lohan, M. C.; Bruland, K. W.

    2010-12-01

    Coastal waters in the northern Gulf of Alaska (GoA) are considered Fe-rich and nitrate-poor, in contrast to the Fe-poor, high-nitrate, low chlorophyll (HNLC) waters of the central GoA. Mixing between these two regimes can lead to enhanced primary productivity. Mesoscale anticyclonic eddies are an important mechanism for cross-shelf exchange of coastal and HNLC waters. This presentation will discuss findings from a cruise in the GoA during late summer 2007, namely dissolved Fe, leachable particulate Fe (defined as the portion of the particulate Fe that is solubilized with a two hour, 25% acetic acid leach with a short heating step and a reducing agent), and nitrate. Leachable particulate Fe concentrations in coastal surface waters between Yakutat, AK and the Kenai Peninsula ranged from over 1 uM in the Alsek River plume to less than 5 nM at the base of Cook Inlet, and were more variable and at least an order of magnitude higher than dissolved Fe concentrations. Relatively low and consistent dissolved Fe (~2 nM) suggests that the system’s ability to solubilize this large concentration of leachable particulate Fe is overwhelmed by the massive input of glacial-derived particulate Fe. Suspended leachable particulate Fe is available for exchange to the dissolved phase and is suggested to maintain a relatively constant 2 nM concentration of dissolved Fe in the coastal GoA. Glacial meltwaters were not a significant source of nitrate compared to central GoA HNLC or upwelled waters. The work completed in the coastal GoA set the stage for assessing the delivery of this glacial-derived coastal Fe to HNLC waters via mesoscale eddies. Two mesoscale eddies were sampled during this study: a Sitka eddy located off Yakutat, Alaska and a Kenai eddy sampled off the shelf break near Kodiak Island. The temperature and salinity structures of the eddies reflected their coastal origin; core waters were warmer and fresher than surrounding basin waters, coincident with elevated dissolved and leachable particulate Fe. In the core of the Yakutat eddy at 50 - 100 m depth there was on average 0.8 nM reactive Fe (dissolved + leachable particulate Fe), approximately five times more reactive Fe compared to adjacent GoA basin waters (0.16 nM). At the same depths in the core of the Kenai eddy there was on average 1.9 nM reactive Fe, ten times more reactive Fe than the basin waters (0.19 nM). In addition, for a given density, core waters had elevated nitrate and silicate compared to outside the eddy. Storms can mix Fe-enriched eddy core waters to the surface. Furthermore, anticyclonic GoA eddies can be a significant source of Fe to HNLC waters when they propagate into the central GoA and eventually relax with the Fe and nutrient rich subsurface waters rebounding or upwelling towards the surface. The transport of coastal waters into central GoA waters via mesoscale eddies is shown to be an important mechanism for Fe delivery into this HNLC region.

  5. Vertical structure of mean cross-shore currents across a barred surf zone

    USGS Publications Warehouse

    Haines, John W.; Sallenger, Asbury H.

    1994-01-01

    Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.

  6. Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, T. H.; Bohrer, G.; Stefanik, K. C.

    Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less

  7. Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park

    DOE PAGES

    Morin, T. H.; Bohrer, G.; Stefanik, K. C.; ...

    2017-02-17

    Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less

  8. A novel approach to predict the stability limits of combustion chambers with large eddy simulation

    NASA Astrophysics Data System (ADS)

    Pritz, B.; Magagnato, F.; Gabi, M.

    2010-06-01

    Lean premixed combustion, which allows for reducing the production of thermal NOx, is prone to combustion instabilities. There is an extensive research to develop a reduced physical model, which allows — without time-consuming measurements — to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum, combustion chamber). For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out. In these investigations the flow in the combustion chamber is isotherm, non-reacting and excited with a sinusoidal mass flow rate. Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated. In this paper the results of additional investigations of the single resonator are presented. The flow in the combustion chamber was investigated without excitation at the inlet. It was detected, that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent. The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber. This result sheds light on a very important source of self-excited combustion instabilities. Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.

  9. Development of a High-Order Space-Time Matrix-Free Adjoint Solver

    NASA Technical Reports Server (NTRS)

    Ceze, Marco A.; Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    The growth in computational power and algorithm development in the past few decades has granted the science and engineering community the ability to simulate flows over complex geometries, thus making Computational Fluid Dynamics (CFD) tools indispensable in analysis and design. Currently, one of the pacing items limiting the utility of CFD for general problems is the prediction of unsteady turbulent ows.1{3 Reynolds-averaged Navier-Stokes (RANS) methods, which predict a time-invariant mean flowfield, struggle to provide consistent predictions when encountering even mild separation, such as the side-of-body separation at a wing-body junction. NASA's Transformative Tools and Technologies project is developing both numerical methods and physical modeling approaches to improve the prediction of separated flows. A major focus of this e ort is efficient methods for resolving the unsteady fluctuations occurring in these flows to provide valuable engineering data of the time-accurate flow field for buffet analysis, vortex shedding, etc. This approach encompasses unsteady RANS (URANS), large-eddy simulations (LES), and hybrid LES-RANS approaches such as Detached Eddy Simulations (DES). These unsteady approaches are inherently more expensive than traditional engineering RANS approaches, hence every e ort to mitigate this cost must be leveraged. Arguably, the most cost-effective approach to improve the efficiency of unsteady methods is the optimal placement of the spatial and temporal degrees of freedom (DOF) using solution-adaptive methods.

  10. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems

    PubMed Central

    Gole, Vaibhav C.; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret

    2016-01-01

    ABSTRACT The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates (n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA, ironA, and misL. There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella serovars in a free-range egg production system. Given that there is increasing demand for free-range eggs, it is essential to understand the risks associated with such a production system. PMID:28039133

  11. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems.

    PubMed

    Gole, Vaibhav C; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret; Chousalkar, Kapil

    2017-03-01

    The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates ( n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA , ironA , and misL There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella serovars in a free-range egg production system. Given that there is increasing demand for free-range eggs, it is essential to understand the risks associated with such a production system. Copyright © 2017 American Society for Microbiology.

  12. Numerical simulation of turbulent flows over crater-like obstacles: application to Gale crater, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Day, M. D.

    2017-12-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the dominant mode of landscape variability on the dessicated landscapes of Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater, with the rover journeying across an inner plan and towards Gale's central mound, Aeolus Mons). These mounds are composed of sedimentary fill, and, therefore, they contain rich information on the evolution of climatic conditions on Mars embodied in the stratigraphic "layering" of sediments. Many other craters no longer house a mound, but contain sediment and dust from which dune fields and other features form. Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This insight was gained using three-dimensional datasets (momentum, vorticity, and turbulent stresses) retrieved from LES, and assessment of the relative influence of constituent terms responsible for the sustenance of mean vorticity. The helical, counter-rotating vortices occupy the inner region of the crater, and, therefore, are argued to be of great importance for aeolian morphodynamics in the crater (radial katabatic flows are also important to aeolian processes within the crater).

  13. Mesoscale and sub-mesoscale variability in phytoplankton community composition in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Cotti-Rausch, Bridget E.; Lomas, Michael W.; Lachenmyer, Eric M.; Goldman, Emily A.; Bell, Douglas W.; Goldberg, Stacey R.; Richardson, Tammi L.

    2016-04-01

    The Sargasso Sea is a dynamic physical environment in which strong seasonal variability combines with forcing by mesoscale (~100 km) eddies. These drivers determine nutrient, light, and temperature regimes and, ultimately, the composition and productivity of the phytoplankton community. On four cruises (2011 and 2012; one eddy per cruise), we investigated links between water column structure and phytoplankton community composition in the Sargasso at a range of time and space scales. On all cruises, cyanobacteria (Prochlorococcus and Synechococcus) dominated the phytoplankton numerically, while haptophytes were the dominant eukaryotes (up to 60% of total chl-a). There were substantial effects of mesoscale and sub-mesoscale forcing on phytoplankton community composition in both spring and summer. Downwelling (in anticyclones) resulted in Prochlorococcus abundances that were 22-66% higher than at 'outside' stations. Upwelling (in cyclones) was associated with significantly higher abundances and POC biomass of nanoeukaryotes. In general, however, each eddy had its own unique characteristics. The center of anticyclone AC1 (spring 2011) had the lowest phytoplankton biomass (chl-a) of any eddy we studied and had lower nitrate+nitrite (N+N <5 mmol m-2) and eukaryote chl-a biomass as compared to its edge and to the Bermuda Atlantic Time-Series station (BATS). At the center of cyclone C1 (summer 2011), we observed uplift of the 26.5 kg m-3 isopycnal and high nutrient inventories (N+N=74±46 mmol m-2). We also observed significantly higher haptophyte chl-a (non-coccolithophores) and lower cyanobacterial chl-a at the center and edge of C1 as compared to outside the eddy at BATS. Cyclone C2 (spring 2012) exhibited a deep mixed layer, yet had relatively low nutrient concentrations. We observed a shift in the taxonomic composition of haptophytes between a coccolithophore-dominated community in C2 (98% of total haptophyte chl-a) and a non-coccolithophore community at BATS. In summer 2012, downwelling associated with anticyclone AC2 occurred at the edge of the eddy (not at the center), where AC2 interacted with a nearby cyclone. At the edge, we found significantly lower Synechococcus abundances and higher eukaryote chl-a compared to the center of AC2 and BATS. These along-transect nuances demonstrate the significance of small-scale perturbations that substantially alter phytoplankton community structure. Therefore, while seasonality in the North Atlantic is the primary driver of broad-scale trends in phytoplankton community composition, the effects of transient events must be considered when studying planktonic food webs and biogeochemical cycling in the Sargasso Sea.

  14. VALIDITY OF A TWO-DIMENSIONAL MODEL FOR VARIABLE-DENSITY HYDRODYNAMIC CIRCULATION

    EPA Science Inventory

    A three-dimensional model of temperatures and currents has been formulated to assist in the analysis and interpretation of the dynamics of stratified lakes. In this model, nonlinear eddy coefficients for viscosity and conductivities are included. A two-dimensional model (one vert...

  15. Variability, Constraints, and Creativity: Shedding Light on Claude Monet.

    ERIC Educational Resources Information Center

    Stokes, Patricia D.

    2001-01-01

    Discusses how creative individuals maintain high levels of variability, examining how Claude Monet's habitually high level of variability in painting was acquired during his childhood and early apprenticeship and maintained throughout his adult career by a continuous series of task constraints imposed by the artist on his own work. For Monet,…

  16. Characterizing the chaotic nature of ocean ventilation

    NASA Astrophysics Data System (ADS)

    MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew

    2017-09-01

    Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.

  17. Somali current studied from SEASAT altimetry

    NASA Technical Reports Server (NTRS)

    Perigaud, C.; Minster, J. F.; Zlotnicki, V.; Balmino, G.

    1984-01-01

    Mesoscale variability has been obtained for the world ocean from satellite altimetry by using the repetitive tracks data of SEASAT. No significant results were obtained for the Somali current area for two main reasons: the repetitive tracks are too sparse to cover the expected eddy pattern and these data were obtained in late September and early October when the current is strongly decaying. The non-repetitive period of SEASAT offers the possibility to study a dozen of tracks parallel to the eddy axis or crossing it. These are used here to deduce the dynamic topography of the Somali current. Data error reduction and tide and orbit corrections are addressed. A local geoid was built using a collocation inverse method to combine surface gravity data and altimetry: the repetitive tracks show no variability (which confirms that the current is quasi-inexistent at that time) and can be used as data for the local geoid. This should provide a measure of the absolute dynamic topography of the Somali current.

  18. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  19. Analysis of a general circulation model. II - Distribution of kinetic energy in the South Atlantic and Kuroshio/Oyashio systems

    NASA Technical Reports Server (NTRS)

    Garraffo, Zulema; Garzoli, Silvia L.; Haxby, William; Olson, Donald

    1992-01-01

    It was found (Garzoli et al., 1992) that the general circulation model of Semtner and Chervin (1992) provides accurate descriptions of the Brazil-Malvinas and the Kuroshio/Oyashio confluence systems, except for the fact that the model prediction shows less variability than that present in observations. This paper investigates the problem of model variability by analyzing the mean and the eddy kinetic energy from the model and comparing the values with the Geosat altimeter observations for the South Atlantic Ocean and for the Kuroshio system. It is found that, while the model shows transient eddy activity in the areas that overlap the Geosat observations, the energy level of the model transient motions is considerably smaller following an arch along the bottom topography. The same was found from the comparisons made with values obtained from FGGE and surface drifters. It is suggested that the model is poorly resolving instabilities in the confluence front, and is not resolving other transients appearing in regions of marked topography.

  20. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  1. Submesoscale sea ice-ocean interactions in marginal ice zones

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Manucharyan, G.

    2017-12-01

    Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of sea ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and sea ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin sea ice in the Southern Ocean, submesoscale sea ice-ocean processes are expected to play a significant role in the climate system.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less

  3. On explicit algebraic stress models for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

  4. Fear of humans and its relationships with productivity in laying hens at commercial farms.

    PubMed

    Barnett, J L; Hemsworth, P H; Newman, E A

    1992-09-01

    1. The relationship between the behavioural responses of laying hens to humans and productivity was determined at 16 commercial sheds from 14 farms. 2. A number of behaviour variables were moderately to highly correlated with production variables; for example, the proportion of birds that moved away from an approaching experimenter in an unfamiliar environment ('shute test') was negatively correlated with peak hen day production, (PKHDP). 3. Behavioural responses to humans accounted for between 23 and 63% of the variation in a number of production variables, including PKHDP and the duration of a high level of production. 4. Inclusion of farm factor variables increased the amount of variation accounted for by the behaviour variables. For example, adding the variable 'time/day spent in the shed by stockpeople' to the behaviour variables 'the proportion of birds that moved away from an approaching human' in the shute test and 'the number of times birds in cages adopted an erect posture' in response to an approaching human increased the variation accounted for in PKHDP from 53 to 61%. 5. The results suggest that fear of humans may be a factor that limits the productivity of commercial laying hens.

  5. Acoustic estimates of zooplankton and micronekton biomass in cyclones and anticyclones of the northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick Henry

    2001-12-01

    In the Gulf of Mexico (GOM), coarse to mesoscale eddies can enhance the supply of limiting nutrients into the euphotic zone, elevating primary production. This leads to 'oases' of enriched standing stocks of zooplankton and micronekton in otherwise oligotrophic deepwater (>200 m bottom depth). A combination of acoustic volume backscattering (Sv) measurements with an acoustic Doppler current profiler (ADCP) and concurrent net sampling of zooplankton and micronekton biomass in GOM eddy fields between October 1996 and November 1998 confirmed that cyclones and flow confluences were areas of locally enhanced Sv and standing stock biomass. Net samples were used both to 'sea-truth' the acoustic measurements and to assess the influence of taxonomic composition on measured Sv. During October 1996 and August 1997, a mesoscale (200--300 km diameter) cyclone-anticyclone pair in the northeastern GOM was surveyed as part of a cetacean (whale and dolphin) and seabird habitat, study. Acoustic estimates of biomass in the upper 10--50 m of the water column showed that the cyclone and flow confluence were enriched relative to anticyclonic Loop Current Eddies during both years. Cetacean and seabird survey results reported by other project researchers imply that these eddies provide preferential habitat because they foster locally higher concentrations of higher-trophic-level prey. Sv measurements in November 1997 and 1998 showed that coarse scale eddies (30--150 km diameter) probably enhanced nutrients and S, in the deepwater GOM within 100 km of the Mississippi delta, an area suspected to be important habitat for cetaceans and seabirds. Finally, Sv, data collected during November-December 1997 and October-December 1998 from a mooring at the head of DeSoto Canyon in the northeastern GOM revealed temporal variability at a single location: characteristic temporal decorrelation scales were 1 day (diel vertical migration of zooplankton and micronekton) and 5 days (advective processes). A combination of acoustic and net sampling is a useful way to survey temporal and spatial patterns in zooplankton and micronekton biomass in coarse to mesoscale eddies. Further research should employ such a combination of methods to investigate plankton patterns in eddies and their implications for cetacean and seabird habitat.

  6. A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS

    NASA Astrophysics Data System (ADS)

    Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang

    2015-06-01

    In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

  7. LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei

    2015-01-01

    The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less

  8. Understanding Wave-mean Flow Feedbacks and Tropospheric Annular Variability

    NASA Astrophysics Data System (ADS)

    Lorenz, D. J.

    2016-12-01

    The structure of internal tropospheric variability is important for determining the impact of the stratosphere on the troposphere. This study aims to better understand the fundamental dynamical mechanisms that control the feedbacks between the eddies and the mean flow, which in turn select the tropospheric annular mode. Recent work using Rossby Wave Chromatography suggests that "barotropic processes", which directly impact the meridional propagation of wave activity (specifically the reflectivity of the poleward flank of the mid-latitude jet), are more important for the positive feedback between the annular mode and the eddies than "baroclinic processes", which involve changes in the generation of wave activity by baroclinic instability. In this study, experiments with a fully nonlinear quasi-geostrophic model are discussed which provide independent confirmation of the importance of barotropic versus baroclinic processes. The experiments take advantage of the steady-state balance at upper-levels between the meridional gradient in diabatic heating and the second derivative of the upper-level EP flux divergence. Simulations with standard Newtonian heating are compared to simulations with constant-in-time heating taken from the climatology of the standard run and it is found that the forced annular mode response to changes in surface friction is very similar. Moreover, as expected from the annular mode response, the eddy momentum fluxes are also very similar. This is despite the fact that the upper-level EP flux divergence is very different between the two simulations (upper-level EP flux divergence must remain constant in the constant heating simulation while in the standard simulation there is no such constraint). The upper-level balances are maintained by a large change in the baroclinic wave source (i.e. vertical EP flux), which is accompanied by little momentum flux change. Therefore the eddy momentum fluxes appear to be relatively insensitive to the wave activity source. A more detailed comparison suggests a helpful rule-of-thumb relating the amplitude of the baroclinic wave source to the upper-level vorticity flux forced by this wave source.

  9. Parameter studies on the energy balance closure problem using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias

    2017-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion presentation (EGU2017-2130) these correlations are investigated and confirmed with the help of micrometeorological measurements from the TERENO sites where the effects of landscape scale surface heterogeneities are deemed to be important.

  10. Intense mesoscale variability in the Sardinia Sea

    NASA Astrophysics Data System (ADS)

    Russo, Aniello; Borrione, Ines; Falchetti, Silvia; Knoll, Michaela; Fiekas, Heinz-Volker; Heywood, Karen; Oddo, Paolo; Onken, Reiner

    2015-04-01

    From the 6 to 25 June 2014, the REP14-MED sea trial was conducted by CMRE, supported by 20 partners from six different nations. The at-sea activities were carried out onboard the research vessels Alliance (NATO) and Planet (German Ministry of Defense), comprising a marine area of about 110 x 110 km2 to the west of the Sardinian coast. More than 300 CTD casts typically spaced at 10 km were collected; both ships continuously recorded vertical profiles of currents by means of their ADCPs, and a ScanFish® and a CTD chain were towed for almost three days by Alliance and Planet, respectively, following parallel routes. Twelve gliders from different manufacturers (Slocum, SeaGliderTM and SeaExplorer) were continuously sampling the study area following zonal tracks spaced at 10 km. In addition, six moorings, 17 surface drifters and one ARVOR float were deployed. From a first analysis of the observations, several mesoscale features were identified in the survey area, in particular: (i) a warm-core anticyclonic eddy in the southern part of the domain, about 50 km in diameter and with the strongest signal at about 50-m depth (ii) another warm-core anticyclonic eddy of comparable dimensions in the central part of the domain, but extending to greater depth than the former one, and (iii) a small (less than 15 km in diameter) cold-core cyclonic eddy of Winter Intermediate Water in the depth range between 170 m and 370 m. All three eddies showed intensified currents, up to 50 cm s-1. The huge high-resolution observational data set and the variety of observation techniques enabled the mesoscale features and their variability to be tracked for almost three weeks. In order to obtain a deeper understanding of the mesoscale dynamic behaviour and their interactions, assimilation studies with an ocean circulation model are underway.

  11. 2014 & 2015 Loop Current Observations from a Gulf of Mexico Public-Private Ocean Observing Collaboration

    NASA Astrophysics Data System (ADS)

    Leung, P.; Perry, R.; Sharma, N.; Zwissler, C.; McCall, W.; Bouchard, R. H.; Martin, K. M.

    2016-02-01

    In 2008, Shell Exploration & Production Company and NOAA formed a collaboration to explore joint opportunities for monitoring the Gulf of Mexico outer continental shelf (OCS). Since then, industry, academic, private, and government partners have been working to build an adaptive ocean observing program that leverages and integrates the complementary strengths of each partner. The program includes vessel and rig-mounted ADCPs, buoys, remote sensing, and profiling gliders with advanced numerical modeling. In this presentation, we focus on 2014 and 2015 program observations of the Gulf physical environment. The 2014 season was characterized by strong Loop Current (LC) circulation with persistent currents (3.5+ knots) extending as far north as 29oN. A number of eddies impacted the Mississippi Canyon region from May to November with one (Eddy Lazarus) undergoing several separation and reattachment cycles. During Lazarus reattachment, the fresh inflow resulted in rapid northward surge of strong currents at and onto the Louisiana continental shelf resulting in advection of Mississippi River waters into the outer OCS. Advection led to higher than average offshore surface and near-surface production atypical for the OCS. The combination of fast, persistent LC speeds and dynamic eddies impacted operations throughout the eastern, central, and western Gulf regions. The 2015 season is active. The size and intensity of eddies (4 at time of publication) are impacting industry and glider operations and forecasting of the LC. Eddies Nautilus and Olympus (250nm wide, 4 knot currents) remain in the central Gulf impacting activities from the Mississippi Canyon to Walker Ridge. Integrating real-time observations with numerical modeling provides the collaboration an opportunity to observe unique features in real-time. Furthermore, data sharing from this program is providing valuable, near real-time data for the community to better understand annual variability of the LC and eddies.

  12. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America

    USDA-ARS?s Scientific Manuscript database

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such analyses are poorly constrained by measured CO2 exchange in drylands. Here we address this observation gap with eddy covariance data fr...

  13. Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prarie.

    USDA-ARS?s Scientific Manuscript database

    Natural fires and prescribed burning represent long-standing and currently prevalent disturbances to biogeochemical cycling in grassland ecosystems. We report eddy covariance ecosystem-atmosphere fluxes and biometric variables measured in paired, burned and unburned plots in two paddocks in the US S...

  14. Use of multiple-locus variable-number tandem repeat analysis to evaluate Escherichia coli O157 subtype distribution and transmission dynamics following natural exposure on a closed beef feedlot facility.

    PubMed

    Williams, Michele L; Pearl, David L; Bishop, Katherine E; Lejeune, Jeffrey T

    2013-10-01

    To better understand the epizootiology of Escherichia coli O157:H7 among cattle, all E. coli O157 isolates recovered on a research feedlot during a single feeding period were characterized by multiple-locus variable-number tandem repeat analysis (MLVA). Three distinct MLVA subtypes (A, B, C), accounting for 24%, 15%, and 64% of total isolates, respectively, were identified. Subtypes A and B were isolated at the initiation of sampling, but their prevalence waned and subtype C, first isolated on the third sampling date, became the predominant subtype on the feedlot. Supershedding events, however, occurred with equal frequency for all three MLVA-types. Using a multilevel logistic regression model, we investigated whether the odds of shedding subtype C relative to subtypes A or B were associated with time, diet, or the presence of a penmate shedding high numbers of subtype C. Only time and exposure to an animal shedding MLVA-type C at 10³ colony-forming units or greater in the pen at the time of sampling were significantly associated with increased shedding of subtype C. High-level shedding of those E. coli O157 subtypes better suited for survival in the environment and/or in the host appear to play a significant role in the development of predominant E. coli O157 subtypes. Supershedding events alone are neither required nor sufficient to drive the epidemiology of specific E. coli O157 subtypes. Additional factors are necessary to direct successful on-farm transmission of E. coli O157.

  15. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hood, Raleigh R.; Beckley, Lynnath E.; Wiggert, Jerry D.

    2017-08-01

    Monsoon forcing and the unique geomorphology of the Indian Ocean basin result in complex boundary currents, which are unique in many respects. In the northern Indian Ocean, several boundary current systems reverse seasonally. For example, upwelling coincident with northward-flowing currents along the coast of Oman during the Southwest Monsoon gives rise to high productivity which also alters nutrient stoichiometry and therefore, the species composition of the resulting phytoplankton blooms. During the Northeast Monsoon most of the northern Indian Ocean boundary currents reverse and favor downwelling. Higher trophic level species have evolved behavioral responses to these seasonally changing conditions. Examples from the western Arabian Sea include vertical feeding migrations of a copepod (Calanoides carinatus) and the reproductive cycle of a large pelagic fish (Scomberomorus commerson). The impacts of these seasonal current reversals and changes in upwelling and downwelling circulations are also manifested in West Indian coastal waters, where they influence dissolved oxygen concentrations and have been implicated in massive fish kills. The winds and boundary currents reverse seasonally in the Bay of Bengal, though the associated changes in upwelling and productivity are less pronounced. Nonetheless, their effects are observed on the East Indian shelf as, for example, seasonal changes in copepod abundance and zooplankton community structure. In contrast, south of Sri Lanka seasonal reversals in the boundary currents are associated with dramatic changes in the intensity of coastal upwelling, chlorophyll concentration, and catch per unit effort of fishes. Off the coast of Java, monsoon-driven changes in the currents and upwelling strongly impact chlorophyll concentrations, seasonal vertical migrations of zooplankton, and sardine catch in Bali Strait. In the southern hemisphere the Leeuwin is a downwelling-favorable current that flows southward along western Australia, though local wind forcing can lead to transient near shore current reversals and localized coastal upwelling. The poleward direction of this eastern boundary current is unique. Due to its high kinetic energy the Leeuwin Current sheds anomalous, relatively high chlorophyll, warm-core, downwelling eddies that transport coastal diatom communities westward into open ocean waters. Variations in the Leeuwin transport and eddy generation impact many higher trophic level species including the recruitment and fate of rock lobster (Panulirus cygnus) larvae. In contrast, the transport of the Agulhas Current is very large, with sources derived from the Mozambique Channel, the East Madagascar Current and the southwest Indian Ocean sub-gyre. Dynamically, the Agulhas Current is upwelling favorable; however, the spatial distribution of prominent surface manifestations of upwelling is controlled by local wind and topographic forcing. Meanders and eddies in the Agulhas Current propagate alongshore and interact with seasonal changes in the winds and topographic features. These give rise to seasonally variable localized upwelling and downwelling circulations with commensurate changes in primary production and higher trophic level responses. Due to the strong influence of the Agulhas Current, many neritic fish species in southeast Africa coastal waters have evolved highly selective behaviors and reproductive patterns for successful retention of planktonic eggs and larvae. For example, part of the Southern African sardine (Sardinops sagax) stock undergoes a remarkable northward migration enhanced by transient cyclonic eddies in the shoreward boundary of the Agulhas Current. There is evidence from the paleoceanographic record that these currents and their biogeochemical and ecological impacts have changed significantly over glacial to interglacial timescales. These changes are explored as a means of providing insight into the potential impacts of climate change in the Indian Ocean.

  16. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    PubMed

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.

  17. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  18. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  19. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis.

    PubMed

    Courcoul, Aurélie; Monod, Hervé; Nielen, Mirjam; Klinkenberg, Don; Hogerwerf, Lenny; Beaudeau, François; Vergu, Elisabeta

    2011-09-07

    Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding. To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state). Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within dairy cattle herds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Water hammer prediction and control: the Green's function method

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi

    2012-04-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.

  1. Simultaneous mapping of the unsteady flow fields by Particle Displacement Velocimetry (PDV)

    NASA Technical Reports Server (NTRS)

    Huang, Thomas T.; Fry, David J.; Liu, Han-Lieh; Katz, Joseph; Fu, Thomas C.

    1992-01-01

    Current experimental and computational techniques must be improved in order to advance the prediction capability of the longitudinal vortical flows shed by underwater vehicles. The generation, development, and breakdown mechanisms of the shed vortices at high Reynolds numbers are not fully understood. The ability to measure hull separated vortices associated with vehicle maneuvering does not exist at present. The existing point-by-point measurement techniques can only capture approximately the large 'mean' eddies but fail to meet the dynamics of small vortices during the initial stage of generation. A new technique, which offers a previously unavailable capability to measure the unsteady cross-flow distribution in the plane of the laser light sheet, is called Particle Displacement Velocimetry (PDV). PDV consists of illuminating a thin section of the flowfield with a pulsed laser. The water is seeded with microscopic, neutrally buoyant particles containing imbedded fluorescing dye which responds with intense spontaneous fluorescence with the illuminated section. The seeded particles in the vortical flow structure shed by the underwater vehicle are illuminated by the pulse laser and the corresponding particle traces are recorded in a single photographic frame. Two distinct approaches were utilized for determining the velocity distribution from the particle traces. The first method is based on matching the traces of the same particle and measuring the distance between them. The direction of the flow can be identified by keeping one of the pulses longer than the other. The second method is based on selecting a small window within the image and finding the mean shift of all the particles within that region. The computation of the auto-correlation of the intensity distribution within the selected sample window is used to determine the mean displacement of particles. The direction of the flow is identified by varying the intensity of the laser light between pulses. Considerable computational resources are required to compute the auto-correction of the intensity distribution. Parallel processing will be employed to speed up the data reduction. A few examples of measured unsteady vortical flow structures shed by the underwater vehicles will be presented.

  2. WRF Model Simulations of Terrain-Driven Atmospheric Eddies in Marine Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Muller, B. M.; Herbster, C. G.; Mosher, F. R.

    2014-12-01

    It is not unusual to observe atmospheric eddies in satellite imagery of the marine stratus and stratocumulus clouds that characterize the summertime weather of the California coastal region and near-shore oceanic environment. The winds of the marine atmospheric boundary layer (MABL) over the ocean interact with the high terrain of prominent headlands and islands to create order-10 km scale areas of swirling air that can contain a cloud-free eye, 180-degree wind reversals at the surface over a period of minutes, and may be associated with mixing and turbulence between the high-humidity air of the MABL and the much warmer and drier inversion layer air above. However, synoptic and even subsynoptic surface weather measurements, and the synoptic upper-air observing network are inadequate, or in some cases, completely unable, to detect and characterize the formation, movement, and even the existence of the eddies. They can literally slip between land-based surface observation locations, or stay over the near-shore ocean environment where there may be no surface meteorological measurements. This study presents Weather Research and Forecasting (WRF) Model simulations of these small-scale, terrain-driven, atmospheric features in the MABL from cases detected in GOES satellite imagery. The purpose is to use model output to diagnose the formation mechanisms, sources of vorticity, and the air flow in and around the eddies. Satellite imagery is compared to simulated atmospheric variables to validate features generated within the model atmosphere, and model output is employed as a surrogate atmosphere to better understand the atmospheric characteristics of the eddies. Model air parcel trajectories are estimated to trace the movement and sources of the air contained in and around these often-observed, but seldom-measured features.

  3. Eddy forced variations in on- and off-margin summertime circulation along the 1000-m isobath of the northern Gulf of Mexico, 2000-2003, and links with sperm whale distributions along the middle slope

    NASA Astrophysics Data System (ADS)

    Biggs, Douglas C.; Jochens, Ann E.; Howard, Matthew K.; DiMarco, Steven F.; Mullin, Keith D.; Leben, Robert R.; Muller-Karger, Frank E.; Hu, Chuanmin

    In summers 2000-2003, NOAA Ship Gordon Gunter and TAMU R/V Gyre dropped XBTs and logged ADCP data while carrying out visual and passive-acoustic surveys for sperm whales along the 1000-m isobath of the northern Gulf of Mexico. The ships also made CTD casts, particularly when/where the XBT and ADCP data indicated the ships were passing into or out of anticyclonic and/or cyclonic slope eddies. The fine-scale resolution of the ship surveys, when combined with the meso-scale resolution of remote sensing surveys of sea surface height and ocean color, document the summer-to-summer variability in the intensity and geographic location of Loop Current eddies, warm slope eddies, and areas of cyclonic circulation over this middle slope region of the northern Gulf of Mexico. These variations forced striking year-to-year differences in the locations along the 1000-m isobath where there was on-margin and off-margin flow, and in locations where sperm whales were encountered along the 1000-m isobath. For example, when there was on-margin flow into the Mississippi Canyon region in early summer 2003, sperm whales were very rarely seen or heard there. In contrast, later that summer and during other summers when flow was along-margin or off-margin there, sperm whales were locally abundant. In this report we describe how eddy-forced variations in on-margin and off-margin flow changed the meso-scale circulation along the 1000-m isobath, and we show that most sperm whales were encountered in regions of negative SSH and/or higher-than-average surface chlorophyll.

  4. Observed and modeled mesoscale variability near the Gulf Stream and Kuroshio Extension

    NASA Astrophysics Data System (ADS)

    Schmitz, William J.; Holland, William R.

    1986-08-01

    Our earliest intercomparisons between western North Atlantic data and eddy-resolving two-layer quasi-geostrophic symmetric-double-gyre steady wind-forced numerical model results focused on the amplitudes and largest horizontal scales in patterns of eddy kinetic energy, primarily abyssal. Here, intercomparisons are extended to recent eight-layer model runs and new data which allow expansion of the investigation to the Kuroshio Extension and throughout much of the water column. Two numerical experiments are shown to have realistic zonal, vertical, and temporal eddy scales in the vicinity of the Kuroshio Extension in one case and the Gulf Stream in the other. Model zonal mean speeds are larger than observed, but vertical shears are in general agreement with the data. A longitudinal displacement between the maximum intensity in surface and abyssal eddy fields as observed for the North Atlantic is not found in the model results. The numerical simulations examined are highly idealized, notably with respect to basin shape, topography, wind-forcing, and of course dissipation. Therefore the zero-order agreement between modeled and observed basic characteristics of mid-latitude jets and their associated eddy fields suggests that such properties are predominantly determined by the physical mechanisms which dominate the models, where the fluctuations are the result of instability processes. The comparatively high vertical resolution of the model is needed to compare with new higher-resolution data as well as for dynamical reasons, although the precise number of layers required either kinematically or dynamically (or numerically) has not been determined; we estimate four to six when no attempt is made to account for bottom- or near-surface-intensified phenomena.

  5. Model-Simulated Northern Winter Cyclone and Anticyclone Activity under a Greenhouse Warming Scenario.

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Wei-Chyung

    1997-07-01

    Two 100-yr equilibrium simulations from the NCAR Community Climate Model coupled to a nondynamic slab ocean are used to investigate the activity of northern winter extratropical cyclones and anticyclones under a greenhouse warming scenario. The first simulation uses the 1990 observed CO2, CH4, N2O, CFC-11, and CFC-12 concentrations, and the second adopts the year 2050 concentrations according to the Intergovernmental Panel on Climate Change business-as-usual scenario. Variables that describe the characteristic properties of the cyclone-scale eddies, such as surface cyclone and anticyclone frequency and the bandpassed root-mean-square of 500-hPa geopotential height, along with the Eady growth rate maximum, form a framework for the analysis of the cyclone and anticyclone activity.Objective criteria are developed for identifying cyclone and anticyclone occurrences based on the 1000-hPa geopotential height and vorticity fields and tested using ECMWF analyses. The potential changes of the eddy activity under the greenhouse warming climate are then examined. Results indicate that the activity of cyclone-scale eddies decreases under the greenhouse warming scenario. This is not only reflected in the surface cyclone and anticyclone frequency and in the bandpassed rms of 500-hPa geopotential height, but is also discerned from the Eady growth rate maximum. Based on the analysis, three different physical mechanisms responsible for the decreased eddy activity are discussed: 1) a decrease of the extratropical meridional temperature gradient from the surface to the midtroposphere, 2) a reduction in the land-sea thermal contrast in the east coastal regions of the Asian and North American continents, and 3) an increase in the eddy meridional latent heat fluxes. Uncertainties in the results related to the limitations of the model and the model equilibrium simulations are discussed.

  6. Spectral multigrid methods for the solution of homogeneous turbulence problems

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.

    1987-01-01

    New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.

  7. Eddy Seeding in the Labrador Sea: a Submerged Autonomous Launching Platform (SALP) Application

    NASA Astrophysics Data System (ADS)

    Furey, Heather H.; Femke de Jong, M.; Bower, Amy S.

    2013-04-01

    A simplified Submerged Autonomous Launch Platform (SALP) was used to release profiling floats into warm-core Irminger Rings (IRs) in order to investigate their vertical structure and evolution in the Labrador Sea from September 2007 - September 2009. IRs are thought to play an important role in restratification after convection in the Labrador Sea. The SALP is designed to release surface drifters or subsurface floats serially from a traditional ocean mooring, using real-time ocean measurements as criteria for launch. The original prototype instrument used properties measured at multiple depths, with information relayed to the SALP controller via acoustic modems. In our application, two SALP carousels were attached at 500 meters onto a heavily-instrumented deep water mooring, in the path of recently-shed IRs off the west Greenland shelf. A release algorithm was designed to use temperature and pressure measured at the SALP depth only to release one or two APEX profiling drifters each time an IR passed the mooring, using limited historical observations to set release thresholds. Mechanically and electronically, the SALP worked well: out of eleven releases, there was only one malfunction when a float was caught in the cage after the burn-wire had triggered. However, getting floats trapped in eddies met with limited success due to problems with the release algorithm and float ballasting. Out of seven floats launched from the platform using oceanographic criteria, four were released during warm water events that were not related to passing IRs. Also, after float release, it took on average about 2.6 days for the APEX to adjust from its initial ballast depth, about 600 meters, to its park point of 300 meters, leaving the float below the trapped core of water in the IRs. The other mooring instruments (at depths of 100 to 3000 m), revealed that 12 IRs passed by the mooring in the 2-year monitoring period. With this independent information, we were able to assess and improve the release algorithm, still based on ocean conditions measured only at one depth. We found that much better performance could have been achieved with an algorithm that detected IRs based on a temperature difference from a long-term running mean rather than a fixed temperature threshold. This highlights the challenge of designing an appropriate release strategy with limited a priori information on the amplitude and time scales of the background variability.

  8. Latent Virus Reactivation in Astronauts and Shingles Patients

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  9. Salivary Varicella Zoster Virus in Astronauts and in Patients of Herpes Zoster

    NASA Technical Reports Server (NTRS)

    Mehta, Satish; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpes viruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpesviruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors? offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  10. Simulation of Acoustic Scattering from a Trailing Edge

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Brentner, Kenneth S.; Lockard, David P.; Lilley, Geoffrey M.

    1999-01-01

    Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.

  11. Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modem day aircraft and also those of hypersonic vehicles currently under development. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS/LES method on stretched, non-Cartesian grids. The hybrid RANS/LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two-dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Actual LES calculations, performed in three spatial directions, indicated an initial vortex shedding followed by rapid transition to turbulence, which is in agreement with experimental observations.

  12. Approximate Deconvolution and Explicit Filtering For LES of a Premixed Turbulent Jet Flame

    DTIC Science & Technology

    2014-09-19

    from laminar flamelets computed with the GRI -mechanism for methane-air combustion (Smith et al. 1999) and the progress variable Yc is defined as in... gri - mech/. Subramanian, V., P. Domingo, and L. Vervisch (2010). Large-Eddy Simulation of forced igni- tion of an annular bluff-body burner. Combust

  13. Large-Eddy/Reynolds-Averaged Navier-Stokes Simulation of Shock-Train Development in a Coil-Laser Diffuser

    DTIC Science & Technology

    2014-09-06

    as the Riemann solver . The primitive-variable vector Ts kTwvupW ],,,,,,[ ω= is used in the reconstruction. The initial step in the PPM...University’s (NCSU) REACTMB flow solver is used in the present effort. REACTMB solves the Navier-Stokes equations governing a multi-component

  14. Severe dry winter affects plant phenology and carbon balance of a cork oak woodland understorey

    NASA Astrophysics Data System (ADS)

    Correia, A. C.; Costa-e-Silva, F.; Dubbert, M.; Piayda, A.; Pereira, J. S.

    2016-10-01

    Mediterranean climates are prone to a great variation in yearly precipitation. The effects on ecosystem will depend on the severity and timing of droughts. In this study we questioned how an extreme dry winter affects the carbon flux in the understorey of a cork oak woodland? What is the seasonal contribution of understorey vegetation to ecosystem productivity? We used closed-system portable chambers to measure CO2 exchange of the dominant shrub species (Cistus salviifolius, Cistus crispus and Ulex airensis), of the herbaceous layer and on bare soil in a cork oak woodland in central Portugal during the dry winter year of 2012. Shoot growth, leaf shedding, flower and fruit setting, above and belowground plant biomass were measured as well as seasonal leaf water potential. Eddy-covariance and micrometeorological data together with CO2 exchange measurements were used to access the understorey species contribution to ecosystem gross primary productivity (GPP). The herbaceous layer productivity was severely affected by the dry winter, with half of the yearly maximum aboveground biomass in comparison with the 6 years site average. The semi-deciduous and evergreen shrubs showed desynchronized phenophases and lagged carbon uptake maxima. Whereas shallow-root shrubs exhibited opportunistic characteristics in exploiting the understorey light and water resources, deep rooted shrubs showed better water status but considerably lower assimilation rates. The contribution of understorey vegetation to ecosystem GPP was lower during summer with 14% and maximum during late spring, concomitantly with the lowest tree productivity due to tree canopy renewal. The herbaceous vegetation contribution to ecosystem GPP never exceeded 6% during this dry year stressing its sensitivity to winter and spring precipitation. Although shrubs are more resilient to precipitation variability when compared with the herbaceous vegetation, the contribution of the understorey vegetation to ecosystem GPP can be quite variable and will ultimately depend of tree density and canopy cover.

  15. Deep Coherent Vortices and Their Sea Surface Expressions

    NASA Astrophysics Data System (ADS)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface expressions, including seasonal and geographical variability.

  16. Improving Parameterization of Entrainment Rate for Shallow Convection with Aircraft Measurements and Large-Eddy Simulation

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; ...

    2016-02-01

    This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less

  17. Meso-scale eddies and the impacts on variability of carbonate chemistry over deep coral reefs in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Pan, C.; Barbero, L.; Hu, C.; Reed, J.; Salisbury, J.; Wanninkhof, R. H.

    2016-02-01

    Abundant and diverse cold-water corals and associated fish communities can be found in the deep waters of the Florida Straits. Preliminary evidence suggests that corals in these deep coral habitats are living under sub-optimal conditions with the ambient aragonite saturation state (Ω) being only marginally above 1. Yet little is known regarding the temporal variability of carbonate chemistry parameters and their dynamic drivers in these critical habitats. In this presentation, we addressed this issue by using a recently developed circulation model and in situ data collected during two research cruises: the second Florida Shelf Edge Exploration Expedition (FloSEE2) in September 2011 and the second Gulf of Mexico East Coast Carbon Cruise (GOMECC2) in July 2012, both supported by NOAA. A numerical simulation was carried out for 2011-2012. In particular, we focused on two contrasting habitats: Pourtalès Terrace (200-450m) and Miami Terrace (270-600m) in the Florida Straits. The results suggest that there is strong weekly to seasonal variability in the bottom water properties including temperature, salinity, total CO2 and total alkalinity on the upper slope of the Straits. In particular, the minimum saturation state over Pourtalès Terrace can be as low as 1.5 whereas even at the top of Miami Terrace, Ω can be very close to 1. Further analysis suggests that the variability of water properties in the upper slope is largely driven by the large-scale transport, and upwelling of cold and CO2-rich deep waters due to meandering of Florida Current, and/or associated meso-scale eddies. In contrast, the water properties at the bottom of the slope are very stable but with much lower aragonite saturation state. The roles of local biochemical processes including the potentially elevated productivity and export driven by meso-scale eddies are yet to be explored. We further project that the aragonite saturation state in deep waters of the Florida Straits may be further decreased to around or below 1 in 2050 under the IPCC RCP 8.5 scenario.

  18. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea

    NASA Astrophysics Data System (ADS)

    Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.

    2012-08-01

    The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.

  19. Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Arévalo-Martínez, Damian L.; Kock, Annette; Löscher, Carolin R.; Schmitz, Ruth A.; Stramma, Lothar; Bange, Hermann W.

    2016-02-01

    Recent observations in the eastern tropical South Pacific (ETSP) have shown the key role of meso- and submesoscale processes (e.g. eddies) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen minimum zone (OMZ). Given that nitrous oxide (N2O) production-consumption processes in the water column are sensitive to oxygen (O2) concentrations, the ETSP is a region of particular interest to investigate its source-sink dynamics. To date, no detailed surveys linking mesoscale processes and N2O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N2O across three mesoscale eddies (two mode water or anticyclonic and one cyclonic) which were identified, tracked, and sampled during two surveys carried out in the ETSP in November-December 2012. A two-peak structure was observed for N2O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification, ammonium monooxygenase (amoA), and the gene marker for N2O production during denitrification, nitrite reductase (nirS). Conversely, we found strong N2O depletion in the core of the OMZ (O2 < 5 µmol L-1) to be consistent with nitrite (NO2-) accumulation and low levels of nitrate (NO3-), thus suggesting active denitrification. N2O depletion within the OMZ's core was substantially higher in the centre of mode water eddies, supporting the view that eddy activity enhances N-loss processes off Peru, in particular near the shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of eddies during their propagation towards the open ocean showed that, in general, "ageing" of mesoscale eddies tends to decrease N2O concentrations through the water column in response to the reduced supply of material to fuel N loss, although hydrographic variability might also significantly impact the pace of the production-consumption pathways for N2O. Our results evidence the relevance of mode water eddies for N2O distribution, thereby improving our understanding of the N-cycling processes, which are of crucial importance in times of climate change and ocean deoxygenation.

  20. Seasonality of the Mindanao Current/Undercurrent System

    NASA Astrophysics Data System (ADS)

    Ren, Qiuping; Li, Yuanlong; Wang, Fan; Song, Lina; Liu, Chuanyu; Zhai, Fangguo

    2018-02-01

    Seasonality of the Mindanao Current (MC)/Undercurrent (MUC) system is investigated using moored acoustic Doppler current profiler (ADCP) measurements off Mindanao (8°N, 127.05°E) and ocean model simulations. The mooring observation during December 2010 to August 2014 revealed that the surface-layer MC between 50-150 m is dominated by annual-period variation and tends to be stronger in spring (boreal) and weaker in fall. Prominent semiannual variations were detected below 150 m. The lower MC between 150 and 400 m is stronger in spring and fall and weaker in summer and winter, while the northward MUC below 400 m emerges in summer and winter and disappears in spring and fall. In-phase and out-of-phase current anomalies above and below 150 m were observed alternatively. These variations are faithfully reproduced by an eddy-resolving ocean model simulation (OFES). Further analysis demonstrates that seasonal variation of the MC is a component of large-scale upper-ocean circulation gyre, while current variations in the MUC layer are confined near the western boundary and featured by shorter-scale (200-400 km) structures. Most of the MC variations and approximately half of the MUC variations can be explained by the first and second baroclinic modes and caused by local wind forcing of the western Pacific. Semiannual surface wind variability and superimposition of the two baroclinic modes jointly give rise to the enhanced subsurface semiannual variations. The pronounced mesoscale eddy variability in the MUC layer may also contribute to the seasonality of the MUC through eddy-current interaction.

  1. Diagnostic Characteristics of Submesoscale Coastal Surface Currents

    NASA Astrophysics Data System (ADS)

    Soh, Hyun Sup; Kim, Sung Yong

    2018-03-01

    Submesoscale kinetic energy (KE) spectra and fluxes at the length scales ranging from 2 to 25 km are estimated from hourly and O(1) km-scale coastal surface current maps observed from shore-based high-frequency radars off southern San Diego. The one-dimensional wave number-domain KE spectra of the surface currents have decay slopes between k-2 and k-3 at a wave number (k) of 0.5 km-1. The KE spectra exhibit anisotropy associated with anisotropic circulation, which is constrained by the shoreline and bottom bathymetry. Moreover, the KE spectra exhibit weak seasonality related to the regional submesoscale eddies and low-frequency circulation with weak seasonal variability. The estimated KE fluxes are categorized into four cases of purely forward cascades and inverse cascades at all wave numbers, inverse-then-forward cascades with a single zero-crossing within the range of wave numbers (0.04 to 0.5 km-1), and residuals, which account for approximately 33%, 39%, 19%, and 9% of the total number of realizations, respectively. An injection scale where forward enstrophy cascade and inverse energy cascade occur is estimated to be 5 to 10 km from the cases of the inverse-then-forward cascade, which is consistent with the length scales of the regional submesoscale eddies. Thus, the regional submesoscale processes are initiated by surface frontogenesis due to the weak seasonal low-frequency surface circulation and topography-related currents, then maintained by baroclinic instabilities associated with the seasonal mixed layer and O(10) km-scale submesoscale eddies with weak seasonal variability.

  2. A new look at ocean ventilation time scales and their uncertainties

    NASA Astrophysics Data System (ADS)

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.; Bryan, Frank O.

    2017-05-01

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracer age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26-27.2 σθ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.

  3. A new look at ocean ventilation time scales and their uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracermore » age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26–27.2 σ θ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.« less

  4. A new look at ocean ventilation time scales and their uncertainties

    DOE PAGES

    Fine, Rana A.; Peacock, Synte; Maltrud, Mathew E.; ...

    2017-03-17

    A suite of eddy-resolving ocean transient tracer model simulations are first compared to observations. Observational and model pCFC-11 ages agree quite well, with the eddy-resolving model adding detail. The CFC ages show that the thermocline is a barrier to interior ocean exchange with the atmosphere on time scales of 45 years, the measureable CFC transient, although there are exceptions. Next, model simulations are used to quantify effects on tracer ages of the spatial dependence of internal ocean tracer variability due to stirring from eddies and biases from nonstationarity of the atmospheric transient when there is mixing. These add to tracermore » age uncertainties and biases, which are large in frontal boundary regions, and small in subtropical gyre interiors. These uncertainties and biases are used to reinterpret observed temporal trends in tracer-derived ventilation time scales taken from observations more than a decade apart, and to assess whether interpretations of changes in tracer ages being due to changes in ocean ventilation hold water. For the southern hemisphere subtropical gyres, we infer that the rate of ocean ventilation 26–27.2 σ θ increased between the mid-1990s and the decade of the 2000s. However, between the mid-1990s and the decade of the 2010s, there is no significant trend—perhaps except for South Atlantic. Observed age/AOU/ventilation changes are linked to a combination of natural cycles and climate change, and there is regional variability. Thus, for the future it is not clear how strong or steady in space and time ocean ventilation changes will be.« less

  5. Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow

    NASA Technical Reports Server (NTRS)

    Harris, J. E.; Blanchard, D. K.

    1982-01-01

    A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.

  6. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    NASA Astrophysics Data System (ADS)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  7. The Role of Ocean Eddies in the Southern Ocean Response to Observed Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    Bilgen, S. I.; Kirtman, B. P.

    2017-12-01

    The Southern Ocean (SO) is crucial to understanding the possible future response to a changing climate. This is a principal region where energy is conveyed to the ocean by the westerly winds and it is here that mesoscale ocean eddies field dominate meridional heat and momentum transport. Compared to the Arctic, the Antarctic and the surrounding SO have a "delayed warming" anthropogenic greenhouse gas (GHG) response. Understanding the role of the ocean dynamics in modulating the mesoscale atmosphere-ocean interactions in the SO in a fully coupled regime is crucial to efforts aimed at predicting the consequences of the warming and variability to the climate system. The response of model run at multiple resolutions (eddy permitting, eddy resolving) to both GHG forcing and historical forcing are examined in NCAR CCSM4 with four experiments. The first simulation, 0.5° atmosphere coupled to ocean and sea ice components with 1° resolution (LR). The second simulation uses the identical atmospheric model but coupled to 0.1° ocean and sea ice component models (HR). For the third and fourth experiments, the global ocean is simulated for LR an HR models, and a climate change scenario are produced by applying a fixed (present-day) CO2 concentration. The analysis focuses on the last 55 years of two individual 155 year simulations. We discuss results from a set of state-of-art model experiments in comparison with observational estimates and explore mechanisms by examining sea surface temperature, westerly winds, surface heat flux, ocean heat transport. In LR simulations, the patterns and mechanisms of SO changes under GHG forcing are similar to those over the historical period: warming is damped southward of the ACC and enhanced to the north, however major changes between the HR simulations are explored. We find that in recent decades the Southern Annual Mode has shown a distinct upward trend, the result of an anthropogenic global warming. Also, HR simulations show that strengthening of the SAM and associated surface wind stress have been invoked to posit enhancement in the strength of the upwelling of the MOC, and increases eddy activity of the ACC. The results also indicate that eddy-permitting models are not able to capture the eddy-driven SST response since ocean dynamics is playing crucial role in the HR simulation but not in the LR models.

  8. Prospective cohort study showing persistent HSV-2 shedding in women with genital herpes 2 years after acquisition.

    PubMed

    Ramchandani, Meena; Selke, Stacy; Magaret, Amalia; Barnum, Gail; Huang, Meei-Li Wu; Corey, Lawrence; Wald, Anna

    2017-11-25

    Herpes simplex virus type 2 (HSV-2) is a prevalent infection with great variability in clinical and virological manifestations among individuals. This prospective cohort study aims to evaluate the natural history of HSV-2 reactivation in the genital area in the same group of women over time. Eighteen immunocompetent HSV-2 seropositive women were evaluated for viral shedding for 70 consecutive days within a median of 8 months (range 1-24 months) of HSV-2 acquisition and again approximately 2.5 years later from the original study. Participants obtained daily swabs of genital secretions for HSV PCR and recorded genital symptoms. The viral shedding rate was 29% during the initial study and 19% in the follow-up study (32% reduction, P=0.019). Subclinical shedding rate also decreased from 24% to 13% (37% reduction, P=0.032), as did the rate of days with genital lesions from 22% to 15% (33% reduction, P=0.24). The mean copy number during viral shedding remained unchanged over time at 4.8 log 10 c/mL (SD=2.0 and 1.6 during each study, respectively, P=0.33). Women with high viral shedding rates in the past were likely to continue to have high shedding rates (r=0.63, P=0.005). Despite some reduction, high viral shedding rates persist in women with genital HSV-2 greater than 2 years after acquisition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Measuring evapotranspiration using an eddy covariance system over the Albany Thicket of the Eastern Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Gwate, O.; Mantel, Sukhmani K.; Palmer, Anthony R.; Gibson, Lesley A.

    2016-10-01

    Determining water and carbon fluxes over a vegetated surface is important in a context of global environmental changes and the fluxes help in understanding ecosystem functioning. Pursuant to this, the study measured evapotranspiration (ET) using an eddy covariance (EC) system installed over an intact example of the Albany Thicket (AT) vegetation in the Eastern Cape, South Africa. Environmental constraints to ET were also assessed by examining the response of ET to biotic and abiotic factors. The EC system comprised of an open path Infrared Gas Analyser and Sonic anemometer and an attendant weather station to measure bi-meteorological variables. Post processing of eddy covariance data was conducted using EddyPro software. Quality assessment of fluxes was also performed and rejected and missing data were filled using the method of mean diurnal variations (MDV). Much of the variation in ET was accounted for by the leaf area index (LAI, p < 0.001, 41%) and soil moisture content (SWC, p < 0.001, 32%). Total measured ET during the experiment was greater than total rainfall received owing to the high water storage capacity of the vegetation and the possibility of vegetation accessing ground water. Most of the net radiation was consumed by sensible heat flux and this means that ET in the area is essentially water limited since abundant energy was available to drive turbulent transfers of energy. Understanding the environmental constraints to ET is crucial in predicting the ecosystem response to environmental forces such as climate change.

  10. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  11. Integrating Eddy Covariance, Penman-Monteith and METRIC based Evapotranspiration estimates to generate high resolution space-time ET over the Brazos River Basin

    NASA Astrophysics Data System (ADS)

    Mbabazi, D.; Mohanty, B.; Gaur, N.

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.

  12. Impact of Intrathermocline eddies on seamount and oceanic island off Central Chile: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Hormazabal, Samuel; Morales, Carmen; Cornejo, Marcela; Bento, Joaquim; Valencia, Luis; Auger, Pierre; Rodriguez, Angel; Correa, Marco; Anabalón, Valeria; Silva, Nelson

    2016-04-01

    In the Southeast Pacific, oceanographic processes that sustain the biological production necessary to maintain the ecosystems associated to seamounts and oceanic islands are still poorly understood. Recent studies suggest that the interaction of mesoscale and submesoescale eddies with oceanic islands and seamounts could be playing an important role in the time-space variability of primary production. In this work, research cruises, satellite data and Regional Ocean Modeling System (ROMS) results have been used to describe the main characteristics of intrathermocline eddies (ITE) and their impact on the Juan Fernández archipelago (JFA), off central Chile. The JFA is located off the coast of central Chile (33°S), and is composed of three main islands: Robinson Crusoe (RC), Alejandro Selkirk (AS) and Santa Clara (SC). Between the RC and AS are located the westernmost seamounts (JF6 and JF5) of the Juan Fernández archipelago. Satellite altimetry data (sea surface height from AVISO) were used to detect and track mesoscale eddies through eddy-tracking algorithm. Physical, chemical and biological parameters as temperature, salinity, dissolved oxygen and fluorescence were measured in the water column at JF5 and JF6, and along the coast off central Chile (30-40°S). Results from the research cruise exhibit the interaction between an ITE and the seamount JF6. Eddy-tracking results showed that the ITE observed at the JF6 was formed at the coast off central-southern Chile, traveled ~900 km seaward and after ~9 months reached the JF5 and JF6 region. Observations along the Chilean coast confirmed that the coast corresponds to the formation area of the observed ITE. In this region, ITEs are represented by subsurface lenses (~100 km diameter; 400 m thickness) of homogeneous salinity, nutrient rich and oxygen-poor equatorial subsurface water mass (ESSW) which is transported poleward by the Peru-Chile undercurrent in the coastal band and seaward by ITEs. The effect of ITEs on the ecosystem productivity around the Juan Fernández archipelago (JFA) is discussed.

  13. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  14. The Mozambique Channel: From physics to upper trophic levels

    NASA Astrophysics Data System (ADS)

    Ternon, J. F.; Bach, P.; Barlow, R.; Huggett, J.; Jaquemet, S.; Marsac, F.; Ménard, F.; Penven, P.; Potier, M.; Roberts, M. J.

    2014-02-01

    A multidisciplinary programme, MESOBIO (Influence of mesoscale dynamics on biological productivity at multiple trophic levels in the Mozambique Channel) was undertaken in the Mozambique Channel within the framework of a scientific partnership between France and South Africa. MESOBIO focused on the signature of the highly energetic eddy dynamics in the Mozambique Channel. The Channel, which is known to be one of the most turbulent areas in the world ocean, has a great diversity of marine organisms and is the site of active pelagic fisheries. MESOBIO was mostly based on observations at sea during 12 multidisciplinary cruises between 2002 and 2010. Hydrographic measurements, sampling of biological organisms ranging from phytoplankton to top predators, and experiments on primary production and energy transfer through the food web, were conducted onboard various research vessels. The data were analysed in relation to eddy field characteristics for the periods of the cruises, including seasonal or inter-annual variability in mesoscale activity. A modelling approach was also developed within MESOBIO for both the circulation in the Channel and the biogeochemical response to eddy forcing. This paper introduces the suite of articles on the MESOBIO investigations by summarizing background knowledge for the different disciplines and the key issues that were addressed within the programme.

  15. [Clonal variability in longevity of the cercariae of Himasthla elongata (Trematoda: Echinostomatidae)].

    PubMed

    Levakin, I A; Losev, E A; Zavirskiĭ, Ia V; Galaktionov, K V

    2013-01-01

    The study was carried out on Himasthla elongata cercariae shed by infected Littorina littorea snails. The infected periwinkles were collected from the settlement with the low prevalence of H. elongata. As shown earlier with the use of AFLP (Amplified Fragment Length Polymorphisms) method, rediae groups in all the infected periwinkles of this settlement arise from the infection of a mollusc with a single miracidium. Therefore, the cercariae shed by an infected mollusc have the same genotype or, in other words, represent a clone. The LT50 (the time during which 50% of cercariae perish in the experimental dish) were measured experimentally for cercariae Himasthla elongata belong to different clones. The investigated parameter demonstrated a high level of interclonal variability. Two groups of cercarial clones were identified: one of them was characterized by the high level of intraclonal variability in LT50 and the second, by the low one. It is assumed that the observed heterogeneity may be stipulated by different degrees of mitotic recombinations during formation of different cercarial clones.

  16. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  17. The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.

    1988-01-01

    The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.

  18. Eddy-resolving 1/10° model of the World Ocean

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Khabeev, R. N.; Ushakov, K. V.

    2012-02-01

    The first results on simulating the intra-annual variability of the World Ocean circulation by use of the eddy-resolving model are considered. For this purpose, a model of the World Ocean with a 1/10° horizontal resolution and 49 vertical levels was developed (a 1/10 × 1/10 × 49 model of the World Ocean). This model is based on the traditional system of three-dimensional equations of the large-scale dynamics of the ocean and boundary conditions with an explicit allowance for water fluxes on the free surface of the ocean. The equations are written in the tripolar coordinate system. The numerical method is based on the separation of the barotropic and baroclinic components of the solution. Discretization in time is implemented using explicit schemes allowing effective parallelization for a large number of processors. The model uses the sub-models of the boundary layer of the atmosphere and the submodel of sea-ice thermodynamics. The model of the World Ocean was developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS) and the P.P. Shirshov Institute of Oceanogy (IO RAS). The formulation of the problem of simulating the intra-annual variability of thermohydrodynamic processes of the World Ocean and the parameterizations that were used are considered. In the numerical experiment, the temporal evolution of the atmospheric effect is determined by the normal annual cycle according to the conditions of the international Coordinated Ocean-Ice Reference Experiment (CORE-I). The calculation was carried out on a multiprocessor computer with distributed memory; 1601 computational cores were used. The presented analysis demonstrates that the obtained results are quite satisfactory when compared to the results that were obtained by other eddy-resolving models of the global ocean. The analysis of the model solution is, to a larger extent, of a descriptive character. A detailed analysis of the results is to be presented in following works. This experiment is a significant first step in developing the eddy-resolving model of the World Ocean.

  19. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide rangemore » of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these extreme climate events and disturbances.« less

  20. First Year Observations of Antarctic Circumpolar Current Variability and Internal Wave Activity from the DIMES Mooring Array

    NASA Astrophysics Data System (ADS)

    Brearley, J. A.; Sheen, K. L.; Naveira-Garabato, A. C.

    2012-04-01

    A key component of DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) is the deployment of a two-year cross-shaped mooring array in the Antarctic Circumpolar Current to the east of Drake Passage close to 57°W. Motivation for the cluster arises from the need to understand how eddies dissipate in the Southern Ocean, and specifically how much energy is extracted from the mesoscale by breaking internal waves, which in turn leads to turbulent mixing. The location of the mooring cluster was chosen to fulfil these objectives, being situated in a region of pronounced finestructure with high eddy kinetic energy and rough topography. The array, comprising 34 current meters and Microcats and a downward-looking ADCP, was first deployed in December 2009 and serviced in December 2010. Time series of current meter results from the most heavily-instrumented 'C' mooring indicate that a strong (up to 80 cms-1) surface-intensified north-eastward directed ACC occupies the region for most of the year, with over 85% of the variability in current speed being accounted for by equivalent barotropic fluctuations. A strong mean poleward heat flux is observed at the site, which compares favourably in magnitude with literature results from other ACC locations. Interestingly, four episodes of mid-depth (~2000 m) current speed maxima, each of a few days duration, were found during the 360-day time series, a situation also observed by the lowered ADCP during mooring servicing in December 2010. Early results indicate that these episodes, which coincide with time minima in stratification close to 2000 m, could profoundly influence the nature of eddy-internal wave interactions at these times. Quantification of the energy budget at the mooring cluster has been a key priority. When compared with previous moorings located in Drake Passage (Bryden, 1977), a near threefold-increase in mean eddy kinetic energy (EKE) is observed despite a small reduction in the mean kinetic energy between these sites. The magnitude of interactions between the available potential energy and EKE and between the EKE and mean kinetic energy are of similar magnitude to those observed in Drake Passage. Unfortunately, the collapse of two moorings early in 2010 has meant that second-year data will be required before the exchange of energy between the eddy and internal wave frequency bands can be rigorously quantified. However, data from the downward-looking ADCP between 2700 and 3400 m is starting to identify the important frequencies and mechanisms of internal wave activity.

  1. A Comparison of Hybrid Reynolds Averaged Navier Stokes/Large Eddy Simulation (RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable Speed Power Turbine Blade Operating with Low Inlet Turbulence Levels

    DTIC Science & Technology

    2017-10-01

    Facility is a large-scale cascade that allows detailed flow field surveys and blade surface measurements.10–12 The facility has a continuous run ...structured grids at 2 flow conditions, cruise and takeoff, of the VSPT blade . Computations were run in parallel on a Department of Defense...RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable-Speed Power- Turbine Blade Operating with Low Inlet Turbulence Levels

  2. The Stability of Outcropping Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Paldor, N.; Cohen, Y.; Dvorkin, Y.

    2017-12-01

    In the end of the last century numerous ship-borne observations and linear instability studies have addressed the long life span of meso-scale ocean eddies. These eddies are observed to persist in the ocean for periods of 2-3 years with little deformation. As eddy instabilities occur because Rossby waves in the surrounding (assumed motionless) ocean interact with various waves in the eddy itself, the stability was attributed to some eddy structure that hinders such wave-wave interactions. However, instabilities with growthrates of the order of the inertial period were found in various multilayer models including hypothesized structures and several observed eddy structures. A solution to the difference between instability theory and observed stability was ultimately suggested by relaxing the assumption of a motionless ocean that surrounds the eddy and prescribing the mean flow in the ocean such that it counterbalances the depth changes imposed by the eddy while maintaining a constant PV-ocean. This hypothesis was successfully applied to Gaussian eddies for mathematical simplicity. Yet, the Gaussian eddy has no surface front - thus avoiding instabilities that involve frontal waves - and it disagrees with observation that clearly show that most eddies have surface fronts. Here the constant PV ocean hypothesis is applied to two frontal eddies: constant PV-eddies and solidly rotating eddy. A complete account of the mean flow of the coupled eddy-ocean system is analyzed using a canonical formulation of the gradient balance. The phase speeds of waves in the eddy-ocean system are computed by a shooting method. Both eddies are found to be unstable in motionless ocean, yet in a constant PV-ocean no instabilities are found using the exact same numerical search. While many eddy structures can be hypothesized there are only a handful of physical mechanisms for instability and in these eddies the assumed constant PV-ocean negates many of these physical mechanisms for instability. This implies that meso-scale eddies should be stable in a constant PV ocean, regardless to their structure, which is not precisely one of the above mentioned. This theory stimulates observations of the ocean under the eddies. To maintain the uniform PV value, relative vorticity must develop in the ocean under the eddy as it moves in the ocean.

  3. Capturing Moment-To-Moment Changes in Multivariate Human Experience

    ERIC Educational Resources Information Center

    De Ruiter, Naomi M. P.; Van Der Steen, Steffie; Den Hartigh, Ruud J. R.; Van Geert, Paul L. C.

    2017-01-01

    In this article, we aim to shed light on a technique to study intra-individual variability that spans the time frame of seconds and minutes, i.e., micro-level development. This form of variability is omnipresent in behavioural development and processes of human experience, yet is often ignored in empirical studies, given a lack of proper analysis…

  4. LES/PDF studies of joint statistics of mixture fraction and progress variable in piloted methane jet flames with inhomogeneous inlet flows

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Barlow, Robert; Masri, Assaad; Wang, Haifeng

    2016-11-01

    The mixture fraction and progress variable are often used as independent variables for describing turbulent premixed and non-premixed flames. There is a growing interest in using these two variables for describing partially premixed flames. The joint statistical distribution of the mixture fraction and progress variable is of great interest in developing models for partially premixed flames. In this work, we conduct predictive studies of the joint statistics of mixture fraction and progress variable in a series of piloted methane jet flames with inhomogeneous inlet flows. The employed models combine large eddy simulations with the Monte Carlo probability density function (PDF) method. The joint PDFs and marginal PDFs are examined in detail by comparing the model predictions and the measurements. Different presumed shapes of the joint PDFs are also evaluated.

  5. Quantifying mesoscale eddies in the Lofoten Basin

    NASA Astrophysics Data System (ADS)

    Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.

    2016-07-01

    The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.

  6. Variable force, eddy-current or magnetic damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E. (Inventor)

    1985-01-01

    An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.

  7. Flow-induced resonance of screen-covered cavities

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1990-01-01

    An experimental study of screen-covered cavities exposed to airflow tangent to the screen is described. The term screen refers to a thin metal plate perforated with a repetitive pattern of round holes. The purpose was to find the detailed aerodynamic and acoustic mechanisms responsible for screen-covered cavity resonance and to find ways to control the pressure oscillations. Results indicate that strong cavity acoustic resonances are created by screen orifices that shed vortices which couple resonance by choosing hole spacings such that shed vortices do not arrive at a downstream orifice in synchronization with cavity pressure oscillations. The proper hole pattern is effective at all airspeeds. It was also discovered that a reduction of orifice size tended to weaken the screen/cavity interaction regardless of hole pattern, probably because of viscous flow losses at the orifices. The screened cavities that resonated did so at much higher frequencies than the equivalent open cavity. The classical large eddy phenomenon occurs at the relatively small scale of the orifices (the excitation is typically of high frequency). The wind tunnel study was made at airspeeds from 0 to 100m/sec. The 457-mm-long by 1.09-m-high rectangular cavities had length-to-depth ratios greater than one, which is indicative of shallow cavities. The cavity screens were perforated in straight rows and columns with hole diameters ranging from 1.59 to 6.35 mm and with porosities from 2.6 to 19.6 percent.

  8. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  9. Atmospheric dynamical changes as a contributor to deglacial climate variability: results from an ensemble of transient deglacial simulations

    NASA Astrophysics Data System (ADS)

    Andres, Heather; Tarasov, Lev

    2017-04-01

    The atmosphere is often assumed to play a passive role in centennial- to millennial-timescale climate variations of the last deglaciation due to its short response times ( years) and the absence of abrupt changes in external climate forcings. Nevertheless, atmospheric dynamical responses to changes in ice sheet topography and albedo can affect the entire Northern Hemisphere through the altering of Rossby stationary wave patterns and changes to the North Atlantic eddy-driven jet. These responses appear sensitive to the particular configuration of Northern Hemisphere land ice, so small changes have the potential to reorganize atmospheric circulation with impacts on precipitation distributions, ocean surface currents and sea ice extent. Indirect proxy evidence, idealized theoretical studies, and "snapshot" simulations performed at different periods during the last glacial cycle indicate that between the Last Glacial Maximum and the preindustrial period the North Atlantic eddy-driven jet weakened, became less zonally-oriented, and exhibited greater variability. How the transition (or transitions) between the glacial atmospheric state and the interglacial state occurred is less clear. To address this question, we performed an ensemble of transient simulations of the last deglaciation using the Planet Simulator coupled atmosphere-ocean-vegetation-sea ice model (PlaSim, at an atmospheric resolution of T42) forced by variants of the GLAC1-D deglacial ice sheet chronology. We characterize simulated changes in stationary wave patterns over this period as well as changes in the strength and position of the North Atlantic eddy-driven jet. In particular, we document the range of timescales for these changes and compare the simulated climate signatures of these transitions to data archives of precipitation and sea ice extent.

  10. Modelling carbon and water fluxes at global scale

    NASA Astrophysics Data System (ADS)

    Balzarolo, M.; Balsamo, G.; Barbu, A.; Boussetta, S.; Calvet, J.-C.; Chevallier, F.; de Vries, J.; Kullmann, L.; Lafont, S.; Maignan, F.; Papale, D.; Poulter, B.

    2012-04-01

    Modelling and predicting seasonal and inter-annual variability of terrestrial carbon and water fluxes play an important role in understanding processes and interactions between plant-atmosphere and climate. Testing the model's capability to simulate fluxes across and within the ecosystems against eddy covariance data is essential. Thanks to the existing eddy covariance (EC) networks (e.g FLUXNET), where CO2 and water exchanges are continuously measured, it is now possible to verify the model's goodness at global scale. This paper reports the outcomes of the verification activities of the Land Carbon Core Information Service (LC-CIS) of the Geoland2 European project. The three used land surface models are C-TESSEL from ECMWF, SURFEX from CNRM and ORCHIDEE from IPSL. These models differ in their hypotheses used to describe processes and the interactions between ecological compartments (plant, soil and atmosphere) and climate and environmental conditions. Results of the verification and model benchmarking are here presented. Surface fluxes of the models are verified against FLUXNET sites representing main worldwide Plant Functional Types (PFTs: forest, grassland and cropland). The quality and accuracy of the EC data is verified using the CarboEurope database methodology. Modelled carbon and water fluxes magnitude, daily and annual cycles, inter-annual anomalies are verified against eddy covariance data using robust statistical analysis (r, RMSE, E, BE). We also verify the performance of the models in predicting the functional responses of Gross Primary Production (GPP) and RE (Ecosystem Respiration) to the environmental driving variables (i.e. temperature, soil water content and radiation) by comparing the functional relationships obtained from the outputs and observed data. Obtained results suggest some ways of improving such models for global carbon modelling.

  11. A systematic review and meta-analysis of phase I inactivated vaccines to reduce shedding of Coxiella burnetii from sheep and goats from routes of public health importance.

    PubMed

    O'Neill, T J; Sargeant, J M; Poljak, Z

    2014-12-01

    Q fever in humans and coxiellosis in livestock are both caused by Coxiella burnetii. The public health importance of vaccination against C. burnetii shedding from sheep and goats was evaluated using systematic review and meta-analysis to provide evidence for policy direction to prevent potential zoonotic spread. Publications reporting shedding of C. burnetii in vaginal and uterine secretions, milk, placenta and faeces were included. A single observational (one goat) and seven experimental (four goat and three sheep) vaccine studies were included in the review. No relevant publications on other interventions were identified. Random effects meta-analyses were performed for the risk of shedding in individuals in the control and vaccinated groups and for the mean difference in the level of bacterial shedding in sheep and goats stratified by age and previous exposure status. Limited data were available for further analytic evaluation. From the pooled analysis, an inactivated phase I vaccine significantly reduced the risk of shedding from uterine (RR = 0.10; 95%CI 0.05-0.20) secretions in previously sensitized goats. Individual studies reported significant risk reduction in milk (RR = 0.03; 95%CI 0.01-0.26), vaginal secretions (RR = 0.40; 95%CI 0.22-0.75) and faeces (RR = 0.79; 95%CI 0.63-0.97) from naïve goats. The pooled mean levels of bacteria shed from placental [mean difference (MD = -5.24 Log10 ; 95%CI -6.75 to -3.7)] and vaginal (MD = -1.78 Log10 ; 95%CI -2.19 to -1.38) routes were significantly decreased in vaccinated naïve goats compared with controls. Shedding through all other routes from vaccinated goats was not significantly different than shedding from control goats. No effect of vaccination was found on the risk of shedding or the mean level of shedding in vaccinated sheep compared with control sheep. Our conclusions are based on a limited amount of data with variable risk of systematic error. © 2013 Blackwell Verlag GmbH.

  12. The mixing length parameter alpha. [in stellar structure calculations

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1990-01-01

    The standard mixing length theory, MLT, treats turbulent eddies as if they were isotropic, while the largest eddies that carry most of the flux are highly anisotropic. Recently, an anisotropic MLT was constructed, and the relevant equations derived. It is shown that these new equations can actually be cast in a form that is formally identical to that of the standard isotropic MLT, provided the mixing length parameter, derived from stellar structure calculations, is interpreted as an intermediate, auxiliary function alpha(x), where x, the degree of anisotropy is given as a function of the thermodynamic variables of the problem. The relation between alpha(x) and the physically relevant alpha(l = Hp) is also given. Once the value alpha is deduced, it is found to be a function of the local thermodynamic quantities, as expected.

  13. Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions

    NASA Astrophysics Data System (ADS)

    Waterman, S.; Lilly, J. M.

    2014-12-01

    Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.

  14. Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach

    NASA Astrophysics Data System (ADS)

    Berloff, Pavel

    2018-07-01

    This work continues development of dynamically consistent parameterizations for representing mesoscale eddy effects in non-eddy-resolving and eddy-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic eddy effects maintain eastward jet extension of the western boundary currents and its adjacent recirculation zones via eddy backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference eddy-resolving flow solution into the large-scale and eddy components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean eddies, and in the transient rectified eddy component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet core and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient eddy forcing via the eddy backscatter mechanism, rather than by the mean eddy forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key eddy parameterization hypothesis: in an eddy-permitting model at least partially resolved eddy backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel eddy parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single parameter. We test the parameterization skills in an hierarchy of non-eddy-resolving and eddy-permitting modifications of the original model and demonstrate, that indeed it can be highly efficient for restoring the eastward jet extension and its adjacent recirculation zones. The new deterministic parameterization framework not only combines remarkable simplicity with good performance but also is dynamically transparent, therefore, it provides a powerful alternative to the common eddy diffusion and emerging stochastic parameterizations.

  15. Cyclonic eddies identified in the Cape Basin of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hall, C.; Lutjeharms, J. R. E.

    2011-03-01

    Inter-ocean exchange south of Africa takes place largely through the movement of Agulhas Rings into the Cape Basin. Recent observations have shown that the highly energetic flow field in this basin consists of anti-cyclonic rings as well as cyclonic eddies. Very little is known of the characteristics of the cyclonic eddies. Using altimetric data, this study determines the location, frequency and seasonality of these cyclonic eddies their size, trajectories, life spans and their association with Agulhas Rings. Cyclonic eddies were seen to split, merge and link with other cyclonic eddies, where splitting events created child cyclonic eddies. The 105 parent and 157 child cyclonic eddies identified over a decade show that on average 11 parent and 17 child cyclonic eddies appear annually in AVISO merged absolute dynamic topography data along the continental slope. Thirty-two percent follow an overall west south-westward direction, with 27% going west north-westward. Average translocation speeds are 2.2 ± 0.1 km/day for parent and 3.0 ± 0.2 km/day for child cyclonic eddies. Parent cyclonic eddy lifespan averaged 250 ± 18 days; whereas child cyclonic eddies survived for only 118 ± 11 days. A significant difference in lifespan for parent and child cyclonic eddies identified in the north and south region of the study area was detected. Seventy-seven percent of the northern and 93% of the southern cyclonic eddies were first detected directly adjacent to passing Agulhas Rings, suggesting a vital interaction between these mesoscale eddies within the region. Topographical features appeared to affect the behaviour and lifespan of these deep cyclonic eddies.

  16. Monthly land cover-specific evapotranspiration models derived from global eddy flux measurements and remote sensing data

    Treesearch

    Yuan Fang; Ge Sun; Peter Caldwell; Steven G. McNulty; Asko Noormets; Jean-Christophe Domec; John King; Zhiqiang Zhang; Xudong Zhang; Guanghui Lin; Guangsheng Zhou; Jingfeng Xiao; Jiquan Chen

    2015-01-01

    Evapotranspiration (ET) is arguably the most uncertain ecohydrologic variable for quantifying watershed water budgets. Although numerous ET and hydrological models exist, accurately predicting the effects of global change on water use and availability remains challenging because of model deficiency and/or a lack of input parameters. The objective of this study was to...

  17. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

    Treesearch

    Kell B. Wilson; Dennis Baldocchi; Eva Falge; Marc Aubinet; Paul Berbigier; Christian Bernhofer; Han Dolman; Chris Field; Allen Goldstein; Andre Granier; Dave Hollinger; Gabriel Katul; B.E. Law; Tilden Meyers; John Moncrieff; Russ Monson; John Tenhunen; Riccardo Valentini; Shashi Verma; Steve Wofsy

    2003-01-01

    Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the...

  18. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Treesearch

    Jingfeng Xiaoa; Qianlai Zhuang; Beverly E. Law; Dennis D. Baldocchi; Jiquan Chen; al. et.

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a...

  19. Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; John D. Aber; Scott V. Ollinger; Bobby H. Braswell

    2007-01-01

    Tower-based eddy covariance measurements of forest-atmosphere carbon dioxide (CO2) exchange from many sites around the world indicate that there is considerable year-to-year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling approach to partition the interannual variability in NEE (and its component fluxes, ecosystem...

  20. Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands

    Treesearch

    Zewei Miao; Richard G. Lathrop; Ming Xu; Inga P. La Puma; Kenneth L. Clark; John Hom; Nicholas Skowronski; Steve Van Tuyl

    2011-01-01

    A major challenge in modeling the carbon dynamics of vegetation communities is the proper parameterization and calibration of eco-physiological variables that are critical determinants of the ecosystem process-based model behavior. In this study, we improved and calibrated a biochemical process-based WxBGC model by using in situ AmeriFlux eddy covariance tower...

  1. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange

    Treesearch

    J.-C. Domec; J.S. King; A. Noormets; E. Treasure; M.J. Gavazzi; G. Sun; S.G. McNulty

    2010-01-01

    Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of...

  2. Hydrological responses to defoliation and drought of an upland oak/pine forest

    Treesearch

    K.V.R. Schäfer; H.J. Renninger; K.L. Clark; D. Medvigy

    2014-01-01

    Hydrologic variability during 2005-2011 was observed and analyzed at an upland oak/pine forest in the New Jersey Pinelands. The forest experienced defoliation by Gypsy moth (Lymantria dispar L.) in 2007, drought conditions in 2006 and a more severe drought in 2010. By using sap flux and eddy covariance measurements, stream discharge data from USGS,...

  3. Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades

    Treesearch

    Sparkle L. Malone; Christina L. Staudhammer; Henry W. Loescher; Paulo Olivas; Steven F. Oberbauer; Michael G. Ryan; Jessica Schedlbauer; Gregory Starr

    2014-01-01

    We analyzed energy partitioning in short- and long-hydroperiod freshwater marsh ecosystems in the Florida Everglades by examining energy balance components (eddy covariance derived latent energy (LE) and sensible heat (H) flux). The study period included several wet and dry seasons and variable water levels, allowing us to gain better mechanistic information about the...

  4. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation

    NASA Astrophysics Data System (ADS)

    Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan

    2018-06-01

    In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 flux near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore air-sea and air-land CO2 fluxes exhibited a significant diurnal variability and a substantial day-night difference. The net air-sea CO2 flux was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net air-land CO2 flux was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on air-sea CO2 fluxes. The result suggests that the strength of the diurnal air-sea CO2 flux is strongly influenced by the local wind speed.

  5. Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin

    NASA Astrophysics Data System (ADS)

    Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.

    2017-04-01

    The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.

  6. Resolving the Conflict Between Associative Overdominance and Background Selection

    PubMed Central

    Zhao, Lei; Charlesworth, Brian

    2016-01-01

    In small populations, genetic linkage between a polymorphic neutral locus and loci subject to selection, either against partially recessive mutations or in favor of heterozygotes, may result in an apparent selective advantage to heterozygotes at the neutral locus (associative overdominance) and a retardation of the rate of loss of variability by genetic drift at this locus. In large populations, selection against deleterious mutations has previously been shown to reduce variability at linked neutral loci (background selection). We describe analytical, numerical, and simulation studies that shed light on the conditions under which retardation vs. acceleration of loss of variability occurs at a neutral locus linked to a locus under selection. We consider a finite, randomly mating population initiated from an infinite population in equilibrium at a locus under selection. With mutation and selection, retardation occurs only when S, the product of twice the effective population size and the selection coefficient, is of order 1. With S >> 1, background selection always causes an acceleration of loss of variability. Apparent heterozygote advantage at the neutral locus is, however, always observed when mutations are partially recessive, even if there is an accelerated rate of loss of variability. With heterozygote advantage at the selected locus, loss of variability is nearly always retarded. The results shed light on experiments on the loss of variability at marker loci in laboratory populations and on the results of computer simulations of the effects of multiple selected loci on neutral variability. PMID:27182952

  7. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites

    USGS Publications Warehouse

    Lavigne, M.B.; Ryan, M.G.; Anderson, D.E.; Baldocchi, D.D.; Crill, P.M.; Fitzjarrald, D.R.; Goulden, M.L.; Gower, S.T.; Massheder, J.M.; McCaughey, J.H.; Rayment, M.; Striegl, Robert G.

    1997-01-01

    During the growing season, nighttime ecosystem respiration emits 30–100% of the daytime net photosynthetic uptake of carbon, and therefore measurements of rates and understanding of its control by the environment are important for understanding net ecosystem exchange. Ecosystem respiration can be measured at night by eddy covariance methods, but the data may not be reliable because of low turbulence or other methodological problems. We used relationships between woody tissue, foliage, and soil respiration rates and temperature, with temperature records collected on site to estimate ecosystem respiration rates at six coniferous BOREAS sites at half-hour or 1-hour intervals, and then compared these estimates to nocturnal measurements of CO2 exchange by eddy covariance. Soil surface respiration was the largest source of CO2 at all sites (48–71%), and foliar respiration made a large contribution to ecosystem respiration at all sites (25–43%). Woody tissue respiration contributed only 5–15% to ecosystem respiration. We estimated error for the scaled chamber predictions of ecosystem respiration by using the uncertainty associated with each respiration parameter and respiring biomass value. There was substantial uncertainty in estimates of foliar and soil respiration because of the spatial variability of specific respiration rates. In addition, more attention needs to be paid to estimating foliar respiration during the early part of the growing season, when new foliage is growing, and to determining seasonal trends of soil surface respiration. Nocturnal eddy covariance measurements were poorly correlated to scaled chamber estimates of ecosystem respiration (r2=0.06–0.27) and were consistently lower than scaled chamber predictions (by 27% on average for the six sites). The bias in eddy covariance estimates of ecosystem respiration will alter estimates of gross assimilation in the light and of net ecosystem exchange rates over extended periods.

  8. Summer circulation in the Mexican tropical Pacific

    NASA Astrophysics Data System (ADS)

    Trasviña, A.; Barton, E. D.

    2008-05-01

    The main components of large-scale circulation of the eastern tropical Pacific were identified in the mid 20th century, but the details of the circulation at length scales of 10 2 km or less, the mesoscale field, are less well known particularly during summer. The winter circulation is characterized by large mesoscale eddies generated by intense cross-shore wind pulses. These eddies propagate offshore to provide an important source of mesoscale variability for the eastern tropical Pacific. The summer circulation has not commanded similar attention, the main reason being that the frequent generation of hurricanes in the area renders in situ observations difficult. Before the experiment presented here, the large-scale summer circulation of the Gulf of Tehuantepec was thought to be dominated by a poleward flow along the coast. A drifter-deployment experiment carried out in June 2000, supported by satellite altimetry and wind data, was designed to characterize this hypothesized Costa Rica Coastal Current. We present a detailed comparison between altimetry-estimated geostrophic and in situ currents estimated from drifters. Contrary to expectation, no evidence of a coherent poleward coastal flow across the gulf was found. During the 10-week period of observations, we documented a recurrent pattern of circulation within 500 km of shore, forced by a combination of local winds and the regional-scale flow. Instead of the Costa Rica Coastal Current, we found a summer eddy field capable of influencing large areas of the eastern tropical Pacific. Even in summer, the cross-isthmus wind jet is capable of inducing eddy formation.

  9. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.

    PubMed

    Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles

    2009-01-01

    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.

  10. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  11. Detection of feline coronavirus in cheetah (Acinonyx jubatus) feces by reverse transcription-nested polymerase chain reaction in cheetahs with variable frequency of viral shedding.

    PubMed

    Gaffney, Patricia M; Kennedy, Melissa; Terio, Karen; Gardner, Ian; Lothamer, Chad; Coleman, Kathleen; Munson, Linda

    2012-12-01

    Cheetahs (Acinonyx jubatus) are a highly threatened species because of habitat loss, human conflict, and high prevalence of disease in captivity. An epidemic of feline infectious peritonitis and concern for spread of infectious disease resulted in decreased movement of cheetahs between U.S. zoological facilities for managed captive breeding. Identifying the true feline coronavirus (FCoV) infection status of cheetahs is challenging because of inconsistent correlation between seropositivity and fecal viral shedding. Because the pattern of fecal shedding of FCoV is unknown in cheetahs, this study aimed to assess the frequency of detectable fecal viral shedding in a 30-day period and to determine the most efficient fecal sampling strategy to identify cheetahs shedding FCoV. Fecal samples were collected from 16 cheetahs housed at seven zoological facilities for 30 to 46 consecutive days; the samples were evaluated for the presence of FCoV by reverse transcription-nested polymerase chain reaction (RT-nPCR). Forty-four percent (7/16) of cheetahs had detectable FCoV in feces, and the proportion of positive samples for individual animals ranged from 13 to 93%. Cheetahs shed virus persistently, intermittently, or rarely over 30-46 days. Fecal RT-nPCR results were used to calculate the probability of correctly identifying a cheetah known to shed virus given multiple hypothetical fecal collection schedules. The most efficient hypothetical fecal sample collection schedule was evaluation of five individual consecutive fecal samples, resulting in a 90% probability of identifying a known shedder. Demographic and management risk factors were not significantly associated (P < or = 0.05) with fecal viral shedding. Because some cheetahs shed virus intermittently to rarely, fecal sampling schedules meant to identify all known shedders would be impractical with current tests and eradication of virus from the population unreasonable. Managing the captive population as endemically infected with FCoV may be a more feasible approach.

  12. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Li, Qiu-Yang

    2017-04-01

    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for satellite-based observational data but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  13. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.

  14. Dynamically Consistent Parameterization of Mesoscale Eddies This work aims at parameterization of eddy effects for use in non-eddy-resolving ocean models and focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones.

    NASA Astrophysics Data System (ADS)

    Berloff, P. S.

    2016-12-01

    This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.

  15. Intraseasonal variability of the West African monsoon and African easterly waves during boreal summer

    NASA Astrophysics Data System (ADS)

    Alaka, Ghassan J., Jr.

    Substantial subseasonal variability in African easterly wave (AEW) activity and cyclogenesis frequency occurs in the main hurricane development region of the Atlantic during boreal summer. A complete understanding of intraseasonal variability in the Atlantic and west Africa during boreal summer requires analysis of how the Madden-Julian Oscillation (MJO) modulates the west African monsoon and consequently AEWs. Because the MJO is predictable a few weeks in advance, understanding how and why the MJO impacts the west African monsoon may have a profound influence on Atlantic tropical cyclone prediction. This study documents the MJO influence on the west African monsoon system during boreal summer using a variety of reanalysis and satellite datasets. This study aims to identify and explain the MJO teleconnection to the west African monsoon, and the processes that induce precipitation and AEW variability in this region. Intraseasonal west African and Atlantic convective anomalies on 30-90 day timescales are likely induced by equatorial Kelvin and Rossby waves generated in the Indian Ocean and west Pacific by the MJO. Previous studies have hypothesized that an area including the Darfur mountains and the Ethiopian highlands is an initiation region for AEWs. It is shown here that the initial MJO influence on precipitation and AEW activity in the African monsoon appears to occur in these regions, where eddy kinetic energy (EKE) anomalies first appear in advance of MJO-induced periods of enhanced and suppressed AEW activity. In the initiation region, upper tropospheric temperature anomalies are reduced, the atmosphere moistens by horizontal advection, and an eastward extension of the African easterly jet occurs in advance of the MJO wet phase of the African monsoon, when AEW activity is also enhanced. These factors all support strong precursor disturbances in the initiation region that seed the African easterly jet and contribute to downstream development of AEWs. Opposite behavior occurs in advance of the MJO dry phase. Moisture and eddy kinetic energy (EKE) budgets are examined to provide further insight as to how the MJO modulates and initiates precipitation and AEW variability in this region. In particular, meridional moisture advection anomalies foster moistening in the initiation region by anomalous flow acting across the mean moisture gradient. Additionally, positive (negative) upstream EKE tendency anomalies in advance of the MJO convective maximum (minimum) over tropical north Africa suggest wave growth (decay) near the entrance of the AEJ, while enhanced (suppressed) conversion of eddy available potential energy (EAPE) to EKE and barotropic conversion maintains downstream AEW growth (decay).

  16. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    NASA Astrophysics Data System (ADS)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  17. Variability, constraints, and creativity. Shedding light on Claude Monet.

    PubMed

    Stokes, P D

    2001-04-01

    Recent experimental research suggests 2 things. The first is that along with learning how to do something, people also learn how variably or differently to continue doing it. The second is that high variability is maintained by constraining, precluding a currently successful, often repetitive solution to a problem. In this view, Claude Monet's habitually high level of variability in painting was acquired during his childhood and early apprenticeship and was maintained throughout his adult career by a continuous series of task constraints imposed by the artist on his own work. For Monet, variability was rewarded and rewarding.

  18. Nonlinear Eddy-Eddy Interactions in Dry Atmospheres Macroturbulence

    NASA Astrophysics Data System (ADS)

    Ait Chaalal, F.; Schneider, T.

    2012-12-01

    The statistical moment equations derived from the atmospheric equation of motions are not closed. However neglecting the large-scale eddy-eddy nonlinear interactions in an idealized dry general circulation model (GCM), which is equivalent to truncating the moment equations at the second order, can reproduce some of the features of the general circulation ([1]), highlighting the significance of eddy-mean flow interactions and the weakness of eddy-eddy interactions in atmospheric macroturbulence ([2]). The goal of the present study is to provide new insight into the rôle of these eddy-eddy interactions and discuss the relevance of a simple stochastic parametrization to represent them. We investigate in detail the general circulation in an idealized dry GCM, comparing full simulations with simulations where the eddy-eddy interactions are removed. The radiative processes are parametrized through Newtonian relaxation toward a radiative-equilibrium state with a prescribed equator to pole temperature contrast. A convection scheme relaxing toward a prescribed convective vertical lapse rate mimics some aspects of moist convection. The study is performed over a wide range of parameters covering the planetary rotation rate, the equator to pole temperature contrast and the vertical lapse rate. Particular attention is given to the wave-mean flow interactions and to the spectral budget. It is found that the no eddy-eddy simulations perform well when the baroclinic activity is weaker, for example for lower equator to pole temperature contrasts or higher rotation rates: the mean meridional circulation is well reproduced, with realistic eddy-driven jets and energy-containing eddy length scales of the order of the Rossby deformation radius. For a stronger baroclinic activity the no eddy-eddy model does not achieve a realistic isotropization of the eddies, the meridional circulation is compressed in the meridional direction and secondary eddy-driven jets emerge. In addition, the baroclinic wave activity does not reach the upper troposphere in association with a very weak or absent Rossby wave absorption in the upper subtropical troposphere. Understanding these deficiencies and the rôle of the eddy-eddy nonlinear interactions in determining the mean meridional circulation paves the way to the development of stochastic third order moments parametrizations, to eventually build GCMs that directly solve for the flow statistics and that could provide a deeper understanding of anthropogenic and natural climate changes. [1] O'Gorman, P. A., & Schneider, T. 2007, Geophysical Research Letters, 34, 22801 [2] Schneider, T., and C. C. Walker, 2006, Journal of the Atmospheric Sciences, 63, 1569-1586.

  19. Eddy properties in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent

    2018-05-01

    The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.

  20. A daily global mesoscale ocean eddy dataset from satellite altimetry.

    PubMed

    Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin

    2015-01-01

    Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.

  1. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing.

    PubMed

    Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J

    2016-05-01

    Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.

  2. A daily global mesoscale ocean eddy dataset from satellite altimetry

    PubMed Central

    Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin

    2015-01-01

    Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744

  3. Interannual Variability of Tehuantepec Eddies

    DTIC Science & Technology

    2006-01-01

    NRL) Layered Ocean Model (NLOM) results Alaska and California and in the regions close to Aca- pulco, Cabo Corrientes , and the Maria Islands [Melsom...IDepartment of Marine Sciences, University of Georgia, Athens, Cabo Corrientes and the Maria Islands, Mexico, submitted Georgia, USA. to Journal of...Tehuantepec (GT), Acapulco (ACA), Cabo Corrientes (CC), and Maria Islands (NM1) are indicated. The magenta box in Figure 13h indicates the area where

  4. An Analysis of the Factors Affecting Training Transfer within the Work Environment

    DTIC Science & Technology

    2008-03-01

    provide more career opportunities, and their self - esteem will be enhanced (Eddy, Tannenbaum, Lorenzet, Smith-Jentsch, 2005). Organizations who want...performed a moderator analysis to compare the effect these independent variables had on management and non-management training; and self -reporting...to training transfer as compared to non-managerial training (.20). Self -reporting (.28) showed higher levels of training transfer than did

  5. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  6. Demonstration of Nonlinearity Bias in the Measurement of the Apparent Diffusion Coefficient in Multicenter Trials

    PubMed Central

    Malyarenko, Dariya; Newitt, David; Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G.; Arlinghaus, Lori R.; Jacobs, Michael A.; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E.; Huang, Wei; Chenevert, Thomas L.

    2015-01-01

    Purpose Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Methods Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ±150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients and eddy currents were assessed independently. The observed bias errors were compared to numerical models. Results The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between −55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (±5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image co-registration of individual gradient directions. Conclusion The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. PMID:25940607

  7. Measurements of Forest-Atmosphere Isotopic CO2 Exchange by Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; Munger, J. W.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Saleska, S. R.

    2010-12-01

    Isotopic CO2 flux measurements are a promising means for partitioning the net ecosystem exchange of CO2 into photosynthetic and respiratory components. This approach to partitioning is possible in principle because of the distinct isotopic signatures of respired and photosynthesized CO2, but has been infeasible in practice—especially in forests—because of the difficulty of measuring isotopic ratios with sufficient precision and time response for use in eddy covariance (EC) flux calculations. Recent advances in laser spectroscopic instrumentation have changed that. We report measurements of isotopic (13C and 18O) CO2 exchange made by eddy covariance at Harvard Forest between April and December, 2010. The measurements were made using a continuous-wave quantum cascade laser spectrometer (Aerodyne Research Inc.) sampling at 4 Hz and are, to our knowledge, the first EC isotopic flux measurements at a forest site. The spectrometer can measure δ13C and δ18O with internal precisions (standard deviation of 1-minute averages) of 0.03 ‰, and [CO2] with an internal precision of 15 ppb; the instrumental accuracy, calibration, and long-term stability are discussed in detail. The isotopic data are considered in relation to environmental variables (PAR, temperature, humidity, soil temperature and moisture), and a first attempt at flux partitioning using the isotopic fluxes is presented.

  8. Demonstration of nonlinearity bias in the measurement of the apparent diffusion coefficient in multicenter trials.

    PubMed

    Malyarenko, Dariya I; Newitt, David; J Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G; Arlinghaus, Lori R; Jacobs, Michael A; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E; Huang, Wei; Chenevert, Thomas L

    2016-03-01

    Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models. The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions. The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. © 2015 Wiley Periodicals, Inc.

  9. Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis

    NASA Astrophysics Data System (ADS)

    Varino, Filipa; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Granier, Jean-Baptiste

    2018-03-01

    The multi-decadal variations of wintertime extra-tropical cyclones during the last century are studied using a vorticity-based tracking algorithm applied to the long-term ERA-20C reanalysis from ECMWF. The variability of moderate-to-deep extra-tropical winter cyclones in ERA-20C show three distinct periods. Two at the beginning and at the end of the century (1900-1935 and 1980-2010) present weak or no significant trends in the Northern Hemisphere as a whole and only some regional trends. The period in between (1935-1980) is marked by a significant increase in Northern Hemisphere moderate-to-deep cyclones frequency. During the latter period, polar regions underwent a significant cooling over the whole troposphere that increased and shifted poleward the mid-latitude meridional temperature gradient and the baroclinicity. This is linked to positive-to-negative shifts of the PDO between 1935 and 1957 and of the AMO between 1957 and 1980 which mainly reinforced the storm-track eddy generation in the North Pacific and North Atlantic regions respectively, as seen from baroclinic conversion from mean to eddy potential energy. As a result, both the North Pacific and North Atlantic extra-tropical storms increase in frequency during the two subperiods (1935-1957 and 1957-1980), together with other storm-track quantities such as the high-frequency eddy kinetic energy. In contrast, the first and third periods are characterized by a warming of the polar temperatures. However, as the stronger warming is confined to the lower troposphere, the baroclinicity do not uniformly increase in the whole troposphere. This may explain why the recent rapid increase in polar temperatures has not affected the behaviour of extratropical cyclones very much. Finally, the large magnitude of the positive trend found in moderate-to-deep cyclone frequency during the second period is still questioned as the period is marked by an important increase in the number of assimilated observations. However, the dynamical link between changes in cyclone frequency, changes in large-scale baroclinicity and ocean decadal variability found in the present study makes us confident on the sign of the detected cyclone trend.

  10. The formation processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Miyazawa, Yasumasa; Oey, Lie-Yauw; Kodaira, Tsubasa; Huang, Shihming

    2017-05-01

    In this study, we investigate the processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in warm eddies in near-surface water (z > -70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during eddy formation (stage A). Phytoplankton and nutrients in cold eddies is transported toward shallower waters while those in warm eddies move toward deeper waters. In the period after the eddy has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold eddies. Phytoplankton in warm eddies decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both warm and cold eddies, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (˜3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating eddies, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B warm and cold eddies.

  11. Interannual variability of Danube waters propagation in summer period of 1992-2015 and its influence on the Black Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Kubryakov, A. A.; Stanichny, S. V.; Zatsepin, A. G.

    2018-03-01

    The propagation of the Danube River plume has strong interannual variability that impacts the local balance of nutrients and the thermohaline structure in the western Black Sea. In the present study, we use a particle-tracking model based on satellite altimetry measurements and wind reanalysis data, as well as satellite measurements (SeaWiFS, MODIS), to investigate the interannual variability in the Danube plume pathways during the summer from 1993 to 2015. The wind conditions largely define the variability in the Danube water propagation. Relatively low-frequency variability (on periods of a week to months) in the wind stress curl modulates the intensity of the geostrophic Rim Current and related mesoscale eddy dynamics. High-frequency offshore wind-drift currents transport the plume across isobaths and provide an important transport link between shelf and offshore circulation. Inherent plume dynamics play an additional role in the near-mouth transport of the plume and its connection with offshore circulation. During the years with prevailing northeast winds ( 30% of studied cases), which are usually accompanied by increased wind curl over the Black Sea and higher Danube discharge, an alongshore southward current at the NorthWestern Shelf (NWS) is formed near the western Black Sea coast. Advected southward, the Danube waters are entrained in the Rim Current jet, which transports them along the west coast of the basin. The strong Rim Current, fewer eddies and downwelling winds substantially decrease the cross-shelf exchange of nutrients. During the years with prevailing southeastern winds ( 40%), the Rim Current is less intense. Mesoscale eddies effectively trap the Danube waters, transporting them to the deep western part of the basin. The low- and high-frequency southeastern wind-drift currents contribute significantly to cross-isobath plume transport and its connection with offshore circulation. During several years ( 15%), the Danube waters moved eastward to the west coast of Crimea. They were transported on the north periphery of the mesoscale anticyclones due to prevailing eastward wind-drift currents. During the years with hot summers, a monsoon effect induced the formation of a strong anticyclonic wind cell over the NorthWestern Shelf (NWS), and the plume moved northward ( 15%). Anticyclonic wind circulation leads to the Ekman convergence of brackish surface waters in the centre of the shelf and the formation of a baroclinic geostrophic anticyclone north of the NWS. This anticyclone traps the Danube waters and forces them to remain on the shelf for a long period of time. The impact of the propagation of the plume on the variability in chlorophyll a chlorophyll a in the NWS and the western Black Sea is analysed in this study based on satellite data.

  12. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum

    NASA Astrophysics Data System (ADS)

    Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai

    2017-01-01

    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.

  13. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  14. Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder

    NASA Technical Reports Server (NTRS)

    Cox, Jared S.; Brentner, Kenneth S.; Rumsey, Christopher L.; Younis, Bassam A.

    1997-01-01

    The Lighthill acoustic analogy approach combined with Reynolds-averaged Navier Stokes is used to predict the sound generated by unsteady viscous flow past a circular cylinder assuming a correlation length of ten cylinder diameters. The two- dimensional unsteady ow field is computed using two Navier-Stokes codes at a low Mach number over a range of Reynolds numbers from 100 to 5 million. Both laminar ow as well as turbulent ow with a variety of eddy viscosity turbulence models are employed. Mean drag and Strouhal number are examined, and trends similar to experiments are observed. Computing the noise within the Reynolds number regime where transition to turbulence occurs near the separation point is problematic: laminar flow exhibits chaotic behavior and turbulent ow exhibits strong dependence on the turbulence model employed. Comparisons of far-field noise with experiment at a Reynolds number of 90,000, therefore, vary significantly, depending on the turbulence model. At a high Reynolds number outside this regime, three different turbulence models yield self-consistent results.

  15. Global Eddy-Permitting Ocean Reanalyses and Simulations of the Period 1992 to Present

    NASA Astrophysics Data System (ADS)

    Parent, L.; Ferry, N.; Barnier, B.; Garric, G.; Bricaud, C.; Testut, C.-E.; Le Galloudec, O.; Lellouche, J.-M.; Greiner, E.; Drevillon, M.; Remy, E.; Moulines, J.-M.; Guinehut, S.; Cabanes, C.

    2013-09-01

    We present GLORYS2V1 global ocean and sea-ice eddy permitting reanalysis over the altimetric era (1993- 2009). This reanalysis is based on an ocean and sea-ice general circulation model at 1⁄4° horizontal resolution assimilating sea surface temperature, in situ profiles of temperature and salinity and along-track sea level anomaly observations. The reanalysis has been produced along with a reference simulation called MJM95 which allows evaluating the benefits of the data assimilation. In the introduction, we briefly describe the GLORYS2V1 reanalysis system. In sections 2, 3 and 4, the reanalysis skill is presented. Data assimilation diagnostics reveal that the reanalysis is stable all along the time period, with however an improved skill when Argo observation network establishes. GLORYS2V1 captures well climate signals and trends and describes meso-scale variability in a realistic manner.

  16. Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng

    2017-05-01

    The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.

  17. Enhanced role of eddies in the Arctic marine biological pump

    PubMed Central

    Watanabe, Eiji; Onodera, Jonaotaro; Harada, Naomi; Honda, Makio C.; Kimoto, Katsunori; Kikuchi, Takashi; Nishino, Shigeto; Matsuno, Kohei; Yamaguchi, Atsushi; Ishida, Akio; Kishi, Michio J.

    2014-01-01

    The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans. PMID:24862402

  18. Coordinated Parameterization Development and Large-Eddy Simulation for Marine and Arctic Cloud-Topped Boundary Layers

    NASA Technical Reports Server (NTRS)

    Bretherton, Christopher S.

    2002-01-01

    The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.

  19. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests.

    PubMed

    Campioli, M; Malhi, Y; Vicca, S; Luyssaert, S; Papale, D; Peñuelas, J; Reichstein, M; Migliavacca, M; Arain, M A; Janssens, I A

    2016-12-14

    The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO 2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.

  20. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.

    2016-12-01

    The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM.

  1. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests

    PubMed Central

    Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A.; Janssens, I. A.

    2016-01-01

    The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM. PMID:27966534

  2. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...

  3. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...

  4. Eddy Current Testing, RQA/M1-5330.17.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on eddy current testing. The subject is presented under the following headings: Introduction, Eddy Current Principles, Eddy Current Equipment, Eddy Current Methods,…

  5. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Requalification period (years) Eddy current examination combined with visual inspection Eddy current—In accordance... performing eddy current must be familiar with the eddy current equipment and must standardize (calibrate) the system in accordance with the requirements provided in Appendix C to this part. 2 The eddy current must...

  6. PSF mapping-based correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging.

    PubMed

    In, Myung-Ho; Posnansky, Oleg; Speck, Oliver

    2016-05-01

    To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.

  7. Seasonality in the proportions of domestic cats shedding Toxoplasma gondii or Hammondia hammondi oocysts is associated with climatic factors.

    PubMed

    Schares, G; Ziller, M; Herrmann, D C; Globokar, M V; Pantchev, N; Conraths, F J

    2016-04-01

    A previous study on domestic cats in Germany and neighbouring countries suggested seasonality in shedding Toxoplasma gondii oocysts. The aim of the present study was to elucidate whether this seasonality in shedding could be explained by climatic effects and whether differences between years in the proportions of cats shedding oocysts could also be explained by climatic factors. To this end, a long-term study over a period of 55 months on domestic cats for T. gondii and Hammondia hammondi oocysts was performed and the results compared with climatic data. Using species-specific PCR, T. gondii oocysts were identified in 0.14% (84/61,224) and H. hammondi in 0.10% (61/61,224) of the samples. Toxoplasma gondii oocysts were predominantly observed from summer to autumn, while H. hammondi oocysts were mainly found during autumn and winter. In statistical analyses using climatic data, even differences in parasitological findings between years could be partially modelled using monthly temperature, North Atlantic Oscillation indices and precipitation. Of the three climatic variables analysed, precipitation as an explanatory variable had the lowest impact in the statistical models while those taking only temperature and North Atlantic Oscillation indices into account were sufficiently predictive. Interestingly, time lags between the climatic event and the parasitological findings had to be implemented in all models. For T. gondii, North Atlantic Oscillation indices with a time lag of 7 months and temperature with a time lag of 2 months had the best predictive value. In contrast, temperature (with a time lag of 6 months) and the interaction of precipitation (with a time lag of 5 months) and North Atlantic Oscillation indices (with a time lag of 11 months) were optimal for predicting the seasonality of H. hammondi. These results suggest prominent differences in the life cycles of the two closely related parasites. Previous findings showed that H. hammondi lack avian hosts, in contrast to T. gondii, and the coincidence in the periods of high abundance of birds and high proportions of cats shedding T. gondii suggest that birds may play an important role in the epidemiology of this infection. The result that North Atlantic Oscillation index is an important variable in modelling variations in the proportion of cats shedding T. gondii and H. hammondi over the year is an indication that global warming may also influence the infection risk of animals and humans with T. gondii and H. hammondi. The findings have important implications for planning epidemiological studies and for estimating the risk of human infection. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. Shallow Cumulus Variability at the ARM Eastern North Atlantic Site

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Kollias, P.; Ghate, V. P.; Luke, E. P.

    2016-12-01

    Cumulus clouds play a critical role in modulating the radiative and hydrological budget of the lower troposphere. These clouds, which are ubiquitous in regions of large-scale subsidence over the oceans, tend to be misrepresented in global climate models. Island-based, long-term, high-resolution ground-based observations can provide valuable insights on the factors controlling their macroscopic and microphysical properties and subsequenlty assist in model evaluation and guidance. Previous studies, limited to fair-weather cumuli over land, revealed that their fractional coverage is only weakly correlated with several parameters; the best ones being complex dynamical characteristics of the subcloud layer (vertical velocity skewness and eddy coherence). Other studies noted a relationship between cumuli depth and their propensity to precipitate. The current study will expand on such analysis by performing detail characterization of the full spectrum of shallow cumulus fields from non-precipitating to precipitating in the context of the large-scale forcing (i.e. thermodynamic structure and subsidence rates). Two years of ground-based remote sensing observations collected at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic (ENA) site are used to document macroscopic (cloud depth, cord length, cover), microphysical (liquid water path, cloud base rain rate) and dynamical (cloud base mass flux, eddy dissipation rate) cumuli properties. The observed variability in shallow cumulus is examined in relation to the variability of the large-scale environment as captured by the humidity profile, the magnitude of the low-level horizontal winds and near-surface aerosol conditions.

  9. Circulation in the Mediterranean Sea and consequences on the water quality

    NASA Astrophysics Data System (ADS)

    Millot, C.

    2003-04-01

    Atlantic Water (AW) flows into the Mediterranean Sea (about 10 super(6) m super(3)/s) to compensate for the deficit (about 10 super(5) m super(3)/s) created by evaporation larger than precipitation and river runoff there. Mainly due to the earth's rotation, the current is generally bent to the right, so that AW flows anticlockwise alongslope in both the western and the eastern basins. Meanwhile, it is continuously evaporated and thus made denser. In winter, dry and cold air masses transported by violent northerly winds induce large losses of latent and sensible heat. Hence, AW sinks in some specific regions located in the northern part of the various subbasins. The intermediate and deep waters that are formed in such a way then circulate, still bent to the right by the earth's rotation, before flowing through the various channels and, finally, out from the sea. The Mediterranean Sea is thus a machine that transforms surface oceanic water into saltier (by about 2 psu) cooler (by about 2 °C) and denser (by about 2 kg/m super(3)) waters that will flow and spread at intermediate depths (1000-1200 m) in most of the northern Atlantic. Due to the west-east elongated shape of both basins, and to the specific locations of their openings, AW first flows eastwards in the southern part of each basin. There, the current is markedly unstable and it generates, all year long and a few times per year, 100-200 km anticyclonic eddies that propagate downstream at a few km/day, extend possibly down to the bottom (about 3000 m), and have lifetimes up to 3 years at least. Especially in the eastern basin, similar eddies are induced in specific places by the Etesians, they can propagate then and survive for more than one year. All these eddies strongly interact, either with their parent current of with other eddies, and two eddies can merge. Natural barriers (islands and/or the bathymetry) prevent these eddies from reaching the eastern parts of the basins so that AW there flows northward in a relatively gentle way. In the northern parts of the basins, AW flows westwards, strongly interacting with the process of dense water formation and thus displaying a marked seasonal variability. At intermediate and greater depths, the circulation is less well specified, but it can display a marked variability at seasonal and meso- scales, and it can be much more intense than generally thought. On the whole, consequences on the water quality are that floating materials are transported all around the sea, eventually pushed southwards by the dominant winds, but still maintained within the sea. Conversely, all dissolved materials will, some time, be flushed out of the sea. At basin scale, sewage effluents released along the southern coasts will generally be entrained either alongslope (in one direction or the other) or seaward, before eventually coming back. Effluents from the eastern and northern coasts will generally be entrained alongslope downstream.

  10. Prospects for Problems Associated with Integrative and Inter-comparative Analysis of Eddy Flux Data Sets

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Miyata, A.; Nagai, H.; Mano, M.; Yamamoto, S.

    2005-12-01

    In last decade, numerous long-term eddy flux measurements have been conducted worldwide to assess annual/seasonal energy, water and carbon exchanges between terrestrial ecosystem and the atmosphere. And FLUXNET communities now seem to come into a next phase with the objectives: integration of flux data observed at various ecosystems and/or inter-sites comparative studies. For example, a big research project "S-1" is ongoing in Japan and other eastern Asian region to set up terrestrial carbon management of Asia in the 21st century. One of the highlights of S-1 project is to provide a carbon budget map of all over Asia based on integrated and inter-compared eddy flux data collected at 15 sites of S-1 membership. FLUXNET communities including S-1 project have recognized that integration and inter-comparison of eddy flux data are the key issues to understand aspects of energy, water and carbon budgets at regional scale. However, the issues have difficulties to be settled because each flux site applies own data processing methods and gap-filling methods with site-specified classification and threshold values. In order to conduct appropriate integrative and inter-comparative analysis for eddy flux data effectively, we made it clear that how the differences in the data processing method affect the obtained flux values and searched for suitable and common gap-filling methodology. The differences in the data processing methods affect the obtained flux data in the present study was discussed based on a comparative experiment in S-1 project. We prepared one-month common test data sets, which consisted of 10 Hz eddy covariance raw data and related half-hourly meteorological data obtained at a larch forest site and a paddy site, in the comparative experiment. The 15 sites of S-1 memberships processed the test data by using their own processing methods. The results indicated that combined influences of coordinate rotation, detrending and frequency response correction brought about up to 10% of flux discrepancy, and that the forest sites were more sensitive to differences in the data processing methods than the non-forest sites. Multiple imputation method (MI), one of the statistical operations for analyzing incomplete multivariate data set, is likely to be an easy-to-use and objective gap-filling method to account for missing eddy flux data. We also discussed validity of application of MI to fill missing flux data by comparing a gap-filled complete eddy flux data set obtained by MI with that by nonlinear regression method and look-up table method. It was revealed that, with suitable separation of the periods to be filled and proper selection of reference variables, MI has potential to be applied commonly to gap-filling missing flux data, and that MI can be a useful tool for FLUXNET communities to make inter-site comparison of long-term flux data.

  11. Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh

    2015-09-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.

  12. Pathways of Atlantic Waters in the Nordic seas: locally eddy-permitting ocean simulation in a global setup

    NASA Astrophysics Data System (ADS)

    Wekerle, C.; Wang, Q.; Danilov, S.; Jung, T.; Schourup-Kristensen, V.

    2016-02-01

    Atlantic Water (AW) passes through the Nordic Seas and enters the Arctic Ocean through the shallow Barents Sea and the deep Fram Strait. Since the 1990's, observations indicate a series of anomalously warm pulses of Atlantic Water that entered the Arctic Ocean. In fact, poleward oceanic heat transport may even increase in the future, which might have implications for the heat uptake in the Arctic Ocean as well as for the sea ice cover. The ability of models to faithfully simulate the pathway of the AW and accompanying dynamics is thus of high climate relevance. In this study, we explore the potential of a global multi-resolution sea ice-ocean model with a locally eddy-permitting resolution (around 4.5 km) in the Nordic seas region and Arctic Ocean in improving the representation of Atlantic Water inflow, and more broadly, the dynamics of the circulation in the Northern North Atlantic and Arctic. The simulation covers the time period 1969-2009. We find that locally increased resolution improves the localization and thickness of the Atlantic Water layer in the Nordic seas, compared with a 20 km resolution reference simulation. In particular, the inflow of Atlantic Waters through the Greenland Scotland Ridge and the narrow branches of the Norwegian Atlantic Current can be realistically represented. Lateral spreading due to simulated eddies essentially reduces the bias in the surface temperature. In addition, a qualitatively good agreement of the simulated eddy kinetic energy field with observations can be achieved. This study indicates that a substantial improvement in representing local ocean dynamics can be reached through the local refinement, which requires a rather moderate computational effort. The successful model assessment allows us to further investigate the variability and mechanisms behind Atlantic Water transport into the Arctic Ocean.

  13. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements

    DOE PAGES

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; ...

    2016-08-23

    Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results providemore » quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. In conclusion, this study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network.« less

  14. Zooplankton trophic niches respond to different water types of the western Tasman Sea: A stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Henschke, Natasha; Everett, Jason D.; Suthers, Iain M.; Smith, James A.; Hunt, Brian P. V.; Doblin, Martina A.; Taylor, Matthew D.

    2015-10-01

    The trophic relationships of 21 species from an oceanic zooplankton community were studied using stable isotopes of carbon and nitrogen. Zooplankton and suspended particulate organic matter (POM) were sampled in three different water types in the western Tasman Sea: inner shelf (IS), a cold core eddy (CCE) and a warm core eddy (WCE). δ15N values ranged from 3.9‰ for the parasitic copepod Sapphirina augusta to 10.2‰ for the euphausiid, Euphausia spinifera. δ13C varied from -22.6 to -19.4‰ as a result of the copepod Euchirella curticauda and E. spinifera. The isotopic composition of POM varied significantly among water types; as did the trophic enrichment of zooplankton over POM, with the lowest enrichment in the recently upwelled IS water type (0.5‰) compared to the warm core eddy (1.6‰) and cold core eddy (2.7‰). The WCE was an oligotrophic environment and was associated with an increased trophic level for omnivorous zooplankton (copepods and euphausiids) to a similar level as carnivorous zooplankton (chaetognaths). Therefore carnivory in zooplankton can increase in response to lower abundance and reduced diversity in their phytoplankton and protozoan prey. Trophic niche width comparisons across three zooplankton species: the salp Thalia democratica, the copepod Eucalanus elongatus and the euphausiid Thysanoessa gregaria, indicated that both niche partitioning and competition can occur within the zooplankton community. We have shown that trophic relationships among the zooplankton are dynamic and respond to different water types. The changes to the zooplankton isotopic niche, however, were still highly variable as result of oceanographic variation within water types.

  15. Using Riverboat-Mounted Eddy Covariance for Direct Measurements of Air-water Gas Exchange in Amazonia

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Freitas, H.; Read, E.; Goulden, M. L.; Rocha, H.

    2007-12-01

    Gas evasion from Amazonian rivers and lakes to the atmosphere has been estimated to play an important role in the regional budget of carbon dioxide (Richey et al., 2002) and the global budget of methane (Melack et al., 2004). These flux estimates were calculated by combining remote sensing estimates of inundation area with water-side concentration gradients and gas transfer rates (piston velocities) estimated primarily from floating chamber measurements (footprint ~1 m2). The uncertainty in these fluxes was large, attributed primarily to uncertainty in the gas exchange parameterization. Direct measurements of the gas exchange coefficient are needed to improve the parameterizations in these environments, and therefore reduce the uncertainty in fluxes. The micrometeorological technique of eddy covariance is attractive since it is a direct measurement of gas exchange that samples over a much larger area than floating chambers, and is amenable to use from a moving platform. We present eddy covariance carbon dioxide exchange measurements made using a small riverboat in rivers and lakes in the central Amazon near Santarem, Para, Brazil. Water-side carbon dioxide concentration was measured in situ, and the gas exchange coefficient was calculated. We found the piston velocity at a site on the Amazon River to be similar to existing ocean-based parameterizations, whereas the piston velocity at a site on the Tapajos River was roughly a factor 5 higher. We hypothesize that the enhanced gas exchange at the Tapajos site was due to a shallow upwind fetch. Our results demonstrate the feasibility of boat-based eddy covariance on these rivers, and also the utility of a mobile platform to investigate spatial variability of gas exchange.

  16. On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the Eddy-Driven Jet

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.

    2017-12-01

    One most drastic atmospheric change in the global warming scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong warming over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the eddy-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the eddy-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the eddy-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which eddy-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of eddies, which supports the latitudinal shift of the eddy momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "eddy dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible eddy mixing, which amplifies the latitudinal shift of the eddy-driven jet. Whether the eddy response is "generation control" or "dissipation control" may strongly depend on the eddy behavior in its baroclinic processes. Only the anomalous eddy generation that penetrates into the upper troposphere can have a striking impact on the eddy momentum flux, which pushes the jet shift more efficiently and dominates the eddy response.

  17. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru

    NASA Astrophysics Data System (ADS)

    Stramma, L.; Bange, H. W.; Czeschel, R.; Lorenzo, A.; Frank, M.

    2013-11-01

    Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study, three eddies along a section at 16°45´ S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s-1. The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP. The observed heat and salt anomalies (AHA, ASA) of the anticyclonic eddy near the shelf-break of 17.7 × 1018 J and 36.6 × 1010 kg are more than twice as large as the mean AHA and ASA for the ETSP. We found that the eddies contributed to the productivity by maintaining pronounced subsurface maxima of chlorophyll of up to 6 μg L-1. Based on a comparison of the coastal (young) mode water eddy and the open ocean (old) mode water eddy we suggest that the ageing of eddies when they detach from the shelf-break and move westward to the open ocean influences the eddies' properties: chlorophyll maxima are reduced to about half (2.5-3 μg L-1) and nutrients are subducted. However, different settings at the time of formation may also contribute to the observed differences between the young and old mode water eddies. The coastal mode water eddy was found to be a site of nitrogen (N) loss in the OMZ with a maximum ΔNO3- anomaly (i.e. N loss) of about -25 μmol L-1 in 250 m water depth, whereas, the open ocean mode water and cyclonic eddies were of minor and negligible importance for the N loss, respectively. Our results show that the important role of eddies for the distribution of nutrients, as well as biogeochemical processes in the ETSP (and other OMZ/upwelling regions) can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys.

  18. The impact of greenhouse climate change on the energetics and hydrologic processes of mid-latitude transient eddies

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Gutowski, William J., Jr.

    1991-01-01

    Atmospheric transient eddies contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient eddy behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient eddies are isolated from the feedbacks and are focused on the response of the eddies to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient eddies is examined. Transient eddy behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in eddy kinetic energy, especially in the subtropics. The decrease in subtropical eddy energy is related to a substantial reduction in equatorward flux of eddy activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. Eddy meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in eddy energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in eddy water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments.

  19. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean.

    PubMed

    Baltar, Federico; Arístegui, Javier; Gasol, Josep M; Lekunberri, Itziar; Herndl, Gerhard J

    2010-08-01

    To investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic 'hotspots' of prokaryotic activity (in the epi- and mesopelagic realms).

  20. Open ocean dead zones in the tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Fiedler, B.; Schütte, F.; Brandt, P.; Körtzinger, A.; Fischer, G.; Zantopp, R.; Hahn, J.; Visbeck, M.; Wallace, D.

    2015-04-01

    Here we present first observations, from instrumentation installed on moorings and a float, of unexpectedly low (<2 μmol kg-1) oxygen environments in the open waters of the tropical North Atlantic, a region where oxygen concentration does normally not fall much below 40 μmol kg-1. The low-oxygen zones are created at shallow depth, just below the mixed layer, in the euphotic zone of cyclonic eddies and anticyclonic-modewater eddies. Both types of eddies are prone to high surface productivity. Net respiration rates for the eddies are found to be 3 to 5 times higher when compared with surrounding waters. Oxygen is lowest in the centre of the eddies, in a depth range where the swirl velocity, defining the transition between eddy and surroundings, has its maximum. It is assumed that the strong velocity at the outer rim of the eddies hampers the transport of properties across the eddies boundary and as such isolates their cores. This is supported by a remarkably stable hydrographic structure of the eddies core over periods of several months. The eddies propagate westward, at about 4 to 5 km day-1, from their generation region off the West African coast into the open ocean. High productivity and accompanying respiration, paired with sluggish exchange across the eddy boundary, create the "dead zone" inside the eddies, so far only reported for coastal areas or lakes. We observe a direct impact of the open ocean dead zones on the marine ecosystem as such that the diurnal vertical migration of zooplankton is suppressed inside the eddies.

  1. N2O fluxes over a corn field from an open-path, laser-based eddy covariance system and static chambers

    NASA Astrophysics Data System (ADS)

    Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.

    2015-12-01

    Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a footprint model. Our results indicate diurnality of ecosystem level N2O emissions may have important consequences for both field and global scale budgets and highlight the need of more continuous measurements for future investigation.

  2. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    The impact that sub-mesoscale (1-10 km) to mesocale (50-100 km) oceanographic variability has on plankton and nutrient distributions (horizontal and vertical) in the coastal upwelling and transition zones off Concepcion was the focus of this study. Satellite time-series data (wind, sea-surface temperature (SST), and altimetry) were used to understand the dynamic context of in situ data derived from a short-term front survey (3 d) during the upwelling period (3-6 February, 2014). The survey included two transects perpendicular to the coast, covering the shelf and shelf-break areas just north of Punta Lavapie, a main upwelling center (˜37° S). Wind and SST time-series data indicated that the survey was undertaken just after a moderate upwelling event (end of January) which lead to a relaxation phase during early February. A submesoscale thermal front was detected previous to and during the survey and results from an eddy tracking algorithm based on altimetry data indicated that this front (F1) was flanked on its oceanic side by an anticyclonic, mesoscale eddy (M1), which was ˜25 d old at the sampling time. M1 strengthened the thermal gradient of F1 by bringing warmer oceanic water nearer to the colder coastal upwelling zone. The distributions of hydrographic variables and nutrients in the water column (<300 m depth) also denoted these two features. Phytoplankton biomass (Chl-a) and diatom abundance were highest in the surface layer (<20 m depth) between the coast and F1, with primary maxima in the latter, whereas they were highest at the subsurface (20-40 m depth) towards M1 and associated with secondary maxima. The distribution of dominant diatoms in the top layer (<100 m depth) indicated that both coastal and oceanic species were aggregated at F1 and in M1. These results suggest that the front-eddy interaction creates a complex field of submesoscale processes in the top layer, including vertical nutrient injections and lateral stirring, which contributes to the exportation of coastal communities to the open ocean in this region. We discuss how this interaction might affect ecosystem productivity in the coastal band.

  3. Detecting defects in marine structures by using eddy current infrared thermography.

    PubMed

    Swiderski, W

    2016-12-01

    Eddy current infrared (IR) thermography is a new nondestructive testing (NDT) technique used for the detection of cracks in electroconductive materials. By combining the well-established inspection methods of eddy current NDT and IR thermography, this technique uses induced eddy currents to heat test samples. In this way, IR thermography allows the visualization of eddy current distribution that is distorted in defect sites. This paper discusses the results of numerical modeling of eddy current IR thermography procedures in application to marine structures.

  4. Automated detection of Lagrangian eddies and coherent transport of heat and salinity in the Agulhas leakage

    NASA Astrophysics Data System (ADS)

    Huhn, Florian; Haller, George

    2014-05-01

    Haller and Beron-Vera(2013) have recently introduced a new objective method to detect coherent Lagrangian eddies in turbulence. They find that closed null-geodesics of a generalized Green-Lagrange strain tensor act as coherent Lagrangian eddy boundaries, showing near-zero and uniform material stretching. We make use of this method to develop an automated detection procedure for coherent Lagrangian eddies in large-scale ocean data. We apply our results to a recent 3D general circulation model, the Southern Ocean State Estimate (SOSE), with focus on the South Atlantic Ocean and the inter-ocean exchange between the Indian and Atlantic ocean. We detect a large number of coherent Lagrangian eddies and present statistics of their properties. The largest and most circular eddy boundaries represent Lagrangian Agulhas rings. Circular regions inside these rings with higher temperature and salinity than the surrounding waters can be explained by the coherent eddy boundaries that enclose and isolate the eddy interiors. We compare eddy boundaries at different depths with eddy boundaries obtained from geostrophic velocities derived from the model's sea surface height (SSH). The transport of mass, heat and salinity enclosed by coherent eddies through a section in the Cape basin is quantified and compared to the non-coherent transport by the background flow.

  5. Ocean eddies and climate predictability

    NASA Astrophysics Data System (ADS)

    Kirtman, Ben P.; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  6. Ocean eddies and climate predictability.

    PubMed

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  7. Momentum, sensible heat and CO2 correlation coefficient variability: what can we learn from 20 years of continuous eddy covariance measurements?

    NASA Astrophysics Data System (ADS)

    Hurdebise, Quentin; Heinesch, Bernard; De Ligne, Anne; Vincke, Caroline; Aubinet, Marc

    2017-04-01

    Long-term data series of carbon dioxide and other gas exchanges between terrestrial ecosystems and atmosphere become more and more numerous. Long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) an ICOS candidate site located in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardenne. Fluxes of momentum, carbon dioxide and sensible heat have been continuously measured there by eddy covariance for more than 20 years. During this period, changes in canopy height and measurement height occurred. The correlation coefficients (for momemtum, sensible heat and CO2) and the normalized standard deviations measured for the past 20 years at the Vielsalm Terrestrial Observatory (VTO) were analysed in order to define how the fluxes, independently of climate conditions, were affected by the surrounding environment evolution, including tree growth, forest thinning and tower height change. A relationship between canopy aerodynamic distance and the momentum correlation coefficient was found which is characteristic of the roughness sublayer, and suggests that momentum transport processes were affected by z-d. In contrast, no relationship was found for sensible heat and CO2 correlation coefficients, suggesting that the z-d variability observed did not affect their turbulent transport. There were strong differences in these coefficients, however, between two wind sectors, characterized by contrasted stands (height differences, homogeneity) and different hypotheses were raised to explain it. This study highlighted the importance of taking the surrounding environment variability into account in order to ensure the spatio-temporal consistency of datasets.

  8. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  9. The pines of the Eddy Arboretum

    Treesearch

    John Duffield

    1949-01-01

    The Eddy Arboretum at Placerville, California, contains more than 90 species, varieties, and hybrids of pines, and is therefore of great interest to horticulturists. The Arboretum was established in 1925 as a source of breeding stock for the Eddy Tree Breeding Station, founded in the same year by Mr. James G. Eddy of Seattle. In 1934 Mr. Eddy presented the Arboretum...

  10. The physical environmental conditions for biogeochemical differences along the Antarctic Circumpolar Current in the Atlantic Sector during late austral summer 2012

    NASA Astrophysics Data System (ADS)

    Strass, Volker H.; Leach, Harry; Prandke, Hartmut; Donnelly, Matthew; Bracher, Astrid U.; Wolf-Gladrow, Dieter A.

    2017-04-01

    The physical and biological carbon pumps in the different hydrographic and biogeochemical regimes of the Atlantic Sector of the Southern Ocean are controlled by a series of coupled physical, chemical and biological processes and a project named Eddy-Pump was designed to study them. The Eddy Pump field campaign was carried out during RV Polarstern Cruise ANT-XXVIII/3 between January and March 2012. Particular emphasis was laid on the differences which occur along the axis of the Antarctic Circumpolar Current (ACC) with its associated mesoscale eddy field. The study sites were selected in order to represent (1) the central ACC with its regular separation in different frontal jets, investigated by a meridional transect along 10°E; (2) a large-scale bloom west of the Mid-Atlantic Ridge which lasted several months with conspicuous chlorophyll-poor waters to its immediate east studied by a three-dimensional mesoscale survey centred at 12°40‧W; and (3) the Georgia Basin north of the island of South Georgia, which regularly features an extended and dense phytoplankton bloom, was investigated by a mesoscale survey centred at 38°12‧W. While Eddy-Pump represents an interdisciplinary project by design, we here focus on describing the variable physical environment within which the different biogeochemical regimes developed. For describing the physical environment we use measurements of temperature, salinity and density, of mixed-layer turbulence parameters, of dynamic heights and horizontal current vectors, and of flow trajectories obtained from surface drifters and submerged floats. This serves as background information for the analyses of biological and chemical processes and of biogeochemical fluxes addressed by other papers in this issue. The section along 10°E between 44°S and 53°S showed a classical ACC structure with well-known hydrographic fronts, the Subantarctic Front (SAF) at 46.5°S, the Antarctic Polar Front (APF) split in two, at 49.25°S and 50.5°S, and the Southern Polar Front (SPF) at 52.5°S. Each front was associated with strong eastward flows. The West Mid-Atlantic Ridge Survey showed a weak and poorly resolved meander structure between the APF and the SPF. During the first eight days of the survey the oceanographic conditions at the Central Station at 12°40‧W remained reasonably constant. However after that, conditions became more variable in the thermocline with conspicuous temperature inversions and interleavings and also a decrease in temperature in the surface layer. At the very end of the period of observation the conditions in the thermocline returned to being similar to those observed during the early part of the period with however the mixed layer temperature raised. The period of enhanced thermohaline variability was accompanied by increased currents. The Georgia Basin Survey showed a very strong zonal jet at its northern edge which connects to a large cyclonic meander that itself joins an anticyclonic eddy in the southeastern quadrant. The water mass contrasts in this survey were stronger than in the West Mid-Atlantic Ridge Survey, but similar to those met along 10°E with the exception that the warm and saline surface water typical of the northern side of the SAF was not covered by the Georgia Basin Survey. Mixed layers found during Eddy-Pump were typically deep, but varied between the three survey areas; the mean depths and standard variations of the mixed layer along the 10°E were 77.2±24.7 m, at the West Mid-Atlantic Ridge 66.7±17.7 m, and in the Georgia Basin 36.8±10.7 m.

  11. Computational Simulations of Convergent Nozzles for the AIAA 1st Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2014-01-01

    Computational Fluid Dynamics (CFD) simulations were completed for a series of convergent nozzles in participation of the American Institute of Aeronautics and Astronautics (AIAA) 1st Propulsion Aerodynamics Workshop. The simulations were performed using the Wind-US flow solver. Discharge and thrust coefficients were computed for four axisymmetric nozzles with nozzle pressure ratios (NPR) ranging from 1.4 to 7.0. The computed discharge coefficients showed excellent agreement with available experimental data; the computed thrust coefficients captured trends observed in the experimental data, but over-predicted the thrust coefficient by 0.25 to 1.0 percent. Sonic lines were computed for cases with NPR >= 2.0 and agreed well with experimental data for NPR >= 2.5. Simulations were also performed for a 25 deg. conic nozzle bifurcated by a flat plate at NPR = 4.0. The jet plume shock structure was compared with and without the splitter plate to the experimental data. The Wind-US simulations predicted the shock structure well, though lack of grid resolution in the plume reduced the sharpness of the shock waves. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations and Detached Eddy Simulations (DES) were performed at NPR = 1.6 for the 25 deg conic nozzle with splitter plate. The simulations predicted vortex shedding from the trailing edge of the splitter plate. However, the vortices of URANS and DES solutions appeared to dissipate earlier than observed experimentally. It is believed that a lack of grid resolution in the region of the vortex shedding may have caused the vortices to break down too soon

  12. Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2014-11-01

    The turbulent horseshoe vortex (HV) system and the near-wake flow past a circular cylinder mounted on a flat bed in an open channel are investigated based on results of eddy-resolving simulations and supporting flow visualizations. Of particular interest are the changes in the mean flow and turbulence statistics within the HV region as the necklace vortices wrap around the cylinder's base and the variation of the mean flow and turbulence statistics in the near wake, in between the channel bed and the free surface. While it is well known that the drag crisis induces important changes in the flow past infinitely-long circular cylinders, the changes are less understood and more complex for the case of flow past a surface-mounted cylinder. A detailed discussion of the changes in the flow physics between cylinder Reynolds numbers at which the flow in the upstream part of the separated shear layers (SSLs) is laminar (Re = 16,000, subcritical flow regime) and Reynolds numbers at which transition occurs inside the attached boundary layers away from the bed and the flow within the SSLs is turbulent (Re = 500,000, supercritical flow regime). The changes between the two regimes in the dynamics and level of coherence of the large-scale coherent structures (necklace vortices, vortex tubes shed in the SSLs and roller vortices shed in the wake) and their capacity to induce high-magnitude bed friction velocities in the mean and instantaneous flow fields and to amplify the near-bed turbulence are analyzed.

  13. Variational Data Assimilation for the Global Ocean

    DTIC Science & Technology

    2013-01-01

    ocean includes the Geoid (a fixed gravity equipotential surface ) as well as the MDT, which is not known accurately enough relative to the centimeter...scales, including processes that control the surface mixed layer, the formation of ocean eddies, meandering ocean J.A. Cummings (E3) nography Division...variables. Examples of this in the ocean are integral quantities, such as acous^B travel time and altimeter measures of sea surface height, and direct

  14. EFFECTS OF CLIMATE VARIABILITY ON THE CARBON DIOXIDE, WATER, AND SENSIBLE HEAT FLUXES ABOVE A PONDEROSA PINE PLANTATION IN THE SIERRA NEVADA, CA. (R826601)

    EPA Science Inventory

    Abstract

    Fluxes of CO2, water vapor, and sensible heat were measured by the eddy covariance method above a young ponderosa pine plantation in the Sierra Nevada Mountains (CA) over two growing seasons (1 June¯10 September 1997 and 1 May&#...

  15. Strong links between teleconnections and ecosystem exchange found at a Pacific Northwest old-growth forest from flux tower and MODIS EVI data

    Treesearch

    Sonia Wharton; Laura Chasmer; Matthias Falk; Kyaw Tha Paw U

    2009-01-01

    Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and EI Nino-Southern Oscillation (ENSO). We use 9 years of eddy covariance...

  16. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  17. Large Eddy Simulations of the Vortex-Flame Interaction in a Turbulent Swirl Burner

    NASA Astrophysics Data System (ADS)

    Lu, Zhen; Elbaz, Ayman M.; Hernandez Perez, Francisco E.; Roberts, William L.; Im, Hong G.

    2017-11-01

    A series of swirl-stabilized partially premixed flames are simulated using large eddy simulation (LES) along with the flamelet/progress variable (FPV) model for combustion. The target burner has separate and concentric methane and air streams, with methane in the center and the air flow swirled through the tangential inlets. The flame is lifted in a straight quarl, leading to a partially premixed state. By fixing the swirl number and air flow rate, the fuel jet velocity is reduced to study flame stability as the flame approaches the lean blow-off limit. Simulation results are compared against measured data, yielding a generally good agreement on the velocity, temperature, and species mass fraction distributions. The proper orthogonal decomposition (POD) method is applied on the velocity and progress variable fields to analyze the dominant unsteady flow structure, indicating a coupling between the precessing vortex core (PVC) and the flame. The effects of vortex-flame interactions on the stabilization of the lifted swirling flame are also investigated. For the stabilization of the lifted swirling flame, the effects of convection, enhanced mixing, and flame stretching introduced by the PVC are assessed based on the numerical results. This research work was sponsored by King Abdullah University of Science and Technology (KAUST) and used computational resources at KAUST Supercomputing Laboratory.

  18. Examination of propeller sound production using large eddy simulation

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Kumar, Praveen; Mahesh, Krishnan

    2018-06-01

    The flow field of a five-bladed marine propeller operating at design condition, obtained using large eddy simulation, is used to calculate the resulting far-field sound. The results of three acoustic formulations are compared, and the effects of the underlying assumptions are quantified. The integral form of the Ffowcs-Williams and Hawkings (FW-H) equation is solved on the propeller surface, which is discretized into a collection of N radial strips. Further assumptions are made to reduce FW-H to a Curle acoustic analogy and a point-force dipole model. Results show that although the individual blades are strongly tonal in the rotor plane, the propeller is acoustically compact at low frequency and the tonal sound interferes destructively in the far field. The propeller is found to be acoustically compact for frequencies up to 100 times the rotation rate. The overall far-field acoustic signature is broadband. Locations of maximum sound of the propeller occur along the axis of rotation both up and downstream. The propeller hub is found to be a source of significant sound to observers in the rotor plane, due to flow separation and interaction with the blade-root wakes. The majority of the propeller sound is generated by localized unsteadiness at the blade tip, which is caused by shedding of the tip vortex. Tonal blade sound is found to be caused by the periodic motion of the loaded blades. Turbulence created in the blade boundary layer is convected past the blade trailing edge leading to generation of broadband noise along the blade. Acoustic energy is distributed among higher frequencies as local Reynolds number increases radially along the blades. Sound source correlation and spectra are examined in the context of noise modeling.

  19. Ring-slope interactions and the formation of the western boundary current in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Vidal, VíCtor M. V.; Vidal, Francisco V.; Meza, Eustorgio; Portilla, Josué; Zambrano, Lorenzo; Jaimes, BenjamíN.

    1999-09-01

    Hydrographic data from the Gulf of Mexico (gulf) provide evidence that a western boundary current was set up by the interaction of an anticyclonic Loop Current (LC) ring with the continental margin of the western gulf during March-August 1985. The March 1985 geostrophic circulation reveals a remnant anticyclonic ring colliding with the slope. During this collision, two cyclonic rings were shed as the anticyclone transferred vorticity to the surrounding slope water. During July-August 1985, the ring triad weakened and evolved into a ˜900-km-long, north flowing, along-slope, western boundary current and cyclonic-anticyclonic ring pairs distributed throughout the central and western gulf. This western boundary current attained maximum northward flow speeds of 25 cm s-1 and an 8.3-Sv mass transport between 94°-96°W at 25°N. Our March-August 1985 observations reveal that the residence time and decay period of LC anticyclones in the western gulf may exceed 150 days. Within this time period the western gulf's cyclonic-anticyclonic vorticity field decayed ˜50%. Thus the western boundary current's evolutionary period, from its gestation to its absolute decay, is estimated to be of the order of 300 days. Although the presence of a western boundary current in the gulf has been attributed to the annual wind stress curl cycle [Sturges, 1993], our analyses of the western gulf March and July-August 1985 ring-driven geostrophic circulation and corresponding (January, February and May, June 1985) monthly mean synoptic wind stress curl distributions reveal that these constitute competing forcing mechanisms for the gulf's regional circulation. However, when very strong local forcing such as large eddies are present, the wind-driven background circulation is overwhelmed by such eddy forcing.

  20. Recent and Future Enhancements in NDI for Aircraft Structures

    DTIC Science & Technology

    2015-11-30

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  1. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-30

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  2. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-01

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  3. Recent and Future Enhancements in NDI for Aircraft Structures (POSTPRINT)

    DTIC Science & Technology

    2015-11-16

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  4. The eddy current probe array for Keda Torus eXperiment.

    PubMed

    Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2016-11-01

    In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.

  5. Improved Imaging With Laser-Induced Eddy Currents

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    System tests specimen of material nondestructively by laser-induced eddy-current imaging improved by changing method of processing of eddy-current signal. Changes in impedance of eddy-current coil measured in absolute instead of relative units.

  6. Influence of basin-scale and mesoscale physical processes on biological productivity in the Bay of Bengal during the summer monsoon

    NASA Astrophysics Data System (ADS)

    Muraleedharan, K. R.; Jasmine, P.; Achuthankutty, C. T.; Revichandran, C.; Dinesh Kumar, P. K.; Anand, P.; Rejomon, G.

    2007-03-01

    Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July-August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m -3), low surface primary production (2.55 mg C m -3 day -1) and low zooplankton biovolume (0.14 ml m -3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO 3-N > 8.2 μM, PO 4-P > 0.8 μM, SiO 4-Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a - 0.25 mg m -3, PP - 9.23 mg C m -3 day -1), and mesozooplankton biovolume (1.12 ml m -3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of nutrients from deeper waters to surface), the utilization of nutrients leading to enhanced biological production and its transfer to upper trophic levels in the upwelling region imply that the energy transfer from primary production to secondary production (mesozooplankton) is more efficient than in the cyclonic eddy of the open ocean. The results suggest that basin-scale and mesoscale processes influence the abundance and spatial heterogeneity of plankton populations across a wide spatial scale in the BoB. The multifaceted effects of these physical processes on primary productivity thus play a prominent role in structuring of zooplankton communities and could consecutively affect the recruitment of pelagic fisheries.

  7. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix

    USGS Publications Warehouse

    Klymus, Katy E.; Richter, Catherine A.; Chapman, Duane C.; Paukert, Craig P.

    2015-01-01

    Wildlife managers can more easily mitigate the effects of invasive species if action takes place before a population becomes established. Such early detection requires sensitive survey tools that can detect low numbers of individuals. Due to their high sensitivity, environmental DNA (eDNA) surveys hold promise as an early detection method for aquatic invasive species. Quantification of eDNA amounts may also provide data on species abundance and timing of an organism’s presence, allowing managers to successfully combat the spread of ecologically damaging species. To better understand the link between eDNA and an organism’s presence, it is crucial to know how eDNA is shed into the environment. Our study used quantitative PCR (qPCR) and controlled laboratory experiments to measure the amount of eDNA that two species of invasive bigheaded carps (Hypophthalmichthys nobilis and Hypophthalmichthys molitrix) shed into the water. We first measured how much eDNA a single fish sheds and the variability of these measurements. Then, in a series of manipulative lab experiments, we studied how temperature, biomass (grams of fish), and diet affect the shedding rate of eDNA by these fish. We found that eDNA amounts exhibit a positive relationship with fish biomass, and that feeding could increase the amount of eDNA shed by ten-fold, whereas water temperature did not have an effect. Our results demonstrate that quantification of eDNA may be useful for predicting carp density, as well as densities of other rare or invasive species.

  8. Multi-band Emission Light Curves of Jupiter: Insights on Brown Dwarfs and Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Ge, Huazhi; Orton, Glenn S.; Fletcher, Leigh N.; Sinclair, James; Fernandes, Joshua; Momary, Thomas W.; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2016-10-01

    Many brown dwarfs exhibit significant infrared flux variability (e.g., Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750, 105), ranging from several to twenty percent of the brightness. Current hypotheses include temperature variations, cloud holes and patchiness, and cloud height and thickness variations (e.g., Apai et al. 2013, ApJ, 768, 121; Robinson and Marley 2014, ApJ, 785, 158; Zhang and Showman 2014, ApJ, 788, L6). Some brown dwarfs show phase shifts in the light curves among different wavelengths (e.g., Buenzli et al. 2012, ApJ, 760, L31; Yang et al. 2016, arXiv:1605.02708), indicating vertical variations of the cloud distribution. The current observational technique can barely detect the brightness changes on the surfaces of nearby brown dwarfs (Crossfield et al. 2014, Nature, 505, 654) let alone resolve detailed weather patterns that cause the flux variability. The infrared emission maps of Jupiter might shed light on this problem. Using COMICS at Subaru Telescope, VISIR at Very Large Telescope (VLT) and NASA's Infrared Telescope Facility (IRTF), we obtained infrared images of Jupiter over several nights at multiple wavelengths that are sensitive to several pressure levels from the stratosphere to the deep troposphere below the ammonia clouds. The rotational maps and emission light curves are constructed. The individual pixel brightness varies up to a hundred percent level and the variation of the full-disk brightness is around several percent. Both the shape and amplitude of the light curves are significantly distinct at different wavelengths. Variation of light curves at different epochs and phase shift among different wavelengths are observed. We will present principle component analysis to identify dominant emission features such as stable vortices, cloud holes and eddies in the belts and zones and strong emissions in the aurora region. A radiative transfer model is used to simulate those features to get a more quantitative understanding. This work provides rich insights on the relationship between observed light curves and weather on brown dwarfs and perhaps on directly imaged exoplanets in the future.

  9. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.

    2003-07-01

    A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.

  10. Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.

    2017-12-01

    Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of organized and random eddies, mean flow, large-scale perturbations etc. to mixing properties and transport pathways. Float release into the full flow inside selected vortices is also used to document the impact of eddy trains on the transformation of water masses inferred from changes in temperature/salinity along float trajectories.

  11. Statistical mechanics explanation for the structure of ocean eddies and currents

    NASA Astrophysics Data System (ADS)

    Venaille, A.; Bouchet, F.

    2010-12-01

    The equilibrium statistical mechanics of two dimensional and geostrophic flows predicts the outcome for the large scales of the flow, resulting from the turbulent mixing. This theory has been successfully applied to describe detailed properties of Jupiter's Great Red Spot. We discuss the range of applicability of this theory to ocean dynamics. It is able to reproduce mesoscale structures like ocean rings. It explains, from statistical mechanics, the westward drift of rings at the speed of non dispersive baroclinic waves, and the recently observed (Chelton and col.) slower northward drift of cyclonic eddies and southward drift of anticyclonic eddies. We also uncover relations between strong eastward mid-basin inertial jets, like the Kuroshio extension and the Gulf Stream, and statistical equilibria. We explain under which conditions such strong mid-basin jets can be understood as statistical equilibria. We claim that these results are complementary to the classical Sverdrup-Munk theory: they explain the inertial part basin dynamics, the jets structure and location, using very simple theoretical arguments. References: A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, arxiv ...., submitted to Physics Reports P. BERLOFF, A. M. HOGG, W. DEWAR, The Turbulent Oscillator: A Mechanism of Low- Frequency Variability of the Wind-Driven Ocean Gyres, Journal of Physical Oceanography 37 (2007) 2363-+. D. B. CHELTON, M. G. SCHLAX, R. M. SAMELSON, R. A. de SZOEKE, Global observations of large oceanic eddies, Geo. Res. Lett.34 (2007) 15606-+ b) and c) are snapshots of streamfunction and potential vorticity (red: positive values; blue: negative values) in the upper layer of a three layer quasi-geostrophic model of a mid-latitude ocean basin (from Berloff and co.). a) Streamfunction predicted by statistical mechanics. Even in an out-equilibrium situation like this one, equilibrium statistical mechanics predicts remarkably the overall qualitative flow structure. Observation of westward drift of ocean eddies and of slower northward drift of cyclones and southward drift of anticyclones by Chelton and co. We explain these observations from statistical mechanics.

  12. Geodesic detection of Agulhas rings

    NASA Astrophysics Data System (ADS)

    Beron-Vera, F. J.; Wang, Y.; Olascoaga, M. J.; Goni, G. J.; Haller, G.

    2012-12-01

    Mesoscale oceanic eddies are routinely detected from instantaneous velocities. While simple to implement, this Eulerian approach gives frame-dependent results and often hides true material transport by eddies. Building on the recent geodesic theory of transport barriers, we develop an objective (i.e., frame-independent) method for accurately locating coherent Lagrangian eddies. These eddies act as compact water bodies, with boundaries showing no leakage or filamentation over long periods of time. Applying the algorithm to altimetry-derived velocities in the South Atlantic, we detect, for the first time, Agulhas rings that preserve their material coherence for several months, while eddy candidates yielded by other approaches tend to disperse or leak within weeks. These findings suggest that current Eulerian estimates of the Agulhas leakage need significant revision.Temporal evolution of fluid patches identified as eddies by different methods. First column: eddies extracted using geodesic eddy identification [1,2]. Second column: eddies identified from sea surface height (SSH) using the methodology of Chelton et al. [2] with U/c > 1. Third column: eddies identified as elliptic regions by the Okubo-Weiss (OW) criterion [e.g., 3]. Fourth column: eddies identified as mesoelliptic (ME) regions by Mezic et al.'s [4] criterion. References: [1] Beron-Vera et al. (2012). Geodesic eddy detection suggests reassessment of Agulhas leakage. Proc. Nat. Acad. Sci. USA, submitted. [2] Haller & Beron-Vera (2012). Geodesic theory of transport barriers in two-dimensional flows. Physica D, in press. [2] Chelton et al. (2011). Prog. Oceanog. 91, 167. [3] Chelton et al. (2007). Geophys. Res. Lett. 34, L5606. [4] Mezic et al. (2010). Science 330, 486.

  13. Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine

    2017-04-01

    Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.

  14. Method and apparatus for correcting eddy current signal voltage for temperature effects

    DOEpatents

    Kustra, Thomas A.; Caffarel, Alfred J.

    1990-01-01

    An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of eddy-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an eddy-current probe which allows the probe to be selectively connected between an eddy current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of eddy current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the eddy current measurement. The true error can consequently be converted into an equivalent eddy current measurement correction.

  15. Observations of the interaction between near-inertial waves and mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Martínez-Marrero, Antonio; Sangrá, Pablo; Caldeira, Rui; Aguiar-González, Borja; Rodríguez-Santana, Ángel

    2014-05-01

    Trajectories of eight drifters dragged below the surface mixed layer and current meter data from a mooring are used to analyse the interaction between near-inertial waves and mesoscale eddies. Drifters were deployed within eddies generated downstream of Canary and Madeira islands between 1998 and 2007. The mooring was installed in the passage of cyclonic eddies induced by Gran Canaria island during 2006. Rotatory wavelet analysis of Lagrangian velocities shows a clear relationship between the near-inertial waves' intrinsic frequencies and the eddy angular velocities. The results reveal that near-inertial waves reach a minimum frequency of half the planetary vorticity (f/2) in the inner core of young anticyclonic eddies rotating with its maximum absolute angular speed of f/2. The highest amplitudes of the observed inertial motions are also found within anticyclonic eddies evidencing the trapping of inertial waves. Finally, the analysis of the current meter series show frequency fluctuations of the near-inertial currents in the upper 500 meters that are related to the passage of cyclonic eddies. These fluctuations appear to be consistent with the variation of the background vorticity produced by the eddies.

  16. Mesoscale Eddies Are Oases for Higher Trophic Marine Life

    PubMed Central

    Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294

  17. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  18. Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Barnes, Elizabeth; Polvani, Lorenzo

    2013-04-01

    This work documents how the midlatitude, eddy-driven jets respond to climate change using output from 72 model integrations run for the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We consider separately the North Atlantic, the North Pacific and the Southern Hemisphere jets. Unlike previous studies, we do not limit our analysis to annual mean changes in the latitude and speed of the jets only, but also explore how the daily variability of each jet changes with increased greenhouse gases. Given the direct connection between synoptic activity and the location of the eddy-driven jet, changes in jet variability directly relate to the changes in the future storm tracks. We find that all jets migrate poleward with climate change: the Southern Hemisphere jet shifts poleward by 2 degrees of latitude between the Historical period and the end of the 21st century in the RCP8.5 scenario, whereas the Northern Hemisphere jets shift by only 1 degree. The speed of the Southern Hemisphere jet also increases markedly (by 1.2 m/s between 850-700 hPa), while the speed remains nearly constant for both jets in the Northern Hemisphere. The seasonality of the jet shifts will also be addressed, whereby the largest poleward jet shift occurs in the autumn of each hemisphere (i.e. MAM for the Southern Hemisphere jet, and SON for the North Atlantic and North Pacific jets). We find that the structure of the daily jet variability is a strong function of the jet position in all three sectors of the globe. For the Southern Hemisphere and the North Atlantic jets, the variability becomes less of a north-south wobbling (i.e. an `annular mode') with a poleward shift of the jet. In contrast, for the North Pacific jet, the variability becomes less of a pulsing and more of a north-south wobbling. In spite of these differences, we are able find a mechanism (based on Rossby wave breaking) that is able to explain many of the changes in jet variability within a single theoretical framework.

  19. Processes of 30-90 days sea surface temperature variability in the northern Indian Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Vialard, J.; Jayakumar, A.; Gnanaseelan, C.; Lengaigne, M.; Sengupta, D.; Goswami, B. N.

    2012-05-01

    During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against ~0.25 for wind stress) and in observations (0.8 regression coefficient); ~60% of the heat flux variation is due do shortwave radiation and ~40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our ~100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

  20. Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds

    NASA Astrophysics Data System (ADS)

    Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.

    2015-12-01

    An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.

  1. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    NASA Astrophysics Data System (ADS)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  2. Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.

    2014-12-01

    High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (ΔT(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.

  3. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    NASA Astrophysics Data System (ADS)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  4. Red Sea Outflow Experiment (REDSOX): Descent and initial spreading of Red Sea Water in the northwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bower, A.; Johns, W.; Peters, H.; Fratantoni, D.

    2003-04-01

    Two comprehensive surveys were carried out during 2001 to investigate the dense overflow and initial spreading of Red Sea Water (RSW) in the Gulf of Aden. The cruises were timed to coincide with the climatological maximum (February) and minimum (August) periods of outflow transport. The surveys included high-resolution CTD/lowered ADCP/shipboard ADCP observations in the descending plume and in the western gulf, and trajectories from 50 acoustically-tracked RAFOS floats released at the center of the equilibrated RSW (650 m). The measurements reveal a complicated descending plume structure in the western gulf with three main pathways for the high salinity RSW. Different mixing intensities along these pathways lead to variable penetration depths of the Red Sea plume between 450-900 m in the Gulf of Aden. The observations also revealed the hydrographic and velocity structure of large, energetic, deep-reaching mesoscale eddies in the gulf that fundamentally impact the spreading rates and pathways of RSW. Both cyclones and anticyclones were observed, with horizontal scales up to 250 km and azimuthal speeds as high as 0.5 m/s. The eddies appear to reach nearly to the sea floor and entrain RSW from the western gulf at mid-depth. Post-cruise analysis of SeaWiffs imagery suggests that some of these eddies form in the Indian Ocean and propagate into the gulf.

  5. Winter NH low-frequency variability in a hierarchy of low-order stochastic dynamical models of earth-atmosphere system

    NASA Astrophysics Data System (ADS)

    Zhao, Nan

    2018-02-01

    The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary-scale dynamics seems to play a more essential role in its origin.

  6. Evaluate the seasonal cycle and interannual variability of carbon fluxes and the associated uncertainties using modeled and observed data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Ivanoff, A.

    2013-12-01

    We assessed the performance of the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED3) terrestrial carbon cycle model in simulating seasonal cycle and interannual variability (IAV) of global and regional carbon fluxes and uncertainties associated with model parameterization. Key model parameters were identified from sensitivity analyses and their uncertainties were propagated through model processes using the Monte Carlo approach to estimate the uncertainties in carbon fluxes and pool sizes. Three independent flux data sets, the global gross primary productivity (GPP) upscaled from eddy covariance flux measurements by Jung et al. (2011), the net ecosystem exchange (NEE) estimated by CarbonTracker, and the eddy covariance flux observations, were used to evaluate modeled fluxes and the uncertainties. Modeled fluxes agree well with both Jung's GPP and CarbonTracker NEE in the amplitude and phase of seasonal cycle, except in the case of GPP in tropical regions where Jung et al. (2011) showed larger fluxes and seasonal amplitude. Modeled GPP IAV is positively correlated (p < 0.1) with Jung's GPP IAV except in the tropics and temperate South America. The correlations between modeled NEE IAV and CarbonTracker NEE IAV are weak at regional to continental scales but stronger when fluxes are aggregated to >40°N latitude. At regional to continental scales flux uncertainties were larger than the IAV in the fluxes for both Jung's GPP and CarbonTracker NEE. Comparisons with eddy covariance flux observations are focused on sites within regions and years of recorded large-scale climate anomalies. We also evaluated modeled biomass using other independent continental biomass estimates and found good agreement. From the comparisons we identify the strengths and weaknesses of the model to capture the seasonal cycle and IAV of carbon fluxes and highlight ways to improve model performance.

  7. Deadzones, Dying Eddies, and the Loop Current: Stability, Ventilation, and Heat Content from Buoyancy Glider Observations in the Northwest Gulf of Mexico in Spring and Summer 2015

    NASA Astrophysics Data System (ADS)

    DiMarco, S. F.; Knap, A. H.; Wang, Z.; Walpert, J.; Dreger, K.

    2016-02-01

    The northwestern Gulf of Mexico is host to a myriad of physical and biochemical processes, which govern the exchange and transport of material and volume between the coastal and offshore environments. We report on five G2 Slocum glider deployments in the northwestern Gulf during the spring and summer of 2015. The gliders were deployed in shallow (20 m) and deep (greater than 1000 m) water for a total of about 200 days. During this time, the gliders encountered a variety of environmental conditions that impact the circulation, biology, chemistry of the shelf and slope. The shallow gliders encountered coastal waters influenced by extensive flooding in terrestrial Texas that vertically stratified the water-column and was coincident with sub-pycnocline low dissolved oxygen concentration, at times below the hypoxic threshold of 2 mg/L, and elevated CDOM concentrations. These gliders also reveal high spatial variability with bottom boundary oxygen and biomass scales on the order of a few kilometers. The deep gliders were tasked to investigate shelf/slope exchange at two locations 94W and 91W. The western glider encountered a mature mesoscale circulation eddy that was actively weakening. The eastern glider simultaneously encountered a freshly separated Loop Current eddy. The vertical structure of hydrographic and dissolved oxygen parameters shows significant and distinguishable variability in each feature. The vertical structure of both features show significant departures from that which is expected based on sea surface height determined from satellite altimetry. Additionally, glider observations are compared to operational high-resolution regional numerical model output. These observations emphasize the importance of direct observations over satellite-derived products for applications that include upper ocean heat content for hurricane intensification and vertical mixing and ventilation of the oceanic interior.

  8. Evaluating the effect of oceanic striations on biogeochemistry in the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Auger, P. A.; Belmadani, A.; Donoso, D.; Hormazabal, S.

    2017-12-01

    In recent years, quasi-zonal mesoscale jet-like features or striations have been ubiquitously detected in the time-mean circulation of the world ocean using satellite altimetry and in situ data. Most likely the result of some organization of the mesoscale eddy field such as preferred eddy tracks, these striations may be able to advect and mix physical properties. Yet, their impact on biogeochemistry has not been assessed yet. Off central Chile, the interaction between striations and sharp background gradients of biogeochemical properties may spatially structure biogeochemistry, with potential implications for marine ecosystems. For instance, striations may affect the mean horizontal distribution of surface phytoplankton biomass in the coastal transition zone (CTZ), or the structure and variability of the oxygen-minimum zone (OMZ). Here, we evaluate the expression of striations in satellite records of ocean color and in a set of numerically simulated biogeochemical tracers off central Chile (chlorophyll, carbon, primary production, oxygen, nutrients), averaged over the surface productive layer, the OMZ at intermediate depths or the water column. A multi-decadal hindcast simulation of the physical-biogeochemical dynamics was run over the period 1984-2013 using the ROMS-PISCES (for Regional Oceanic Modeling System - Pelagic Interactions Scheme for Carbon and Ecosystem Studies) platform at an eddy-resolving resolution. Satellite data and model outputs are spatially high-pass filtered to remove the large-scale signal and evaluate the match between striations and biogeochemical tracer anomalies in the model and observations. The effect of striations on the mean shape of the zonal gradient of phytoplankton biomass in the CTZ between eutrophic coastal waters and oligotrophic offshore waters is then deduced. The fraction of tracer anomalies due to striations is quantified, and the structuring roles of stationary and transient striations are respectively explored by matching striations and biogeochemical tracers on moving frames of variable widths from 6 months to several years.

  9. Eddy correlation measurements of size-dependent cloud droplet turbulent fluxes to complex terrain

    NASA Astrophysics Data System (ADS)

    Vong, Richard J.; Kowalski, Andrew S.

    1995-07-01

    An eddy correlation technique was used to measure the turbulent flux of cloud droplets to complex, forested terrain near the coast of Washington State during the spring of 1993. Excellent agreement was achieved for cloud liquid water content measured by two instruments. Substantial downward liquid water fluxes of ~ 1mm per 24 h were measured at night during "steady and continuous" cloud events, about twice the magnitude of those measured by Beswick etal. in Scotland. Cloud water chemical fluxes were estimated to represent up to 50% of the chemical deposition associated with precipitation at the site. An observed size-dependence in the turbulent liquid water fluxes suggested that both droplet impaction, which leads to downward fluxes, and phase change processes, which can lead to upward fluxes, consistently are important contributors to the eddy correlation results. The diameter below which phase change processes were important to observed fluxes was shown to depend upon σLL, the relative standard deviation of the liquid water content (LWC) within a 30-min averaging period. The crossover from upward to downward LW flux occurs at 8µm for steady and continuous cloud events but at ~ 13µm for events with a larger degree of LWC variability. This comparison of the two types of cloud events suggested that evaporation was the most likely cause of upward droplet fluxes for the smaller droplets (dia<13µm) during cloud with variable LWC (σLL>0.3).

  10. Assessing and correcting spatial representativeness of tower eddy-covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Xu, K.; Desai, A. R.; Taylor, J. R.; Kljun, N.; Blanken, P.; Burns, S. P.; Scott, R. L.

    2014-12-01

    Estimating the landscape-scale exchange of ecologically relevant trace gas and energy fluxes from tower eddy-covariance (EC) measurements is often complicated by surface heterogeneity. For example, a tower EC measurement may represent less than 1% of a grid cell resolved by mechanistic models (order 100-1000 km2). In particular for data assimilation or comparison with large-scale observations, it is hence critical to assess and correct the spatial representativeness of tower EC measurements. We present a procedure that determines from a single EC tower the spatio-temporally explicit flux field of its surrounding. The underlying principle is to extract the relationship between biophysical drivers and ecological responses from measurements under varying environmental conditions. For this purpose, high-frequency EC flux processing and source area calculations (≈60 h-1) are combined with remote sensing retrievals of land surface properties and subsequent machine learning. Methodological details are provided in our companion presentation "Towards the spatial rectification of tower-based eddy-covariance flux observations". We apply the procedure to one year of data from each of four AmeriFlux sites under different climate and ecological environments: Lost Creek shrub fen wetland, Niwot Ridge subalpine conifer, Park Falls mixed forest, and Santa Rita mesquite savanna. We find that heat fluxes from the Park Falls 122-m-high EC measurement and from a surrounding 100 km2 target area differ up to 100 W m-2, or 65%. Moreover, 85% and 24% of the EC flux observations are adequate surrogates of the mean surface-atmosphere exchange and its spatial variability across a 900 km2 target area, respectively, at 5% significance and 80% representativeness levels. Alternatively, the resulting flux grids can be summarized as probability density functions, and used to inform mechanistic models directly with the mean flux value and its spatial variability across a model grid cell. Lastly, for each site we evaluate the applicability of the procedure based on a full bottom-up uncertainty budget.

  11. Coherence between woody carbon uptake and net ecosystem productivity at five eddy-covariance sites

    NASA Astrophysics Data System (ADS)

    Babst, F.; Bouriaud, O.; Papale, D.; Gielen, B.; Janssens, I.; Nikinmaa, E.; Ibrom, A.; Wu, J.; Bernhofer, C.; Koestner, B.; Gruenwald, T.; Seufert, G.; Ciais, P.; Frank, D. C.

    2013-12-01

    Forest growth ranks amongst the most important processes that determine the carbon balance of terrestrial ecosystems. Quantifications of forest carbon cycling can be made e.g. using biometric and eddy-covariance (EC) techniques. Both offer different perspectives on carbon uptake and attempts to combine them have been inconsistent and variably successful in the past. This contributes to persistent uncertainties regarding carbon allocation in forest ecosystems and complicates precise vegetation model parameterization. Aiming to reconcile assessments of carbon cycling from biometric and EC techniques, we measured radial tree growth and wood density at five long-term EC stations across Europe. The resulting records were used to calculate annual carbon uptake during above-ground wood formation and compared to monthly and seasonal CO2-flux measurements. Efforts were made to identify i) the time periods when EC and tree-ring data correspond best in different parts of Europe and ii) the fraction of eddy-fluxes which is associated with changes in above-ground woody carbon stocks. Biometric measurements and net ecosystem productivity (NEP) proved largely compatible at seasonal time scales while relationships with gross primary productivity (GPP) were often weaker. Results suggest a partitioning of sequestered carbon mainly used for volume increase (January-June) and a combination of cell-wall thickening and storage (July-September). The inter-annual variability in above-ground woody carbon uptake was significantly linked with absolute productivity ranging between 69-366 g C m-2 y-1 at boreal and temperate sites, thereby accounting for 10-25% of GPP, 15-32% of TER, and 25-80% of NEP. These findings from sites representing the major European climate zones and tree species contribute to improved quantification of above-ground carbon allocation in forests. Furthermore, they refine knowledge on processes driving ecosystem productivity important for e.g. vegetation models and provide an enhanced framework for integrative studies linking tree-ring parameters with EC measurements.

  12. Influence of Land Cover Heterogeneity, Land-Use Change and Management on the Regional Carbon Cycle in the Upper Midwest USA as Evaluated by High-Density Observations and a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.

    2005-12-01

    The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.

  13. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  14. Cyclonic entrainment of preconditioned shelf waters into a frontal eddy

    NASA Astrophysics Data System (ADS)

    Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.

    2015-02-01

    The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.

  15. A Priori Subgrid Scale Modeling for a Droplet Laden Temporal Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2000-01-01

    Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using a direct numerical simulation (DNS) database. The DNS is for a Reynolds number (based on initial vorticity thickness) of 600, with droplet mass loading of 0.2. The gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. Since Large Eddy Simulation (LES) of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be given by the filtered variables plus a correction based on the filtered standard deviation, which can be computed from the sub-grid scale (SGS) standard deviation. This model predicts unfiltered variables at droplet locations better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: Smagorinsky, gradient and scale-similarity. When properly calibrated, the gradient and scale-similarity methods give results in excellent agreement with the DNS.

  16. Extraction of spatial-temporal rules from mesoscale eddies in the South China Sea Based on rough set theory

    NASA Astrophysics Data System (ADS)

    Du, Y.; Fan, X.; He, Z.; Su, F.; Zhou, C.; Mao, H.; Wang, D.

    2011-06-01

    In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.

  17. Anatomy of a subtropical intrathermocline eddy

    NASA Astrophysics Data System (ADS)

    Barceló-Llull, Bàrbara; Sangrà, Pablo; Pallàs-Sanz, Enric; Barton, Eric D.; Estrada-Allis, Sheila N.; Martínez-Marrero, Antonio; Aguiar-González, Borja; Grisolía, Diana; Gordo, Carmen; Rodríguez-Santana, Ángel; Marrero-Díaz, Ángeles; Arístegui, Javier

    2017-06-01

    An interdisciplinary survey of a subtropical intrathermocline eddy was conducted within the Canary Eddy Corridor in September 2014. The anatomy of the eddy is investigated using near submesoscale fine resolution two-dimensional data and coarser resolution three-dimensional data. The eddy was four months old, with a vertical extension of 500 m and 46 km radius. It may be viewed as a propagating negative anomaly of potential vorticity (PV), 95% below ambient PV. We observed two cores of low PV, one in the upper layers centered at 85 m, and another broader anomaly located between 175 m and the maximum sampled depth in the three-dimensional dataset (325 m). The upper core was where the maximum absolute values of normalized relative vorticity (or Rossby number), |Ro| =0.6, and azimuthal velocity, U=0.5 m s-1, were reached and was defined as the eddy dynamical core. The typical biconvex isopleth shape for intrathermocline eddies induces a decrease of static stability, which causes the low PV of the upper core. The deeper low PV core was related to the occurrence of a pycnostad layer of subtropical mode water that was embedded within the eddy. The eddy core, of 30 km radius, was in near solid body rotation with period of 4 days. It was encircled by a thin outer ring that was rotating more slowly. The kinetic energy (KE) content exceeded that of available potential energy (APE), KE/APE=1.58; this was associated with a low aspect ratio and a relatively intense rate of spin as indicated by the relatively high value of Ro. Inferred available heat and salt content anomalies were AHA=2.9×1018 J and ASA=14.3×1010 kg, respectively. The eddy AHA and ASA contents per unit volume largely exceed those corresponding to Pacific Ocean intrathermocline eddies. This suggests that intrathermocline eddies may play a significant role in the zonal conduit of heat and salt along the Canary Eddy Corridor.

  18. Physical-Biological Coupling in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic Eddy.

    PubMed

    Wang, Lei; Huang, Bangqin; Chiang, Kuo-Ping; Liu, Xin; Chen, Bingzhang; Xie, Yuyuan; Xu, Yanping; Hu, Jianyu; Dai, Minhan

    2016-01-01

    It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer.

  19. Distribution of the near-inertial kinetic energy inside mesoscale eddies: Observations in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio

    2017-04-01

    The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.

  20. 78 FR 27001 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... one-time mid- frequency eddy current (MFEC) inspection, a low-frequency eddy current (LFEC) inspection... new AD instead requires repetitive external eddy current inspections for cracking of certain fuselage crown lap joints, and corrective actions if necessary; internal eddy current and detailed inspections...

  1. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Hughes, Chris W.; Blundell, Jeffrey R.

    2015-01-01

    use ensemble runs of a three layer, quasi-geostrophic idealized Southern Ocean model to explore the roles of forced and intrinsic variability in response to a linear increase of wind stress imposed over a 30 year period. We find no increase of eastward circumpolar volume transport in response to the increased wind stress. A large part of the resulting time series can be explained by a response in which the eddy kinetic energy is linearly proportional to the wind stress with a possible time lag, but no statistically significant lag is found. However, this simple relationship is not the whole story: several intrinsic time scales also influence the response. We find an e-folding time scale for growth of small perturbations of 1-2 weeks. The energy budget for intrinsic variability at periods shorter than a year is dominated by exchange between kinetic and potential energy. At longer time scales, we find an intrinsic mode with period in the region of 15 years, which is dominated by changes in potential energy and frictional dissipation in a manner consistent with that seen by Hogg and Blundell (2006). A similar mode influences the response to changing wind stress. This influence, robust to perturbations, is different from the supposed linear relationship between wind stress and eddy kinetic energy, and persists for 5-10 years in this model, suggestive of a forced oscillatory mode with period of around 15 years. If present in the real ocean, such a mode would imply a degree of predictability of Southern Ocean dynamics on multiyear time scales.

  3. Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations

    NASA Astrophysics Data System (ADS)

    Couvreux, F.; Guichard, F.; Redelsperger, J. L.; Kiemle, C.; Masson, V.; Lafore, J. P.; Flamant, C.

    2005-10-01

    This study presents a comprehensive analysis of the variability of water vapour in a growing convective boundary-layer (CBL) over land, highlighting the complex links between advection, convective activity and moisture heterogeneity in the boundary layer. A Large-eddy Simulation (LES) is designed, based on observations, and validated, using an independent data-set collected during the International H2O Project (IHOP 2002) fieldexperiment. Ample information about the moisture distribution in space and time, as well as other important CBL parameters are acquired by mesonet stations, balloon soundings, instruments on-board two aircraft and the DLR airborne water-vapour differential-absorption lidar. Because it can deliver two-dimensional cross-sections at high spatial resolution (140 m horizontal, 200 m vertical), the airborne lidar offers valuable insights of small-scale moisture-variability throughout the CBL. The LES is able to reproduce the development of the CBL in the morning and early afternoon, as assessed by comparisons of simulated mean profiles of key meteorological variables with sounding data. Simulated profiles of the variance of water-vapour mixing-ratio were found to be in good agreement with the lidar-derived counterparts. Finally, probability-density functions of potential temperature, vertical velocity and water-vapour mixing-ratio calculated from the LES show great consistency with those derived from aircraft in situ measurements in the middle of the CBL. Downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature.The observed water-vapour variability exhibits contributions from different scales. The influence of the mesoscale (larger than LES domain size, i.e. 10 km) on the smaller-scale variability is assessed using LES and observations. The small-scale variability of water vapour is found to be important and to be driven by the dynamics of the CBL. Both lidar observations and LES evidence that dry downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature and vertical velocity. In particular, intrusions of drier free-troposphere air from above the growing CBL impose a marked negative skewness on the water-vapour distribution within it, both as observed and in the simulation.

  4. Self-Control and Deviant Peer Network Structure

    ERIC Educational Resources Information Center

    McGloin, Jean Marie; Shermer, Lauren O'Neill

    2009-01-01

    From learning and opportunity perspectives, peer group structural dimensions shed light on social processes that can amplify or ameliorate the risk of having delinquent friends. Previous research has not accounted for a primary criminological variable, self-control, limiting theoretical clarity. The authors developed three hypotheses about…

  5. Eddy-induced salinity pattern in the North Pacific

    NASA Astrophysics Data System (ADS)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  6. Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Yao, Mao-Sung

    1990-01-01

    A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.

  7. Birth, life and death of an Anticyclonic eddy in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Torres, R.; Sallee, J. B.; Schwarz, J.; Hosegood, P. J.; Taylor, J. R.; Adams, K.; Bachman, S.; Stamper, M. A.

    2016-02-01

    The Antarctic Circumpolar Current (ACC) is a climatically relevant frontal structure of global importance, which regularly develops instabilities growing into meanders, and eventually evolving into long-lived anticyclonic eddies. These eddies exhibit sustained primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean where we sampled and tracked an ACC meander as it developed into an eddy and later vanished some 90 days later. The physical characteristics of the meander and eddy were observed with a combination of high resolution hydrography, ADCP and turbulence observations, in addition to biogeochemical observations of nutrients and phytoplankton. The life and death of the eddy was subsequently tracked through Argo, BIO-Argo Lagrangian profilers and remote sensing. In this presentation we will use observations and ecosystem modelling to discuss the physical processes that sustain the observed high Chlorophyll levels in the eddy and explore how the eddy evolution impacts the rate of nutrient supply and how this translates into the observed changes in chlorophyll. We will discuss the relevance of eddy formation to Chlorophyll and productivity in the region.

  8. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  9. Distribution of Reynolds stress carried by mesoscale variability in the Antarctic Circumpolar Current

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas J.; Stewart, Robert H.; Shum, C. K.; Tapley, Byron D.

    1992-01-01

    Satellite altimeter data collected by the Geosat Exact Repeat Mission were used to investigate turbulent stress resulting from the variability of surface geostrophic currents in the Antarctic Circumpolar Current. The altimeter measured sea level along the subsatellite track. The variability of the along-track slope of sea level is directly proportional to the variability of surface geostrophic currents in the cross-track direction. Because the grid of crossover points is dense at high latitudes, the satellite data could be used for mapping the temporal and spatial variability of the current. Two and a half years of data were used to compute the statistical structure of the variability. The statistics included the probability distribution functions for each component of the current, the time-lagged autocorrelation functions of the variability, and the Reynolds stress produced by the variability. The results demonstrate that stress is correlated with bathymetry. In some areas the distribution of negative stress indicate that eddies contribute to an acceleration of the mean flow, strengthening the hypothesis that baroclinic instability makes important contributions to strong oceanic currents.

  10. Time evolution of the eddy viscosity in two-dimensional navier-stokes flow

    PubMed

    Chaves; Gama

    2000-02-01

    The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.

  11. Effect of mesoscale eddies on the Taiwan Strait Current

    NASA Astrophysics Data System (ADS)

    Chang, Y. L.; Miyazawa, Y.; Guo, X.

    2016-02-01

    This study shows that mesoscale eddies can alter the Taiwan Strait current. The 20-year data-assimilated Japan Coastal Ocean Predictability Experiment 2 (JCOPE2) reanalysis data are analyzed, and the results are confirmed with idealized experiments. The leading wind-forced seasonal cycle is excluded to focus on the effect of the eddy. The warm eddy southwest of Taiwan is shown to generate a northward flow, whereas the cold eddy produces a southward current. The effect of the eddy penetrates onto the shelf through the Joint Effect of Baroclinicity and Relief (JEBAR). The cross-isobath fluxes lead to shelfward convergence and divergence, setting up the modulation of the sea level slope. The resulting along-strait current anomaly eventually affects a wide area of the Taiwan Strait. The stronger eddy leads to larger modification of the cross-shelf flows and sea level slope, producing a greater transport anomaly. The composite Sea-Viewing Wide Field-of-view Sensor chlorophyll-a (Chl-a) serves as an indicator to show the change in Chl-a concentration in the strait in response to the eddy-induced current. During the warm eddy period, the current carries the southern water of lower concentration northward, reducing Chl-a concentration in the strait. In contrast, Chl-a is enhanced because the cold eddy-induced southward current carries the northern water of higher concentration southward into the strait.

  12. Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre

    NASA Astrophysics Data System (ADS)

    Meneghello, Gianluca; Marshall, John; Cole, Sylvia T.; Timmermans, Mary-Louise

    2017-12-01

    Using Ekman pumping rates mediated by sea ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral eddy diffusivities required to balance downward pumping is inferred. In this limit—that of vanishing residual-mean circulation—eddy-induced upwelling exactly balances downward pumping. The implied eddy diffusivity varies spatially and decays with depth, with values of 50-400 m2/s. Eddy diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar decay with depth and range of values from 100 m2/s to more than 600 m2/s. We conclude that eddy diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that eddies play a zero-order role in buoyancy and freshwater budgets of the BG.

  13. Striations and preferred eddy tracks triggered by topographic steering of the background flow in the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Belmadani, Ali; Concha, Emilio; Donoso, David; Chaigneau, Alexis; Colas, François; Maximenko, Nikolai; Di Lorenzo, Emanuele

    2017-04-01

    In recent years, persistent quasi-zonal jets or striations have been ubiquitously detected in the world ocean using satellite and in situ data as well as numerical models. This study aims at determining the role of mesoscale eddies in the generation and persistence of striations off Chile in the eastern South Pacific. A 50 year climatological integration of an eddy-resolving numerical ocean model is used to assess the long-term persistence of striations. Automated eddy tracking algorithms are applied to the model outputs and altimetry data. Results reveal that striations coincide with both polarized eddy tracks and the offshore formation of new eddies in the subtropical front and coastal transition zone, without any significant decay over time that discards random eddies as a primary driver of the striations. Localized patches of vortex stretching and relative vorticity advection, alternating meridionally near the eastern edge of the subtropical front, are associated with topographic steering of the background flow in the presence of steep topography, and with baroclinically and barotropically unstable meridional flow. These sinks and sources of vorticity are suggested to generate the banded structure further west, consistently with a β-plume mechanism. On the other hand, zonal/meridional eddy advection of relative vorticity and the associated Reynolds stress covariance are consistent with eddy deformation over rough topography and participate to sustain the striations in the far field. Shear instability of mean striations is proposed to feedback onto the eddy field, acting to maintain the subtropical front eddy streets and thus the striations.

  14. Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu

    2017-06-01

    The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous eddy activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale eddy-permitting configuration. The model indicates significant differences of the biogeochemical responses to eddy activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic eddies developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the eddy-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable eddy intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic eddies, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The eddy energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of eddies in the KR, leading to the increase of the eddy-induced vertical nitrate transport around the Kuroshio.

  15. Satellite Analysis of Ocean Biogeochemistry and Mesoscale Variability in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Micheals, A. F.; Nelson, N. B.

    1997-01-01

    The objective of this study was to analyze the impact of spatial variability on the time-series of biogeochemical measurements made at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Originally the study was planned to use SeaWiFS as well as AVHRR high-resolution data. Despite the SeaWiFS delays we were able to make progress on the following fronts: (1) Operational acquisition, processing, and archive of HRPT data from a ground station located in Bermuda; (2) Validation of AVHRR SST data using BATS time-series and spatial validation cruise CTD data; (3) Use of AVHRR sea surface temperature imagery and ancillary data to assess the impact of mesoscale spatial variability on P(CO2) and carbon flux in the Sargasso Sea; (4) Spatial and temporal extent of tropical cyclone induced surface modifications; and (5) Assessment of eddy variability using TOPEX/Poseidon data.

  16. Assessing the individual risk of fecal poliovirus shedding among vaccinated and non-vaccinated subjects following national health weeks in Mexico

    PubMed Central

    Ferreyra-Reyes, Leticia; Cruz-Hervert, Luis Pablo; Troy, Stephanie B.; Huang, ChunHong; Sarnquist, Clea; Delgado-Sánchez, Guadalupe; Canizales-Quintero, Sergio; Holubar, Marisa; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Rodríguez-Álvarez, Mauricio; Mongua-Rodriguez, Norma; Maldonado, Yvonne

    2017-01-01

    Background Mexico introduced inactivated polio vaccine (IPV) into its routine immunization (RI) schedule in 2007 but continued to give trivalent oral polio vaccine (tOPV) twice a year during national health weeks (NHW) through 2015. Objectives To evaluate individual variables associated with poliovirus (PV) shedding among children with IPV-induced immunity after vaccination with tOPV and their household contacts. Materials and methods We recruited 72 children (both genders, ≤30 months, vaccinated with at least two doses of IPV) and 144 household contacts (both genders, 2 per household, children and adults) between 08/2010 and 09/2010 in Orizaba, Veracruz. Three NHW took place (one before and two after enrollment). We collected fecal samples monthly for 12 months, and tested 2500 samples for polioviruses types 1, 2 and 3 with three serotype-specific singleplex real-time RT-PCR (rRT-PCR) assays. In order to increase the specificity for OPV virus, all positive and 112 negative samples were also processed with a two-step, OPV serotype-specific multiplex rRT-PCR. Analysis We estimated adjusted hazard ratios (HR) and 95% CI using Cox proportional hazards regression for recurrent events models accounting for individual clustering to assess the association of individual variables with the shedding of any poliovirus for all participants and stratifying according to whether the participant had received tOPV in the month of sample collection. Results 216 participants were included. Of the 2500 collected samples, using the singleplex rRT-PCR assay, PV was detected in 5.7% (n = 142); PV1 in 1.2% (n = 29), PV2 in 4.1% (n = 103), and PV3 in 1.9% (n = 48). Of the 256 samples processed by multiplex rRT-PCR, PV was detected in 106 (PV1 in 16.41% (n = 42), PV2 in 21.09% (n = 54), and PV3 in 23.05% (n = 59). Both using singleplex and multiplex assays, shedding of OPV among non-vaccinated children and subjects older than 5 years of age living in the same household was associated with shedding of PV2 by a household contact. All models were adjusted by sex, age, IPV vaccination and OPV shedding by the same individual during the previous month of sample collection. Conclusion Our results provide important evidence regarding the circulation of poliovirus in a mixed vaccination context (IPV+OPV) which mimics the “transitional phase” that occurs when countries use both vaccines simultaneously. Shedding of OPV2 by household contacts was most likely the source of infection of non-vaccinated children and subjects older than 5 years of age living in the same household. PMID:29023555

  17. Computation of European carbon balance components through synergistic use of CARBOEUROPE eddy covariance, MODIS remote sensing data and advanced ecosystem and statistical modeling

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Dinh, N.; Running, S.; Seufert, G.; Tenhunen, J.; Valentini, R.

    2003-04-01

    Here we present spatially distributed bottom-up estimates of European carbon balance components for the year 2001, that stem from a newly built modeling system that integrates CARBOEUROPE eddy covariance CO_2 exchange data, remotely sensed vegetation properties via the MODIS-Terra sensor, European-wide soils data, and a suite of carbon balance models of different complexity. These estimates are able to better constrain top-down atmospheric-inversion carbon balance estimates within the dual-constraint approach for estimating continental carbon balances. The models that are used to calculate gross primary production (GPP) include a detailed layered canopy model with Farquhar-type photosynthesis (PROXELNEE), sun-shade big-leaf formulations operating at a daily time-step and a simple radiation-use efficiency model. These models are parameterized from eddy covariance data through inverse estimation techniques. Also for the estimation of soil and ecosystem respiration (Rsoil, Reco) we profit from a large data set of eddy covariance and soil chamber measurements, that enables us to the parameterize and validate a recently developed semi-empirical model, that includes a variable temperature sensitivity of respiration. As the outcome of the modeling system we present the most likely daily to annual numbers of carbon balance components (GPP, Reco, Rsoil), but we also issue a thorough analysis of biases and uncertainties in carbon balance estimates that are introduced through errors in the meteorological and remote sensing input data and through uncertainties in the model parameterization. In particular, we analyze 1) the effect of cloud contamination of the MODIS data, 2) the sensitivity to the land-use classification (Corine versus MODIS), 3) the effect of different soil parameterizations as derived from new continental-scale soil maps, and 4) the necessity to include soil drought effects into models of GPP and respiration. While the models describe the eddy covariance data quite well with r^2 values always greater than 0.7, there are still uncertainties in the European carbon balance estimate that exceed 0.3 PgC/yr. In northern (boreal) regions the carbon balance estimate is very much contingent on a high-quality filling of cloud contaminated remote sensing data, while in the southern (Mediterranean) regions a correct description of the soil water holding capacity is crucial. A major source of uncertainty also still is the estimation of heterotrophic respiration at continental scales. Consequently more spatial surveys on soil carbon stocks, turnover and history are needed. The study demonstrates that both, the inclusion of considerable geo-biological variability into a carbon balance modeling system, a high-quality cloud screening and gap-filling of the MODIS remote sensing data, and a correct description of soil drought effects are mandatory for realistic bottom-up estimates of European carbon balance components.

  18. Genetic factors controlling wool shedding in a composite Easycare sheep flock.

    PubMed

    Matika, O; Bishop, S C; Pong-Wong, R; Riggio, V; Headon, D J

    2013-12-01

    Historically, sheep have been selectively bred for desirable traits including wool characteristics. However, recent moves towards extensive farming and reduced farm labour have seen a renewed interest in Easycare breeds. The aim of this study was to quantify the underlying genetic architecture of wool shedding in an Easycare flock. Wool shedding scores were collected from 565 pedigreed commercial Easycare sheep from 2002 to 2010. The wool scoring system was based on a 10-point (0-9) scale, with score 0 for animals retaining full fleece and 9 for those completely shedding. DNA was sampled from 200 animals of which 48 with extreme phenotypes were genotyped using a 50-k SNP chip. Three genetic analyses were performed: heritability analysis, complex segregation analysis to test for a major gene hypothesis and a genome-wide association study to map regions in the genome affecting the trait. Phenotypes were treated as a continuous or binary variable and categories. High estimates of heritability (0.80 when treated as a continuous, 0.65-0.75 as binary and 0.75 as categories) for shedding were obtained from linear mixed model analyses. Complex segregation analysis gave similar estimates (0.80 ± 0.06) to those above with additional evidence for a major gene with dominance effects. Mixed model association analyses identified four significant (P < 0.05) SNPs. Further analyses of these four SNPs in all 200 animals revealed that one of the SNPs displayed dominance effects similar to those obtained from the complex segregation analyses. In summary, we found strong genetic control for wool shedding, demonstrated the possibility of a single putative dominant gene controlling this trait and identified four SNPs that may be in partial linkage disequilibrium with gene(s) controlling shedding. © 2013 University of Edinburgh, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  19. NONDESTRUCTIVE EDDY CURRENT TESTING

    DOEpatents

    Renken, C.J. Jr.

    1961-05-23

    An eddy current testing device is described for measuring metal continuity independent of probe-to-sample spacing. An inductance would test probe is made a leg of a variable impedance bridge and the bridge is balanced with the probe away from the sample. An a-c signal is applied across the input terminals of the bridge circuit. As the probe is brought into proximity with the metal sample, the resulting impedance change in the probe gives an output signal from the bridge whose phase angle is proportional to the sample continuity and amplitude is proportional to the probe-tosample spacing. The output signal from the bridge is applied to a compensating network where, responsive to amplitude changes from the bridge output signal, a constant phased voltage output is maintained when the sample is continuous regardless of probe-to-sample spacing. A phase meter calibrated to read changes in resistivity of the metal sample measures the phase shift between the output of the compensating network and the original a-c signal applied to the bridge.

  20. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  1. A defect stream function, law of the wall/wake method for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.

    1989-01-01

    The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.

  2. A regularized vortex-particle mesh method for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  3. Urine flow is a novel hemodynamic monitoring tool for the detection of hypovolemia.

    PubMed

    Shamir, Micha Y; Kaplan, Leonid; Marans, Rachel S; Willner, Dafna; Klein, Yoram

    2011-03-01

    Noticeable changes in vital signs indicating hypovolemia occur only after 15% of the blood volume is lost. More sensitive variables (e.g., cardiac output, systolic pressure variation and its Δdown component) are invasive and difficult to obtain in the early phase of bleeding. Lately, a new technology for continuous optical measurements of minute-to-minute urine flow rates has become available. We performed a preliminary evaluation to determine whether urine flow can act as an early and sensitive warning of hypovolemia. Eleven patients (ASA physical status I-II) undergoing posterior spine fusion surgery were studied prospectively. Study variables included heart rate, blood pressure (systolic and diastolic), systolic pressure variation and Δdown, minute urinary flow, hemoglobin, blood and urinary sodium, and creatinine in the blood and urine. Urine flow rate was measured using URINFO 2000™ (FlowSense Medical, Misgav, Israel). After recording baseline variables, 10 mL/kg of the patient's blood was shed and a second set of variables was recorded. Subsequently, hypovolemia was reversed by infusing colloid solution (hetastarch 6%) followed by recording a third set of variables. These 3 observations were then compared. An average of 614 ± 143 mL (mean ± SD) of blood was shed. During phlebotomy, the mean urine flow rate decreased from 5.7 ± 8 mL/min to 1.07 ± 2.5 mL/min. Systolic blood pressure and hemoglobin also decreased. Δdown increased. After rehydration, urine flow, blood pressure, and Δdown values returned to baseline. The hemoglobin concentration decreased whereas other variables did not change significantly. Urine flow rate is a dynamic variable that seems to be a reliable indicator of changes in blood volume. These results justify further investigation.

  4. Deep drivers of mesoscale circulation in the central Rockall Trough

    NASA Astrophysics Data System (ADS)

    Sherwin, T. J.; Alyenik, D.; Dumont, E.; Inall, M.

    2014-11-01

    Mesoscale variability in the central Rockall Trough between about 56 and 58° N has been investigated using a combination of ship-borne, underwater glider and gridded satellite altimeter measurements. Altimeter observations show that mesoscale features such as eddies and large scale circulation cells are ubiquitous phenomena. They have horizontal length scales of order 100 km with vertical scales of over 1000 m and are associated with mean current speeds (over the upper 1000 m) of 15 ± 7 cm s-1. Monthly area averaged surface Eddy Kinetic Energy (EKE) has substantial inter-annual variability, which at times can dominate a mean seasonal signal that varies from a maximum in May (74 cm2 s-2) to a minimum in October (52 cm2 s-2) and has increased gradually since 1992 at about 1.1 cm2 s-2 per year. A five month glider mission in the Trough showed that much of this energy comes from features that are located over 1000 m below the surface in the deep cold waters of the Trough (possibly from eddies associated the North Atlantic Current). The surface currents from altimeters had similar magnitude to the drift currents averaged over 1000 m from the glider in the stratified autumn, but were half the deep water speed during late winter. Although the mesoscale features move in an apparent random manner they may also be quasi-trapped by submarine topography such as seamounts. Occasionally anti-cyclonic and cyclonic cells combine to cause a coherent westward deflection of the European slope current that warms the Rockall side of the Trough. Such deflections contribute to the inter-annual variability in the observed temperature and salinity that are monitored in the upper 800 m of the Trough. By combining glider and altimeter measurements it is shown that altimeter measurements fail to observe a 15 cm s-1 northward flowing slope current on the eastern side and a small persistent southward current on the western side. There is much to be gained from the synergy between satellite altimetry and in situ glider observations both in the interpretation of their separate data sets and in aiding glider pilots to steer their vehicles through EKE active regions such as the north-east Atlantic.

  5. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  6. Dipolar eddies in a decaying stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.

    2008-02-01

    Laboratory experiments on the evolution of dipolar (momentum) eddies in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum eddies, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum eddies, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar eddies in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar eddies in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the eddies and random background motions.

  7. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  8. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    PubMed Central

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894

  9. Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre

    NASA Astrophysics Data System (ADS)

    Meneghello, G.; Marshall, J.; Cole, S. T.; Timmermans, M. L.

    2017-12-01

    Using Ekman pumping rates mediated by sea-ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral eddy diffusivities required to balance downward pumping is inferred. In this limit — that of vanishing residual-mean circulation — eddy-induced upwelling exactly balances downward pumping. The implied eddy diffusivity varies spatially with values of 50-400 m2/s, and decays with depth. Eddy diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar range of values from 100 m2/s to more than 600 m2/s, and also decays with depth. We conclude that eddy diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that eddies play a zero-order role in buoyancy and freshwater budgets of the BG.

  10. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific

    PubMed Central

    Xu, Lixiao; Li, Peiliang; Xie, Shang-Ping; Liu, Qinyu; Liu, Cong; Gao, Wendian

    2016-01-01

    While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow—an effect that needs to be better represented in climate models. PMID:26829888

  11. Non-destructive testing of composite materials used in military applications by eddy current thermography method

    NASA Astrophysics Data System (ADS)

    Swiderski, Waldemar

    2016-10-01

    Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.

  12. Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Nonsteady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models

    NASA Astrophysics Data System (ADS)

    Lavely, Adam W.

    Modern utility-scale wind turbines operate in the the lower atmospheric boundary layer (ABL), which is characterized by large gradients in mean velocity and temperature and the existence of strong coherent turbulence eddies that reflect the interaction between strong mean shear and vertical buoyancy driven by solar heating. The spatio-temporal velocity variations drive nonsteady loadings on wind turbines that contribute to premature wind turbine component fatigue failure, decreasing the levelized cost of (wind) energy (LCOE). The aims of the current comprehensive research program center on the quantification of the characteristics of the nonsteady loads resulting from the interactions between the coherent energy contain gin atmospheric turbulence eddies within the lower ABL as the eddies advect through the rotor plane and the rotating wind turbine blade encounter the internal turbulence structure of the atmospheric eddies. We focus on the daytime atmospheric boundary layer, where buoyancy due to surface heating interacts with shear to create coherent turbulence structures. Pseudo-spectral large eddy simulation (LES) is used to generate an equilibrium atmospheric boundary layer over at terrain with uniform surface roughness characteristic of the Midwest on a typical sunny windy afternoon when the ABL can be approximated as quasi-steady. The energy-containing eddies are found to create advective time-responses of order 30-90 seconds with lateral spatial scales of order the wind turbine rotor diameter. Different wind turbine simulation methods of a representative utility scale turbine were applied using the atmospheric turbulence as in flow. We apply three different fidelity wind turbine simulation methods to quantify the extent to which lower order models are able to accurately predict the nonsteady loading due to atmospheric turbulence eddies advecting through the rotor plane and interacting with the wind turbine. The methods vary both the coupling to the atmospheric boundary layer and the way in which the blade geometry is resolved and sectional blade forces are calculated. The highest fidelity simulation resolves the blade geometry to capture unsteady boundary layer response and separation dynamics within a simulation of the atmospheric boundary layer coupling the effect of the turbine to the atmospheric in flow. The lower order models both use empirical look-up tables to predict the time changes in blade sectional forces as a function of time changes in local velocity vector. The actuator line method (ALM) is two-way coupled and feeds these blade forces back into a simulation of the atmospheric boundary layer. The blade element momentum theory (BEMT) is one-way coupled and models the effect of the turbine on the incoming velocity field. The coupling method and method of blade resolution are both found to have an effect on the ability to accurately predict sectional blade load response to nonsteady atmospheric turbulence. The BEMT cannot accurately predict the timing of the response changes as these are modulated by the wind turbine within the ABL simulations. The lower order models have increased blade sectional load range and temporal gradients due to their inability to accurately capture the temporal response of the blade geometry to in flow changes. Taking advantage of horizontal homogeneity to collect statistics, we investigate the time period required to create well converged statistics in the equilibrium atmospheric boundary layer and find whereas the 10-minute industry standard for 'averages' retains variability of order 10%, the 10-minute average is an optimal choice. We compare the industry standard 10-minute averaging period. The residual variability within the 10-minute period to the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) field test database to find that whereas the 10-minute window still contains large variability, it is, in some sense, optimal because averaging times much longer would be required to significantly reduce variability. Turbulence fluctuations in streamwise velocity are found to be the primary driver of temporal variations in local angles of attack and sectional blade loads. Based on this new understanding, we develop analyses to show that whereas rotor torque and thrust correlate well with upstream horizontal velocity averaged over the rotor disk, out-of-plane bending moment magnitude correlates with the asymmetry in the horizontal fluctuating velocity over the rotor disk. Consequentially, off-design motions of the drivetrain and gearbox shown with the GRC field test data are well predicted using an asymmetry index designed to capture the response of a three-bladed turbine to asymmetry in the rotor plane. The predictors for torque, thrust and out-of-plane bending moment are shown to correlate well to upstream rotor planes indicating that they may be applied to advanced feed-forward control methods such as forward-facing LIDAR used to detect velocity changes in front of a wind turbine. This has the potential to increase wind turbine reliability by using controls to reduce potentially detrimental load responses to incoming atmospheric turbulence and decrease the LCOE.

  13. USE OF RELAXED EDDY ACCUMULATION TO MEASURE BIOSPHERE-ATMOSPHERE EXCHANGE OF ISOPRENE AND OTHER BIOLOGICAL TRACE GASES

    EPA Science Inventory

    The micrometeorological flux measurement technique known as relaxed eddy accumulation (REA) holds promise as a powerful new tool for ecologists. The more popular eddy covariance (eddy correlation) technique requires the use of sensors that can respond at fast rates (10 Hz), and t...

  14. Eddy-Current Inspection Of Graphite-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1993-01-01

    NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive eddy-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped eddy-current probes like those described in "Eddy-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).

  15. 76 FR 28632 - Airworthiness Directives; The Boeing Company Model 737-300, -400, and -500 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... doing internal eddy current inspections, or repairing the crack. As an alternative to the external eddy current inspections, the AD provides for internal eddy current and detailed inspections for cracks in the... 5, 2011, we issued Emergency AD 2011-08-51, which requires repetitive external eddy current...

  16. Southern Ocean eddy compensation in a forced eddy-resolving GCM

    NASA Astrophysics Data System (ADS)

    Bruun Poulsen, Mads; Jochum, Markus; Eden, Carsten; Nuterman, Roman

    2017-04-01

    Contemporary eddy-resolving model studies have demonstrated that the common parameterisation of isopycnal mixing in the ocean is subject to limitations in the Southern Ocean where the mesoscale eddies are of leading order importance to the dynamics. We here present forced simulations from the Community Earth System Model on a global {1/10}° and 1° horizontal grid, the latter employing an eddy parameterisation, where the strength of the zonal wind stress south of 25°S has been varied. With a 50% zonally symmetric increase of the wind stress, we show that the two models arrive at two radically different solutions in terms of the large-scale circulation, with an increase of the deep inflow of water to the Southern Ocean at 40°S by 50% in the high resolution model against 20% at coarse resolution. Together with a weaker vertical displacement of the pycnocline in the 1° model, these results suggest that the parameterised eddies have an overly strong compensating effect on the water mass transformation compared to the explicit eddies. Implications for eddy mixing parameterisations will be discussed.

  17. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  18. Students, Scientists, and Family Commemorate the Life and Diverse Works of Jack Eddy

    NASA Astrophysics Data System (ADS)

    Judge, Philip

    2011-02-01

    Eddy Cross-Disciplinary Symposium on Sun-Climate Research; Aspen, Colorado, 22-24 October 2010; In 1976, John Allen Eddy published a seminal article (see Science, 192(4245), 1189-1202) revealing a link between the Little Ice Age, which occurred during the sixteenth through nineteenth centuries, and a period of low sunspot activity, which Eddy called the “Maunder Minimum.” This work placed Sun-climate research on a firm scientific footing. Eddy passed away on 10 June 2009. Following Eddy's passions for education and cross-disciplinary research, a symposium was held to expose talented college students to the science and politics of Sun-climate research. Funding from NASA's Living With a Star Targeted Research and Technology program and from the High Altitude Observatory, Advanced Study Program, and Integrated Science Program of the National Center for Atmospheric Research (NCAR) supported keynote speakers and provided scholarships for 30 students (junior year to Ph.D.) from diverse disciplines. Eddy's wife, Barbara, led a session devoted to personal recollections. Spencer Weart (American Institute of Physics) gave an after-dinner tribute using recordings of Eddy from a 1999 interview.

  19. Baroclinic Adjustment of the Eddy-Driven Jet

    NASA Astrophysics Data System (ADS)

    Novak, Lenka; Ambaum, Maarten H. P.; Harvey, Ben J.

    2017-04-01

    The prediction of poleward shift in the midlatitude eddy-driven jets due to anthropogenic climate change is now a robust feature of climate models, but the magnitude of this shift or the processes responsible for it are less certain. This uncertainty comes from the complex response in storm tracks to large-scale forcing and their nonlinear modulation of the jet. This study uses global circulation models to reveal a relationship between eddy growth rate (referred to as baroclinicity) and eddy activity, whereby baroclinicity responds most rapidly to an eddy-dissipating forcing whereas eddy activity responds most rapidly to a baroclinicity-replenishing forcing. This nonlinearity can be generally explained using a two-dimensional dynamical system essentially describing the baroclinic adjustment as a predator-prey relationship. Despite this nonlinearity, the barotropic changes in the eddy-driven jet appear to be of a comparable magnitude for the ranges of both types of forcing tested in this study. It is implied that while changes in eddy activity or baroclinicity may indicate the sign of latitudinal jet shifting, the precise magnitude of this shifting is a result of a balance between these two quantities.

  20. Eddy resolving modelling of the Gulf of Lions and Catalan Sea

    NASA Astrophysics Data System (ADS)

    Garreau, Pierre; Garnier, Valérie; Schaeffer, Amandine

    2011-07-01

    The generation process of strong long-lived eddies flowing southwestwards along the Catalan slope was revealed through numerical modelling and in situ observations. Careful analyses of a particular event in autumn 2007 demonstrated a link between a "LATEX" eddy, which remained in the southwestern corner of the Gulf of Lions and a "CATALAN" eddy, which moved along the Catalan Shelf, since the death of the former gave birth to the latter. The origin of such eddies was found to be an accumulation of potential energy in the southwestern corner of the Gulf of Lions: under the influence of the negative wind stress curl associated with the Tramontane, a warm and less dense water body can be isolated and fed by a coastal current carrying warm water from the Catalan Sea. In summer, this structure can grow and intensify to generate a strong anticyclonic eddy. After a long period of Tramontane, a burst of southeasterlies and northerlies appeared to detach the "LATEX" eddy, which flowed out of the Gulf of Lions, migrating along the Catalan continental slope and continued into the Balearic Sea as the "CATALAN" eddy.

Top