Science.gov

Sample records for edema-induced dose reductions

  1. On the Need to Compensate for Edema-Induced Dose Reductions in Preplanned {sup 131}Cs Prostate Brachytherapy

    SciTech Connect

    Chen, Z. Jay Deng Jun; Roberts, Kenneth; Nath, Ravinder

    2008-01-01

    Purpose: Surgical trauma-induced edema and its protracted resolution can lead to significant dose reductions in preplanned {sup 131}Cs prostate brachytherapy. The purpose of this work was to examine whether these dose reductions should be actively compensated for and to estimate the magnitude of the additional irradiation needed for dose compensation. Methods and Materials: The quantitative edema resolution characteristics observed by Waterman et al. were used to examine the physical and radiobiologic effects of prostate edema in preplanned {sup 131}Cs implants. The need for dose compensation was assessed using the dose responses observed in {sup 125}I and {sup 103}Pd prostate implants. The biologically effective dose, calculated with full consideration of edema evolution, was used to estimate the additional irradiation needed for dose compensation. Results: We found that the edema-induced dose reduction in preplanned {sup 131}Cs implants could easily exceed 10% of the prescription dose for implants with moderate or large edema. These dose reductions could lead to a >10% reduction in the biochemical recurrence-free survival for individual patients if the effect of edema was ignored. For a prescribed dose of 120 Gy, the number of 2-Gy external beam fractions needed to compensate for a 5%, 10%, 15%, 20%, and 25% edema-induced dose reduction would be one, four, six, seven, and nine, respectively, for prostate cancer with a median potential doubling time of 42 days. The required additional irradiation increased for fast-growing tumors and/or those less efficient in sublethal damage repair. Conclusion: Compensation of edema-induced dose reductions in preplanned {sup 131}Cs prostate brachytherapy should be actively considered for those implants with moderate or large edema.

  2. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    SciTech Connect

    Testylier, Guy . E-mail: guytestylier@crssa.net; Lahrech, Hana; Montigon, Olivier; Foquin, Annie; Delacour, Claire; Bernabe, Denis; Segebarth, Christoph; Dorandeu, Frederic; Carpentier, Pierre

    2007-04-15

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 {mu}g/kg), the mice were anesthetized with an isoflurane/N{sub 2}O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication and was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures.

  3. Ability of eugenol to reduce tongue edema induced by Dieffenbachia picta Schott in mice.

    PubMed

    Dip, Etyene Castro; Pereira, Nuno Alvarez; Fernandes, Patricia Dias

    2004-05-01

    Dieffenbachia picta Schott (Araceae), known in Brazil as "comigo-ninguém-pode" is an ornamental plant with toxic properties. Its juice, when chewed, causes a painful edema of the oral mucous membranes, buccal ulcerations and tongue hypertrophy. This acute inflammation sometimes becomes severe enough to produce glottis obstruction, respiratory compromise and death. Eugenol (4-alil-2-metoxiphenol), the essential oil extracted from Caryophyllus aromaticus (Myrtaceae) is widely used in odontology. In this study, our objective was to standardize, in mice, a measurable methodology for the tongue edema induced by the topical application of the D. picta stem juice; evaluate the effects of eugenol in this model and compare the results with emergency treatment used in hospitals. Our results show that in spite of a small increase in edema a few minutes after administration, emergency treatment reduced by 70% the overall edema. When compared with the combination of the above drugs, eugenol, even at the smallest dose of 5 microg/kg, regardless of the chosen administration route, or the moment the treatment began, presents better results in the reduction and inhibition of the tongue edema induced by the D. picta juice.

  4. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  5. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome

    PubMed Central

    Zhang, Yiwei; Tian, Kun; Wang, Yan; Zhang, Rong; Shang, Jiawei; Jiang, Wei; Wang, Aizhong

    2016-01-01

    This study was designed to investigate the role of aquaporin1 (AQP1) in the pathologic process of pulmonary edema induced by fat embolism syndrome (FES) and the effects of a free fatty acid (FFA) mixture on AQP1 expression in pulmonary microvascular endothelial cells (PMVECs). In vivo, edema was more serious in FES mice compared with the control group. The expression of AQP1 and the wet-to-dry lung weight ratio (W/D) in the FES group were significantly increased compared with the control group. At the same time, inhibition of AQP1 decreased the pathological damage resulting from pulmonary edema. Then we performed a study in vitro to investigate whether AQP1 was induced by FFA release in FES. The mRNA and protein level of AQP1 were increased by FFAs in a dose- and time-dependent manner in PMVECs. In addition, the up-regulation of AQP1 was blocked by the inhibitor of p38 kinase, implicating the p38 MAPK pathway as involved in the FFA-induced AQP1 up-regulation in PMVECs. Our results demonstrate that AQP1 may play important roles in pulmonary edema induced by FES and can be regarded as a new therapy target for treatment of pulmonary edema induced by FES. PMID:27455237

  6. Simulation of dose reduction in tomosynthesis

    SciTech Connect

    Svalkvist, Angelica; Baath, Magnus

    2010-01-15

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  7. Validation of CT dose-reduction simulation

    SciTech Connect

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.

    2009-01-15

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The ''just noticeable difference (JND)'' in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%{+-}1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%{+-}1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%{+-}2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose, which

  8. Edema induced by Bothrops asper (Squamata: Viperidae) snake venom and its inhibition by Costa Rican plant extracts.

    PubMed

    Badilla, Beatriz; Chaves, Fernando; Mora, Gerardo; Poveda, Luis J

    2006-06-01

    We tested the capacity of leaf (Urera baccifera, Loasa speciosa, Urtica leptuphylla, Chaptalia nutans, and Satureja viminea) and root (Uncaria tomentosa) extracts to inhibit edema induced by Bothrops asper snake venom. Edema-forming activity was studied plethysmographically in the rat hind paw model. Groups of rats were injected intraperitoneally with various doses of each extract and, one hour later, venom was injected subcutaneously in the right hind paw. Edema was assessed at various time intervals. The edematogenic activity was inhibited in those animals that received an injection U. tomentosa, C. nutans or L. speciosa extract. The extract of U. baccifera showed a slight inhibition of the venom effect. Extract from S. viminea and, to a lesser extent that of U. leptuphylla, induced a pro-inflammatory effect, increasing the edema at doses of 250 mg/kg at one and two hours.

  9. Dose reduction in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Chowdhury, Samir; Hugg, James W.; Moats, Rex A.; Patt, Bradley E.

    2011-10-01

    Molecular Breast Imaging (MBI) is the imaging of radiolabeled drugs, cells, or nanoparticles for breast cancer detection, diagnosis, and treatment. Screening of broad populations of women for breast cancer with mammography has been augmented by the emergence of breast MRI in screening of women at high risk for breast cancer. Screening MBI may benefit the sub-population of women with dense breast tissue that obscures small tumors in mammography. Dedicated breast imaging equipment is necessary to enable detection of early-stage tumors less than 1 cm in size. Recent progress in the development of these instruments is reviewed. Pixellated CZT for single photon MBI imaging of 99mTc-sestamibi gives high detection sensitivity for early-stage tumors. The use of registered collimators in a near-field geometry gives significantly higher detection efficiency - a factor of 3.6-, which translates into an equivalent dose reduction factor given the same acquisition time. The radiation dose in the current MBI procedure has been reduced to the level of a four-view digital mammography study. In addition to screening of selected sub-populations, reduced MBI dose allows for dual-isotope, treatment planning, and repeated therapy assessment studies in the era of molecular medicine guided by quantitative molecular imaging.

  10. Dose reduction in paediatric MDCT: general principles.

    PubMed

    Paterson, A; Frush, D P

    2007-06-01

    The number of multi-detector array computed tomography (MDCT) examinations performed per annum continues to increase in both the adult and paediatric populations. Estimates from 2003 suggested that CT contributed 17% of a radiology department's workload, yet was responsible for up to 75% of the collective population dose from medical radiation. The effective doses for some CT examinations today overlap with those argued to have an increased risk of cancer. This is especially pertinent for paediatric CT, as children are more radiosensitive than adults (and girls more radiosensitive than boys). In addition, children have a longer life ahead of them, in which radiation induced cancers may become manifest. Radiologists must be aware of these facts and practise the ALARA (as low as is reasonably achievable) principle, when it comes to deciding CT protocols and parameters. PMID:17467387

  11. CT dose optimisation and reduction in osteoarticular disease.

    PubMed

    Gervaise, A; Teixeira, P; Villani, N; Lecocq, S; Louis, M; Blum, A

    2013-04-01

    With an improvement in the temporal and spatial resolution, computed tomography (CT) is indicated in the evaluation of a great many osteoarticular diseases. New exploration techniques such as the dynamic CT and CT bone perfusion also provide new indications. However, CT is still an irradiating imaging technique and dose optimisation and reduction remains primordial. In this paper, the authors first present the typical doses delivered during CT in osteoarticular disease. They then discuss the different ways to optimise and reduce these doses by distinguishing the behavioural factors from the technical factors. Among the latter, the optimisation of the milliamps and kilovoltage is indispensable and should be adapted to the type of exploration and the morphotype of each individual. These technical factors also benefit from recent technological evolutions with the distribution of iterative reconstructions. In this way, the dose may be divided by two and provide an image of equal quality. With these dose optimisation and reduction techniques, it is now possible, while maintaining an excellent quality of the image, to obtain low-dose or even very low-dose acquisitions with a dose sometimes similar that of a standard X-ray assessment. Nevertheless, although these technical factors provide a major reduction in the dose delivered, behavioural factors, such as compliance with the indications, remain fundamental. Finally, the authors describe how to optimise and reduce the dose with specific applications in musculoskeletal imaging such as the dynamic CT, CT bone perfusion and dual energy CT.

  12. Are there dangers in biologic dose reduction strategies?

    PubMed

    Chan, Christopher K Y; Holroyd, Christopher R; Mason, Alice; Zarroug, Jalaa; Edwards, Christopher J

    2016-07-01

    Biologic dose reduction strategies, for patients with inflammatory rheumatic diseases, have been assessed in multiple studies to assess outcomes compared to ongoing maintenance dosing. Whilst cessation in established disease usually leads to disease flare, dose tapering approaches for those achieving low disease activity often appear to be successful in the short term. However, tapering can be associated with a higher risk of losing disease control and rates of recapture of disease control using the original biologic dose vary between studies. Over relatively short periods of follow-up, a number of studies have shown no statistical difference in radiographic progression in patients tapering or discontinuing biologics. However, a Cochrane review found that radiographic and functional outcomes may be worse after TNF inhibitor discontinuation, and over long-term disease follow-up flares have been associated with radiographic progression and worse patient reported outcomes. To date, no studies of biological therapy dose reduction have specifically investigated the risk of increased immunogenicity or the effects on cardiovascular risk and other co-morbidities, although these remain important potential risks. In addition, whether there are greater dangers in certain dose reduction approaches such as a reduction in dose at the same frequency or a spacing of doses is not established.

  13. Dose reduction improvements in storage basins of spent nuclear fuel

    SciTech Connect

    Huang, Fan-Hsiung F.

    1997-08-13

    Spent nuclear fuel in storage basins at the Hanford Site has corroded and contaminated basin water, which has leaked into the soil; the fuel also had deposited a layer of radioactive sludge on basin floors. The SNF is to be removed from the basins to protect the nearby Columbia River. Because the radiation level is high, measures have been taken to reduce the background dose rate to as low as reasonably achievable (ALARA) to prevent radiation doses from becoming the limiting factor for removal of the SW in the basins to long-term dry storage. All activities of the SNF Project require application of ALARA principles for the workers. On the basis of these principles dose reduction improvements have been made by first identifying radiological sources. Principal radiological sources in the basin are basin walls, basin water, recirculation piping and equipment. Dose reduction activities focus on cleaning and coating basin walls to permit raising the water level, hydrolasing piping, and placing lead plates. In addition, the transfer bay floor will be refinished to make decontamination easier and reduce worker exposures in the radiation field. The background dose rates in the basin will be estimated before each task commences and after it is completed; these dose reduction data will provide the basis for cost benefit analysis.

  14. Strategies for reduction of radiation dose in cardiac multislice CT.

    PubMed

    Paul, Jean-François; Abada, Hicham T

    2007-08-01

    Because cardiac computed tomography (CT) (mainly coronary CT angiography) is a very promising technique, used more and more for coronary artery evaluation, the benefits and risks of this new low-invasive technique must be balanced. Radiation dose is a major concern for coronary CT angiography, especially in case of repeated examinations or in particular subgroups of patients (for example young female patients). Radiation dose to patient tends to increase from 16- to 64-slice CT. Radiation exposure in ECG-gated acquisitions may reach up to 40 mSv; considerable differences are attributable to the performance of CT machines, to technical dose-sparing tools, but also to radiological habits. Setting radiation dose at the lowest level possible should be a constant goal for the radiologist. Current technological tools are detailed in regard to their efficiency. Optimisation is necessary, by a judicious use of technological tools and also by individual adaptation of kV or mAs. This paper reviews the different current strategies for radiation dose reduction, keeping image quality constant. Data from the literature are discussed, and future technological developments are considered in regards to radiation dose reduction. The particular case of paediatric patients with congenital heart disease is also addressed.

  15. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification.

  16. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification. PMID:25754302

  17. Dose reduction using a dynamic, piecewise-linear attenuator

    SciTech Connect

    Hsieh, Scott S.; Fleischmann, Dominik; Pelc, Norbert J.

    2014-02-15

    Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic

  18. Cyclosporine dose reduction by ketoconazole administration in renal transplant recipients.

    PubMed

    First, M R; Schroeder, T J; Alexander, J W; Stephens, G W; Weiskittel, P; Myre, S A; Pesce, A J

    1991-02-01

    Cyclosporine metabolism occurs in the liver via hepatic cytochrome P-450 microsomal enzymes. Ketoconazole, an imidazole derivative, has been shown to inhibit the cytochrome P-450 enzyme system. Thirty-six renal transplant recipients receiving cyclosporine as part of a triple immunosuppressive drug regimen were started on 200 mg/day of oral ketoconazole. The dose of cyclosporine was reduced by 70% at the start of ketoconazole; this dose reduction was based on our previous experience with concomitant cyclosporine-ketoconazole therapy. Ketoconazole was started in patients who had been on cyclosporine for between 10 days and 74 months. The mean cyclosporine dose was 420 mg/day (5.9 mg/kg/day) before starting ketoconazole and 66 mg/day (0.9 mg/kg/day) one year after the addition of ketoconazole; this represents a cyclosporine dose reduction of 84.7% (P less than 0.0001). The mean trough whole-blood cyclosporine concentrations measured by HPLC, were 130 ng/mL preketoconazole and 149 ng/mL after 1 year of combination therapy. Mean serum creatinine and BUN levels were unchanged before and during ketoconazole administration, and no changes in liver function tests were noted. Cyclosporine pharmacokinetics were performed before and after at least three weeks of ketoconazole. Hourly whole-blood samples were measured by HPLC (parent cyclosporine only) and TDX (parent + metabolites). Combination therapy resulted in decreases in the maximum blood concentration and the steady-state volume of distribution divided by the fractional absorption, and increases in mean residence time and the parent-to-parent plus metabolite ratio (calculated by dividing the HPLC by the TDX value). The addition of ketoconazole to cyclosporine-treated patients resulted in a significant inhibition of cyclosporine metabolism and decrease in the dosage. There was minimal nephrotoxicity, and only four rejection episodes occurred on combined therapy. The concomitant administration of the two drugs was well

  19. Iterative methods for dose reduction and image enhancement in tomography

    DOEpatents

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  20. Order of magnitude reduction of fluoroscopic x-ray dose

    NASA Astrophysics Data System (ADS)

    Bal, Abhinav; Robert, Normand; Machan, Lindsay; Deutsch, Meir; Kisselgoff, David; Babyn, Paul; Rowlands, John A.

    2012-03-01

    The role of fluoroscopic imaging is critical for diagnostic and image guided therapy. However, fluoroscopic imaging can require significant radiation leading to increased cancer risk and non-stochastic effects such as radiation burns. Our purpose is to reduce the exposure and dose to the patient by an order of magnitude in these procedures by use of the region of interest method. Method and Materials: Region of interest fluoroscopy (ROIF) uses a partial attenuator. The central region of the image has full exposure while the image periphery, there to provide context only, has a reduced exposure rate. ROIF using a static partial attenuator has been shown in our previous studies to reduce the dose area product (DAP) to the patient by at least 2.5 times. Significantly greater reductions in DAP would require improvements in flat panel detectors performance at low x-ray exposures or a different x-ray attenuation strategy. Thus we have investigated a second, dynamic, approach. We have constructed an x-ray shutter system allowing a normal x-ray exposure in the region of interest while reducing the number of x-ray exposures in the periphery through the rapid introduction, positioning and removal of an x-ray attenuating shutter to block radiation only for selected frames. This dynamic approach eliminates the DQE(0) loss associated with the use of static partial attenuator applied to every frame thus permitting a greater reduction in DAP. Results: We have compared the two methods by modeling and determined their fundamental limits.

  1. Low Dose MDCT with Tube Current Modulation: Role in Detection of Urolithiasis and Patient Effective Dose Reduction

    PubMed Central

    Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra

    2016-01-01

    Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322

  2. Pharmacological characterization of the rat paw edema induced by Bothrops lanceolatus (Fer de lance) venom.

    PubMed

    de Faria L; Antunes, E; Bon, C; de Araújo, A L

    2001-06-01

    The inflammatory response induced by Bothrops lanceolatus venom (BLV) in the rat hind-paw was studied measuring paw edema. Non-heated BLV (75microg/paw) caused a marked paw edema accompanied by intense haemorrhage whereas heated venom (97 degrees C, 30s; 12.5-100microg/paw) produced a dose- and time-dependent non-haemorrhagic edema. The response with heated BLV was maximal within 15min disappearing over 24h. Heated venom was then routinely used at the dose of 75microg/paw. The prostacyclin analogue iloprost (0.1microg/paw) potentiated by 125% the venom-induced edema. The histamine H(1) receptor antagonist mepyramine (6mg/kg) or the serotonin/histamine receptor antagonist cyproheptadine (6mg/kg) partially inhibited BLV-induced edema whereas the combination of both compounds virtually abolished the edema. The lipoxygenase inhibitor BWA4C (10mg/kg), but not the cyclooxygenase inhibitor indomethacin (10mg/kg), significantly inhibited the edema (35% reduction; P<0.05). Dexamethasone (1mg/kg) also markedly (P<0.001) reduced venom-induced edema. The bradykinin B(2) receptor antagonist Hoe 140 (0.6mg/kg) reduced by 30% (P<0.05) the venom induced edema, whereas the angiotensin-converting enzyme inhibitor captopril (300microg/paw) potentiated by 42% (P<0.05) the edema. Bothrops lanceolatus antivenon (anti-BLV) reduced by 28% (P<0.05) the venom-induced edema while intravenous administration of antivenom failed to affect the edema. In conclusion, BLV-induced rat paw edema involves mast cell degranulation causing local release of histamine and serotonin, a phenomenon mediated mainly by kinins and lipoxygenase metabolites. Additionally, the use of a specific Bothrops lanceolatus antivenom, given subplantarily or intravenously, revealed to be little effective to prevent BLV-induced edema. PMID:11137542

  3. Measurement of skin-fold thickness in the guinea pig. Assessment of edema-inducing capacity of cutting fluids, acids, alkalis, formalin and dimethyl sulfoxide.

    PubMed

    Wahlberg, J E

    1993-03-01

    The rabbit has been used for decades for predictive testing of skin irritancy, but in recent years, the guinea pig has been suggested as an alternative, especially for assessment of one of the components of the irritant reaction: edema (fluid accumulation). A method based on skin-fold measurements with Harpenden calipers has been developed and modified. In previous papers, experience with sodium lauryl sulphate, nonanoic acid and industrial solvents was reported. The present results concern the use of cutting fluids, buffered and unbuffered acid and alkaline solutions, formalin and dimethyl sulfoxide. This inexpensive and comparatively unsophisticated method afforded clear dose-response relationships and good discriminating power. The only exception was the acid and alkaline solutions, where no changes in skin-fold thickness were observed despite their documented irritant potential. The appearance of erythema (visual scoring) and the increase in skin-fold thickness, and their relationship, are discussed with some illustrative examples. The method described is now well standardized and is suited for predictive testing of the edema-inducing capacity of chemicals and products.

  4. [Breast dose reduction in female CT screening for lung cancer using various metallic shields].

    PubMed

    Takada, Kenta; Kaneko, Junichi; Aoki, Kiyoshi

    2009-12-20

    We evaluated the effectiveness of metallic shields that were used for reduction of the breast dose in thoracic computed tomography(CT). For the evaluation, we measured breast surface dose and image standard deviation(SD)in the lung area. The metallic shields were made from bismuth, zinc, copper, and iron. The bismuth shield has been marketed and used for dose reduction. The other three metallic shields were chosen because they have lower atomic numbers and a lower yield of characteristic X-rays. As a result, use of the metallic shields showed a lower breast dose than the decrement of the tube current in the same image SD. The insertion of a thin aluminum sheet between the shield and a phantom was also effective in reducing breast surface dose. We calculated the dose reduction rate to evaluate the effectiveness of these metallic shields. This dose reduction rate was defined as the ratio of the decrease in breast surface dose by metallic shields to the breast surface dose measured with the tube current decrement in the same image SD. The maximum dose reduction rate was 6.4% for the bismuth shield, and 12.0-13.3% for the other shields. These results indicate that the shields made from zinc, copper, and iron are more effective for dose reduction than the shield made form bismuth. The best dose reduction rate, 13.3%, has been achieved when the zinc shield placed 20 mm apart from a phantom with 0.2 mm aluminum was used.

  5. Order of magnitude dose reduction in intraoral radiography

    SciTech Connect

    Kircos, L.T.; Angin, L.L.; Lorton, L.

    1987-03-01

    This comparative clinical investigation concerns the radiation dose from intraoral radiography using E-speed film and rectangular and circular beam collimation. Dose to organs not of diagnostic importance (brain, lens of the eye, thyroid, and breast) is reduced by approximately an order of magnitude when rectangular collimation and E-speed film are used in periapical radiography. And dose to the thyroid and breast is further reduced by a third with the use of a full leaded apron and thyroid shield.

  6. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 MgY for the parotid gland, 0.15 MgY for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field.

  7. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described.

  8. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  9. Radiation dose reduction efficiency of buildings after the accident at the Fukushima Daiichi Nuclear Power Station.

    PubMed

    Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji

    2014-01-01

    Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites.

  10. Radiation Dose Reduction Efficiency of Buildings after the Accident at the Fukushima Daiichi Nuclear Power Station

    PubMed Central

    Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji

    2014-01-01

    Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55±0.04, 0.15±0.02, and 0.19±0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites. PMID:24999992

  11. Radiation dose reduction efficiency of buildings after the accident at the Fukushima Daiichi Nuclear Power Station.

    PubMed

    Monzen, Satoru; Hosoda, Masahiro; Osanai, Minoru; Tokonami, Shinji

    2014-01-01

    Numerous radionuclides were released from the Fukushima Daiichi Nuclear Power Station (F1-NPS) in Japan following the magnitude 9.0 earthquake and tsunami on March 11, 2011. Local residents have been eager to calculate their individual radiation exposure. Thus, absorbed dose rates in the indoor and outdoor air at evacuation sites in the Fukushima Prefecture were measured using a gamma-ray measuring devices, and individual radiation exposure was calculated by assessing the radiation dose reduction efficiency (defined as the ratio of absorbed dose rate in the indoor air to the absorbed dose rate in the outdoor air) of wood, aluminum, and reinforced concrete buildings. Between March 2011 and July 2011, dose reduction efficiencies of wood, aluminum, and reinforced concrete buildings were 0.55 ± 0.04, 0.15 ± 0.02, and 0.19 ± 0.04, respectively. The reduction efficiency of wood structures was 1.4 times higher than that reported by the International Atomic Energy Agency. The efficiency of reinforced concrete was similar to previously reported values, whereas that of aluminum structures has not been previously reported. Dose reduction efficiency increased in proportion to the distance from F1-NPS at 8 of the 18 evacuation sites. Time variations did not reflect dose reduction efficiencies at evacuation sites although absorbed dose rates in the outdoor air decreased. These data suggest that dose reduction efficiency depends on structure types, levels of contamination, and evacuee behaviors at evacuation sites. PMID:24999992

  12. Energy deposition in the breast during CT scanning: quantification and implications for dose reduction

    NASA Astrophysics Data System (ADS)

    Rupcich, Franco; Kyprianou, Iacovos; Badal, Andreu; Schmidt, Taly G.

    2011-03-01

    Studies suggest that dose to the breast leads to a higher lifetime attributable cancer incidence risk from a chest CT scan for women compared to men. Numerous methods have been proposed for reducing dose to the breast during CT scanning, including bismuth shielding, tube current modulation, partial-angular scanning, and reduced kVp. These methods differ in how they alter the spectrum and fluence across projection angle. This study used Monte Carlo CT simulations of a voxelized female phantom to investigate the energy (dose) deposition in the breast as a function of both photon energy and projection angle. The resulting dose deposition matrix was then used to investigate several questions regarding dose reduction to the breast: (1) Which photon energies deposit the most dose in the breast, (2) How does increased filtration compare to tube current reduction in reducing breast dose, and (3) Do reduced kVp scans reduce dose to breast, and if so, by what mechanism? The results demonstrate that while high-energy photons deposit more dose per emitted photon, the low-energy photons deposit more dose to the breast for a 120 kVp acquisition. The results also demonstrate that decreasing the tube current for the AP views to match the fluence exiting a shield deposits nearly the same dose to the breast as when using a shield (within ~1%). Finally, results suggest that the dose reduction observed during lower kVp scans is caused by reduced photon fluence rather than the elimination of high-energy photons from the beam. Overall, understanding the mechanisms of dose deposition in the breast as a function of photon energy and projection angle enables comparisons of dose reduction methods and facilitates further development of optimized dose reduction schemes.

  13. Decreasing Methadone Dose Via Anxiety Reduction: A Treatment Manual.

    ERIC Educational Resources Information Center

    Kushner, Marlene; And Others

    This manual describes a Relaxation-Information Presentation program based on the clinical observation that anxiety is a serious barrier to detoxification for many methadone clients, and on experimental evidence indicating that expectations may play a greater role in the discomfort experienced during detoxification than the actual methadone dose.…

  14. Reduction of absorbed doses in radiography of the facial skeleton

    SciTech Connect

    Julin, P.; Kraepelien, T.

    1984-11-01

    Radiation absorbed doses from radiography of the paranasal sinuses and the facial skeleton were measured with thermoluminescent dosimeters (TLD) on a phantom head using high-sensitivity screens in an Orbix stand. The entrance doses to the skin of the head ranged from 0.31 to 2.9 mGy per exposure. The absorbed dose from a full series of sinus exposures averaged 0.33 mGy for the oral mucous membrane, 0.33 mGy for the maxillary sinus mucous membrane, 0.11 mGy for the parotid gland, 0.15 mGy for the submandibular gland, 0.61 mGy for the eye lens, and 0.75 mGy for the thyroid gland region. A leaded soft collar adapted to the thyroid region reduced the thyroid doses by more than one order of magnitude, but also reduced the image field. The mean energy imparted from a full series of paranasal sinus projections was 4.8 mJ and from a total series of the facial skeleton, 7.9 mJ.

  15. Preliminary design review report for K Basin Dose Reduction Project

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design.

  16. [Reduction of radiation dose by the use of carbon fiber cassettes].

    PubMed

    Hajek, P; Nowotny, R

    1984-03-01

    A new type of radiographic cassette, reinforced by PEEK-CFK is discussed. The amount of reduction of radiation dose by this cassette was evaluated by means of an experimental physical and clinical trial. Dose reduction may reach 30% depending on the type of examination and the organ studied. An increase of contrast of the radiographs could not be verified. This type of cassette can be recommended for routine clinical use.

  17. Generalized pustular psoriasis induced by systemic steroid dose reduction*

    PubMed Central

    Westphal, Danielle Cristine; Schettini, Antonio Pedro Mendes; de Souza, Petra Pereira; Castiel, Jessica; Chirano, Carlos Alberto; Santos, Mônica

    2016-01-01

    Generalized pustular psoriasis, or psoriasis of von Zumbusch, is an acute and severe clinical form of psoriasis, which usually occurs in patients with psoriasis undergoing aggravating factors. In this work, we report the case of a female patient, 70 years old, who developed generalized pustular psoriasis symptoms while reducing the dose of oral corticosteroids, improperly introduced for the treatment of alleged acute generalized exanthematous pustulosis. The differential diagnosis of generalized pustular psoriasis should be made with other pustular dermatoses, such as subcorneal pustulosis, IgA pemphigus and especially with acute generalized exanthematous pustulosis. Personal history of psoriasis and histopathological findings with psoriasiform changes and subcorneal pustule favored the diagnosis. She was treated with acitretin 30 mg / day, progressing to complete regression of the lesions.

  18. Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

    PubMed Central

    Shin, Youngseob; Jung, In-Hye; Kwak, Jungwon

    2015-01-01

    Purpose Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field. PMID:26484306

  19. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  20. Development of radiation dose reduction techniques for cadmium zinc telluride detectors in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Hruska, Carrie B.; Weinmann, Amanda; Manduca, Armando; Rhodes, Deborah J.

    2010-08-01

    Background: Molecular breast imaging (MBI) is a novel breast imaging technique that uses Cadmium Zinc Telluride (CZT) gamma cameras to detect the uptake of Tc-99m sestamibi in breast tumors. Current techniques employ an administered dose of 20-30 mCi Tc-99m, delivering an effective dose of 6.5-10 mSv to the body. This is ~ 5-10 times that of mammography. The goal of this study was to reduce the radiation dose by a factor of 5-10, while maintaining image quality. Methods: A total of 4 dose reduction schemes were evaluated - a) optimized collimation, b) improved utilization of the energy spectrum below the photopeak, c) adaptive geometric mean algorithm developed for combination of images from opposing detectors, and d) non local means filtering (NLMF) for noise reduction and image enhancement. Validation of the various schemes was performed using a breast phantom containing a variety of tumors and containing activity matched to that observed in clinical studies. Results: Development of tungsten collimators with holes matched to the CZT pixels yielded a 2.1-2.9 gain in system sensitivity. Improved utilization of the energy spectra yielded a 1.5-2.0 gain in sensitivity. Development of a modified geometric mean algorithm yielded a 1.4 reduction in image noise, while retaining contrast. Images of the breast phantom demonstrated that a factor of 5 reduction in dose was achieved. Additional refinements to the NLMF should enable an additional factor of 2 reduction in dose. Conclusion: Significant dose reduction in MBI to levels comparable to mammography can be achieved while maintaining image quality.

  1. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    SciTech Connect

    Vaishnav, J. Y. Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  2. Effects of dose limits reduction on the Argentine nuclear power plants.

    PubMed

    Palacios, E; Curti, A; Massera, G; Spano, F; Boutet, L

    1993-11-01

    Occupational doses are evaluated in different stages of the fuel cycle and in the operation of nuclear power plants. Trends in individual dose distribution and collective doses are analyzed. The most contributive working conditions to collective dose are identified and the implications of dose limit reduction recommended by the ICRP in 1990 are assessed. It is concluded that no relevant difficulties should appear in accomplishing the new recommendations except for implementation at Atucha I, a nuclear power plant designed in the 1960s. Some options to reduce individual and collective doses in this plant are analyzed. The change of fuel channels by new ones free from cobalt is essential to get effective improvement of occupational exposures.

  3. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    NASA Astrophysics Data System (ADS)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  4. Dose reduction in a paediatric X-ray department following optimization of radiographic technique.

    PubMed

    Mooney, R; Thomas, P S

    1998-08-01

    A survey of radiation doses to children from diagnostic radiography has been carried out in a dedicated paediatric X-ray room. Entrance surface dose (ESD) and dose-area product (DAP) per radiograph were simultaneously measured with thermoluminescent dosemeters (TLDs) and a DAP meter to provide mean dose values for separate age ranges. Results of ESD and DAP were lower than the mean values from other UK studies for all ages and radiographs, except for the infant pelvis AP radiograph. Comparison of ESD and radiographic technique with CEC quality criteria highlighted a need for reduction of dose to infants and implied an increase in tube filtration might overcome the limitations of the room's three-phase, 12-pulse generator, allowing higher tube potentials to be used on infants. Additional tube filtration of 3 mmA1 was installed following assessment of dose reduction and image quality with test objects and phantoms, and confirmation from the paediatric radiologist that clinical image quality was not-significantly altered. The tube potential was increased from 50 to 56 kVp for the infant pelvis AP radiograph. The resulting ESD and effective dose fell by 51% and 38%, respectively. The CEC quality criteria have proved useful as a benchmark against which technique in X-ray departments can be compared, and as such are a useful tool for optimizing radiographic technique and reducing patient dose.

  5. Dose Reduction versus Dose-interval Prolongation in Eribulin Mesilate Monotherapy in Patients with Metastatic Breast Cancer: A Retrospective Comparative Study.

    PubMed

    Sasaki, Toshinori; Oshima, Yumiko; Mishima, Etsuko; Ban, Akiko; Katsuragawa, Kenji; Nagamatsu, Hidetsugu; Yoshioka, Yuki; Tsukiyama, Ikuto; Hisada, Tatsuya; Itakura, Yukari; Mizutani, Mitsuhiro

    2016-07-01

    It is often necessary to modify the dose or schedule of eribulin mesilate (Eri) because of adverse events. Therefore, we retrospectively investigated the optimal approach for Eri dose adjustment and/or dosage interval adjustment. Patients who received Eri at the institutions affiliated with the Division of Oncology of the Aichi Prefectural Society of Hospital Pharmacists between July 2011 and November 2013 were enrolled in this study. We compared the group that underwent dose reduction without changes to their dosage interval (dose reduction group) with the group that had a change in their dosage interval (dose-interval prolongation group). The primary end-point was time to treatment failure (TTF), and the secondary end-points were overall survival (OS), overall response rate (ORR), clinical benefit rate (CBR), and adverse events. The TTF and OS of the dose reduction group were approximately two times longer than those of the dose-interval prolongation group. In addition, the dose reduction group had significantly improved ORR and CBR, which together indicate an antitumor effect (p=0.013 and 0.002, respectively). Although peripheral neuropathy occurred significantly more frequently in the patients in the dose reduction group (p=0.026), it was grade 1 and controllable in most of the cases. There were no differences in the occurrence of other adverse effects between the two groups. Therefore, we suggest that dose reduction with maintenance of the dosage interval is the preferred treatment approach in cases where Eri dose or schedule modification is necessary. PMID:27040459

  6. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    PubMed Central

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  7. Potential of combining iterative reconstruction with noise efficient detector design: aggressive dose reduction in head CT

    PubMed Central

    Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A

    2015-01-01

    Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204

  8. Pilot Study on Image Quality and Radiation Dose of CT Colonography with Adaptive Iterative Dose Reduction Three-Dimensional

    PubMed Central

    Shen, Hesong; Liang, Dan; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Zhu, Shanshan; Qiu, Jianping; Li, Wenru

    2015-01-01

    Objective To investigate image quality and radiation dose of CT colonography (CTC) with adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Ten segments of porcine colon phantom were collected, and 30 pedunculate polyps with diameters ranging from 1 to 15 mm were simulated on each segment. Image data were acquired with tube voltage of 120 kVp, and current doses of 10 mAs, 20 mAs, 30 mAs, 40 mAs, 50 mAs, respectively. CTC images were reconstructed using filtered back projection (FBP) and AIDR3D. Two radiologists blindly evaluated image quality. Quantitative evaluation of image quality included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Qualitative image quality was evaluated with a five-score scale. Radiation dose was calculated based on dose-length product. Ten volunteers were examined supine 50 mAs with FBP and prone 20 mAs with AIDR3D, and image qualities were assessed. Paired t test was performed for statistical analysis. Results For 20 mAs with AIDR3D and 50 mAs with FBP, image noise, SNRs and CNRs were (16.4 ± 1.6) HU vs. (16.8 ± 2.6) HU, 1.9 ± 0.2 vs. 1.9 ± 0.4, and 62.3 ± 6.8 vs. 62.0 ± 6.2, respectively; qualitative image quality scores were 4.1 and 4.3, respectively; their differences were all not statistically significant. Compared with 50 mAs with FBP, radiation dose (1.62 mSv) of 20 mAs with AIDR3D was decreased by 60.0%. There was no statistically significant difference in image noise, SNRs, CNRs and qualitative image quality scores between prone 20 mAs with AIDR3D and supine 50 mAs with FBP in 10 volunteers, the former reduced radiation dose by 61.1%. Conclusion Image quality of CTC using 20 mAs with AIDR3D could be comparable to standard 50 mAs with FBP, radiation dose of the former reduced by about 60.0% and was only 1.62 mSv. PMID:25635839

  9. Effects of Low-Dose Mindfulness-Based Stress Reduction (MBSR-ld) on Working Adults

    ERIC Educational Resources Information Center

    Klatt, Maryanna D.; Buckworth, Janet; Malarkey, William B.

    2009-01-01

    Mindfulness-based stress reduction (MBSR) has produced behavioral, psychological, and physiological benefits, but these programs typically require a substantial time commitment from the participants. This study assessed the effects of a shortened (low-dose [ld]) work-site MBSR intervention (MBSR-ld) on indicators of stress in healthy working…

  10. Limits to dose reduction from iterative reconstruction and the effect of through-slice blurring

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2016-03-01

    Iterative reconstruction methods have become very popular and show the potential to reduce dose. We present a limit to the maximum dose reduction possible with new reconstruction algorithms obtained by analyzing the information content of the raw data, assuming the reconstruction algorithm does not have a priori knowledge about the object or correlations between pixels. This limit applies to the task of estimating the density of a lesion embedded in a known background object, where the shape of the lesion is known but its density is not. Under these conditions, the density of the lesion can be estimated directly from the raw data in an optimal manner. This optimal estimate will meet or outperform the performance of any reconstruction method operating on the raw data, under the condition that the reconstruction method does not introduce a priori information. The raw data bound can be compared to the lesion density estimate from FBP in order to produce a limit on the dose reduction possible from new reconstruction algorithms. The possible dose reduction from iterative reconstruction varies with the object, but for a lesion embedded in the center of a water cylinder, it is less than 40%. Additionally, comparisons between iterative reconstruction and filtered backprojection are sometimes confounded by the effect of through-slice blurring in the iterative reconstruction. We analyzed the magnitude of the variance reduction brought about by through-slice blurring on scanners from two different vendors and found it to range between 11% and 48%.

  11. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    SciTech Connect

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  12. Feasibility study of dose reduction in digital breast tomosynthesis using non-local denoising algorithms

    NASA Astrophysics Data System (ADS)

    Vieira, Marcelo A. C.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Borges, Lucas R.; Bakic, Predrag R.; Barufaldi, Bruno; Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2015-03-01

    The main purpose of this work is to study the ability of denoising algorithms to reduce the radiation dose in Digital Breast Tomosynthesis (DBT) examinations. Clinical use of DBT is normally performed in "combo-mode", in which, in addition to DBT projections, a 2D mammogram is taken with the standard radiation dose. As a result, patients have been exposed to radiation doses higher than used in digital mammography. Thus, efforts to reduce the radiation dose in DBT examinations are of great interest. However, a decrease in dose leads to an increased quantum noise level, and related decrease in image quality. This work is aimed at addressing this problem by the use of denoising techniques, which could allow for dose reduction while keeping the image quality acceptable. We have studied two "state of the art" denoising techniques for filtering the quantum noise due to the reduced dose in DBT projections: Non-local Means (NLM) and Block-matching 3D (BM3D). We acquired DBT projections at different dose levels of an anthropomorphic physical breast phantom with inserted simulated microcalcifications. Then, we found the optimal filtering parameters where the denoising algorithms are capable of recovering the quality from the DBT images acquired with the standard radiation dose. Results using objective image quality assessment metrics showed that BM3D algorithm achieved better noise adjustment (mean difference in peak signal to noise ratio < 0.1dB) and less blurring (mean difference in image sharpness ~ 6%) than the NLM for the projections acquired with lower radiation doses.

  13. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; Haas-Kock, Danielle de; Visser, Peter; Gils, Francis van; Verhaegen, Frank

    2012-03-15

    Purpose: The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. Methods: A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D{sub 90} was reported based on the post implant CT prostate contour. Results: Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (dose). In clinical cases, the FM reduced the dose to some voxels by up to 50% and generated shadows with extents of the order of 4 mm. Within the prostate contour, cold spots (<95% prescription dose) of the order of 20 mm{sup 3} were observed. D{sub 90} proved insensitive to the presence of FM for the cases selected. Conclusions: There is a major local impact of FM present in LDR brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although

  14. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    NASA Astrophysics Data System (ADS)

    Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.

    2014-03-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  15. Aqueous and Methanolic Extracts of Caulerpa mexicana Suppress Cell Migration and Ear Edema Induced by Inflammatory Agents

    PubMed Central

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; de Oliveira Santos, Barbara Viviana; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana. PMID:21892348

  16. Development of mammography system using CdTe photon counting detector for the exposure dose reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Sho; Niwa, Naoko; Yamazaki, Misaki; Yamakawa, Tsutomu; Nagano, Tatsuya; Kodera, Yoshie

    2014-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) photon-counting detector for exposure dose reduction. In contrast to conventional mammography, this system uses high-energy X-rays. This study evaluates the usefulness of this system in terms of the absorbed dose distribution and contrast-to-noise ratio (CNR) at acrylic step using a Monte Carlo simulation. In addition, we created a prototype system that uses a CdTe detector and automatic movement stage. For various conditions, we measured the properties and evaluated the quality of images produced by the system. The simulation result for a tube voltage of 40 kV and tungsten/barium (W/Ba) as a target/filter shows that the surface dose was reduced more than 60% compared to that under conventional conditions. The CNR of our proposal system also became higher than that under conventional conditions. The point at which the CNRs coincide for 4 cm polymethyl methacrylate (PMMA) at the 2-mm-thick step corresponds to a dose reduction of 30%, and these differences increased with increasing phantom thickness. To improve the image quality, we determined the problematic aspects of the scanning system. The results of this study indicate that, by using a higher X-ray energy than in conventional mammography, it is possible to obtain a significant exposure dose reduction without loss of image quality. Further, the image quality of the prototype system can be improved by optimizing the balance between the shift-and-add operation and the output of the X-ray tube. In future work, we will further examine these improvement points.

  17. The reduction of dose in paediatric panoramic radiography: the impact of collimator height and programme selection

    PubMed Central

    Safi, H; Maddison, S M

    2015-01-01

    Objectives: The aim of this work was to estimate the doses to radiosensitive organs in the head of a young child undergoing panoramic radiography and to establish the effectiveness of a short collimator in reducing dose. Methods: Thermoluminescent dosemeters were used in a paediatric head phantom to simulate an examination on a 5-year-old child. The panoramic system used was an Instrumentarium OP200 D (Instrumentarium Dental, Tuusula, Finland). The collimator height options were 110 and 140 mm. Organ doses were measured using exposure programmes intended for use with adult and child size heads. The performance of the automatic exposure control (AEC) system was also assessed. Results: The short collimator reduced the dose to the brain and the eyes by 57% and 41%, respectively. The dose to the submandibular and sublingual glands increased by 32% and 20%, respectively, when using a programme with a narrower focal trough intended for a small jaw. The effective dose measured with the short collimator and paediatric programme was 7.7 μSv. The dose to the lens of the eye was 17 μGy. When used, the AEC system produced some asymmetry in the dose distribution across the head. Conclusions: Panoramic systems when used to frequently image children should have programmes specifically designed for imaging small heads. There should be a shorter collimator available and programmes that deliver a reduced exposure time and allow reduction of tube current. Programme selection should also provide flexibility for focal trough size, shape and position to match the smaller head size. PMID:25352427

  18. Data base on dose reduction research projects for nuclear power plants. Volume 5

    SciTech Connect

    Khan, T.A.; Yu, C.K.; Roecklein, A.K.

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  19. Noise Reduction in Low-Dose X-Ray Fluoroscopy for Image-Guided Radiation Therapy

    SciTech Connect

    Wang Jing Zhu Lei; Xing Lei

    2009-06-01

    Purpose: To improve the quality of low-dose X-ray fluoroscopic images using statistics-based restoration algorithm so that the patient fluoroscopy can be performed with reduced radiation dose. Method and Materials: Noise in the low-dose fluoroscopy was suppressed by temporal and spatial filtering. The temporal correlation among neighboring frames was considered by the Karhunen-Loeve (KL) transform (i.e., principal component analysis). After the KL transform, the selected neighboring frames of fluoroscopy were decomposed to uncorrelated and ordered principal components. For each KL component, a penalized weighted least-squares (PWLS) objective function was constructed to restore the ideal image. The penalty was chosen as anisotropic quadratic, and the penalty parameter in each KL component was inversely proportional to its corresponding eigenvalue. Smaller KL eigenvalue is associated with the KL component of lower signal-to-noise ratio (SNR), and a larger penalty parameter should be used for such KL component. The low-dose fluoroscopic images were acquired using a Varian Acuity simulator. A quality assurance phantom and an anthropomorphic chest phantom were used to evaluate the presented algorithm. Results: In the images restored by the proposed KL domain PWLS algorithm, noise is greatly suppressed, whereas fine structures are well preserved. Average improvement rate of SNR is 75% among selected regions of interest. Comparison studies with traditional techniques, such as the mean and median filters, show that the proposed algorithm is advantageous in terms of structure preservation. Conclusions: The proposed noise reduction algorithm can significantly improve the quality of low-dose X-ray fluoroscopic image and allows for dose reduction in X-ray fluoroscopy.

  20. Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction - a phantom study.

    PubMed

    Dodge, Cristina T; Tamm, Eric P; Cody, Dianna D; Liu, Xinming; Jensen, Corey T; Wei, Wei; Kundra, Vikas; Rong, X John

    2016-01-01

    The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative recontruction (ASiR), and model-based iterative reconstruction (MBIR), over a range of typical to low-dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat-equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back-projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low-contrast detectability were evaluated from noise and contrast-to-noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were con-firmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1mGy. MBIR reduced noise levels five-fold and increased CNR by a factor of five compared to FBP below 6mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high-contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial resolution for MBIR

  1. Evaluation of the stepwise collimation method for the reduction of the patient dose in full spine radiography

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Lee, Sunyoung; Yang, Injeong; Yoon, Myeonggeun

    2014-05-01

    The purpose of this study is to evaluate the dose reduction when using the stepwise collimation method for scoliosis patients undergoing full spine radiography. A Monte Carlo simulation was carried out to acquire dose vs. volume data for organs at risk (OAR) in the human body. While the effective doses in full spine radiography were reduced by 8, 15, 27 and 44% by using four different sizes of the collimation, the doses to the skin were reduced by 31, 44, 55 and 66%, indicating that the reduction of the dose to the skin is higher than that to organs inside the body. Although the reduction rates were low for the gonad, being 9, 14, 18 and 23%, there was more than a 30% reduction in the dose to the heart, suggesting that the dose reduction depends significantly on the location of the OARs in the human body. The reduction rate of the secondary cancer risk based on the excess absolute risk (EAR) varied from 0.6 to 3.4 per 10,000 persons, depending on the size of the collimation. Our results suggest that the stepwise collimation method in full spine radiography can effectively reduce the patient dose and the radiation-induced secondary cancer risk.

  2. Characterization of a lead breast shielding for dose reduction in computed tomography*

    PubMed Central

    Correia, Paula Duarte; Granzotti, Cristiano Roberto Fabri; Santos, Yago da Silva; Brochi, Marco Aurelio Corte; de Azevedo-Marques, Paulo Mazzoncini

    2014-01-01

    Objective Several studies have been published regarding the use of bismuth shielding to protect the breast in computed tomography (CT) scans and, up to the writing of this article, only one publication about barium shielding was found. The present study was aimed at characterizing, for the first time, a lead breast shielding. Materials and Methods The percentage dose reduction and the influence of the shielding on quantitative imaging parameters were evaluated. Dose measurements were made on a CT equipment with the aid of specific phantoms and radiation detectors. A processing software assisted in the qualitative analysis evaluating variations in average CT number and noise on images. Results The authors observed a reduction in entrance dose by 30% and in CTDIvol by 17%. In all measurements, in agreement with studies in the literature, the utilization of cotton fiber as spacer object reduced significantly the presence of artifacts on the images. All the measurements demonstrated increase in the average CT number and noise on the images with the presence of the shielding. Conclusion As expected, the data observed with the use of lead shielding were of the same order as those found in the literature about bismuth shielding. PMID:25741089

  3. Radiation dose reduction in digital radiography using wavelet-based image processing methods

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruyuki; Tsai, Du-Yih; Lee, Yongbum; Matsuyama, Eri; Kojima, Katsuyuki

    2011-03-01

    In this paper, we investigate the effect of the use of wavelet transform for image processing on radiation dose reduction in computed radiography (CR), by measuring various physical characteristics of the wavelet-transformed images. Moreover, we propose a wavelet-based method for offering a possibility to reduce radiation dose while maintaining a clinically acceptable image quality. The proposed method integrates the advantages of a previously proposed technique, i.e., sigmoid-type transfer curve for wavelet coefficient weighting adjustment technique, as well as a wavelet soft-thresholding technique. The former can improve contrast and spatial resolution of CR images, the latter is able to improve the performance of image noise. In the investigation of physical characteristics, modulation transfer function, noise power spectrum, and contrast-to-noise ratio of CR images processed by the proposed method and other different methods were measured and compared. Furthermore, visual evaluation was performed using Scheffe's pair comparison method. Experimental results showed that the proposed method could improve overall image quality as compared to other methods. Our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved in hip joint radiography by using the proposed method.

  4. Effects of dose reduction on the detectability of standardized radiolucent lesions in digital panoramic radiography.

    PubMed

    Dula, K; Sanderink, G; van der Stelt, P F; Mini, R; Buser, D

    1998-08-01

    Dose reduction in digital panoramic radiography was studied. Intentional underexposure was performed with the Orthophos DS while six different human mandibles were radiographed. Exposure settings were 69 kV/15 mA (standard), 64 kV/16 mA, and 60 kV/16 mA. Standardized spherical defects, each either 1 or 1.25 mm in diameter, were simulated in 288 of 432 images, and seven observers decided whether defects were present or not. Areas under the receiver operating characteristics curves were calculated. They showed no significant differences in the detectability of the 1-mm defect at 69, 64, or 60 kV. For the 1.25-mm defect, no difference was found between the 69 and 60 kV images, but a statistically significant different detectability was found for 64 kV images in comparison with both 69 and 60 kV images. A dose reduction of up to 43% was ascertained with a Pedo-RT-Humanoid phantom when panoramic radiography was performed at 60 kV/16 mA. The conclusion is that with the Orthophos DS, it seems possible to reduce the dose rate of x-rays without loss of diagnostic quality in the case of radiolucent changes. PMID:9720100

  5. Effects of dose reduction on the detectability of standardized radiolucent lesions in digital panoramic radiography.

    PubMed

    Dula, K; Sanderink, G; van der Stelt, P F; Mini, R; Buser, D

    1998-08-01

    Dose reduction in digital panoramic radiography was studied. Intentional underexposure was performed with the Orthophos DS while six different human mandibles were radiographed. Exposure settings were 69 kV/15 mA (standard), 64 kV/16 mA, and 60 kV/16 mA. Standardized spherical defects, each either 1 or 1.25 mm in diameter, were simulated in 288 of 432 images, and seven observers decided whether defects were present or not. Areas under the receiver operating characteristics curves were calculated. They showed no significant differences in the detectability of the 1-mm defect at 69, 64, or 60 kV. For the 1.25-mm defect, no difference was found between the 69 and 60 kV images, but a statistically significant different detectability was found for 64 kV images in comparison with both 69 and 60 kV images. A dose reduction of up to 43% was ascertained with a Pedo-RT-Humanoid phantom when panoramic radiography was performed at 60 kV/16 mA. The conclusion is that with the Orthophos DS, it seems possible to reduce the dose rate of x-rays without loss of diagnostic quality in the case of radiolucent changes.

  6. CT-guided brachytherapy of prostate cancer: reduction of effective dose from X-ray examination

    NASA Astrophysics Data System (ADS)

    Sanin, Dmitriy B.; Biryukov, Vitaliy A.; Rusetskiy, Sergey S.; Sviridov, Pavel V.; Volodina, Tatiana V.

    2014-03-01

    Computed tomography (CT) is one of the most effective and informative diagnostic method. Though the number of CT scans among all radiographic procedures in the USA and European countries is 11% and 4% respectively, CT makes the highest contribution to the collective effective dose from all radiographic procedures, it is 67% in the USA and 40% in European countries [1-5]. Therefore it is necessary to understand the significance of dose value from CT imaging to a patient . Though CT dose from multiple scans and potential risk is of great concern in pediatric patients, this applies to adults as well. In this connection it is very important to develop optimal approaches to dose reduction and optimization of CT examination. International Commission on Radiological Protection (ICRP) in its publications recommends radiologists to be aware that often CT image quality is higher than it is necessary for diagnostic confidence[6], and there is a potential to reduce the dose which patient gets from CT examination [7]. In recent years many procedures, such as minimally invasive surgery, biopsy, brachytherapy and different types of ablation are carried out under guidance of computed tomography [6;7], and during a procedures multiple CT scans focusing on a specific anatomic region are performed. At the Clinics of MRRC different types of treatment for patients with prostate cancer are used, incuding conformal CT-guided brachytherapy, implantation of microsources of I into the gland under guidance of spiral CT [8]. So, the purpose of the study is to choose optimal method to reduce radiation dose from CT during CT-guided prostate brachytherapy and to obtain the image of desired quality.

  7. Dose reduction for cardiac CT using a registration-based approach

    SciTech Connect

    Wierzbicki, Marcin; Guiraudon, Gerard M.; Jones, Douglas L.; Peters, Terry

    2007-06-15

    Two reasons for the recent rise in radiation exposure from CT are increases in its clinical applicability and the desire to maintain high SNR while acquiring smaller voxels. To address this emerging dose problem, several strategies for reducing patient exposure have already been proposed. One method employed in cardiac imaging is ECG-driven modulation of the tube current between 100% at one time point in the cardiac cycle and a reduced fraction at the remaining phases. In this paper, we describe how images obtained during such acquisition can be used to reconstruct 4D data of consistent high quality throughout the cardiac cycle. In our approach, we assume that the mid-diastole (MD) phase is imaged with full dose. The MD image is then independently registered to lower dose images (lower SNR) at other frames, resulting in a set of transformations. Finally, the transformations are used to warp the MD frame through the cardiac cycle to generate the full 4D image. In addition, the transformations may be interpolated to increase the temporal sampling or to generate images at arbitrary time points. Our approach was validated using various data obtained with simulated and scanner-implemented dose modulation. We determined that as little as 10% of the total dose was required to reproduce full quality images with a 1 mm spatial error and an error in intensity values on the order of the image noise. Thus, our technique offers considerable dose reductions compared to standard imaging protocols, with minimal effects on the quality of the final data.

  8. An adaptive gating approach for x-ray dose reduction during cardiac interventional procedures

    SciTech Connect

    Abdel-Malek, A.; Yassa, F.; Bloomer, J. )

    1994-03-01

    The increasing number of cardiac interventional procedures has resulted in a tremendous increase in the absorbed x-ray dose by radiologists as well as patients. A new method is presented for x-ray dose reduction which utilizes adaptive tube pulse-rate scheduling in pulsed fluoroscopic systems. In the proposed system, pulse-rate scheduling depends on the heart muscle activity phase determined through continuous guided segmentation of the patient's electrocardiogram (ECG). Displaying images generated at the proposed adaptive nonuniform rate is visually unacceptable; therefore, a frame-filling approach is devised to ensure a 30 frame/sec display rate. The authors adopted two approaches for the frame-filling portion of the system depending on the imaging mode used in the procedure. During cine-mode imaging (high x-ray dose), collected image frame-to-frame pixel motion is estimated using a pel-recursive algorithm followed by motion-based pixel interpolation to estimate the frames necessary to increase the rate to 30 frames/sec. The other frame-filling approach is adopted during fluoro-mode imaging (low x-ray dose), characterized by low signal-to-noise ratio images. This approach consists of simply holding the last collected frame for as many frames as necessary to maintain the real-time display rate.

  9. Dose reduction using non lineal diffusion and smoothing filters in computed radiography

    NASA Astrophysics Data System (ADS)

    Sánchez, M. G.; Juste, B.; Vidal, V.; Verdú, G.; Mayo, P.; Rodenas, F.

    2014-02-01

    The use of Computed Radiography (CR) into clinical practice has been followed by a high increase in the number of examinations performed and overdose cases in patients, especially children in pediatric applications. Computed radiographic images are corrupted by noise because either data acquisition or data transmission. The level of this inherent noise is related with the X-ray dose exposure: lower radiation exposure involves higher noise level. The main aim of this work is to reduce the noise present in a low radiation dose CR image in order to the get a CR image of the same quality as a higher radiation exposure image. In this work, we use a non lineal diffusion filtering method to reduce the noise level in a CR, this means that we are able to reduce the exposure, milliampere-second (mAs), and the dose absorbed by the patients. In order to get an optimal result, the diffusive filter is complemented with a smoothing filter with edge detection in order to preserve edges. Therefore, the proposed method consists in obtaining a good quality CR image for diagnostic purposes by selection of lower X-ray exposure jointly with a reduction of the noise. We conclude that a good solution to minimize the dose to patients, especially children in pediatric applications, in X-ray computed radiography consists in decreasing the mAs of the X-ray exposure and then processing the image with the proposed method.

  10. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    SciTech Connect

    Goosman, D.R.

    1984-08-14

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table.

  11. Effects of low-dose mindfulness-based stress reduction (MBSR-ld) on working adults.

    PubMed

    Klatt, Maryanna D; Buckworth, Janet; Malarkey, William B

    2009-06-01

    Mindfulness-based stress reduction (MBSR) has produced behavioral, psychological, and physiological benefits, but these programs typically require a substantial time commitment from the participants. This study assessed the effects of a shortened (low-dose [ld]) work-site MBSR intervention (MBSR-ld) on indicators of stress in healthy working adults to determine if results similar to those obtained in traditional MBSR could be demonstrated. Participants were randomized into MBSR-ld and wait-list control groups. Self-reported perceived stress, sleep quality, and mindfulness were measured at the beginning and end of the 6-week intervention. Salivary cortisol was assessed weekly. Significant reductions in perceived stress (p = .0025) and increases in mindfulness (p = .0149) were obtained for only the MBSR-ld group (n = 22). Scores on the global measure of sleep improved for the MBSR-ld group (p = .0018) as well as for the control group (p = .0072; n = 20). Implications and future research are discussed.

  12. Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children.

    PubMed

    Fang, Shiuh-Bin; Lee, Hung-Chang; Hu, Jen-Jan; Hou, Shao-Yi; Liu, Hsuan-Liang; Fang, Hsu-Wei

    2009-10-01

    Beneficial effects of probiotics in acute infectious diarrhoea in children are mainly seen in watery diarrhoea and viral gastroenteritis. Lactobacillus rhamnosus, one the most extensively studied probiotic strains, is effective in shortening courses of acute diarrhoea in children. However, the dose-dependent effect of Lactobacillus upon quantification of faecal rotavirus shedding in humans remains little known. Thus, an open-label randomized trial in 23 children with acute rotaviral gastroenteritis was undertaken by randomly allocating patients to receive one of the three regimens for 3 days: daily Lactobacillus rhamnosus 35 (Lcr35) with 0 CFU/day to six patients in the control group, 2 x 10(8) CFU/day to nine patients in the low-dose group, and 6 x 10(8) CFU/day to eight patients in the high-dose group. Faecal samples were collected before and after the 3-day regimen for measurements of rotavirus concentrations by ELISA. There was no statistically significant change in faecal rotavirus concentrations in either the control group (119.2 x 10(5) particles/ml vs. 23.7 x 10(5) particles/ml, p = 0.075) or the low-dose group (36.1 x 10(5) particles/ml vs. 73.5 x 10(5) particles/ml, p = 0.859). However, the high-dose group had a significant reduction of faecal rotavirus concentration (64.2 x 10(5) particles/ml vs. 9.0 x 10(5) particles/ml, p = 0.012). Without any exception, the faecal rotavirus concentrations of all eight patients in the high-dose Lcr35 group declined by 86% after 3 days when compared with those before Lcr35 administration. In conclusion, this is the first report to provide quantitative evidence of the dose-dependent effect of Lactobacillus rhamnosus, a minimal effective dose of 6 x 10(8) CFU for 3 days, upon the faecal rotavirus shedding in paediatric patients.

  13. Experimental proof of an idea for a CT-scanner with dose reduction potential

    NASA Astrophysics Data System (ADS)

    de las Heras, Hugo; Tischenko, Oleg; Renger, Bernhard; Xu, Yuan; Hoeschen, Christoph

    2008-03-01

    Preliminary results for a new CT scanning device with dose-reduction potential were presented at the SPIE Medical Imaging conference 2007. The new device acquires the Radon data after the X-ray beam is collimated through a special mask. This mask is combined with a new and efficient data collection geometry; thus the device has the potential of reducing the dose by a factor of two. In this work, we report the first complete proof of the idea using the same simplified mask of 197 detectors as last year, and a clinical C-arm with a flat panel detector to simulate the gantry. This addition enables the acquisition of two independent and complementary data sets for reconstruction. Moreover, this clinical set-up enables the acquisition of data for clinically relevant phantoms. Phantom data were acquired using both detector sets and were reconstructed with the robust algorithm OPED. The independent sinograms were matched to a single one, and from this a diagnostic image was reconstructed successfully. This image has improved resolution, as well as less noise and artifacts compared to each single independent reconstruction. The results obtained are highly promising, even though the current device acquires only 197 views. Dose comparisons can be carried out in the future with a more precise prototype, comparable to current clinical devices with respect to imaging performance.

  14. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    SciTech Connect

    Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C; Murphy, Brian D; Mueller, Don

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  15. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  16. Preliminary validation of a new methodology for estimating dose reduction protocols in neonatal chest computed radiographs

    NASA Astrophysics Data System (ADS)

    Don, Steven; Whiting, Bruce R.; Hildebolt, Charles F.; Sehnert, W. James; Ellinwood, Jacquelyn S.; Töpfer, Karin; Masoumzadeh, Parinaz; Kraus, Richard A.; Kronemer, Keith A.; Herman, Thomas; McAlister, William H.

    2006-03-01

    The risk of radiation exposure is greatest for pediatric patients and, thus, there is a great incentive to reduce the radiation dose used in diagnostic procedures for children to "as low as reasonably achievable" (ALARA). Testing of low-dose protocols presents a dilemma, as it is unethical to repeatedly expose patients to ionizing radiation in order to determine optimum protocols. To overcome this problem, we have developed a computed-radiography (CR) dose-reduction simulation tool that takes existing images and adds synthetic noise to create realistic images that correspond to images generated with lower doses. The objective of our study was to determine the extent to which simulated, low-dose images corresponded with original (non-simulated) low-dose images. To make this determination, we created pneumothoraces of known volumes in five neonate cadavers and obtained images of the neonates at 10 mR, 1 mR and 0.1 mR (as measured at the cassette plate). The 10-mR exposures were considered "relatively-noise-free" images. We used these 10 mR-images and our simulation tool to create simulated 0.1- and 1-mR images. For the simulated and original images, we identified regions of interest (ROI) of the entire chest, free-in-air region, and liver. We compared the means and standard deviations of the ROI grey-scale values of the simulated and original images with paired t tests. We also had observers rate simulated and original images for image quality and for the presence or absence of pneumothoraces. There was no statistically significant difference in grey-scale-value means nor standard deviations between simulated and original entire chest ROI regions. The observer performance suggests that an exposure >=0.2 mR is required to detect the presence or absence of pneumothoraces. These preliminary results indicate that the use of the simulation tool is promising for achieving ALARA exposures in children.

  17. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    PubMed Central

    Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  18. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    SciTech Connect

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.

    2013-03-15

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  19. A technique optimization protocol and the potential for dose reduction in digital mammography

    PubMed Central

    Ranger, Nicole T.; Lo, Joseph Y.; Samei, Ehsan

    2010-01-01

    Digital mammography requires revisiting techniques that have been optimized for prior screen∕film mammography systems. The objective of the study was to determine optimized radiographic technique for a digital mammography system and demonstrate the potential for dose reduction in comparison to the clinically established techniques based on screen- film. An objective figure of merit (FOM) was employed to evaluate a direct-conversion amorphous selenium (a-Se) FFDM system (Siemens Mammomat NovationDR, Siemens AG Medical Solutions, Erlangen, Germany) and was derived from the quotient of the squared signal-difference-to-noise ratio to mean glandular dose, for various combinations of technique factors and breast phantom configurations including kilovoltage settings (23–35 kVp), target∕filter combinations (Mo–Mo and W–Rh), breast-equivalent plastic in various thicknesses (2–8 cm) and densities (100% adipose, 50% adipose∕50% glandular, and 100% glandular), and simulated mass and calcification lesions. When using a W–Rh spectrum, the optimized FOM results for the simulated mass and calcification lesions showed highly consistent trends with kVp for each combination of breast density and thickness. The optimized kVp ranged from 26 kVp for 2 cm 100% adipose breasts to 30 kVp for 8 cm 100% glandular breasts. The use of the optimized W–Rh technique compared to standard Mo–Mo techniques provided dose savings ranging from 9% for 2 cm thick, 100% adipose breasts, to 63% for 6 cm thick, 100% glandular breasts, and for breasts with a 50% adipose∕50% glandular composition, from 12% for 2 cm thick breasts up to 57% for 8 cm thick breasts. PMID:20384232

  20. A technique optimization protocol and the potential for dose reduction in digital mammography

    SciTech Connect

    Ranger, Nicole T.; Lo, Joseph Y.; Samei, Ehsan

    2010-03-15

    Digital mammography requires revisiting techniques that have been optimized for prior screen/film mammography systems. The objective of the study was to determine optimized radiographic technique for a digital mammography system and demonstrate the potential for dose reduction in comparison to the clinically established techniques based on screen- film. An objective figure of merit (FOM) was employed to evaluate a direct-conversion amorphous selenium (a-Se) FFDM system (Siemens Mammomat Novation{sup DR}, Siemens AG Medical Solutions, Erlangen, Germany) and was derived from the quotient of the squared signal-difference-to-noise ratio to mean glandular dose, for various combinations of technique factors and breast phantom configurations including kilovoltage settings (23-35 kVp), target/filter combinations (Mo-Mo and W-Rh), breast-equivalent plastic in various thicknesses (2-8 cm) and densities (100% adipose, 50% adipose/50% glandular, and 100% glandular), and simulated mass and calcification lesions. When using a W-Rh spectrum, the optimized FOM results for the simulated mass and calcification lesions showed highly consistent trends with kVp for each combination of breast density and thickness. The optimized kVp ranged from 26 kVp for 2 cm 100% adipose breasts to 30 kVp for 8 cm 100% glandular breasts. The use of the optimized W-Rh technique compared to standard Mo-Mo techniques provided dose savings ranging from 9% for 2 cm thick, 100% adipose breasts, to 63% for 6 cm thick, 100% glandular breasts, and for breasts with a 50% adipose/50% glandular composition, from 12% for 2 cm thick breasts up to 57% for 8 cm thick breasts.

  1. Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    PubMed Central

    2011-01-01

    Background There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study. Methods/Design STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other

  2. SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care

    SciTech Connect

    Silosky, M; Marsh, R

    2014-06-01

    Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flash CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.

  3. Sex differences in nicotine self-administration in rats during progressive unit dose reduction: implications for nicotine regulation policy.

    PubMed

    Grebenstein, Patricia; Burroughs, Danielle; Zhang, Yan; LeSage, Mark G

    2013-12-01

    Reducing the nicotine content in tobacco products is being considered by the FDA as a policy to reduce the addictiveness of tobacco products. Understanding individual differences in response to nicotine reduction will be critical to developing safe and effective policy. Animal and human research demonstrating sex differences in the reinforcing effects of nicotine suggests that males and females may respond differently to nicotine-reduction policies. However, no studies have directly examined sex differences in the effects of nicotine unit-dose reduction on nicotine self-administration (NSA) in animals. The purpose of the present study was to examine this issue in a rodent self-administration model. Male and female rats were trained to self-administer nicotine (0.06mg/kg) under an FR 3 schedule during daily 23h sessions. Rats were then exposed to saline extinction and reacquisition of NSA, followed by weekly reductions in the unit dose (0.03 to 0.00025mg/kg) until extinction levels of responding were achieved. Males and females were compared with respect to baseline levels of intake, resistance to extinction, degree of compensatory increases in responding during dose reduction, and the threshold reinforcing unit dose of nicotine. Exponential demand-curve analysis was also conducted to compare the sensitivity of males and females to increases in the unit price (FR/unit dose) of nicotine (i.e., elasticity of demand or reinforcing efficacy). Females exhibited significantly higher baseline intake and less compensation than males. However, there were no sex differences in the reinforcement threshold or elasticity of demand. Dose-response relationships were very well described by the exponential demand function (r(2) values>0.96 for individual subjects). These findings suggest that females may exhibit less compensatory smoking in response to nicotine reduction policies, even though their nicotine reinforcement threshold and elasticity of demand may not differ from males

  4. Dose reduction using prior image constrained compressed sensing (DR-PICCS)

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Thériault Lauzier, Pascal; Chen, Guang-Hong

    2011-03-01

    A technique for dose reduction using prior image constrained compressed sensing (DR-PICCS) in computed tomography (CT) is proposed in this work. In DR-PICCS, a standard FBP reconstructed image is forward projected to get a fully sampled projection data set. Meanwhile, it is low-pass filtered and used as the prior image in the PICCS reconstruction framework. Next, the prior image and the forward projection data are used together by the PICCS algorithm to obtain a low noise DR-PICCS reconstruction, which maintains the spatial resolution of the original FBP images. The spatial resolution of DR-PICCS was studied using a Catphan phantom by MTF measurement. The noise reduction factor, CT number change and noise texture were studied using human subject data consisting of 20 CT colonography exams performed under an IRB-approved protocol. In each human subject study, six ROIs (two soft tissue, two colonic air columns, and two subcutaneous fat) were selected for the CT number and noise measurements study. Skewness and kurtosis were used as figures of merit to indicate the noise texture. A Bland-Altman analysis was performed to study the accuracy of the CT number. The results showed that, compared with FBP reconstructions, the MTF curve shows very little change in DR-PICCS reconstructions, spatial resolution loss is less than 0.1 lp/cm, and the noise standard deviation can be reduced by a factor of 3 with DR-PICCS. The CT numbers in FBP and DR-PICCS reconstructions agree well, which indicates that DR-PICCS does not change CT numbers. The noise textures indicators measured from DR-PICCS images are in a similar range as FBP images.

  5. Postimplantation Analysis Enables Improvement of Dose-Volume Histograms and Reduction of Toxicity for Permanent Seed Implantation

    SciTech Connect

    Wust, Peter Postrach, Johanna; Kahmann, Frank; Henkel, Thomas; Graf, Reinhold; Cho, Chie Hee; Budach, Volker; Boehmer, Dirk

    2008-05-01

    Purpose: To demonstrate how postimplantation analysis is useful for improving permanent seed implantation and reducing toxicity. Patients and Methods: We evaluated 197 questionnaires completed by patients after permanent seed implantation (monotherapy between 1999 and 2003). For 70% of these patients, a computed tomography was available to perform postimplantation analysis. The index doses and volumes of the dose-volume histograms (DVHs) were determined and categorized with respect to the date of implantation. Differences in symptom scores relative to pretherapeutic status were analyzed with regard to follow-up times and DVH descriptors. Acute and subacute toxicities in a control group of 117 patients from an earlier study (June 1999 to September 2001) by Wust et al. (2004) were compared with a matched subgroup from this study equaling 110 patients treated between October 2001 and August 2003. Results: Improved performance, identifying a characteristic time dependency of DVH parameters (after implantation) and toxicity scores, was demonstrated. Although coverage (volume covered by 100% of the prescription dose of the prostate) increased slightly, high-dose regions decreased with the growing experience of the users. Improvement in the DVH and a reduction of toxicities were found in the patient group implanted in the later period. A decline in symptoms with follow-up time counteracts this gain of experience and must be considered. Urinary and sexual discomfort was enhanced by dose heterogeneities (e.g., dose covering 10% of the prostate volume, volume covered by 200% of prescription dose). In contrast, rectal toxicities correlated with exposed rectal volumes, especially the rectal volume covered by 100% of the prescription dose. Conclusion: The typical side effects occurring after permanent seed implantation can be reduced by improving the dose distributions. An improvement in dose distributions and a reduction of toxicities were identified with elapsed time between

  6. Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC

    NASA Astrophysics Data System (ADS)

    Kawrakow, Iwan; Fippel, Matthias

    2000-08-01

    Several variance reduction techniques, such as photon splitting, electron history repetition, Russian roulette and the use of quasi-random numbers are investigated and shown to significantly improve the efficiency of the recently developed XVMC Monte Carlo code for photon beams in radiation therapy. It is demonstrated that it is possible to further improve the efficiency by optimizing transport parameters such as electron energy cut-off, maximum electron energy step size, photon energy cut-off and a cut-off for kerma approximation, without loss of calculation accuracy. These methods increase the efficiency by a factor of up to 10 compared with the initial XVMC ray-tracing technique or a factor of 50 to 80 compared with EGS4/PRESTA. Therefore, a common treatment plan (6 MV photons, 10×10 cm2 field size, 5 mm voxel resolution, 1% statistical uncertainty) can be calculated within 7 min using a single CPU 500 MHz personal computer. If the requirement on the statistical uncertainty is relaxed to 2%, the calculation time will be less than 2 min. In addition, a technique is presented which allows for the quantitative comparison of Monte Carlo calculated dose distributions and the separation of systematic and statistical errors. Employing this technique it is shown that XVMC calculations agree with EGSnrc on a sub-per cent level for simulations in the energy and material range of interest for radiation therapy.

  7. Radiation Dose Reduction in Pediatric Body CT Using Iterative Reconstruction and a Novel Image-Based Denoising Method

    PubMed Central

    Yu, Lifeng; Fletcher, Joel G.; Shiung, Maria; Thomas, Kristen B.; Matsumoto, Jane M.; Zingula, Shannon N.; McCollough, Cynthia H.

    2016-01-01

    OBJECTIVE The objective of this study was to evaluate the radiation dose reduction potential of a novel image-based denoising technique in pediatric abdominopelvic and chest CT examinations and compare it with a commercial iterative reconstruction method. MATERIALS AND METHODS Data were retrospectively collected from 50 (25 abdominopelvic and 25 chest) clinically indicated pediatric CT examinations. For each examination, a validated noise-insertion tool was used to simulate half-dose data, which were reconstructed using filtered back-projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE) methods. A newly developed denoising technique, adaptive nonlocal means (aNLM), was also applied. For each of the 50 patients, three pediatric radiologists evaluated four datasets: full dose plus FBP, half dose plus FBP, half dose plus SAFIRE, and half dose plus aNLM. For each examination, the order of preference for the four datasets was ranked. The organ-specific diagnosis and diagnostic confidence for five primary organs were recorded. RESULTS The mean (± SD) volume CT dose index for the full-dose scan was 5.3 ± 2.1 mGy for abdominopelvic examinations and 2.4 ± 1.1 mGy for chest examinations. For abdominopelvic examinations, there was no statistically significant difference between the half dose plus aNLM dataset and the full dose plus FBP dataset (3.6 ± 1.0 vs 3.6 ± 0.9, respectively; p = 0.52), and aNLM performed better than SAFIRE. For chest examinations, there was no statistically significant difference between the half dose plus SAFIRE and the full dose plus FBP (4.1 ± 0.6 vs 4.2 ± 0.6, respectively; p = 0.67), and SAFIRE performed better than aNLM. For all organs, there was more than 85% agreement in organ-specific diagnosis among the three half-dose configurations and the full dose plus FBP configuration. CONCLUSION Although a novel image-based denoising technique performed better than a commercial iterative reconstruction method in pediatric

  8. Pediatric cT: Implementation of ASIR for Substantial Radiation Dose Reduction While Maintaining Pre-ASIR Image Noise1

    PubMed Central

    Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.

    2015-01-01

    Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose

  9. Sex differences in nicotine self-administration in rats during progressive unit dose reduction: Implications for nicotine regulation policy

    PubMed Central

    Grebenstein, Patricia; Burroughs, Danielle; Zhang, Yan; LeSage, Mark G.

    2013-01-01

    Reducing the nicotine content in tobacco products is being considered by the FDA as a policy to reduce the addictiveness of tobacco products. Understanding individual differences in response to nicotine reduction will be critical to developing safe and effective policy. Animal and human research demonstrating sex differences in the reinforcing effects of nicotine suggests that males and females may respond differently to nicotine-reduction policies. However, no studies have directly examined sex differences in the effects of nicotine unit-dose reduction on nicotine self-administration (NSA) in animals. The purpose of the present study was to examine this issue in a rodent self-administration model. Male and female rats were trained to self-administer nicotine (0.06 mg/kg) under an FR 3 schedule during daily 23 h sessions. Rats were then exposed to saline extinction and reacquisition of NSA, followed by weekly reductions in the unit dose (0.03 to 0.00025 mg/kg) until extinction levels of responding were achieved. Males and females were compared with respect to baseline levels of intake, resistance to extinction, degree of compensatory increases in responding during dose reduction, and the threshold reinforcing unit dose of nicotine. Exponential demand-curve analysis was also conducted to compare the sensitivity of males and females to increases in the unit price (FR/unit dose) of nicotine (i.e., elasticity of demand or reinforcing efficacy). Females exhibited significantly higher baseline intake and less compensation than males. However, there were no sex differences in the reinforcement threshold or elasticity of demand. Dose–response relationships were very well described by the exponential demand function (r2 values > 0.96 for individual subjects). These findings suggest that females may exhibit less compensatory smoking in response to nicotine reduction policies, even though their nicotine reinforcement threshold and elasticity of demand may not differ from

  10. A method for patient dose reduction in dynamic contrast enhanced CT study

    SciTech Connect

    Mo Kim, Sun; Haider, Masoom A.; Milosevic, Michael; Jaffray, David A.; Yeung, Ivan W. T.

    2011-09-15

    Purpose: In dynamic contrast enhanced CT (DCE-CT) study, prolonged CT scanning with high temporal resolution is required to give accurate and precise estimates of kinetic parameters. However, such scanning protocol could lead to substantial radiation dose to the patient. A novel method is proposed to reduce radiation dose to patient, while maintaining high accuracy for kinetic parameter estimates in DCE-CT study. Methods: The method is based on a previous investigation that the arterial impulse response (AIR) in DCE-CT study can be predicted using a population-based scheme. In the proposed method, DCE-CT scanning is performed with relatively low temporal resolution, hence, giving rise to reduction in patient dose. A novel method is proposed to estimate the arterial input function (AIF) based on the coarsely sampled AIF. By using the estimated AIF in the tracer kinetic analysis of the coarsely sampled DCE-CT study, the calculated kinetic parameters are able to achieve a high degree of accuracy. The method was tested on a DCE-CT data set of 48 patients with cervical cancer scanned at high temporal resolution. A random cohort of 34 patients was chosen to construct the orthonormal bases of the AIRs via singular value decomposition method. The determined set of orthonormal bases was used to fit the AIFs in the second cohort (14 patients) at varying levels of down sampling. For each dataset in the second cohort, the estimated AIF was used for kinetic analyses of the modified Tofts and adiabatic tissue homogeneity models for each of the down-sampling schemes between intervals from 2 to 15 s. The results were compared with analyses done with the ''raw'' down-sampled AIF. Results: In the first group of 34 patients, there were 11 orthonormal bases identified to describe the AIRs. The AIFs in the second group were estimated in high accuracy based on the 11 orthonormal bases established in the first group along with down-sampled AIFs. Using the 11 orthonormal bases, the

  11. Dose reduction of up to 89% while maintaining image quality in cardiovascular CT achieved with prospective ECG gating

    NASA Astrophysics Data System (ADS)

    Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis

    2007-03-01

    We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.

  12. Effects of shielding the radiosensitive superficial organs of ORNL pediatric phantoms on dose reduction in computed tomography

    PubMed Central

    Akhlaghi, Parisa; Miri-Hakimabad, Hashem; Rafat-Motavalli, Laleh

    2014-01-01

    In computed tomography (CT), some superficial organs which have increased sensitivity to radiation, receive doses that are significant enough to be matter of concern. Therefore, in this study, the effects of using shields on the amount of dose reduction and image quality was investigated for pediatric imaging. Absorbed doses of breasts, eyes, thyroid and testes of a series of pediatric phantoms without and with different thickness of bismuth and lead were calculated by Monte Carlo simulation. Appropriate thicknesses of shields were chosen based on their weights, X-ray spectrum, and the amount of dose reduction. In addition, the effect of lead shield on image quality of a simple phantom was assessed quantitatively using region of interest (ROI) measurements. Considering the maximum reduction in absorbed doses and X-ray spectrum, using a lead shield with a maximum thickness of 0.4 mm would be appropriate for testes and thyroid and two other organs (which are exposed directly) should be protected with thinner shields. Moreover, the image quality assessment showed that lead was associated with significant increases in both noise and CT attenuation values, especially in the anterior of the phantom. Overall, the results suggested that shielding is a useful optimization tool in CT. PMID:25525312

  13. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA: Volume 4

    SciTech Connect

    Khan, T.A.; Baum, J.W.

    1989-06-01

    This report is the fourth in the series of bibliographies supporting the efforts at the Brookhaven National Laboratory on dose reduction at nuclear power plants. Abstracts for this bibliography were selected from proceedings of technical meetings, journals, research reports and searches of the DOE's Energy Data Base. The abstracts included in this report to operational health physics as well as other subjects which have a bearing on dose reduction at nuclear power plants, such as stress corrosion, cracking, plant chemistry, use of robotics and remote devices, etc. Material on improved design, materials selection, planning and other topics which are related to dose reduction efforts are also included. The report contains 327 abstracts as well as subject and author indices. All information in the current volume is also available from the ALARA Center's bulletin board service which is accessible by personal computers with the help of a modem. The last section of the report explains the features of the bulletin board. The bulletin board will be kept up-to-date with new information and should be of help in keeping people current in the area of dose reduction.

  14. SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation

    SciTech Connect

    Liu, H; Liu, T; Xu, X; Wu, J; Zhuo, W

    2015-06-15

    Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, and the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)

  15. Reduction of the scatter dose to the testicle outside the radiation treatment fields

    SciTech Connect

    Kubo, H.; Shipley, W.U.

    1982-10-01

    A technique is described to reduce the dose to the contralateral testicle of patients with testis tumors during retroperitoneal therapy with 10 MV X-rays. When a conventional clam-shell shielding device was used, the dose to the testis from the photons scattered by the patient and the collimator jaws was found to be about 1.6% of the prescribed midplane dose. A more substantial gonadal shield made of low melting Ostalloy, that reduced further the dose from internal scattered X rays, was therefore designed. A 10 cm thick lead scrotal block above the scrotum immediately outside the field is shown to reduce the external scattered radiation to negligible levels. Using the shield and the block, it is possible to reduce the dose to the testicle to one-tenth of one percent of the prescribed midplane dose.

  16. Reduction of the scatter dose to the testicle outside the radiation treatment fields

    SciTech Connect

    Kubo, H.; Shipley, W.U.

    1982-10-01

    A technique is described to reduce the dose to the contralateral testicle of patients with testis tumors during retroperitoneal therapy with 10 MV X rays. When a conventional clam-shell shielding device was used, the dose to the testis from the photons scattered by the patient and collimator jaws was found to be about 1.6% of the prescribed midplane dose. A more substantial gonadal shield made of low melting point Ostalloy, that reduced further the dose from internal scattered X rays, was therefore designed. A 10 cm thick lead scrotal block above the scrotum immediately outside the field is shown to reduce the external scattering radiation to negligible levels. Using the shield and the block, it is possible to reduce the dose to the testicle to one-tenth of one percent of the prescribed midplane dose.

  17. Comparison of different dose reduction system in computed tomography for orthodontic applications

    PubMed Central

    FANUCCI, E.; FIASCHETTI, V.; OTTRIA, L.; MATALONI, M; ACAMPORA, V.; LIONE, R.; BARLATTANI, A.; SIMONETTI, G.

    2011-01-01

    SUMMARY To correlate different CT system: MSCT (multislice computed tomography) with different acquisition parameters (100KV, 80KV), different reconstruction algorithm (ASIR) and CBCT (cone beam computed tomography) examination in terms of absorbed X-ray dose and diagnostic accuracy. 80 KV protocols compared with 100 KV protocols resulted in reduced total radiation dose without relevant loss of diagnostic image information and quality. CBCT protocols compared with 80 KV MSCT protocols resulted in reduced total radiation dose but loss of diagnostic image information and quality although no so relevant. In addition the new system applies to equipment ASIR applicable on MSCT allows 50% of the dose without compromising image quality. PMID:23285397

  18. Ribavirin dose reduction during telaprevir/ribavirin/peg-interferon therapy overcomes the effect of the ITPA gene polymorphism.

    PubMed

    Akamatsu, S; Hayes, C N; Tsuge, M; Murakami, E; Hiraga, N; Abe, H; Miki, D; Imamura, M; Ochi, H; Chayama, K

    2015-02-01

    Treatment success of chronic hepatitis C virus genotype 1 infection has improved with the advent of telaprevir plus peg-interferon/ribavirin triple combination therapy. However, the effect of inosine triphosphatase (ITPA) polymorphism on dose reduction during triple therapy, especially during the postmarketing phase, has not been sufficiently evaluated. We analysed 273 patients with genotype 1 infection who were treated with triple therapy and assessed the effect of the ITPA polymorphism on dose reduction. ITPA and IFNL4 SNP genotypes were determined by the Invader assay. A stepwise multivariate regression analysis was performed to identify factors associated with outcome of the therapy. The overall sustained viral response (SVR) rate 12 weeks after the end of therapy was 80.2% (219/273). Decline of haemoglobin was significantly faster, and ribavirin was more extensively reduced in patients with ITPA SNP rs1127354 genotype CC than CA/AA. Extensive reduction of ribavirin resulted in mild reduction of telaprevir and peg-interferon, but no significant increase in viral breakthrough. Although the amount of telaprevir given was slightly higher in CA/AA patients, the total dose of peg-interferon and the SVR rate did not differ between the two groups. Multivariate analysis showed that IFNL4 but not ITPA SNP genotype, platelet count and peg-interferon adherence were significantly associated with outcome of therapy. Postmarketing-phase triple therapy resulted in a high SVR rate in spite of extensive ribavirin dose reduction in a diverse patient population, indicating the importance of treatment continuation and appropriate management of adverse events. PMID:24930407

  19. Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction

    PubMed Central

    Lauzier, Pascal Thériault; Chen, Guang-Hong

    2013-01-01

    Purpose: The ionizing radiation imparted to patients during computed tomography exams is raising concerns. This paper studies the performance of a scheme called dose reduction using prior image constrained compressed sensing (DR-PICCS). The purpose of this study is to characterize the effects of a statistical model of x-ray detection in the DR-PICCS framework and its impact on spatial resolution. Methods: Both numerical simulations with known ground truth and in vivo animal dataset were used in this study. In numerical simulations, a phantom was simulated with Poisson noise and with varying levels of eccentricity. Both the conventional filtered backprojection (FBP) and the PICCS algorithms were used to reconstruct images. In PICCS reconstructions, the prior image was generated using two different denoising methods: a simple Gaussian blur and a more advanced diffusion filter. Due to the lack of shift-invariance in nonlinear image reconstruction such as the one studied in this paper, the concept of local spatial resolution was used to study the sharpness of a reconstructed image. Specifically, a directional metric of image sharpness, the so-called pseudopoint spread function (pseudo-PSF), was employed to investigate local spatial resolution. Results: In the numerical studies, the pseudo-PSF was reduced from twice the voxel width in the prior image down to less than 1.1 times the voxel width in DR-PICCS reconstructions when the statistical model was not included. At the same noise level, when statistical weighting was used, the pseudo-PSF width in DR-PICCS reconstructed images varied between 1.5 and 0.75 times the voxel width depending on the direction along which it was measured. However, this anisotropy was largely eliminated when the prior image was generated using diffusion filtering; the pseudo-PSF width was reduced to below one voxel width in that case. In the in vivo study, a fourfold improvement in CNR was achieved while qualitatively maintaining sharpness

  20. Persistent hiccups due to aripiprazole in an adolescent with obsessive compulsive disorder responding to dose reduction and rechallenge.

    PubMed

    Kutuk, Meryem Ozlem; Tufan, Ali Evren; Guler, Gulen; Yildirim, Veli; Toros, Fevziye

    2016-04-01

    Our case involves persistent hiccup arising in an adolescent with obsessive compulsive disorder (OCD) who was using aripiprazole as an augmentation to fluoxetine and whose hiccups remitted with dose reduction and rechallenge. Treatment suggested that aripiprazole might lead to hiccups. Antipsychotics are also used for the treatment of hiccups, but recent case reports suggest that they cause hiccups as well. Within 12 h of taking 5 mg aripiprazole, the 13-year-old girl began having continuous hiccups, which lasted for 3-4 h. The hiccups resolved when the dose of aripiprazole was reduced to 2.5 mg. To achieve augmentation, aripiprazole was replaced with risperidone 0.5 mg/day for 1 month, but excess sedation was observed. As a result, aripiprazole was restarted at a dose of 2.5 mg/day, and 1 week later, it was increased to 5 mg/every other day. No hiccups were observed. PMID:27099770

  1. Rapid Automated Treatment Planning Process to Select Breast Cancer Patients for Active Breathing Control to Achieve Cardiac Dose Reduction

    SciTech Connect

    Wang Wei; Purdie, Thomas G.; Rahman, Mohammad; Marshall, Andrea; Liu Feifei; Fyles, Anthony

    2012-01-01

    Purpose: To evaluate a rapid automated treatment planning process for the selection of patients with left-sided breast cancer for a moderate deep inspiration breath-hold (mDIBH) technique using active breathing control (ABC); and to determine the dose reduction to the left anterior descending coronary artery (LAD) and the heart using mDIBH. Method and Materials: Treatment plans were generated using an automated method for patients undergoing left-sided breast radiotherapy (n = 53) with two-field tangential intensity-modulated radiotherapy. All patients with unfavorable cardiac anatomy, defined as having >10 cm{sup 3} of the heart receiving 50% of the prescribed dose (V{sub 50}) on the free-breathing automated treatment plan, underwent repeat scanning on a protocol using a mDIBH technique and ABC. The doses to the LAD and heart were compared between the free-breathing and mDIBH plans. Results: The automated planning process required approximately 9 min to generate a breast intensity-modulated radiotherapy plan. Using the dose-volume criteria, 20 of the 53 patients were selected for ABC. Significant differences were found between the free-breathing and mDIBH plans for the heart V{sub 50} (29.9 vs. 3.7 cm{sup 3}), mean heart dose (317 vs. 132 cGy), mean LAD dose (2,047 vs. 594 cGy), and maximal dose to 0.2 cm{sup 3} of the LAD (4,155 vs. 1,507 cGy, all p <.001). Of the 17 patients who had a breath-hold threshold of {>=}0.8 L, 14 achieved a {>=}90% reduction in the heart V{sub 50} using the mDIBH technique. The 3 patients who had had a breath-hold threshold <0.8 L achieved a lower, but still significant, reduction in the heart V{sub 50}. Conclusions: A rapid automated treatment planning process can be used to select patients who will benefit most from mDIBH. For selected patients with unfavorable cardiac anatomy, the mDIBH technique using ABC can significantly reduce the dose to the LAD and heart, potentially reducing the cardiac risks.

  2. Prediction of Warfarin Dose Reductions in Puerto Rican Patients, Based on Combinatorial CYP2C9 and VKORC1 Genotypes

    PubMed Central

    Valentin, Isa Ivette; Vazquez, Joan; Rivera-Miranda, Giselle; Seip, Richard L; Velez, Meredith; Kocherla, Mohan; Bogaard, Kali; Cruz-Gonzalez, Iadelisse; Cadilla, Carmen L; Renta, Jessica Y; Felliu, Juan F; Ramos, Alga S; Alejandro-Cowan, Yirelia; Gorowski, Krystyna; Ruaño, Gualberto; Duconge, Jorge

    2012-01-01

    BACKGROUND The influence of CYP2C9 and VKORC1 polymorphisms on warfarin dose has been investigated in white, Asian, and African American populations but not in Puerto Rican Hispanic patients. OBJECTIVE To test the associations between genotypes, international normalized ratio (INR) measurements, and warfarin dosing and gauge the impact of these polymorphisms on warfarin dose, using a published algorithm. METHODS A retrospective warfarin pharmacogenetic association study in 106 Puerto Rican patients was performed. DNA samples from patients were assayed for 12 variants in both CYP2C9 and VKORC1 loci by HILOmet PhyzioType assay. Demographic and clinical nongenetic data were retrospectively collected from medical records. Allele and genotype frequencies were determined and Hardy-Weinberg equilibrium (HWE) was tested. RESULTS Sixty-nine percent of patients were carriers of at least one polymorphism in either the CYP2C9 or the VKORC1 gene. Double, triple, and quadruple carriers accounted for 22%, 5%, and 1%, respectively. No significant departure from HWE was found. Among patients with a given CYP2C9 genotype, warfarin dose requirements declined from GG to AA haplotypes; whereas, within each VKORC1 haplotype, the dose decreased as the number of CYP2C9 variants increased. The presence of these loss-of-function alleles was associated with more out-of-range INR measurements (OR = 1.38) but not with significant INR >4 during the initiation phase. Analyses based on a published pharmacogenetic algorithm predicted dose reductions of up to 4.9 mg/day in carriers and provided better dose prediction in an extreme subgroup of highly sensitive patients, but also suggested the need to improve predictability by developing a customized model for use in Puerto Rican patients. CONCLUSIONS This study laid important groundwork for supporting a prospective pharmacogenetic trial in Puerto Ricans to detect the benefits of incorporating relevant genomic information into a customized DNA

  3. Evaluation of exposure dose reduction in multislice CT coronary angiography (MS-CTA) with prospective ECG-gated helical scan

    NASA Astrophysics Data System (ADS)

    Ota, Takamasa; Tsuyuki, Masaharu; Okumura, Miwa; Sano, Tomonari; Kondo, Takeshi; Takase, Shinichi

    2008-03-01

    A novel low-dose ECG-gated helical scan method to investigate coronary artery diseases was developed. This method uses a high pitch for scanning (based on the patient's heart rate) and X-rays are generated only during the optimal cardiac phases. The dose reduction was obtained using a two-level approach: 1) To use a 64-slice CT scanner (Aquilion, Toshiba, Otawara, Tochigi, Japan) with a scan speed of 0.35 s/rot. to helically scan the heart at a high pitch based on the patient's heart rate. By changing the pitch from the conventional 0.175 to 0.271 for a heart rate of 60 bpm, the exposure dose was reduced to 65%. 2) To employ tube current gating that predicts the timing of optimal cardiac phases from the previous cardiac cycle and generates X-rays only during the required cardiac phases. The combination of high speed scanning with a high pitch and appropriate X-ray generation only in the cardiac phases from 60% to 90% allows the exposure dose to be reduced to 5.6 mSv for patients with a heart rate lower than 65 bpm. This is a dose reduction of approximately 70% compared to the conventional scanning method recommended by the manufacturer when segmental reconstruction is considered. This low-dose protocol seamlessly allows for wide scan ranges (e.g., aortic dissection) with the benefits of ECG-gated helical scanning: smooth continuity for longitudinal direction and utilization of data from all cardiac cycles.

  4. Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis.

    PubMed Central

    Nicolau, D P; Freeman, C D; Nightingale, C H; Quintiliani, R; Coe, C J; Maderazo, E G; Cooper, B W

    1993-01-01

    Using a rabbit model of Staphylococcus aureus endocarditis, we studied the effects of aspirin on the natural progression of this infection. Compared with untreated animals, the aspirin-treated animals showed a 30% (P = 0.11) reduction in the weight of the vegetations and an 84% (P = 0.03) reduction in the bacterial titer of the vegetations. PMID:8454370

  5. Ultra-low-dose dual-source CT coronary angiography with high pitch: diagnostic yield of a volumetric planning scan and effects on dose reduction and imaging strategy

    PubMed Central

    Hamm, B; Huppertz, A; Lembcke, A

    2015-01-01

    Objective: To evaluate the role of an ultra-low-dose dual-source CT coronary angiography (CTCA) scan with high pitch for delimiting the range of the subsequent standard CTCA scan. Methods: 30 patients with an indication for CTCA were prospectively examined using a two-scan dual-source CTCA protocol (2.0 × 64.0 × 0.6 mm; pitch, 3.4; rotation time of 280 ms; 100 kV): Scan 1 was acquired with one-fifth of the tube current suggested by the automatic exposure control software [CareDose 4D™ (Siemens Healthcare, Erlangen, Germany) using 100 kV and 370 mAs as a reference] with the scan length from the tracheal bifurcation to the diaphragmatic border. Scan 2 was acquired with standard tube current extending with reduced scan length based on Scan 1. Nine central coronary artery segments were analysed qualitatively on both scans. Results: Scan 2 (105.1 ± 10.1 mm) was significantly shorter than Scan 1 (127.0 ± 8.7 mm). Image quality scores were significantly better for Scan 2. However, in 5 of 6 (83%) patients with stenotic coronary artery disease, a stenosis was already detected in Scan 1 and in 13 of 24 (54%) patients with non-stenotic coronary arteries, a stenosis was already excluded by Scan 1. Using Scan 2 as reference, the positive- and negative-predictive value of Scan 1 was 83% (5 of 6 patients) and 100% (13 of 13 patients), respectively. Conclusion: An ultra-low-dose CTCA planning scan enables a reliable scan length reduction of the following standard CTCA scan and allows for correct diagnosis in a substantial proportion of patients. Advances in knowledge: Further dose reductions are possible owing to a change in the individual patient's imaging strategy as a prior ultra-low-dose CTCA scan may already rule out the presence of a stenosis or may lead to a direct transferal to an invasive catheter procedure. PMID:25710210

  6. Reduction of Dose Delivered to Organs at Risk in Prostate Cancer Patients via Image-Guided Radiation Therapy

    SciTech Connect

    Pawlowski, Jason M.; Yang, Eddy S.; Malcolm, Arnold W.; Coffey, Charles W.; Ding, George X.

    2010-03-01

    Purpose: To determine whether image guidance can improve the dose delivered to target organs and organs at risk (OARs) for prostate cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eight prostate cancer patients were treated with IMRT to 76 Gy at 2 Gy per fraction. Daily target localization was performed via alignment of three intraprostatic fiducials and weekly kV-cone beam computed tomography (CBCT) scans. The prostate and OARs were manually contoured on each CBCT by a single physician. Daily patient setup shifts were obtained by comparing alignment of skin tattoos with the treatment position based on fiducials. Treatment fields were retrospectively applied to CBCT scans. The dose distributions were calculated using actual treatment plans (an 8-mm PTV margin everywhere except for 6-mm posteriorly) with and without image guidance shifts. Furthermore, the feasibility of margin reduction was evaluated by reducing planning margins to 4 mm everywhere except for 3 mm posteriorly. Results: For the eight treatment plans on the 56 CBCT scans, the average doses to 98% of the prostate (D98) were 102% (range, 99-104%) and 99% (range, 45-104%) with and without image guidance, respectively. Using margin reduction, the average D98s were 100% (range, 84-104%) and 92% (range, 40-104%) with and without image guidance, respectively. Conclusions: Currently, margins used in IMRT plans are adequate to deliver a dose to the prostate with conventional patient positioning using skin tattoos or bony anatomy. The use of image guidance may facilitate significant reduction of planning margins. Future studies to assess the efficacy of decreasing margins and improvement of treatment-related toxicities are warranted.

  7. Assessing image quality and dose reduction of a new x-ray computed tomography iterative reconstruction algorithm using model observers

    SciTech Connect

    Tseng, Hsin-Wu Kupinski, Matthew A.; Fan, Jiahua; Sainath, Paavana; Hsieh, Jiang

    2014-07-15

    Purpose: A number of different techniques have been developed to reduce radiation dose in x-ray computed tomography (CT) imaging. In this paper, the authors will compare task-based measures of image quality of CT images reconstructed by two algorithms: conventional filtered back projection (FBP), and a new iterative reconstruction algorithm (IR). Methods: To assess image quality, the authors used the performance of a channelized Hotelling observer acting on reconstructed image slices. The selected channels are dense difference Gaussian channels (DDOG).A body phantom and a head phantom were imaged 50 times at different dose levels to obtain the data needed to assess image quality. The phantoms consisted of uniform backgrounds with low contrast signals embedded at various locations. The tasks the observer model performed included (1) detection of a signal of known location and shape, and (2) detection and localization of a signal of known shape. The employed DDOG channels are based on the response of the human visual system. Performance was assessed using the areas under ROC curves and areas under localization ROC curves. Results: For signal known exactly (SKE) and location unknown/signal shape known tasks with circular signals of different sizes and contrasts, the authors’ task-based measures showed that a FBP equivalent image quality can be achieved at lower dose levels using the IR algorithm. For the SKE case, the range of dose reduction is 50%–67% (head phantom) and 68%–82% (body phantom). For the study of location unknown/signal shape known, the dose reduction range can be reached at 67%–75% for head phantom and 67%–77% for body phantom case. These results suggest that the IR images at lower dose settings can reach the same image quality when compared to full dose conventional FBP images. Conclusions: The work presented provides an objective way to quantitatively assess the image quality of a newly introduced CT IR algorithm. The performance of the

  8. Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods

    NASA Astrophysics Data System (ADS)

    Fang, Ruogu; Raj, Ashish; Chen, Tsuhan; Sanelli, Pina C.

    2012-03-01

    In current computed tomography (CT) examinations, the associated X-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging that has higher radiation dose due to its cine scanning technique. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) parameter as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and degrade CT perfusion maps greatly if no adequate noise control is applied during image reconstruction. To capture the essential dynamics of CT perfusion, a simple spatial-temporal Bayesian method that uses a piecewise parametric model of the residual function is used, and then the model parameters are estimated from a Bayesian formulation of prior smoothness constraints on perfusion parameters. From the fitted residual function, reliable CTP parameter maps are obtained from low dose CT data. The merit of this scheme exists in the combination of analytical piecewise residual function with Bayesian framework using a simpler prior spatial constrain for CT perfusion application. On a dataset of 22 patients, this dynamic spatial-temporal Bayesian model yielded an increase in signal-tonoise-ratio (SNR) of 78% and a decrease in mean-square-error (MSE) of 40% at low dose radiation of 43mA.

  9. Dose reduction in digital breast tomosynthesis using a penalized maximum likelihood reconstruction

    NASA Astrophysics Data System (ADS)

    Das, Mini; Gifford, Howard; O'Connor, Michael; Glick, Stephen J.

    2009-02-01

    Digital breast tomosynthesis (DBT) is a 3D imaging modality with limited angle projection data. The ability of tomosynthesis systems to accurately detect smaller microcalcifications is debatable. This is because of the higher noise in the projection data (lower average dose per projection), which is then propagated through the reconstructed image . Reconstruction methods that minimize the propagation of quantum noise have potential to improve microcalcification detectability using DBT. In this paper we show that penalized maximum likelihood (PML) reconstruction in DBT yields images with an improved resolution/noise tradeoff as compared to conventional filtered backprojection (FBP). Signal to noise ratio (SNR) using PML was observed to be higher than that obtained using the standard FBP algorithm. Our results indicate that for microcalcifications, using the PML algorithm, reconstructions obtained with a mean glandular dose (MGD) of 1.5 mGy yielded better SNR than that those obtained with FBP using a 4mGy total dose. Thus perhaps total dose could be reduced to one-third or lower with same microcalcification detectability, if PML reconstruction is used instead of FBP. Visibility of low contrast masses with various contrast levels were studied using a contrast-detail phantom in a breast shape structure with an average breast density. Images generated using various dose levels indicate that visibility of low contrast masses generated using PML reconstructions are significantly better than those generated using FBP. SNR measurements in the low-contrast study did not appear to correlate with the visual subjective analysis of the reconstruction indicating that SNR is not a good figure of merit to be used.

  10. Image Quality and Radiation Dose of CT Coronary Angiography with Automatic Tube Current Modulation and Strong Adaptive Iterative Dose Reduction Three-Dimensional (AIDR3D)

    PubMed Central

    Shen, Hesong; Dai, Guochao; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Liang, Dan; Wang, Xinhua; Zhu, Dongyun; Li, Wenru; Qiu, Jianping

    2015-01-01

    Purpose To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product. Results Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv. Conclusion

  11. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    PubMed Central

    Sampson, Andrew; Le, Yi; Williamson, Jeffrey F.

    2012-01-01

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, ΔD, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 125I seeds. The breast case consisted of 87 Model-200 103Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D90, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 × 1 × 1 mm3 dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and heterogeneous doses

  12. Radiation Dose Reduction Methods For Use With Fluoroscopic Imaging, Computers And Implications For Image Quality

    NASA Astrophysics Data System (ADS)

    Edmonds, E. W.; Hynes, D. M.; Rowlands, J. A.; Toth, B. D.; Porter, A. J.

    1988-06-01

    The use of a beam splitting device for medical gastro-intestinal fluoroscopy has demonstrated that clinical images obtained with a 100mm photofluorographic camera, and a 1024 X 1024 digital matrix with pulsed progressive readout acquisition techniques, are identical. In addition, it has been found that clinical images can be obtained with digital systems at dose levels lower than those possible with film. The use of pulsed fluoroscopy with intermittent storage of the fluoroscopic image has also been demonstrated to reduce the fluoroscopy part of the examination to very low dose levels, particularly when low repetition rates of about 2 frames per second (fps) are used. The use of digital methods reduces the amount of radiation required and also the heat generated by the x-ray tube. Images can therefore be produced using a very small focal spot on the x-ray tube, which can produce further improvement in the resolution of the clinical images.

  13. Conceptual design review report for K Basin Dose Reduction Project clean and coat task

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose originating from radionuclides absorbed in the concrete is to raise the pool water level to provide additional shielding. The concrete walls need to be coated to prevent future radionuclide absorption into the walls. This report documents a conceptual design review of equipment to clean and coat basin walls. The review concluded that the proposed concepts were and acceptable basis for proceeding with detailed final design.

  14. Occupational dose reduction at Department of Energy contractor facilities: Study of ALARA programs. Status 1990

    SciTech Connect

    Dionne, B.J.; Meinhold, C.B.; Khan, T.A.; Baum, J.W.

    1992-08-01

    This report provides the US Department of Energy (DOE) and its contractors with information that will be useful for reducing occupational radiation doses at DOE`s nuclear facilities. In 1989 and 1990, health physicists from the Brookhaven National Laboratory`s (BNL) ALARA Center visited twelve DOE contractor facilities with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). The health physicists interviewed radiological safety staff, engineers, and training personnel who were responsible for dose control. The status of ALARA practices at the major contractor facilities was compared with the requirements and recommendation in DOE Order 5480.11 ``Radiation Protection for Occupational Workers`` and PNL-6577 ``Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are as Low as Reasonably Achievable.`` The information and data collected are described and examples of successful practices are presented. The findings on the status of the DOE Contractor ALARA Programs are summarized and evaluated. In addition, the supplement to this report contains examples of good-practice documents associated with implementing the major elements of a formally documented ALARA program for a major DOE contractor facility.

  15. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    SciTech Connect

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.

  16. Determination of the Optimal Dose Reduction Level via Iterative Reconstruction Using 640-Slice Volume Chest CT in a Pig Model

    PubMed Central

    Liu, Xingli; Wang, Jingshi; Liu, Qin; Zhao, Pengfei; Hou, Yang; Ma, Yue; Guo, Qiyong

    2015-01-01

    Aim To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models. Materials and Methods 27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose), SD12.5, SD15, SD17.5, SD20 (Groups from B to E) to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP), and Groups from B to E were reconstructed using iterative reconstruction (IR). Objective and subjective image quality (IQ) among groups were compared to determine an optimal radiation reduction level. Results The noise and signal-to-noise ratio (SNR) in Group D had no significant statistical difference from that in Group A (P = 1.0). The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05). There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups) of Group D. The effective dose (ED) of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001). Conclusions In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%. PMID:25764485

  17. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    NASA Astrophysics Data System (ADS)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute

  18. Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: A Monte Carlo study

    SciTech Connect

    Perisinakis, Kostas; Raissaki, Maria; Tzedakis, Antonis; Theocharopoulos, Nicholas; Damilakis, John; Gourtsoyiannis, Nicholas

    2005-04-01

    Our aim in the study was to assess the eye lens dose reduction resulting from the use of radioprotective bismuth garments to shield the eyes of pediatric patients undergoing head CT. The Monte Carlo N-particle transport code and mathematical humanoid phantoms representing the average individual at different ages were used to determine eye lens dose reduction accomplished with bismuth shielding of the eye in the following simulated CT scans: (a) scanning of the orbits, (b) scanning of the whole head, and (c) 20 deg. angled scanning of the brain excluding the orbits. The effect of bismuth shielding on the eye lens dose was also investigated using an anthropomorphic phantom and thermoluminescence dosimetry (TLD). Eye lens dose reduction achieved by bismuth shielding was measured in 16 patients undergoing multiphase CT scanning of the head. The patient's scans were divided in the following: CT examinations where the eye globes were entirely included (n=5), partly included (n=6) and excluded (n=5) from the scanned region. The eye lens dose reduction depended mainly on the scan boundaries set by an operator. The average eye lens dose reduction determined by Monte Carlo simulation was 38.2%, 33.0% and <1% for CT scans of the orbits, whole head, and brain with an angled gantry, respectively. The difference between the Monte Carlo derived eye lens dose reduction factor values and corresponding values determined directly by using the anthropomorphic phantom head was found less than 5%. The mean eye lens dose reduction achieved by bismuth shielding in pediatric patients were 34%, 20% and <2% when eye globes were entirely included, partly included and excluded from the scanned region, respectively. A significant reduction in eye lens dose may be achieved by using superficial orbital bismuth shielding during pediatric head CT scans. However, bismuth garments should not be used in children when the eyes are excluded from the primarily exposed region.

  19. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA

    SciTech Connect

    Baum, J.W.; Khan, T.A.

    1986-10-01

    This report is the third in a series of bibliographies supporting the efforts at Brookhaven National Laboratory on dose reduction at nuclear power plants. Abstracts for this report were selected from papers presented at recent technical meetings, journals and research reports reviewed at the BNL ALARA Center, and searches of the DOE/RECON data base on energy-related publications. The references selected for inclusion in the bibliography relate not only to operational health physics topics but also to plant chemistry, stress corrosion cracking, and other aspects of plant operation which have important impacts on occupational exposure. Also included are references to improved design, planning, materials selection and other topics related to what might be called ALARA engineering. Thus, an attempt has been made to cover a broad spectrum of topics related directly or indirectly to occupational exposure reduction. The report contains 252 abstracts and both author and subject indices.

  20. [5 years of "concerted action dose reduction in CT" -- what has been achieved and what remains to be done?].

    PubMed

    Nagel, H D; Blobel, J; Brix, G; Ewen, K; Galanski, M; Höfs, P; Loose, R; Prokop, M; Schneider, K; Stamm, G; Stender, H-S; Süss, C; Türkay, S; Vogel, H; Wucherer, M

    2004-11-01

    In May 1998, the German "Concerted Action Dose Reduction in CT" was founded by all parties involved in CT. Its intention was to achieve a significant reduction of the radiation exposure caused by CT, a matter that has increasingly been considered a major challenge since the early nineties. As a result of a number of joint efforts, the essential preconditions have been established by now. The fifth anniversary of the Concerted Action gave rise for both retrospection and outlook on the tasks that have already been accomplished and those that still need to be done. For this purpose, a one-day symposium took place in Berlin on November 4, 2003. The contents of a total of 18 contributions will be outlined here in brief. PMID:15497088

  1. Simultaneous reduction of radiation dose and scatter for CBCT by using collimators

    SciTech Connect

    Li, Tianfang; Li, Xiang; Yang, Yong; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2013-12-15

    Purpose: On-board cone-beam CT (CBCT) imaging has been widely available in radiotherapy clinic for target localization. However, the extra radiation dose from CBCT is always a concern for its frequent use. Additionally, the relatively large scatter in CBCT often degrades the image quality. By using collimators, some of the X-rays can be stopped from reaching the patient and the detectors, hence both the scatter and the patient doses are simultaneously reduced. The authors show in this work that the collimated CBCT data can be reconstructed without any noticeable artifacts for certain collimator blocking ratios and blocking patterns, and the focus of this work is to study the relationship between the image quality and these two collimator factors.Methods: A CBCT system with collimators was simulated following the typical geometry used in clinic. Different collimator designs were tested by varying the size and the number of the collimator slits, and at the same time, the ratio of transmitted beams to total beams was varied from 100% to 10%, resulting in hundreds of different simulation scenarios. Lung and pelvis phantoms created from patients CT images were used in the simulations, and an iterative reconstruction algorithm using the compressed sensing technique was adopted. The image quality was examined by root mean square errors (RMSEs) and compared with the conventional CBCT images.Results: The CBCT image quality increases as the amount of beams passing through the collimators increases, and decreases as the size of the collimator slits increases. With ultra-high resolution collimators, the RMSEs were comparable to the conventional CBCT image quality until the beam transmission rate is reduced below 25%.Conclusions: Collimators can reduce the scatters and radiation dose, however, the collimated CBCT image quality is strongly dependent on both the collimator blocking ratio and the blocking pattern. To achieve image quality comparable to the conventional CBCT, the

  2. Reduction of Methylphenidate Induced Anxiety, Depression and Cognition Impairment by Various doses of Venlafaxine in Rat

    PubMed Central

    Motaghinejad, Majid; Motevalian, Manijeh; Ebrahimzadeh, Andia; larijani, Setare Farokhi; Khajehamedi, Zohreh

    2015-01-01

    Background: Methylphenidate (MPH) is a neural stimulant agent, which its neurochemical and behavioral effect remain unclear. Venlafaxine is a serotonin-norepinephrine reuptake inhibitor antidepressant, which was used for management of depression and anxiety. In this study, protective effects of venlafaxine on MPH induced anxiety, depression and cognition impairment were investigated. Methods: Forty-eight adult male rats were divided randomly to 5 groups. Group 1, received normal saline (0.2 ml/rat) for 21 days and served as control group. Group 2, received MPH (10 mg/kg) for 21 days. Groups, 3, 4, 5 and 6 concurrently were treated by MPH (10 mg/kg) and venlafaxine at doses of 25, 50, 75 and 100 mg/kg respectively for 21 days. On day 22, elevated plus maze (EPM), open field test (OFT), forced swim test (FST) and tail suspension test (TST) were used to investigate the level of anxiety and depression in animals. In addition, between days 17 and 21, Morris water maze (MWM) was used to evaluate the effect of MPH on spatial learning and memory. Results: MPH caused depression and anxiety in a dose-dependent manner in FST, OFT, EPM and TST, which were significantly different compared with control group. Furthermore, MPH can significantly attenuate the motor activity in OFT. Venlafaxine in all doses can attenuate MPH induced anxiety, depression and motor activity alterations. MPH also can disturb learning and memory in MWM, but venlafaxine did not alter this effect of MPH. Conclusions: We conclude that venlafaxine can be protective in the brain against MPH induced anxiety and depression. PMID:26124949

  3. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    SciTech Connect

    Yao, W; Farr, J

    2014-06-15

    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters.

  4. Fludarabine Allows Dose Reduction for Total Body Irradiation in Pediatric Hematopoietic Stem Cell Transplantation

    SciTech Connect

    Kornguth, David G. . E-mail: dkorngut@mdanderson.org; Mahajan, Anita; Woo, Shiao; Chan, Ka Wah; Antolak, John; Ha, Chul S.

    2007-07-15

    Purpose: To examine, in the setting of total body irradiation (TBI) for the preparation of pediatric hematopoietic stem cell transplantation (HSCT), whether TBI dose can be reduced without compromising the efficacy of a regimen consisting of fludarabine and radiotherapy; and whether there is any increased risk of pulmonary toxicity due to the radiosensitizing effect of fludarabine. Methods and Materials: A total of 52 pediatric patients with hematologic malignancies received TBI-based conditioning regimens in preparation for allogeneic HSCT. Twenty-three patients received 12 Gy in 4 daily fractions in combination with cyclophosphamide, either alone or with other chemotherapeutic and biologic agents. Twenty-nine patients received 9 Gy in 3 fractions in conjunction with fludarabine and melphalan. Clinical and radiation records were reviewed to determine engraftment, pulmonary toxicity (according to Radiation Therapy Oncology Group criteria), transplant-related mortality, recurrence of primary disease, and overall survival. Results: The two groups of patients had comparable pretransplant clinical characteristics. For the 12-Gy and 9-Gy regimens, the engraftment (89% and 93%; p = 0.82), freedom from life-threatening pulmonary events (65% and 79%; p = 0.33), freedom from relapse (60% and 73%; p = 0.24), and overall survival (26% and 47%; p = 0.09) were not statistically different. Conclusions: The addition of fludarabine and melphalan seems to allow the dose of TBI to be lowered to 9 Gy without loss of engraftment or antitumor efficacy.

  5. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7

    SciTech Connect

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W.

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  6. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    SciTech Connect

    Sullivan, S.G.; Khan, T.A.; Xie, J.W.

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  7. A multiscale filter for noise reduction of low-dose cone beam projections.

    PubMed

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  8. A multiscale filter for noise reduction of low-dose cone beam projections

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Farr, Jonathan B.

    2015-08-01

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, \\text{exp}≤ft(-{{x}2}/2σ f2\\right) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of {σf} , which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ f2 is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  9. Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT

    SciTech Connect

    Zhang, Hua; Ouyang, Luo; Wang, Jing E-mail: jing.wang@utsouthwestern.edu; Ma, Jianhua E-mail: jing.wang@utsouthwestern.edu; Huang, Jing; Chen, Wufan

    2014-03-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest neighboring

  10. Radiation dose reduction in the evaluation of scoliosis: an application of digital radiography

    SciTech Connect

    Kushner, D.C.; Cleveland, R.H.; Herman, T.E.; Zaleske, D.J.; Ehrlich, M.G.; Correia, J.A.

    1986-10-01

    This report documents the clinical testing of scanning beam digital radiography as an imaging method in patients with scoliosis. This type of digital imaging requires a skin exposure of only 2.4 mR (0.619 microC/kg) per image, compared with the lowest possible posteroanterior screen-film exposure of 10 mR (2.58 microC/kg) at the chest and 60 mR (15.48 microC/kg) at the lumbar spine. Digital radiographic and screen-film images were obtained on multiple test objects and 273 patients. Scoliosis measurements using screen-film radiographs and digital radiographs were comparable to within a mean difference of 1 degrees at many different degrees of severity. The low-dose digital images were found to be useful and accurate for the detection and measurement of scoliosis after the first screen-film radiographs have excluded tumors and structural abnormalities.

  11. The Influences of Withdrawal and Daily Dose Reduction of Pioglitazone on Metabolic Parameters in Patients With Type 2 Diabetes: A Retrospective Longitudinal Observational Study

    PubMed Central

    Katsuyama, Hisayuki; Fukunaga, Takayuki; Hamasaki, Hidetaka; Adachi, Hiroki; Moriyama, Sumie; Kawaguchi, Akiko; Mishima, Shuichi; Sako, Akahito; Yanai, Hidekatsu

    2016-01-01

    Background The aim of the study was to understand the influences of withdrawal or dose reduction of pioglitazone in patients with type 2 diabetes. Methods We retrospectively picked up patients who had undergone withdrawal or daily dose reduction of pioglitazone after a continuous prescription for 3 months or longer between January 2010 and March 2014. We compared the data before the withdrawal or dose reduction of pioglitazone with the data at 3 or 6 months after those by a chart-based analysis. Results Among 713 patients taking pioglitazone at least once during the studied period, 20 patients had undergone withdrawal of pioglitazone (group A) and 51 patients had undergone daily dose reduction (group B). The mean pioglitazone dose at baseline was 23 mg in subjects of group A, and 30 mg in group B. The number of subjects who had taken high-dose metformin (≥ 1,000 mg) and dipeptidyl peptidase-4 (DPP-4) inhibitors increased after the withdrawal or dose reduction of pioglitazone in both groups. Although no significant change was observed in plasma glucose and HbA1c levels, body weight significantly decreased at 3 and 6 months after the dose reduction in group B. The same tendency was observed in group A. Serum high-density lipoprotein-cholesterol (HDL-C) levels significantly decreased at 3 and 6 months after the withdrawal in group A. The serum alanine aminotransferase levels significantly increased 3 months after the withdrawal in group A. Conclusions Present study demonstrated that the withdrawal of pioglitazone exacerbated serum HDL-C and liver function in patients with type 2 diabetes, although glycemic control could be maintained by using high-dose metformin or DPP-4 inhibitors. PMID:27429679

  12. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans.

    PubMed

    Mozer, Michael T; Holbein, Walter W; Joyner, Michael J; Curry, Timothy B; Limberg, Jacqueline K

    2016-07-01

    The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes. PMID:27418545

  13. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans.

    PubMed

    Mozer, Michael T; Holbein, Walter W; Joyner, Michael J; Curry, Timothy B; Limberg, Jacqueline K

    2016-07-01

    The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes.

  14. [State of the art and future trends in technology for computed tomography dose reduction].

    PubMed

    Calzado Cantera, A; Hernández-Girón, I; Salvadó Artells, M; Rodríguez González, R

    2013-12-01

    The introduction of helical and multislice acquisitions in CT scanners together with decreased image reconstruction times has had a tremendous impact on radiological practice. Technological developments in the last 10 to 12 years have enabled very high quality images to be obtained in a very short time. Improved image quality has led to an increase in the number of indications for CT. In parallel to this development, radiation exposure in patients has increased considerably. Concern about the potential health risks posed by CT imaging, reflected in diverse initiatives and actions by official organs and scientific societies, has prompted the search for ways to reduce radiation exposure in patients without compromising diagnostic efficacy. To this end, good practice guidelines have been established, special applications have been developed for scanners, and research has been undertaken to optimize the clinical use of CT. Noteworthy technical developments incorporated in scanners include the different modes of X-ray tube current modulation, automatic selection of voltage settings, selective organ protection, adaptive collimation, and iterative reconstruction. The appropriate use of these tools to reduce radiation doses requires thorough knowledge of how they work. PMID:24211196

  15. Radiation dose reduction in CBCT imaging using K-edge filtering and energy weighting.

    PubMed

    Kang, Se-Ryong; Lee, Woo-Jin; Woo, Sang-Yoon; Kim, Dae-Seung; Yi, Won-Jin

    2014-01-01

    This paper presents K-edge filtering and energy weighting methods which enhance the contrast with less radiation does. Usually, energy weighting methods are used with photon-counting detector based CT for each energy bin data obtained to enhance the quality of image. However, we used these methods combine with K-edge filtering in energy-integrating detector. Using K-edge filtering, different energy bin data for energy weighting methods were obtained, and then energy weighting factors were calculated to enhance the contrast of image. We report an evaluation of the contrast-to-noise ratio (CNR) of reconstructed image with and without these two methods. This evaluation was proceeded with two phantoms; one is the phantom created personally, and the other is Sendentexct IQ dental CBCT (SENDENTEXCT, EU). As for the phantom created personally, the CNR of images reconstructed with these methods were increased than CNR of standard images. It was seen that 31% to 81% in each energy weighting method for optimizing each material (cortical bone, inner bone, soft tissue, iodine (18.5 g/l), iodine (37 g/l)). In conclusion, we can enhance the contrast of CT images with less radiation dose using K-edge filtering and energy weighting method. PMID:25571149

  16. Design and functionalities of the MADOR® software suite for dose-reduction management after DTPA therapy.

    PubMed

    Leprince, B; Fritsch, P; Bérard, P; Roméo, P-H

    2016-03-01

    A software suite on biokinetics of radionuclides and internal dosimetry intended for the occupational health practitioners of nuclear industry and for expert opinions has been developed under Borland C++ Builder™. These computing tools allow physicians to improve the dosimetric follow-up of workers in agreement with the French regulations and to manage new internal contaminations by radionuclides such as Pu and/or Am after diethylene triamine penta-acetic acid treatments. In this paper, the concept and functionalities of the first two computing tools of this MADOR(®) suite are described. The release 0.0 is the forensic application, which allows calculating the derived recording levels for intake by inhalation or ingestion of the main radioisotopes encountered in occupational environment. Indeed, these reference values of activity are convenient to interpret rapidly the bioassay measurements and make decisions as part of medical monitoring. The release 1.0 addresses the effect of DTPA treatments on Pu/Am biokinetics and the dose benefit. The forensic results of the MADOR(®) suite were validated by comparison with reference data.

  17. [State of the art and future trends in technology for computed tomography dose reduction].

    PubMed

    Calzado Cantera, A; Hernández-Girón, I; Salvadó Artells, M; Rodríguez González, R

    2013-12-01

    The introduction of helical and multislice acquisitions in CT scanners together with decreased image reconstruction times has had a tremendous impact on radiological practice. Technological developments in the last 10 to 12 years have enabled very high quality images to be obtained in a very short time. Improved image quality has led to an increase in the number of indications for CT. In parallel to this development, radiation exposure in patients has increased considerably. Concern about the potential health risks posed by CT imaging, reflected in diverse initiatives and actions by official organs and scientific societies, has prompted the search for ways to reduce radiation exposure in patients without compromising diagnostic efficacy. To this end, good practice guidelines have been established, special applications have been developed for scanners, and research has been undertaken to optimize the clinical use of CT. Noteworthy technical developments incorporated in scanners include the different modes of X-ray tube current modulation, automatic selection of voltage settings, selective organ protection, adaptive collimation, and iterative reconstruction. The appropriate use of these tools to reduce radiation doses requires thorough knowledge of how they work.

  18. Application of time sampling in brain CT perfusion imaging for dose reduction

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kim, J. H.; Kim, K. G.; Park, S. J.; Im, Jung Gi

    2007-03-01

    The purpose of this study is to determine a stable sampling rate not to be affected by sampling shift for reducing radiation exposure with time sampling and interpolation in cerebral perfusion CT examination. Original images were obtained every 1 second for 40 time series from 3 patients, respectively. Time sampling was performed with sampling intervals (SI) from 2 to 10 seconds. Sampling shift was applied from +1 to SI-1 for each sampling rate. For each patient, 30 tissue concentration time-course data were collected, and arterial input curves were fitted by gamma-variate function. The sinc function was introduced for interpolation. Deconvolution analysis based on SVD was performed for quantifying perfusion parameters. The perfusion values through time-varying sampling and interpolation were statistically compared with the original perfusion values. The mean CBF values with increase of sampling interval and shift magnitude from the collected data had a wider fluctuation pattern centering around the original mean CBF. The mean CBV values had a similar tendency to the mean CBF values, but a relatively narrower deviation. The mean MTT values were fluctuated reversely to the trend of the mean CBF values. The stable sampling interval for quantifying perfusion parameters with lower radiation exposure was statistically acceptable up to 4 seconds. These results indicate that sampling shift limits sampling rate for acquiring acceptable perfusion values. This study will help in selecting more reasonable sampling rate for low-radiation-dose CT examination.

  19. Reduction of aspirin-induced fecal blood loss with low-dose misoprostol tablets in man

    SciTech Connect

    Cohen, M.M.; Clark, L.; Armstrong, L.; D'Souza, J.

    1985-07-01

    Misoprostol (SC-29333), a synthetic prostaglandin E1 methyl ester analog, was given simultaneously with acetylsalicylic acid in a double-blind, placebo-controlled randomized prospective study of 32 healthy human male subjects. Fecal blood loss was measured for eight days using the /sup 51/Cr-labeled red blood cell technique. Aspirin (650 mg qid) and misoprostol (25 micrograms qid) or placebo were given during days 3, 4, and 5. There was a significant (P less than 0.05) increase in median blood loss (modified Friedman test) from 0.81 to 6.05 ml/day in the aspirin with placebo group (N = 16). Median blood loss was increased (from 0.75 to 3.75 ml/day) in the aspirin with misoprostol group (N = 16), but this was significantly less (Mann-Whitney U test, P less than 0.01) than the placebo group. Mean serum salicylate concentrations in the placebo and misoprostol groups were similar (7.8 and 6.8 micrograms/ml, respectively). There were no significant changes in laboratory values in any of the subjects studied, nor were any major side-effects encountered. This study demonstrates that oral misoprostol reduces aspirin-induced gastrointestinal bleeding even when administered simultaneously and at a dose level below its threshold for significant acid inhibition. This indicates a potential role for misoprostol in the prevention of gastric mucosal damage in selected patients.

  20. Reduction of radiation dose and imaging costs in scoliosis radiography. Application of large-screen image intensifier photofluorography

    SciTech Connect

    Manninen, H.; Kiekara, O.; Soimakallio, S.; Vainio, J.

    1988-04-01

    Photofluorography using a large-field image intensifier (Siemens Optilux 57) was applied to scoliosis radiography and compared with a full-size rare-earth screen/film technique. When scoliosis radiography (PA-projection) was performed on 25 adolescent patients, the photofluorographs were found to be of comparable diagnostic quality with full-size films. A close correspondence between the imaging techniques was found in the Cobb angle measurements as well as in the grading of rotation with the pedicle method. The use of photofluorography results in a radiation dose reduction of about one-half and considerable savings in direct imaging costs and archive space. In our opinion the method is particularly well-suited for follow-up and screening evaluation of scoliosis, but in tall patients the image field size of 40 x 40 cm restricts its usefulness as initial examination.

  1. Cardiac computed tomography radiation dose reduction using interior reconstruction algorithm with the aorta and vertebra as known information.

    PubMed

    Bharkhada, Deepak; Yu, Hengyong; Ge, Shuping; Carr, J Jeffrey; Wang, Ge

    2009-01-01

    High x-ray radiation dose is a major public concern with the increasing use of multidetector computed tomography (CT) for diagnosis of cardiovascular diseases. This issue must be effectively addressed by dose-reduction techniques. Recently, our group proved that an internal region of interest (ROI) can be exactly reconstructed solely from localized projections if a small subregion within the ROI is known. In this article, we propose to use attenuation values of the blood in aorta and vertebral bone to serve as the known information for localized cardiac CT. First, we describe a novel interior tomography approach that backprojects differential fan-beam or parallel-beam projections to obtain the Hilbert transform and then reconstructs the original image in an ROI using the iterative projection onto convex sets algorithm. Then, we develop a numerical phantom based on clinical cardiac CT images for simulations. Our results demonstrate that it is feasible to use practical prior information and exactly reconstruct cardiovascular structures only from projection data along x-ray paths through the ROI.

  2. Dose reduction by moving a region of interest (ROI) beam attenuator to follow a moving object of interest

    PubMed Central

    Panse, Ashish S.; Swetadri Vasan, S. N.; Jain, A.; Bednarek, D. R.; Rudin, S.

    2012-01-01

    Region-of-interest (ROI) fluoroscopy takes advantage of the fact that most neurovascular interventional activity is performed in only a small portion of an x-ray imaging field of view (FOV). The ROI beam filter is an attenuating material that reduces patient dose in the area peripheral to the object of interest. This project explores a method of moving the beam-attenuator aperture with the object of interest such that it always remains in the ROI. In this study, the ROI attenuator, which reduces the dose by 80% in the peripheral region, is mounted on a linear stage placed near the x-ray tube. Fluoroscopy is performed using the Microangiographic Fluoroscope (MAF) which is a high-resolution, CCD-based x-ray detector. A stainless-steel stent is selected as the object of interest, and is moved across the FOV and localized using an object-detection algorithm available in the IMAQ Vision package of LabVIEW. The ROI is moved to follow the stent motion. The pixel intensities are equalized in both FOV regions and an adaptive temporal filter dependent on the motion of the object of interest is implemented inside the ROI. With a temporal filter weight of 5% for the current image in the peripheral region, the SNR measured is 47.8. The weights inside the ROI vary between 10% and 33% with a measured SNR of 57.9 and 35.3 when the object is stationary and moving, respectively. This method allows patient dose reduction as well as maintenance of superior image quality in the ROI while tracking the object. PMID:22866212

  3. Dose reduction by moving a region of interest (ROI) beam attenuator to follow a moving object of interest.

    PubMed

    Panse, Ashish S; Swetadri Vasan, S N; Jain, A; Bednarek, D R; Rudin, S

    2012-01-01

    Region-of-interest (ROI) fluoroscopy takes advantage of the fact that most neurovascular interventional activity is performed in only a small portion of an x-ray imaging field of view (FOV). The ROI beam filter is an attenuating material that reduces patient dose in the area peripheral to the object of interest. This project explores a method of moving the beam-attenuator aperture with the object of interest such that it always remains in the ROI. In this study, the ROI attenuator, which reduces the dose by 80% in the peripheral region, is mounted on a linear stage placed near the x-ray tube. Fluoroscopy is performed using the Microangiographic Fluoroscope (MAF) which is a high-resolution, CCD-based x-ray detector. A stainless-steel stent is selected as the object of interest, and is moved across the FOV and localized using an object-detection algorithm available in the IMAQ Vision package of LabVIEW. The ROI is moved to follow the stent motion. The pixel intensities are equalized in both FOV regions and an adaptive temporal filter dependent on the motion of the object of interest is implemented inside the ROI. With a temporal filter weight of 5% for the current image in the peripheral region, the SNR measured is 47.8. The weights inside the ROI vary between 10% and 33% with a measured SNR of 57.9 and 35.3 when the object is stationary and moving, respectively. This method allows patient dose reduction as well as maintenance of superior image quality in the ROI while tracking the object. PMID:22866212

  4. Effects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and Its Definite Dose Reduction Factor

    PubMed Central

    Nadi, Saba; Monfared, Ali Shabestani; Mozdarani, Hossein; Mahmodzade, Aziz; Pouramir, Mahdi

    2016-01-01

    Background: Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation. In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to calculate the ratio of polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte (PCE/PCE+NCE) in order to show cell proliferation activity. Methods: Arbutin (50, 100, and 200 mg/kg) was intraperitoneally (ip)administered to NMRI mice two hours before gamma radiation at 2 and 4 gray (Gy). The frequency of micronuclei in 1000 PCEs (MnPCEs) and the ratio of PCE/PCE+NCE were calculated for each sample. Data were statistically evaluated using one-way ANOVA, Tukey HSD test, and t-test. Results: The findings indicated that gamma radiation at 2 and 4 Gy extremely increased the frequencies of MnPCE (P<0.001) while reducing PCE/PCE+NCE (P<0.001) compared to the control group. All three doses of arbutin before irradiation significantly reduced the frequencies of MnPCEs and increased the ratio of PCE/PCE+NCE in mice bone marrow compared to the non-drug-treated irradiated control (P<0.001). All three doses of arbutin had no toxicity effect on bone marrow cells. The calculated dose reduction factor (DRF) showed DRF=1.93 for 2Gy and DRF=2.22 for 4 Gy. Conclusion: Our results demonstrated that arbutin gives significant protection to rat bone against the clastogenic and cytotoxic effects of gamma irradiation. PMID:27217601

  5. Feedback on the use of the MX6 Mox Fuel transport cask: reduction of the dose uptake during operations

    SciTech Connect

    Blachet, L.; Lallemant, Th.

    2007-07-01

    In the framework of the quality, safety and environment policy of AREVA, TN International has implemented a global management system according to ISO 9001, OHSAS 18001 and ISO 14001 requirements with certification obtained from third part organization (1). The design of the MX6 cask is an example of the implementation of this system in order to guarantee safety and the health of everyone involved and the protection of the environment. The MX6 design has allowed ALARA dose rates for the workers during all the phases of use of the cask, to be significantly reduced compared to previous design. The MX6 cask was developed by TN International for the transport of either BWR or PWR fresh MOX fuel assemblies. Replacing the previous SIEMENS type III and SIEMENS BWR packaging, the MX6 has been firstly used in the German Nuclear Power Plants. Complying with the TS-R-1 (IAEA 1996) regulations, the MX6 cask is based on innovative solutions implemented at each step of the design and the manufacturing. Its design includes an efficient neutron shielding for high Plutonium content and an easy use content restraining system. The large payload of the MX6 cask, 6 PWR MOX fuel assemblies or 16 BWR MOX fuel assemblies, minimizes the doses uptake during its unloading at the NPP. Moreover, new sequences of loading and unloading operations were proposed for testing and implementation in each Nuclear Facility. Concurrently, total dose uptakes by the operators were assessed in order to prove the efficiency of the packaging and the proposed sequences. In this paper, the main contributors to the transports to Germany with the MX6 cask will present their involvement and feedback for the reduction of the dose uptakes by the operators during the loading and unloading operations. Presently in use at GUNDREMMINGEN and ISAR Nuclear Power Plants (NPPs), the MX6 cask use will be extended to other German and Swiss NPPs from 2006 onwards. (1) AFAQ-AFNOR Certification for ISO 9001, OHSAS 18001 and ISO

  6. Radiation dose reduction to the breast in thoracic CT: Comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current

    SciTech Connect

    Wang Jia; Duan Xinhui; Christner, Jodie A.; Leng Shuai; Yu Lifeng; McCollough, Cynthia H.

    2011-11-15

    Purpose: The purpose of this work was to evaluate dose performance and image quality in thoracic CT using three techniques to reduce dose to the breast: bismuth shielding, organ-based tube current modulation (TCM) and global tube current reduction. Methods: Semi-anthropomorphic thorax phantoms of four different sizes (15, 30, 35, and 40 cm lateral width) were used for dose measurement and image quality assessment. Four scans were performed on each phantom using 100 or 120 kV with a clinical CT scanner: (1) reference scan; (2) scan with bismuth breast shield of an appropriate thickness; (3) scan with organ-based TCM; and (4) scan with a global reduction in tube current chosen to match the dose reduction from bismuth shielding. Dose to the breast was measured with an ion chamber on the surface of the phantom. Image quality was evaluated by measuring the mean and standard deviation of CT numbers within the lung and heart regions. Results: Compared to the reference scan, dose to the breast region was decreased by about 21% for the 15-cm phantom with a pediatric (2-ply) shield and by about 37% for the 30, 35, and 40-cm phantoms with adult (4-ply) shields. Organ-based TCM decreased the dose by 12% for the 15-cm phantom, and 34-39% for the 30, 35, and 40-cm phantoms. Global lowering of the tube current reduced breast dose by 23% for the 15-cm phantom and 39% for the 30, 35, and 40-cm phantoms. In phantoms of all four sizes, image noise was increased in both the lung and heart regions with bismuth shielding. No significant increase in noise was observed with organ-based TCM. Decreasing tube current globally led to similar noise increases as bismuth shielding. Streak and beam hardening artifacts, and a resulting artifactual increase in CT numbers, were observed for scans with bismuth shields, but not for organ-based TCM or global tube current reduction. Conclusions: Organ-based TCM produces dose reduction to the breast similar to that achieved with bismuth shielding for

  7. Dose reduction of edoxaban preserves efficacy and safety for the treatment of venous thromboembolism. An analysis of the randomised, double-blind HOKUSAI VTE trial.

    PubMed

    Verhamme, Peter; Wells, Philip S; Segers, Annelise; Ageno, Walter; Brekelmans, Marjolein P A; Cohen, Alexander T; Meyer, Guy; Grosso, Michael A; Raskob, Gary; Weitz, Jeffrey I; Zhang, George; Buller, Harry

    2016-09-27

    Direct oral anticoagulants simplify venous thromboembolism (VTE) treatment by obviating the need for coagulation monitoring. Nonetheless, renal function, body weight and P-glycoprotein inhibitors influence drug levels. The objective of this analysis was to determine whether reduction in edoxaban dose based on clinical criteria avoids excess drug exposure and preserves efficacy and safety in the Hokusai-VTE study. After initial heparin, patients received edoxaban or warfarin for 3-12 months. Edoxaban was given once daily at a dose of 60 mg, which was reduced to 30 mg in patients with a creatinine clearance of 30-50 ml/minute, body weight ≤60 kg or receiving certain P-glycoprotein inhibitors. The primary efficacy outcome was recurrent VTE and the principal safety outcome was major or clinically relevant non-major bleeding. A total of 8292 patients with acute VTE were randomised, 733 and 719 patients in the edoxaban and warfarin groups met the criteria for dose reduction. These patients were older, more often female or Asian and had more extensive VTE. Edoxaban levels were lower in the 30 mg edoxaban group. Rates of recurrent VTE and bleeding with the 30 mg and 60 mg edoxaban dose were comparable: VTE rates were 3.0 % and 3.2 % and clinically relevant bleeding rates were 7.9 % and 8.6 %, respectively. Rates of recurrent VTE and bleeding in the warfarin-treated patients meeting the criteria for dose reduction were 4.2 % and 12.8 %, respectively. The reduced dose edoxaban regimen maintained efficacy and safety compared with the 60 mg dose but was safer than warfarin in patients meeting the criteria for dose reduction.

  8. Dose reduction of edoxaban preserves efficacy and safety for the treatment of venous thromboembolism. An analysis of the randomised, double-blind HOKUSAI VTE trial.

    PubMed

    Verhamme, Peter; Wells, Philip S; Segers, Annelise; Ageno, Walter; Brekelmans, Marjolein P A; Cohen, Alexander T; Meyer, Guy; Grosso, Michael A; Raskob, Gary; Weitz, Jeffrey I; Zhang, George; Buller, Harry

    2016-09-27

    Direct oral anticoagulants simplify venous thromboembolism (VTE) treatment by obviating the need for coagulation monitoring. Nonetheless, renal function, body weight and P-glycoprotein inhibitors influence drug levels. The objective of this analysis was to determine whether reduction in edoxaban dose based on clinical criteria avoids excess drug exposure and preserves efficacy and safety in the Hokusai-VTE study. After initial heparin, patients received edoxaban or warfarin for 3-12 months. Edoxaban was given once daily at a dose of 60 mg, which was reduced to 30 mg in patients with a creatinine clearance of 30-50 ml/minute, body weight ≤60 kg or receiving certain P-glycoprotein inhibitors. The primary efficacy outcome was recurrent VTE and the principal safety outcome was major or clinically relevant non-major bleeding. A total of 8292 patients with acute VTE were randomised, 733 and 719 patients in the edoxaban and warfarin groups met the criteria for dose reduction. These patients were older, more often female or Asian and had more extensive VTE. Edoxaban levels were lower in the 30 mg edoxaban group. Rates of recurrent VTE and bleeding with the 30 mg and 60 mg edoxaban dose were comparable: VTE rates were 3.0 % and 3.2 % and clinically relevant bleeding rates were 7.9 % and 8.6 %, respectively. Rates of recurrent VTE and bleeding in the warfarin-treated patients meeting the criteria for dose reduction were 4.2 % and 12.8 %, respectively. The reduced dose edoxaban regimen maintained efficacy and safety compared with the 60 mg dose but was safer than warfarin in patients meeting the criteria for dose reduction. PMID:27440518

  9. High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves.

    PubMed

    Angstman, Nicholas B; Kiessling, Maren C; Frank, Hans-Georg; Schmitz, Christoph

    2015-01-01

    In blast-related mild traumatic brain injury (br-mTBI) little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short- and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI. PMID:25705183

  10. High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves

    PubMed Central

    Angstman, Nicholas B.; Kiessling, Maren C.; Frank, Hans-Georg; Schmitz, Christoph

    2015-01-01

    In blast-related mild traumatic brain injury (br-mTBI) little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short- and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI. PMID:25705183

  11. Dose reduction and its influence on diagnostic accuracy and radiation risk in digital mammography: an observer performance study using an anthropomorphic breast phantom

    PubMed Central

    Svahn, Tony; Hemdal, Bengt; Ruschin, Mark; Chakraborty, Dev P; Andersson, Ingvar; Tingberg, Anders; Mattsson, Sören

    2008-01-01

    This study aimed to investigate the effect of dose reduction on diagnostic accuracy and radiation risk in digital mammography. Simulated masses and microcalcifications were positioned in an anthropomorphic breast phantom. Thirty digital images, 14 with lesions, 16 without, were acquired of the phantom using a Mammomat Novation (Siemens, Erlangen, Germany) at each of three dose levels. These corresponded to 100%, 50% and 30% of the normally used average glandular dose (AGD; 1.3 mGy for a standard breast). Eight observers interpreted the 90 unprocessed images in a free-response study and the data was analyzed with the jackknife free-response receiver operating characteristic (JAFROC) method. Observer performance was assessed using the JAFROC figure of merit (FOM). The benefit of radiation risk reduction was estimated based on several risk models. There was no statistically significant difference in performance, as described by the FOM, between the 100% and the 50% dose levels. However, the FOMs for both the 100% and the 50% dose were significantly different from the corresponding quantity for the 30% dose level (F-statistic = 4.95, p-value = 0.01). A dose reduction of 50% would result in 3-9 fewer breast cancer fatalities per 100,000 women undergoing annual screening from the age of 40 to 49 years. The results of the study indicate a possibility of reducing the dose to the breast to half of the dose level currently used. This has to be confirmed in clinical studies and possible differences depending on lesion type should be further examined. PMID:17704316

  12. Dose-dependent reduction of replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilis.

    PubMed

    Denapoli, Jessica; Tehranchi, Ashley K; Wang, Jue D

    2013-04-01

    DNA replication is regulated in response to environmental constraints such as nutrient availability. While much is known about regulation of replication during initiation, little is known about regulation of replication during elongation. In the bacterium Bacillus subtilis, replication elongation is paused upon sudden amino acid starvation by the starvation-inducible nucleotide (p)ppGpp. However, in many bacteria including Escherichia coli, replication elongation is thought to be unregulated by nutritional availability. Here we reveal that the replication elongation rate in E. coli is modestly but significantly reduced upon strong amino acid starvation. This reduction requires (p)ppGpp and is exacerbated in a gppA mutant with increased pppGpp levels. Importantly, high levels of (p)ppGpp, independent of amino acid starvation, are sufficient to inhibit replication elongation even in the absence of transcription. Finally, in both E. coli and B. subtilis, (p)ppGpp inhibits replication elongation in a dose-dependent manner rather than via a switch-like mechanism, although this inhibition is much stronger in B. subtilis. This supports a model where replication elongation rates are regulated by (p)ppGpp to allow rapid and tunable response to multiple abrupt stresses in evolutionarily diverse bacteria.

  13. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    SciTech Connect

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.

  14. Feasibility of patient dose reduction based on various noise suppression filters for cone-beam computed tomography in an image-guided patient positioning system.

    PubMed

    Kamezawa, Hidemi; Arimura, Hidetaka; Shirieda, Katsutoshi; Kameda, Noboru; Ohki, Masafumi

    2016-05-01

    We investigated the feasibility of patient dose reduction based on six noise suppression filters for cone-beam computed tomography (CBCT) in an image-guided patient positioning (IGPP) system. A midpoint dose was employed as a patient dose index. First, a reference dose (RD) and low-dose (LD)-CBCT images were acquired with a reference dose and various low doses. Second, an automated rigid registration was performed for three axis translations to estimate patient setup errors between a planning CT image and the LD-CBCT images processed by six noise suppression filters (averaging filter, median filter, Gaussian filter, edge-preserving smoothing filter, bilateral filter, and adaptive partial median filter (AMF)). Third, residual errors representing the patient positioning accuracy were calculated as Euclidean distances between the setup error vectors estimated using the LD-CBCT and RD-CBCT images. Finally, the residual errors as a function of the patient dose index were estimated for LD-CBCT images processed by six noise suppression filters, and then the patient dose indices for the filtered LD-CBCT images were obtained at the same residual error as the RD-CBCT image. This approach was applied to an anthropomorphic phantom and four cancer patients. The patient dose for the LD-CBCT images was reduced to 19% of that for the RD-CBCT image for the phantom by using AMF, while keeping a same residual error of 0.47 mm as the RD-CBCT image by applying the noise suppression filters to the LD-CBCT images. The average patient dose was reduced to 31.1% for prostate cancer patients, and it was reduced to 82.5% for a lung cancer patient by applying the AMF. These preliminary results suggested that the proposed approach based on noise suppression filters could decrease the patient dose in IGPP systems.

  15. Feasibility of patient dose reduction based on various noise suppression filters for cone-beam computed tomography in an image-guided patient positioning system

    NASA Astrophysics Data System (ADS)

    Kamezawa, Hidemi; Arimura, Hidetaka; Shirieda, Katsutoshi; Kameda, Noboru; Ohki, Masafumi

    2016-05-01

    We investigated the feasibility of patient dose reduction based on six noise suppression filters for cone-beam computed tomography (CBCT) in an image-guided patient positioning (IGPP) system. A midpoint dose was employed as a patient dose index. First, a reference dose (RD) and low-dose (LD)-CBCT images were acquired with a reference dose and various low doses. Second, an automated rigid registration was performed for three axis translations to estimate patient setup errors between a planning CT image and the LD-CBCT images processed by six noise suppression filters (averaging filter, median filter, Gaussian filter, edge-preserving smoothing filter, bilateral filter, and adaptive partial median filter (AMF)). Third, residual errors representing the patient positioning accuracy were calculated as Euclidean distances between the setup error vectors estimated using the LD-CBCT and RD-CBCT images. Finally, the residual errors as a function of the patient dose index were estimated for LD-CBCT images processed by six noise suppression filters, and then the patient dose indices for the filtered LD-CBCT images were obtained at the same residual error as the RD-CBCT image. This approach was applied to an anthropomorphic phantom and four cancer patients. The patient dose for the LD-CBCT images was reduced to 19% of that for the RD-CBCT image for the phantom by using AMF, while keeping a same residual error of 0.47 mm as the RD-CBCT image by applying the noise suppression filters to the LD-CBCT images. The average patient dose was reduced to 31.1% for prostate cancer patients, and it was reduced to 82.5% for a lung cancer patient by applying the AMF. These preliminary results suggested that the proposed approach based on noise suppression filters could decrease the patient dose in IGPP systems.

  16. A double-blind randomized clinical trial of different doses of transdermal nicotine patch for smoking reduction and cessation in long-term hospitalized schizophrenic patients.

    PubMed

    Chen, Hsing-Kang; Lan, Tsuo-Hung; Wu, Bo-Jian

    2013-02-01

    There have been many studies of smoking cessation using nicotine replacement therapy (NRT) with schizophrenic patients, but none exploring the smoking-reduction effects of varying doses of NRT in long-stay patients with schizophrenia. This study aimed to examine the effect of different doses of the nicotine transdermal patch on smoking-reduction and cessation outcomes in long-term hospitalized schizophrenic patients. A total of 184 subjects participated in a randomized, controlled, double-blind 8-week clinical trial. Participants were randomized into two groups using two different doses of NRT: a high-dose NRT group (31.2 mg for the first 4 weeks, then 20.8 mg for 4 weeks, n = 92) or a low-dose NRT group (20.8 mg for 8 weeks, n = 92). The 7-day point prevalence of abstinence was 2.7 % (5/184). Participants in the low-dose NRT group reduced smoking by 3.1 more cigarettes on average than those in the high-dose group (p = 0.005). However, a repeated measures analysis of variance revealed that the main effect of changes in the number of cigarettes smoked, comparing the two types of treatment across periods, was not significant (p = 0.35, partial eta square = 0.018). In summary, among a cohort of chronic institutionalized schizophrenic patients, smoking cessation and reduction outcomes were not correlated with NRT dose, and the cessation rate was much lower than rates in similar studies. It indicates that long-term hospitalized schizophrenic patients have more difficulties with quitting smoking. More effective integrative smoking cessation programs should be addressed for these patients.

  17. NIH-funded study shows 20 percent reduction in lung cancer mortality with low-dose CT compared to chest X-ray: | Division of Cancer Prevention

    Cancer.gov

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray. The primary research results from the National Lung Screening Trial (NLST) were published online today in the New England Journal of Medicine. |

  18. Angular on-line tube current modulation in multidetector CT examinations of children and adults: The influence of different scanning parameters on dose reduction

    SciTech Connect

    Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John

    2007-07-15

    The purpose of this study was to assess the potential of angular on-line tube current modulation on dose reduction in pediatric and adult patients undergoing multidetector computed tomography (MDCT) examinations. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-year-old, 5-year-old, 10-year-old, and adult were employed in the current study. Phantoms were scanned with the use of on-line tube current modulation (TCM). Percent dose reduction (%DR) factors achieved by applying TCM, were determined for standard protocols used for head and neck, shoulder, thorax, thorax and abdomen, abdomen, abdomen and pelvis, pelvis, and whole body examinations. A preliminary study on the application of TCM in MDCT examinations of adult patients was performed to validate the results obtained in anthropomorphic phantoms. Dose reduction was estimated as the percentage difference of the modulated milliamperes for each scan and the preset milliamperes prescribed by the scan protocol. The dose reduction in children was found to be much lower than the corresponding reduction achieved for adults. For helical scans the %DR factors, ranged between 1.6% and 7.4% for the neonate, 2.9% and 8.7% for the 1-year old, 2% and 6% for the 5-year-old, 5% and 10.9% for the 10-year-old, and 10.4% and 20.7% for the adult individual. For sequential scans the corresponding %DR factors ranged between 1.3% and 6.7%, 4.5% and 11%, 4.2% and 6.6%, 6.4% and 12.3%, and 8.9% and 23.3%, respectively. Broader beam collimations are associated with decreased %DR factors, when other scanning parameters are held constant. TCM did not impair image noise. In adult patients, the %DR values were found to be in good agreement with the corresponding results obtained in the anthropomorphic adult phantom. In conclusion, on-line TCM may be considered as a valuable tool for reducing dose in routine CT examinations of pediatric and adult patients. However, the dose reduction achieved with TCM

  19. Acute reduction in blood pressure following consumption of anthocyanin-rich cherry juice may be dose-interval dependant: a pilot cross-over study.

    PubMed

    Kent, Katherine; Charlton, Karen E; Jenner, Andrew; Roodenrys, Steven

    2016-01-01

    A pilot cross-over study assessed the acute effects on blood pressure and plasma biomarkers associated with consumption of a 300 ml anthocyanin-rich fruit juice, provided in differing dose-intervals. Young adults (n = 6) and older adults (n = 7) received in random order, either a single 300 ml dose or 3 × 100 ml doses of high-flavonoid cherry juice provided at 0, 1 and 2 h. Blood pressure and plasma levels of phenolic metabolites were measured at 0, 2 and 6 h.The single 300 ml dose of cherry juice resulted in a significant reduction in systolic (p = 0.002), and diastolic blood pressure (p = 0.008) and heart-rate (p = 0.033) 2 h after consumption, before returning to baseline levels at 6 h post-consumption. The 3 × 100 ml dose provided over 2 h did not result in significant blood pressure reductions. Plasma phenolic metabolites increased at 2 and 6 h; however, fluctuations were higher after the single 300 ml dose in older adults. These findings have implications for design of intervention studies that investigate vascular effects associated with flavonoid-rich foods. PMID:26654244

  20. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    SciTech Connect

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  1. Exhaling a budesonide inhaler through the nose results in a significant reduction in dose requirement of budesonide nasal spray in patients having asthma with rhinitis.

    PubMed

    Shaikh, W A

    1999-01-01

    Budesonide, an inhaled corticosteroid is used routinely in the treatment of bronchial asthma and rhinitis. Although inhaled corticosteroids in therapeutic doses are unlikely to result in systemic side effects, there is as yet skepticism about their routine and prolonged use. The aim of this study was to determine whether budesonide inhalation through a metered dose inhaler, when exhaled through the nose could result in a reduction in the dose requirement of budesonide metered nasal spray in patients having perennial allergic asthma with rhinitis. This study was an open, parallel, comparative, crossover trial in which 49 young patients having perennial allergic asthma with rhinitis were divided into two groups and administered either a combination of budesonide metered dose inhaler with a budesonide nasal spray or a budesonide inhaler alone, which was to be exhaled through the nose. Both groups were later crossed over and weekly symptom scores and peak nasal inspiratory flow rates were monitored during each phase of the study. Finally, patients who volunteered from both groups were instructed to note the reduction in dose requirement of budesonide nasal spray while using a budesonide inhaler and exhaling it through the nose. The results of this study reveal that when a budesonide inhaler is exhaled through the nose, it results in an improvement in symptom scores and peak nasal inspiratory flow rates, which were significantly less than those obtained in the group using both a budesonide nasal spray and a metered dose inhaler. In addition, exhaling budesonide through the nose results in a 40.1% reduction in the dose requirement of a budesonide nasal spray, which is statistically significant (p < 0.001).

  2. Examining Margin Reduction and Its Impact on Dose Distribution for Prostate Cancer Patients Undergoing Daily Cone-Beam Computed Tomography

    SciTech Connect

    Hammoud, Rabih Patel, Samir H.; Pradhan, Deepak; Kim, Jinkoo; Guan, Harrison; Li Shidong; Movsas, Benjamin

    2008-05-01

    Purpose: To examine the dosimetric impact of margin reduction and quantify residual error after three-dimensional (3D) image registration using daily cone-beam computed tomography (CBCT) for prostate cancer patients. Methods and Materials: One hundred forty CBCTs from 5 prostate cancer patients were examined. Two intensity-modulated radiotherapy plans were generated on CT simulation on the basis of two planning target volume (PTV) margins: 10 mm all around the prostate and seminal vesicles except 6 mm posteriorly (10/6) and 5 mm all around except 3 mm posteriorly (5/3). Daily CBCT using the Varian On-Board Imaging System was acquired. The 10/6 and 5/3 simulation plans were overlaid onto each CBCT, and each CBCT plan was calculated. To examine residual error, PlanCT/CBCT intensity-based 3D image registration was performed for prostate localization using center of mass and maximal border displacement. Results: Prostate coverage was within 2% between the 10/6 and 5/3 plans. Seminal vesicle coverage was reduced with the 5/3 plan compared with the 10/6 plan, with coverage difference within 7%. The 5/3 plan allowed 30-50% sparing of bladder and rectal high-dose regions. For residual error quantification, center of mass data show that 99%, 93%, and 96% of observations fall within 3 mm in the left-right, anterior-posterior, and superior-inferior directions, respectively. Maximal border displacement observations range from 79% to 99%, within 5 mm for all directions. Conclusion: Cone-beam CT dosimetrically validated a 10/6 margin when soft-tissue localization is not used. Intensity-based 3D image registration has the potential to improve target localization and to provide guidelines for margin definition.

  3. Sci—Fri AM: Mountain — 02: A comparison of dose reduction methods on image quality for cone beam CT

    SciTech Connect

    Webb, R; Buckley, LA

    2014-08-15

    Modern radiotherapy uses highly conformai dose distributions and therefore relies on daily image guidance for accurate patient positioning. Kilovoltage cone beam CT is one technique that is routinely used for patient set-up and results in a high dose to the patient relative to planar imaging techniques. This study uses an Elekta Synergy linac equipped with XVI cone beam CT to investigate the impact of various imaging parameters on dose and image quality. Dose and image quality are assessed as functions of x-ray tube voltage, tube current and the number of projections in the scan. In each case, the dose measurements confirm that as each parameter increases the dose increases. The assessment of high contrast resolution shows little dependence on changes to the image technique. However, low contrast visibility suggests a trade off between dose and image quality. Particularly for changes in tube potential, the dose increases much faster as a function of voltage than the corresponding increase in low contrast image quality. This suggests using moderate values of the peak tube voltage (100 – 120 kVp) since higher values result in significant dose increases with little gain in image quality. Measurements also indicate that increasing tube current achieves the greatest degree of improvement in the low contrast visibility. The results of this study highlight the need to establish careful imaging protocols to limit dose to the patient and to limit changes to the imaging parameters to those cases where there is a clear clinical requirement for improved image quality.

  4. Dose reduction of scattered photons from concrete walls lined with lead: Implications for improvement in design of megavoltage radiation therapy facility mazes

    SciTech Connect

    Al-Affan, I. A. M. Hugtenburg, R. P.; Piliero, M.; Bari, D. S.; Al-Saleh, W. M.; Evans, S.; Al-Hasan, M.; Al-Zughul, B.; Al-Kharouf, S.; Ghaith, A.

    2015-02-15

    Purpose: This study explores the possibility of using lead to cover part of the radiation therapy facility maze walls in order to absorb low energy photons and reduce the total dose at the maze entrance of radiation therapy rooms. Methods: Experiments and Monte Carlo simulations were utilized to establish the possibility of using high-Z materials to cover the concrete walls of the maze in order to reduce the dose of the scattered photons at the maze entrance. The dose of the backscattered photons from a concrete wall was measured for various scattering angles. The dose was also calculated by the FLUKA and EGSnrc Monte Carlo codes. The FLUKA code was also used to simulate an existing radiotherapy room to study the effect of multiple scattering when adding lead to cover the concrete walls of the maze. Monoenergetic photons were used to represent the main components of the x ray spectrum up to 10 MV. Results: It was observed that when the concrete wall was covered with just 2 mm of lead, the measured dose rate at all backscattering angles was reduced by 20% for photons of energy comparable to Co-60 emissions and 70% for Cs-137 emissions. The simulations with FLUKA and EGS showed that the reduction in the dose was potentially even higher when lead was added. One explanation for the reduction is the increased absorption of backscattered photons due to the photoelectric interaction in lead. The results also showed that adding 2 mm lead to the concrete walls and floor of the maze reduced the dose at the maze entrance by up to 90%. Conclusions: This novel proposal of covering part or the entire maze walls with a few millimeters of lead would have a direct implication for the design of radiation therapy facilities and would assist in upgrading the design of some mazes, especially those in facilities with limited space where the maze length cannot be extended to sufficiently reduce the dose.

  5. A combination of spatial and recursive temporal filtering for noise reduction when using region of interest (ROI) fluoroscopy for patient dose reduction in image guided vascular interventions with significant anatomical motion

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  6. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique

    PubMed Central

    Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-01-01

    Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first

  7. On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation

    SciTech Connect

    Bender, Edward T.; Hardcastle, Nicholas; Tome, Wolfgang A.

    2012-01-15

    Purpose: Deformable image registration (DIR) is necessary for accurate dose accumulation between multiple radiotherapy image sets. DIR algorithms can suffer from inverse and transitivity inconsistencies. When using deformation vector fields (DVFs) that exhibit inverse-inconsistency and are nontransitive, dose accumulation on a given image set via different image pathways will lead to different accumulated doses. The purpose of this study was to investigate the dosimetric effect of and propose a postprocessing solution to reduce inverse consistency and transitivity errors. Methods: Four MVCT images and four phases of a lung 4DCT, each with an associated calculated dose, were selected for analysis. DVFs between all four images in each data set were created using the Fast Symmetric Demons algorithm. Dose was accumulated on the fourth image in each set using DIR via two different image pathways. The two accumulated doses on the fourth image were compared. The inverse consistency and transitivity errors in the DVFs were then reduced. The dose accumulation was repeated using the processed DVFs, the results of which were compared with the accumulated dose from the original DVFs. To evaluate the influence of the postprocessing technique on DVF accuracy, the original and processed DVF accuracy was evaluated on the lung 4DCT data on which anatomical landmarks had been identified by an expert. Results: Dose accumulation to the same image via different image pathways resulted in two different accumulated dose results. After the inverse consistency errors were reduced, the difference between the accumulated doses diminished. The difference was further reduced after reducing the transitivity errors. The postprocessing technique had minimal effect on the accuracy of the DVF for the lung 4DCT images. Conclusions: This study shows that inverse consistency and transitivity errors in DIR have a significant dosimetric effect in dose accumulation; Depending on the image pathway taken

  8. Radiation dose reduction for patients with extranodal NK/T-cell lymphoma with complete response after initial induction chemotherapy

    PubMed Central

    Wang, Liang; Bi, Xi-wen; Xia, Zhong-jun; Huang, Hui-qiang; Jiang, Wen-qi; Zhang, Yu-jing

    2016-01-01

    Previous studies have found that radiotherapy (RT) dose less than 50 Gy resulted in inferior outcomes for early stage extranodal NK/T-cell lymphoma (ENKTL). Nowadays, induction chemotherapy (CT) followed by RT consolidation is often used. For patients who get complete response (CR) after CT, whether RT dose can be safely reduced or not remains unknown. This retrospective study compared the survival outcomes between patients who received higher dose (>50 Gy) and lower dose (≤50 Gy) RT after CR was attained by CT. One hundred and forty four patients of early stage ENKTL got CR after induction CT and received RT consolidation. Thirty-one patients received lower dose RT (median 46 Gy, range, 36–50 Gy), and 113 patients received higher dose RT (median 56 Gy, range, 52–66 Gy). In univariate survival analysis, age >60, local tumor invasion, and non-asparaginase-based CT were associated with inferior progression-free survival (PFS) and overall survival (OS). However, there were no differences in PFS and OS between patients treated with higher and lower dose RT, which was confirmed in the multivariate survival analysis. Furthermore, reduced dose RT did not affect local control rate. Most common RT-related side effects were grade 1/2 mucositis and dermatitis, and the incidence rate of grade 3 mucositis or dermatitis was lower in patients treated with reduced dose RT (9.7% vs 15.0% for mucositis, and 6.5% vs 17.7% for dermatitis). In conclusion, this study found that RT dose could be safely reduced without compromising survival outcomes and further improved RT-related side effects. Prospective randomized controlled trials are warranted to validate our findings. PMID:27713641

  9. The reduction in Monte Carlo calculated organ doses from CT with tube current modulation using WILLIAM, a voxel model of seven year-old anatomy.

    PubMed

    Caon, Martin

    2014-12-01

    The construction of a voxel model of seven year-old male anatomy from a low resolution whole body CT scan acquired with a PET-CT scanner is described. The model is referred to as WILLIAM. The model was used to compare the Monte Carlo calculated relative organ doses with and without tube current modulation from simulated CAP and chest CT examinations. Tube current modulation was simulated in both the angular (x-y plane) and axial (along the z axis) senses. For organs that are located wholly within the scanned anatomy, significant relative dose reductions of approximately 43 to 62 % were calculated when tube current modulation was simulated compared to Monte Carlo calculations that did not include tube current modulation. Organs located outside of the directly irradiated anatomy, experienced a decrease in their relative dose of between 33 and 38 % when tube current modulation was simulated.

  10. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology

    SciTech Connect

    Samei, Ehsan; Richard, Samuel

    2015-01-15

    Purpose: Different computed tomography (CT) reconstruction techniques offer different image quality attributes of resolution and noise, challenging the ability to compare their dose reduction potential against each other. The purpose of this study was to evaluate and compare the task-based imaging performance of CT systems to enable the assessment of the dose performance of a model-based iterative reconstruction (MBIR) to that of an adaptive statistical iterative reconstruction (ASIR) and a filtered back projection (FBP) technique. Methods: The ACR CT phantom (model 464) was imaged across a wide range of mA setting on a 64-slice CT scanner (GE Discovery CT750 HD, Waukesha, WI). Based on previous work, the resolution was evaluated in terms of a task-based modulation transfer function (MTF) using a circular-edge technique and images from the contrast inserts located in the ACR phantom. Noise performance was assessed in terms of the noise-power spectrum (NPS) measured from the uniform section of the phantom. The task-based MTF and NPS were combined with a task function to yield a task-based estimate of imaging performance, the detectability index (d′). The detectability index was computed as a function of dose for two imaging tasks corresponding to the detection of a relatively small and a relatively large feature (1.5 and 25 mm, respectively). The performance of MBIR in terms of the d′ was compared with that of ASIR and FBP to assess its dose reduction potential. Results: Results indicated that MBIR exhibits a variability spatial resolution with respect to object contrast and noise while significantly reducing image noise. The NPS measurements for MBIR indicated a noise texture with a low-pass quality compared to the typical midpass noise found in FBP-based CT images. At comparable dose, the d′ for MBIR was higher than those of FBP and ASIR by at least 61% and 19% for the small feature and the large feature tasks, respectively. Compared to FBP and ASIR, MBIR

  11. Reduction of radiation dose during facet joint injection using the new image guidance system SabreSource™: a prospective study in 60 patients

    PubMed Central

    Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.

    2008-01-01

    Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641

  12. Evaluation of different doses of mashua (Tropaeolum tuberosum) on the reduction of sperm production, motility and morphology in adult male rats.

    PubMed

    Leiva-Revilla, J; Cárdenas-Valencia, I; Rubio, J; Guerra-Castañón, F; Olcese-Mori, P; Gasco, M; Gonzales, G F

    2012-05-01

    Mashua is an edible-tuber crop that grows in the Andean region. Folk medicine describes the use of mashua to reduce reproductive function in men. The present study aimed: (i) to determine whether different doses of mashua (0.01, 0.1, 1 and 2 g kg(-1)) produced a dose-response reduction on sperm production and quality; and, (ii) to determine whether these anti-reproductive effects of mashua can be reversible after cessation of treatment (12 and 24 days of recovery time). Mashua-treated rats showed lower values of daily sperm production, epididymal and vas deferens sperm count and sperm motility; meanwhile, mashua increased the percentage of abnormal sperm morphology and epididymal sperm transit rate. The following variables follow a dose-response effect: sperm number in vas deferens, sperm motility and sperm transit rate. In addition, it was demonstrated that the reduction in reproduction function in male rats treated with mashua was reversible after 24 days of recovery time. Finally, lower doses mashua reduces sperm number and quality (motility and morphology), and these adverse effects on male reproductive system may be reversible after 24 days after cessation of the treatment.

  13. SU-C-18C-06: Radiation Dose Reduction in Body Interventional Radiology: Clinical Results Utilizing a New Imaging Acquisition and Processing Platform

    SciTech Connect

    Kohlbrenner, R; Kolli, KP; Taylor, A; Kohi, M; Fidelman, N; LaBerge, J; Kerlan, R; Gould, R

    2014-06-01

    Purpose: To quantify the patient radiation dose reduction achieved during transarterial chemoembolization (TACE) procedures performed in a body interventional radiology suite equipped with the Philips Allura Clarity imaging acquisition and processing platform, compared to TACE procedures performed in the same suite equipped with the Philips Allura Xper platform. Methods: Total fluoroscopy time, cumulative dose area product, and cumulative air kerma were recorded for the first 25 TACE procedures performed to treat hepatocellular carcinoma (HCC) in a Philips body interventional radiology suite equipped with Philips Allura Clarity. The same data were collected for the prior 85 TACE procedures performed to treat HCC in the same suite equipped with Philips Allura Xper. Mean values from these cohorts were compared using two-tailed t tests. Results: Following installation of the Philips Allura Clarity platform, a 42.8% reduction in mean cumulative dose area product (3033.2 versus 1733.6 mGycm∧2, p < 0.0001) and a 31.2% reduction in mean cumulative air kerma (1445.4 versus 994.2 mGy, p < 0.001) was achieved compared to similar procedures performed in the same suite equipped with the Philips Allura Xper platform. Mean total fluoroscopy time was not significantly different between the two cohorts (1679.3 versus 1791.3 seconds, p = 0.41). Conclusion: This study demonstrates a significant patient radiation dose reduction during TACE procedures performed to treat HCC after a body interventional radiology suite was converted to the Philips Allura Clarity platform from the Philips Allura Xper platform. Future work will focus on evaluation of patient dose reduction in a larger cohort of patients across a broader range of procedures and in specific populations, including obese patients and pediatric patients, and comparison of image quality between the two platforms. Funding for this study was provided by Philips Healthcare, with 5% salary support provided to authors K. Pallav

  14. Role of cardiac ultrafast cameras with CZT solid-state detectors and software developments on radiation absorbed dose reduction to the patients.

    PubMed

    Gunalp, Bengul

    2015-07-01

    Myocardial perfusion imaging (MPI) is one the most contributing nuclear medicine technique to the annual population dose. The purpose of this study is to compare radiation-absorbed doses to the patients examined by conventional cardiac SPECT (CSPECT) camera and ultrafast cardiac (UFC) camera with cadmium-zinc-telluride (CZT) solid-state detectors. Total injected activity was reduced by 50 % when both stress and rest images were acquired and by 75 % when only stress images were taken with UFC camera. As a result of this, the mean total effective dose was found significantly lower with UFC camera (2.2 ± 1.2 mSv) than CSPECT (7.7 ± 3.8 mSv) (p < 0.001). Further dose reduction was obtained by reducing equivocal test results and unnecessary additional examinations with UFC camera. Using UFC camera, MPI can be conveniently used for the detection of coronary artery disease (CAD) much less increasing annual population radiation dose as it had been before. PMID:25848109

  15. Effective Dose Reduction to Cardiac Structures Using Protons Compared With 3DCRT and IMRT in Mediastinal Hodgkin Lymphoma

    SciTech Connect

    Hoppe, Bradford S.; Flampouri, Stella; Su Zhong; Latif, Naeem; Dang, Nam H.; Lynch, James; Joyce, Michael; Sandler, Eric

    2012-10-01

    Purpose: We investigated the dosimetric impact of proton therapy (PT) on various cardiac subunits in patients with Hodgkin lymphoma (HL). Methods and Materials: From June 2009 through December 2010, 13 patients were enrolled on an institutional review board-approved protocol for consolidative involved-node radiotherapy (INRT) for HL. Three separate treatment plans were developed prospectively by using three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), and PT. Cardiac subunits were retrospectively contoured on the 11 patients with intravenous-contrast simulation scans, and the doses were calculated for all treatment plans. A Wilcoxon paired test was performed to evaluate the statistical significance (p < 0.05) of 3DCRT and IMRT compared with PT. Results: The mean heart doses were 21 Gy, 12 Gy, and 8 Gy (relative biologic effectiveness [RBE]) with 3DCRT, IMRT, and PT, respectively. Compared with 3DCRT and IMRT, PT reduced the mean doses to the left and right atria; the left and right ventricles; the aortic, mitral, and tricuspid valves; and the left anterior descending, left circumflex, and right circumflex coronary arteries. Conclusions: Compared with 3DCRT and IMRT, PT reduced the radiation doses to all major cardiac subunits. Limiting the doses to these structures should translate into lower rates of cardiac toxicities.

  16. SU-C-207-05: A Comparative Study of Noise-Reduction Algorithms for Low-Dose Cone-Beam Computed Tomography

    SciTech Connect

    Mukherjee, S; Yao, W

    2015-06-15

    Purpose: To study different noise-reduction algorithms and to improve the image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low-dose cone-beam CT, the reconstructed image is contaminated with excessive quantum noise. In this study, three well-developed noise reduction algorithms namely, a) penalized weighted least square (PWLS) method, b) split-Bregman total variation (TV) method, and c) compressed sensing (CS) method were studied and applied to the images of a computer–simulated “Shepp-Logan” phantom and a physical CATPHAN phantom. Up to 20% additive Gaussian noise was added to the Shepp-Logan phantom. The CATPHAN phantom was scanned by a Varian OBI system with 100 kVp, 4 ms and 20 mA. For comparing the performance of these algorithms, peak signal-to-noise ratio (PSNR) of the denoised images was computed. Results: The algorithms were shown to have the potential in reducing the noise level for low-dose CBCT images. For Shepp-Logan phantom, an improvement of PSNR of 2 dB, 3.1 dB and 4 dB was observed using PWLS, TV and CS respectively, while for CATPHAN, the improvement was 1.2 dB, 1.8 dB and 2.1 dB, respectively. Conclusion: Penalized weighted least square, total variation and compressed sensing methods were studied and compared for reducing the noise on a simulated phantom and a physical phantom scanned by low-dose CBCT. The techniques have shown promising results for noise reduction in terms of PSNR improvement. However, reducing the noise without compromising the smoothness and resolution of the image needs more extensive research.

  17. Glycolic acid inhibits enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper snake venom: insights from docking and molecular modeling.

    PubMed

    Pereañez, Jaime Andrés; Patiño, Arley Camilo; Rey-Suarez, Paola; Núñez, Vitelbina; Henao Castañeda, Isabel Cristina; Rucavado, Alexandra

    2013-09-01

    Glycolic acid (GA) (2-Hydroxyethanoic acid) is widely used as chemical peeling agent in Dermatology and, more recently, as a therapeutic and cosmetic compound in the field of skin care and disease treatment. In this work we tested the inhibitory ability of glycolic acid on the enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper venom, which induces a variety of toxic actions. Glycolic acid inhibited the proteolytic activity of BaP1 on azocasein, with an IC₅₀ of 1.67 mM. The compound was also effective at inhibiting the hemorrhagic activity of BaP1 in skin and muscle in experiments involving preincubation of enzyme and inhibitor prior to injection. When BaP1 was injected i.m. and then, at the same site, different concentrations of glycolic acid were administered at either 0 or 5 min, 7 mM solutions of the inhibitor partially abrogated hemorrhagic activity when administered at 0 min. Moreover, glycolic acid inhibited, in a concentration-dependent manner, edema-forming activity of BaP1 in the footpad. In order to have insights on the mode of action of glycolic acid, UV-vis and intrinsic fluorescence studies were performed. Results of these assays suggest that glycolic acid interacts directly with BaP1 and chelates the Zn²⁺ ion at the active site. These findings were supported by molecular docking results, which suggested that glycolic acid forms hydrogen bonds with residues Glu143, Arg110 and Ala111 of the enzyme. Additionally, molecular modeling results suggest that the inhibitor chelates Zn²⁺, with a distance of 3.58 Å, and may occupy part of substrate binding cleft of BaP1. Our results suggest that glycolic acid is a candidate for the development of inhibitors to be used in snakebite envenomation.

  18. TH-A-18C-03: Noise Correlation in CBCT Projection Data and Its Application for Noise Reduction in Low-Dose CBCT

    SciTech Connect

    ZHANG, H; Huang, J; Ma, J; Chen, W; Ouyang, L; Wang, J

    2014-06-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are about 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. Conclusion: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for low-dose

  19. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats.

    PubMed

    Howdeshell, Kembra L; Rider, Cynthia V; Wilson, Vickie S; Furr, Johnathan R; Lambright, Christy R; Gray, L Earl

    2015-12-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively. PMID:26350170

  20. Quantifying the image quality and dose reduction of respiratory triggered 4D cone-beam computed tomography with patient-measured breathing

    NASA Astrophysics Data System (ADS)

    Cooper, Benjamin J.; O'Brien, Ricky T.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2015-12-01

    Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient’s respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations. Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique. A set containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 pairs of RT 4D CBCT and conventional 4D CBCT image sets from realistic simulations of a 4D CBCT system using a Rando phantom and the digital phantom, XCAT. Each of these image sets were compared to a ground truth dataset from which a mean absolute pixel difference (MAPD) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation was counted and was assumed as a surrogate for imaging dose. Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT, the average image quality was reduced by 7.6% (Rando study) and 11.1% (XCAT study). However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). The simulation studies have demonstrated that the RT 4D CBCT method can potentially offer a 53% saving in imaging dose on average compared to conventional 4D CBCT in simulation studies using a wide range of patient-measured breathing traces with a minimal impact on image quality.

  1. SU-E-J-183: Quantifying the Image Quality and Dose Reduction of Respiratory Triggered 4D Cone-Beam Computed Tomography with Patient- Measured Breathing

    SciTech Connect

    Cooper, B; OBrien, R; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient's respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations instead of synthetic sinusoidal signals used in previous work. Methods: Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique from a database of oversampled Rando phantom CBCT projections. A database containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 RT 4D CBCT and 111 conventional 4D CBCT image datasets from realistic simulations of a 4D RT CBCT system. Each of these image datasets were compared to a ground truth dataset from which a root mean square error (RMSE) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation is counted and was assumed as a surrogate for imaging dose. Results: Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT the average image quality was reduced by 7.6%. However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). Conclusion: The simulation studies using a wide range of patient breathing traces have demonstrated that the RT 4D CBCT method can potentially offer a substantial saving of imaging dose of 53% on average compared to conventional 4D CBCT in simulation studies with a minimal impact on image quality. A patent application (PCT/US2012/048693) has been filed which is related to this work.

  2. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    PubMed Central

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-01-01

    X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O2. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-­ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O2 reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account. PMID:22525754

  3. The Effect of Significant Tumor Reduction on the Dose Distribution in Intensity Modulated Radiation Therapy for Head-And-Neck Cancer: A Case Study

    SciTech Connect

    Mechalakos, James Lee, Nancy; Hunt, Margie; Ling, C. Clifton; Amols, Howard I.

    2009-10-01

    We present a unique case in which a patient with significant tissue loss was monitored for dosimetric changes using weekly cone beam computed tomography (CBCT) scans. A previously treated nasopharynx patient presented with a large, exophytic, recurrent left neck mass. The patient underwent re-irradiation to 70 Gy using intensity modulated radiation therapy (IMRT) with shielding blocks over the spinal cord and brain stem. Weekly CBCT scans were acquired during treatment. Target contours and treatment fields were then transferred from the original treatment planning computed tomography (CT) to the CBCT scans and dose calculations were performed on all CBCT scans and compared to the planning doses. In addition, a 'research' treatment plan was created that assumed the patient had not been previously treated, and the above analysis was repeated. Finally, to remove the effects of setup error, the outer contours of 2 CBCT scans with significant tumor reductions were transferred to the planning scan and dose in the planning scan was recalculated. Planning treatment volume (PTV) decreased 45% during treatment. Spinal cord D05 differed from the planned value by 3.5 {+-} 9.8% (average + standard deviation). Mean dose to the oral cavity and D05 of the mandible differed from the planned value by 0.9 {+-} 2.1% and 0.6 {+-} 1.5%, respectively. Results for the research plan were comparable. Target coverage did not change appreciably (-0.2 {+-} 2.5%). When the planning scan was recalculated with the reduced outer contour from the CBCT, spinal cord D05 decreased slightly due to the reduction in scattered dose. Weekly imaging provided us the unique opportunity to use different methods to examine the dosimetric effects of an unusually large loss of tissue. We did not see that tissue loss alone resulted in a significant effect on the dose delivered to the spinal cord for this case, as most fluctuation was due to setup error. In the IGRT era, delivered dose distributions can be more

  4. A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes

    SciTech Connect

    Song, Danny Y.; Herfarth, Klaus K.; Uhl, Matthias; Eble, Michael J.; Pinkawa, Michael; Triest, Baukelien van; Kalisvaart, Robin; DeWeese, Theodore L.; Ford, Eric C.

    2013-09-01

    Purpose: To characterize the effect of a prostate-rectum spacer on dose to rectum during external beam radiation therapy for prostate cancer and to assess for factors correlated with rectal dose reduction. Methods and Materials: Fifty-two patients at 4 institutions were enrolled into a prospective pilot clinical trial. Patients underwent baseline scans and then were injected with perirectal spacing hydrogel and rescanned. Intensity modulated radiation therapy plans were created on both scans for comparison. The objectives were to establish rates of creation of ≥7.5 mm of prostate-rectal separation, and decrease in rectal V70 of ≥25%. Multiple regression analysis was performed to evaluate the associations between preinjection and postinjection changes in rectal V70 and changes in plan conformity, rectal volume, bladder volume, bladder V70, planning target volume (PTV), and postinjection midgland separation, gel volume, gel thickness, length of PTV/gel contact, and gel left-to-right symmetry. Results: Hydrogel resulted in ≥7.5-mm prostate-rectal separation in 95.8% of patients; 95.7% had decreased rectal V70 of ≥25%, with a mean reduction of 8.0 Gy. There were no significant differences in preinjection and postinjection prostate, PTV, rectal, and bladder volumes. Plan conformities were significantly different before versus after injection (P=.02); plans with worse conformity indexes after injection compared with before injection (n=13) still had improvements in rectal V70. In multiple regression analysis, greater postinjection reduction in V70 was associated with decreased relative postinjection plan conformity (P=.01). Reductions in V70 did not significantly vary by institution, despite significant interinstitutional variations in plan conformity. There were no significant relationships between reduction in V70 and the other characteristics analyzed. Conclusions: Injection of hydrogel into the prostate-rectal interface resulted in dose reductions to rectum

  5. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial

    PubMed Central

    Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc

    2015-01-01

    Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924

  6. Radiation-induced noncancer risks in interventional cardiology: optimisation of procedures and staff and patient dose reduction.

    PubMed

    Sun, Zhonghua; AbAziz, Aini; Yusof, Ahmad Khairuddin Md

    2013-01-01

    Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted.

  7. Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features

    PubMed Central

    Lo, P.; Young, S.; Kim, H. J.; Brown, M. S.

    2016-01-01

    Purpose: To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. Methods: This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. Results: The

  8. Radiation-Induced Noncancer Risks in Interventional Cardiology: Optimisation of Procedures and Staff and Patient Dose Reduction

    PubMed Central

    Khairuddin Md Yusof, Ahmad

    2013-01-01

    Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted. PMID:24027768

  9. Long-term efficiency of infliximab in patients with ankylosing spondylitis: real life data confirm the potential for dose reduction

    PubMed Central

    Heldmann, F; van den Bosch, F; Burmester, G; Gaston, H; van der Horst-Bruinsma, I E; Krause, A; Schmidt, R; Schneider, M; Sieper, J; Andermann, B; van Tubergen, A; Witt, M; Braun, J

    2016-01-01

    Objective To analyse the treatment outcome of patients with ankylosing spondylitis (AS) in the European AS infliximab cohort (EASIC) study after a total period of 8 years with specific focus on dosage and the duration of intervals between infliximab infusions. Methods EASIC included patients with AS who had received infliximab for 2 years as part of the ASSERT trial. After that period, rheumatologists were free to change the dose or the intervals of infliximab. Clinical data were status at baseline, end of ASSERT and for a total of 8 years of follow-up. Results Of the initially 71 patients with AS from EASIC, 55 patients (77.5%) had completed the 8th year of anti-tumour necrosis factor (TNF) treatment. Of those, 48 patients (87.3%) still continued on infliximab. The mean infusion interval increased slightly from 6 to 7.1±1.5 weeks, while 45.8% patients had increased the intervals up to a maximum of 12 weeks. The mean infliximab dose remained stable over time, with a minimum of 3.1 mg/kg and a maximum of 6.4 mg/kg. In patients receiving <5 mg/kg infliximab, the mean infusion interval increased to 7.0±1.2 weeks. In total, the mean cumulative dose per patient and per year decreased from 3566.30 to 2973.60 mg. Conclusions We could observe that over a follow-up of 8 years of treatment with infliximab, >85% patients still remained on the same treatment, without any major safety events. Furthermore, both the infusion intervals and also the mean infliximab dose were modestly reduced in ≥70% of the patients without the loss of clinical efficiency. PMID:27493791

  10. Improved dose calculation accuracy for low energy brachytherapy by optimizing dual energy CT imaging protocols for noise reduction using sinogram affirmed iterative reconstruction.

    PubMed

    Landry, Guillaume; Gaudreault, Mathieu; van Elmpt, Wouter; Wildberger, Joachim E; Verhaegen, Frank

    2016-03-01

    The goal of this study was to evaluate the noise reduction achievable from dual energy computed tomography (CT) imaging (DECT) using filtered backprojection (FBP) and iterative image reconstruction algorithms combined with increased imaging exposure. We evaluated the data in the context of imaging for brachytherapy dose calculation, where accurate quantification of electron density ρe and effective atomic number Zeff is beneficial. A dual source CT scanner was used to scan a phantom containing tissue mimicking inserts. DECT scans were acquired at 80 kVp/140Sn kVp (where Sn stands for tin filtration) and 100 kVp/140Sn kVp, using the same values of the CT dose index CTDIvol for both settings as a measure for the radiation imaging exposure. Four CTDIvol levels were investigated. Images were reconstructed using FBP and sinogram affirmed iterative reconstruction (SAFIRE) with strength 1,3 and 5. From DECT scans two material quantities were derived, Zeff and ρe. DECT images were used to assign material types and the amount of improperly assigned voxels was quantified for each protocol. The dosimetric impact of improperly assigned voxels was evaluated with Geant4 Monte Carlo (MC) dose calculations for an (125)I source in numerical phantoms. Standard deviations for Zeff and ρe were reduced up to a factor ∼2 when using SAFIRE with strength 5 compared to FBP. Standard deviations on Zeff and ρe as low as 0.15 and 0.006 were achieved for the muscle insert representing typical soft tissue using a CTDIvol of 40 mGy and 3mm slice thickness. Dose calculation accuracy was generally improved when using SAFIRE. Mean (maximum absolute) dose errors of up to 1.3% (21%) with FBP were reduced to less than 1% (6%) with SAFIRE at a CTDIvol of 10 mGy. Using a CTDIvol of 40mGy and SAFIRE yielded mean dose calculation errors of the order of 0.6% which was the MC dose calculation precision in this study and no error was larger than ±2.5% as opposed to errors of up to -4% with FPB. This

  11. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    SciTech Connect

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  12. TH-A-18C-11: An Investigation of KV CBCT Image Quality and Dose Reduction for Volume-Of-Interest Imaging Using Dynamic Collimation

    SciTech Connect

    Parsons, D; Robar, J

    2014-06-15

    Purpose: The focus of this work was to investigate the improvements in image quality and dose reduction for volume-of-interest (VOI) kV-CBCT using dynamic collimation. Methods: A prototype iris aperture was used to track a VOI during a CBCT acquisition. The current aperture design is capable of one-dimensional translation as a function of gantry angle and dynamic adjustment of the iris radius. The aperture occupies the location of the bow-tie filter on a Varian OBI system. CBCT and planar image quality was investigated as a function of aperture radius, while maintaining the same dose to the VOI, for a 20 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Corresponding scatter-to-primary ratios (SPR) were determined at the detector plane with Monte Carlo simulation using EGSnrc. Dose distributions for various anatomical sites were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field distributions. Results: SPR was reduced by a factor of 8.4 when decreasing iris diameter from 21.2 cm to 2.4 cm (at isocenter). Similarly, this change in iris diameter corresponds to a factor increase of approximately 1.4 and 1.5 in image contrast for CBCT and planar images, respectively, and similarly a factor decrease in image noise of approximately 1.7 and 1.5. This results in a measured gain in contrast-to-noise ratio of a factor of approximately 2.3 for both CBCT and planar images. Depending upon the anatomical site, dose was reduced to 10%–70% of the full field value along the central axis plane and down to 2% along the axial planes, while maintaining the same dose to the VOI compared to full-field techniques. Conclusion: The presented VOI technique offers improved image quality for image-guided radiotherapy while sparing the surrounding volume of unnecessary dose compared to full-field techniques.

  13. Defining the Optimal Selenium Dose for Prostate Cancer Risk Reduction: Insights from the U-Shaped Relationship between Selenium Status, DNA Damage, and Apoptosis

    PubMed Central

    Chiang, Emily C.; Shen, Shuren; Kengeri, Seema S.; Xu, Huiping; Combs, Gerald F.; Morris, J. Steven; Bostwick, David G.; Waters, David J.

    2009-01-01

    Our work in dogs has revealed a U-shaped dose response between selenium status and prostatic DNA damage that remarkably parallels the relationship between dietary selenium and prostate cancer risk in men, suggesting that more selenium is not necessarily better. Herein, we extend this canine work to show that the selenium dose that minimizes prostatic DNA damage also maximizes apoptosis—a cancer-suppressing death switch used by prostatic epithelial cells. These provocative findings suggest a new line of thinking about how selenium can reduce cancer risk. Mid-range selenium status (.67–.92 ppm in toenails) favors a process we call “homeostatic housecleaning”—an upregulated apoptosis that preferentially purges damaged prostatic cells. Also, the U-shaped relationship provides valuable insight into stratifying individuals as selenium-responsive or selenium-refractory, based upon the likelihood of reducing their cancer risk by additional selenium. By studying elderly dogs, the only non-human animal model of spontaneous prostate cancer, we have established a robust experimental approach bridging the gap between laboratory and human studies that can help to define the optimal doses of cancer preventives for large-scale human trials. Moreover, our observations bring much needed clarity to the null results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) and set a new research priority: testing whether men with low, suboptimal selenium levels less than 0.8 ppm in toenails can achieve cancer risk reduction through daily supplementation. PMID:20877485

  14. Regularized ML reconstruction for time/dose reduction in 18F-fluoride PET/CT studies

    NASA Astrophysics Data System (ADS)

    De Bernardi, Elisabetta; Magnani, Patrizia; Gianolli, Luigi; Carla Gilardi, Maria; Bettinardi, Valentino

    2015-01-01

    We are proposing a regularized reconstruction strategy for the detection of bone lesions in 18F-fluoride whole body PET images obtained with 1 min/bed using the anatomical information provided by co-registered CT images. Bones are recognized on CT images and then transposed into the PET volume framework. During PET reconstruction, two different priors are used for bone and non-bone voxels: the relative difference prior in bone and the P-Gaussian prior in non-bone. After a tuning of the priors’ parameters, the reconstruction strategy has been tested on 6 18F-fluoride PET/CT studies, on a total of 67 lesions. Regularized images provided results comparable to the standard 3 min/bed images, in terms image quality, lesion activity, noise level and noise correlation. The proposed strategy therefore appears to be a useful tool to reduce the acquisition time or the injected dose in 18F-fluoride PET studies.

  15. Toward time resolved 4D cardiac CT imaging with patient dose reduction: estimating the global heart motion

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Segars, W. Paul; Fung, George S. K.; Tsui, Benjamin M. W.

    2006-03-01

    Coronary artery imaging with multi-slice helical computed tomography is a promising noninvasive imaging technique. The current major issues include the insufficient temporal resolution and large patient dose. We propose an image reconstruction method which provides a solution to both of the problems. The method uses an iterative approach repeating the following four steps until the difference between the two projection data sets falls below a certain criteria in step-4: 1) estimating or updating the cardiac motion vectors, 2) reconstructing the time-resolved 4D dynamic volume images using the motion vectors, 3) calculating the projection data from the current 4D images, 4) comparing them with the measured ones. In this study, we obtain the first estimate of the motion vector. We use the 4D NCAT phantom, a realistic computer model for the human anatomy and cardiac motions, to generate the dynamic fan-beam projection data sets as well to provide a known truth for the motion. Then, the halfscan reconstruction with the sliding time-window technique is used to generate cine images: f(t, r r). Here, we use one heart beat for each position r so that the time information is retained. Next, the magnitude of the first derivative of f(t, r r) with respect to time, i.e., |df/dt|, is calculated and summed over a region-of-interest (ROI), which is called the mean-absolute difference (MAD). The initial estimation of the vector field are obtained using MAD for each ROI. Results of the preliminary study are presented.

  16. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes.

    PubMed

    Barnes, Robert J; Bandi, Ratnaharika R; Wong, Wee Seng; Barraud, Nicolas; McDougald, Diane; Fane, Anthony; Kjelleberg, Staffan; Rice, Scott A

    2013-01-01

    Membrane fouling by bacterial biofilms remains a key challenge for membrane-based water purification systems. Here, the optimal biofilm dispersal potential of three nitric oxide (NO) donor compounds, viz. sodium nitroprusside, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (MAHMA NONOate) and 1-(hydroxy-NNO-azoxy)-L-proline, disodium salt, was investigated using Pseudomonas aeruginosa PAO1 as a model organism. Dispersal was quantitatively assessed by confocal microscopy [bacterial cells and the components of the extracellular polymeric substances (EPS) (polysaccharides and extracellular DNA)] and colony-forming unit counts. The three NO donor compounds had different optimal exposure times and concentrations, with MAHMA NONOate being the optimal NO donor compound. Biofilm dispersal correlated with a reduction in both bacterial cells and EPS. MAHMA NONOate also reduced single species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis membranes, as well as in isolates combined to generate mixed species biofilms. The data present strong evidence for the application of these NO donor compounds for prevention of biofouling in an industrial setting. PMID:23368407

  17. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes.

    PubMed

    Barnes, Robert J; Bandi, Ratnaharika R; Wong, Wee Seng; Barraud, Nicolas; McDougald, Diane; Fane, Anthony; Kjelleberg, Staffan; Rice, Scott A

    2013-01-01

    Membrane fouling by bacterial biofilms remains a key challenge for membrane-based water purification systems. Here, the optimal biofilm dispersal potential of three nitric oxide (NO) donor compounds, viz. sodium nitroprusside, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (MAHMA NONOate) and 1-(hydroxy-NNO-azoxy)-L-proline, disodium salt, was investigated using Pseudomonas aeruginosa PAO1 as a model organism. Dispersal was quantitatively assessed by confocal microscopy [bacterial cells and the components of the extracellular polymeric substances (EPS) (polysaccharides and extracellular DNA)] and colony-forming unit counts. The three NO donor compounds had different optimal exposure times and concentrations, with MAHMA NONOate being the optimal NO donor compound. Biofilm dispersal correlated with a reduction in both bacterial cells and EPS. MAHMA NONOate also reduced single species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis membranes, as well as in isolates combined to generate mixed species biofilms. The data present strong evidence for the application of these NO donor compounds for prevention of biofouling in an industrial setting.

  18. Impact of dose-response calorie reduction or supplementation of a covertly manipulated lunchtime meal on energy compensation.

    PubMed

    Tey, Siew Ling; Chia, Edwin Ming En; Forde, Ciarán G

    2016-10-15

    Numerous studies have examined energy compensation following overfeeding regimes whereas much less is known about the impact of acute underfeeding on energy compensation and fewer still have compared energy reduction and addition in the same group of individuals. This study compared the effects of consuming lunches with varying energy content (7.2-fold difference) on subsequent energy intake. A total of 27 healthy males took part in this randomized, crossover study with five treatments: 163kcal (very low energy meal, VLEM), 302kcal (low energy meal, LEM), 605kcal (control), 889kcal (high energy meal, HEM), and 1176kcal (very high energy meal, VHEM) served as a noodle soup. Participants were instructed to consume a standardized breakfast in the morning and they were provided with one of the five treatments for lunch on non-consecutive test day. Test lunches were matched for palatability, sensory properties, and volume. Participants were provided with an afternoon snack and ad libitum dinner on each test day and recorded food intake for the rest of the day. Appetite ratings were measured at regular intervals. As the energy content of treatments increased, participants' hunger, desire to eat, and prospective consumption decreased significantly whereas fullness increased significantly. However, no significant difference in subsequent meal intake was found between the treatments (P=0.458): 1003kcal VLEM, 1010kcal LEM, 1011kcal control, 940kcal HEM, and 919kcal VHEM. Total daily energy intake was statistically significantly different between the treatments (P<0.001) and was varied directly with the energy content of the lunchtime meal. Despite the large difference in energy content between the treatments, participants did not compensate for the "missing calories" or "additional calories" at subsequent meals. These results suggest that covertly manipulated, equally palatable, sensory and volume matched meals have the potential to promote either positive or negative energy

  19. Impact of dose-response calorie reduction or supplementation of a covertly manipulated lunchtime meal on energy compensation.

    PubMed

    Tey, Siew Ling; Chia, Edwin Ming En; Forde, Ciarán G

    2016-10-15

    Numerous studies have examined energy compensation following overfeeding regimes whereas much less is known about the impact of acute underfeeding on energy compensation and fewer still have compared energy reduction and addition in the same group of individuals. This study compared the effects of consuming lunches with varying energy content (7.2-fold difference) on subsequent energy intake. A total of 27 healthy males took part in this randomized, crossover study with five treatments: 163kcal (very low energy meal, VLEM), 302kcal (low energy meal, LEM), 605kcal (control), 889kcal (high energy meal, HEM), and 1176kcal (very high energy meal, VHEM) served as a noodle soup. Participants were instructed to consume a standardized breakfast in the morning and they were provided with one of the five treatments for lunch on non-consecutive test day. Test lunches were matched for palatability, sensory properties, and volume. Participants were provided with an afternoon snack and ad libitum dinner on each test day and recorded food intake for the rest of the day. Appetite ratings were measured at regular intervals. As the energy content of treatments increased, participants' hunger, desire to eat, and prospective consumption decreased significantly whereas fullness increased significantly. However, no significant difference in subsequent meal intake was found between the treatments (P=0.458): 1003kcal VLEM, 1010kcal LEM, 1011kcal control, 940kcal HEM, and 919kcal VHEM. Total daily energy intake was statistically significantly different between the treatments (P<0.001) and was varied directly with the energy content of the lunchtime meal. Despite the large difference in energy content between the treatments, participants did not compensate for the "missing calories" or "additional calories" at subsequent meals. These results suggest that covertly manipulated, equally palatable, sensory and volume matched meals have the potential to promote either positive or negative energy

  20. Exposure dose reduction for the high energy spectrum in the photon counting mammography: simulation study based on Japanese breast glandularity and thickness

    NASA Astrophysics Data System (ADS)

    Niwa, Naoko; Yamazaki, Misaki; Kodera, Yoshie; Yamamuro, Mika; Yamada, Kanako; Asai, Yoshiyuki; Yamada, Koji

    2015-03-01

    Recently, digital mammography with a photon counting silicon detector has been developed. With the aim of reducing the exposure dose, we have proposed a new mammography system that uses a cadmium telluride series photon counting detector. In addition, we also propose to use a high energy X-ray spectrum with a tungsten anode. The purpose of this study was assessed that the effectiveness of the high X-ray energy spectrum in terms of image quality using a Monte Carlo simulation. The proposed photon counting system with the high energy X-ray is compared to a conventional flat panel detector system with a Mo/Rh spectrum. The contrast-to-noise ratio (CNR) is calculated from simulation images with the use of breast phantoms. The breast model phantoms differed by glandularity and thickness, which were determined from Japanese clinical mammograms. We found that the CNR values were higher in the proposed system than in the conventional system. The number of photons incident on the detector was larger in the proposed system, so that the noise values was lower in comparison with the conventional system. Therefore, the high energy spectrum yielded the same CNR as using the conventional spectrum while allowing a considerable dose reduction to the breast.

  1. Maintenance of remission following 2 years of standard treatment then dose reduction with abatacept in patients with early rheumatoid arthritis and poor prognosis

    PubMed Central

    Westhovens, Rene; Robles, Manuel; Ximenes, Antonio Carlos; Wollenhaupt, Jurgen; Durez, Patrick; Gomez-Reino, Juan; Grassi, Walter; Haraoui, Boulos; Shergy, William; Park, Sung-Hwan; Genant, Harry; Peterfy, Charles; Becker, Jean-Claude; Murthy, Bindu

    2015-01-01

    Objectives To evaluate maintenance of response while reducing intravenous abatacept dose from ∼10 mg/kg to ∼5 mg/kg in patients with early rheumatoid arthritis (RA) who achieved disease activity score (DAS)28 (erythrocyte sedimentation rate, ESR) <2.6. Methods This 1-year, multinational, randomised, double-blind substudy evaluated the efficacy and safety of ∼10 mg/kg and ∼5 mg/kg abatacept in patients with early RA with poor prognosis who had reached DAS28 (ESR) <2.6 at year 2 of the AGREE study. The primary outcome was time to disease relapse (defined as additional disease-modifying antirheumatic drugs, ≥2 courses high-dose steroids, return to open-label abatacept ∼10 mg/kg, or DAS28 (C reactive protein) ≥3.2 at two consecutive visits). Results 108 patients were randomised (∼10 mg/kg, n=58; ∼5 mg/kg, n=50). Three and five patients, respectively, discontinued, and four per group returned to open-label abatacept. Relapse over time and the proportion of patients relapsing were similar in both groups (31% (∼10 mg/kg) vs 34% (∼5 mg/kg); HR: 0.87 (95% CI 0.45 to 1.69)). Mean steady-state trough serum concentration for the ∼10 mg/kg group was 20.3–24.1 µg/mL, compared with 8.8–12.0 µg/mL for the ∼5 mg/kg group. Conclusions This exploratory study suggests that abatacept dose reduction may be an option in patients with poor prognosis early RA who achieve DAS28 (ESR) <2.6 after ≥1 year on abatacept (∼10 mg/kg). Trial registration number NCT00989235. PMID:25550337

  2. Differential Impact of Relative Dose-Intensity Reductions in Diffuse Large B-Cell Lymphoma Treated with R-CHOP21 or R-CHOP14

    PubMed Central

    Bautista-Gili, Antonia Maria; Garcia, Francesc; Martinez-Serra, Jordi; Sanchez, Blanca; Martorell, Clara; Gines, Jordi; Garcia, Lucia; Gimeno, Eva; Ferraro, Mariana; Del Campo, Raquel; Bargay, Joan; Perez, Albert; Vercher, Javier; Scaff, Miguel; Pacheco, Ana; Ballester, Carmen; Garcia, Florencia; Ramos, Rafael; Salar, Antonio; Besalduch, Joan

    2015-01-01

    DLBCL is an aggressive lymphoma treated with R-CHOP. Recently, attempts have been made to improve the outcome by increasing both dose-density and intensity but there have been no benefits in terms of survival. When treating malignancies RDI is important to consider but there is little published information on DLBCL. The purpose of this study was to analyze the differential prognostic impact of RDI in two cohorts of DLBCL patients treated with R-CHOP21 or R-CHOP14. From January 2001 to August 2013 we included DLBCL patients homogenously treated with R-CHOP21 or R-CHOP14, with or without radiotherapy, at University Hospital Son Espases, Hospital Son Llatzer of Palma and Hospital del Mar of Barcelona (N = 157). In order to avoid selection bias the patients were retrospectively identified from the Pathology Department and Pharmacy registries. Median follow-up was 68 months. There was no difference in the response or survival between the two cohorts. In the R-CHOP21 group, both a reduction higher than 15% in RDI (RR 7.41) and R-IPI (RR 2.99) were independently associated with OS. However, a reduction higher than 15% in RDI (RR 4.41) was only noted for PFS. In the R-CHOP14 group, NCCN-IPI (RR 7.09) and B-symptoms (RR 5.37) for OS; AA stage III-IV (RR 6.26) and bulky disease (RR 4.05) for PFS. There was a trend towards a higher rate of RDI reduction observed in the R-CHOP14 group but it only made an impact in the R-CHOP21 group. We conclude that R-CHOP21 and R-CHOP14 are equivalent regimens in terms of response and survival, but only if RDI reductions are avoided. For patients receiving R-CHOP21 we recommend using clinical and support measures in order to avoid RDI reductions. PMID:25909361

  3. Delayed mTOR Inhibition with Low Dose of Everolimus Reduces TGFβ Expression, Attenuates Proteinuria and Renal Damage in the Renal Mass Reduction Model

    PubMed Central

    Kurdián, Melania; Herrero-Fresneda, Inmaculada; Lloberas, Nuria; Gimenez-Bonafe, Pepita; Coria, Virginia; Grande, María T.; Boggia, José; Malacrida, Leonel; Torras, Joan; Arévalo, Miguel A.; González-Martínez, Francisco; López-Novoa, José M.; Grinyó, Josep; Noboa, Oscar

    2012-01-01

    Background The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats. Methods This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation. Results Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition, everolimus blunted the increased expression of TGFβ observed in the remnant kidney model. Conclusion Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and protected the remnant kidney. mTOR and TGFβ mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin. PMID:22427849

  4. Reductions in milk Δ9-desaturation ratios to oral dosing of cobalt-acetate are accompanied by the downregulation of SCD1 in lactating ewes.

    PubMed

    Toral, P G; Hervás, G; Frutos, P

    2015-03-01

    Oral administration of cobalt has been proven to alter milk fatty acid (FA) composition consistent with an inhibition of mammary stearoyl-coenzyme A desaturase (SCD) activity in ruminants, but the mechanisms explaining its mode of action remain uncertain. In this study, Co (as Co-acetate) was dosed to lactating ewes with the aims of examining mammary gene expression during Co-induced changes in milk FA composition, and estimating the endogenous synthesis of SCD products in milk of sheep fed an 18:3n-3-enriched diet. Twelve Assaf ewes fed a diet supplemented with 2% linseed oil were allocated to 2 experimental groups and received an oral drench supplying either 0 (control) or 9 mg of Co/kg of body weight per day. Treatments were administered in 3 equal doses at 8-h intervals for 6 d. No effects of Co administration on animal performance were observed. The changes in milk FA (namely, reductions in most cis-9-containing FA) were consistent with an inhibition of SCD in the absence of detectable effects on the relative importance of mammary de novo synthesis and FA uptake. The high proportion of endogenous cis-9 trans-11 18:2 observed in this study (89%) would agree with a greater supply of trans-11 18:1 of ruminal origin in ewes fed linseed oil, compared with previous estimates in sheep fed a diet without lipid supplementation. Differences between studies could also be related to diet-induced changes in SCD activity. Altogether, both mechanisms would support that basal diet composition is a major determinant of the relative contribution of Δ9-desaturation to milk FA profile. Similarly, the consumption of a diet rich in 18:3n-3 might also explain the low proportion of milk cis-9 18:1 estimated to derive from Δ9-desaturation (29%). The administration of Co to ewes fed linseed oil allowed to discriminate minor 18:3 isomers in milk, such as cis-9 trans-12 cis-15 18:3, as SCD products. Finally, Co dosing lowered the mRNA abundance of SCD1 in the mammary secretory tissue

  5. Reductions in milk Δ9-desaturation ratios to oral dosing of cobalt-acetate are accompanied by the downregulation of SCD1 in lactating ewes.

    PubMed

    Toral, P G; Hervás, G; Frutos, P

    2015-03-01

    Oral administration of cobalt has been proven to alter milk fatty acid (FA) composition consistent with an inhibition of mammary stearoyl-coenzyme A desaturase (SCD) activity in ruminants, but the mechanisms explaining its mode of action remain uncertain. In this study, Co (as Co-acetate) was dosed to lactating ewes with the aims of examining mammary gene expression during Co-induced changes in milk FA composition, and estimating the endogenous synthesis of SCD products in milk of sheep fed an 18:3n-3-enriched diet. Twelve Assaf ewes fed a diet supplemented with 2% linseed oil were allocated to 2 experimental groups and received an oral drench supplying either 0 (control) or 9 mg of Co/kg of body weight per day. Treatments were administered in 3 equal doses at 8-h intervals for 6 d. No effects of Co administration on animal performance were observed. The changes in milk FA (namely, reductions in most cis-9-containing FA) were consistent with an inhibition of SCD in the absence of detectable effects on the relative importance of mammary de novo synthesis and FA uptake. The high proportion of endogenous cis-9 trans-11 18:2 observed in this study (89%) would agree with a greater supply of trans-11 18:1 of ruminal origin in ewes fed linseed oil, compared with previous estimates in sheep fed a diet without lipid supplementation. Differences between studies could also be related to diet-induced changes in SCD activity. Altogether, both mechanisms would support that basal diet composition is a major determinant of the relative contribution of Δ9-desaturation to milk FA profile. Similarly, the consumption of a diet rich in 18:3n-3 might also explain the low proportion of milk cis-9 18:1 estimated to derive from Δ9-desaturation (29%). The administration of Co to ewes fed linseed oil allowed to discriminate minor 18:3 isomers in milk, such as cis-9 trans-12 cis-15 18:3, as SCD products. Finally, Co dosing lowered the mRNA abundance of SCD1 in the mammary secretory tissue

  6. Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes.

    PubMed

    Machida, Mayumi; Lonart, György; Britten, Richard A

    2010-11-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In ground-based experiments, exposure to HZE-particle radiation induces pronounced deficits in hippocampus-dependent learning and memory in rodents. The mechanisms underlying these impairments are mostly unknown, but some studies suggest that HZE-particle exposure perturbs the regulation of long-term potentiation (LTP) at the CA1 synapse in the hippocampus. In this study, we irradiated rats with 60 cGy of 1 GeV (56)Fe-particle radiation and established its impact on hippocampal glutamatergic neurotransmissions at 3 and 6 months after exposure. Exposure to 60 cGy (56)Fe-particle radiation significantly (P < 0.05) reduced hyperosmotic sucrose evoked [(3)H]-glutamate release from hippocampal synaptosomes, a measure of the readily releasable vesicular pool (RRP). This HZE-particle-induced reduction in the glutamatergic RRP persisted for at least 6 months after exposure. At 90 days postirradiation, there was a significant reduction in the expression of the NR1, NR2A and NR2B subunits of the glutamatergic NMDA receptor. The level of the NR2A protein remained suppressed at 180 days postirradiation, but the level of NR2B and NR1 proteins returned to or exceeded normal levels, respectively. Overall, this study shows that hippocampal glutamatergic transmission is sensitive to relative low doses of (56)Fe particles. Whether the observed HZE-particle-induced change in glutamate transmission, which plays a critical role in learning and memory, is the cause of HZE-particle-induced neurocognitive impairment requires further investigation.

  7. Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes.

    PubMed

    Machida, Mayumi; Lonart, György; Britten, Richard A

    2010-11-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In ground-based experiments, exposure to HZE-particle radiation induces pronounced deficits in hippocampus-dependent learning and memory in rodents. The mechanisms underlying these impairments are mostly unknown, but some studies suggest that HZE-particle exposure perturbs the regulation of long-term potentiation (LTP) at the CA1 synapse in the hippocampus. In this study, we irradiated rats with 60 cGy of 1 GeV (56)Fe-particle radiation and established its impact on hippocampal glutamatergic neurotransmissions at 3 and 6 months after exposure. Exposure to 60 cGy (56)Fe-particle radiation significantly (P < 0.05) reduced hyperosmotic sucrose evoked [(3)H]-glutamate release from hippocampal synaptosomes, a measure of the readily releasable vesicular pool (RRP). This HZE-particle-induced reduction in the glutamatergic RRP persisted for at least 6 months after exposure. At 90 days postirradiation, there was a significant reduction in the expression of the NR1, NR2A and NR2B subunits of the glutamatergic NMDA receptor. The level of the NR2A protein remained suppressed at 180 days postirradiation, but the level of NR2B and NR1 proteins returned to or exceeded normal levels, respectively. Overall, this study shows that hippocampal glutamatergic transmission is sensitive to relative low doses of (56)Fe particles. Whether the observed HZE-particle-induced change in glutamate transmission, which plays a critical role in learning and memory, is the cause of HZE-particle-induced neurocognitive impairment requires further investigation. PMID:20726706

  8. Use of ORP (oxidation-reduction potential) to control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate wastewater.

    PubMed

    Khanal, S K; Shang, C; Huang, J C

    2003-01-01

    In this study, oxidation-reduction potential (ORP) was used as a controlling parameter to regulate oxygen dosing to the recycled biogas for online sulfide oxidation in an upflow anaerobic filter (UAF) system. The UAF was operated with a constant influent COD of 18,000 mg/L, but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially operated under a natural ORP of -290 mV (without oxygen injection), and was then followed by oxygenation to raise its ORP by 25 mV above the natural level for each influent sulfate condition. At 6,000 mg/L sulfate without oxygen injection, the dissolved sulfide reached 733.8 mg S/L with a corresponding free sulfide of 250.3 mg S/L, thus showing a considerable inhibition to methanogens. Upon oxygenation to raise its ORP to -265 mV (i.e., a 25 mV increase), the dissolved sulfide was reduced by more than 98.5% with a concomitant 45.9% increase of the methane yield. Under lower influent sulfate levels of 1,000 and 3,000 mg/L, the levels of sulfides produced, even under the natural ORP, did not impose any noticeable toxicity to methanogens. Upon oxygenation to raise the ORP by +25 mV, the corresponding methane yields were actually reduced by 15.5% and 6.2%, respectively. However, such reductions were not due to the adverse impact of the elevated ORP; instead, they were due to a diversion of some organic carbon to support the facultative activities inside the reactor as a result of excessive oxygenation. In other words, to achieve satisfactory sulfide oxidation for the lower influent sulfate conditions, it was not necessary to raise the ORP by as much as +25 mV. The ORP increase actually needed depended on both the influent sulfate and also actual wastewater characteristics. This study had proved that the ORP controlled oxygenation was reliable for achieving consistent online sulfide control.

  9. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    SciTech Connect

    Kamezawa, H; Arimura, H; Ohki, M; Shirieda, K; Kameda, N

    2014-06-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.

  10. Impact of Safety-Related Dose Reductions or Discontinuations on Sustained Virologic Response in HCV-Infected Patients: Results from the GUARD-C Cohort

    PubMed Central

    Foster, Graham R.; Coppola, Carmine; Derbala, Moutaz; Ferenci, Peter; Orlandini, Alessandra; Reddy, K. Rajender; Tallarico, Ludovico; Shiffman, Mitchell L.; Ahlers, Silke; Bakalos, Georgios; Hassanein, Tarek

    2016-01-01

    Background Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. Methods A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0–9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. Results SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced ≥1 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with ≥1 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not ≥5. Conclusions In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with

  11. 13th TC1/TC7 Symposium Fundamental and Applied Metrology September 01-03, 2010, London, UK: Effects of radiation dose reduction in digital radiography using wavelet-based image processing

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Tsai, D. Y.; Lee, Y.; Matsuyama, E.; Kojima, K.

    2010-07-01

    In this paper, we investigated the effect of the use of wavelet transform on dose reduction in computed radiography (CR). The physical properties of the processed CR images were measured using the modulation transfer function (MTF), noise power spectrum (NPS), contrast-to-noise ratio, and peak signal-to-noise ratio. Furthermore, visual evaluation was performed by Scheffe's pair comparison method. Experimental results showed that sigmoid-type transfer curves for wavelet coefficient weighting adjustment could improve the MTF, and three soft-threshold methods could improve the NPS at all spatial frequency ranges. Moreover, our visual evaluation showed that an approximately 40% reduction in exposure dose might be achieved with the sigmoid-type transfer curve in hip joint radiography.

  12. Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy.

    PubMed

    Dowdell, Stephen J; Clasie, Benjamin; Depauw, Nicolas; Metcalfe, Peter; Rosenfeld, Anatoly B; Kooy, Hanne M; Flanz, Jacob B; Paganetti, Harald

    2012-05-21

    This study is aimed at identifying the potential benefits of using a patient-specific aperture in proton beam scanning. For this purpose, an accurate Monte Carlo model of the pencil beam scanning (PBS) proton therapy (PT) treatment head at Massachusetts General Hospital (MGH) was developed based on an existing model of the passive double-scattering (DS) system. The Monte Carlo code specifies the treatment head at MGH with sub-millimeter accuracy. The code was configured based on the results of experimental measurements performed at MGH. This model was then used to compare out-of-field doses in simulated DS treatments and PBS treatments. For the conditions explored, the penumbra in PBS is wider than in DS, leading to higher absorbed doses and equivalent doses adjacent to the primary field edge. For lateral distances greater than 10 cm from the field edge, the doses in PBS appear to be lower than those observed for DS. We found that placing a patient-specific aperture at nozzle exit during PBS treatments can potentially reduce doses lateral to the primary radiation field by over an order of magnitude. In conclusion, using a patient-specific aperture has the potential to further improve the normal tissue sparing capabilities of PBS.

  13. Monte Carlo study of the potential reduction in out-of-field dose using a patient-specific aperture in pencil beam scanning proton therapy

    PubMed Central

    Dowdell, S J; Clasie, B; Depauw, N; Metcalfe, P; Rosenfeld, A B; Kooy, H M; Flanz, J; Paganetti, H

    2012-01-01

    This study aimed at identifying the potential benefits of using a patient specific aperture in proton beam scanning. For this purpose an accurate Monte Carlo model of the pencil beam scanning (PBS) proton therapy (PT) treatment head at Massachusetts General Hospital (MGH) was developed based on an existing model of the passive double-scattering (DS) system. The Monte Carlo code specifies the treatment head at MGH with sub-millimeter accuracy. The code was configured based on the results of experimental measurements performed at MGH. This model was then used to compare out-of-field doses in simulated double-scattering (DS) treatments and PBS treatments For the conditions explored, the penumbra in PBS is wider than in DS, leading to higher absorbed doses and equivalent doses adjacent to the primary field edge. For lateral distances greater than 10cm from the field edge, the doses in PBS appear to be lower than those observed for DS. We found that placing a patient-specific aperture at nozzle exit during PBS treatments can potentially reduce doses lateral to the primary radiation field by over an order of magnitude. In conclusion, using a patient-specific aperture has the potential to further improve the normal tissue sparing capabilities of PBS. PMID:22513726

  14. Inverse determination of the penalty parameter in penalized weighted least-squares algorithm for noise reduction of low-dose CBCT

    SciTech Connect

    Wang, Jing; Guan, Huaiqun; Solberg, Timothy

    2011-07-15

    Purpose: A statistical projection restoration algorithm based on the penalized weighted least-squares (PWLS) criterion can substantially improve the image quality of low-dose CBCT images. The performance of PWLS is largely dependent on the choice of the penalty parameter. Previously, the penalty parameter was chosen empirically by trial and error. In this work, the authors developed an inverse technique to calculate the penalty parameter in PWLS for noise suppression of low-dose CBCT in image guided radiotherapy (IGRT). Methods: In IGRT, a daily CBCT is acquired for the same patient during a treatment course. In this work, the authors acquired the CBCT with a high-mAs protocol for the first session and then a lower mAs protocol for the subsequent sessions. The high-mAs projections served as the goal (ideal) toward, which the low-mAs projections were to be smoothed by minimizing the PWLS objective function. The penalty parameter was determined through an inverse calculation of the derivative of the objective function incorporating both the high and low-mAs projections. Then the parameter obtained can be used for PWLS to smooth the noise in low-dose projections. CBCT projections for a CatPhan 600 and an anthropomorphic head phantom, as well as for a brain patient, were used to evaluate the performance of the proposed technique. Results: The penalty parameter in PWLS was obtained for each CBCT projection using the proposed strategy. The noise in the low-dose CBCT images reconstructed from the smoothed projections was greatly suppressed. Image quality in PWLS-processed low-dose CBCT was comparable to its corresponding high-dose CBCT. Conclusions: A technique was proposed to estimate the penalty parameter for PWLS algorithm. It provides an objective and efficient way to obtain the penalty parameter for image restoration algorithms that require predefined smoothing parameters.

  15. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    SciTech Connect

    Collier, J; Aldoohan, S; Gill, K

    2014-06-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a

  16. Defining the Optimal Selenium Dose for Prostate Cancer Risk Reduction: Insights from the U-Shaped Relationship Between Selenium Status, DNA Damage, and Apoptosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our work in dogs has revealed a U-shaped dose response between selenium status and prostatic DNA damage that remarkably parallels the relationship between dietary selenium and prostate cancer risk in men, suggesting that more selenium is not necessarily better. Herein, we extend this canine work to ...

  17. Genotyping NUDT15 can predict the dose reduction of 6-MP for children with acute lymphoblastic leukemia especially at a preschool age.

    PubMed

    Suzuki, Hisato; Fukushima, Hiroko; Suzuki, Ryoko; Hosaka, Sho; Yamaki, Yuni; Kobayashi, Chie; Sakai, Aiko; Imagawa, Kazuo; Iwabuchi, Atsushi; Yoshimi, Ai; Nakao, Tomohei; Kato, Keisuke; Tsuchida, Masahiro; Kiyokawa, Nobutaka; Koike, Kazutoshi; Noguchi, Emiko; Fukushima, Takashi; Sumazaki, Ryo

    2016-09-01

    The pharmacokinetics among children has been altered dynamically. The difference between children and adults is caused by immaturity in things such as metabolic enzymes and transport proteins. The periods when these alterations happen vary from a few days to some years after birth. We hypothesized that the effect of gene polymorphisms associated with the dose of medicine could be influenced by age. In this study, we analyzed 51 patients with childhood acute lymphoblastic leukemia (ALL) retrospectively. We examined the associations between the polymorphism in NUDT15 and clinical data, especially the dose of 6-mercaptopurine (6-MP). Ten of the patients were heterozygous for the variant allele in NUDT15. In patients under 7 years old with NUDT15 variant allele, the average administered dose of 6-MP was lower than that for the patients homozygous for the wild-type allele (P=0.04). Genotyping of NUDT15 could be a beneficial to estimate the tolerated dose of 6-MP for patients with childhood ALL, especially at a preschool age in Japan. Furthermore, the analysis with stratification by age might be useful in pharmacogenomics among children.

  18. Losartan/hydrochlorothiazide combination therapy surpasses high-dose angiotensin receptor blocker in the reduction of morning home blood pressure in patients with morning hypertension.

    PubMed

    Hanayama, Yoshihisa; Uchida, Haruhito Adam; Nakamura, Yoshio; Makino, Hirofumi

    2012-01-01

    Angiotensin receptor blockers (ARBs) are the first-line antihypertensive agents. In clinical practice, it is often difficult to achieve the recommended blood pressure level by ARBs in their ordinal dosages alone. This study examined the practical efficacy of a combination therapy of ARB with thiazide diuretics for lowering morning home blood pressure (MHBP) in comparison to high-dose ARB therapy in patients with morning hypertension administered an ordinal dosage of ARB. This study was performed in a prospective, randomized, open-labeled and blind-endpoint fashion. Patients were considered to have morning hypertension when their self-measured systolic MHBPs were 135mmHg or higher, irrespective of their diastolic MHBP and office blood pressures (OBPs). Forty-eight outpatients with morning hypertension receiving the ordinal dosage of ARB were given either losartan/hydrochlorothiazide (n = 26) or high-dose ARB (n = 22) in place of their previously prescribed ARB. No change in any medication was permitted during this period. Decreases of both systolic and diastolic MHBP after 3 months of treatment were significantly greater in the losartan/hydrochlorothiazide group than in the high-dose ARB group (p < 0.05, respectively). The ratio of adverse events was somewhat high (23.1% in the losartan/hydrochlorothiazide group, 9.1% in the high-dose ARB group, respectively). However, there were no significant differences in any particular adverse event between groups. This study suggested losartan/hydrochlorothiazide might be superior to high-dose ARB for reducing morning home blood pressure. PMID:23254579

  19. Dose addition models based on biologically-relevant reductions in fetal testosterone accurately predict postnatal reproductive tract alterations by a phthalate mixture in rats

    EPA Science Inventory

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the curren...

  20. Evaluation of blood pressure reduction response and responder characteristics to fixed-dose combination treatment of amlodipine and losartan: a post hoc analysis of pooled clinical trials.

    PubMed

    Unniachan, Sreevalsa; Wu, David; Rajagopalan, Srinivasan; Hanson, Mary E; Fujita, Kenji P

    2014-09-01

    Data from four clinical trials compared reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP) among patients treated with amlodipine/losartan 5/50 mg vs 5/100 mg and amlodipine/losartan 5/50 mg vs amlodipine 5 mg and 10 mg. Response rate was assessed as reduction in SBP or DBP (>20/10 mm Hg) and proportion of patients achieving SBP <140 mm Hg or DBP <90 mm Hg. Patients were grouped into quartiles based on baseline SBP and DBP. Mean SBP and DBP were reduced in amlodipine/losartan 5/50 mg (n=182) and amlodipine/losartan 5/100 mg (n=95) users across all baseline quartiles. Patients using amlodipine/losartan 5/50 mg had significantly greater SBP and DBP reductions vs amlodipine 5 mg (P=.001 and P=.02, respectively). Amlodipine/losartan 5/50 mg users had significantly greater SBP reduction vs amlodipine 10 mg (SBP P=.02; DBP P=not significant). The odds of responding to therapy were significantly greater with amlodipine/losartan 5/50 mg vs amlodipine 5 mg (odds ratio, 5.33; 95% confidence interval, 1.42-25.5) and were similar vs amlodipine 10 mg (odds ratio, 0.67; 95% confidence interval, 0.017-9.51). These results support the use of combination therapy early in the treatment of hypertension.

  1. [A pilot study of contrast medium dose reduction using low tube voltage and iterative reconstruction: computed tomography angiography of the head].

    PubMed

    Ihara, Riku; Itou, Kouhei; Terashita, Takayoshi; Fuse, Yoshihiro

    2015-03-01

    This study aimed to reduce contrast medium dose without reducing the diagnostic capability of computed tomography (CT) angiography of the head. We evaluated the advanced statistical iterative reconstruction (ASiR) settings to adjust to low tube voltage CT. A syringe phantom was constructed using dilute contrast medium and was imaged at tube voltages of 80-120 kV. The iodine volumes, CT values, and image noise were measured in these images. The noise-power spectrum and modulation transfer function were measured from quality assurance phantom images that had been obtained using the tube voltage selected after considering the image noise results as described above and reconstructed using different ASiR rate settings and convolution kernels. Our results suggested that imaging at 100 kV could reduce the contrast medium dose by 14%, compared with imaging at 120 kV, and that the resulting image quality could equal that of conventional imaging by performing reconstruction at a 40% ASiR rate and detail kernel.

  2. A patient-specific therapeutic approach for tumour cell population extinction and drug toxicity reduction using control systems-based dose-profile design

    PubMed Central

    2013-01-01

    Background When anti-tumour therapy is administered to a tumour-host environment, an asymptotic tapering extremity of the tumour cell distribution is noticed. This extremity harbors a small number of residual tumour cells that later lead to secondary malignances. Thus, a method is needed that would enable the malignant population to be completely eliminated within a desired time-frame, negating the possibility of recurrence and drug-induced toxicity. Methods In this study, we delineate a computational procedure using the inverse input-reconstruction approach to calculate the unknown drug stimulus input, when one desires a known output tissue-response (full tumour cell elimination, no excess toxicity). The asymptotic extremity is taken care of using a bias shift of tumour-cell distribution and guided control of drug administration, with toxicity limits enforced, during mutually-synchronized chemotherapy (as Temozolomide) and immunotherapy (Interleukin-2 and Cytotoxic T-lymphocyte). Results Quantitative modeling is done using representative characteristics of rapidly and slowly-growing tumours. Both were fully eliminated within 2 months with checks for recurrence and toxicity over a two-year time-line. The dose-time profile of the therapeutic agents has similar features across tumours: biphasic (lymphocytes), monophasic (chemotherapy) and stationary (interleukin), with terminal pulses of the three agents together ensuring elimination of all malignant cells. The model is then justified with clinical case studies and animal models of different neurooncological tumours like glioma, meningioma and glioblastoma. Conclusion The conflicting oncological objectives of tumour-cell extinction and host protection can be simultaneously accommodated using the techniques of drug input reconstruction by enforcing a bias shift and guided control over the drug dose-time profile. For translational applicability, the procedure can be adapted to accommodate varying patient parameters

  3. ITPA and SLC29A1 Genotyping for the Prediction of Ribavirin Dose Reduction in Anti-HCV Triple Therapy with Protease Inhibitors.

    PubMed

    Lombardi, Andrea; Landonio, Simona; Magni, Carlo; Cheli, Stefania; Mazzali, Cristina; Mondelli, Mario U; Rizzardini, Giuliano; Clementi, Emilio; Falvella, Felicia Stefania

    2015-01-01

    Chronic hepatitis C is one of the most important causes of liver disease, leading to cirrhosis, hepatic decompensation and hepatocellular carcinoma. Recently some important advances in therapy have been achieved with the introduction of first wave, first generation direct acting antiviral agents (DAAs) such as boceprevir (BOC), in combination with pegylated interferon (Peg-IFN) and ribavirin (RBV). The superior rate of sustained virological response with this treatment is accompanied by an elevated frequency of anaemia. Several studies have evidenced the importance of single nucleotide polymorphisms (SNPs) in inosine triphosphatase (ITPA) and solute carrier family 29, member 1 (SLC29A1) genes in the development of this adverse event. Here, we investigated haemoglobin levels and the best-known functional SNPs in ITPA and SLC29A1 genes in 22 patients treated with triple therapy with BOC/Peg-IFN/RBV. The identification of ITPA protective and SLC29A1 risk genotypes still appears to be a current methodology in RBV dosing during hepatitis C virus therapy with DAAs. PMID:26279293

  4. Legal, ethical, and economic implications of breaking down once-daily fixed-dose antiretroviral combinations into their single components for cost reduction.

    PubMed

    Ramiro, Miguel A; Llibre, Josep M

    2014-11-01

    The availability of generic lamivudine in the context of the current economic crisis has raised a new issue in some European countries: breaking up the once-daily fixed-dose antiretroviral combinations (FDAC) of efavirenz/tenofovir/emtricitabine, tenofovir/emtricitabine, or abacavir/lamivudine, in order to administer their components separately, thereby allowing the use of generic lamivudine instead of branded emtricitabine or lamivudine. The legal, ethical, and economic implications of this potential strategy are reviewed, particularly in those patients receiving a once-daily single-tablet regimen. An unfamiliar change in antiretroviral treatment from a successful patient-friendly FDAC into a more complex regimen including separately the components to allow the substitution of one (or some) of them for generic surrogates (in the absence of a generic bioequivalent FDAC) could be discriminatory because it does not guarantee access to equal excellence in healthcare to all citizens. Furthermore, it could violate the principle of non-maleficence by potentially causing harm both at the individual level (hindering adherence and favouring treatment failure and resistance), and at the community level (hampering control of disease transmission and transmission of HIV-1 resistance). Replacing a FDAC with the individual components of that combination should only be permitted when the substituting medication has the same qualitative and quantitative composition of active ingredients, pharmaceutical form, method of administration, dosage and presentation as the medication being replaced, and a randomized study has demonstrated its non-inferiority. Finally, a strict pharma-economic study supporting this change, comparing the effectiveness and the cost of a specific intervention with the best available alternative, should be undertaken before its potential implementation. PMID:24139337

  5. Legal, ethical, and economic implications of breaking down once-daily fixed-dose antiretroviral combinations into their single components for cost reduction.

    PubMed

    Ramiro, Miguel A; Llibre, Josep M

    2014-11-01

    The availability of generic lamivudine in the context of the current economic crisis has raised a new issue in some European countries: breaking up the once-daily fixed-dose antiretroviral combinations (FDAC) of efavirenz/tenofovir/emtricitabine, tenofovir/emtricitabine, or abacavir/lamivudine, in order to administer their components separately, thereby allowing the use of generic lamivudine instead of branded emtricitabine or lamivudine. The legal, ethical, and economic implications of this potential strategy are reviewed, particularly in those patients receiving a once-daily single-tablet regimen. An unfamiliar change in antiretroviral treatment from a successful patient-friendly FDAC into a more complex regimen including separately the components to allow the substitution of one (or some) of them for generic surrogates (in the absence of a generic bioequivalent FDAC) could be discriminatory because it does not guarantee access to equal excellence in healthcare to all citizens. Furthermore, it could violate the principle of non-maleficence by potentially causing harm both at the individual level (hindering adherence and favouring treatment failure and resistance), and at the community level (hampering control of disease transmission and transmission of HIV-1 resistance). Replacing a FDAC with the individual components of that combination should only be permitted when the substituting medication has the same qualitative and quantitative composition of active ingredients, pharmaceutical form, method of administration, dosage and presentation as the medication being replaced, and a randomized study has demonstrated its non-inferiority. Finally, a strict pharma-economic study supporting this change, comparing the effectiveness and the cost of a specific intervention with the best available alternative, should be undertaken before its potential implementation.

  6. Repression of Gurken translation by a meiotic checkpoint in Drosophila oogenesis is suppressed by a reduction in the dose of eIF1A

    PubMed Central

    Li, Wei; Klovstad, Martha; Schüpbach, Trudi

    2014-01-01

    In Drosophila melanogaster, the anteroposterior (AP) and dorsoventral (DV) axes of the oocyte and future embryo are established through the localization and translational regulation of gurken (grk) mRNA. This process involves binding of specific factors to the RNA during transport and a dynamic remodeling of the grk-containing ribonucleoprotein (RNP) complexes once they have reached their destination within the oocyte. In ovaries of spindle-class females, an activated DNA damage checkpoint causes inefficient Grk translation and ventralization of the oocyte. In a screen for modifiers of the oocyte DV patterning defects, we identified a mutation in the eIF1A gene as a dominant suppressor. We show that reducing the function of eIF1A in spnB ovaries suppresses the ventralized eggshell phenotype by restoring Grk expression. This suppression is not the result of more efficient DNA damage repair or of disrupted checkpoint activation, but is coupled to an increase in the amount of grk mRNA associated with polysomes. In spnB ovaries, the activated meiotic checkpoint blocks Grk translation by disrupting the accumulation of grk mRNA in a translationally competent RNP complex that contains the translational activator Oo18 RNA-binding protein (Orb); this regulation involves the translational repressor Squid (Sqd). We further propose that reduction of eIF1A allows more efficient Grk translation possibly because of the presence of specific structural features in the grk 5′UTR. PMID:25231760

  7. Objective and Longitudinal Assessment of Dermatitis After Postoperative Accelerated Partial Breast Irradiation Using High-Dose-Rate Interstitial Brachytherapy in Patients With Breast Cancer Treated With Breast Conserving Therapy: Reduction of Moisture Deterioration by APBI

    SciTech Connect

    Tanaka, Eiichi; Yamazaki, Hideya; Yoshida, Ken; Takenaka, Tadashi; Masuda, Norikazu; Kotsuma, Tadayuki; Yoshioka, Yasuo; Inoue, Takehiro

    2011-11-15

    Purpose: To objectively evaluate the radiation dermatitis caused by accelerated partial breast irradiation (APBI) using high-dose-rate interstitial brachytherapy. Patients and Methods: The skin color and moisture changes were examined using a newly installed spectrophotometer and corneometer in 22 patients who had undergone APBI using open cavity implant high-dose-rate interstitial brachytherapy (36 Gy in six fractions) and compared with the corresponding values for 44 patients in an external beam radiotherapy (EBRT) control group (50-60 Gy in 25-30 fractions within 5-6 weeks) after breast conserving surgery. Results: All values changed significantly as a result of APBI. The extent of elevation in a Asterisk-Operator (reddish) and reduction in L Asterisk-Operator (black) values caused by APBI were similar to those for EBRT, with slightly delayed recovery for 6-12 months after treatment owing to the surgical procedure. In contrast, only APBI caused a change in the b Asterisk-Operator values, and EBRT did not, demonstrating that the reduction in b Asterisk-Operator values (yellowish) depends largely on the surgical procedure. The changes in moisture were less severe after APBI than after EBRT, and the recovery was more rapid. The toxicity assessment using the Common Toxicity Criteria, version 3, showed that all dermatitis caused by APBI was Grade 2 or less. Conclusion: An objective analysis can quantify the effects of APBI procedures on color and moisture cosmesis. The radiation dermatitis caused by APBI using the present schedule showed an equivalent effect on skin color and a less severe effect on moisture than the effects caused by standard EBRT.

  8. Know your dose: RADDOSE

    PubMed Central

    Paithankar, Karthik S.; Garman, Elspeth F.

    2010-01-01

    The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30 MGy at 100 K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-­ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20 keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4 keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter ‘diffraction-dose efficiency’, which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals. PMID:20382991

  9. RTOG 0529: A Phase 2 Evaluation of Dose-Painted Intensity Modulated Radiation Therapy in Combination With 5-Fluorouracil and Mitomycin-C for the Reduction of Acute Morbidity in Carcinoma of the Anal Canal

    SciTech Connect

    Kachnic, Lisa A.; Winter, Kathryn; Myerson, Robert J.; Goodyear, Michael D.; Willins, John; Esthappan, Jacqueline; Haddock, Michael G.; Rotman, Marvin; Parikh, Parag J.; Safran, Howard; Willett, Christopher G.

    2013-05-01

    Purpose: A multi-institutional phase 2 trial assessed the utility of dose-painted intensity modulated radiation therapy (DP-IMRT) in reducing grade 2+ combined acute gastrointestinal and genitourinary adverse events (AEs) of 5-fluorouracil (5FU) and mitomycin-C (MMC) chemoradiation for anal cancer by at least 15% compared with the conventional radiation/5FU/MMC arm from RTOG 9811. Methods and Materials: T2-4N0-3M0 anal cancer patients received 5FU and MMC on days 1 and 29 of DP-IMRT, prescribed per stage: T2N0, 42 Gy elective nodal and 50.4 Gy anal tumor planning target volumes (PTVs) in 28 fractions; T3-4N0-3, 45 Gy elective nodal, 50.4 Gy ≤3 cm or 54 Gy >3 cm metastatic nodal and 54 Gy anal tumor PTVs in 30 fractions. The primary endpoint is described above. Planned secondary endpoints assessed all AEs and the investigator’s ability to perform DP-IMRT. Results: Of 63 accrued patients, 52 were evaluable. Tumor stage included 54% II, 25% IIIA, and 21% IIIB. In primary endpoint analysis, 77% experienced grade 2+ gastrointestinal/genitourinary acute AEs (9811 77%). There was, however, a significant reduction in acute grade 2+ hematologic, 73% (9811 85%, P=.032), grade 3+ gastrointestinal, 21% (9811 36%, P=.0082), and grade 3+ dermatologic AEs 23% (9811 49%, P<.0001) with DP-IMRT. On initial pretreatment review, 81% required DP-IMRT replanning, and final review revealed only 3 cases with normal tissue major deviations. Conclusions: Although the primary endpoint was not met, DP-IMRT was associated with significant sparing of acute grade 2+ hematologic and grade 3+ dermatologic and gastrointestinal toxicity. Although DP-IMRT proved feasible, the high pretreatment planning revision rate emphasizes the importance of real-time radiation quality assurance for IMRT trials.

  10. RTOG 0529: A Phase II Evaluation of Dose-Painted Intensity Modulated Radiation Therapy in Combination with 5-Fluorouracil and Mitomycin-C for the Reduction of Acute Morbidity in Carcinoma of the Anal Canal

    PubMed Central

    Kachnic, Lisa A.; Winter, Kathryn; Myerson, Robert J.; Goodyear, Michael D.; Willins, John; Esthappan, Jacqueline; Haddock, Michael G.; Rotman, Marvin; Parikh, Parag J.; Safran, Howard; Willett, Christopher G.

    2012-01-01

    Purpose A multi-institutional phase II trial assessed the utility of dose-painted IMRT (DP-IMRT) in reducing grade 2+ combined acute gastrointestinal and genitourinary adverse events (AEs) of 5-fluorouracil (5FU) and mitomycin-C (MMC) chemoradiation for anal cancer by at least 15% as compared to the conventional radiation/5FU/MMC arm from RTOG 9811. Methods and Materials T2-4N0-3M0 anal cancer patients received 5FU and MMC days 1 and 29 of DP-IMRT, prescribed per stage - T2N0: 42Gy elective nodal and 50.4Gy anal tumor planning target volumes (PTVs) in 28 fractions; T3-4N0-3: 45Gy elective nodal, 50.4Gy ≤ 3cm or 54Gy > 3cm metastatic nodal and 54Gy anal tumor PTVs in 30 fractions. The primary endpoint is described above. Planned secondary endpoints assessed all AEs and the investigator’s ability to perform DP-IMRT. Results Of 63 accrued patients, 52 were evaluable. Tumor stage included: 54% II, 25% IIIA, 21% IIIB. In primary endpoint analysis, 77% experienced grade 2+ gastrointestinal/genitourinary acute AEs (9811 77%). There was, however, a significant reduction in acute grade 2+ hematologic, 73% (9811 85%, P=0.032), grade 3+ gastrointestinal, 21% (9811 36%, P=0.0082), and grade 3+ dermatologic AEs 23% (9811 49%, P<0.0001) with DP-IMRT. On initial pre-treatment review, 81% required DP-IMRT re-planning, while final review revealed only three cases with normal tissue major deviations. Conclusions Although the primary endpoint was not met, DP-IMRT was associated with significant sparing of acute grade 2+ hematologic, and grade 3+ dermatologic and gastrointestinal toxicity. While DP-IMRT proved feasible, the high pre-treatment planning revision rate emphasizes the importance of real-time radiation quality assurance for IMRT trials. PMID:23154075

  11. The past versus the present, 1980-2004: reduction of mean initial low-dose, long-term glucocorticoid therapy in rheumatoid arthritis from 10.3 to 3.6 mg/day, concomitant with early methotrexate, with long-term effectiveness and safety of less than 5 mg/day.

    PubMed

    Pincus, Theodore; Sokka, Tuulikki; Cutolo, Maurizio

    2015-01-01

    Quantitative observations are presented concerning treatment with glucocorticoids of 308 patients with rheumatoid arthritis (RA) at a weekly academic rheumatology setting over 25 years from 1980 to 2004. A database of all visits included medications and multidimensional health assessment questionnaire scores for physical function, pain and routine assessment of patient index data (RAPID3; and a surrogate RAPID3-EST), completed by each patient at each visit in routine care. Over the 5-year periods of 1980-1984, 1985-1989, 1990-1994, 1995-1999 and 2000-2004, the mean initial prednisone daily dose declined from 10.3 to 6.5, 5.1, 4.1 and 3.6 mg/day, as initial doses were >5 mg/day in 49, 16, 7, 7 and 3% of patients, 5 mg/day in 51, 80, 70, 26 and 10%, and <5 mg/day in 0, 4, 23, 67 and 86%. Reduction of prednisone doses in the respective five-year periods was accompanied by increased and earlier use of methotrexate as the first disease-modifying antirheumatic drug (DMARD) in 10, 26, 57, 71 and 78%, and methotrexate treatment in 10, 26, 74, 82 and 92% of patients within the first year of disease. Higher methotrexate doses in the respective five-year periods were used after 1990, along with lower prednisone doses. Most patients were treated indefinitely with both low-dose prednisone and methotrexate; 80% continued both medications for more than 5 years. The primary adverse events were skin-thinning and bruising. New hypertension, diabetes and cataracts were seen in fewer than 10% of patients. While efficacy and safety cannot be analyzed definitively from observational data, the data suggest that many patients with RA might be treated effectively with weekly low-dose methotrexate along with initial and long-term, low-dose prednisone of <5 mg/day. PMID:25228430

  12. Effects of ethanol on gene expression in rat bone: transient dose-dependent changes in mRNA levels for matrix proteins, skeletal growth factors, and cytokines are followed by reductions in bone formation.

    PubMed

    Turner, R T; Wronski, T J; Zhang, M; Kidder, L S; Bloomfield, S A; Sibonga, J D

    1998-10-01

    Several studies were performed in female rats to determine dose and time course changes in mRNA levels for matrix proteins in bone after a single administration of ethanol. As expected, dose-dependent transient increases in blood ethanol were measured. Additionally, there was mild hypocalcemia with no change in immunoreactive parathyroid hormone. Coordinated dose-dependent increases in mRNA for type 1 collagen, osteonectin, and osteocalcin were noted in the proximal tibial metaphysis 6 hr after ethanol was given, with the peak values occurring at a dose of 1.2 g/kg (0.4 ml). Similar increases in mRNA levels for matrix proteins were noted in lumbar vertebrae after ethanol treatment. The changes were specific for bone; ethanol had no effect on mRNA levels for matrix proteins in the uterus or liver, although the mRNA concentrations tended to be reduced in uterus. Message levels for several cytokines implicated in the regulation of bone turnover were also assayed; mRNA levels for transforming growth factor-beta1, transforming growth factor-beta2, interferon-gamma, and interleukin-6 were unchanged at doses ranging from 0.14 to 1.7 g/kg. At the highest dose of ethanol, the mRNA level for tumor necrosis factor-alpha was elevated while the level for insulin-like growth factor-1 was reduced. The time course effects of ethanol (0.4 ml dose) were determined in a separate experiment. Ethanol resulted in a transient increase in mRNA levels for the three bone matrix proteins assayed. However, matrix protein synthesis, as determined by incorporation of 3H-proline into the proximal tibial metaphysis, was not changed after 6 hr. The changes in mRNA levels for the matrix proteins were preceded by brief, transient decreases in mRNA levels for interleukin-1beta, interferon-gamma, and migration inhibitory factor, and followed by a more prolonged decrease in the mRNA level for insulin-like growth factor-1. A subsequent study was performed to determine the effects of repetitive daily

  13. Reduction of total coliform numbers during vermicomposting is caused by short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry.

    PubMed

    Monroy, Fernando; Aira, Manuel; Domínguez, Jorge

    2009-10-01

    During vermicomposting of organic waste, the interactions between epigeic earthworms and the detrital microbial community lead to decreases in the abundance of some potentially pathogenic microorganisms. Despite its importance, little is known about the mechanisms involved and the factors that affect the intensity of this effect. In the present study, we carried out three experiments to test the effect of the earthworm Eisenia fetida on total coliform numbers in pig slurry. We firstly applied low and high doses (1.5 and 3 kg, respectively) of pig slurry to small scale vermireactors with and without earthworms. We found that E. fetida significantly reduced total coliform numbers after 2 weeks, but only in the low dose vermireactors. In a subsequent feeding experiment in mesocosms, we observed that the coliform population was reduced by 98% after passage through the earthworms' guts, which suggests that digestive processes in the gut of E. fetida are the main factors involved in the decrease in total coliforms observed in the low dose vermireactors. Decreases in total coliform numbers were not related to decreases in bacterial biomass, which indicates a specific negative effect of earthworms on the coliforms. In the third experiment, we tested the indirect effect of earthworms on total coliforms by inoculating pig slurry with either 2 or 10% vermicompost. The addition of vermicompost did not affect the number of coliforms either after 15, 30 or 60 days, which supports the idea that this bacterial group is more affected by the passage through the gut of E. fetida than by interactions with the earthworm-shaped microbial community.

  14. Low (20 cGy) doses of 1 GeV/u (56)Fe--particle radiation lead to a persistent reduction in the spatial learning ability of rats.

    PubMed

    Britten, Richard A; Davis, Leslie K; Johnson, Angela M; Keeney, Sonia; Siegel, Andrew; Sanford, Larry D; Singletary, Sylvia J; Lonart, György

    2012-02-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In previous ground-based experiments, exposure to high doses of HZE-particle radiation induced pronounced deficits in hippocampus-dependent learning and memory in rodents. Recent data suggest that glutamatergic transmission in hippocampal synaptosomes is impaired after low (60 cGy) doses of 1 GeV/u (56)Fe particles, which could lead to impairment of hippocampus-dependent spatial memory. To assess the effects of mission-relevant (20-60 cGy) doses of 1 GeV/u (56)Fe particles on hippocampus-dependent spatial memory, male Wistar rats either received sham treatment or were irradiated and tested 3 months later in the Barnes maze test. Compared to the controls, rats that received 20, 40 and 60 cGy 1 GeV/u (56)Fe particles showed significant impairments in their ability to locate the escape box in the Barnes maze, which was manifested by progressively increasing escape latency times over the 3 days of testing. However, this increase was not due to a lack of motivation of the rats to escape, because the total number of head pokes (and especially incorrect head pokes) remained constant over the test period. Given that rats exposed to X rays did not exhibit spatial memory impairments until >10 Gy was delivered, the RBE for 1 GeV/u (56)Fe-particle-induced hippocampal spatial memory impairment is ∼50. These data demonstrate that mission-relevant doses of 1 GeV/u (56)Fe particles can result in severe deficits in hippocampus-dependent neurocognitive tasks, and the extreme sensitivity of these processes to 1 GeV/u (56)Fe particles must arise due to the perturbation of multiple processes in addition to killing neuronal cells.

  15. Low (20 cGy) doses of 1 GeV/u (56)Fe--particle radiation lead to a persistent reduction in the spatial learning ability of rats.

    PubMed

    Britten, Richard A; Davis, Leslie K; Johnson, Angela M; Keeney, Sonia; Siegel, Andrew; Sanford, Larry D; Singletary, Sylvia J; Lonart, György

    2012-02-01

    Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. (56)Fe. In previous ground-based experiments, exposure to high doses of HZE-particle radiation induced pronounced deficits in hippocampus-dependent learning and memory in rodents. Recent data suggest that glutamatergic transmission in hippocampal synaptosomes is impaired after low (60 cGy) doses of 1 GeV/u (56)Fe particles, which could lead to impairment of hippocampus-dependent spatial memory. To assess the effects of mission-relevant (20-60 cGy) doses of 1 GeV/u (56)Fe particles on hippocampus-dependent spatial memory, male Wistar rats either received sham treatment or were irradiated and tested 3 months later in the Barnes maze test. Compared to the controls, rats that received 20, 40 and 60 cGy 1 GeV/u (56)Fe particles showed significant impairments in their ability to locate the escape box in the Barnes maze, which was manifested by progressively increasing escape latency times over the 3 days of testing. However, this increase was not due to a lack of motivation of the rats to escape, because the total number of head pokes (and especially incorrect head pokes) remained constant over the test period. Given that rats exposed to X rays did not exhibit spatial memory impairments until >10 Gy was delivered, the RBE for 1 GeV/u (56)Fe-particle-induced hippocampal spatial memory impairment is ∼50. These data demonstrate that mission-relevant doses of 1 GeV/u (56)Fe particles can result in severe deficits in hippocampus-dependent neurocognitive tasks, and the extreme sensitivity of these processes to 1 GeV/u (56)Fe particles must arise due to the perturbation of multiple processes in addition to killing neuronal cells. PMID:22077338

  16. Reduction in the volume of water for ingesting orally disintegrating tablets of solifenacin (Vesicare® OD), and the clinical disintegration time of Vesicare® OD after unit-dose packaging.

    PubMed

    Uchida, Shinya; Yoshita, Tomohiro; Namiki, Noriyuki

    2013-03-25

    This study aimed to determine the amount of water required for ingesting an orally disintegrating tablet (ODT) of solifenacin (Vesicare(®), VES) and VES conventional tablets (VES-CT). We measured the disintegration time of VES-ODT in the oral cavity (clinical disintegration time) before and after unit-dose packaging. Thirty healthy volunteers participated in this randomized crossover trial. The participants were asked to drink water during the intake placebos of VES and after the disintegration of placebos of VES-ODT in their oral cavity. The amounts of water required for ingesting placebos of VES-CT and of VES-ODT were 42.8±27.0 mL and 20.0±23.7 mL, respectively, which indicated that the amount of water required for ingesting ODTs was significantly lesser than that for ingesting CTs. Furthermore, 5 (16.7%) participants did not require water for ingesting the ODTs. Clinical disintegration time of VES-ODT was 21.4s in 10 healthy volunteers. This clinical disintegration time did not change significantly after unit-dose packaging or subsequent storage for 56 days. This study showed that the amount of water required for ingesting VES-ODT is lower than that for ingesting VES-CT.

  17. Radiation Dose-Volume Effects of Optic Nerves and Chiasm

    SciTech Connect

    Mayo, Charles; Martel, Mary K.; Marks, Lawrence B.; Flickinger, John; Nam, Jiho; Kirkpatrick, John

    2010-03-01

    Publications relating radiation toxicity of the optic nerves and chiasm to quantitative dose and dose-volume measures were reviewed. Few studies have adequate data for dose-volume outcome modeling. The risk of toxicity increased markedly at doses >60 Gy at {approx}1.8 Gy/fraction and at >12 Gy for single-fraction radiosurgery. The evidence is strong that radiation tolerance is increased with a reduction in the dose per fraction. Models of threshold tolerance were examined.

  18. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    SciTech Connect

    Fritz, Peter; Kraus, Hans-Joerg; Muehlnickel, Werner; Sassmann, Volker; Hering, Werner; Strauch, Konstantin

    2010-09-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTV enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of {>=}20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.

  19. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials

    PubMed Central

    Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-01-01

    Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682

  20. Dual-axis rotational coronary angiography can reduce peak skin dose and scattered dose: a phantom study.

    PubMed

    Liu, Huiliang; Jin, Zhigeng; Deng, Yunpeng; Jing, Limin

    2014-07-08

    The purpose of this study was to evaluate peak skin dose received by the patient and scattered dose to the operator during dual-axis rotational coronary angiography (DARCA), and to compare with those of standard coronary angiography (SA). An anthropomorphic phantom was used to simulate a patient undergoing diagnostic coronary angiography. Cine imaging was applied on the phantom for 2 s, 3 s, and 5 s in SA projections to mimic clinical situations with normal vessels, and uncomplicated and complicated coronary lesions. DARCA was performed in two curved trajectories around the phantom. During both SA and DARCA, peak skin dose was measured with thermoluminescent dosimeter arrays and scattered dose with a dosimeter at predefined height (approximately at the level of left eye) at the operator's location. Compared to SA, DARCA was found lower in both peak skin dose (range: 44%-82%, p < 0.001) and scattered dose (range: 40%-70%, p < 0.001). The maximal reductions were observed in the set mimicking complicated lesion examinations (82% reduction for peak skin dose, p < 0.001; 70% reduction for scattered dose, p < 0.001). DARCA reduces both peak skin dose and scattered dose in comparison to SA. The benefi t of radiation dose reduction could be especially signifi cant in complicated lesion examinations due to large reduction in X-ray exposure time. The use of DARCA could, therefore, be recommended in clinical practice to minimize radiation dose.

  1. Waste Reduction.

    ERIC Educational Resources Information Center

    Bray, Marilyn; And Others

    1996-01-01

    Presents activities that focus on waste reduction in the school and community. The ideas are divided into grade level categories. Sample activities include Techno-Trash, where children use tools to take apart broken appliances or car parts, then reassemble them or build new creations. Activities are suggested for areas including language arts and…

  2. Remote Dose-Dependent Effects of Dry Needling at Distant Myofascial Trigger Spots of Rabbit Skeletal Muscles on Reduction of Substance P Levels of Proximal Muscle and Spinal Cords

    PubMed Central

    Hsieh, Yueh-Ling; Liu, Szu-Yu; Hong, Chang-Zern

    2014-01-01

    Background. Dry needling at distant myofascial trigger points is an effective pain management in patients with myofascial pain. However, the biochemical effects of remote dry needling are not well understood. This study evaluates the remote effects of dry needling with different dosages on the expressions of substance P (SP) in the proximal muscle, spinal dorsal horns of rabbits. Methods. Male New Zealand rabbits (2.5–3.0 kg) received dry needling at myofascial trigger spots of a gastrocnemius (distant muscle) in one (1D) or five sessions (5D). Bilateral biceps femoris (proximal muscles) and superficial laminaes of L5-S2, T2-T5, and C2-C5 were sampled immediately and 5 days after dry needling to determine the levels of SP using immunohistochemistry and western blot. Results. Immediately after dry needling for 1D and 5D, the expressions of SP were significantly decreased in ipsilateral biceps femoris and bilateral spinal superficial laminaes (P < .05). Five days after dry needling, these reduced immunoactivities of SP were found only in animals receiving 5D dry needling (P < .05). Conclusions. This remote effect of dry needling involves the reduction of SP levels in proximal muscle and spinal superficial laminaes, which may be closely associated with the control of myofascial pain. PMID:25276839

  3. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  4. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    SciTech Connect

    Berge, T.I.; Wohni, T.

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  5. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  6. Benchmark Dose Modeling

    EPA Science Inventory

    Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

  7. Budget constraint and vaccine dosing: a mathematical modelling exercise

    PubMed Central

    2014-01-01

    Background Increasing the number of vaccine doses may potentially improve overall efficacy. Decision-makers need information about choosing the most efficient dose schedule to maximise the total health gain of a population when operating under a constrained budget. The objective of this study is to identify the most efficient vaccine dosing schedule within a fixed vaccination budget from a healthcare payer perspective. Methods An optimisation model is developed in which maximizing the disease reduction is the functional objective and the constraint is the vaccination budget. The model allows variation in vaccination dosing numbers, in cost difference per dose, in vaccine coverage rate, and in vaccine efficacy. We apply the model using the monovalent rotavirus vaccine as an example. Results With a fixed budget, a 2-dose schedule for vaccination against rotavirus infection with the monovalent vaccine results in a larger reduction in disease episodes than a 3-dose scheme with the same vaccine under most circumstances. A 3-dose schedule would only be better under certain conditions: a cost reduction of >26% per dose, combined with vaccine efficacy improvement of ≥5% and a target coverage rate of 75%. Substantial interaction is observed between cost reduction per dose, vaccine coverage rate, and increased vaccine efficacy. Sensitivity analysis shows that the conditions required for a 3-dose strategy to be better than a 2-dose strategy may seldom occur when the budget is fixed. The model does not consider vaccine herd effect, precise timing for additional doses, or the effect of natural immunity development. Conclusions Under budget constraint, optimisation modelling is a helpful tool for a decision-maker selecting the most efficient vaccination dosing schedule. The low dosing scheme could be the optimal option to consider under the many scenarios tested. The model can be applied under many different circumstances of changing dosing schemes with single or multiple

  8. Reducing CT dose in myocardial perfusion SPECT/CT.

    PubMed

    O'Shaughnessy, Emma; Dixon, Kat L

    2015-11-01

    The aim of this study was to reduce the radiation dose arising from computed tomography (CT) attenuation correction to single photon emission computed tomography myocardial perfusion imaging studies without adversely affecting its accuracy. Using the Perspex CTDI phantom with the Xi detector to measure dose, CT scans were acquired using the Siemens Symbia T over the full range of CT settings available. Using the default setting 'AECmean', the measured dose at the centre of the phantom was 1.68 mGy and the breast dose from the scout view was 0.30 mGy. The lowest dose was achieved using the dose modulation setting in which the doses were reduced to 1.21 mGy and undetectable (<0.01 mGy), respectively. To observe the effect of changing these settings, 30 patients received a stress scan with default CT settings and a rest scan utilizing single photon emission computed tomography-guided CT and the dose modulation CT settings. Results showed a mean effective dose reduction of 23.6%. The dose reduction was greatest for larger patients, with the largest dose reduction for one patient being 72%. There was no apparent difference in attenuation correction between the two sets of resultant images. These new lower-dose settings are now applied to all clinical myocardial perfusion imaging studies. PMID:26302461

  9. From cellular doses to average lung dose.

    PubMed

    Hofmann, W; Winkler-Heil, R

    2015-11-01

    Sensitive basal and secretory cells receive a wide range of doses in human bronchial and bronchiolar airways. Variations of cellular doses arise from the location of target cells in the bronchial epithelium of a given airway and the asymmetry and variability of airway dimensions of the lung among airways in a given airway generation and among bronchial and bronchiolar airway generations. To derive a single value for the average lung dose which can be related to epidemiologically observed lung cancer risk, appropriate weighting scenarios have to be applied. Potential biological weighting parameters are the relative frequency of target cells, the number of progenitor cells, the contribution of dose enhancement at airway bifurcations, the promotional effect of cigarette smoking and, finally, the application of appropriate regional apportionment factors. Depending on the choice of weighting parameters, detriment-weighted average lung doses can vary by a factor of up to 4 for given radon progeny exposure conditions.

  10. Selective reduction.

    PubMed

    Evans, Mark I; Krivchenia, Eric L; Gelber, Shari E; Wapner, Ronald J

    2003-03-01

    Multifetal pregnancy reduction continues to be controversial. Attitudes about MFPR have not, in our experience, followed a simple "pro-choice/pro-life" dichotomy. As far back as the mid to late 1980s, opinions about the subject were varied. Even then, when much less was known about the subject, opinions did not always parallel the usual pro-choice/theological boundaries. We believe that the real debate over the next 5 to 10 years will not be whether or not MFPR should be performed with triplets or more. The fact is that MFPR does improve those outcomes. A serious debate will emerge over whether or not it is appropriate to offer MFPR routinely for twins, even natural ones, for whom the outcome is commonly considered "good enough." Our data suggest that reduction of twins to a singleton improves the outcome of the remaining fetus. No consensus on appropriateness of routine 2-1 reductions is ever likely to emerge. The ethical issues surrounding MFPR will always be controversial. Over the years, much has been written on the subject. Opinions will always vary from outraged condemnation to complete acceptance. No short paragraph could do justice to the subject other than to state that most proponents do not believe this is a frivolous procedure but do believe in the principle of proportionality ie, therapy to achieve the most good for the least harm). Over the past 15 years, MFPR has become a well-established and integral part of infertility therapy and attempts to deal with the sequelae of aggressive infertility management. In the mid 1980s, the risks and benefits of the procedure could only be guessed. We now have clear and precise data on the risks and benefits of the procedure and an understanding that the risks increase substantially with the starting and finishing number of fetuses in multifetal pregnancies. The collaborative loss rate numbers (ie, 4.5% for triplets, 8% for quadruplets. 11% for quintuplets, and 15% for sextuplets or more) seem reasonable to present

  11. Telmisartan and Insulin Resistance in HIV (TAILoR): protocol for a dose-ranging phase II randomised open-labelled trial of telmisartan as a strategy for the reduction of insulin resistance in HIV-positive individuals on combination antiretroviral therapy

    PubMed Central

    Pushpakom, Sudeep P; Taylor, Claire; Kolamunnage-Dona, Ruwanthi; Spowart, Catherine; Vora, Jiten; García-Fiñana, Marta; Kemp, Graham J; Whitehead, John; Jaki, Thomas; Khoo, Saye; Williamson, Paula; Pirmohamed, Munir

    2015-01-01

    Introduction Telmisartan, an angiotensin receptor blocker, has beneficial effects on insulin resistance and cardiovascular health in non-HIV populations. This trial will evaluate whether telmisartan can reduce insulin resistance in HIV-positive individuals on combination antiretroviral therapy. Methods and analysis This is a phase II, multicentre, randomised, open-labelled, dose-ranging trial of telmisartan in 336 HIV-positive individuals over a period of 48 weeks. The trial will use an adaptive design to inform the optimal dose of telmisartan. Patients will be randomised initially 1:1:1:1 to receive one of the three doses of telmisartan (20, 40 and 80 mg) or no intervention (control). An interim analysis will be performed when half of the planned maximum of 336 patients have been followed up for at least 24 weeks. The second stage of the study will depend on the results of interim analysis. The primary outcome measure is a reduction in insulin resistance (as measured by Homeostatic Model Assessment—Insulin Resistance (HOMA-IR)) in telmisartan treated arm(s) after 24 weeks of treatment in comparison with the non-intervention arm. The secondary outcome measures include changes in lipid profile; body fat redistribution (as measured by MRI); plasma and urinary levels of various biomarkers of cardiometabolic and renal health at 12, 24 and 48 weeks. Serious adverse events will be compared between different telmisartan treated dose arm(s) and the control arm. Ethics and dissemination The study, this protocol and related documents have been approved by the National Research Ethics Service Committee North West—Liverpool Central (Ref: 12/NW/0214). On successful completion, study data will be shared with academic collaborators. The findings from TAILoR will be disseminated through peer-reviewed publications, at scientific conferences, the media and through patient and public involvement. Trial registration numbers 04196/0024/001-0001; EUDRACT: 2012

  12. Organ Dose and Attributable Cancer Risk in Lung Cancer Screening with Low-Dose Computed Tomography

    PubMed Central

    Saltybaeva, Natalia; Martini, Katharina; Frauenfelder, Thomas; Alkadhi, Hatem

    2016-01-01

    Purpose Lung cancer screening with CT has been recently recommended for decreasing lung cancer mortality. The radiation dose of CT, however, must be kept as low as reasonably achievable for reducing potential stochastic risks from ionizing radiation. The purpose of this study was to calculate individual patients’ lung doses and to estimate cancer risks in low-dose CT (LDCT) in comparison with a standard dose CT (SDCT) protocol. Materials and Methods This study included 47 adult patients (mean age 63.0 ± 5.7 years) undergoing chest CT on a third-generation dual-source scanner. 23/47 patients (49%) had a non-enhanced chest SDCT, 24 patients (51%) underwent LDCT at 100 kVp with spectral shaping at a dose equivalent to a chest x-ray. 3D-dose distributions were obtained from Monte Carlo simulations for each patient, taking into account their body size and individual CT protocol. Based on the dose distributions, patient-specific lung doses were calculated and relative cancer risk was estimated according to BEIR VII recommendations. Results As compared to SDCT, the LDCT protocol allowed for significant organ dose and cancer risk reductions (p<0.001). On average, lung dose was reduced from 7.7 mGy to 0.3 mGy when using LDCT, which was associated with lowering of the cancer risk from 8.6 to 0.35 per 100’000 cases. A strong linear correlation between lung dose and patient effective diameter was found for both protocols (R2 = 0.72 and R2 = 0.75 for SDCT and LDCT, respectively). Conclusion Use of a LDCT protocol for chest CT with a dose equivalent to a chest x-ray allows for significant lung dose and cancer risk reduction from ionizing radiation. PMID:27203720

  13. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  14. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group. PMID:26980800

  15. Use of effective dose.

    PubMed

    Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group.

  16. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure.

    PubMed

    Thorneloe, Kevin S; Cheung, Mui; Bao, Weike; Alsaid, Hasan; Lenhard, Stephen; Jian, Ming-Yuan; Costell, Melissa; Maniscalco-Hauk, Kristeen; Krawiec, John A; Olzinski, Alan; Gordon, Earl; Lozinskaya, Irina; Elefante, Lou; Qin, Pu; Matasic, Daniel S; James, Chris; Tunstead, James; Donovan, Brian; Kallal, Lorena; Waszkiewicz, Anna; Vaidya, Kalindi; Davenport, Elizabeth A; Larkin, Jonathan; Burgert, Mark; Casillas, Linda N; Marquis, Robert W; Ye, Guosen; Eidam, Hilary S; Goodman, Krista B; Toomey, John R; Roethke, Theresa J; Jucker, Beat M; Schnackenberg, Christine G; Townsley, Mary I; Lepore, John J; Willette, Robert N

    2012-11-01

    Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.

  17. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury

    NASA Astrophysics Data System (ADS)

    Xu, Zhun; Zhu, Quing; Wang, Lihong V.

    2011-06-01

    For the first time, we have implemented photoacoustic tomography (PAT) to image the water content of an edema in vivo. We produced and imaged a cold-induced cerebral edema transcranially, then obtained blood vessel and water accumulation images at 610 and 975 nm, respectively. We tracked the changes at 12, 24, and 36 h after the cold injury. The blood volume decreased after the cold injury, and the maximum area of edema was observed 24 h after the cold injury. We validated PAT of the water content of the edema through magnetic Resonance Imaging and the water spectrum from the spectrophotometric measurement.

  18. How to calculate the dose of chemotherapy

    PubMed Central

    Gurney, H

    2002-01-01

    Body surface area-dosing does not account for the complex processes of cytotoxic drug elimination. This leads to an unpredictable variation in effect. Overdosing is easily recognised but it is possible that unrecognised underdosing is more common and may occur in 30% or more of patients receiving standard regimen. Those patients who are inadvertently underdosed are at risk of a significantly reduced anticancer effect. Using published data, it can be calculated that there is an almost 20% relative reduction in survival for women receiving adjuvant chemotherapy for breast cancer as a result of unrecognised underdosing. Similarly, the cure rate of cisplatin-based chemotherapy for advanced testicular cancer may be reduced by as much as 10%. The inaccuracy of body surface area-dosing is more than an inconvenience and it is important that methods for more accurate dose calculation are determined, based on the known drug elimination processes for cytotoxic chemotherapy. Twelve rules for dose calculation of chemotherapy are given that can be used as a guideline until better dose-calculation methods become available. Consideration should be given to using fixed dose guidelines independent of body surface area and based on drug elimination capability, both as a starting dose and for dose adjustment, which may have accuracy, safety and financial advantages. British Journal of Cancer (2002) 86, 1297–1302. DOI: 10.1038/sj/bjc/6600139 www.bjcancer.com © 2002 Cancer Research UK PMID:11953888

  19. 5-ASA Dose-Response

    PubMed Central

    Katz, Seymour; Lichtenstein, Gary R; Safdi, Michael A

    2010-01-01

    Mesalamine (5-aminosalicylic acid; 5-ASA) represents the cornerstone of first-line therapy for mild-to-moderate ulcerative colitis (UC). Current guidelines suggest that the combination of oral and rectal therapies provide optimal symptom resolution and effectively maintain remission in the majority of these patients. Although effective, most oral 5-ASA formulations have a high pill burden and rectal therapies are associated with low adherence. Recent research has examined patterns of compliance, as well as the efficacy of different dose levels of 5-ASA in terms of symptom resolution, the maintenance of remission, and improvements in quality of life. The ASCEND I, II, and III trials found that doses of 4.8 g/day are more effective than 2.4 g/day doses in patients with moderate disease, those with previous steroid use, and those with a history of multiple medications. The benefits of effective long-term 5-ASA therapy include the avoidance of more costly and potentially toxic drugs (such as corticosteroids and biologic therapies), as well as improvements in quality of life, reductions in the need for future colectomy, and a lower risk of developing colorectal cancer. PMID:20567558

  20. Low-dose digital urography in the pregnant patient

    SciTech Connect

    Albert, S.A.; Richter, J.O.; Rosenfield, A.T.

    1987-04-01

    In the pregnant patient when visualization of the ureters is requested, excretory urography is often ordered. We propose the use of digital radiography using single exposure as an alternative to conventional urography. This technique allows significant dose reduction while visualizing the entire urinary tract. It can be performed on most current-generation computerized tomographic scanners. In addition to dose reduction, the ability to manipulate, magnify, and avoid repeat exposures makes this an attractive alternative to the conventional film-screen technique.

  1. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  2. Patient Dose Management: Focus on Practical Actions

    PubMed Central

    2016-01-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  3. Patient Dose Management: Focus on Practical Actions.

    PubMed

    Park, Michael Yong; Jung, Seung Eun

    2016-02-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  4. Doses from radiation exposure.

    PubMed

    Menzel, H-G; Harrison, J D

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  5. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.

    PubMed

    Larson, David B

    2014-10-01

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach.

  6. Eye lens dose in interventional cardiology.

    PubMed

    Principi, S; Delgado Soler, C; Ginjaume, M; Beltran Vilagrasa, M; Rovira Escutia, J J; Duch, M A

    2015-07-01

    The ICRP has recently recommended reducing the occupational exposure dose limit for the lens of the eye to 20 mSv y(-1), averaged over a period of 5 y, with no year exceeding 50 mSv, instead of the current 150 mSv y(-1). This reduction will have important implications for interventional cardiology and radiology (IC/IR) personnel. In this work, lens dose received by a staff working in IC is studied in order to determine whether eye lens dose monitoring or/and additional radiological protection measures are required. Eye lens dose exposure was monitored in 10 physicians and 6 nurses. The major IC procedures performed were coronary angiography and percutaneous transluminal coronary angioplasty. The personnel were provided with two thermoluminescent dosemeters (TLDs): one calibrated in terms of Hp(3) located close to the left ear of the operator and a whole-body dosemeter calibrated in terms of Hp(10) and Hp(0.07) positioned on the lead apron. The estimated annual eye lens dose for physicians ranged between 8 and 60 mSv, for a workload of 200 procedures y(-1). Lower doses were collected for nurses, with estimated annual Hp(3) between 2 and 4 mSv y(-1). It was observed that for nurses the Hp(0.07) measurement on the lead apron is a good estimate of eye lens dose. This is not the case for physicians, where the influence of both the position and use of protective devices such as the ceiling shield is very important and produces large differences among doses both at the eyes and on the thorax. For physicians, a good correlation between Hp(3) and dose area product is shown. PMID:25809107

  7. Dose and risk in diagnostic radiology: How big How little Lecture Number 16

    SciTech Connect

    Webster, E.W.

    1992-01-01

    This lecture is divided into two parts: dose and risk. The dose segment is technical and noncontroversial since it deals with straightforward measurements or calculations which do not depend on unproven hypotheses. Some conflicting contributions of low dose epidemiological studies to the appraisal of risk are briefly presented. Attention is focused on the following: dose reduction in radiography; dose reduction in fluoroscopy; limitations of dose reduction; estimated radiation risks for diagnostic radiology examinations; excess breast cancer following X-ray examinations for scoliosis; dose-response relation for human mammary cancer; lung cancer from protracted X-irradiation; leukemia and diagnostic X-ray exposure; and thyroid cancer after diagnostic dose of I-131.

  8. Synchronized dynamic dose reconstruction

    SciTech Connect

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-15

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined.

  9. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    that were not adjusted by patient size. Additionally, considerable differences were noted in ED{sub adj} distributions between scanners, with scanners employing iterative reconstruction exhibiting significantly lower ED{sub adj} (range: 9%-64%). Finally, a significant difference (up to 59%) in ED{sub adj} distributions was observed between institutions, indicating the potential for dose reduction. Conclusions: The authors developed a robust automated size-specific radiation dose monitoring program for CT. Using this program, significant differences in ED{sub adj} were observed between scanner models and across institutions. This new dose monitoring program offers a unique tool for improving quality assurance and standardization both within and across institutions.

  10. UGT genotyping in belinostat dosing.

    PubMed

    Goey, Andrew K L; Figg, William D

    2016-03-01

    Certain genetic polymorphisms of UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) can reduce gene expression (*28, *60, *93) or activity (*6), thereby altering the pharmacokinetics, pharmacodynamics, and the risk of toxicities of UGT1A1 substrates, of which irinotecan is a widely-described example. This review presents an overview of the clinical effects of UGT1A1 polymorphisms on the pharmacology of UGT1A1 substrates, with a special focus on the novel histone deacetylase inhibitor belinostat. Belinostat, approved for the treatment of peripheral T-cell lymphoma, is primarily glucuronidated by UGT1A1. Recent preclinical and clinical data showed that UGT1A1*28 was associated with reduced glucuronidation in human liver microsomes, while in a retrospective analysis of a Phase I trial with patients receiving belinostat UGT1A1*60 was predominantly associated with increased belinostat plasma concentrations. Furthermore, both UGT1A1*28 and *60 variants were associated with increased incidence of thrombocytopenia and neutropenia. Using population pharmacokinetic analysis a 33% dose reduction has been proposed for patients carrying UGT1A1 variant alleles. Clinical effects of this genotype-based dosing recommendation is currently prospectively being investigated. Overall, the data suggest that UGT1A1 genotyping is useful for improving belinostat therapy. PMID:26773202

  11. Calculating drug doses.

    PubMed

    2016-09-01

    Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351

  12. Ibuprofen dosing for children

    MedlinePlus

    Motrin; Advil ... Ibuprofen is a type of nonsteroidal anti-inflammatory drug (NSAID). It can help: Reduce aches, pain, sore ... Ibuprofen can be taken as liquid or chewable tablets. To give the correct dose, you need to ...

  13. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    SciTech Connect

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-04-15

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000

  14. Optimal Dose of Vitamin D3 400 I.U. for Average Adults has A Significant Anti-Cancer Effect, While Widely Used 2000 I.U. or Higher Promotes Cancer: Marked Reduction of Taurine & 1α, 25(OH)2D3 Was Found In Various Cancer Tissues and Oral Intake of Optimal Dose of Taurine 175mg for Average Adults, Rather Than 500mg, Was Found to Be A New Potentially Safe and More Effective Method of Cancer Treatment.

    PubMed

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Abdallah; Duvvi, Harsha; Yapor, Dario; Shimotsuura, Yasuhiro; Ohki, Motomu

    2016-01-01

    During the past 10 years, the author had found that the optimal dose of Vitamin D3 400 I.U. has safe & effective anticancer effects, while commonly used 2000-5000 I.U. of Vit. D3 often creates a 2-3 time increase in cancer markers. We examined the concentration of Taurine in normal internal organs and in cancer using Bi-Digital O-Ring Test. We found that Taurine levels in normal tissue are 4-6ng. But, the amount of Taurine of average normal value of 5.0-5.25ng was strikingly reduced to 0.0025-0.0028ng in this study of several examples in adenocarcinomas of the esophagus, stomach, pancreas, colon, prostate, and lung, as well as breast cancer. The lowest Taurine levels of 0.0002-0.0005ng were found in so called Zika virus infected babies from Brazil with microcephaly. While Vitamin D3 receptor stimulant 1α, 25 (OH)2D3 in normal tissues was 0.45-0.53ng, they were reduced to 0.025-0.006ng in cancers (1/100th-1/200th of normal value), particularly in various adenocarcinomas. All of these adenocarcinomas had about 1500ng HPV-16 viral infection. In 500 breast cancers, about 97% had HPV-16. The optimal dose of Taurine for average adult has been found to be about 175mg, rather than the widely used 500mg. In addition, since Taurine is markedly reduced to close to 1/1000th-1/2000th of its normal value in these cancer tissues, we examined the effect of the optimal dose of Taurine on cancer patients. Optimal dose of Taurine produced a very significant decrease in cancer-associated parameters, such as Oncogene C-fosAb2 & Integrin α5β1 being reduced to less than 1/1,000th, and 8-OH-dG (which increases in the presence of DNA mutation) reduced to less than 1/10th. The optimal dose of Taurine 175mg for average adult various cancer patient 3 times a day alone provide beneficial effects with very significant anti-cancer effects with strikingly increased urinary excretion of bacteria, viruses, & funguses, asbestos, toxic metals & other toxic substances. However, optimal doses of

  15. Optimal Dose of Vitamin D3 400 I.U. for Average Adults has A Significant Anti-Cancer Effect, While Widely Used 2000 I.U. or Higher Promotes Cancer: Marked Reduction of Taurine & 1α, 25(OH)2D3 Was Found In Various Cancer Tissues and Oral Intake of Optimal Dose of Taurine 175mg for Average Adults, Rather Than 500mg, Was Found to Be A New Potentially Safe and More Effective Method of Cancer Treatment.

    PubMed

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Abdallah; Duvvi, Harsha; Yapor, Dario; Shimotsuura, Yasuhiro; Ohki, Motomu

    2016-01-01

    During the past 10 years, the author had found that the optimal dose of Vitamin D3 400 I.U. has safe & effective anticancer effects, while commonly used 2000-5000 I.U. of Vit. D3 often creates a 2-3 time increase in cancer markers. We examined the concentration of Taurine in normal internal organs and in cancer using Bi-Digital O-Ring Test. We found that Taurine levels in normal tissue are 4-6ng. But, the amount of Taurine of average normal value of 5.0-5.25ng was strikingly reduced to 0.0025-0.0028ng in this study of several examples in adenocarcinomas of the esophagus, stomach, pancreas, colon, prostate, and lung, as well as breast cancer. The lowest Taurine levels of 0.0002-0.0005ng were found in so called Zika virus infected babies from Brazil with microcephaly. While Vitamin D3 receptor stimulant 1α, 25 (OH)2D3 in normal tissues was 0.45-0.53ng, they were reduced to 0.025-0.006ng in cancers (1/100th-1/200th of normal value), particularly in various adenocarcinomas. All of these adenocarcinomas had about 1500ng HPV-16 viral infection. In 500 breast cancers, about 97% had HPV-16. The optimal dose of Taurine for average adult has been found to be about 175mg, rather than the widely used 500mg. In addition, since Taurine is markedly reduced to close to 1/1000th-1/2000th of its normal value in these cancer tissues, we examined the effect of the optimal dose of Taurine on cancer patients. Optimal dose of Taurine produced a very significant decrease in cancer-associated parameters, such as Oncogene C-fosAb2 & Integrin α5β1 being reduced to less than 1/1,000th, and 8-OH-dG (which increases in the presence of DNA mutation) reduced to less than 1/10th. The optimal dose of Taurine 175mg for average adult various cancer patient 3 times a day alone provide beneficial effects with very significant anti-cancer effects with strikingly increased urinary excretion of bacteria, viruses, & funguses, asbestos, toxic metals & other toxic substances. However, optimal doses of

  16. Dose spectra from energetic particles and neutrons

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary

    2013-10-01

    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  17. Calculating lens dose and surface dose rates from 90Sr ophthalmic applicators using Monte Carlo modeling.

    PubMed

    Gleckler, M; Valentine, J D; Silberstein, E B

    1998-01-01

    Using a 90Sr applicator for brachytherapy for the reduction of recurrence rates after pterygium excisions has been an effective therapeutic procedure. Accurate knowledge of the dose being applied to the affected area on the sclera has been lacking, and for decades inaccurate estimates for lens dose have thus been made. Small errors in the assumptions which are required to make these estimates lead to dose rates changing exponentially because of the attenuation of beta particles. Monte Carlo simulations have been used to evaluate the assumptions that are now being used for the calculation of the surface dose rate and the corresponding determination of lens dose. For an ideal 90Sr applicator, results from this study indicate dose rates to the most radiosensitive areas of the lens ranging from 8.8 to 15.5 cGy/s. This range is based on different eye dimensions that ultimately corresponds to a range in distance between the applicator surface and the germinative epithelium of the lens of 2-3 mm. Furthermore, the conventional 200 cGy threshold for whole lens cataractogenesis is questioned for predicting complications from scleral brachytherapy. The dose to the germinative epithelium should be used for studying radiocataractogenesis.

  18. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  19. Improved linac dose distributions for radiosurgery with elliptically shaped fields.

    PubMed

    Serago, C F; Lewin, A A; Houdek, P V; Gonzalez-Arias, S; Abitbol, A A; Marcial-Vega, V A; Pisciotti, V; Schwade, J G

    1991-10-01

    Stereotactic radiosurgery techniques for a linear accelerator typically use circular radiation fields to produce an essentially spherical radiation distribution with a steep dose gradient. Target volumes are frequently irregular in shape, and circular distributions may irradiate normal tissues to high dose as well as the target volume. Improvements to the dose distribution have been made using multiple target points and optimizing the dose per arc to the target. A retrospective review of 20 radiosurgery patients has suggested that the use of elliptically shaped fields may further improve the match of the radiation distribution to the intended target volume. This hypothesis has been verified with film measurements of the radiation distribution obtained using elliptical radiation beam in a head phantom. Reductions of 40% of the high dose volume have been obtained with elliptical fields compared to circular fields without compromising the dose to the target volume. PMID:1938531

  20. [High dose rate brachytherapy].

    PubMed

    Aisen, S; Carvalho, H A; Chavantes, M C; Esteves, S C; Haddad, C M; Permonian, A C; Taier, M do C; Marinheiro, R C; Feriancic, C V

    1992-01-01

    The high dose rate brachytherapy uses a single source os 192Ir with 10Ci of nominal activity in a remote afterloading machine. This technique allows an outpatient treatment, without the inconveniences of the conventional low dose rate brachytherapy such as use of general anesthesia, rhachianesthesia, prolonged immobilization, and personal exposition to radiation. The radiotherapy department is now studying 5 basic treatment schemes concerning carcinomas of the uterine cervix, endometrium, lung, esophagus and central nervous system tumors. With the Micro Selectron HDR, 257 treatment sessions were done in 90 patients. Mostly were treated with weekly fractions, receiving a total of three to four treatments each. No complications were observed neither during nor after the procedure. Doses, fraction and ideal associations still have to be studied, so that a higher therapeutic ratio can be reached.

  1. Dose Calculation Spreadsheet

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  2. LADTAPXL Aqueous Dose Spreadsheet

    SciTech Connect

    Hamby, David M.; Simpkins, Ali A.; Jannik, G. T.

    1999-08-10

    LADTAPXL is an EXCEL spreadsheet model of the NRC computer code LADTAP. LADTAPXL calculates maximally exposed individual and population doses from chronic liquid releases. Environmental pathways include external exposure resulting from recreational activities on the Savannah River and ingestion of water, fish, and invertebrates of Savannah River origin.

  3. When is a dose not a dose

    SciTech Connect

    Bond, V.P.

    1991-01-01

    Although an enormous amount of progress has been made in the fields of radiation protection and risk assessment, a number of significant problems remain. The one problem which transcends all the rest, and which has been subject to considerable misunderstanding, involves what has come to be known as the 'linear non-threshold hypothesis', or 'linear hypothesis'. Particularly troublesome has been the interpretation that any amount of radiation can cause an increase in the excess incidence of cancer. The linear hypothesis has dominated radiation protection philosophy for more than three decades, with enormous financial, societal and political impacts and has engendered an almost morbid fear of low-level exposure to ionizing radiation in large segments of the population. This document presents a different interpretation of the linear hypothesis. The basis for this view lies in the evolution of dose-response functions, particularly with respect to their use initially in the context of early acute effects, and then for the late effects, carcinogenesis and mutagenesis. 11 refs., 4 figs. (MHB)

  4. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  5. Low-Dose Carcinogenicity Studies

    EPA Science Inventory

    One of the major deficiencies of cancer risk assessments is the lack of low-dose carcinogenicity data. Most assessments require extrapolation from high to low doses, which is subject to various uncertainties. Only 4 low-dose carcinogenicity studies and 5 low-dose biomarker/pre-n...

  6. Management of pediatric radiation dose using GE fluoroscopic equipment.

    PubMed

    Belanger, Barry; Boudry, John

    2006-09-01

    In this article, we present GE Healthcare's design philosophy and implementation of X-ray imaging systems with dose management for pediatric patients, as embodied in its current radiography and fluoroscopy and interventional cardiovascular X-ray product offerings. First, we present a basic framework of image quality and dose in the context of a cost-benefit trade-off, with the development of the concept of imaging dose efficiency. A set of key metrics of image quality and dose efficiency is presented, including X-ray source efficiency, detector quantum efficiency (DQE), detector dynamic range, and temporal response, with an explanation of the clinical relevance of each. Second, we present design methods for automatically selecting optimal X-ray technique parameters (kVp, mA, pulse width, and spectral filtration) in real time for various clinical applications. These methods are based on an optimization scheme where patient skin dose is minimized for a target desired image contrast-to-noise ratio. Operator display of skin dose and Dose-Area Product (DAP) is covered, as well. Third, system controls and predefined protocols available to the operator are explained in the context of dose management and the need to meet varying clinical procedure imaging demands. For example, fluoroscopic dose rate is adjustable over a range of 20:1 to adapt to different procedure requirements. Fourth, we discuss the impact of image processing techniques upon dose minimization. In particular, two such techniques, dynamic range compression through adaptive multiband spectral filtering and fluoroscopic noise reduction, are explored in some detail. Fifth, we review a list of system dose-reduction features, including automatic spectral filtration, virtual collimation, variable-rate pulsed fluoroscopic, grid and no-grid techniques, and fluoroscopic loop replay with store. In addition, we describe a new feature that automatically minimizes the patient-to-detector distance, along with an

  7. Treating acne with oral contraceptives: use of lower doses.

    PubMed

    Huber, Johannes; Walch, Katharina

    2006-01-01

    Oral contraceptives (OCs) have been shown to effectively treat acne. Clinical trials of various doses of ethinyl estradiol (EE) combined with progestins such as levonorgestrel, desogestrel, norgestimate, gestodene, cyproterone acetate and drospirenone in monophasic, triphasic and combiphasic formulations used to treat acne in women are reviewed here. Open-label and comparative studies beginning in the 1980s were the first to demonstrate objective and subjective reductions in the incidence of acne, severity of existing acne and seborrhea. Placebo-controlled trials have corroborated these findings with a trend toward effective acne treatment with declining doses of EE. Significant reductions in total, inflammatory and noninflammatory lesions compared with placebo have been demonstrated with an OC containing the low dose of 20 microg of EE. Collectively, these findings support the use of low-dose OCs for the treatment of acne. PMID:16371290

  8. MCNP variance reduction overview

    SciTech Connect

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code.

  9. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    PubMed Central

    Ware, J. H.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A. R.

    2012-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons. PMID:20726731

  10. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    SciTech Connect

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  11. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  12. Endothelial Effect of Statin Therapy at a High Dose Versus Low Dose Associated with Ezetimibe

    PubMed Central

    Garcia, Maristela Magnavita Oliveira; Varela, Carolina Garcez; Silva, Patricia Fontes; Lima, Paulo Roberto Passos; Góes, Paulo Meira; Rodrigues, Marilia Galeffi; Silva, Maria de Lourdes Lima Souza e; Ladeia, Ana Marice Teixeira; Guimarães, Armênio Costa; Correia, Luis Claudio Lemos

    2016-01-01

    Background The effect of statins on the endothelial function in humans remains under discussion. Particularly, it is still unclear if the improvement in endothelial function is due to a reduction in LDL-cholesterol or to an arterial pleiotropic effect. Objective To test the hypothesis that modulation of the endothelial function promoted by statins is primarily mediated by the degree of reduction in LDL-cholesterol, independent of the dose of statin administered. Methods Randomized clinical trial with two groups of lipid-lowering treatment (16 patients/each) and one placebo group (14 patients). The two active groups were designed to promote a similar degree of reduction in LDL-cholesterol: the first used statin at a high dose (80 mg, simvastatin 80 group) and the second used statin at a low dose (10 mg) associated with ezetimibe (10 mg, simvastatin 10/ezetimibe group) to optimize the hypolipidemic effect. The endothelial function was assessed by flow-mediated vasodilation (FMV) before and 8 weeks after treatment. Results The decrease in LDL-cholesterol was similar between the groups simvastatin 80 and simvastatin 10/ezetimibe (27% ± 31% and 30% ± 29%, respectively, p = 0.75). The simvastatin 80 group presented an increase in FMV from 8.4% ± 4.3% at baseline to 11% ± 4.2% after 8 weeks (p = 0.02). Similarly, the group simvastatin 10/ezetimibe showed improvement in FMV from 7.3% ± 3.9% to 12% ± 4.4% (p = 0.001). The placebo group showed no variation in LDL-cholesterol level or endothelial function. Conclusion The improvement in endothelial function with statin seems to depend more on a reduction in LDL-cholesterol levels, independent of the dose of statin administered, than on pleiotropic mechanisms. PMID:27142792

  13. Ultra Low Dose CT Pulmonary Angiography with Iterative Reconstruction

    PubMed Central

    Koehler, Thomas; Fingerle, Alexander A.; Brendel, Bernhard; Richter, Vivien; Rasper, Michael; Rummeny, Ernst J.; Noël, Peter B.; Münzel, Daniela

    2016-01-01

    Objective Evaluation of a new iterative reconstruction algorithm (IMR) for detection/rule-out of pulmonary embolism (PE) in ultra-low dose computed tomography pulmonary angiography (CTPA). Methods Lower dose CT data sets were simulated based on CTPA examinations of 16 patients with pulmonary embolism (PE) with dose levels (DL) of 50%, 25%, 12.5%, 6.3% or 3.1% of the original tube current setting. Original CT data sets and simulated low-dose data sets were reconstructed with three reconstruction algorithms: the standard reconstruction algorithm “filtered back projection” (FBP), the first generation iterative reconstruction algorithm iDose and the next generation iterative reconstruction algorithm “Iterative Model Reconstruction” (IMR). In total, 288 CTPA data sets (16 patients, 6 tube current levels, 3 different algorithms) were evaluated by two blinded radiologists regarding image quality, diagnostic confidence, detectability of PE and contrast-to-noise ratio (CNR). Results iDose and IMR showed better detectability of PE than FBP. With IMR, sensitivity for detection of PE was 100% down to a dose level of 12.5%. iDose and IMR showed superiority to FBP regarding all characteristics of subjective (diagnostic confidence in detection of PE, image quality, image noise, artefacts) and objective image quality. The minimum DL providing acceptable diagnostic performance was 12.5% (= 0.45 mSv) for IMR, 25% (= 0.89 mSv) for iDose and 100% (= 3.57 mSv) for FBP. CNR was significantly (p < 0.001) improved by IMR compared to FBP and iDose at all dose levels. Conclusion By using IMR for detection of PE, dose reduction for CTPA of up to 75% is possible while maintaining full diagnostic confidence. This would result in a mean effective dose of approximately 0.9 mSv for CTPA. PMID:27611830

  14. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  15. Optimizing parallel reduction operations

    SciTech Connect

    Denton, S.M.

    1995-06-01

    A parallel program consists of sets of concurrent and sequential tasks. Often, a reduction (such as array sum) sequentially combines values produced by a parallel computation. Because reductions occur so frequently in otherwise parallel programs, they are good candidates for optimization. Since reductions may introduce dependencies, most languages separate computation and reduction. The Sisal functional language is unique in that reduction is a natural consequence of loop expressions; the parallelism is implicit in the language. Unfortunately, the original language supports only seven reduction operations. To generalize these expressions, the Sisal 90 definition adds user-defined reductions at the language level. Applicable optimizations depend upon the mathematical properties of the reduction. Compilation and execution speed, synchronization overhead, memory use and maximum size influence the final implementation. This paper (1) Defines reduction syntax and compares with traditional concurrent methods; (2) Defines classes of reduction operations; (3) Develops analysis of classes for optimized concurrency; (4) Incorporates reductions into Sisal 1.2 and Sisal 90; (5) Evaluates performance and size of the implementations.

  16. The effect of decitabine dose modification and myelosuppression on response and survival in patients with myelodysplastic syndromes.

    PubMed

    Jabbour, Elias; Garcia-Manero, Guillermo; Cornelison, A Megan; Cortes, Jorge E; Ravandi, Farhad; Daver, Naval; Kadia, Tapan; Teng, Angela; Kantarjian, Hagop

    2015-02-01

    Myelosuppression in myelodysplastic syndromes (MDS) is associated with the hypomethylating agent decitabine. A retrospective pooled analysis of two decitabine clinical trials in patients with MDS conducted Cox regression analyses of red blood cell or platelet dependence, myelosuppression, dose modification, cycle delay or dose reduction, and survival effects. In 182 patients, baseline platelet dependence was a predictor for dose modification, reduction or delay, and death (modification: p=0.006, hazard ratio [HR]=2.04; reduction/delay: p=0.011, HR=2.00; death: p=0.003, HR=1.94). Patients with dose modifications had significantly higher overall response rates versus those with none (22% vs. 10%; p=0.015). Patients with no dose modifications had faster progression to acute myeloid leukemia (AML) versus patients with dose modifications (p=0.004). Without dose modifications, patients tended to drop out due to disease progression or other reasons. Decitabine dose modifications on treatment may indicate response to treatment.

  17. Computed tomography dose optimisation in cystic fibrosis: A review

    PubMed Central

    Ferris, Helena; Twomey, Maria; Moloney, Fiachra; O’Neill, Siobhan B; Murphy, Kevin; O’Connor, Owen J; Maher, Michael

    2016-01-01

    Cystic fibrosis (CF) is the most common autosomal recessive disease of the Caucasian population worldwide, with respiratory disease remaining the most relevant source of morbidity and mortality. Computed tomography (CT) is frequently used for monitoring disease complications and progression. Over the last fifteen years there has been a six-fold increase in the use of CT, which has lead to a growing concern in relation to cumulative radiation exposure. The challenge to the medical profession is to identify dose reduction strategies that meet acceptable image quality, but fulfil the requirements of a diagnostic quality CT. Dose-optimisation, particularly in CT, is essential as it reduces the chances of patients receiving cumulative radiation doses in excess of 100 mSv, a dose deemed significant by the United Nations Scientific Committee on the Effects of Atomic Radiation. This review article explores the current trends in imaging in CF with particular emphasis on new developments in dose optimisation. PMID:27158420

  18. Analysis of radiation doses from operation of postulated commercial spent fuel transportation systems: Main report

    SciTech Connect

    Schneider, K.J.; Hostick, C.J.; Ross, W.A.; Peterson, R.W.; Smith, R.I.; Stiles, D.L.; Daling, P.M.; Weakley, S.A.; Grinde, R.B.; Young, J.R.

    1987-11-01

    This report contains a system study of estimated radiation doses to the public and workers resulting from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. The report contains a detailed breakdown of activities and a description of time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals are also estimated. A total of 17 alternatives and subalternatives to the postulated reference transportation system are identified, conceptualized, and their dose-reduction potentials and costs estimated. Resulting ratios of ..delta..cost/..delta..collective system dose for each alternative relative to the postulated reference transportation system are given. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. Major reductions in transportation system dose and cost are estimated to result from using higher-capacity rail and truck casks, and particularly when replacing legalweight truck casks with ''advanced design'' overweight truck casks. The greatest annual dose reduction to the highest exposed individual workers (i.e., at the repository) is estimated to be achieved by using remote handling equipment for the cask handling operations at the repository. Additional shielding is also effective in reducing doses to both radiation workers at the reactor and repository and to transport workers. 69 refs., 36 figs., 156 tabs.

  19. Low Dose Vaporized Cannabis Significantly Improves Neuropathic Pain

    PubMed Central

    Wilsey, Barth; Marcotte, Thomas D.; Deutsch, Reena; Gouaux, Ben; Sakai, Staci; Donaghe, Haylee

    2013-01-01

    We conducted a double-blind, placebo-controlled, crossover study evaluating the analgesic efficacy of vaporized cannabis in subjects, the majority of whom were experiencing neuropathic pain despite traditional treatment. Thirty-nine patients with central and peripheral neuropathic pain underwent a standardized procedure for inhaling either medium dose (3.53%), low dose (1.29%), or placebo cannabis with the primary outcome being VAS pain intensity. Psychoactive side-effects, and neuropsychological performance were also evaluated. Mixed effects regression models demonstrated an analgesic response to vaporized cannabis. There was no significant difference between the two active dose groups’ results (p>0.7). The number needed to treat (NNT) to achieve 30% pain reduction was 3.2 for placebo vs. low dose, 2.9 for placebo vs. medium dose, and 25 for medium vs. low dose. As these NNT are comparable to those of traditional neuropathic pain medications, cannabis has analgesic efficacy with the low dose being, for all intents and purposes, as effective a pain reliever as the medium dose. Psychoactive effects were minimal and well-tolerated, and neuropsychological effects were of limited duration and readily reversible within 1–2 hours. Vaporized cannabis, even at low doses, may present an effective option for patients with treatment-resistant neuropathic pain. PMID:23237736

  20. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  1. Dose-sensitive steroid-induced hyperglycaemia.

    PubMed

    Gannon, Craig; Dando, Nicholas

    2010-10-01

    Steroids cause significant but under-appreciated and poorly managed glucose intolerance. In this case we describe a patient with steroid-induced hyperglycaemia who obtained a large positive impact on glycaemic control from a small reduction in her steroid dose, sufficient to alleviate the need for insulin. Developments in the treatment of steroid-induced hyperglycaemia may mean that a more active approach needs to be considered when treating steroid-related diabetes in patients whose management is palliative. We advise checking for steroid-induced hyperglycaemia by testing capillary blood glucose values 2 hours after the lunchtime meal and recommend a single morning dose of long-acting insulin to treat the condition.

  2. SU-E-T-315: The Change of Optically Stimulated Luminescent Dosimeters (OSLDs) Sensitivity by Accumulated Dose and High Dose

    SciTech Connect

    Han, S; Jung, H; Kim, M; Ji, Y; Kim, K; Choi, S; Park, S; Yoo, H; Yi, C

    2014-06-01

    Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ∼780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulated dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.

  3. Increasing halothane concentrations reduce nitroprusside dose requirement.

    PubMed

    Bedford, R F

    1978-01-01

    There has been no description of the hemodynamic dose-response relationship between halothane and sodium nitroprusside (SNP), although these drugs are used together frequently for induction of deliberate hypotension. Utilizing aortic root cannulation and thermister-tipped pulmonary artery catheterization, this relationship was studied in 6 beagles receiving a standard 100 microgram/kg infusion of SNP solution administered at 3 different infusion rates (5, 10, and 20 microgram/kg/min) while anesthetized with 3 different concentrations of halothane (0.5, 1, and 2%). Sodium nitroprusside infusion resulted in dose-related reductions in mean arterial pressure, systemic vascular resistance, and left ventricular stroke work. Increasing concentrations of halothane significantly potentiated the hypotensive effects of SNP. Cardiac output increase as the SNP infusion rate increased, whereas increasing the halothane concentration resulted in a reduction of cardiac output at each SNP infusion rate studied. Pulmonary artery wedge pressure was significantly reduced by SNP infusion at all 3 halothane concentrations, whereas mean pulmonary artery pressure was unchanged. Arterial pH fell in response to each SNP infusion, from 7.46 at the beginning of the study to 7.32 at the end (p less than 0.001). Sodium nitroprusside predictably induced hypotension during halothane anesthesia at the cost of a dose-related metabolic acidosis. Increasing the depth of halothane anesthesia afforded a greater percentage reduction in arterial pressure at each SNP infusion rate studied. Metabolic acidosis, however, developed no more rapidly at 2% halothane than it did at 0.5 or 1%.

  4. Fluence field optimization for noise and dose objectives in CT

    SciTech Connect

    Bartolac, Steven; Graham, Sean; Siewerdsen, Jeff; Jaffray, David

    2011-05-15

    Purpose: Selecting the appropriate imaging technique in computed tomography (CT) inherently involves balancing the tradeoff between image quality and imaging dose. Modulation of the x-ray fluence field, laterally across the beam, and independently for each projection, may potentially meet user-prescribed, regional image quality objectives, while reducing radiation to the patient. The proposed approach, called fluence field modulated CT (FFMCT), parallels the approach commonly used in intensity-modulated radiation therapy (IMRT), except ''image quality plans'' replace the ''dose plans'' of IMRT. This work studies the potential noise and dose benefits of FFMCT via objective driven optimization of fluence fields. Methods: Experiments were carried out in simulation. Image quality plans were defined by specifying signal-to-noise ratio (SNR) criteria for regions of interest (ROIs) in simulated cylindrical and oblong water phantoms, and an anthropomorphic phantom with bone, air, and water equivalent regions. X-ray fluence field patterns were generated using a simulated annealing optimization method that attempts to achieve the spatially-dependent prescribed SNR criteria in the phantoms while limiting dose (to the volume or subvolumes). The resulting SNR and dose distributions were analyzed and compared to results using a bowtie filtered fluence field. Results: Compared to using a fixed bowtie filtered fluence, FFMCT achieved superior agreement with the target image quality objectives, and resulted in integral dose reductions ranging from 39 to 52%. Prioritizing dose constraints for specific regions of interest resulted in a preferential reduction of dose to those regions with some tradeoff in SNR, particularly where the target low dose regions overlapped with regions where high SNR was prescribed. The method appeared fairly robust under increased complexity and heterogeneity of the object structure. Conclusions: These results support that FFMCT has the potential to meet

  5. Enhanced Interaction between Warfarin and High-Dose Ketoconazole: A Case Report

    PubMed Central

    Jackevicius, Cynthia A.; Ton, Mannhu N.

    2009-01-01

    This case describes the increased anticoagulation effect associated with the use of high-dose ketoconazole. A 59-year-old man treated with warfarin for aortic valve replacement was prescribed high-dose ketoconazole and hydrocortisone for the treatment of prostate cancer. Despite lowering the warfarin dosage by 35% during the start of high dose ketoconazole, an additional dose reduction was required subsequently when the INR rose from 2.62 to 3.82 within nine days. After a total dose reduction of 43%, the INR returned to therapeutic range within two weeks. The Naranjo probability scale revealed a probable adverse reaction of increased anticoagulant effect associated with high dose ketoconazole. Due to the inhibition of warfarin metabolism by ketoconazole, patients taking high dose ketoconazole concomitantly with warfarin may need their warfarin dosage reduced by more than is currently recommended, as well as receive more frequent INR monitoring to avoid over anticoagulation. PMID:20029646

  6. CY 1995 radiation dose reconciliation report and resulting CY 1996 dose estimate for the 324 nuclear facility

    SciTech Connect

    Landsman, S.D.; Thornhill, R.E.; Peterson, C.A.

    1996-04-01

    In this report, the dose estimate for CY 1995 is reconciled by month wih actual doses received. Results of the reconciliation were used to revise estimates of worker dose for CY 1996. Resulting dose estimate for the facility is also included. Support for two major programs (B-Cell Cleanout and Surveillance and Maintenance) accounts for most of the exposure received by workers in the faility. Most of the expousre received by workers comes from work in the Radiochemical Engineering Complex airlock. In spite of schedule and work scope changes during CY 1995, dose estimates were close to actual exposures received. A number of ALARA measures were taken throughout the year; exposure reduction due to those was 20.6 Man-Rem, a 28% reduction from the CY 1995 estimate. Baseline estimates for various tasks in the facility were used to compile the CY 1996 dose estimate of 45.4 Man-Rem; facility goal for CY 1996 is to reduce worker dose by 20%, to 36.3 Man-Rem.

  7. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  8. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  9. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  10. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  11. Thyroid Dose During Neurointerventional Procedures: Does Lead Shielding Reduce the Dose?

    SciTech Connect

    Shortt, C. P.; Fanning, N. F.; Malone, L.; Thornton, J.; Brennan, P.; Lee, M. J.

    2007-09-15

    Purpose. To assess radiation dose to the thyroid in patients undergoing neurointerventional procedures and to evaluate dose reduction to the thyroid by lead shielding. Methods and Materials. A randomized patient study was undertaken to evaluate the dose reduction by thyroid lead shields and assess their practicality in a clinical setting. Sixty-five patients attending for endovascular treatment of arteriovenous malformations (AVMs) and aneurysms were randomized into one of 2 groups a) No Thyroid Shield and b) Thyroid Lead Shield. Two thermoluminescent dosimeters (TLDs) were placed over the thyroid gland (1 on each side) at constant positions on each patient in both groups. A thyroid lead shield (Pb eq. 0.5 mm) was placed around the neck of patients in the thyroid lead shield group after the neurointerventional radiologist had obtained satisfactory working access above the neck. The total dose-area-product (DAP) value, number and type of digital subtraction angiography (DSA) runs and fluoroscopy time were recorded for all patients. Results. Of the 72 patients who initially attended for neurointerventional procedures, 7 were excluded due to failure to consent or because of procedures involving access to the external carotid circulation. Of the remaining 65 who were randomized, a further 9 were excluded due to; procedureabandonment, unfeasible shield placement or shield interference with the procedure. Patient demographics included mean age of 47.9 yrs (15-74), F:M=1.4:1. Mean fluoroscopy time was 25.9 min. Mean DAP value was 13,134.8 cGy.cm{sup 2} and mean number of DSA runs was 13.4. The mean relative thyroid doses were significantly different (p< 0.001) between the unshielded (7.23 mSv/cGy2 x 105) and shielded groups (3.77 mSv/cGy2 x 105). A mean thyroid dose reduction of 48% was seen in the shielded group versus the unshielded group. Conclusion. Considerable doses to the thyroid are incurred during neurointerventional procedures, highlighting the need for

  12. Effective dose analysis of three-dimensional rotational angiography during catheter ablation procedures

    NASA Astrophysics Data System (ADS)

    Wielandts, J.-Y.; Smans, K.; Ector, J.; De Buck, S.; Heidbüchel, H.; Bosmans, H.

    2010-02-01

    There is increasing use of three-dimensional rotational angiography (3DRA) during cardiac ablation procedures. As compared with 2D angiography, a large series of images are acquired, creating the potential for high radiation doses. The aim of the present study was to quantify patient-specific effective doses. In this study, we developed a computer model to accurately calculate organ doses and the effective dose incurred during 3DRA image acquisition. The computer model simulates the exposure geometry and uses the actual exposure parameters, including the variation in tube voltage and current that is realized through the automatic exposure control (AEC). We performed 3DRA dose calculations in 42 patients referred for ablation on the Siemens Axiom Artis DynaCT system (Erlangen, Germany). Organ doses and effective dose were calculated separately for all projections in the course of the C-arm rotation. The influence of patient body mass index (BMI), dose-area product (DAP), collimation and dose per frame (DPF) rate setting on the calculated doses was also analysed. The effective dose was found to be 5.5 ± 1.4 mSv according to ICRP 60 and 6.6 ± 1.8 mSv according to ICRP 103. Effective dose showed an inversely proportional relationship to BMI, while DAP was nearly BMI independent. No simple conversion coefficient between DAP and effective dose could be derived. DPF reduction did not result in a proportional effective dose decrease. These paradoxical findings were explained by the settings of the AEC and the limitations of the x-ray tube. Collimation reduced the effective dose by more than 20%. Three-dimensional rotational angiography is associated with a definite but acceptable radiation dose that can be calculated for all patients separately. Their BMI is a predictor of the effective dose. The dose reduction achieved with collimation suggests that its use is imperative during the 3DRA procedure.

  13. Drag reduction in nature

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Moore, K. J.

    1991-01-01

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  14. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom

    PubMed Central

    Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC

    2013-01-01

    Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460

  15. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  16. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT.

    PubMed

    McNitt-Gray, Michael F

    2002-01-01

    This article describes basic radiation dose concepts as well as those specifically developed to describe the radiation dose from computed tomography (CT). Basic concepts of radiation dose are reviewed, including exposure, absorbed dose, and effective dose. Radiation dose from CT demonstrates variations within the scan plane and along the z axis because of its unique geometry and usage. Several CT-specific dose descriptors have been developed: the Multiple Scan Average Dose descriptor, the Computed Tomography Dose Index (CTDI) and its variations (CTDI(100), CTDI(w), CTDI(vol)), and the dose-length product. Factors that affect radiation dose from CT include the beam energy, tube current-time product, pitch, collimation, patient size, and dose reduction options. Methods of reducing the radiation dose to a patient from CT include reducing the milliampere-seconds value, increasing the pitch, varying the milliampere-seconds value according to patient size, and reducing the beam energy. The effective dose from CT can be estimated by using Monte Carlo methods to simulate CT of a mathematical patient model, by estimating the energy imparted to the body region being scanned, or by using conversion factors for general anatomic regions. Issues related to radiation dose from CT are being addressed by the Society for Pediatric Radiology, the American Association of Physicists in Medicine, the American College of Radiology, and the Center for Devices and Radiological Health of the Food and Drug Administration.

  17. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B.; Schmieg, Steven J.; Sloane, Thompson M.; Hilden, David L.; Mulawa, Patricia A.; Lee, Jong H.; Cheng, Shi-Wai S.

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  18. Principles of harm reduction. Harm Reduction Coalition.

    PubMed

    1998-06-01

    Harm reduction is a set of practical strategies used for working with drug users to help them choose behaviors that are less risky. The harm reduction approach accepts that illicit drug use occurs, and encourages input from drug users in designing programs and services to help educate themselves. Drug use is a complex problem related to poverty, class, racism, social isolation, and discrimination, and calls for non-judgmental, non-coercive services for the drug using population. Federal money for drug interventions is more often spent on incarcerations and prosecutions, than on education, research, prevention, or treatment. Public policy changes, such as teaching drug users how to lower their risks, may reduce the number of deaths and HIV transmissions among drug users and their partners.

  19. Dose to the contralateral breast due to primary breast irradiation

    SciTech Connect

    Fraass, B.A.; Roberson, P.L.; Lichter, A.S.

    1985-03-01

    The radiation dose received by the contralateral breast during primary breast irradiation is of concern because breast tissue is subject to cancer induction from low to moderate doses of radiation. In this paper the dose to the opposite breast has been studied in detail for common breast treatment techniques. Measurements have been made on 16 patients, a water phantom, a polystyrene phantom with cork inserts to simulate lung tissue, and a body-shaped phantom with wax breasts. Thermoluminescent dosimeters (TLD), ion chambers, diodes, and film have been used in the various configurations. The patient measurements have shown that there is a wide variation in the opposite breast dose received by patients, even when all are treated with, for example, tangential fields alone. With the phantom measurements, it has been possible to determine the contributions to the opposite breast dose from each of the relevant factors. This makes it possible to explain the wide variation in patient dose measurements, and to make some relatively simple recommendations that will allow the reduction of the dose to the opposite breast from several hundred cGy to about 50 cGy for a typical treatment course dose of 5000 cGy.

  20. Microbial reductive dehalogenation.

    PubMed Central

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  1. Intelligent Data Reduction (IDARE)

    NASA Technical Reports Server (NTRS)

    Brady, D. Michael; Ford, Donnie R.

    1990-01-01

    A description of the Intelligent Data Reduction (IDARE) expert system and an IDARE user's manual are given. IDARE is a data reduction system with the addition of a user profile infrastructure. The system was tested on a nickel-cadmium battery testbed. Information is given on installing, loading, maintaining the IDARE system.

  2. Isotoxic Dose Escalation in the Treatment of Lung Cancer by Means of Heterogeneous Dose Distributions in the Presence of Respiratory Motion

    SciTech Connect

    Baker, Mariwan; Nielsen, Morten; Hansen, Olfred; Jahn, Jonas Westberg; Korreman, Stine; Brink, Carsten

    2011-11-01

    Purpose: To test, in the presence of intrafractional respiration movement, a margin recipe valid for a homogeneous and conformal dose distribution and to test whether the use of smaller margins combined with heterogeneous dose distributions allows an isotoxic dose escalation when respiratory motion is considered. Methods and Materials: Twenty-three Stage II-III non-small-cell lung cancer patients underwent four-dimensional computed tomography scanning. The gross tumor volume and clinical target volume (CTV) were outlined in the mid-ventilation phase. The CTV-to-planning target volume (PTV) margin was calculated by use of a standard margin recipe and the patient-specific respiration pattern. Standard three-dimensional treatment plans were generated and recalculated on the remaining respiration phases. The planning was repeated for a CTV-to-PTV margin decreased by 2.5 and 5 mm relative to the initial margin in all directions. Time-averaged dose-volume histograms (four-dimensional dose-volume histograms) were calculated to evaluate the CTV-to-PTV margin. Finally, the dose was escalated in the plans with decreased PTV such that the mean lung dose (predictor of radiation-induced pneumonitis) was equal to mean lung dose in the plan by use of the initially calculated margin. Results: A reduction of the standard margin by 2.5 mm compared with the recipe resulted in too low of a minimum dose for some patients. A combination of dose escalation and use of heterogeneous dose distribution was able to increase the minimum dose to the target by approximately 10% and 20% for a CTV-to-PTV margin reduction of 2.5 mm and 5.0 mm, respectively. Conclusion: The margin recipe is valid for intrafractional respiration-induced tumor motions. It is possible to increase the dose to the target without increased mean lung dose with an inhomogeneous dose distribution.

  3. Practical considerations for dose selection in pediatric patients to ensure target exposure requirements.

    PubMed

    Barbour, April M; Fossler, Michael J; Barrett, Jeffrey

    2014-07-01

    Pediatric dosing recommendations are often not based on allometry, despite recognition that metabolic processes in mammals scale to the ¾ power. This report reviews the allometric size model for clearance and its implications for defining doses for children while considering practical limitations. Fondaparinux exposures in children were predicted using allometric and mg/kg dosing. Additional simulations further refined the dose based on the predicted Cmax, target exposure range, complexity of the dosing regimen, and previous exposure/response data. The percent reduction of the adult dose of an oral lozenge fixed-dose formulation which would predict similar exposures in children and adults was recommended based on simulations. Allometric dosing predicted a consistent fondaparinux exposure across the weight range. Size-optimized mg/kg dosing, which partially approximates the allometric relationship, allows for consistent fondaparinux exposures (i.e., 0.12 mg/kg ≤35 kg or 0.1 mg/kg >35 kg). Simulations of the oral lozenge formulation demonstrated rapidly changing clearance in children less than 6 years prohibiting practical dosing recommendations for satisfying all conventional exposure metrics (Cmax and AUC) in this age group. In children between 13 and 18 or 6 and 13 years, a 8.6% and 54% reduction in dose would maintain target exposures but dose reductions of 12.5% or 62.5% were ultimately recommended as deemed manufacturable. Dose selection in children should consider the known and/or predicted covariate relationships which affect exposure. Presented examples applied the allometric model in dose selection with the goal of PK bridging and considered practical limitations in dose selection. PMID:24841797

  4. [Fixed-dose combination].

    PubMed

    Nagai, Yoshio

    2015-03-01

    Many patients with type 2 diabetes mellitus(T2DM) do not achieve satisfactory glycemic control by monotherapy alone, and often require multiple oral hypoglycemic agents (OHAs). Combining OHAs with complementary mechanisms of action is fundamental to the management of T2DM. Fixed-dose combination therapy(FDC) offers a method of simplifying complex regimens. Efficacy and tolerability appear to be similar between FDC and treatment with individual agents. In addition, FDC can enhance adherence and improved adherence may result in improved glycemic control. Four FDC agents are available in Japan: pioglitazone-glimepiride, pioglitazone-metformin, pioglitazone-alogliptin, and voglibose-mitiglinide. In this review, the advantages and disadvantages of these four combinations are identified and discussed. PMID:25812374

  5. Standardized radiological dose evaluations

    SciTech Connect

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  6. Survey of clinical doses from computed tomography examinations in the Canadian province of Manitoba.

    PubMed

    A Elbakri, Idris; D C Kirkpatrick, Iain

    2013-12-01

    The purpose of this study was to document CT doses for common CT examinations performed throughout the province of Manitoba. Survey forms were sent out to all provincial CT sites. Thirteen out of sixteen (81 %) sites participated. The authors assessed scans of the brain, routine abdomen-pelvis, routine chest, sinuses, lumbar spine, low-dose lung nodule studies, CT pulmonary angiograms, CT KUBs, CT colonographies and combination chest-abdomen-pelvis exams. Sites recorded scanner model, protocol techniques and patient and dose data for 100 consecutive patients who were scanned with any of the aforementioned examinations. Mean effective doses and standard deviations for the province and for individual scanners were computed. The Kruskal-Wallis test was used to compare the variability of effective doses amongst scanners. The t test was used to compare doses and their provincial ranges between newer and older scanners and scanners that used dose saving tools and those that did not. Abdomen-pelvis, chest and brain scans accounted for over 70 % of scans. Their mean effective doses were 18.0 ± 6.7, 13.2 ± 6.4 and 3.0 ± 1.0 mSv, respectively. Variations in doses amongst scanners were statistically significant. Most examinations were performed at 120 kVp, and no lower kVp was used. Dose variations due to scanner age and use of dose saving tools were not statistically significant. Clinical CT doses in Manitoba are broadly similar to but higher than those reported in other Canadian provinces. Results suggest that further dose reduction can be achieved by modifying scanning techniques, such as using lower kVp. Wide variation in doses amongst different scanners suggests that standardisation of scanning protocols can reduce patient dose. New technological advances, such as dose-reduction software algorithms, can be adopted to reduce patient dose.

  7. The influence of novel CT reconstruction technique and ECG-gated technique on image quality and patient dose of cardiac computed tomography.

    PubMed

    Dyakov, I; Stoinova, V; Groudeva, V; Vassileva, J

    2015-07-01

    The aim of the present study was to compare image quality and patient dose in cardiac computed tomography angiography (CTA) in terms of volume computed tomography dose index (CTDI vol), dose length product (DLP) and effective dose, when changing from filtered back projection (FBP) to adaptive iterative dose reduction (AIDR) reconstruction techniques. Further aim was to implement prospective electrocardiogram (ECG) gating for patient dose reduction. The study was performed with Aquilion ONE 320-row CT of Toshiba Medical Systems. Analysis of cardiac CT protocols was performed before and after integration of the new software. The AIDR technique showed more than 50 % reduction in CTDIvol values and 57 % in effective dose. The subjective evaluation of clinical images confirmed the adequate image quality acquired by the AIDR technique. The preliminary results indicated significant dose reduction when using prospective ECG gating by keeping the adequate diagnostic quality of clinical images. PMID:25836680

  8. High-dose oral ziprasidone versus conventional dosing in schizophrenia patients with residual symptoms: the ZEBRAS study.

    PubMed

    Goff, Donald C; McEvoy, Joseph P; Citrome, Leslie; Mech, Arnold W; Bustillo, Juan R; Gil, Roberto; Buckley, Peter; Manschreck, Theo C; Achtyes, Eric D; Macklin, Eric A

    2013-08-01

    Uncontrolled studies have suggested that increasing the dose of ziprasidone above the standard maximum daily dose of 160 mg may be more effective for some patients with schizophrenia. To test this hypothesis, we conducted an 8-week, placebo-controlled, fixed-dose escalation trial comparing ziprasidone 160 versus 320 mg/d in individuals with schizophrenia or schizoaffective disorder who remained symptomatic despite treatment with ziprasidone 160 mg/d for at least 3 weeks. Of 75 randomized patients, 42 completed the study. Serum ziprasidone concentrations increased significantly in the high-dose group compared with the standard-dose group at week 4 but did not differ between groups at week 8. Both treatment groups exhibited significant symptomatic improvement. Response did not differ between treatment groups; however, in the high-dose group, higher ziprasidone serum concentrations were associated with better response at a trend level. Higher ziprasidone concentrations were also associated with reductions in diastolic blood pressure and, at a trend level, with more prominent negative symptoms and greater QTc prolongation. In summary, increasing the ziprasidone dose to 320 mg/d did not produce a sustained elevation in serum concentrations or symptomatic improvement compared with a standard ziprasidone dose of 160 mg/d.

  9. 20 percent lower lung cancer mortality with low-dose CT vs chest X-ray

    Cancer.gov

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray.

  10. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    SciTech Connect

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly

    2010-01-15

    . Conclusions: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.

  11. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  12. Phage therapy pharmacology: calculating phage dosing.

    PubMed

    Abedon, Stephen

    2011-01-01

    Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter. PMID:22050820

  13. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    SciTech Connect

    Deng Jun; Chen Zhe; Roberts, Kenneth B.; Nath, Ravinder

    2012-04-01

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes, liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.

  14. Dose refinement. ARAC's role

    SciTech Connect

    Ellis, J. S.; Sullivan, T. J.; Baskett, R. L.

    1998-06-01

    The Atmospheric Release Advisory Capability (ARAC), located at the Lawrence Livermore National Laboratory, since the late 1970's has been involved in assessing consequences from nuclear and other hazardous material releases into the atmosphere. ARAC's primary role has been emergency response. However, after the emergency phase, there is still a significant role for dispersion modeling. This work usually involves refining the source term and, hence, the dose to the populations affected as additional information becomes available in the form of source term estimates release rates, mix of material, and release geometry and any measurements from passage of the plume and deposition on the ground. Many of the ARAC responses have been documented elsewhere. 1 Some of the more notable radiological releases that ARAC has participated in the post-emergency phase have been the 1979 Three Mile Island nuclear power plant (NPP) accident outside Harrisburg, PA, the 1986 Chernobyl NPP accident in the Ukraine, and the 1996 Japan Tokai nuclear processing plant explosion. ARAC has also done post-emergency phase analyses for the 1978 Russian satellite COSMOS 954 reentry and subsequent partial burn up of its on board nuclear reactor depositing radioactive materials on the ground in Canada, the 1986 uranium hexafluoride spill in Gore, OK, the 1993 Russian Tomsk-7 nuclear waste tank explosion, and lesser releases of mostly tritium. In addition, ARAC has performed a key role in the contingency planning for possible accidental releases during the launch of spacecraft with radioisotope thermoelectric generators (RTGs) on board (i.e. Galileo, Ulysses, Mars-Pathfinder, and Cassini), and routinely exercises with the Federal Radiological Monitoring and Assessment Center (FRMAC) in preparation for offsite consequences of radiological releases from NPPs and nuclear weapon accidents or incidents. Several accident post-emergency phase assessments are discussed in this paper in order to illustrate

  15. Accelerated heavy particles and the lens. III. Cataract enhancement by dose fractionation

    SciTech Connect

    Worgul, B.V.; Merriam, G.R. Jr.; Medvedovsky, C.; Brenner, D.J.

    1989-04-01

    For a number of biological end points it has been shown that, in contrast to low linear energy transfer (LET) radiation, dose fractionation of high-LET radiation does not result in a reduction in overall effectiveness. Studies were conducted to determine the effect of fractionating the exposures to heavy ion doses on the development of cataracts. Rat eyes were exposed to single doses of 1, 5, and 25 cGy of 570 MeV/amu40Ar ions and to 2, 4, and 10 Gy of 250 kVp X rays. These were compared to unirradiated controls and eyes which were exposed to the same total dose delivered in four fractions over 12 h. While in all cases fractionation of the exposure to X rays produced significant reduction in cataractogenic potential, fractionating doses of 40Ar ions caused a dose- and stage-dependent enhancement in the development of cataracts.

  16. Assessment and Minimization of Contralateral Breast Dose for Conventional and Intensity Modulated Breast Radiotherapy

    SciTech Connect

    Burmeister, Jay Alvarado, Nicole; Way, Sarah; McDermott, Patrick; Bossenberger, Todd; Jaenisch, Harriett; Patel, Rajiv; Washington, Tara

    2008-04-01

    Breast radiotherapy is associated with an increased risk of contralateral breast cancer (CBC) in women under age 45 at the time of treatment. This risk increases with increasing absorbed dose to the contralateral breast. The use of intensity modulated radiotherapy (IMRT) is expected to substantially reduce the dose to the contralateral breast by eliminating scattered radiation from physical beam modifiers. The absorbed dose to the contralateral breast was measured for 5 common radiotherapy techniques, including paired 15 deg. wedges, lateral 30 deg. wedge only, custom-designed physical compensators, aperture based (field-within-field) IMRT with segments chosen by the planner, and inverse planned IMRT with segments chosen by a leaf sequencing algorithm after dose volume histogram (DVH)-based fluence map optimization. Further reduction in contralateral breast dose through the use of lead shielding was also investigated. While shielding was observed to have the most profound impact on surface dose, the radiotherapy technique proved to be most important in determining internal dose. Paired wedges or compensators result in the highest contralateral breast doses (nearly 10% of the prescription dose on the medial surface), while use of IMRT or removal of the medial wedge results in significantly lower doses. Aperture-based IMRT results in the lowest internal doses, primarily due to the decrease in the number of monitor units required and the associated reduction in leakage dose. The use of aperture-based IMRT reduced the average dose to the contralateral breast by greater than 50% in comparison to wedges or compensators. Combined use of IMRT and 1/8-inch-thick lead shielding reduced the dose to the interior and surface of the contralateral breast by roughly 60% and 85%, respectively. This reduction may warrant the use of IMRT for younger patients who have a statistically significant risk of contralateral breast cancer associated with breast radiotherapy.

  17. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  18. Active noise reduction

    NASA Astrophysics Data System (ADS)

    Carter, J.

    1984-01-01

    Active Noise Reduction (ANR) techniques, singly and in combination with passive hearing protectors, offer the potential for increased sound protection, enhanced voice communications and improved wearability features for personnel exposed to unacceptable noise conditions. An enhanced closed loop active noise reduction system was miniaturized and incorporated into a standard Air Force flight helmet (HGU-26/P). This report describes the theory of design and operation, prototype configuration and operation, and electroacoustic performance and specifications for the ANR system. This system is theoretically capable of producing in excess of 30 decibels of active noise reduction. Electroacoustic measurements on a flat plate coupler demonstrated approximately 20 decibels of active noise reduction with the prototype unit. A performance evaluation of the integrated ANR unit will be conducted under laboratory and field conditions by government personnel to determine the feasibility of the system for use in military applications.

  19. Quantization of Algebraic Reduction

    SciTech Connect

    Sniatycki, Jeodrzej

    2007-11-14

    For a Poisson algebra obtained by algebraic reduction of symmetries of a quantizable system we develop an analogue of geometric quantization based on the quantization structure of the original system.

  20. Esophageal Cancer Dose Escalation Using a Simultaneous Integrated Boost Technique

    SciTech Connect

    Welsh, James; Palmer, Matthew B.; Ajani, Jaffer A.; Liao Zhongxing; Swisher, Steven G.; Hofstetter, Wayne L.; Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko

    2012-01-01

    Purpose: We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials: Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results: The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions: The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation.

  1. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue

    NASA Astrophysics Data System (ADS)

    Walters, B. R. B.; Kramer, R.; Kawrakow, I.

    2010-08-01

    The purpose of this study is to determine whether dose to medium, Dm, or dose to water, Dw, provides a better estimate of the dose to the radiosensitive red bone marrow (RBM) and bone surface cells (BSC) in spongiosa, or cancellous bone. This is addressed in the larger context of the ongoing debate over whether Dm or Dw should be specified in Monte Carlo calculated radiotherapy treatment plans. The study uses voxelized, virtual human phantoms, FAX06/MAX06 (female/male), incorporated into an EGSnrc Monte Carlo code to perform Monte Carlo dose calculations during simulated irradiation by a 6 MV photon beam from an Elekta SL25 accelerator. Head and neck, chest and pelvis irradiations are studied. FAX06/MAX06 include precise modelling of spongiosa based on µCT images, allowing dose to RBM and BSC to be resolved from the dose to bone. Modifications to the FAX06/MAX06 user codes are required to score Dw and Dm in spongiosa. Dose uncertainties of ~1% (BSC, RBM) or ~0.5% (Dm, Dw) are obtained after up to 5 days of simulations on 88 CPUs. Clinically significant differences (>5%) between Dm and Dw are found only in cranial spongiosa, where the volume fraction of trabecular bone (TBVF) is high (55%). However, for spongiosa locations where there is any significant difference between Dm and Dw, comparisons of differential dose volume histograms (DVHs) and average doses show that Dw provides a better overall estimate of dose to RBM and BSC. For example, in cranial spongiosa the average Dm underestimates the average dose to sensitive tissue by at least 5%, while average Dw is within ~1% of the average dose to sensitive tissue. Thus, it is better to specify Dw than Dm in Monte Carlo treatment plans, since Dw provides a better estimate of dose to sensitive tissue in bone, the only location where the difference is likely to be clinically significant.

  2. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  3. Psychotropic dose equivalence in Japan.

    PubMed

    Inada, Toshiya; Inagaki, Ataru

    2015-08-01

    Psychotropic dose equivalence is an important concept when estimating the approximate psychotropic doses patients receive, and deciding on the approximate titration dose when switching from one psychotropic agent to another. It is also useful from a research viewpoint when defining and extracting specific subgroups of subjects. Unification of various agents into a single standard agent facilitates easier analytical comparisons. On the basis of differences in psychopharmacological prescription features, those of available psychotropic agents and their approved doses, and racial differences between Japan and other countries, psychotropic dose equivalency tables designed specifically for Japanese patients have been widely used in Japan since 1998. Here we introduce dose equivalency tables for: (i) antipsychotics; (ii) antiparkinsonian agents; (iii) antidepressants; and (iv) anxiolytics, sedatives and hypnotics available in Japan. Equivalent doses for the therapeutic effects of individual psychotropic compounds were determined principally on the basis of randomized controlled trials conducted in Japan and consensus among dose equivalency tables reported previously by psychopharmacological experts. As these tables are intended to merely suggest approximate standard values, physicians should use them with discretion. Updated information of psychotropic dose equivalence in Japan is available at http://www.jsprs.org/en/equivalence.tables/. [Correction added on 8 July 2015, after first online publication: A link to the updated information has been added.].

  4. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  5. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  6. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  7. Helical tomotherapy superficial dose measurements

    SciTech Connect

    Ramsey, Chester R.; Seibert, Rebecca M.; Robison, Benjamin; Mitchell, Martha

    2007-08-15

    Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73{+-}0.10 Gy (or 86.6{+-}5.1% of the prescribed dose). The measured superficial dose decreases to 1.23{+-}0.10 Gy (61.5{+-}5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9{+-}3.2%. The radiographic film dose for the 0 mm test case was 1.73{+-}0.07 Gy, as compared to the calculated dose of 1.78{+-}0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these

  8. Evaluation of enzyme dose and dose-frequency in ameliorating substrate accumulation in MPS IIIA Huntaway dog brain.

    PubMed

    King, Barbara; Marshall, Neil; Beard, Helen; Hassiotis, Sofia; Trim, Paul J; Snel, Marten F; Rozaklis, Tina; Jolly, Robert D; Hopwood, John J; Hemsley, Kim M

    2015-03-01

    Intracerebrospinal fluid (CSF) infusion of replacement enzyme is under evaluation for amelioration of disease-related symptoms and biomarker changes in patients with the lysosomal storage disorder mucopolysaccharidosis type IIIA (MPS IIIA; www.clinicaltrials.gov ; NCT#01155778; #01299727). Determining the optimal dose/dose-frequency is important, given the invasive method for chronically supplying recombinant protein to the brain, the main site of symptom generation. To examine these variables, we utilised MPS IIIA Huntaway dogs, providing recombinant human sulphamidase (rhSGSH) to young pre-symptomatic dogs from an age when MPS IIIA dog brain exhibits significant accumulation of primary (heparan sulphate) and secondary (glycolipid) substrates. Enzyme was infused into CSF via the cisterna magna at one of two doses (3 mg or 15 mg/infusion), with the higher dose supplied at two different intervals; fortnightly or monthly. Euthanasia was carried out 24 h after the final injection. Dose- and frequency-dependent reductions in heparan sulphate were observed in CSF and deeper layers of cerebral cortex. When we examined the amount of immunostaining of the general endo/lysosomal marker, LIMP-2, or quantified activated microglia, the higher fortnightly dose resulted in superior outcomes in affected dogs. Secondary lesions such as accumulation of GM3 ganglioside and development of GAD-reactive axonal spheroids were treated to a similar degree by both rhSGSH doses and dose frequencies. Our findings indicate that the lower fortnightly dose is sub-optimal for ameliorating existing and preventing further development of disease-related pathology in young MPS IIIA dog brain; however, increasing the dose fivefold but halving the frequency of administration enabled near normalisation of disease-related biomarkers. PMID:25421091

  9. Assessment of phase based dose modulation for improved dose efficiency in cardiac CT on an anthropomorphic motion phantom

    NASA Astrophysics Data System (ADS)

    Budde, Adam; Nilsen, Roy; Nett, Brian

    2014-03-01

    State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.

  10. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation

    PubMed Central

    Zhang, G; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Bogaerts, R; Horner, K

    2014-01-01

    Objective: To quantify the effect of field of view (FOV) and angle of rotation on radiation dose in dental cone beam CT (CBCT) and to define a preliminary volume–dose model. Methods: Organ and effective doses were estimated using 148 thermoluminescent dosemeters placed in an anthropomorphic phantom. Dose measurements were undertaken on a 3D Accuitomo 170 dental CBCT unit (J. Morita, Kyoto, Japan) using six FOVs as well as full-rotation (360°) and half-rotation (180°) protocols. Results: For the 360° rotation protocols, effective dose ranged between 54 µSv (4 × 4 cm, upper canine) and 303 µSv (17 × 12 cm, maxillofacial). An empirical relationship between FOV dimension and effective dose was derived. The use of a 180° rotation resulted in an average dose reduction of 45% compared with a 360° rotation. Eye lens doses ranged between 95 and 6861 µGy. Conclusion: Significant dose reduction can be achieved by reducing the FOV size, particularly the FOV height, of CBCT examinations to the actual region of interest. In some cases, a 180° rotation can be preferred, as it has the added value of reducing the scan time. Eye lens doses should be reduced by decreasing the height of the FOV rather than using inferior FOV positioning, as the latter would increase the effective dose considerably. Advances in knowledge: The effect of the FOV and rotation angle on the effective dose in dental CBCT was quantified. The dominant effect of FOV height was demonstrated. A preliminary model has been proposed, which could be used to predict effective dose as a function of FOV size and position. PMID:25189417

  11. Long-term reduction of intimal hyperplasia by the selective alpha-1 adrenergic antagonist doxazosin.

    PubMed

    Vashisht, R; Sian, M; Franks, P J; O'Malley, M K

    1992-12-01

    Studies have shown that alpha 1-adrenergic blockade reduces intimal hyperplasia in the rabbit aorta. In this study a selective alpha 1-adrenergic antagonist, doxazosin, has been used to examine whether this effect is persistent and dose dependent. Forty-eight New Zealand White rabbits underwent endothelial denudation of the abdominal aorta using a Fogarty balloon catheter. Test rabbits were given low-dose (2 mg) or high-dose (8 mg) doxazosin daily and all animals killed at either 1 or 12 weeks after the procedure. The aortas were harvested after fixation in situ with 4 per cent glutaraldehyde and neointimal hyperplasia was measured, using an x-y digitizer, as the percentage reduction in luminal cross-sectional area. At 1 week after surgery, rabbits receiving the low dose had a median area reduction of 7.7 per cent and those receiving the high dose a reduction of 8.2 per cent; both had significantly less intimal hyperplasia than control rabbits, which had a median area reduction of 14.8 per cent (P < 0.01). However, at 12 weeks, when compared with the 32.6 per cent reduction in the control group, only those rabbits receiving high-dose doxazosin had significantly less intimal hyperplasia, with a reduction of 5.5 per cent (P < 0.001). It is concluded that selective alpha 1-adrenergic blockade significantly reduces neointimal hyperplasia, that this effect is dose dependent, and that it persists for at least 3 months.

  12. Dose-shaping using targeted sparse optimization

    SciTech Connect

    Sayre, George A.; Ruan, Dan

    2013-07-15

    }{sup sparse} improves tradeoff between planning goals by 'sacrificing' voxels that have already been violated to improve PTV coverage, PTV homogeneity, and/or OAR-sparing. In doing so, overall plan quality is increased since these large violations only arise if a net reduction in E{sub tot}{sup sparse} occurs as a result. For example, large violations to dose prescription in the PTV in E{sub tot}{sup sparse}-optimized plans will naturally localize to voxels in and around PTV-OAR overlaps where OAR-sparing may be increased without compromising target coverage. The authors compared the results of our method and the corresponding clinical plans using analyses of DVH plots, dose maps, and two quantitative metrics that quantify PTV homogeneity and overdose. These metrics do not penalize underdose since E{sub tot}{sup sparse}-optimized plans were planned such that their target coverage was similar or better than that of the clinical plans. Finally, plan deliverability was assessed with the 2D modulation index.Results: The proposed method was implemented using IBM's CPLEX optimization package (ILOG CPLEX, Sunnyvale, CA) and required 1-4 min to solve with a 12-core Intel i7 processor. In the testing procedure, the authors optimized for several points on the Pareto surface of four 7-field 6MV prostate cases that were optimized for different levels of PTV homogeneity and OAR-sparing. The generated results were compared against each other and the clinical plan by analyzing their DVH plots and dose maps. After developing intuition by planning the four prostate cases, which had relatively few tradeoffs, the authors applied our method to a 7-field 6 MV pancreas case and a 9-field 6MV head-and-neck case to test the potential impact of our method on more challenging cases. The authors found that our formulation: (1) provided excellent flexibility for balancing OAR-sparing with PTV homogeneity; and (2) permitted the dose planner more control over the evolution of the PTV's spatial dose

  13. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  14. Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Litomin, A.; Mossolov, V.; Shumeiko, N.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Spilbeeck, A.; Alves, G. A.; Aldá Júnior, W. L.; Hensel, C.; Carvalho, W.; Chinellato, J.; De Oliveira Martins, C.; Matos Figueiredo, D.; Mora Herrera, C.; Nogima, H.; Prado Da Silva, W. L.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Finger, M.; Finger, M., Jr.; Jain, S.; Khurana, R.; Adamov, G.; Tsamalaidze, Z.; Behrens, U.; Borras, K.; Campbell, A.; Costanza, F.; Gunnellini, P.; Lobanov, A.; Melzer-Pellmann, I.-A.; Muhl, C.; Roland, B.; Sahin, M.; Saxena, P.; Hegde, V.; Kothekar, K.; Pandey, S.; Sharma, S.; Beri, S. B.; Bhawandeep, B.; Chawla, R.; Kalsi, A.; Kaur, A.; Kaur, M.; Walia, G.; Bhattacharya, S.; Ghosh, S.; Nandan, S.; Purohit, A.; Sharan, M.; Banerjee, S.; Bhattacharya, S.; Bhowmik, S.; Chatterjee, S.; Das, P.; Dewanjee, R. K.; Jain, S.; Kumar, S.; Maity, M.; Majumder, G.; Mandakini, P.; Patil, M.; Sarkar, T.; Saikh, A.; Sezen, S.; Juodagalvis, A.; Afanasiev, S.; Bunin, P.; Ershov, Y.; Golutvin, I.; Malakhov, A.; Moisenz, P.; Smirnov, V.; Zarubin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, Yu.; Dermenev, A.; Karneyeu, A.; Krasnikov, N.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Toms, M.; Zhokin, A.; Flacher, H.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Bitioukov, S.; Elumakhov, D.; Kalinin, A.; Krychkine, V.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Volkov, A.; Adiguzel, A.; Bakirci, N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Murat Guler, A.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cankocak, K.; Sen, S.; Boyarintsev, A.; Grynyov, B.; Levchuk, L.; Popov, V.; Sorokin, P.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Gastler, D.; Hazen, E.; Rohlf, J.; Sulak, L.; Wu, S.; Zou, D.; Hakala, J.; Heintz, U.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Gary, J. W.; Ghiasi Shirazi, S. M.; Lacroix, F.; Long, O. R.; Wei, H.; Bhandari, R.; Heller, R.; Stuart, D.; Yoo, J. H.; Apresyan, A.; Chen, Y.; Duarte, J.; Spiropulu, M.; Winn, D.; Abdullin, S.; Banerjee, S.; Chlebana, F.; Freeman, J.; Green, D.; Hare, D.; Hirschauer, J.; Joshi, U.; Lincoln, D.; Los, S.; Pedro, K.; Spalding, W. J.; Strobbe, N.; Tkaczyk, S.; Whitbeck, A.; Linn, S.; Markowitz, P.; Martinez, G.; Bertoldi, M.; Hagopian, S.; Hagopian, V.; Kolberg, T.; Baarmand, M. M.; Noonan, D.; Roy, T.; Yumiceva, F.; Bilki, B.; Clarida, W.; Debbins, P.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Schmidt, I.; Snyder, C.; Southwick, D.; Tiras, E.; Yi, K.; Al-bataineh, A.; Bowen, J.; Castle, J.; McBrayer, W.; Murray, M.; Wang, Q.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Baden, A.; Belloni, A.; Eno, S. C.; Ferraioli, C.; Grassi, T.; Hadley, N. J.; Jeng, G.-Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Yang, Z. S.; Apyan, A.; Bierwagen, K.; Brandt, S.; Klute, M.; Niu, X.; Chatterjee, R. M.; Evans, A.; Frahm, E.; Kubota, Y.; Lesko, Z.; Mans, J.; Ruckstuhl, N.; Heering, A.; Karmgard, D. J.; Musienko, Y.; Ruchti, R.; Wayne, M.; Benaglia, A. D.; Medvedeva, T.; Mei, K.; Tully, C.; Bodek, A.; de Barbaro, P.; Galanti, M.; Garcia-Bellido, A.; Khukhunaishvili, A.; Lo, K. H.; Vishnevskiy, D.; Zielinski, M.; Agapitos, A.; Chou, J. P.; Hughes, E.; Saka, H.; Sheffield, D.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Goadhouse, S.; Hirosky, R.; Wang, Y.; CMS-HCAL collaboration

    2016-10-01

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. We show that the scaling with dose rate is consistent with that expected from diffusion effects.

  15. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-09-01

    This monthly report summarizes the technical progress and project status for the Hanford Environmental Dose Reconstruction (HEDR) Project being conducted at the Pacific Northwest Laboratory (PNL) under the direction of a Technical Steering Panel (TSP). The TSP is composed of experts in numerous technical fields related to this project and represents the interests of the public. The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms, environmental transport, environmental monitoring data, demographics, agriculture, food habits, environmental pathways and dose estimates. 3 figs.

  16. Low-dose glimepiride with sitagliptin improves glycemic control without dose-dependency in patients with type 2 diabetes inadequately controlled on high-dose glimepiride.

    PubMed

    Umayahara, Rieko; Yonemoto, Takako; Kyou, Chika; Morishita, Kae; Ogawa, Tatsuo; Taguchi, Yoshitaka; Inoue, Tatsuhide

    2014-01-01

    This randomized, prospective study was conducted in 76 subjects to assess whether low-dose (0.5-2 mg/day) glimepiride, in combination therapy with sitagliptin, improves glycemic control in a dose-dependent manner in Japanese patients with type 2 diabetes. Eligible subjects had been treated with glimepiride at doses of 3-6 mg/day for at least 3 months and had a HbA1c level of ≥6.9%. Subjects were randomly assigned to three treatment groups of reduced doses of glimepiride (0.5 mg/day, 1 mg/day, or 2 mg/day) in addition to sitagliptin for 24 weeks. The primary efficacy analysis evaluated the change in HbA1c from baseline to week 24. Secondary efficacy endpoints included the changes in fasting plasma glucose, insulin secretion capacity, and β-cell function. Safety endpoints included hypoglycemia and any adverse event. Despite dose reduction of glimepiride, combination therapy with sitagliptin induced significant improvements in HbA1c levels (-0.8%, p < 0.001). Insulin secretion parameters (CPI, SUIT) also increased significantly. There were no significant differences between groups in changes from baseline HbA1c, insulin secretion capacity, and β-cell function (proinsulin/insulin) at 24 weeks of combination therapy. Multivariate analysis showed that baseline HbA1c was the only predictor for efficacy of combination therapy with sitagliptin and low-dose glimeripide. No changes in body weight were noted and no symptomatic hypoglycemia was documented. These findings indicate that combination therapy with sitagliptin and low-dose glimepiride (0.5 mg/day) is both effective for glycemic control and safe in Japanese patients with type 2 diabetes inadequately controlled with high-dose glimepiride. PMID:25168659

  17. AMBER data reduction

    NASA Astrophysics Data System (ADS)

    Tatulli, E.; Duvert, G.

    2007-10-01

    This course describes the data reduction process of the AMBER instrument, the three beam-recombiner of the very large telescope interferometer (VLTI). In body of this paper, we develop its principles from a theoretical point of view and we illustrate the main points with examples taken from the practical AMBER data reduction session given during school. The detailed practical application making use of the ESO gasgano tool is then presented. In this lecture, we particularly emphasize what the AMBER data reduction process is (i) a fit of the interferogram in the detector plane, (ii) using an a priori calibration of the instrument, where (iii) the complex visibility of the source is estimated from a least-square determination of a linear inverse problem, and where (iv) the derived AMBER observables are the squared visibility, the closure phase, and the spectral differential phase.

  18. Radioactive Dose Assessment and NRC Verification of Licensee Dose Calculation.

    1994-09-16

    Version 00 PCDOSE was developed for the NRC to perform calculations to determine radioactive dose due to the annual averaged offsite release of liquid and gaseous effluent by U.S commercial nuclear power facilities. Using NRC approved dose assessment methodologies, it acts as an inspector's tool for verifying the compliance of the facility's dose assessment software. PCDOSE duplicates the calculations of the GASPAR II mainframe code as well as calculations using the methodologices of Reg. Guidemore » 1.109 Rev. 1 and NUREG-0133 by optional choice.« less

  19. Delay reduction: current status.

    PubMed

    Fantino, E; Preston, R A; Dunn, R

    1993-07-01

    Delay-reduction theory states that the effectiveness of a stimulus as a conditioned reinforcer may be predicted most accurately by the reduction in time to primary reinforcement correlated with its onset. We review support for the theory and then discuss two new types of experiments that assess it. One compares models of choice in situations wherein the less preferred outcome is made more accessible; the other investigates whether frequency of conditioned reinforcement affects choice beyond the effect exerted by frequency of primary reinforcement.

  20. REDUCTIONS WITHOUT REGRET: SUMMARY

    SciTech Connect

    Swegle, J.; Tincher, D.

    2013-09-16

    This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

  1. Discrete reductive perturbation technique

    SciTech Connect

    Levi, Decio; Petrera, Matteo

    2006-04-15

    We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.

  2. Staff Radiation Doses to the Lower Extremities in Interventional Radiology

    SciTech Connect

    Shortt, C. P.; Al-Hashimi, H.; Malone, L.; Lee, M. J.

    2007-11-15

    The purpose of this study was to investigate the radiation doses to the lower extremities in interventional radiology suites and evaluate the benefit of installation of protective lead shielding. After an alarmingly increased dose to the lower extremity in a preliminary study, nine interventional radiologists wore thermoluminescent dosimeters (TLDs) just above the ankle, over a 4-week period. Two different interventional suites were used with Siemens undercouch fluoroscopy systems. A range of procedures was carried out including angiography, embolization, venous access, drainages, and biopsies. A second identical 4-week study was then performed after the installation of a 0.25-mm lead curtain on the working side of each interventional table. Equivalent doses for all nine radiologists were calculated. One radiologist exceeded the monthly dose limit for a Category B worker (12.5 mSv) for both lower extremities before lead shield placement but not afterward. The averages of both lower extremities showed a statistically significant dose reduction of 64% (p < 0.004) after shield placement. The left lower extremity received a higher dose than the right, 6.49 vs. 4.57 mSv, an increase by a factor of 1.42. Interventional radiology is here to stay but the benefits of interventional radiology should never distract us from the important issue of radiation protection. All possible measures should be taken to optimize working conditions for staff. This study showed a significant lower limb extremity dose reduction with the use of a protective lead curtain. This curtain should be used routinely on all C-arm interventional radiologic equipment.

  3. Dose reconstruction for real-time patient-specific dose estimation in CT

    SciTech Connect

    De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  4. Evaluation of radiation dose to neonates in a special care baby unit

    NASA Astrophysics Data System (ADS)

    Alzimami, K.; Sulieman, A.; Yousif, A.; Babikir, E.; Salih, I.

    2014-11-01

    The purpose of this study was to evaluate the patient entrance surface dose (ESD), organ dose and effective dose for neonates in the special care baby unit (SCBU) up to 28 days after birth. A total of 135 patients were examined during 4 months. ESDs were calculated from patient exposure parameters using DosCal software. Effective doses were calculated using software from the National Radiological Protection Board (NRPB). The mean patient ESD per procedure was 80±0.02 μGy. The mean and range of the effective dose per procedure were 0.02 (0.01-0.3) mSv. The radiation dose in this study was higher compared to previous studies. A dedicated X-ray machine with additional filtration is recommended for patient dose reductions.

  5. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016. PMID:27533027

  6. An evaluation of organ dose modulation on a GE optima CT660-computed tomography scanner.

    PubMed

    Dixon, Matthew T; Loader, Robert J; Stevens, Gregory C; Rowles, Nick P

    2016-01-01

    Organ Dose Modulation or ODM (GE Healthcare, Milwaukee, WI) was evaluated to characterize changes in CTDIvol, image noise, effective dose, and organ dose saving to patients. Three separate investigations were completed: a tube current modulation phantom was scanned with and without ODM, a CTDIvol phantom was scanned with ODM, and Monte Carlo simulations were performed. ODM was found to reduce the CTDIvol by approximately 20% whilst increasing the noise by approximately 14%. This was reflected in the dose distribution, where the anterior peripheral dose was reduced by approximately 40% whilst the identical poste-rior dose remained largely unaffected. Enabling ODM for the entire scan would reduce the effective dose by approximately 24%; however, this saving reduces to 5% if the images are matched for CTDIvol. These savings mostly originated from reductions in dose to the stomach, breasts, colon, bladder, and liver. ODM has the effect of a global reduction in CTDIvol with an associated increase in image noise. The benefit of ODM was found to be reduced when the dose-saving contribution from the reduced CTDIvol was removed. Given that there is a higher contribution to effective dose throughout the body from the anterior projections, consideration should be given to applying ODM throughout. PMID:27167255

  7. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  8. Patient-specific dose estimation for pediatric chest CT

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-12-15

    any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols.

  9. Financing Class Size Reduction

    ERIC Educational Resources Information Center

    Achilles, C. M.

    2005-01-01

    Class size reduction has been shown to, among other things, improve academic achievement for all students and particularly for low-income and minority students. With the No Child Left Behind Act's heavy emphasis on scientifically based research, adequate yearly progress, and disaggregated results, one wonders why all children aren't enrolled in…

  10. Propulsion system noise reduction

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Heidelberg, L. J.; Karchmer, A. M.; Lansing, D. L.; Miller, B. A.; Rice, E. J.

    1975-01-01

    The progress in propulsion system noise reduction is reviewed. The noise technology areas discussed include: fan noise; advances in suppression including conventional acoustic treatment, high Mach number inlets, and wing shielding; engine core noise; flap noise from both under-the-wing and over-the-wing powered-lift systems; supersonic jet noise suppression; and the NASA program in noise prediction.

  11. Industrial Waste Reduction Program

    SciTech Connect

    Not Available

    1991-10-24

    US industry generates over 12 billion tons of wastes each year. These wastes consist of undesirable by-products of industrial production that are discarded into our environment. Energy is an integral part of these wastes; it is found in the embodied energy of industrial feedstocks not optimally used, in the energy content of the wastes themselves, and in the energy needed to transport, treat, and dispose of wastes. Estimates of the potential energy savings from reducing industrial wastes range from three to four quadrillion Btu per year -- enough to meet the annual energy needs of 30 million American homes. This document presents a plan for the Industrial Waste Reduction Program, which has been designed to help achieve national goals for energy efficiency and waste minimization. The objective of the program is to improve the energy efficiency of industrial processes through cost-effective waste reduction. The initial program focus is on waste reduction opportunities in the production and use of chemicals, due to the significant amount of energy used in these activities and the large amounts of hazardous and toxic wastes they generate. The chemical industry will be the initial subject of a series of waste reduction opportunity assessments conducted as part of the program. Assessments of other industries and waste problems will follow.

  12. Exercise and Fat Reduction.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1975-01-01

    This document analyzes the problems encountered by the obese individual and the effects of regular exercise on weight loss and fat reduction. Part one compares the psychological traits of obese children with age groups of normal weight and discusses the organic disorders and social attitudes which plague the overweight individual. Part two states…

  13. Imino Transfer Hydrogenation Reductions.

    PubMed

    Wills, Martin

    2016-04-01

    This review contains a summary of recent developments in the transfer hydrogenation of C=N bonds, with a particularly focus on reports from within the last 10 years and asymmetric transformations. However, earlier work in the area is also discussed in order to provide context for the more recent results described. I focus strongly on the Ru/TsDPEN class of asymmetric transfer hydrogenation reactions originally reported by Noyori et al., together with examples of their applications, particularly to medically valuable target molecules. The recent developments in the area of highly active imine-reduction catalysts, notably those based on iridium, are also described in some detail. I discuss diastereoselective reduction methods as a route to the synthesis of chiral amines using transfer hydrogenation. The recent development of a methodology for positioning reduction complexes within chiral proteins, permitting the generation of asymmetric reduction products through a directed modification of the protein environment in a controlled manner, is also discussed. PMID:27573139

  14. Nagel on reduction.

    PubMed

    Sarkar, Sahotra

    2015-10-01

    This paper attempts a critical reappraisal of Nagel's (1961, 1970) model of reduction taking into account both traditional criticisms and recent defenses. This model treats reduction as a type of explanation in which a reduced theory is explained by a reducing theory after their relevant representational items have been suitably connected. In accordance with the deductive-nomological model, the explanation is supposed to consist of a logical deduction. Nagel was a pluralist about both the logical form of the connections between the reduced and reducing theories (which could be conditionals or biconditionals) and their epistemological status (as analytic connections, conventions, or synthetic claims). This paper defends Nagel's pluralism on both counts and, in the process, argues that the multiple realizability objection to reductionism is misplaced. It also argues that the Nagel model correctly characterizes reduction as a type of explanation. However, it notes that logical deduction must be replaced by a broader class of inferential techniques that allow for different types of approximation. Whereas Nagel (1970), in contrast to his earlier position (1961), recognized the relevance of approximation, he did not realize its full import for the model. Throughout the paper two case studies are used to illustrate the arguments: the putative reduction of classical thermodynamics to the kinetic theory of matter and that of classical genetics to molecular biology.

  15. Intracellular chromium reduction.

    PubMed

    Arslan, P; Beltrame, M; Tomasi, A

    1987-10-22

    Two steps are involved in the uptake of Cr(VI): (1) the diffusion of the anion CrO4(2-) through a facilitated transport system, presumably the non-specific anion carrier and (2) the intracellular reduction of Cr(VI) to Cr(III). The intracellular reduction of Cr(VI), keeping the cytoplasmic concentration of Cr(VI) low, facilitates accumulation of chromate from extracellular medium into the cell. In the present paper, a direct demonstration of intracellular chromium reduction is provided by means of electron paramagnetic (spin) resonance (EPR) spectroscopy. Incubation of metabolically active rat thymocytes with chromate originates a signal which can be attributed to a paramagnetic species of chromium, Cr(V) or Cr(III). The EPR signal is originated by intracellular reduction of chromium since: (1) it is observed only when cells are incubated with chromate, (2) it is present even after extensive washings of the cells in a chromium-free medium; (3) it is abolished when cells are incubated with drugs able to reduce the glutathione pool, i.e., diethylmaleate or phorone; and (4) it is abolished when cells are incubated in the presence of a specific inhibitor of the anion carrier, 4-acetamido-4'-isothiocyanatostilbene-2-2'-disulfonic acid. PMID:2820507

  16. Nagel on reduction.

    PubMed

    Sarkar, Sahotra

    2015-10-01

    This paper attempts a critical reappraisal of Nagel's (1961, 1970) model of reduction taking into account both traditional criticisms and recent defenses. This model treats reduction as a type of explanation in which a reduced theory is explained by a reducing theory after their relevant representational items have been suitably connected. In accordance with the deductive-nomological model, the explanation is supposed to consist of a logical deduction. Nagel was a pluralist about both the logical form of the connections between the reduced and reducing theories (which could be conditionals or biconditionals) and their epistemological status (as analytic connections, conventions, or synthetic claims). This paper defends Nagel's pluralism on both counts and, in the process, argues that the multiple realizability objection to reductionism is misplaced. It also argues that the Nagel model correctly characterizes reduction as a type of explanation. However, it notes that logical deduction must be replaced by a broader class of inferential techniques that allow for different types of approximation. Whereas Nagel (1970), in contrast to his earlier position (1961), recognized the relevance of approximation, he did not realize its full import for the model. Throughout the paper two case studies are used to illustrate the arguments: the putative reduction of classical thermodynamics to the kinetic theory of matter and that of classical genetics to molecular biology. PMID:26386529

  17. Teaching Reductive Thinking

    ERIC Educational Resources Information Center

    Armoni, Michal; Gal-Ezer, Judith

    2005-01-01

    When dealing with a complex problem, solving it by reduction to simpler problems, or problems for which the solution is already known, is a common method in mathematics and other scientific disciplines, as in computer science and, specifically, in the field of computability. However, when teaching computational models (as part of computability)…

  18. Chemoradiation of Hepatic Malignancies: Prospective, Phase 1 Study of Full-Dose Capecitabine With Escalating Doses of Yttrium-90 Radioembolization

    SciTech Connect

    Hickey, Ryan; Mulcahy, Mary F.; Lewandowski, Robert J.; Gates, Vanessa L.; Vouche, Michael; Habib, Ali; Kircher, Sheetal; Newman, Steven; Nimeiri, Halla; Benson, Al B.; Salem, Riad

    2014-04-01

    Purpose: Radiosensitizing chemotherapy improves the outcomes in comparison with radiation alone for gastrointestinal cancers. The delivery of radiation therapy with yttrium90 ({sup 90}Y) radioembolization, in combination with the radiosensitizing chemotherapeutic agent capecitabine, provides the opportunity to enhance the effects of radiation on hepatic malignancies. This phase 1 study sought to determine the maximum tolerated dose (MTD) of {sup 90}Y plus capecitabine in patients with cholangiocarcinoma or liver metastases confined to the liver. Methods and Materials: Patients were given initial treatment at full-dose capecitabine during days 1 to 14 of a 21-day cycle. At days 1 to 7 of the second cycle, whole-liver {sup 90}Y was given at the test dose, after which time capecitabine was continued. Dose-limiting toxicity (DLT) was determined 6 weeks after {sup 90}Y infusion. If a DLT was not observed, the {sup 90}Y dose was escalated. The planned dose cohorts were 110, 130, 150, and 170 Gy. The primary endpoint was to determine the MTD of {sup 90}Y with full-dose capecitabine. Results: Sixteen patients were treated according to the study protocol. Two patients experienced DLTs. Nine patients required capecitabine dose reduction as a result of toxicities attributable to capecitabine alone. The criteria for establishing {sup 90}Y MTD were not met, indicating an MTD of >170 Gy. Conclusion: The MTD of {sup 90}Y delivered in conjunction with capecitabine in the setting of intrahepatic cholangiocarcinoma or metastatic disease confined to the liver exceeds 170 Gy. This is the highest {sup 90}Y dose reported to date and has important implications on combined therapy with the radiosensitizing oral chemotherapeutic capecitabine. Further studies are under way.

  19. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  20. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    SciTech Connect

    Yao Rui; Bernard, Damian; Turian, Julius; Abrams, Ross A.; Sensakovic, William; Fung, Henry C.; Chu, James C. H.

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lung dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.

  1. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body.

  2. SU-F-BRF-11: Dose Rearrangement in High Dose Locally Advanced Lung Patients Based On Perfusion Imaging

    SciTech Connect

    Matrosic, C; Jarema, D; Kong, F; McShan, D; Stenmark, M; Owen, D; Ten Haken, R; Matuszak, M

    2014-06-15

    Purpose: The use of mean lung dose (MLD) limits allows individualization of lung patient tumor doses at safe levels. However, MLD does not account for local lung function differences between patients, leading to toxicity variability at the same MLD. We investigated dose rearrangement to minimize dose to functional lung, as measured by perfusion SPECT, while maintaining target coverage and conventional MLD limits. Methods: Retrospective plans were optimized for 15 locally advanced NSCLC patients enrolled in a prospective imaging trial. A priority-based optimization system was used. The baseline priorities were (1) meet OAR dose constraints, (2) maximize target gEUD, and (3) minimize physical MLD. As a final step, normal tissue doses were minimized. To determine the benefit of rearranging dose using perfusion SPECT, plans were reoptimized to minimize functional lung gEUD as the 4th priority. Results: When only minimizing physical MLD, the functional lung gEUD was 10.8+/−5.0 Gy (4.3–19.8 Gy). Only 3/15 cases showed a decrease in functional lung gEUD of ≥4% when rearranging dose to minimize functional gEUD in the cost function (10.5+/−5.0 Gy range 4.3−19.7). Although OAR constraints were respected, the dose rearrangement resulted in ≥10% increases in gEUD to an OAR in 4/15 cases. Only slight reductions in functional lung gEUD were noted when omitting the minimization of physical MLD, suggesting that constraining the target gEUD minimizes the potential to redistribute dose. Conclusion: Prioritydriven optimization permits the generation of plans that respect traditional OAR limits and target coverage, but with the ability to rearrange dose based on functional imaging. The latter appears to be limited due to the decreased solution space when constraining target coverage. Since dose rearrangement may increase dose to other OARs, it is also worthwhile to investigate global biomarkers of lung toxicity to further individualize treatment in this population

  3. Fixed-dose combination therapy for psoriasis.

    PubMed

    Guenther, Lyn C

    2004-01-01

    Fixed-dose combination therapy offers stable products containing two or more medications with different mechanisms of action and safety profiles. It is also convenient for patients since only one product rather than two or more needs to be applied. Topical corticosteroids are often the mainstay of therapy in psoriasis. Diprosalic and Nerisalic contain a topical corticosteroid (betamethasone dipropionate and diflucortolone, respectively) and salicylic acid. A left/right study showed that both products have comparable efficacy. It has also been shown that betamethasone dipropionate + salicylic acid ointment has similar efficacy to clobetasol and calcipotriene (calcipotriol) ointments. Betamethasone dipropionate + salicylic acid lotion has similar efficacy to clobetasol lotion. Faster improvement of scaling, itching, and redness was noted with betamethasone dipropionate + salicylic acid lotion compared with betamethasone dipropionate alone. Dovobet (Daivobet) ointment is a fixed-dose combination product containing betamethasone dipropionate and calcipotriene. Clinical studies have shown that it has greater efficacy and a faster speed of onset than the individual components or tacalcitol. Once daily and twice daily treatments have similar efficacy. Psoriasis Area and Severity Index reductions of approximately 40% after 1 week and 70% after 4 weeks of therapy were consistently noted in six large international studies involving >6000 patients. Betamethasone dipropionate + calcipotriene treatment is associated with approximately 75% less adverse cutaneous events as compared with tacalcitol, 50% less compared with calcipotriene, and a similar number as treatment with betamethasone dipropionate.

  4. Fixed-dose combination therapy for psoriasis.

    PubMed

    Guenther, Lyn C

    2004-01-01

    Fixed-dose combination therapy offers stable products containing two or more medications with different mechanisms of action and safety profiles. It is also convenient for patients since only one product rather than two or more needs to be applied. Topical corticosteroids are often the mainstay of therapy in psoriasis. Diprosalic and Nerisalic contain a topical corticosteroid (betamethasone dipropionate and diflucortolone, respectively) and salicylic acid. A left/right study showed that both products have comparable efficacy. It has also been shown that betamethasone dipropionate + salicylic acid ointment has similar efficacy to clobetasol and calcipotriene (calcipotriol) ointments. Betamethasone dipropionate + salicylic acid lotion has similar efficacy to clobetasol lotion. Faster improvement of scaling, itching, and redness was noted with betamethasone dipropionate + salicylic acid lotion compared with betamethasone dipropionate alone. Dovobet (Daivobet) ointment is a fixed-dose combination product containing betamethasone dipropionate and calcipotriene. Clinical studies have shown that it has greater efficacy and a faster speed of onset than the individual components or tacalcitol. Once daily and twice daily treatments have similar efficacy. Psoriasis Area and Severity Index reductions of approximately 40% after 1 week and 70% after 4 weeks of therapy were consistently noted in six large international studies involving >6000 patients. Betamethasone dipropionate + calcipotriene treatment is associated with approximately 75% less adverse cutaneous events as compared with tacalcitol, 50% less compared with calcipotriene, and a similar number as treatment with betamethasone dipropionate. PMID:15109271

  5. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  6. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  7. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  8. Estimate Radiological Dose for Animals

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  9. Technical basis for dose reconstruction

    SciTech Connect

    Anspaugh, L.R.

    1996-01-31

    The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

  10. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  11. Weldon Spring historical dose estimate

    SciTech Connect

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  12. Reduction/Transformation Operators

    2006-09-01

    RTOp (reduction/transformation operators) is a collection of C++ software that provides the basic mechanism for implementinig vector operations in a flexible and efficient manner. This is the main interface utilized by Thyra to allow for the specification of specific vector reduction and/or transformation operations. The RTOp package contains three different types of software. (a) a small number of interoperability interfaces. (b) support software including code for the parallel SPMD mode based on only Teuchos::Comm(and notmore » MPl directly(, and (c) a library of pre-implemented RTOp subclasses for everything from simple AXPYs and norms, to more specialized vector operations. RTOp allows an algorithm developer to implement their own RTOp subclasses in a way that is independent from any specific serial, parallel, out-of-core or other type of vector implementation. RTOp is a required package by Thyra and MOOCHO. (c)« less

  13. Tensor sufficient dimension reduction

    PubMed Central

    Zhong, Wenxuan; Xing, Xin; Suslick, Kenneth

    2015-01-01

    Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we propose a tensor dimension reduction model, a model assuming the nonlinear dependence between a response and a projection of all the tensor predictors. The tensor dimension reduction models are estimated in a sequential iterative fashion. The proposed method is applied to a CSA data collected for 150 pathogenic bacteria coming from 10 bacterial species and 14 bacteria from one control species. Empirical performance demonstrates that our proposed method can greatly improve the sensitivity and specificity of the CSA technique. PMID:26594304

  14. Injury reduction at Fermilab

    SciTech Connect

    Griffing, Bill; /Fermilab

    2005-06-01

    In a recent DOE Program Review, Fermilab's director presented results of the laboratory's effort to reduce the injury rate over the last decade. The results, shown in the figure below, reveal a consistent and dramatic downward trend in OSHA recordable injuries at Fermilab. The High Energy Physics Program Office has asked Fermilab to report in detail on how the laboratory has achieved the reduction. In fact, the reduction in the injury rate reflects a change in safety culture at Fermilab, which has evolved slowly over this period, due to a series of events, both planned and unplanned. This paper attempts to describe those significant events and analyze how each of them has shaped the safety culture that, in turn, has reduced the rate of injury at Fermilab to its current value.

  15. Reduction of astrographic catalogues

    NASA Technical Reports Server (NTRS)

    Stock, J.; Prugna, F. D.; Cova, J.

    1984-01-01

    An automatic program for the reduction of overlapping Carte du Ciel plates is described. The projection and transformation equations are given and the RAA subprogram flow is outlined. The program was applied to two different sets of data, namely to nine overlapping plates of the Cape Zone of the CdC, and to fifteen plates taken with the CIDA-refractor of the open cluster Tr10.

  16. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, Warren H.; Payne, John R.

    1982-01-01

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.

  17. Emissions reductions strategies

    SciTech Connect

    Sirois, R.H.

    1996-12-31

    This paper consists of the series of viewgraphs used by the author during his presentation. They tabulate nitrogen oxide reduction techniques, technical evaluation of NOx control techniques, critical system design parameters for SNCR processes, major concerns for SCR retrofit applications, integrating technologies, sulfur dioxide control for a coal fired power plant, heavy metals on US EPA`s HAPs list, and mercury emissions. Other slides show flow charts of some of these processes, as well as diagrams of equipment.

  18. [Aware and cooperative reduction].

    PubMed

    Tambone, V; Ghilardi, G

    2012-01-01

    The aim of this work is to address the question of reduction in the scientific method, to evaluate its legitimacy as well as its pro and contra from an epistemological point of view. In the first paragraph we classify some kinds of reductionism, analysing their presuppositions and epistemological status and showing some examples of scientific reduction. The presentation includes a classificatory table that shows some of the different forms of biological reductionism. In the second paragraph we study the epistemology of science starting from its modern beginning: the Vienna Circle, focusing on the meaning of methodological reductionism. What did it mean for science to define itself mainly as method, which effects did this new concept of science have on methodology and what kind of problems did this movement bring about. In the third paragraph we examine the reactions triggered by methodological reductionism, we analyze the theoretical consistency of these answers, trying to offer a balanced view. We show how complexity can be seen as a paradigm of the anti-reductionism effort, and we study its epistemological basis. In the fourth paragraph we outline our operative proposal: the reduction that is both aware and cooperative. We point out the main reasons why science cannot avoid being reductive in some way, and therefore how we need to deal with this feature in order to prevent it to degenerate into reductionism. We show some examples of this new proposal taken from the practical realm and from literature, where it is possible to discern the spirit of this alternative methodology. PMID:22964706

  19. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  20. Television noise reduction device

    NASA Technical Reports Server (NTRS)

    Gordon, B. L.; Stamps, J. C. (Inventor)

    1975-01-01

    A noise reduction system that divides the color video signal into its luminance and chrominance components is reported. The luminance component of a given frame is summed with the luminance component of at least one preceding frame which was stored on a disc recorder. The summation is carried out so as to achieve a signal amplitude equivalent to that of the original signal. The averaged luminance signal is then recombined with the chrominance signal to achieve a noise-reduced television signal.

  1. Oxidation, Reduction, and Deoxygenation

    NASA Astrophysics Data System (ADS)

    Madsen, Robert

    In this chapter, methods for oxidation, reduction, and deoxygenation of carbohydrates are presented. In most cases, the reactions have been used on aldoses and their derivatives including glycosides, uronic acids, glycals, and other unsaturated monosaccharides. A number of reactions have also been applied to aldonolactones. The methods include both chemical and enzymatic procedures and some of these can be applied for regioselective transformation of unprotected or partially protected carbohydrates.

  2. Somatic reduction in cycads.

    PubMed

    Storey, W B

    1968-02-01

    Recurrent somatic reduction is a normal ontogenetic process in apogeotropic roots of cycads, which develop into dichotomously branching coralloid masses. The reduced cells make up part of a ring of differentiated cortical tissue lying midway between the pericycle and the epidermis; they serve as fillers among the large cells and become charged with slime. The differentiated tissue is colonized by a species of blue-green algae.

  3. Multibadging reductions at the H. B. Robinson Nuclear Plant

    SciTech Connect

    Farrell, W.E.; Christmas, K.D.; Shelley, M.H. )

    1987-09-01

    Because of the uncertainties involved in high dose work at nuclear power stations, multibadging practices are often quite conservative---the main criterion is when in doubt, multibadge. An analysis of multibadging results from the 1986 refueling outage at the H.B. Robinson Nuclear Plant indicated that multibadging could be reduced if consistent criteria were used. This article reviews the guidance available on multi-badging for non-uniform radiation fields and presents a set of refined multibadging criteria, which incorporate minimum dose rate and integrated dose equivalent thresholds. When used to analyze the multibadging results from the 1986 outage, the criteria indicate that reductions in multibadging of 50% may be possible, without compromising the accuracy of whole-body dose equivalent measurements.

  4. Thermochemical nitrate reduction

    SciTech Connect

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with {approximately}3 wt% NO{sub 3}{sup {minus}} solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200{degrees}C to 350{degrees}C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia {approx} methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics.

  5. Uranium Reduction by Clostridia

    SciTech Connect

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  6. Optimal dose of etanercept in the treatment of rheumatoid arthritis

    PubMed Central

    Curtis, Elizabeth Mary; Marks, Jonathan Lewis

    2014-01-01

    Etanercept (ETN) is one of a number of biological therapies targeting the proinflammatory cytokine tumor necrosis factor-alpha that have demonstrated efficacy in the management of rheumatoid arthritis (RA). As experience has grown, a number of different treatment strategies have been investigated to ascertain the optimal conditions for use of ETN in RA and maximize the clinical gains from therapy. These have included the use of higher- and lower-dose treatment regimens, ETN as a monotherapy or in combination with other nonbiologic disease-modifying antirheumatic drugs, the use of ETN in very early clinical disease, and intraarticular ETN administration for resistant synovitis. Recent trials have focused on phased dose reduction or withdrawal of ETN in patients achieving low disease activity states or clinical remission. This review summarizes existing data regarding the optimal timing of ETN initiation and dosing regimens and also evaluates more recent evidence regarding dose-reduction strategies that offer the possibility of biologic-free remission in RA.

  7. Sustained intraocular pressure reduction throughout the day with travoprost ophthalmic solution 0.004%

    PubMed Central

    Dubiner, Harvey B; Noecker, Robert

    2012-01-01

    Background The purpose of this study was to characterize intraocular pressure (IOP) reduction throughout the day with travoprost ophthalmic solution 0.004% dosed once daily in the evening. Methods The results of seven published, randomized clinical trials including at least one arm in which travoprost 0.004% was dosed once daily in the evening were integrated. Means (and standard deviations) of mean baseline and on-treatment IOP, as well as mean IOP reduction and mean percent IOP reduction at 0800, 1000, and 1600 hours at weeks 2 and 12 were calculated. Results From a mean baseline IOP ranging from 25.0 to 27.2 mmHg, mean IOP on treatment ranged from 17.4 to 18.8 mmHg across all visits and time points. Mean IOP reductions from baseline ranged from 7.6 to 8.4 mmHg across visits and time points, representing a mean IOP reduction of 30%. Results of the safety analysis were consistent with the results from the individual studies for travoprost ophthalmic solution 0.004%, with ocular hyperemia being the most common side effect. Conclusion Travoprost 0.004% dosed once daily in the evening provides sustained IOP reduction throughout the 24-hour dosing interval in subjects with ocular hypertension or open-angle glaucoma. No reduction of IOP-lowering efficacy was observed at the 1600-hour time point which approached the end of the dosing interval. PMID:22536047

  8. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  9. Sci—Thur AM: YIS - 05: 10X-FFF VMAT for Lung SABR: an Investigation of Peripheral Dose

    SciTech Connect

    Mader, J; Mestrovic, A

    2014-08-15

    Flattening Filter Free (FFF) beams exhibit high dose rates, reduced head scatter, leaf transmission and leakage radiation. For VMAT lung SABR, treatment time can be significantly reduced using high dose rate FFF beams while maintaining plan quality and accuracy. Another possible advantage offered by FFF beams for VMAT lung SABR is the reduction in peripheral dose. The focus of this study was to investigate and quantify the reduction of peripheral dose offered by FFF beams for VMAT lung SABR. The peripheral doses delivered by VMAT Lung SABR treatments using FFF and flattened beams were investigated for the Varian Truebeam linac. This study was conducted in three stages, (1): ion chamber measurement of peripheral dose for various plans, (2): validation of AAA, Acuros XB and Monte Carlo for peripheral dose using measured data, and (3): using the validated Monte Carlo model to evaluate peripheral doses for 6 VMAT lung SABR treatments. Three energies, 6X, 10X, and 10X-FFF were used for all stages. Measured data indicates that 10X-FFF delivers the lowest peripheral dose of the three energies studied. AAA and Acuros XB dose calculation algorithms were identified as inadequate, and Monte Carlo was validated for accurate peripheral dose prediction. The Monte Carlo-calculated VMAT lung SABR plans show a significant reduction in peripheral dose for 10X-FFF plans compared to the standard 6X plans, while no significant reduction was showed when compared to 10X. This reduction combined with shorter treatment time makes 10X-FFF beams the optimal choice for superior VMAT lung SABR treatments.

  10. Induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia: effects of low doses and low dose rates

    SciTech Connect

    van Buul, P.P.; Richardson, J.F. Jr.; Goudzwaard, J.H.

    1986-01-01

    The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.

  11. Dose and dose rate effectiveness of space radiation.

    PubMed

    Schimmerling, W; Cucinotta, F A

    2006-01-01

    Dose and dose rate effectiveness factors (DDREF), in conjunction with other weighting factors, are commonly used to scale atomic bomb survivor data in order to establish limits for occupational radiation exposure, including radiation exposure in space. We use some well-known facts about the microscopic pattern of energy deposition of high-energy heavy ions, and about the dose rate dependence of chemical reactions initiated by radiation, to show that DDREF are likely to vary significantly as a function of particle type and energy, cell, tissue, and organ type, and biological end point. As a consequence, we argue that validation of DDREF by conventional methods, e.g. irradiating animal colonies and compiling statistics of cancer mortality, is not appropriate. However, the use of approaches derived from information theory and thermodynamics is a very wide field, and the present work can only be understood as a contribution to an ongoing discussion. PMID:17169950

  12. Radiological dose assessment for vault storage concepts

    SciTech Connect

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  13. Increasing maximum tumor dose to manage range uncertainties in IMPT treatment planning

    NASA Astrophysics Data System (ADS)

    Petit, Steven; Seco, Joao; Kooy, Hanne

    2013-10-01

    The accuracy of intensity modulated proton therapy (IMPT) is sensitive to range uncertainties. Geometric margins, as dosimetric surrogates, are ineffective and robust optimization strategies are needed. These, however, lead to increased normal tissue dose. We explore here how this dose increase can be reduced by increasing the maximum tumor dose instead. We focus on range uncertainties, modeled by scaling the stopping powers 5% up (undershoot) or down (overshoot) compared to the nominal scenario. Robust optimization optimizes for target dose conformity in the most likely scenario, not the worst, while constraining target coverage for the worst-case scenario. Non-robust plans are also generated. Different maximum target doses are applied (105% versus 120% versus 140%) to investigate the effect on normal tissue dose reduction. The method is tested on a homogeneous and a lung phantom and on a liver patient. Target D99 of the robust plans equals the prescription dose of 60 GyEWe use the symbol GyE for the correct notation of Gy(RBE). for all scenarios, but decreases to 36 GyE for the non-robust plans. The mean normal tissue dose in a 2 cm ring around the target is 11% to 31% higher for the robust plans. This increase can be reduced to -8% and 3% (compared to the non-robust plan) by allowing a maximum tumor dose of 120% instead of 105%. Thus robustness leads to more normal tissue dose, but it can be compensated by allowing a higher maximum tumor dose.

  14. Peripheral doses from pediatric IMRT

    SciTech Connect

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-07-15

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged

  15. Dose calculation for electron therapy

    NASA Astrophysics Data System (ADS)

    Gebreamlak, Wondesen T.

    The dose delivered by electron beams has a complex dependence on the shape of the field; any field shaping shields, design of collimator systems, and energy of the beam. This complicated dependence is due to multiple scattering of the electron beam as the beam travels from the accelerator head to the patient. The dosimetry of only regular field shapes (circular, square, or rectangular) is well developed. However, most tumors have irregular shapes and their dosimetry is calculated by direct measurement. This is laborious and time consuming. In addition, error can be introduced during measurements. The lateral build up ratio method (LBR), which is based on the Fermi-Eyges multiple scattering theory, calculates the dosimetry of irregular electron beam shapes. The accuracy of this method depends on the function sigma r(r,E) (the mean square radial displacement of the electron beam in the medium) used in the calculation. This research focuses on improving the accuracy of electron dose calculations using lateral build up ratio method by investigating the properties of sigmar(r,E). The percentage depth dose curves of different circular cutouts were measured using four electron beam energies (6, 9, 12, and 15 MeV), four electron applicator sizes (6x6, 10x10, 14x14, and 20x20 cm), three source-surface distance values (100, 105, 110 cm). The measured percentage depth dose curves were normalized at a depth of 0.05 cm. Using the normalized depth dose, the lateral build up ratio curves were determined. Using the cutout radius and the lateral build up ratio values, sigmar(z,E) were determined. It is shown that the sigma value increases linearly with cutout size until the cutout radius reaches the equilibrium range of the electron beam. The sigma value of an arbitrary circular cutout was determined from the interpolation of sigma versus cutout curve. The corresponding LBR value of the circular cutout was determined using its radius and sigma values. The depth dose distribution of

  16. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Finch, S.M.

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movement of radioactive materials from the areas of release to populations. The Environmental Monitoring Data Task assembles, evaluates, and reports historical environmental monitoring data. The Demographics, Agriculture, Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. In addition to population and demographic data, the food and water resources and consumption patterns for populations are estimated because they provide a primary pathway for the intake of radionuclides. The Environmental Pathways and Dose Estimates Task use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford radiation. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  18. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    R.L. Thacker

    2005-03-24

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  19. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    NASA Astrophysics Data System (ADS)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  20. Occupational radiation dose to eyes from endoscopic retrograde cholangiopancreatography procedures in light of the revised eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Gallagher, A; Malone, L; O’Reilly, G

    2013-01-01

    Objective: Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. Methods: A new eye lens dosemeter (EYE-D™, Radcard, Krakow, Poland) was used to measure the ERCP eye dose, Hp(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. Results: The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Conclusion: Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Advances in knowledge: Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated Hp(3) dosemeter. PMID:23385992

  1. Biological doses with template distribution patterns

    SciTech Connect

    Harrop, R.; Haymond, H.R.; Nisar, A.; Syed, A.N.M.; Feder, B.H.; Neblett, D.L.

    1981-02-01

    Consideration of radiation dose rate effects emphasizes advantages of the template method for lateral distribution of multiple sources in treatment of laterally infiltrating gynecologic cancer, when compared to a conventional technique with colpostats. Biological doses in time dose fractionation (TDF), ret and reu units are calculated for the two treatment methods. With the template method the lateral dose (point B) is raised without significantly increasing the doses to the rectum and bladder, that is, relatively, the calculated biological doses at point A and B are more nearly equivalent and the doses to the rectum and bladder are significantly lower than the dose to point B.

  2. Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma

    PubMed Central

    Sullivan, Dan; Lonial, Sagar; Mohrbacher, Ann F.; Chatta, Gurkamal; Shustik, Chaim; Burris, Howard; Venkatakrishnan, Karthik; Neuwirth, Rachel; Riordan, William J.; Karol, Michael; von Moltke, Lisa L.; Acharya, Milin; Zannikos, Peter; Stewart, A. Keith

    2014-01-01

    Purpose Characterize bortezomib pharmacokinetics/pharmacodynamics in relapsed myeloma patients after single and repeat intravenous administration at two doses. Methods Forty-two patients were randomized to receive bortezomib 1.0 or 1.3 mg/m2, days 1, 4, 8, 11, for up to eight 21-day treatment cycles (n = 21, each dose group). Serial blood samples for pharmacokinetic/pharmacodynamic analysis were taken on days 1 and 11, cycles 1 and 3. Observational efficacy and safety data were collected. Results Twelve patients in each dose group were evaluable for pharmacokinetics/pharmacodynamics. Plasma clearance decreased with repeat dosing (102–112 L/h for first dose; 15–32 L/h following repeat dosing), with associated increases in systemic exposure and terminal half-life. Systemic exposures of bortezomib were similar between dose groups considering the relatively narrow dose range and the observed pharmacokinetic variability, although there was no readily apparent deviation from dose-proportionality. Blood 20S proteasome inhibition profiles were similar between groups with mean maximum inhibition ranging from 70 to 84% and decreasing toward baseline over the dosing interval. Response rate (all 42 patients) was 50%, including 7% complete responses. The safety profile was consistent with the predictable and manageable profile previously established; data suggested milder toxicity in the 1.0 mg/m2 group. Conclusions Bortezomib pharmacokinetics change with repeat dose administration, characterized by a reduction in plasma clearance and associated increase in systemic exposure. Bortezomib is pharmacodynamically active and tolerable at 1.0 and 1.3 mg/m2 doses, with recovery toward baseline blood proteasome activity over the dosing interval following repeat dose administration, supporting the current clinical dosing regimen. PMID:20306195

  3. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.

  4. Effect of PACS on patient radiation doses for examination of the lateral lumbar spine

    NASA Astrophysics Data System (ADS)

    Weatherburn, Gwyneth C.; Bryan, Stirling; Buxton, Martin J.

    1998-07-01

    The aim of the study described in this paper was to identify and measure any changes in radiation dose attributable to the implementation of the hospital wide Hammersmith PACS system. The authors believe this study to be a comprehensive study of changes in patient dose for the examination of the lateral lumbar spine associated with the introduction of PACS: the study has fully monitored the many factors which affect these patient doses. Some very optimistic claims of large dose reductions with the introduction PACS at other hospitals have been based upon minimal reported evidence, or comparisons have been made with very old high dose systems with film/screen sensitivities as low as 100. In this study the patient doses with the PACS system have been compared with those measured when a conventional film/screen system with a sensitivity of 300 was used.

  5. Hydroxychloroquine sulphate in the treatment of rheumatoid arthritis: a double blind comparison of two dose regimens.

    PubMed Central

    Pavelka, K; Sen, K P; Pelísková, Z; Vácha, J; Trnavský, K

    1989-01-01

    A controlled, double blind, parallel group, long term study of hydroxychloroquine sulphate in the treatment of rheumatoid arthritis, comparing daily doses of 200 mg and 400 mg, is described. The trial involved 54 patients with moderate disease activity who had not previously received antimalarial drugs. Forty three patients completed the one year treatment. The groups receiving different doses were homogeneous and did not differ in any of the 25 monitored indicators. Both dose regimens were effective, and a significant reduction of disease activity was observed after one year's treatment. Of the nine laboratory and 11 clinical indices of efficacy monitored, no statistically significant differences were reported, but in the group of patients treated with the 400 mg daily dose the number of side effects was three times greater. As there have been no reports of retinopathy with hydroxychloroquine at daily doses of 200 mg the effectiveness of this dose is of practical importance. PMID:2673079

  6. [Evaluation of the dose-effect relationship of perindopril in the treatment of arterial hypertension].

    PubMed

    Luccioni, R; Frances, Y; Gass, R; Gilgenkrantz, J M

    1989-05-01

    To evaluate the dose-effect relationship of antihypertensive drugs is essential to a rational determination of their effective dosage. Two double-blind and strictly controlled trials have demonstrated the effectiveness of perindopril 4 mg orally in the treatment of mild to moderate arterial hypertension (100 less than DAP less than 120 mmHg). The drug remained effective 24 hours after the last dose. The 2 mg dose proved insufficient to obtain a significant reduction of blood pressure. In case where the 4 mg dose was not sufficiently active, a better antihypertensive effect could be achieved with an 8 mg dose without major untoward reactions. The antihypertensive activity of perindopril was parallel to the percentage of angiotensin-converting enzyme inhibition induced by the compound. This study also illustrates clearly the value of semi-automatic blood pressure recording with the Dinamap system in the determination of dose-effect relationship, compared with the conventional sphygmomanometric method. PMID:2505712

  7. Electrolytic oxide reduction system

    DOEpatents

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  8. Reductive Desulfurization of Dibenzyldisulfide

    PubMed Central

    Miller, Kathleen W.

    1992-01-01

    Dibenzyldisulfide was reductively degraded by a methanogenic mixed culture derived from a sewage digestor. Toluene was produced with benzyl mercaptan as an intermediate in sulfur-limited medium. Toluene production was strictly associated with biological activity; however, the reducing agent for the culture medium, Ti(III), was partially responsible for production of benzyl mercaptan. Sulfide was not detected. Additions of sodium sulfide did not inhibit toluene production. Additions of 2-bromoethane sulfonic acid prevented methanogenesis but did not adversely affect toluene yields. PMID:16348733

  9. NSF grant reductions

    NASA Astrophysics Data System (ADS)

    Jones, R.

    Many National Science Foundation grants will be reduced this year as a result of a provision in H.R. 3299. The provision stems from disagreement between the Congress and the administration on how to make budget deficit cuts required by the Gramm-Rudman-Hollings budget law. An agreement was made to cut $4.55 billion through a reduction in discretionary spending, by what amounts to 1.4% across-the-board. The cuts will affect all discretionary federal domestic and defense programs.

  10. Aluminum reduction cell electrode

    DOEpatents

    Payne, John R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.

  11. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  12. Radiation dose from reentrant electrons.

    PubMed

    Badhwar, G D; Watts, J; Cleghorn, T E

    2001-06-01

    In estimating the crew exposures during an extra vehicular activity (EVA), the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more that 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO. PMID:11855420

  13. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  14. Reduction operators of Burgers equation

    PubMed Central

    Pocheketa, Oleksandr A.; Popovych, Roman O.

    2013-01-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special “no-go” case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf–Cole transformation to a parameterized family of Lie reductions of the linear heat equation. PMID:23576819

  15. Dose-volume histogram parameters of high-dose-rate brachytherapy for Stage I-II cervical cancer (≤4cm) arising from a small-sized uterus treated with a point A dose-reduced plan.

    PubMed

    Nakagawa, Akiko; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Kuwako, Keiko; Saitoh, Jun-Ichi; Nakano, Takashi

    2014-07-01

    We investigated the rectal dose-sparing effect and tumor control of a point A dose-reduced plan in patients with Stage I-II cervical cancer (≤4 cm) arising from a small-sized uterus. Between October 2008 and August 2011, 19 patients with Stage I-II cervical cancer (≤4 cm) were treated with external beam radiotherapy (EBRT) for the pelvis and CT-guided brachytherapy. Seven patients were treated with brachytherapy with standard loading of source-dwell positions and a fraction dose of 6 Gy at point A (conventional brachy-plan). The other 12 patients with a small uterus close to the rectum or small intestine were treated with brachytherapy with a point A dose-reduction to match D2cc of the rectum and <6 Gy as the dose constraint ('point A dose-reduced plan') instead of the 6-Gy plan at point A ('tentative 6-Gy plan'). The total doses from EBRT and brachytherapy were added up and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2). The median doses to the high-risk clinical target volume (HR-CTV) D90 in the conventional brachy-plan, tentative 6-Gy plan and point A dose-reduced plan were 62 GyEQD2, 80 GyEQD2 and 64 GyEQD2, respectively. The median doses of rectal D2cc in the corresponding three plans were 42 GyEQD2, 62 GyEQD2 and 51 GyEQD2, respectively. With a median follow-up period of 35 months, three patients developed Grade-1 late rectal complications and no patients developed local recurrence. Our preliminary results suggested that CT-guided brachytherapy using an individualized point A dose-reduced plan might be useful for reducing late rectal complications while maintaining primary tumor control.

  16. A comparison of quantum limited dose and noise equivalent dose

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang

    2016-03-01

    Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.

  17. Cone beam CT for dental and maxillofacial imaging: dose matters.

    PubMed

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications. PMID:25805884

  18. Microsieving in primary treatment: effect of chemical dosing.

    PubMed

    Väänänen, J; Cimbritz, M; la Cour Jansen, J

    2016-01-01

    Primary and chemically enhanced primary wastewater treatment with microsieving (disc or drum filtration) was studied at the large pilot scale at seven municipal wastewater treatment plants in Europe. Without chemical dosing, the reduction of suspended solids (SS) was (on average) 50% (20-65%). By introducing chemically enhanced primary treatment and dosing with cationic polymer only, SS removal could be controlled and increased to >80%. A maximum SS removal of >90% was achieved with a chemical dosing of >0.007 mg polymer/mg influent SS and 20 mg Al(3+)/L or 30 mg Fe(3+)/L. When comparing sieve pore sizes of 30-40 μm with 100 μm, the effluent SS was comparable, indicating that the larger sieve pore size could be used due to the higher loading capacity for the solids. Phosphorus removal was adjusted with the coagulant dose, and a removal of 95-97% was achieved. Moreover, microsieving offers favourable conditions for automated dosing control due to the low retention time in the filter. PMID:27438249

  19. Gamma dose from activation of internal shields in IRIS reactor.

    PubMed

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  20. Radiation dose modeling using IGRIP and Deneb/ERGO

    SciTech Connect

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-12-31

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.

  1. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    SciTech Connect

    Denison, K; Smith, S

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, which optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The

  2. Islam and harm reduction.

    PubMed

    Kamarulzaman, A; Saifuddeen, S M

    2010-03-01

    Although drugs are haram and therefore prohibited in Islam, illicit drug use is widespread in many Islamic countries throughout the world. In the last several years increased prevalence of this problem has been observed in many of these countries which has in turn led to increasing injecting drug use driven HIV/AIDS epidemic across the Islamic world. Whilst some countries have recently responded to the threat through the implementation of harm reduction programmes, many others have been slow to respond. In Islam, The Quran and the Prophetic traditions or the Sunnah are the central sources of references for the laws and principles that guide the Muslims' way of life and by which policies and guidelines for responses including that of contemporary social and health problems can be derived. The preservation and protection of the dignity of man, and steering mankind away from harm and destruction are central to the teachings of Islam. When viewed through the Islamic principles of the preservation and protection of the faith, life, intellect, progeny and wealth, harm reduction programmes are permissible and in fact provide a practical solution to a problem that could result in far greater damage to the society at large if left unaddressed.

  3. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  4. Harm Reduction From Below

    PubMed Central

    Van Schipstal, Inge; Berning, Moritz; Murray, Hayley

    2016-01-01

    This article focuses on how recreational drug users in the Netherlands and in online communities navigate the risks and reduce the harms they associate with psychoactive drug use. To do so, we examined the protective practices they invent, use, and share with their immediate peers and with larger drug experimenting communities online. The labor involved in protective practices and that which ultimately informs harm reduction from below follows three interrelated trajectories: (1) the handling and sharing of drugs to facilitate hassle-free drug use, (2) creating pleasant and friendly spaces that we highlight under the practices of drug use attunements, and (3) the seeking and sharing of information in practices to spread the good high. We focus not only on users’ concerns but also on how these concerns shape their approach to drugs, what young people do to navigate uncertainties, and how they reach out to and create different sources of knowledge to minimize adversities and to improve highs. Harm reduction from below, we argue, can best be seen in the practices of sharing around drug use and in the caring for the larger community of drug-using peers. PMID:27721525

  5. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  6. Heart rate reduction and longevity in mice.

    PubMed

    Gent, Sabine; Kleinbongard, Petra; Dammann, Philip; Neuhäuser, Markus; Heusch, Gerd

    2015-03-01

    Heart rate correlates inversely with life span across all species, including humans. In patients with cardiovascular disease, higher heart rate is associated with increased mortality, and such patients benefit from pharmacological heart rate reduction. However, cause-and-effect relationships between heart rate and longevity, notably in healthy individuals, are not established. We therefore prospectively studied the effects of a life-long pharmacological heart rate reduction on longevity in mice. We hypothesized, that the total number of cardiac cycles is constant, and that a 15% heart rate reduction might translate into a 15% increase in life span. C57BL6/J mice received either placebo or ivabradine at a dose of 50 mg/kg/day in drinking water from 12 weeks to death. Heart rate and body weight were monitored. Autopsy was performed on all non-autolytic cadavers, and parenchymal organs were evaluated macroscopically. Ivabradine reduced heart rate by 14% (median, interquartile range 12-15%) throughout life, and median life span was increased by 6.2% (p = 0.01). Body weight and macroscopic findings were not different between placebo and ivabradine. Life span was not increased to the same extent as heart rate was reduced, but nevertheless significantly prolonged by 6.2%.

  7. Does administering iodine in radiological procedures increase patient doses?

    SciTech Connect

    He, Wenjun; Yao, Hai; Huda, Walter; Mah, Eugene

    2014-11-01

    Purpose: The authors investigated the changes in the pattern of energy deposition in tissue equivalent phantoms following the introduction of iodinated contrast media. Methods: The phantom consisted of a small “contrast sphere,” filled with water or iodinated contrast, located at the center of a 28 cm diameter water sphere. Monte Carlo simulations were performed using MCNP5 codes, validated by simulating irradiations with analytical solutions. Monoenergetic x-rays ranging from 35 to 150 keV were used to simulate exposures to spheres containing contrast agent with iodine concentrations ranging from 1 to 100 mg/ml. Relative values of energy imparted to the contrast sphere, as well as to the whole phantom, were calculated. Changes in patterns of energy deposition around the contrast sphere were also investigated. Results: Small contrast spheres can increase local absorbed dose by a factor of 13, but the corresponding increase in total energy absorbed was negligible (<1%). The highest localized dose increases were found to occur at incident photon energies of about 60 keV. For a concentration of about 10 mg/ml, typical of clinical practice, localized absorbed doses were generally increased by about a factor of two. At this concentration of 10 mg/ml, the maximum increase in total energy deposition in the phantom was only 6%. These simulations demonstrated that increases in contrast sphere doses were offset by corresponding dose reductions at distal and posterior locations. Conclusions: Adding iodine can result in values of localized absorbed dose increasing by more than an order of magnitude, but the total energy deposition is generally very modest (i.e., <10%). Their data show that adding iodine primarily changes the pattern of energy deposition in the irradiated region, rather than increasing patient doses per se.

  8. Adjuvant chemotherapy dosing in low-income women: the impact of Hispanic ethnicity and patient self-efficacy

    PubMed Central

    Liu, Yihang; Sorbero, Melony E.; Jagielski, Christina H.; Maly, Rose C.

    2015-01-01

    Unwarranted breast cancer adjuvant chemotherapy dose reductions have been documented in black women, women of lower socioeconomic status, and those who are obese. No information on the quality of chemotherapy is available in Hispanic women. The purpose of this study was to characterize factors associated with first cycle chemotherapy dose selection in a multi-ethnic sample of low-income women receiving chemotherapy through the Breast and Cervical Cancer Prevention Treatment Program (BCCPT) and to investigate the impact of Hispanic ethnicity and patient self-efficacy on adjuvant chemotherapy dose selection. Survey and chemotherapy information were obtained from consenting participants enrolled in the California BCCPT. Analyses identified clinical and non-clinical factors associated with first cycle chemotherapy doses less than 90 % of expected doses. Of 552 patients who received chemotherapy, 397 (72 %) were eligible for inclusion. First cycle dose reductions were given to 14 % of the sample. In multivariate analyses, increasing body mass index and non-academic treatment site were associated with doses below 90 % of the expected doses. No other clinical or non-clinical factors, including ethnicity, were associated with first cycle doses selection. In this universally low-income sample, we identified no association between Hispanic ethnicity and other non-clinical patient factors, including patient self-efficacy, in chemotherapy dose selection. As seen in other studies, obesity was associated with systematic dose limits. The guidelines on chemotherapy dose selection in the obese may help address such dose reductions. A greater understanding of the association between type of treatment site and dose selection is warranted. Overall, access to adequate health care allows the vast majority of low-income women with breast cancer to receive high-quality breast cancer chemotherapy. PMID:24596046

  9. Adjuvant chemotherapy dosing in low-income women: the impact of Hispanic ethnicity and patient self-efficacy.

    PubMed

    Griggs, Jennifer J; Liu, Yihang; Sorbero, Melony E; Jagielski, Christina H; Maly, Rose C

    2014-04-01

    Unwarranted breast cancer adjuvant chemotherapy dose reductions have been documented in black women, women of lower socioeconomic status, and those who are obese. No information on the quality of chemotherapy is available in Hispanic women. The purpose of this study was to characterize factors associated with first cycle chemotherapy dose selection in a multi-ethnic sample of low-income women receiving chemotherapy through the Breast and Cervical Cancer Prevention Treatment Program (BCCPT) and to investigate the impact of Hispanic ethnicity and patient self-efficacy on adjuvant chemotherapy dose selection. Survey and chemotherapy information were obtained from consenting participants enrolled in the California BCCPT. Analyses identified clinical and non-clinical factors associated with first cycle chemotherapy doses less than 90 % of expected doses. Of 552 patients who received chemotherapy, 397 (72 %) were eligible for inclusion. First cycle dose reductions were given to 14 % of the sample. In multivariate analyses, increasing body mass index and non-academic treatment site were associated with doses below 90 % of the expected doses. No other clinical or non-clinical factors, including ethnicity, were associated with first cycle doses selection. In this universally low-income sample, we identified no association between Hispanic ethnicity and other non-clinical patient factors, including patient self-efficacy, in chemotherapy dose selection. As seen in other studies, obesity was associated with systematic dose limits. The guidelines on chemotherapy dose selection in the obese may help address such dose reductions. A greater understanding of the association between type of treatment site and dose selection is warranted. Overall, access to adequate health care allows the vast majority of low-income women with breast cancer to receive high-quality breast cancer chemotherapy.

  10. Reduction of radiation risks in patients undergoing some X-ray examinations by using optimal projections: A Monte Carlo program-based mathematical calculation.

    PubMed

    Chaparian, A; Kanani, A; Baghbanian, M

    2014-01-01

    The objectives of this paper were calculation and comparison of the effective doses, the risks of exposure-induced cancer, and dose reduction in the gonads for male and female patients in different projections of some X-ray examinations. Radiographies of lumbar spine [in the eight projections of anteroposterior (AP), posteroanterior (PA), right lateral (RLAT), left lateral (LLAT), right anterior-posterior oblique (RAO), left anterior-posterior oblique (LAO), right posterior-anterior oblique (RPO), and left posterior-anterior oblique (LPO)], abdomen (in the two projections of AP and PA), and pelvis (in the two projections of AP and PA) were investigated. A solid-state dosimeter was used for the measuring of the entrance skin exposure. A Monte Carlo program was used for calculation of effective doses, the risks of radiation-induced cancer, and doses to the gonads related to the different projections. Results of this study showed that PA projection of abdomen, lumbar spine, and pelvis radiographies caused 50%-57% lower effective doses than AP projection and 50%-60% reduction in radiation risks. Also use of LAO projection of lumbar spine X-ray examination caused 53% lower effective dose than RPO projection and 56% and 63% reduction in radiation risk for male and female, respectively, and RAO projection caused 28% lower effective dose than LPO projection and 52% and 39% reduction in radiation risk for males and females, respectively. About dose reduction in the gonads, using of the PA position rather than AP in the radiographies of the abdomen, lumbar spine, and pelvis can result in reduction of the ovaries doses in women, 38%, 31%, and 25%, respectively and reduction of the testicles doses in males, 76%, 86%, and 94%, respectively. Also for oblique projections of lumbar spine X-ray examination, with employment of LAO rather than RPO and also RAO rather than LPO, demonstrated 22% and 13% reductions to the ovaries doses and 66% and 54% reductions in the testicles doses

  11. Peritoneal Dialysis Dose and Adequacy

    MedlinePlus

    ... Organizations​​ . (PDF, 345 KB)​​​​​ Alternate Language URL Peritoneal Dialysis Dose and Adequacy Page Content On this page: ... from the abdominal cavity. [ Top ] Types of Peritoneal Dialysis The two types of peritoneal dialysis differ mainly ...

  12. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.

    PubMed

    Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  13. Joint Minimization of Uplink and Downlink Whole-Body Exposure Dose in Indoor Wireless Networks

    PubMed Central

    Plets, D.; Joseph, W.; Vanhecke, K.; Vermeeren, G.; Wiart, J.; Aerts, S.; Varsier, N.; Martens, L.

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  14. Filtration to reduce paediatric dose for a linear slot-scanning digital X-ray machine.

    PubMed

    Perks, T D; Dendere, R; Irving, B; Hartley, T; Scholtz, P; Lawson, A; Trauernicht, C; Steiner, S; Douglas, T S

    2015-12-01

    This paper describes modelling, application and validation of a filtration technique for a linear slot-scanning digital X-ray system to reduce radiation dose to paediatric patients while preserving diagnostic image quality. A dose prediction model was implemented, which calculates patient entrance doses using variable input parameters. Effective dose is calculated using a Monte Carlo simulation. An added filter of 1.8-mm aluminium was predicted to lower the radiation dose significantly. An objective image quality study was conducted using detective quantum efficiency (DQE). The PTW Normi 4FLU test phantom was used for quantitative assessment, showing that image contrast and spatial resolution were maintained with the proposed filter. A paediatric cadaver full-body imaging trial assessed the diagnostic quality of the images and measured the dose reduction using a 1.8-mm aluminium filter. Assessment by radiologists indicated that diagnostic quality was maintained with the added filtration, despite a reduction in DQE. A new filtration technique for full-body paediatric scanning on the Lodox Statscan has been validated, reducing entrance dose for paediatric patients by 36 % on average and effective dose by 27 % on average, while maintaining image quality. PMID:25433049

  15. Daily dosing prophylaxis for haemophilia: a randomized crossover pilot study evaluating feasibility and efficacy.

    PubMed

    Lindvall, K; Astermark, J; Björkman, S; Ljung, R; Carlsson, K S; Persson, S; Berntorp, E

    2012-11-01

    Regular replacement therapy (prophylaxis) for haemophilia has been shown to prevent development of disabling arthropathy and to provide a better quality of life compared to treatment on demand; however, at a substantially higher cost. Calculations based on pharmacokinetic principles have shown that shortening dose intervals may reduce cost. The aim of this prospective, randomized, crossover pilot study was to address whether daily dosing is feasible, if it reduces concentrate consumption and is as effective in preventing bleeding as the standard prophylactic dosing regimen. In a 12+12 month crossover study, 13 patients were randomized to start either their own previously prescribed standard dose, or daily dosing adjusted to maintain at least the same trough levels as obtained with the standard dose. Ten patients completed the study. A 30% reduction in cost of factor concentrates was achieved with daily prophylaxis. However, the number of bleeding events increased in some patients in the daily dosing arm and patients reported decreased quality of life during daily prophylaxis. Daily treatment had a greater impact on daily life, and the patients found it more stressful.Prophylaxis with daily dosing may be feasible and efficacious in some patients. A substantial reduction of factor consumption and costs can be realized, but larger studies are needed before the introduction of daily prophylaxis into clinical routine can be recommended.

  16. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.

    PubMed

    Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism.

  17. Evaluation of a low-dose neonatal chest radiographic system.

    PubMed

    Burton, E M; Kirks, D R; Strife, J L; Henry, G C; Kereiakes, J G

    1988-11-01

    A new low-dose chest radiographic system for use in the neonatal nursery was evaluated. This test system, composed of a Du Pont Kevlar fiber-front cassette, Quanta fast-detail screen, Cronex 4L film (wide latitude), and additional yttrium filtration (0.1 mm), reduced the radiation dose in neonatal chest radiography by 69% (0.9 vs 2.9 mrad [0.009 vs 0.029 mGy]) as compared with a conventional system without added yttrium filtration; the thyroid dose was reduced by 76% (0.9 vs 3.7 mrad [0.009 vs 0.037 mGy]). The cumulative dose reduction was achieved through a combination of factors, including (1) beam hardening by the added yttrium filter, (2) increased X-ray transmission through the Kevlar cassette, and (3) a fast film-screen combination. Scatter radiation at distances of 1 and 6 ft. (0.3 and 1.8 m) was negligible for both systems. Image sharpness was compared for the conventional system with and without added yttrium filtration and for the Kevlar system with yttrium. Although sharpness of bony detail was unchanged by adding yttrium filtration to the conventional system, a decrease in sharpness was noted with the Kevlar system. Because image sharpness was affected in the test system, we are not using the Kevlar-Cronex 4L system for mobile chest radiography in the neonatal intensive care unit, despite dose reductions. However, further study is recommended to determine if there is a slower film-screen combination with yttrium filtration that will not degrade image sharpness.

  18. Evaluation of a low-dose neonatal chest radiographic system

    SciTech Connect

    Burton, E.M.; Kirks, D.R.; Strife, J.L.; Henry, G.C.; Kereiakes, J.G.

    1988-11-01

    A new low-dose chest radiographic system for use in the neonatal nursery was evaluated. This test system, composed of a Du Pont Kevlar fiber-front cassette, Quanta fast-detail screen, Cronex 4L film (wide latitude), and additional yttrium filtration (0.1 mm), reduced the radiation dose in neonatal chest radiography by 69% (0.9 vs 2.9 mrad (0.009 vs 0.029 mGy)) as compared with a conventional system without added yttrium filtration; the thyroid dose was reduced by 76% (0.9 vs 3.7 mrad (0.009 vs 0.037 mGy)). The cumulative dose reduction was achieved through a combination of factors, including (1) beam hardening by the added yttrium filter, (2) increased X-ray transmission through the Kevlar cassette, and (3) a fast film-screen combination. Scatter radiation at distances of 1 and 6 ft. (0.3 and 1.8 m) was negligible for both systems. Image sharpness was compared for the conventional system with and without added yttrium filtration and for the Kevlar system with yttrium. Although sharpness of bony detail was unchanged by adding yttrium filtration to the conventional system, a decrease in sharpness was noted with the Kevlar system. Because image sharpness was affected in the test system, we are not using the Kevlar-Cronex 4L system for mobile chest radiography in the neonatal intensive care unit, despite dose reductions. However, further study is recommended to determine if there is a slower film-screen combination with yttrium filtration that will not degrade image sharpness.

  19. Human Collagen Injections to Reduce Rectal Dose During Radiotherapy

    SciTech Connect

    Noyes, William R.; Hosford, Charles C.; Schultz, Steven E.

    2012-04-01

    Objectives: The continuing search for interventions, which address the incidence and grade of rectal toxicities associated with radiation treatment of prostate cancer, is a major concern. We are reporting an investigational trial using human collagen to increase the distance between the prostate and anterior rectal wall, thereby decreasing the radiation dose to the rectum. Methods: This is a pilot study evaluating the use of human collagen as a displacing agent for the rectal wall injected before starting a course of intensity-modulated radiotherapy (IMRT) for prostate cancer. Using a transperineal approach, 20 mL of human collagen was injected into the perirectal space in an outpatient setting. Computerized IMRT plans were performed pre- and postcollagen injection, and after a patient completed their radiotherapy, to determine radiation dose reduction to the rectum associated with the collagen injection. Computed tomography scans were performed 6 months and 12 months after completing their radiotherapy to evaluate absorption rate of the collagen. All patients were treated with IMRT to a dose of 75.6 Gy to the prostate. Results: Eleven patients were enrolled into the study. The injection of human collagen in the outpatient setting was well tolerated. The mean separation between the prostate and anterior rectum was 12.7 mm. The mean reduction in dose to the anterior rectal wall was 50%. All men denied any rectal symptoms during the study. Conclusions: The transperineal injection of human collagen for the purpose of tissue displacement is well tolerated in the outpatient setting. The increased separation between the prostate and rectum resulted in a significant decrease in radiation dose to the rectum while receiving IMRT and was associated with no rectal toxicities.

  20. Reductant injection and mixing system

    DOEpatents

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  1. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    PubMed

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool.

  2. Active noise reduction

    NASA Astrophysics Data System (ADS)

    Geyer, Carolyn R.

    Active noise reduction (ANR) techniques are described with reference to their application to crewmembers during aircraft operation to enhance productivity and safety. ANR concepts and theory are explained, and the development of protective ANR systems for direct implementation are described. Sound attenuation testing was conducted to study the feasibility of aircraft-powered ANR systems, and the positive results spurred