Sample records for edf reactors exploitation

  1. Implementation of ALARA at the design stage of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brissaud, A.; Ridoux, P.

    1995-03-01

    In the 1970s, Electricite de France (EdF) had limited knowledge and experience of pressurized water reactors (PWRs). Electricity generation by nuclear units was oriented towards gas-graphite reactors, even though EdF had a share in the PWR unit of CHOOZ A-1 (250 MWe, later upgraded to 320 MWe). Some facts about the origin of doses in that king of reactor were known to the research and development (R&D) support staff of EdF, which mainly comprises the French Atomic Commission (CEA), but only a few of EdF`s engineers were aware of these facts. One has to bear in mind that CHOOZ A-1more » only went critical in April 1967 and was officially connected to the grid in May 1970 after some important problems had been solved. Meanwhile, the nuclear program was launched at full speed, beginning with the order for FESSENHEIM 1 in 1970, FESSENHEIM 2 and BUGEY 2 and 3 in 1971. TIHANGE 1, in which EdF had a share, went on-line in September 1975. Also, supposing that EdF had had such knowledge and experience, it is quite evident that it would have been very difficult to modify the lay-out inside the reactor building.« less

  2. Comparison of JSFR design with EDF requirements for future SFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, M. M.; Prele, G.; Mariteau, P.

    2012-07-01

    A comparison of Japan sodium-cooled fast reactor (JSFR) design with future French SFR concept has been done based on the requirement of EDF, the investor-operator of future French SFR, and the French safety baseline, under the framework of EDF-JAEA bilateral agreement of research and development cooperation on future SFR. (authors)

  3. Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source

    NASA Astrophysics Data System (ADS)

    Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.

    2017-09-01

    Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].

  4. EDF experience with {open_quotes}hot spot{close_quotes} management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guio, J.M. de

    1995-03-01

    During the past few years, {open_quotes}hot spots{close_quotes} due to the presence of particles of metal activated during their migration through the reactor core, have been detected at several French pressurized water reactor (PWR) units. These {open_quotes}hot spots,{close_quotes} which generate very high dose rates (from about 10 Gy/h to 200 G/h) are a significant factor in increase occupational exposures during outrates. Of particular concern are the difficult cases which prolong outage duration and increase the volume of radiological waste. Confronted with this situation, Electricite de France (EDF) has set up a national research group, as part of its ALARA program, tomore » establish procedures and techniques to avoid, detect, and eliminate of hot spots. In particular, specific processes have been developed to eliminate these hot spots which are most costly in terms of occupational exposure due to the need for reactor maintenance. This paper sets out the general approach adopted at EDF so far to cope with the problem of hot spots, illustrated by experience at Blayais 3 and 4.« less

  5. Strategy proposed by Electricite de France in the development of automatic tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaing, C.; Cazin, B.

    1995-03-01

    The strategy proposed by EDF in the development of a means to limit personal and collective dosimetry is recent. It follows in the steps of a policy that consisted of developing remote operation means for those activities of inspection and maintenance on the reactor, pools bottom, steam generators (SGs), also reactor building valves; target activities because of their high dosimetric cost. One of the main duties of the UTO (Technical Support Department), within the EDF, is the maintenance of Pressurized Water Reactors in French Nuclear Power Plant Operations (consisting of 54 units) and the development and monitoring of specialized tools.more » To achieve this, the UTO has started a national think-tank on the implementation of the ALARA process in its field of activity and created an ALARA Committee responsible for running and monitoring it, as well as a policy for developing tools. This point will be illustrated in the second on reactor vessel heads.« less

  6. Prospective scenarios of nuclear energy evolution over the 21. century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, S.; Tetart, P.; Garzenne, C.

    2006-07-01

    In this paper, different world scenarios of nuclear energy development over the 21. century are analyzed, by means of the EDF fuel cycle simulation code for nuclear scenario studies, TIRELIRE - STRATEGIE. Three nuclear demand scenarios are considered, and the performance of different nuclear strategies in satisfying these scenarios is analyzed and discussed, focusing on natural uranium consumption and industrial requirements related to the nuclear reactors and the associated fuel cycle facilities. Both thermal-spectrum systems (Pressurized Water Reactor and High Temperature Gas-cooled Reactor) and Fast Reactors are investigated. (authors)

  7. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucau, Joseph; Mirabella, C.; Nilsson, Lennart

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Centermore » for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)« less

  8. R and D program for core instrumentation improvements devoted for French sodium fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeannot, J. P.; Rodriguez, G.; Jammes, C.

    2011-07-01

    Under the framework of French R and D studies for Generation IV reactors and more specifically for sodium-cooled fast reactors (SFR); the CEA, EDF and AREVA have launched a joint coordinated research programme. This paper deals with the R and D sets out to achieve better inspection, maintenance, availability and decommissioning. In particular the instrumentation requirements for core monitoring and detection in the case of accidental events. Requirements mainly involve diversifying the means of protection and improving instrumentation performance in terms of responsiveness and sensitivity. Operation feedback from the Phenix and Superphenix prototype reactors and studies, carried out within themore » scope of the EFR projects, has been used to define the needs for instrumentation enhancement. (authors)« less

  9. ADS Model in the TIRELIRE-STRATEGIE Fuel Cycle Simulation Code Application to Minor Actinides Transmutation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzenne, Claude; Massara, Simone; Tetart, Philippe

    2006-07-01

    Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less

  10. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soubies, B.; Henry, J.Y.; Le Meur, M.

    1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de Francemore » (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.« less

  12. 78 FR 23243 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ...: EDF Trading North America, LLC, EDF Industrial Power Services (NY), LLC, EDF Industrial Power Services (IL), LLC, EDF Industrial Power Services (CA), LLC, Tanner Street Generation, LLC Description: Notice... England Power Pool Participants Committee, ISO New England Inc. Description: Regulation Market Opportunity...

  13. Quorum Sensing Extracellular Death Peptides Enhance the Endoribonucleolytic Activities of Mycobacterium tuberculosis MazF Toxins

    PubMed Central

    Nigam, Akanksha; Kumar, Sathish

    2018-01-01

    ABSTRACT mazEF is a toxin-antitoxin module located on chromosomes of most bacteria. MazF toxins are endoribonucleases antagonized by MazE antitoxins. Previously, we characterized several quorum sensing peptides called "extracellular death factors" (EDFs). When secreted from bacterial cultures, EDFs induce interspecies cell death. EDFs also enhance the endoribonucleolytic activity of Escherichia coli MazF. Mycobacterium tuberculosis carries several mazEF modules. Among them, the endoribonucleolytic activities of MazF proteins mt-1, mt-3, and mt-6 were identified. MazF-mt6 and MazF-mt-3 cleave M. tuberculosis rRNAs. Here we report the in vitro effects of EDFs on the endoribonucleolytic activities of M. tuberculosis MazFs. Escherichia coli EDF (EcEDF) and the three Pseudomonas aeruginosa EDFs (PaEDFs) individually enhance the endoribonucleolytic activities of MazF-mt6 and MazF-mt3 and overcome the inhibitory effect of MazE-mt3 or MazE-mt6 on the endoribonucleolytic activities of the respective toxins. We propose that these EDFs can serve as a basis for a novel class of antibiotics against M. tuberculosis. PMID:29717013

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT)more » signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.« less

  15. Impact of the deployment schedule of fast breeding reactors in the frame of French act for nuclear materials and radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Mer, J.; Garzenne, C.; Lemasson, D.

    In the frame of the French Act of June 28, 2006 on 'a sustainable management of nuclear materials and radioactive waste' EDF R and D assesses various research scenarios of transition between the actual French fleet and a Generation IV fleet with a closed fuel cycle where plutonium is multi-recycled. The basic scenarios simulate a deployment of 60 GWe of Sodium-cooled Fast Reactors (SFRs) in two steps: one third from 2040 to 2050 and the rest from 2080 to 2100 (scenarios 2040). These research scenarios assume that SFR technology will be ready for industrial deployment in 2040. One of themore » many sensitivity analyses that EDF, as a nuclear power plant operator, must evaluate is the impact of a delay of SFR technology in terms of uranium consumptions, plutonium needs and fuel cycle utilities gauging. The sensitivity scenarios use the same assumptions as scenarios 2040 but they simulate a different transition phase: SFRs are deployed in one step between 2080 and 2110 (scenarios 2080). As the French Act states to conduct research on minor actinides (MA) management, we studied different options for 2040 and 2080 scenarios: no MA transmutation, americium transmutation in heterogeneous mode based on americium Bearing Blankets (AmBB) in SFRs and all MA transmutation in heterogeneous mode based on MA Bearing Blankets (MABB). Moreover, we studied multiple parameters that could impact the deployment of these reactors (SFR load factor, increase of the use of MOX in Light Water Reactors, increase of the cooling time in spent nuclear fuel storage...). Each scenario has been computed with the EDF R and D fuel cycle simulation code TIRELIRE-STRATEGIE and optimized to meet various fuel cycle constraints such as using the reprocessing facility with long period of constant capacity, keeping the temporary stored mass of plutonium and MA under imposed limits, recycling older assemblies first... These research scenarios show that the transition from the current PWR fleet to an equivalent fleet of Generation IV SFR can follow different courses. The design of SFR-V2B that we used in our studies needs a high inventory of plutonium resulting in tension on this resource. Several options can be used in order to loosen this tension: our results lead to favour the use of axial breeding blanket in SFR. Load factor of upcoming reactors has to be regarded with attention as it has a high impact on plutonium resource for a given production of electricity. The deployment of SFRs beginning in 2080 instead of 2040 following the scenarios we described creates higher tensions on reprocessing capacity, separated plutonium storage and spent fuel storage. In the frame of the French Act, we studied minor actinides transmutation. The flux of MA in all fuel cycle plants is really high, which will lead to decay heat, a and neutron emission related problems. In terms of reduction of MA inventories, the deployment of MA transmutation cycle must not delay the installation of SFRs. The plutonium production in MABB and AmBB does not allow reducing the use of axial breeding blankets. The impact of MA or Am transmutation over the high level waste disposal is more important if the SFRs are deployed later. Transmutation option (americium or all MA) does not have a significant impact on the number of canister produced nor on its long-term thermal properties. (authors)« less

  16. International trade and waste and fuel managment issue, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: HLW management in France, by Michel Debes, EDF, France; Breakthroughs from future reactors, by Jacques Bouchard, CEA, France; 'MOX for peace' a reality, by Jean-Pierre Bariteau, AREVA Group, France; Swedish spent fuel and radwaste, by Per H. Grahn and Marie Skogsberg, SKB, Sweden; ENC2005 concluding remarks, by Larry Foulke, 'Nuclear Technology Matters'; Fuel crud formation and behavior, by Charles Turk, Entergy; and, Plant profile: major vote of confidence for NP, by Martti Katka, TVO, Finland.

  17. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission1

    PubMed Central

    Li, Pei-Fang; Lee, Yung-I; Yang, Chang-Hsien

    2015-01-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. PMID:26063506

  18. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission.

    PubMed

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-08-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Serial elongation, derotation and flexion (EDF) casting under general anesthesia and neuromuscular blocking drugs improve outcome in patients with juvenile scoliosis: preliminary results.

    PubMed

    Canavese, Federico; Botnari, Alexei; Dimeglio, Alain; Samba, Antoine; Pereira, Bruno; Gerst, Adeline; Granier, Marie; Rousset, Marie; Dubousset, Jean

    2016-02-01

    Juvenile scoliosis (JS), among different types of spinal deformity, remains still a challenge for orthopedic surgeons. Elongation, derotation and flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three-dimensional correction concept. The primary objective of the present study was to measure changes on plain radiographs of patients with JS treated with EDF plaster technique. The second aim was to evaluate the effectiveness of the EDF plaster technique realized under general anesthesia (GA) and neuromuscular blocking drugs, i.e. curare, on the radiological curve correction. A retrospective comparative case series study was performed in which were included forty-four skeletally immature patients. Three patient groups were selected. Group 1: EDF cast applied with patients awaken and no anesthesia; Group 2: EDF cast applied under GA without neuromuscular blocking drugs; Group 3: EDF cast applied under GA with neuromuscular blocking drugs. All the patients were treated with two serial EDF casts by 2 months and a half each. All measurements were taken from the radiographic exams. Cobb's angle; RVAD and Nash and Moe grade of rotation were assessed before and after applying the cast. Thirty-four (77.3 %) patients were followed up at least 24 months after removal of last EDF cast. Eighteen patients (3 males, 15 females) were included in Group 1, 12 (2 males, 10 females) in Group 2 and 14 (5 males, 9 females) in Group 3. Serial EDF casting was more effective at initial curve reduction and in preventing curve progression when applied under GA with neuromuscular blocking drugs, i.e. curare. RVAD and Nash and Moe score improved significantly in all groups of patients treated according to principles of EDF technique. During follow-up period, six patients required surgery in Group 1 (6/18; 33.3 %), 3 patients required surgery in Group 2 (3/12; 25 %) and 2 patients underwent surgery in Group 3 (2/14; 15 %). Preliminary results show EDF casting is effective in controlling the curve in both frontal (Cobb's angle) and transverse plane (rib vertebral angle and apical vertebral rotation degree).

  20. Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yijun; College of Physics Science and Engineering Technology, Yichun University, Yichun, Jiangxi Province 336000; Yao, Yong, E-mail: yaoyong@hit.edu.cn

    2014-01-28

    We experimentally study the dependences of high-order Stokes lines on the erbium-doped fiber (EDF) pump power P{sub EDF}, the Brillouin pump (BP) power P{sub BP}, and its working wavelength in a multiwavelength Brillouin erbium-doped fiber laser (MBEFL). By using the rate and propagation equations, and the coupled wave equations of stimulated Brillouin scattering, we establish a lumped model to describe the MBEFL. Numerical simulations show that the number of Stokes lines can be increased by decreasing the spacing between the BP wavelength and the EDF peak gain or P{sub BP} as long as it is larger than a critical valuemore » P{sub BP}{sup (cr)}=1.7 mW, or by increasing P{sub EDF} without reaching a saturation value P{sub EDF}{sup (cr)}=250 mW. However, when P{sub BP} and P{sub EDF} are varied beyond P{sub BP}{sup (cr)} and P{sub EDF}{sup (cr)}, respectively, the number of Stokes lines is reduced, accompanied by some self-lasing cavity modes. These results by numerical simulation are consistent with experimental observations from the MBEFL.« less

  1. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  2. Derivation and application of the energy dissipation factor in the design of fishways

    USGS Publications Warehouse

    Towler, Brett; Mulligan, Kevin; Haro, Alexander J.

    2015-01-01

    Reducing turbulence and associated air entrainment is generally considered advantageous in the engineering design of fish passage facilities. The well-known energy dissipation factor, or EDF, correlates with observations of the phenomena. However, inconsistencies in EDF forms exist and the bases for volumetric energy dissipation rate criteria are often misunderstood. A comprehensive survey of EDF criteria is presented. Clarity in the application of the EDF and resolutions to these inconsistencies are provided through formal derivations; it is demonstrated that kinetic energy represents only 1/3 of the total energy input for the special case of a broad-crested weir. Specific errors in published design manuals are identified and resolved. New, fundamentally sound, design equations for culvert outlet pools and standard Denil Fishway resting pools are developed. The findings underscore the utility of EDF equations, demonstrate the transferability of volumetric energy dissipation rates, and provide a foundation for future refinement of component-, species-, and life-stage-specific EDF criteria.

  3. 77 FR 41976 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...-2200-002; ER12-1716-001. Applicants: Noble Americas Gas & Power Corp., Noble Americas Energy Solutions LLC, Your Energy Holdings, LLC. Description: Notice of Change in Status of Noble Americas Gas & Power...-004. Applicants: EDF Trading North America, LLC, EDF Industrial Power Services (IL), LLC, EDF...

  4. 78 FR 39724 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Trading North America, LLC, EDF Industrial Power Services (NY), LLC, EDF Industrial Power Services (IL), LLC, EDF Industrial Power Services (CA), LLC, Tanner Street Generation, LLC. Description: Notice of...: AP Holdings, LLC, AP Gas & Electric (PA), LLC, AP Gas & Electric (TX), LLC, AP Gas & Electric (MD...

  5. Statistical Analyses for Probabilistic Assessments of the Reactor Pressure Vessel Structural Integrity: Building a Master Curve on an Extract of the 'Euro' Fracture Toughness Dataset, Controlling Statistical Uncertainty for Both Mono-Temperature and multi-temperature tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josse, Florent; Lefebvre, Yannick; Todeschini, Patrick

    2006-07-01

    Assessing the structural integrity of a nuclear Reactor Pressure Vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients is extremely important to safety. In addition to conventional deterministic calculations to confirm RPV integrity, Electricite de France (EDF) carries out probabilistic analyses. Probabilistic analyses are interesting because some key variables, albeit conventionally taken at conservative values, can be modeled more accurately through statistical variability. One variable which significantly affects RPV structural integrity assessment is cleavage fracture initiation toughness. The reference fracture toughness method currently in use at EDF is the RCCM and ASME Code lower-bound K{sub IC} based on the indexing parameter RT{submore » NDT}. However, in order to quantify the toughness scatter for probabilistic analyses, the master curve method is being analyzed at present. Furthermore, the master curve method is a direct means of evaluating fracture toughness based on K{sub JC} data. In the framework of the master curve investigation undertaken by EDF, this article deals with the following two statistical items: building a master curve from an extract of a fracture toughness dataset (from the European project 'Unified Reference Fracture Toughness Design curves for RPV Steels') and controlling statistical uncertainty for both mono-temperature and multi-temperature tests. Concerning the first point, master curve temperature dependence is empirical in nature. To determine the 'original' master curve, Wallin postulated that a unified description of fracture toughness temperature dependence for ferritic steels is possible, and used a large number of data corresponding to nuclear-grade pressure vessel steels and welds. Our working hypothesis is that some ferritic steels may behave in slightly different ways. Therefore we focused exclusively on the basic french reactor vessel metal of types A508 Class 3 and A 533 grade B Class 1, taking the sampling level and direction into account as well as the test specimen type. As for the second point, the emphasis is placed on the uncertainties in applying the master curve approach. For a toughness dataset based on different specimens of a single product, application of the master curve methodology requires the statistical estimation of one parameter: the reference temperature T{sub 0}. Because of the limited number of specimens, estimation of this temperature is uncertain. The ASTM standard provides a rough evaluation of this statistical uncertainty through an approximate confidence interval. In this paper, a thorough study is carried out to build more meaningful confidence intervals (for both mono-temperature and multi-temperature tests). These results ensure better control over uncertainty, and allow rigorous analysis of the impact of its influencing factors: the number of specimens and the temperatures at which they have been tested. (authors)« less

  6. Dynamic translabial ultrasound versus echodefecography combined with the endovaginal approach to assess pelvic floor dysfunctions: How effective are these techniques?

    PubMed

    Murad-Regadas, S M; Karbage, S A; Bezerra, L S; Regadas, F S P; da Silva Vilarinho, A; Borges, L B; Regadas Filho, F S P; Veras, L B

    2017-07-01

    The aim of this study was to evaluate the role of dynamic translabial ultrasound (TLUS) in the assessment of pelvic floor dysfunction and compare the results with echodefecography (EDF) combined with the endovaginal approach. Consecutive female patients with pelvic floor dysfunction were eligible. Each patient was assessed with EDF combined with the endovaginal approach and TLUS. The diagnostic accuracy of the TLUS was evaluated using the results of EDF as the standard for comparison. A total of 42 women were included. Four sphincter defects were identified with both techniques, and EDF clearly showed if the defect was partial or total and additionally identified the pubovisceral muscle defect. There was substantial concordance regarding normal relaxation and anismus. Perfect concordance was found with rectocele and cystocele. The rectocele depth was measured with TLUS and quantified according to the EDF classification. Fair concordance was found for intussusception. There was no correlation between the displacement of the puborectal muscle at maximum straining on EDF with the displacement of the anorectal junction (ARJ), compared at rest with maximal straining on TLUS to determine perineal descent (PD). The mean ARJ displacement was similar in patients with normal and those with excessive PD on TLUS. Both modalities can be used as a method to assess pelvic floor dysfunction. The EDF using 3D anorectal and endovaginal approaches showed advantages in identification of the anal sphincters and pubodefects (partial or total). There was good correlation between the two techniques, and a TLUS rectocele classification based on size that corresponds to the established classification using EDF was established.

  7. Treatment of irradiated graphite from French Bugey reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Howard; Laurent, Gerard

    In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long-lived radionuclides up to 95% for C-14 while minimizing mass loss to <5%, this would minimize the volume of any secondary waste streams and potentially lower the waste class of the larger bulk of graphite. Alternatively, if up to 95% decontamination of C-14 is achieved, the graphite may be completely gasified which could result in lower disposal. (authors)« less

  8. Electricite de France`s ALARA policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, L.; Rollin, P.

    1995-03-01

    In 1992, Electricite de France - EDF decided to improve the degree to which radiological protection is incorporated in overall management of the utility and set itself the objective of ensuring the same level of protection for workers from contractors as for those from EDF. This decision was taken in a context marked by a deterioration in exposure figures for French plants and by the new recommendations issued by the ICRP. This document describes the policy adopted by EDF at both corporate and plant level to meet these objectives, by: (1) setting up management systems which were responsive but notmore » cumbersome; (2) a broad policy of motivation; (3) the development and use of suitable tools. The document then describes some quite positive results of EDF`s ALARA policy, giving concrete examples and analyzing the changes in global indicators.« less

  9. Experimental adoption of RCM in EDF substations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroin, G.; Aupied, J.; Sanchis, G.

    1996-08-01

    EDF, after testing Reliability Centered Maintenance (RCM) on systems used in nuclear power plants, has now successfully extended RCM to all of its nuclear power plants. In the light of this experience, EDF has committed itself to a pilot study on a line bay of a 400 kV substation in 1992. The RCM method as applied benefited from EDF`s policy of maintenance, introduced five years ago on all substations, which has enhanced prospects of reliability. The original feature in the selection of maintenance tasks was that it brought into play two criteria for failure assessment - frequency and seriousness -more » and two criteria for maintenance task selection - efficiency and facility. The final outcome of RCM as applied to substation maintenance is to categorize maintenance tasks into: (1) essential maintenance tasks, (2) optional tasks, depending on the type and location of the substation, as well as on factors relating to local management of maintenance policy, and (3) unnecessary tasks.« less

  10. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courau, T.; Plagne, L.; Ponicot, A.

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less

  11. Evaluation of the optical switching characteristics of erbium-doped fibres for the development of a fibre Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.

    2014-05-01

    A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.

  12. Serial elongation derotation flexion (EDF) casting for patients with infantile and juvenile scoliosis.

    PubMed

    Canavese, Federico; Rousset, Marie; Mansour, Mounira; Samba, Antoine; Dimeglio, Alain

    2016-02-01

    Infantile and juvenile scoliosis, among different types of spinal deformity, is still a challenge for pediatric orthopedic surgeons. The ideal treatment of infantile and juvenile scoliosis has not yet been identified as both clinicians and surgeons still face multiple challenges, including preservation of the thoracic spine, thoracic cage, lung growth and cardiac function without reducing spinal motion. Elongation, derotation, flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three dimensional correction concept. This cast offers three-dimensional correction and can control the evolution of the deformity in some cases. Spinal growth can be guided by EDF casting as it can influence the initially curved spine to grow straighter. This article aimed to provide a comprehensive review of how infantile and juvenile scoliosis can affect normal spine and thorax and how these deformities can be treated with serial EDF casting technique. A current literature review is mandatory in order to understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in young and very young patients.

  13. Finite Nuclei in the Quark-Meson Coupling Model.

    PubMed

    Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W

    2016-03-04

    We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.

  14. The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, Simone; Tetart, Philippe; Lecarpentier, David

    2006-07-01

    The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less

  15. Panthere V2: Multipurpose Simulation Software for 3D Dose Rate Calculations

    NASA Astrophysics Data System (ADS)

    Penessot, Gaël; Bavoil, Éléonore; Wertz, Laurent; Malouch, Fadhel; Visonneau, Thierry; Dubost, Julien

    2017-09-01

    PANTHERE is a multipurpose radiation protection software developed by EDF to calculate gamma dose rates in complex 3D environments. PANTHERE takes a key role in the EDF ALARA process, enabling to predict dose rates and to organize and optimize operations in high radiation environments. PANTHERE is also used for nuclear waste characterization, transport of nuclear materials, etc. It is used in most of the EDF engineering units and their design service providers and industrial partners.

  16. The taxation of unhealthy energy-dense foods (EDFs) and sugar-sweetened beverages (SSBs): An overview of patterns observed in the policy content and policy context of 13 case studies.

    PubMed

    Hagenaars, Luc Louis; Jeurissen, Patrick Paulus Theodoor; Klazinga, Niek Sieds

    2017-08-01

    Taxation of energy-dense foods (EDFs) and sugar-sweetened beverages (SSBs) is increasingly of interest as a novel public health and fiscal policy instrument. However academic interest in policy determinants has remained limited. We address this paucity by comparing the policy content and policy context of EDF/SSB taxes witnessed in 13 case studies, of which we assume the tax is sufficiently high to induce behavioural change. The observational and non-randomized studies published on our case studies seem to indicate that the EDF/SSB taxes under investigation generally had the desired effects on prices and consumption of targeted products. The revenue collection of EDF/SSB taxes is minimal yet significant. Administrative practicalities in tax levying are important, possibly explaining why a drift towards solely taxing SSBs can be noted, as these can be demarcated more easily, with levies seemingly increasing in more recent case studies. Despite the growing body of evidence suggesting that EDF/SSB taxes have the potential to improve health, fiscal needs more often seem to lay their policy foundation rather than public health advocacy. A remarkable amount of conservative/liberal governments have adopted these taxes, although in many cases revenues are earmarked for benefits compensating regressive income effects. Governments voice diverse policy rationales, ranging from explicitly describing the tax as a public health instrument, to solely explicating revenue raising. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  18. Software for Building Models of 3D Objects via the Internet

    NASA Technical Reports Server (NTRS)

    Schramer, Tim; Jensen, Jeff

    2003-01-01

    The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.

  19. Stabilized single-longitudinal-mode erbium fibre laser employing silicon-micro-ring resonator and saturable absorber

    NASA Astrophysics Data System (ADS)

    Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun

    2018-07-01

    In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.

  20. Limiting variety in non-nutrient-dense, energy-dense foods during a lifestyle intervention: a randomized controlled trial.

    PubMed

    Raynor, Hollie A; Steeves, Elizabeth A; Hecht, Jacki; Fava, Joseph L; Wing, Rena R

    2012-06-01

    Dietary variety is a factor that influences consumption but has received little attention in obesity treatment. This study examined the effect of limiting the variety of different non-nutrient-dense, energy-dense foods (NND-EDFs) (i.e., chips, ice cream, cookies) on dietary intake and weight loss during an 18-mo lifestyle intervention. Two hundred two adults aged 51.3 ± 9.5 y with a BMI (in kg/m2) of 34.9 ± 4.3 (57.8% women, 92.2% white) were randomly assigned to 1 of 2 interventions: Lifestyle (1200-1500 kcal/d, ≤30% of energy as fat; n = 101) or Lifestyle + limited variety (LV) (limit variety of NND-EDFs, i.e., 2 choices; n = 101). Both interventions involved 48 group sessions. Dietary intake, NND-EDF hedonics, NND-EDF variety in the home, and weight were assessed at 0, 6, 12, and 18 mo. Intent-to-treat analyses showed that the Lifestyle+LV group consumed less variety (P < 0.01) and energy daily (P < 0.05) from NND-EDFs than did the Lifestyle group at 6, 12, and 18 mo. The Lifestyle+LV group consumed less total energy daily (P < 0.05) at 6 mo than did the Lifestyle group. The Lifestyle+LV group reported less (P < 0.05) NND-EDF variety in the home at 6 and 18 mo than did the Lifestyle group. The hedonics of one chosen NND-EDF decreased more (P < 0.05) in the Lifestyle+LV group. Despite these effects, no difference in percentage weight loss occurred at 18 mo (Lifestyle+LV: -9.9 ± 7.6%; Lifestyle: -9.6 ± 9.2%). Limitations in dietary variety decreased intakes in the targeted area but did not affect weight loss. Limiting variety in more areas may be needed to improve weight loss and weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT01096719.

  1. Limiting variety in non-nutrient-dense, energy-dense foods during a lifestyle intervention: a randomized controlled trial123

    PubMed Central

    Steeves, Elizabeth A; Hecht, Jacki; Fava, Joseph L; Wing, Rena R

    2012-01-01

    Background: Dietary variety is a factor that influences consumption but has received little attention in obesity treatment. Objective: This study examined the effect of limiting the variety of different non-nutrient-dense, energy-dense foods (NND-EDFs) (ie, chips, ice cream, cookies) on dietary intake and weight loss during an 18-mo lifestyle intervention. Design: Two hundred two adults aged 51.3 ± 9.5 y with a BMI (in kg/m2) of 34.9 ± 4.3 (57.8% women, 92.2% white) were randomly assigned to 1 of 2 interventions: Lifestyle (1200–1500 kcal/d, ≤30% of energy as fat; n = 101) or Lifestyle + limited variety (LV) (limit variety of NND-EDFs, ie, 2 choices; n = 101). Both interventions involved 48 group sessions. Dietary intake, NND-EDF hedonics, NND-EDF variety in the home, and weight were assessed at 0, 6, 12, and 18 mo. Results: Intent-to-treat analyses showed that the Lifestyle+LV group consumed less variety (P < 0.01) and energy daily (P < 0.05) from NND-EDFs than did the Lifestyle group at 6, 12, and 18 mo. The Lifestyle+LV group consumed less total energy daily (P < 0.05) at 6 mo than did the Lifestyle group. The Lifestyle+LV group reported less (P < 0.05) NND-EDF variety in the home at 6 and 18 mo than did the Lifestyle group. The hedonics of one chosen NND-EDF decreased more (P < 0.05) in the Lifestyle+LV group. Despite these effects, no difference in percentage weight loss occurred at 18 mo (Lifestyle+LV: −9.9 ± 7.6%; Lifestyle: −9.6 ± 9.2%). Conclusions: Limitations in dietary variety decreased intakes in the targeted area but did not affect weight loss. Limiting variety in more areas may be needed to improve weight loss and weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT01096719. PMID:22552025

  2. First Two Years of Observations NASA ACTS Propagation Experiment Central Oklahoma Site

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1996-01-01

    Continuous observations from December 1, 1993 through November 30, 1995 were made at the ACTS Propagation Terminal on the roof of the Sarkeys Energy Center at the University of Oklahoma in Norman, Oklahoma. Beacon and radiometer observations were combined to calibrate the beacon system for the estimation of total attenuation (attenuation relative to free space) and attenuation relative to clear sky (gaseous absorption component removed). Empirical cumulative distributions (edf's) were compiled for each month of observation and for each year. The annual edf's are displayed in the figures, the monthly and annual edf's are listed in the tables. The tables are organized by blocks and pages within a block. The blocks correspond to the headings in the edf files generated by the ACTS Preprocessing (actspp) software and contained in the fourth disk in the set of ACTS Propagation Experiment CD-ROMs generated by the University of Texas.

  3. Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.

    1993-01-01

    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.

  4. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    NASA Astrophysics Data System (ADS)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  5. Experimental validation of the DARWIN2.3 package for fuel cycle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San-Felice, L.; Eschbach, R.; Bourdot, P.

    2012-07-01

    The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuelmore » inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)« less

  6. 78 FR 21133 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... using an online survey tool. At this time, CSAT is requesting approval to extend the use of these five... (EDF). The EDF collects descriptive information about each of the events of the ATTC Network. This...

  7. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  8. Ageing management of french NPP civil work structures

    NASA Astrophysics Data System (ADS)

    Gallitre, E.; Dauffer, D.

    2011-04-01

    This paper presents EDF practice about concrete structure ageing management, from the mechanisms analysis to the formal procedure which allows the French company to increase 900 MWe NPP lifetime until 40 years; it will also introduce its action plan for 60 years lifetime extension. This practice is based on a methodology which identifies every ageing mechanism; both plants feedback and state of the art are screened and conclusions are drawn up into an "ageing analysis data sheet". That leads at first to a collection of 57 data sheets which give the mechanism identification, the components that are concerned and an analysis grid which is designed to assess the safety risk. This analysis screens the reference documents describing the mechanism, the design lifetime hypotheses, the associated regulation or codification, the feedback experiences, the accessibility, the maintenance actions, the repair possibility and so one. This analysis has to lead to a conclusion about the risk taking into account monitoring and maintenance. If the data sheet conclusion is not clear enough, then a more detailed report is launched. The technical document which is needed, is a formal detailed report which summarizes every theoretical knowledge and monitoring data: its objective is to propose a solution for ageing management: this solution can include more inspections or specific research development, or additional maintenance. After a first stage on the 900 MWe units, only two generic ageing management detailed reports have been needed for the civil engineering part: one about reactor building containment, and one about other structures which focuses on concrete inflating reactions. The second stage consists on deriving this generic analysis (ageing mechanism and detailed reports) to every plant where a complete ageing report is required (one report for all equipments and structures of the plant, but specific for each reactor). This ageing management is a continuous process because the 57 generic data sheets set is updated every year and the detailed generic reports every five years. After this 40 year lifetime extension, EDF is preparing a 60 years lifetime action plan which includes R&D actions, specific industrial studies and also monitoring improvements.

  9. The conceptual design of a robust, compact, modular tokamak reactor based on high-field superconductors

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.

    2012-10-01

    Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.

  10. Serial elongation-derotation-flexion casting for children with early-onset scoliosis.

    PubMed

    Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie

    2015-12-18

    Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois.

  11. Serial elongation-derotation-flexion casting for children with early-onset scoliosis

    PubMed Central

    Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie

    2015-01-01

    Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois. PMID:26716089

  12. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  13. Current and anticipated uses of the CATHARE code at EDF and FRAMATOME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandrille, J.L.; Vacher, J.L.; Poizat, F.

    1997-07-01

    This paper presents current industrial applications of the CATHARE code in the fields of Safety Studies and Simulators where the code is intensively used by FRAMATOME, EDF and CEA, the development partners of CATHARE. Future needs in these fields are also recapitulated.

  14. 77 FR 66828 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Industrial Power Services (NY), LLC, EDF Industrial Power Services (IL), LLC, EDF Industrial Power Services... reports: Docket Numbers: LA12-3-000. Applicants: Carolina Power & Light Company, Cimarron Windpower II... Duke Energy Ohio, Inc. Duke Energy Retail Sales, LLC, Duke Energy Washington II, LLC, Florida Power...

  15. Developing an ecosystem diversity framework for landscape assessment

    Treesearch

    Robert D. Pfister; Michael D. Sweet

    2000-01-01

    Ecological diversity is being addressed in various research and management efforts, but a common foundation is not explicitly defined or displayed. A formal Ecosystem Diversity Framework (EDF) would improve landscape analysis and communication across multiple scales. The EDF represents a multiple-component vegetation classification system with inherent flexibility for...

  16. 77 FR 31842 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ...-5152. Comments Due: 5 p.m. ET 6/11/12. Docket Numbers: ER12-1825-000. Applicants: EDF Industrial Power Services (CA), LLC. Description: EDF Industrial Power Services (CA), LLC submits tariff filing per 35.12... following electric securities filings: Docket Numbers: ES12-13-000. Applicants: AEP Texas North Company...

  17. 75 FR 57911 - Application to Export Electric Energy; EDF Trading North America, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... the proposed action will not adversely impact on the reliability of the U.S. electric power supply... from electric utilities, Federal power marketing agencies and other entities within the United States... DEPARTMENT OF ENERGY [OE Docket No. EA-373] Application to Export Electric Energy; EDF Trading...

  18. 75 FR 35016 - EDF Industrial Power Services (NY), LLC; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Industrial Power Services (NY), LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...-referenced proceeding of EDF Industrial Power Services (NY), LLC's application for market-based rate... authorization, under 18 CFR part 34, of future issuances of securities and assumptions of liability. Any person...

  19. 77 FR 33210 - EDF Industrial Power Services (CA), LLC; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Industrial Power Services (CA), LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes... proceeding of EDF Industrial Power Services (CA), LLC's application for market-based rate [[Page 33211... authorization, under 18 CFR part 34, of future issuances of securities and assumptions of liability. Any person...

  20. 78 FR 36769 - EDF Industrial Power Services (OH), LLC; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Industrial Power Services (OH), LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes... proceeding, of EDF Industrial Power Services (OH), LLC's application for market- based rate authority, with... authorization, under 18 CFR Part 34, of future issuances of securities and assumptions of liability. Any person...

  1. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined.

  2. Deformation properties of lead isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.

    2016-01-15

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes.more » The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo deformations, but the size of this region is substantially different for the different functionals being considered. Once again, it is maximal for the HFB-17 and HFB-27 functionals, is substantially narrower for the FaNDF{sup 0} functional, and is still narrower for the SKM* and SLy4 functionals. The two-neutron drip line proved to be A{sub drip}{sup 2n} = 266 for all of the EDF versions considered here, with the exception of SKM*, for which it is shifted to A{sub drip}{sup 2n}(SKM*) = 272.« less

  3. Non preemptive soft real time scheduler: High deadline meeting rate on overload

    NASA Astrophysics Data System (ADS)

    Khalib, Zahereel Ishwar Abdul; Ahmad, R. Badlishah; El-Shaikh, Mohamed

    2015-05-01

    While preemptive scheduling has gain more attention among researchers, current work in non preemptive scheduling had shown promising result in soft real time jobs scheduling. In this paper we present a non preemptive scheduling algorithm meant for soft real time applications, which is capable of producing better performance during overload while maintaining excellent performance during normal load. The approach taken by this algorithm has shown more promising results compared to other algorithms including its immediate predecessor. We will present the analysis made prior to inception of the algorithm as well as simulation results comparing our algorithm named gutEDF with EDF and gEDF. We are convinced that grouping jobs utilizing pure dynamic parameters would produce better performance.

  4. Amplification and noise properties of an erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; Yan, M F; Zhu, B; Fini, J M; Monberg, E M; Dimarcello, F V; Wisk, P W

    2011-08-15

    A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible. © 2011 Optical Society of America

  5. Random fiber lasers based on artificially controlled backscattering fibers

    NASA Astrophysics Data System (ADS)

    Chen, Daru; Wang, Xiaoliang; She, Lijuan; Qiang, Zexuan; Yu, Zhangwei

    2017-10-01

    The random fiber laser (RFL) which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previous RFLs are based on distributed feedback of Rayleigh scattering amplified through stimulated Raman/Brillouin scattering effect in single mode fibers, which required long-distance (tens of kilometers) single mode fibers and high threshold up to watt-level due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open cavity RFL based on a segment of a artificially controlled backscattering SMF(ACB-SMF) with a length of 210m, 310m or 390m. A fiber Bragg grating with the central wavelength of 1530nm and a segment of ACB-SMF forms the half-open cavity. The proposed RFL achieves the threshold of 25mW, 30mW and 30mW, respectively. Random lasing at the wavelength of 1530nm and the extinction ratio of 50dB is achieved when a segment of 5m EDF is pumped by a 980nm LD in the RFL. Another half-open cavity RFL based on a segment of a artificially controlled backscattering EDF(ACBS-EDF) is also demonstrated without an ACB-SMF. The 3m ACB-EDF is fabricated by using the femtosecond laser with pulse energy of 0.34mJ which introduces about 50 reflectors in the EDF. Random lasing at the wavelength of 1530nm is achieved with the output power of 7.5mW and the efficiency of 1.88%. Two novel RFLs with much short cavities have been achieved with low threshold and high efficiency.

  6. Cascade Model of Ionization Multiplication of Electrons in Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Romanenko, V. A.; Solodky, S. A.; Kudryavtsev, A. A.; Suleymanov, I. A.

    1996-10-01

    For determination of EDF in non-uniform fields a Monte-Carlo simulation(Tran Ngoc An et al., J.Phys.D: Appl. Phys. 10, 2317 (1977))^,(J.P. Boeuf et al., Phys.D: Appl.Phys. 15, 2169 (1982)) is applied. As alternative multi-beam cascade model(H.B. Valentini, Contrib.Plasma Phys. 27, 331 (1987)) is offered. Our model eliminates defects of that model and enables to determine EDF of low pressure plasma in non-uniform fields. A cascade model (with EDF dividing in monoenergetic electron groups) for arbitrary electric potential profile was used. Modeling was carried out for electron forward scattering only, constant electron mean free path; ionization was considered only. The equation system was solved for the region with kinetic energies more than ionization energy. The boundary conditions (on ionization energy curve) take into account electron transitions from higher-lying level in the less than ionization energy region and secondary electron production. The problem solution in analytical functions was obtained. The insertion of additional processes does not make significant difficulties. EDF and electrokinetical parameters in helium from numerical calculations are well agreed with above-mentioned authors. Work was carried out under RFFI (project N 96-02-18417) support.

  7. Dismantling of the 904 Cell at the HAO/Sud Facility - 13466

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaudey, C.E.; Crosnier, S.; Renouf, M.

    2013-07-01

    La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshopmore » to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)« less

  8. Ribbon networks for modeling navigable paths of autonomous agents in virtual environments.

    PubMed

    Willemsen, Peter; Kearney, Joseph K; Wang, Hongling

    2006-01-01

    This paper presents the Environment Description Framework (EDF) for modeling complex networks of intersecting roads and pathways in virtual environments. EDF represents information about the layout of streets and sidewalks, the rules that govern behavior on roads and walkways, and the locations of agents with respect to navigable structures. The framework serves as the substrate on which behavior programs for autonomous vehicles and pedestrians are built. Pathways are modeled as ribbons in space. The ribbon structure provides a natural coordinate frame for defining the local geometry of navigable surfaces. EDF includes a powerful runtime interface supported by robust and efficient code for locating objects on the ribbon network, for mapping between Cartesian and ribbon coordinates, and for determining behavioral constraints imposed by the environment.

  9. Image Analysis of DNA Fiber and Nucleus in Plants.

    PubMed

    Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi

    2016-01-01

    Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.

  10. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  11. The Nuclear Energy Density Functional Formalism

    NASA Astrophysics Data System (ADS)

    Duguet, T.

    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

  12. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    NASA Astrophysics Data System (ADS)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  13. Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket

    NASA Astrophysics Data System (ADS)

    Mulyana, A.; Faiz, L. A. A.

    2018-02-01

    The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.

  14. Spatial variation of a short-lived intermediate chemical species in a Couette reactor

    NASA Astrophysics Data System (ADS)

    Vigil, R. Dennis; Ouyang, Q.; Swinney, Harry L.

    1992-04-01

    We have conducted experiments and simulations of the spatial variation of a short-lived intermediate species (triiodide) in the autocatalytic oxidation of arsenite by iodate in a reactor that is essentially one dimensional—the Couette reactor. (This reactor consists of two concentric cylinders with the inner one rotating and the outer one at rest; reagents are continuously fed and removed at each end in such a way that there is no net axial flux and there are opposing arsenite and iodate gradients.) The predictions of a one-dimensional reaction-diffusion model, which has no adjustable parameters, are in good qualitative (and, in some cases, quantitative) agreement with experiments. Thus, the Couette reactor, which is used to deliberately create spatial inhomogeneities, can be exploited to enhance the recovery of short-lived intermediate species relative to that which can be obtained with either a batch or continuous-flow stirred-tank reactor.

  15. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  16. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  17. Eddy current NDE performance demonstrations using simulation tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurice, L.; Costan, V.; Guillot, E.

    2013-01-25

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  18. EDF involvement in research and development of RF and microwave industrial processes in Europe. The "Club Rayonnements".

    PubMed

    Moneuse, M

    2001-01-01

    In France, RF and microwave techniques are now mature. They are commercialized by industries having now reliable references in different fields of manufacturing industry. The present situation is the result of many studies and collaborations where universities and public technical centers were strongly involved during the last three decades. During this period, the "Club Rayonnements" sponsored by EDF has been a real "melting pot" for people coming from university, industry and technical centers.

  19. Using multi-ring structure for suppression of mode competition in stable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai

    2017-12-01

    In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.

  20. Schmallenberg virus: Predicting within-herd seroprevalence using bulk-tank milk antibody titres and exploring individual animal antibody titres using empirical distribution functions (EDF).

    PubMed

    Collins, Á B; Grant, J; Barrett, D; Doherty, M L; Hallinan, A; Mee, J F

    2017-08-01

    Schmallenberg virus (SBV) is transmitted by Culicoides spp. biting midges and can cause abortions and congenital malformations in ruminants and milk drop in dairy cattle. Estimating true within-herd seroprevalence is an essential component of efficient and cost-effective SBV surveillance programs. The objectives of this study were: (1) determine the correlation between bulk-tank milk (BTM)-ELISA results and within-herd seroprevalence, (2) evaluate the ability of BTM-ELISA results to predict within-herd seroprevalence and (3) explore the distributions of individual animal serology results using novel statistical methodology. BTM samples (n=24) and blood samples (n=4019) collected from all lactating cows contributing to the BTM in 26 Irish dairy herds (58-444 cows/herd) in 2014 located in a region exposed to SBV in 2012/2013, were analysed for SBV-specific antibodies using IDVet ® ELISA kits. The correlation between BTM-ELISA results and within-herd seroprevalence was determined by calculating Pearson's correlation coefficient. Linear regression models were used to assess the ability of BTM-ELISA results to predict within-herd seroprevalence. The distributions of individual animal serology results were explored by determining the empirical distribution functions (EDF) of the individual animal serum ELISA results in each herd. EDFs were compared pairwise across herds, using the Kolmogorov-Smirnov statistical test. Herds with similar BTM-ELISA results, herds with similar within-herd seroprevalence and herds with similar mean-herd serology ELISA results were stratified in order to explore their respective paired-herd EDF comparisons. Statistical significance was set at p<0.05. Twenty-two herds were BTM-ELISA-positive (within-herd seroprevalence 30.6-100%) and two herds were BTM-ELISA-negative (within-herd seroprevalence 10.7 and 16.2%) indicating BTM-ELISA-negative herds can have seropositive animals present. BTM-ELISA results were highly correlated (r=0.807, p<0.0001) with, and predictive of (R 2 =0.832, p<0.0001) of within-herd seroprevalence. Predictions were most accurate for upper-range BTM-ELISA antibody titres, while they were less accurate at higher and lower antibody titres. This is likely a result of the overall high within-herd seroprevalence. In herds with similar BTM-ELISA results 82% of the paired-herd EDF comparisons were significantly different. In herds with similar within-herd seroprevalence and in herds with similar mean-herd serology ELISA results, 46% and 47% of the paired-herd EDF comparisons were significantly different, respectively. These results demonstrate that BTM antibody titres are highly predictive of within-herd seroprevalence in an SBV exposed region. Furthermore, exploring the serum EDFs revealed that the variation observed in the predicted within-herd seroprevalence in the regression models is likely a result of individual animal variation in serum antibody titres in these herds. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Photocatalytic/Magnetic Composite Particles

    NASA Technical Reports Server (NTRS)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  2. An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials.

    PubMed

    Zou, Wenli; Cai, Ziyu; Wang, Jiankang; Xin, Kunyu

    2018-04-29

    Based on two-component relativistic atomic calculations, a free electron density function (EDF) library has been developed for nearly all the known ECPs of the elements Li (Z = 3) up to Ubn (Z = 120), which can be interfaced into modern quantum chemistry programs to save the .wfx wavefunction file. The applicability of this EDF library is demonstrated by the analyses of the quantum theory of atoms in molecules (QTAIM) and other real space functions on HeCuF, PtO42+, OgF 4 , and TlCl 3 (DMSO) 2 . When a large-core ECP is used, it shows that the corrections by EDF may significantly improve the properties of some density-derived real space functions, but they are invalid for the wavefunction-depending real space functions. To classify different chemical bonds and especially some nonclassical interactions, a list of universal criteria has also been proposed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamida, B A; Cheng, X S; Harun, S W

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achievedmore » with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.« less

  4. Phonon-particle coupling effects in odd-even mass differences of semi-magic nuclei

    NASA Astrophysics Data System (ADS)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2017-11-01

    A method to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei, based on a direct solving the Dyson equation with PC corrected mass operator, is used for finding the odd-even mass difference between 18 even Pb isotopes and their odd-proton neighbors. The Fayans energy density functional (EDF) DF3-a is used which gives rather high accuracy of the predictions for these mass differences already on the mean-field level, with the average deviation from the existing experimental data equal to 0.389 MeV. It is only a bit worse than the corresponding value of 0.333 MeV for the Skyrme EDF HFB-17, which belongs to a family of Skyrme EDFs with the highest overall accuracy in describing the nuclear masses. Account for the PC corrections induced by the low-laying phonons 2 1 + and 3 1 - significantly diminishes the deviation of the theory from the data till 0.218 MeV.

  5. On electron bunching and stratification of glow discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubovskii, Yuri B.; Kolobov, Vladimir I.; Nekuchaev, Vladimir O.

    2013-10-15

    Plasma stratification and excitation of ionization waves is one of the fundamental problems in gas discharge physics. Significant progress in this field is associated with the name of Lev Tsendin. He advocated the need for the kinetic approach to this problem contrary to the traditional hydrodynamic approach, introduced the idea of electron bunching in spatially periodic electric fields, and developed a theory of kinetic resonances for analysis of moving striations in rare gases. The present paper shows how Tsendin's ideas have been further developed and applied for understanding the nature of the well-known S-, P-, and R-striations observed in glowmore » discharges of inert gases at low pressures and currents. We review numerical solutions of a Fokker-Planck kinetic equation in spatially periodic electric fields under the effects of elastic and inelastic collisions of electrons with atoms. We illustrate the formation of kinetic resonances at specific field periods for different shapes of injected Electron Distribution Functions (EDF). Computer simulations illustrate how self-organization of the EDFs occurs under nonlocal conditions and how Gaussian-like peaks moving along resonance trajectories are formed in a certain range of discharge conditions. The calculated EDFs agree well with the experimentally measured EDFs for the S, P, and R striations in noble gases. We discuss how kinetic resonances affect dispersion characteristics of moving striations and mention some non-linear effects associated with glow discharge stratification. We propose further studies of stratification phenomena combining physical kinetics and non-linear physics.« less

  6. Fast and slow light property improvement in erbium-doped amplifier

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Wu, F. K.; Kao, W. C.; Chen, J.; Lin, C. T.; Chi, S.

    2013-01-01

    This work experimentally demonstrates improvement of the fast light property in erbium-doped amplifiers at room temperature. The difference between the signal power and the pump power associated with bending loss is used to control the signal power at the different positions of the erbium-doped fiber (EDF) to improve the fast light property. Periodic bending of the EDF increases the time advance of the probe signal by over 288%. Additionally, this concept also could improve the fast light property using coherent population oscillations in semiconductor optical amplifiers.

  7. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    PubMed

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can be applied for design and optimization of thermo-acoustic airborne ultrasound emitters. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z

    A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)

  9. Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Cormis, F.

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.

  10. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  11. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclearmore » science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.« less

  12. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    PubMed Central

    Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-01-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032

  13. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less

  14. Correlative Light-Electron Fractography of Interlaminar Fracture in a Carbon-Epoxy Composite.

    PubMed

    Hein, Luis Rogerio de O; Campos, Kamila A de

    2015-12-01

    This work evaluates the use of light microscopes (LMs) as a tool for interlaminar fracture of polymer composite investigation with the aid of correlative fractography. Correlative fractography consists of an association of the extended depth of focus (EDF) method, based on reflected LM, with scanning electron microscopy (SEM) to evaluate interlaminar fractures. The use of these combined techniques is exemplified here for the mode I fracture of carbon-epoxy plain-weave reinforced composite. The EDF-LM is a digital image-processing method that consists of the extraction of in-focus pixels for each x-y coordinate in an image from a stack of Z-ordered digital pictures from an LM, resulting in a fully focused picture and a height elevation map for each stack. SEM is the most used tool for the identification of fracture mechanisms in a qualitative approach, with the combined advantages of a large focus depth and fine lateral resolution. However, LMs, with EDF software, may bypass the restriction on focus depth and present enough lateral resolution at low magnification. Finally, correlative fractography can provide the general comprehension of fracture processes, with the benefits of the association of different resolution scales and contrast modes.

  15. A connection between domain-averaged Fermi hole orbitals and electron number distribution functions in real space.

    PubMed

    Francisco, E; Martín Pendás, A; Blanco, M A

    2009-09-28

    We show in this article how for single-determinant wave functions the one-electron functions derived from the diagonalization of the Fermi hole, averaged over an arbitrary domain Omega of real space, and expressed in terms of the occupied canonical orbitals, describe coarse-grained statistically independent electrons. With these domain-averaged Fermi hole (DAFH) orbitals, the full electron number distribution function (EDF) is given by a simple product of one-electron events. This useful property follows from the simultaneous orthogonality of the DAFH orbitals in Omega, Omega(')=R(3)-Omega, and R(3). We also show how the interfragment (shared electron) delocalization index, delta(Omega,Omega(')), transforms into a sum of one-electron DAFH contributions. Description of chemical bonding in terms of DAFH orbitals provides a vivid picture relating bonding and delocalization in real space. DAFH and EDF analyses are performed on several test systems to illustrate the close relationship between both concepts. Finally, these analyses clearly prove how DAFH orbitals well localized in Omega or Omega(') can be simply ignored in computing the EDFs and/or delta(Omega,Omega(')), and thus do not contribute to the chemical bonding between the two fragments.

  16. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    NASA Astrophysics Data System (ADS)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  17. Significance of breeding in fast nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raza, S.M.; Abidi, S.B.M.

    1983-12-01

    Only breeder reactors--nuclear power plants that produce more fuel than they consume--are capable in principle of extracting the maximum amount of fission energy contained in uranium ore, thus offering a practical long-term solution to uranium supply problems. Uranium would then constitute a virtually inexhaustible fuel reserve for the world's future energy needs. The ultimate argument for breeding is to conserve the energy resources available to mankind. A long-term role for nuclear power with fast reactors is proven to be economically viable, environmentally acceptable and capable of wide scale exploitation in many countries. In this paper, various suggestions pertaining to themore » fuel fabrication route, fuel cycle economics, studies of the physics of fast nuclear reactors and of engineering design simplifications are presented. Fast reactors contain no moderator and inherently require enriched fuel. In general, the main aim is to suggest an improvement in the understanding of the safety and control characteristics of fast breeder power reactors. Development work is also being devoted to new carbide and nitride fuels, which are likely to exhibit breeding characteristics superior to those of the oxides of plutonium and uranium.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alicia L.

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navymore » while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.« less

  19. Treatment of Irradiated Graphite from French Bugey Reactor - 13424

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas; Poncet, Bernard

    2013-07-01

    Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. Themore » BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36 is released during roasting tests. (authors)« less

  20. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    PubMed

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  1. Stabilized and tunable single-longitudinal-mode erbium fiber laser employing ytterbium-doped fiber based interference filter

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng

    2017-02-01

    In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.

  2. Reactor antineutrino detector iDREAM.

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  3. Environmental Defense Fund Oil and Gas Methane Studies: Principles for Collaborating with Industry Partners while Maintaining Scientific Objectivity

    NASA Astrophysics Data System (ADS)

    Hamburg, S.

    2016-12-01

    Environmental Defense Fund (EDF) launched a series of 16 research studies in 2012 to quantify methane emissions from the U.S. oil and gas (O&G) supply chain. In addition to EDF's funding from philanthropic individuals and foundations and in-kind contributions from universities, over forty O&G companies contributed money to the studies. For a subset of studies that required partner companies to provide site access to measure their equipment, five common principles were followed to assure that research was objective and scientifically rigorous. First, academic scientists were selected as principal investigators (PIs) to lead the studies. In line with EDF's policy of not accepting money from corporate partners, O&G companies provided funding directly to academic PIs. Technical work groups and steering committees consisting of EDF and O&G partner staff advised the PIs in the planning and implementation of research, but PIs had the final authority in scientific decisions including publication content. Second, scientific advisory panels of independent experts advised the PIs in the study design, data analysis, and interpretation. Third, studies employed multiple methodologies when possible, including top-down and bottom-up measurements. This helped overcome the limitations of individual approaches to decrease the uncertainty of emission estimates and minimize concerns with data being "cherry-picked". Fourth, studies were published in peer-reviewed journals to undergo an additional round of independent review. Fifth, transparency of data was paramount. Study data were released after publication, although operator and site names of individual data points were anonymized to ensure transparency and allow independent analysis. Following these principles allowed an environmental organization, O&G companies, and academic scientists to collaborate in scientific research while minimizing conflicts of interest. This approach can serve as a model for a scientifically rigorous process minimally influenced by study partners.

  4. Leak-Before-Break: Further developments in regulatory policies and supporting research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkowski, G.M.; Chao, K.-S.

    1990-02-01

    The fourth in a series of international Leak-Before-Break (LBB) Seminars supported in part by the US Nuclear Regulatory Commission was held at the National Central Library in Taipei, Taiwan on May 11 and 12, 1989. The seminar updated the international polices and supporting research on LBB. Attendees included representatives from regulatory agencies, electric utilities, nuclear power plant fabricators, research organizations, and academic institutions. Regulatory policy was the subject of presentations by Mr. G. Arlotto (US NRC, USA) Dr. B. Jarman (AECB, Canada), Dr.P. Milella (ENEA-DISP, Italy), Dr. C. Faidy (EDF/Septen, France ), and Dr. K. Takumi (NUPEC, Japan). A papermore » by Mr. K. Wichman and Mr. A. Lee of the US NRC Office of Nuclear Reactor Regulation is included as background material to these proceedings; it discusses the history and status of LBB applications in US nuclear power plants. In addition, several papers on the supporting research programs described regulatory policy or industry standards for flaw evaluations, e.g., the ASME Section XI code procedures. Supporting research programs were reviewed on the first and second day by several participants from Taiwan, US, Japan, Canada, Italy, and France. Each individual paper has been cataloged separately.« less

  5. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    DOE PAGES

    Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; ...

    2015-07-29

    In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ≤ Z ≤ 104 and 144 ≤ N ≤ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd–even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using themore » EDF modelling.« less

  6. Influence of Stress Corrosion Crack Morphology on Ultrasonic Examination Performances

    NASA Astrophysics Data System (ADS)

    Dupond, O.; Duwig, V.; Fouquet, T.

    2009-03-01

    Stress Corrosion Cracking represents a potential damage for several components in PWR. For this reason, NDE of stress corrosion cracks corresponds to an important stake for Electricité de France (EDF) both for availability and for safety of plants. This paper is dedicated to the ultrasonic examination of SCC crack defects. The study mixes an experimental approach conducted on artificial flaws—meant to represent the characteristic morphologic features often encountered on SCC cracks—and a 2D finite element modelling with the code ATHENA 2D developed by EDF. Results indicate that ATHENA reproduces correctly the interaction of the beam on the complex defect. Indeed specific ultrasonic responses resulting from the defect morphology have been observed experimentally and reproduced with the modelling.

  7. GIS insulation co-ordination: On-site tests and dielectric diagnostic techniques, a utility point of view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabot, A.; Petit, A.; Taillebois, J.P.

    1996-07-01

    This paper summarizes the Electricite de France experience with insulation co-ordination of GIS. After a review of the insulation co-ordination practice mainly dealing with fast front overvoltage and the one minute AC test, some results of the on-site test procedure applied since 30 years are presented and related to the insulation co-ordination practice. The in-service return of experience dealing with dielectric failures is analyzed then the dielectric diagnostic techniques now available are briefly presented with their possibilities and limitations. According to this survey, the expectations of EDF from these diagnostic techniques as well as the new on-site test and on-linemore » monitoring tendencies at EDF are presented.« less

  8. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    PubMed

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Report on Status of Shipment of High Fluence Austenitic Steel Samples for Characterization and Stress Corrosion Crack Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Scarlett R.; Leonard, Keith J.

    The goal of the Mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) task in the LWRS Program is to conduct experimental research into understanding how multiple variables influence the crack initiation and crack growth in materials subjected to stress under corrosive conditions. This includes understanding the influences of alloy composition, radiation condition, water chemistry and metallurgical starting condition (i.e., previous cold work or heat treatments and the resulting microstructure) has on the behavior of materials. Testing involves crack initiation and growth testing on irradiated specimens of single-variable alloys in simulated Light Water Reactor (LWR) environments, tensile testing, hardness testing, microstructuralmore » and microchemical analysis, and detailed efforts to characterize localized deformation. Combined, these single-variable experiments will provide mechanistic understanding that can be used to identify key operational variables to mitigate or control IASCC, optimize inspection and maintenance schedules to the most susceptible materials/locations, and, in the long-term, design IASCC-resistant materials. In support of this research, efforts are currently underway to arrange shipment of “free” high fluence austenitic alloys available through Électricité de France (EDF) for post irradiation testing at the Oak Ridge National Laboratory (ORNL) and IASCC testing at the University of Michigan. These high fluence materials range in damage values from 45 to 125 displacements per atom (dpa). The samples identified for transport to the United States, which include nine, no-cost, 304, 308 and 316 tensile bars, were relocated from the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad, Ulyanovsk Oblast, Russia, and received at the Halden Reactor in Halden, Norway, on August 23, 2016. ORNL has been notified that a significant amount of work is required to prepare the samples for further shipment to Oak Ridge, Tennessee. The preliminary work for sample shipment between Halden and Oak Ridge includes fabrication of an inner cask sample container, decontamination and preparation of a Type A container, preparation of new activity calculations, all necessary paperwork, and handling. ORNL will continue to work to track progress of sample preparation and shipment status, and to work toward an agreement that covers material shipping costs between the Halden Reactor and the Oak Ridge National Laboratory.« less

  10. Recent Advances in Pd-Based Membranes for Membrane Reactors.

    PubMed

    Arratibel Plazaola, Alba; Pacheco Tanaka, David Alfredo; Van Sint Annaland, Martin; Gallucci, Fausto

    2017-01-01

    Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.

  11. Microwave-Assisted Selective Hydrogenation of Furfural to Furfuryl Alcohol Employing a Green and Noble Metal-Free Copper Catalyst.

    PubMed

    Romano, Pedro N; de Almeida, João M A R; Carvalho, Yuri; Priecel, Peter; Falabella Sousa-Aguiar, Eduardo; Lopez-Sanchez, Jose A

    2016-12-20

    Green, inexpensive, and robust copper-based heterogeneous catalysts achieve 100 % conversion and 99 % selectivity in the conversion of furfural to furfuryl alcohol when using cyclopentyl-methyl ether as green solvent and microwave reactors at low H 2 pressures and mild temperatures. The utilization of pressurized microwave reactors produces a 3-4 fold increase in conversion and an unexpected enhancement in selectivity as compared to the reaction carried out at the same conditions using conventional autoclave reactors. The enhancement in catalytic rate produced by microwave irradiation is temperature dependent. This work highlights that using microwave irradiation in the catalytic hydrogenation of biomass-derived compounds is a very strong tool for biomass upgrade that offers immense potential in a large number of transformations where it could be a determining factor for commercial exploitation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A framework for semisupervised feature generation and its applications in biomedical literature mining.

    PubMed

    Li, Yanpeng; Hu, Xiaohua; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Feature representation is essential to machine learning and text mining. In this paper, we present a feature coupling generalization (FCG) framework for generating new features from unlabeled data. It selects two special types of features, i.e., example-distinguishing features (EDFs) and class-distinguishing features (CDFs) from original feature set, and then generalizes EDFs into higher-level features based on their coupling degrees with CDFs in unlabeled data. The advantage is: EDFs with extreme sparsity in labeled data can be enriched by their co-occurrences with CDFs in unlabeled data so that the performance of these low-frequency features can be greatly boosted and new information from unlabeled can be incorporated. We apply this approach to three tasks in biomedical literature mining: gene named entity recognition (NER), protein-protein interaction extraction (PPIE), and text classification (TC) for gene ontology (GO) annotation. New features are generated from over 20 GB unlabeled PubMed abstracts. The experimental results on BioCreative 2, AIMED corpus, and TREC 2005 Genomics Track show that 1) FCG can utilize well the sparse features ignored by supervised learning. 2) It improves the performance of supervised baselines by 7.8 percent, 5.0 percent, and 5.8 percent, respectively, in the tree tasks. 3) Our methods achieve 89.1, 64.5 F-score, and 60.1 normalized utility on the three benchmark data sets.

  13. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    NASA Astrophysics Data System (ADS)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer: 2.80 GHz Intel Pentium IV CPU Operating system: GNU/Linux RAM: 55 992 KB Word size: 32 bits Classification: 2.7 External routines: Netlib Nature of problem: Let us have an N-electron molecule and define an exhaustive partition of the physical space into m three-dimensional regions. The edf program computes the probabilities P(n,n,…,n)≡P({n}) of all possible allocations of n electrons to Ω, n electrons to Ω,…, and n electrons to Ω,{n} being integers. Solution method: Let us assume that the N-electron molecular wave function, Ψ(1,N), is a linear combination of M Slater determinants, Ψ(1,N)=∑rMCψ(1,N). Calling SΩrs the overlap matrix over the 3D region Ω between the (real) molecular spin-orbitals (MSO) in ψ(χ1r,…χNr) and the MSOs in ψ,(χ1s,…,χNs), edf finds all the P({n})'s by solving the linear system ∑{n}{∏kmtkn}P({n})=∑r,sMCCdet[∑kmtSΩrs], where t=1 and t,…,t are arbitrary real numbers. Restrictions: The number of {n} sets grows very fast with m and N, so that the dimension of the linear system (1) soon becomes very large. Moreover, the computer time required to obtain the determinants in the second member of Eq. (1) scales quadratically with M. These two facts limit the applicability of the method to relatively small molecules. Unusual features: Most of the real variables are of precision real*16. Running time: 0.030, 2.010, and 0.620 seconds for Test examples 1, 2, and 3, respectively. References: [1] A. Martín Pendás, E. Francisco, M.A. Blanco, Faraday Discuss. 135 (2007) 423-438. [2] A. Martín Pendás, E. Francisco, M.A. Blanco, J. Phys. Chem. A 111 (2007) 1084-1090. [3] A. Martín Pendás, E. Francisco, M.A. Blanco, Phys. Chem. Chem. Phys. 9 (2007) 1087-1092. [4] E. Francisco, A. Martín Pendás, M.A. Blanco, J. Chem. Phys. 126 (2007) 094102. [5] A. Martín Pendás, E. Francisco, M.A. Blanco, C. Gatti, Chemistry: A European Journal 113 (2007) 9362-9371.

  14. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USDA-ARS?s Scientific Manuscript database

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels that lie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone's (...

  15. Fusion Ash Separation in the Princeton Field-Reversed Configuration Reactor

    NASA Astrophysics Data System (ADS)

    Abbate, Joseph; Yeh, Meagan; McGreivy, Nick; Cohen, Samuel

    2016-10-01

    The Princeton Field-Reversed Configuration (PFRC) concept relies on low-neutron production by D-3He fusion to enable small, safe nuclear-fusion reactors to be built, an approach requiring rapid and efficient extraction of fusion ash and energy produced by D-3He fusion reactions. The ash exhaust stream would contain energetic (0.1-1 MeV) protons, T, 3He, and 4He ions and nearly 1e5 cooler (ca. 100 eV) D ions. The T extracted from the reactor would be a valuable fusion product in that it decays into 3He, which could be used as fuel. If the T were not extracted it would be troublesome because of neutron production by the D-T reaction. This paper discusses methods to separate the various species in a PFRC reactor's exhaust stream. First, we discuss the use of curved magnetic fields to separate the energetic from the cool components. Then we discuss exploiting material properties, specifically reflection, sputtering threshold, and permeability, to allow separation of the hydrogen from the helium isotopes. DOE Contract Number DE-AC02-09CH11466.

  16. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Hesham

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less

  17. Executive Energy Leadership Academy | NREL

    Science.gov Websites

    Management-Development, EDF Renewable Energy, Class of 2017 Executive Energy Leadership Academy Alumni Since Energy Leadership Academy. See the list of alumni sorted by program and year

  18. Study of Selected Petroleum Refining Residuals

    EPA Pesticide Factsheets

    The document describes EPA's approach to conducting the industry study required by the Environmental Defense Fund (EDF)/EPA consent decree and characterizes the study residuals and how they are managed.

  19. Nonextensive models for earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R.; Franca, G.S.; Vilar, C.S.

    2006-02-15

    We have revisited the fragment-asperity interaction model recently introduced by Sotolongo-Costa and Posadas [Phy. Rev. Lett. 92, 048501 (2004)] by considering a different definition for mean values in the context of Tsallis nonextensive statistics and introducing a scale between the earthquake energy and the size of fragment {epsilon}{proportional_to}r{sup 3}. The energy-distribution function (EDF) deduced in our approach is considerably different from the one obtained in the above reference. We have also tested the viability of this EDF with data from two different catalogs (in three different areas), namely, the NEIC and the Bulletin Seismic of the Revista Brasileira de Geofisica.more » Although both approaches provide very similar values for the nonextensive parameter q, other physical quantities, e.g., energy density, differ considerably by several orders of magnitude.« less

  20. Descriptions of carbon isotopes within the energy density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly themore » blocking effect plays a significant role in the shell model configurations.« less

  1. Microscopic derivation of IBM and structural evolution in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Kosuke

    A Hamiltonian of the interacting boson model (IBM) is derived based on the mean-field calculations with nuclear energy density functionals (EDFs). The multi-nucleon dynamics of the surface deformation is simulated in terms of the boson degrees of freedom. The interaction strengths of the IBM Hamiltonian are determined by mapping the potential energy surfaces (PESs) of a given EDF with quadrupole degrees of freedom onto the corresponding PES of IBM. A fermion-to-boson mapping for a rotational nucleus is discussed in terms of the rotational response, which reflects a specific time-dependent feature. Ground-state correlation energy is evaluated as a signature of structuralmore » evolution. Some examples resulting from the present spectroscopic calculations are shown for neutron-rich Pt, Os and W isotopes including exotic ones.« less

  2. Nonextensive models for earthquakes.

    PubMed

    Silva, R; França, G S; Vilar, C S; Alcaniz, J S

    2006-02-01

    We have revisited the fragment-asperity interaction model recently introduced by Sotolongo-Costa and Posadas [Phy. Rev. Lett. 92, 048501 (2004)] by considering a different definition for mean values in the context of Tsallis nonextensive statistics and introducing a scale between the earthquake energy and the size of fragment epsilon proportional to r3. The energy-distribution function (EDF) deduced in our approach is considerably different from the one obtained in the above reference. We have also tested the viability of this EDF with data from two different catalogs (in three different areas), namely, the NEIC and the Bulletin Seismic of the Revista Brasileira de Geofísica. Although both approaches provide very similar values for the nonextensive parameter , other physical quantities, e.g., energy density, differ considerably by several orders of magnitude.

  3. Getting ready for petaflop capacities and beyond: a utility perspective

    NASA Astrophysics Data System (ADS)

    Hamelin, J. F.; Berthou, J. Y.

    2008-07-01

    Why should EDF, the leading producer and marketer of electricity in Europe, start adding teraflops to its terawatt-hours and become involved in high-performance computing (HPC)? In this paper we answer this question through examples of major opportunities that HPC brings to our business today and, we hope well into the future of petaflop and exaflop computing. Five cases are presented dealing with nondestructive testing, nuclear fuel management, mechanical behavior of nuclear fuel assemblies, water management, and energy management. For each case we show the benefits brought by HPC, describe the current level of numerical simulation performance, and discuss the perspectives for future steps. We also present the general background that explains why EDF is moving to this technology and briefly comment on the development of user-oriented simulation platforms.

  4. Feasibility, strategy, methodology, and analysis of probe measurements in plasma under high gas pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Koepke, M. E.; Kurlyandskaya, I. P.; Malkov, M. A.

    2018-02-01

    This paper reviews existing theories for interpreting probe measurements of electron distribution functions (EDF) at high gas pressure when collisions of electrons with atoms and/or molecules near the probe are pervasive. An explanation of whether or not the measurements are realizable and reliable, an enumeration of the most common sources of measurement error, and an outline of proper probe-experiment design elements that inherently limit or avoid error is presented. Additionally, we describe recent expanded plasma-condition compatibility for EDF measurement, including in applications of large wall probe plasma diagnostics. This summary of the authors’ experiences gained over decades of practicing and developing probe diagnostics is intended to inform, guide, suggest, and detail the advantages and disadvantages of probe application in plasma research.

  5. Assessment of quasi-linear effect of RF power spectrum for enabling lower hybrid current drive in reactor plasmas

    NASA Astrophysics Data System (ADS)

    Cesario, Roberto; Cardinali, Alessandro; Castaldo, Carmine; Amicucci, Luca; Ceccuzzi, Silvio; Galli, Alessandro; Napoli, Francesco; Panaccione, Luigi; Santini, Franco; Schettini, Giuseppe; Tuccillo, Angelo Antonio

    2017-10-01

    The main research on the energy from thermonuclear fusion uses deuterium plasmas magnetically trapped in toroidal devices. To suppress the turbulent eddies that impair thermal insulation and pressure tight of the plasma, current drive (CD) is necessary, but tools envisaged so far are unable accomplishing this task while efficiently and flexibly matching the natural current profiles self-generated at large radii of the plasma column [1-5]. The lower hybrid current drive (LHCD) [6] can satisfy this important need of a reactor [1], but the LHCD system has been unexpectedly mothballed on JET. The problematic extrapolation of the LHCD tool at reactor graded high values of, respectively, density and temperatures of plasma has been now solved. The high density problem is solved by the FTU (Frascati Tokamak Upgrade) method [7], and solution of the high temperature one is presented here. Model results based on quasi-linear (QL) theory evidence the capability, w.r.t linear theory, of suitable operating parameters of reducing the wave damping in hot reactor plasmas. Namely, using higher RF power densities [8], or a narrower antenna power spectrum in refractive index [9,10], the obstacle for LHCD represented by too high temperature of reactor plasmas should be overcome. The former method cannot be used for routinely, safe antenna operations, Thus, only the latter key is really exploitable in a reactor. The proposed solutions are ultimately necessary for viability of an economic reactor.

  6. Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    NASA Astrophysics Data System (ADS)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B. C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-01

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector.

  7. Using the sound of nuclear energy

    DOE PAGES

    Garrett, Steven; Smith, James; Smith, Robert; ...

    2016-08-01

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  8. Using the sound of nuclear energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Steven; Smith, James; Smith, Robert

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  9. The role of heme oxygenase-1 in drug metabolizing dysfunction in the alcoholic fatty liver exposed to ischemic injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang Won; Kang, Jung-Woo; Lee, Sun-Mee, E-mail: sunmee@skku.edu

    This study was designed to investigate the role of heme oxygenase-1 (HO-1) in hepatic drug metabolizing dysfunction after ischemia/reperfusion (IR) in alcoholic fatty liver (AFL). Rats were fed a Lieber–DeCarli diet for five weeks to allow for development of AFL and were then subjected to 90 min of hepatic ischemia and 5 h of reperfusion. Rats were pretreated with hemin (HO-1 inducer) or ZnPP (HO-1 inhibitor) for 16 h and 3 h before hepatic ischemia. After hepatic IR, ethanol diet (ED)-fed rats had higher serum aminotransferase activities and more severe hepatic necrosis compared to the control diet (CD)-fed rats. Thesemore » changes were attenuated by hemin and exacerbated by ZnPP. The activity and gene expression of HO-1 and its transcription factor (Nrf2) level increased significantly after 5 h of reperfusion in CD-fed rats but not in ED-fed rats. After reperfusion, cytochrome P450 (CYP) 1A1, 1A2, and 2B1 activities were reduced to levels lower than those observed in sham group, whereas CYP2E1 activity increased. The decrease in CYP2B1 activity and the increase in CYP2E1 activity were augmented after hepatic IR in ED-fed animals. These changes were significantly attenuated by hemin but aggravated by ZnPP. Finally, CHOP expression and PERK phosphorylation, microsomal lipid peroxidation, and levels of proinflammatory mediators increased in ED-fed rats compared to CD-fed rats after reperfusion. These increases were attenuated by hemin. Our results suggest that AFL exacerbates hepatic drug metabolizing dysfunction during hepatic IR via endoplasmic reticulum stress and lipid peroxidation and this is associated with impaired HO-1 induction. - Highlights: • Endogenous HO-1 is generated in insufficient quantities in steatotic ischemic injury. • Impaired HO-1 induction leads to excessive ER stress response and lipid peroxidation. • Alcoholic steatosis exacerbates IR-induced hepatic drug-metabolizing dysfunction. • HO-1 induction is required for appropriate medication in patients with steatosis.« less

  10. Association of maternal characteristics and behaviours with 4-year-old children's dietary patterns.

    PubMed

    Durão, Catarina; Severo, Milton; Oliveira, Andreia; Moreira, Pedro; Guerra, António; Barros, Henrique; Lopes, Carla

    2017-04-01

    This study examined the association of family and maternal characteristics with preschool children's dietary patterns. Trained interviewers evaluated subsample 3422 mothers and children enrolled in the population-based birth cohort Generation XXI (Porto, Portugal, 2005-2006). Maternal characteristics and behaviours (exercise, smoking habits, diet and child-feeding practices) and family characteristics were evaluated. Maternal diet was classified by a dietary score, and children's dietary patterns were identified by latent class analysis. Odds ratios (OR) and confidence intervals (95% CI) were estimated by multinomial regression models. The analysis was based on a framework with four conceptual levels: maternal socio-economic position (SEP) at 12 years, maternal socio-economic and demographic characteristics at child's delivery, family characteristics and maternal behaviours at child's 4 years. Three dietary patterns were identified in children: high in energy-dense foods (EDF); low in foods typically consumed at main meals and intermediate in snacks (Snacking); higher in healthy foods; and lower in unhealthy ones (Healthier, reference). Lower maternal SEP had an overall effect on children's diet (low vs. high SEP; EDF, OR = 1.76, 95% CI: 1.42-2.18; Snacking, OR = 1.73, 95% CI: 1.27-2.35), while maternal education was directly associated with it (≤9 vs. >12 schooling years, EDF, OR = 2.19, 95% CI: 1.70-2.81; Snacking, OR = 2.22, 95% CI: 1.82-3.55). Children whose mothers had worse dietary score were significantly more likely to follow unhealthier patterns (first vs. fourth quartile; EDF, OR = 9.94, 95% CI: 7.35-13.44, P-trend < 0.001; Snacking, OR = 4.21, 95% CI: 2.94-6.05, P-trend < 0.001). Maternal diet was the key factor associated with children's diet, above and beyond socio-economic and demographic characteristics, accounting for one-third of the determination coefficient of the fully adjusted model. At preschool age, interventions should give a particular focus on maternal diet and low SEP groups. © 2016 John Wiley & Sons.

  11. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    NASA Astrophysics Data System (ADS)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  12. Production of nuclear transfer embryos by using somatic cells isolated from milk in buffalo (Bubalus bubalis).

    PubMed

    Golla, K; Selokar, N L; Saini, M; Chauhan, M S; Manik, R S; Palta, P; Singla, S K

    2012-10-01

    Somatic cells in milk are a potential source of nuclei for nuclear transfer to produce genetically identical animals; this is especially important in animals that are susceptible to risks of bacterial infection on biopsy collection. In this study, a minimum of 10 milk samples were collected from each of the three buffaloes representing Murrah breed. All the samples were processed immediately and cell colonies were obtained. Cell colonies from one buffalo (MU-442) survived beyond 10 passages and were evaluated by fluorescence microscopy and used in nuclear transfer experiments. In culture, these cells expressed vimentin, indicating they were of fibroblast origin similar to ear cells. We compared the effectiveness of cloning using those milk-derived fibroblast (MDF) cells and fibroblast cells derived from the ear derived fibroblast (EDF). Fusion and cleavage rates of MDF-NT and EDF-NT embryos were found to be similar (92.43 ± 1.28% vs 94.98 ± 1.24%, and 80.27 ± 1.75% vs 84.56 ± 3.73%, respectively; p > 0.01); however, development to blastocyst stage and total cell number was higher for EDF-NT embryos (50.24 ± 2.54%, 227.14 ± 13.04, respectively, p < 0.01), than for MDF-NT embryos (16.44 ± 0.75%, 170.57 ± 4.50 respectively). We conclude that somatic cells from milk can be cultured effectively and used as nucleus donor to produce cloned blastocyst-stage embryos. © 2012 Blackwell Verlag GmbH.

  13. EAACI/GA(2)LEN/EDF/WAO guideline: definition, classification and diagnosis of urticaria.

    PubMed

    Zuberbier, T; Asero, R; Bindslev-Jensen, C; Walter Canonica, G; Church, M K; Giménez-Arnau, A; Grattan, C E H; Kapp, A; Merk, H F; Rogala, B; Saini, S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Schünemann, H; Staubach, P; Vena, G A; Wedi, B; Maurer, M

    2009-10-01

    This guideline, together with its sister guideline on the management of urticaria [Zuberbier T, Asero R, Bindslev-Jensen C, Canonica GW, Church MK, Giménez-Arnau AM et al. EAACI/GA(2)LEN/EDF/WAO Guideline: Management of urticaria. Allergy, 2009; 64:1427-1443] is the result of a consensus reached during a panel discussion at the 3rd International Consensus Meeting on Urticaria, Urticaria 2008, a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-funded network of excellence, the Global Allergy and Asthma European Network (GA(2)LEN), the European Dermatology Forum (EDF) and the World Allergy Organization (WAO). Urticaria is a frequent disease. The life-time prevalence for any subtype of urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria do not only cause a decrease in quality of life, but also affect performance at work and school and, as such, are members of the group of severe allergic diseases. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors, and pathomechanisms. In addition, it outlines evidence-based diagnostic approaches for different subtypes of urticaria. The correct management of urticaria, which is of paramount importance for patients, is very complex and is consequently covered in a separate guideline developed during the same consensus meeting. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS).

  14. ALARA and work management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schieber, C.; Perin, M.; Saumon, P.

    1995-03-01

    At the request of Electricite de France (EDF) and Framatome, the Nuclear Protection Evaluation Centre (CEPN) developed a three-year research project, between 1991 and 1993, to evaluate the impact of various work management factors that can influence occupational exposures in nuclear power plants (NPPs) and to assess the effectiveness of protective actions implemented to reduce them. Three different categories of factors have been delineated: those linked to working conditions (such as ergonomic of work areas and protective suits), those characterizing the operators (qualification, experience level, motivation, etc.). In order to quantify the impact of these factors, a detailed survey wasmore » carried out in five French NPPs, focusing on three types of operations: primary valves maintenance, decontamination of reactor cavity, and specialized maintenance operations on the steam generator. This survey was augmented by a literature review on the influence of {open_quotes}hostile{close_quotes} environment on working conditions. Finally, a specific study was performed in order to quantify the impact of various types of protective suits used in French nuclear installations according to the type of work to be done. All of these factors have been included in a model aiming at quantifying the effectiveness of protection actions, both from dosimetric and economic point of views.« less

  15. Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors.

    PubMed

    Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J

    2017-03-01

    Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis

    PubMed Central

    Elizarov, Arkadij M.; van Dam, R. Michael; Shin, Young Shik; Kolb, Hartmuth C.; Padgett, Henry C.; Stout, David; Shu, Jenny; Huang, Jiang; Daridon, Antoine; Heath, James R.

    2010-01-01

    An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. Methods The unique architecture of the device is centered around a 5-μL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, and rapid heat and mass transfer. Its novel features facilitate mixing, solvent exchange, and product collection. New mixing mechanisms assisted by vacuum, pressure, and chemical reactions are exploited. Results The architecture of the reported reactor is the first that has allowed batch-mode microfluidic devices to produce radiopharmaceuticals of sufficient quality and quantity to be validated by in vivo imaging. Conclusion The reactor has the potential to produce multiple human doses of 18F-FDG; the most impact, however, is expected in the synthesis of PET radiopharmaceuticals that can be made only with low yields by currently available equipment. PMID:20124050

  17. Ex-situ biogas upgrading and enhancement in different reactor systems.

    PubMed

    Kougias, Panagiotis G; Treu, Laura; Benavente, Daniela Peñailillo; Boe, Kanokwan; Campanaro, Stefano; Angelidaki, Irini

    2017-02-01

    Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The pre-conceptual design of the nuclear island of ASTRID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez, M.; Menou, S.; Uzu, B.

    The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main componentsmore » with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps, Intermediate Heat Exchangers, and Decay Heat Exchangers are now under consideration. Under normal conditions, power release is achieved using the steam/water plant (in case of Rankine steam cycle) or the gas plant (in case of Brayton gas cycle). The diverse design and operating modes of Decay Heat Removal systems provide protection against common cause failures. A Decay Heat Removal system through the reactor vault is in particular studied with the objective to complement Direct Reactor Cooling systems. At this stage of the studies, the secondary system comprises four independent sodium loops (two and three sodium loops configurations are also investigated). Each loop includes one mechanical pump (or a large capacity Annular Linear Induction Electromagnetic Pump), and three modular Steam Generator Units characterized by once through straight tube units with a ferritic tube bundle; nevertheless, helical coil steam generator with tubes made of Alloy 800, and inverted type steam generator with a ferritic tube bundle are also investigated. The limited power of each modular Steam Generator Unit allows the whole secondary loop to withstand a large water/sodium reaction consecutive to the postulated simultaneous rupture of all the heat exchange tubes of one module. The arrangement of the components is based on the 'Regain' concept, in which the secondary pump is situated at a low level in the circuit; conventional arrangement, as SUPERPHENIX type, is a back-up option. Alternative arrangements based on gas cycles are also studied together with Na-gas heat exchanger design. This paper presents a status of the ASTRID pre-conceptual design. The most promising options are highlighted as well as less risky and back-up options. (authors)« less

  19. Modeling for the optimal biodegradation of toxic wastewater in a discontinuous reactor.

    PubMed

    Betancur, Manuel J; Moreno-Andrade, Iván; Moreno, Jaime A; Buitrón, Germán; Dochain, Denis

    2008-06-01

    The degradation of toxic compounds in Sequencing Batch Reactors (SBRs) poses inhibition problems. Time Optimal Control (TOC) methods may be used to avoid such inhibition thus exploiting the maximum capabilities of this class of reactors. Biomass and substrate online measurements, however, are usually unavailable for wastewater applications, so TOC must use only related variables as dissolved oxygen and volume. Although the standard mathematical model to describe the reaction phase of SBRs is good enough for explaining its general behavior in uncontrolled batch mode, better details are needed to model its dynamics when the reactor operates near the maximum degradation rate zone, as when TOC is used. In this paper two improvements to the model are suggested: to include the sensor delay effects and to modify the classical Haldane curve in a piecewise manner. These modifications offer a good solution for a reasonable complexification tradeoff. Additionally, a new way to look at the Haldane K-parameters (micro(o),K(I),K(S)) is described, the S-parameters (micro*,S*,S(m)). These parameters do have a clear physical meaning and, unlike the K-parameters, allow for the statistical treatment to find a single model to fit data from multiple experiments.

  20. Isospin-symmetry breaking in masses of N ≃ Z nuclei

    NASA Astrophysics Data System (ADS)

    Bączyk, P.; Dobaczewski, J.; Konieczka, M.; Satuła, W.; Nakatsukasa, T.; Sato, K.

    2018-03-01

    Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N = Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T = 1/2 doublets and T = 1 triplets, and TDEs for the T = 1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, ann, app, and anp. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.

  1. Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.

    PubMed

    Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K

    2013-02-11

    In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.

  2. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  3. Characterization and Modeling of Dual Stage Quadruple Pass Configurations

    NASA Astrophysics Data System (ADS)

    Sellami, M.; Sellami, A.; Berrah, S.

    In this paper, the proposed system achieves a gain of 62dBs. It employs a dual-stage (DS) to enhance the amplification and a tunable band-pass filter (TBF) to filter out the backward amplified spontaneous emission (ASE) that degrades the signal amplification at the input end of the EDFA. The technique there by reduces the effect of ASE self-saturation [1]. This configuration is also useful in reducing the sensitivity of the EDFA to extra strenuous reflections caused by imperfections of the splices and other optical components [2]. as well as improving noise figure and gain. The experimental work will build up by using the active component Silica based EDF (Si-EDF) in Dual Stage Quadruple Pass (DSQP) configuration. By using Tunable Band pass Filter (TBF) in DSQP between the port 1 and port 2 of circulators (CRT2, CRT3) to filter out the unwanted ASE.

  4. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  5. Goodness-of-Fit Tests for Generalized Normal Distribution for Use in Hydrological Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Das, Samiran

    2018-04-01

    The use of three-parameter generalized normal (GNO) as a hydrological frequency distribution is well recognized, but its application is limited due to unavailability of popular goodness-of-fit (GOF) test statistics. This study develops popular empirical distribution function (EDF)-based test statistics to investigate the goodness-of-fit of the GNO distribution. The focus is on the case most relevant to the hydrologist, namely, that in which the parameter values are unidentified and estimated from a sample using the method of L-moments. The widely used EDF tests such as Kolmogorov-Smirnov, Cramer von Mises, and Anderson-Darling (AD) are considered in this study. A modified version of AD, namely, the Modified Anderson-Darling (MAD) test, is also considered and its performance is assessed against other EDF tests using a power study that incorporates six specific Wakeby distributions (WA-1, WA-2, WA-3, WA-4, WA-5, and WA-6) as the alternative distributions. The critical values of the proposed test statistics are approximated using Monte Carlo techniques and are summarized in chart and regression equation form to show the dependence of shape parameter and sample size. The performance results obtained from the power study suggest that the AD and a variant of the MAD (MAD-L) are the most powerful tests. Finally, the study performs case studies involving annual maximum flow data of selected gauged sites from Irish and US catchments to show the application of the derived critical values and recommends further assessments to be carried out on flow data sets of rivers with various hydrological regimes.

  6. 78 FR 25260 - Combined Notice of Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ...: Boardwalk Storage Company, LLC. Description: Revise Hub Services and Umbrella Pro Forma Agmts to be... Pipeline Company of America. Description: Negotiated Rate--EDF Trading to be effective 5/1/2013. Filed Date...: Kern River Gas Transmission Company. [[Page 25261

  7. DNA-Based Enzyme Reactors and Systems

    PubMed Central

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.

    2016-01-01

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267

  8. Neutron radiation characteristics of the IVth generation reactor spent fuel

    NASA Astrophysics Data System (ADS)

    Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey

    2018-03-01

    Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.

  9. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    PubMed Central

    Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.

    2012-01-01

    Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  10. Burn Control in Fusion Reactors via Isotopic Fuel Tailoring

    NASA Astrophysics Data System (ADS)

    Boyer, Mark D.; Schuster, Eugenio

    2011-10-01

    The control of plasma density and temperature are among the most fundamental problems in fusion reactors and will be critical to the success of burning plasma experiments like ITER. Economic and technological constraints may require future commercial reactors to operate with low temperature, high-density plasma, for which the burn condition may be unstable. An active control system will be essential for stabilizing such operating points. In this work, a volume-averaged transport model for the energy and the densities of deuterium and tritium fuel ions, as well as the alpha particles, is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The controller makes use of ITER's planned isotopic fueling capability and controls the densities of these ions separately. The ability to modulate the DT fuel mix is exploited in order to reduce the fusion power during thermal excursions without the need for impurity injection. By moving the isotopic mix in the plasma away from the optimal 50:50 mix, the reaction rate is slowed and the alpha-particle heating is reduced to desired levels. Supported by the NSF CAREER award program (ECCS-0645086).

  11. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  12. NASA Space Engineering Research Center for Utilization of Local Planetary Resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1989-01-01

    Progress toward the goal of exploiting extraterrestrial resources for space missions is documented. Some areas of research included are as follows: Propellant and propulsion optimization; Automation of propellant processing with quantitative simulation; Ore reduction through chlorination and free radical production; Characterization of lunar ilmenite and its simulants; Carbothermal reduction of ilmenite with special reference to microgravity chemical reactor design; Gaseous carbonyl extraction and purification of ferrous metals; Overall energy management; and Information management for space processing.

  13. Effects of an exercise intervention using Dance Dance Revolution on endothelial function and other risk factors in overweight children.

    PubMed

    Murphy, Emily C-S; Carson, Linda; Neal, William; Baylis, Christine; Donley, David; Yeater, Rachel

    2009-01-01

    To determine whether an exercise intervention using an active video game (Dance Dance Revolution [DDR]) is effective in improving endothelial dysfunction (EDF) and other risk factors in overweight children. Thirty-five children (Body mass index > or = 85(th) percentile, mean age 10.21+/-1.67 years, 17 females) with EDF were assessed for flow-mediated dilation (FMD), lipids, insulin, glucose, NO(2)+NO(3), asymmetric dimethylarginine, symmetric dimethylarginine, l-arginine, height, weight, aerobic fitness, and blood pressure. In a subsample, tumor necrosis factor alpha, interleukin-6, C-reactive protein, and adiponectin were also assessed. Subjects were randomly assigned to 12-weeks of aerobic exercise (EX) using DDR or to a non-exercising delayed-treatment control group (DTC). EX had significant improvements in FMD ( 5.56+/-5.04% compared with 0.263+/-4.54%, p=0.008), exercise time on the graded exercise test (53.59+/-91.54 compared with -12.83+/-68.10 seconds, p=0.025), mean arterial pressure (MAP) (-5.62+/-7.03 compared with -1.44+/-2.16 mmHg, p=0.05), weight (0.91+/-1.53 compared with 2.43+/-1.80 kg, p=0.017) and peak VO(2) (2.38+/-3.91 compared with -1.23+/-3.18 mg/kg/min, p=0.005) compared with the DTC. Thirteen EX subjects achieved normal EDF while ten did not. These groups differed at baseline with regard to total cholesterol (TC) and low-density lipoprotein (LDL). Twelve weeks of DDR-use improved FMD, aerobic fitness, and MAP in overweight children. Improvements occurred without changes in inflammatory markers or nitric oxide production. The results document the need to explore relationships between obesity, endothelial function, inflammation, lipids, exercise intensity, and gender in a larger sample of overweight children.

  14. MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisikalo, D. V.; Shematovich, V. I.; Gérard, J.-C.

    2015-01-01

    Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({supmore » 1}D) and O({sup 1}S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.« less

  15. Modifiable environmental obesity risk factors among elementary school children in a Mexico-us border city.

    PubMed

    López-Barrón, Rita Gabriela; Jiménez-Cruz, Arturo; Bacardí-Gascón, Montserrat

    2015-05-01

    The increasing overweight (OW) and obesity (OB) prevalence in Mexican children warrant the assessment of the environmental risk factors. To assess whether there is an association between food availability in children's environments and their food consumption with BMI z-score and waist circumference (WC). Six hundred and eighty four children, 264 parents, 22 teachers and cafeteria staff in the schools and street vendors participated in the study. Weight, height, and WC of 5(th) grade children were assessed. Food frequency, physical activity (PA) and eating habits questionnaires were applied to parents, children and teachers. A food inventory questionnaire was applied to parents, cafeteria staff in the schools, street vendors and stores near the schools. The children's mean age was 10.5. Twenty eight per cent of the children were overweight, 26% obese and 25% had abdominal obesity. A positive correlation was found between energy-dense foods (EDF), fruit and vegetable availability at home and their weekly consumption. Also a correlation between consumption of soft drinks and other EDF was found. The largest contributors to food consumption were the availability at home and at school (R2 = 0.11, p = 0.0001). Children's TV viewing was positively correlated with parents TV viewing time. For each hour of increase (from cero to seven) in daily TV viewing children were more likely to be overweight or obese (OR=1.22 95% CI 1.02-1.45, p=0.026). EDF, fruit and vegetable availability in and near home and school along with hours of TV viewing were positively associated with obesity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    PubMed

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Ionizing Radiation: how fungi cope, adapt, and exploit with the help of melanin

    PubMed Central

    Dadachova, Ekaterina; Casadevall, Arturo

    2008-01-01

    SUMMARY OF RECENT ADVANCES Life on Earth has always existed in the flux of ionizing radiation. However, fungi seem to interact with the ionizing radiation differently from other Earth’s inhabitants. Recent data show that melanized fungal species like those from Chernobyl’s reactor respond to ionizing radiation with enhanced growth. Fungi colonize space stations and adapt morphologically to extreme conditions. Radiation exposure causes upregulation of many key genes, and an inducible microhomology-mediated recombination pathway could be a potential mechanism of adaptive evolution in eukaryotes. The discovery of melanized organisms in high radiation environments, the space stations, Antarctic mountains, and in the reactor cooling water combined with phenomenon of ‘radiotropism’ raises the tantalizing possibility that melanins have functions analogous to other energy harvesting pigments such as chlorophylls. PMID:18848901

  18. Guidelines on the use of extracorporeal photopheresis

    PubMed Central

    Knobler, R; Berlin, G; Calzavara-Pinton, P; Greinix, H; Jaksch, P; Laroche, L; Ludvigsson, J; Quaglino, P; Reinisch, W; Scarisbrick, J; Schwarz, T; Wolf, P; Arenberger, P; Assaf, C; Bagot, M; Barr, M; Bohbot, A; Bruckner-Tuderman, L; Dreno, B; Enk, A; French, L; Gniadecki, R; Gollnick, H; Hertl, M; Jantschitsch, C; Jung, A; Just, U; Klemke, C-D; Lippert, U; Luger, T; Papadavid, E; Pehamberger, H; Ranki, A; Stadler, R; Sterry, W; Wolf, IH; Worm, M; Zic, J; Zouboulis, CC; Hillen, U

    2014-01-01

    Background After the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma was published in 1983 with its subsequent recognition by the FDA for its refractory forms, the technology has shown significant promise in the treatment of other severe and refractory conditions in a multi-disciplinary setting. Among the major studied conditions are graft versus host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection and inflammatory bowel disease. Materials and methods In order to provide recognized expert practical guidelines for the use of this technology for all indications the European Dermatology Forum (EDF) proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. Results and conclusion These guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. PMID:24354653

  19. All-fiber tunable MMI fiber laser

    NASA Astrophysics Data System (ADS)

    Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.

    2009-05-01

    We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.

  20. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  1. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less

  2. Transient flow analysis linked to fast pressure disturbance monitored in pipe systems

    NASA Astrophysics Data System (ADS)

    Kueny, J. L.; Lourenco, M.; Ballester, J. L.

    2012-11-01

    EDF Hydro Division has launched the RENOUVEAU program in order to increase performance and improve plant availability through anticipation. Due to this program, a large penstocks fleet is equipped with pressure transducers linked to a special monitoring system. Any significant disturbance of the pressure is captured in a snapshot and the waveform of the signal is stored and analyzed. During these transient states, variations in flow are unknown. In order to determine the structural impact of such overpressure occurring during complex transients conditions over the entire circuit, EDF DTG has asked ENSE3 GRENOBLE to develop a code called ACHYL CF*. The input data of ACHYL CF are circuit topology and pressure boundaries conditions. This article provide a description of the computer code developed for modeling the transient flow in a pipe network using the signals from pressure transducers as boundary conditions. Different test cases will be presented, simulating real hydro power plants for which measured pressure signals are available.

  3. The Use of Thorium within the Nuclear Power Industry - 13472

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Keith

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, frommore » the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)« less

  4. Fusion energy: Status and prospects

    NASA Astrophysics Data System (ADS)

    Salomaa, Rainer

    A review of the present state of the international fusion research is given. In the largest tokamak devices (JET, TFTR, JT-60) fusion relevant temperatures are routinely obtained and the scientific feasibility of plasma confinement has been demonstrated. Plans concerning the next step are described. A critical view is presented on questions as to what extent the generic advantages of fusion (availability, sufficiency, safety, environmental acceptability, etc.) can be exploited in a practical power reactor where the formidable technological problems call for compromises.

  5. Density dependence of the nuclear energy-density functional

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic results, to which it has not been fitted. It also predicts a neutron-star mass-radius relation consistent with observations. The coefficients display naturalness. Conclusions: Having been already determined for homogeneous matter, a functional of the present form can be mapped onto extended Skyrme-type functionals in a straightforward manner, as we outline here, for applications to finite nuclei. At the same time, the statistical analysis can be extended to higher orders and for different microscopic (ab initio) calculations with sufficient pseudodata points and for polarized matter.

  6. Current biotechnological developments in Belgium.

    PubMed

    Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D

    1989-01-01

    In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.

  7. Pulse combustion reactor as a fast and scalable synthetic method for preparation of Li-ion cathode materials

    NASA Astrophysics Data System (ADS)

    Križan, Gregor; Križan, Janez; Dominko, Robert; Gaberšček, Miran

    2017-09-01

    In this work a novel pulse combustion reactor method for preparation of Li-ion cathode materials is introduced. Its advantages and potential challenges are demonstrated on two widely studied cathode materials, LiFePO4/C and Li-rich NMC. By exploiting the nature of efficiency of pulse combustion we have successfully established a slightly reductive or oxidative environment necessary for synthesis. As a whole, the proposed method is fast, environmentally friendly and easy to scale. An important advantage of the proposed method is that it preferentially yields small-sized powders (in the nanometric range) at a fast production rate of 2 s. A potential disadvantage is the relatively high degree of disorder of synthesized active material which however can be removed using a post-annealing step. This additional step allows a further tuning of materials morphology as shown and commented in some detail.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robledo, L. M.; Baldo, M.; Schuck, P.

    We explore the deformation properties of the newly postulated Barcelona-Catania-Paris (BCP) energy density functional (EDF). The results obtained for three isotope chains of Mg, Dy, and Ra are compared to the available experimental data as well as to the results of the Gogny-D1S force. Results for the fission barrier of {sup 240}Pu are also discussed.

  9. Multi-core fiber amplifier arrays for intra-satellite links

    NASA Astrophysics Data System (ADS)

    Kechagias, Marios; Crabb, Jonathan; Stampoulidis, Leontios; Farzana, Jihan; Kehayas, Efstratios; Filipowicz, Marta; Napierala, Marek; Murawski, Michal; Nasilowski, Tomasz; Barbero, Juan

    2017-09-01

    In this paper we present erbium doped fibre (EDF) aimed at signal amplification within satellite photonic payload systems operating in C telecommunication band. In such volume-hungry applications, the use of advanced optical transmission techniques such as space division multiplexing (SDM) can be advantageous to reduce the component and cable count.

  10. 78 FR 17717 - Notice of Availability of the Record of Decision for the EDF Renewable Energy Desert Harvest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... decommission an up to 150-megawatt (MW), nominal capacity, alternating current, solar photovoltaic (PV) energy... Solar Field Project and California Desert Conservation Area Plan Amendment, Riverside County, California... California Desert Conservation Area (CDCA) Plan, for the Desert Harvest Solar Project (DHSP), in Riverside...

  11. 75 FR 26202 - Application To Export Electric Energy; EDF Trading North America, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... power supply system. Copies of this application will be made available, upon request, for public... energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES... from the United States to Canada as a power marketer using existing international transmission...

  12. The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics.

    PubMed

    Sonuga-Barke, Edmund J S

    2003-11-01

    The currently dominant neuro-cognitive model of Attention Deficit Hyperactivity Disorder (AD/HD) presents the condition as executive dysfunction (EDF) underpinned by disturbances in the fronto-dorsal striatal circuit and associated dopaminergic branches (e.g. meso-cortical). In contrast, motivationally-based accounts focus on altered reward processes and implicate fronto-ventral striatal reward circuits and those meso-limbic branches that terminate in the ventral striatum especially the nucleus accumbens. One such account, delay aversion (DEL), presents AD/HD as a motivational style-characterised by attempts to escape or avoid delay-arising from fundamental disturbances in these reward centres. While traditionally regarded as competing, EDF and DEL models have recently been presented as complimentary accounts of two psycho-patho-physiological subtypes of AD/HD with different developmental pathways, underpinned by different cortico-striatal circuits and modulated by different branches of the dopamine system. In the current paper we describe the development of this model in more detail. We elaborate on the neuro-circuitry possibly underpinning these two pathways and explore their developmental significance within a neuro-ecological framework.

  13. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    NASA Astrophysics Data System (ADS)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  14. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  15. Experimental Plan for EDF Energy Creep Rabbit Graphite Irradiations- Rev. 2 (replaces Rev. 0 ORNL/TM/2013/49).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D

    2014-07-01

    The experimental results obtained here will assist in the development and validation of future models of irradiation induced creep of graphite by providing the following data: Inert creep stain data from low to lifetime AGR fluence Inert creep-property data (especially CTE) from low to lifetime AGR fluence Effect of oxidation on creep modulus (by indirect comparison with experiment 1 and direct comparison with experiment 3 NB. Experiment 1 and 3 are not covered here) Data to develop a mechanistic understanding, including oAppropriate creep modulus (including pinning and high dose effects on structure) oInvestigation of CTE-creep strain behavior under inert conditionsmore » oInformation on the effect of applied stress/creep strain on crystallite orientation (requires XRD) oEffect of creep strain on micro-porosity (requires tomography & microscopy) This document describes the experimental work planned to meet the requirements of project technical specification [1] and EDF Energy requests for additional Pre-IE work. The PIE work is described in detail in this revision (Section 8 and 9).« less

  16. Peaks Over Threshold (POT): A methodology for automatic threshold estimation using goodness of fit p-value

    NASA Astrophysics Data System (ADS)

    Solari, Sebastián.; Egüen, Marta; Polo, María. José; Losada, Miguel A.

    2017-04-01

    Threshold estimation in the Peaks Over Threshold (POT) method and the impact of the estimation method on the calculation of high return period quantiles and their uncertainty (or confidence intervals) are issues that are still unresolved. In the past, methods based on goodness of fit tests and EDF-statistics have yielded satisfactory results, but their use has not yet been systematized. This paper proposes a methodology for automatic threshold estimation, based on the Anderson-Darling EDF-statistic and goodness of fit test. When combined with bootstrapping techniques, this methodology can be used to quantify both the uncertainty of threshold estimation and its impact on the uncertainty of high return period quantiles. This methodology was applied to several simulated series and to four precipitation/river flow data series. The results obtained confirmed its robustness. For the measured series, the estimated thresholds corresponded to those obtained by nonautomatic methods. Moreover, even though the uncertainty of the threshold estimation was high, this did not have a significant effect on the width of the confidence intervals of high return period quantiles.

  17. LLCEDATA and LLCECALC for Windows version 1.0, Volume 1: User`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFadden, J.G.

    LLCEDATA and LLCECALC for Windows are user-friendly computer software programs that work together to determine the proper waste designation, handling, and disposition requirements for Long Length Contaminated Equipment (LLCE). LLCEDATA reads from a variety of data bases to produce an equipment data file (EDF) that represents a snapshot of both the LLCE and the tank it originates from. LLCECALC reads the EDF and a gamma assay (AV2) file that is produced by the Flexible Receiver Gamma Energy Analysis System. LLCECALC performs corrections to the AV2 file as it is being read and characterizes the LLCE. Both programs produce a varietymore » of reports, including a characterization report and a status report. The status report documents each action taken by the user, LLCEDATA, and LLCECALC. Documentation for LLCEDATA and LLCECALC for Windows is available in three volumes. Volume 1 is a user`s manual, which is intended as a quick reference for both LLCEDATA and LLCECALC. Volume 2 is a technical manual, and Volume 3 is a software verification and validation document.« less

  18. Guidelines on the use of extracorporeal photopheresis.

    PubMed

    Knobler, R; Berlin, G; Calzavara-Pinton, P; Greinix, H; Jaksch, P; Laroche, L; Ludvigsson, J; Quaglino, P; Reinisch, W; Scarisbrick, J; Schwarz, T; Wolf, P; Arenberger, P; Assaf, C; Bagot, M; Barr, M; Bohbot, A; Bruckner-Tuderman, L; Dreno, B; Enk, A; French, L; Gniadecki, R; Gollnick, H; Hertl, M; Jantschitsch, C; Jung, A; Just, U; Klemke, C-D; Lippert, U; Luger, T; Papadavid, E; Pehamberger, H; Ranki, A; Stadler, R; Sterry, W; Wolf, I H; Worm, M; Zic, J; Zouboulis, C C; Hillen, U

    2014-01-01

    After the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma was published in 1983 with its subsequent recognition by the FDA for its refractory forms, the technology has shown significant promise in the treatment of other severe and refractory conditions in a multi-disciplinary setting. Among the major studied conditions are graft versus host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection and inflammatory bowel disease. In order to provide recognized expert practical guidelines for the use of this technology for all indications the European Dermatology Forum (EDF) proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. These guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. © 2013 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.

  19. Fabrication of Size-Tunable Metallic Nanoparticles Using Plasmid DNA as a Biomolecular Reactor

    PubMed Central

    Samson, Jacopo; Piscopo, Irene; Yampolski, Alex; Nahirney, Patrick; Parpas, Andrea; Aggarwal, Amit; Saleh, Raihan; Drain, Charles Michael

    2011-01-01

    Plasmid DNA can be used as a template to yield gold, palladium, silver, and chromium nanoparticles of different sizes based on variations in incubation time at 70 °C with gold phosphine complexes, with the acetates of silver or palladium, or chromium acetylacetonate. The employment of mild synthetic conditions, minimal procedural steps, and aqueous solvents makes this method environmentally greener and ensures general feasibility. The use of plasmids exploits the capabilities of the biotechnology industry as a source of nanoreactor materials. PMID:28348280

  20. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-10-01

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ → ,γ‧) experiment at the HI γ → S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB (E 1) ↑ and ΣB (M 1) ↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9 ± 0.2 e2fm2 and 8.3 ± 2.0 μN2, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of αD = 122 ± 10 mb /MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of Rskin206 = 0.12- 0.19 fm and a corresponding range for the slope of the symmetry energy of L = 48- 60 MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb (n , γ)206Pb at 30 keV to be σ = 130 ± 25 mb. The astrophysical impact of this measurement-on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter-is discussed.

  1. Maternal child-feeding practices and dietary inadequacy of 4-year-old children.

    PubMed

    Durão, Catarina; Andreozzi, Valeska; Oliveira, Andreia; Moreira, Pedro; Guerra, António; Barros, Henrique; Lopes, Carla

    2015-09-01

    This study aimed to evaluate the association between maternal perceived responsibility and child-feeding practices and dietary inadequacy of 4-year-old children. We studied 4122 mothers and children enrolled in the population-based birth cohort - Generation XXI (Porto, Portugal). Mothers self-completed the Child Feeding Questionnaire and a scale on covert and overt control, and answered to a food frequency questionnaire in face-to-face interviews. Using dietary guidelines for preschool children, adequacy intervals were defined: fruit and vegetables (F&V) 4-7 times/day; dairy 3-5 times/day; meat and eggs 5-10 times/week; fish 2-4 times/week. Inadequacy was considered as below or above these cut-points. For energy-dense micronutrient-poor foods and beverages (EDF), a tolerable limit was defined (<6 times/week). Associations between maternal perceived responsibility and child-feeding practices (restriction, monitoring, pressure to eat, overt and covert control) and children's diet were examined by logistic regression models. After adjustment for maternal BMI, education, and diet, and children's characteristics (sex, BMI z-scores), restriction, monitoring, overt and covert control were associated with 11-18% lower odds of F&V consumption below the interval defined as adequate. Overt control was also associated with 24% higher odds of their consumption above it. Higher perceived responsibility was associated with higher odds of children consuming F&V and dairy above recommendations. Pressure to eat was positively associated with consumption of dairy above the adequate interval. Except for pressure to eat, maternal practices were associated with 14-27% lower odds of inadequate consumption of EDF. In conclusion, children whose mothers had higher levels of covert control, monitoring, and restriction were less likely to consume F&V below recommendations and EDF above tolerable limits. Higher overt control and pressure to eat were associated, respectively, with higher possibility of children consuming F&V and dairy above recommendations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    DOE PAGES

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; ...

    2017-08-02

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ→,γ') experiment at the HIγ→S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB(E1)↑ and ΣB(M1)↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9±0.2e 2fm 2 and 8.3±2.0μmore » $$2\\atop{N}$$, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of α D=122±10mb/MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of R$$206\\atop{skin}$$=0.12–0.19fm and a corresponding range for the slope of the symmetry energy of L=48–60MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb(n,γ)Pb 206 at 30 keV to be σ=130±25mb. In conclusion, the astrophysical impact of this measurement—on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter—is discussed.« less

  3. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less

  4. Exploitation of olive mill wastewater and liquid cow manure for biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina

    2010-10-15

    Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {supmore » o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.« less

  5. 77 FR 61597 - Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-109-000] Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development, Inc.; Notice of Petition for Declaratory...

  6. 630 kVA high temperature superconducting transformer

    NASA Astrophysics Data System (ADS)

    Zueger, H.

    This document describes the 630 KVA HTS transformer project made by ABB jointly with EDF and ASC. The project started April 1994 and its goal was to manufacture a real scale superconducting distribution transformer and to operate it during one year in the grid of Geneva's utility (SIG). The conclusion highlights the future perspective of HTS transformers.

  7. Prise en compte d'un couplage fin neutronique-thermique dans les calculs d'assemblage pour les reacteurs a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan

    Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small albeit not negligible for UOX-type and MOX-type assemblies. The specific behavior of gadolinium-stuffed fuel pins in an UO2Gd2O 3-type assembly is highlighted.

  8. Generating Aromatics From CO2 on Mars or Natural Gas on Earth

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Zubrin, Robert; Berggren, Mark

    2006-01-01

    Methane to aromatics on Mars ( METAMARS ) is the name of a process originally intended as a means of converting Martian atmospheric carbon dioxide to aromatic hydrocarbons and oxygen, which would be used as propellants for spacecraft to return to Earth. The process has been demonstrated on Earth on a laboratory scale. A truncated version of the process could be used on Earth to convert natural gas to aromatic hydrocarbon liquids. The greater (relative to natural gas) density of aromatic hydrocarbon liquids makes it more economically feasible to ship them to distant markets. Hence, this process makes it feasible to exploit some reserves of natural gas that, heretofore, have been considered as being "stranded" too far from markets to be of economic value. In the full version of METAMARS, carbon dioxide is frozen out of the atmosphere and fed to a Sabatier reactor along with hydrogen (which, on Mars, would have been brought from Earth). In the Sabatier reactor, these feedstocks are converted to methane and water. The water is condensed and electrolyzed to oxygen (which is liquefied) and hydrogen (which is recycled to the Sabatier reactor). The methane is sent to an aromatization reactor, wherein, over a molybdenum-on-zeolite catalyst at a temperature 700 C, it is partially converted into aromatic hydrocarbons (specifically, benzene, toluene, and naphthalene) along with hydrogen. The aromatics are collected by freezing, while unreacted methane and hydrogen are separated by a membrane. Most of the hydrogen is recycled to the Sabatier reactor, while the methane and a small portion of the hydrogen are recycled to the aromatization reactor. The partial recycle of hydrogen to the aromatization reactor greatly increases the catalyst lifetime and eases its regeneration by preventing the formation of graphitic carbon, which could damage the catalyst. (Moreover, if graphitic carbon were allowed to form, it would be necessary to use oxygen to remove it.) Because the aromatics contain only one hydrogen atom per carbon atom, METAMARS produces four times as much propellant from a given amount of hydrogen as does a related process that includes the Sabatier reaction and electrolysis but not aromatization. In the terrestrial version of METAMARS, the Sabatier reactor and electrolyzer would be omitted, while the hydrogen/ methane membrane-separating membrane, the aromatization reactor, and the unreacted-gas-recycling subsystem would be retained. Natural gas would be fed directly to the aromatization reactor. Because natural gas consists of higher hydrocarbons in addition to methane, the aromatization subprocess should be more efficient than it is for methane alone.

  9. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation.

    PubMed

    Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Microbial fuel cells as an alternative energy source: current status.

    PubMed

    Javed, Muhammad Mohsin; Nisar, Muhammad Azhar; Ahmad, Muhammad Usman; Yasmeen, Nighat; Zahoor, Sana

    2018-06-22

    Microbial fuel cell (MFC) technology is an emerging area for alternative renewable energy generation and it offers additional opportunities for environmental bioremediation. Recent scientific studies have focused on MFC reactor design as well as reactor operations to increase energy output. The advancement in alternative MFC models and their performance in recent years reflect the interests of scientific community to exploit this technology for wider practical applications and environmental benefit. This is reflected in the diversity of the substrates available for use in MFCs at an economically viable level. This review provides an overview of the commonly used MFC designs and materials along with the basic operating parameters that have been developed in recent years. Still, many limitations and challenges exist for MFC development that needs to be further addressed to make them economically feasible for general use. These include continued improvements in fuel cell design and efficiency as well scale-up with economically practical applications tailored to local needs.

  11. In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors.

    PubMed

    Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L

    2003-01-01

    In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.

  12. Monolithic catalyst beds for hydrazine reactors

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monolithic catalyst bed for monopropellant hydrazine decomposition was evaluated. The program involved the evaluation of a new hydrazine catalyst concept wherein open-celled foamed materials are used as supports for the active catalysts. A high-surface-area material is deposited upon the open-celled foamed material and is then coated with an active metal to provide a spontaneous catalyst. Only a fraction of the amount of expensive active metal in currently available catalysts is needed to promote monolithic catalyst. Numerous parameters were evaluated during the program, and the importance of additional parameters became obvious only while the program was in progress. A demonstration firing (using a 2.2-Newton (N)(0.5-lbf) reactor) successfully accumulated 7,700 seconds of firing time and 16 ambient temperature starts without degradation. Based on the excellent results obtained throughout the program and the demonstrated life capability of the monolithic foam, it is recommended that additional studies be conducted to further exploit the advantages of this concept.

  13. Creating Educational Foundations in Developing Countries: Knowledge Challenges for the Tertiary Education of Secondary School Teachers in Malawi

    ERIC Educational Resources Information Center

    Maluwa-Banda, Dixie; MacJessie-Mbewe, Samson

    2005-01-01

    Teacher education is an essential part of the teacher development process that deals with the art of acquiring knowledge, attitudes, and skills for the teaching profession. This paper discusses the creation of an educational foundations (EDF) knowledge base and the challenges for the tertiary education of secondary school teachers, using the…

  14. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH).

    PubMed

    Ohmido, Nobuko; Fukui, Kiichi; Kinoshita, Toshiro

    2010-01-01

    Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.

  15. New Approach for Studying Slow Fragmentation Kinetics in FT-ICR: Surface-Induced Dissociation Combined with Resonant Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Futrell, Jean H.

    2015-02-01

    We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less

  16. Brief history of the Office of Energy Research and Development: Federal Energy Office/Federal Energy Administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, W.R. Jr.

    A number of Important Issues in energy research and development which warrant special attention by the Energy Research and Development Office (ERDO) are identified and examined. Six matters considered to be of sufficient weight to be labeled Important Issues are: nuclear reactor siting policy: nuclear energy centers; the development of solar electric power; exploitation of western oil shale; improvements in mining technology for coal; assuring uranium fuel supplies; and automotive energy systems. The environmental issue is treated separately. Actions that ERDO can take to help resolve the issues are discussed.

  17. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    NASA Astrophysics Data System (ADS)

    Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Vancraeyenest, A.

    2013-12-01

    One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work, the EXILL setup and performance will be presented.

  18. Heat production in depth up to 2500m via in situ combustion of methane using a counter-current heat-exchange reactor

    NASA Astrophysics Data System (ADS)

    Schicks, Judith Maria; Spangenberg, Erik; Giese, Ronny; Heeschen, Katja; Priegnitz, Mike; Luzi-Helbing, Manja; Thaler, Jan; Abendroth, Sven; Klump, Jens

    2014-05-01

    In situ combustion is a well-known method used for exploitation of unconventional oil deposits such as heavy oil/bitumen reservoirs where the required heat is produced directly within the oil reservoir by combustion of a small percentage of the oil. A new application of in situ combustion for the production of methane from hydrate-bearing sediments was tested at pilot plant scale within the first phase of the German national gas hydrate project SUGAR. The applied method of in situ combustion was a flameless, catalytic oxidation of CH4 in a counter-current heat-exchange reactor with no direct contact between the catalytic reaction zone and the reservoir. The catalyst permitted a flameless combustion of CH4 with air to CO2 and H2O below the auto-ignition temperature of CH4 in air (868 K) and outside the flammability limits. This led to a double secured application of the reactor. The relatively low reaction temperature allowed the use of cost-effective standard materials for the reactor and prevented NOx formation. Preliminary results were promising and showed that only 15% of the produced CH4 was needed to be catalytically burned to provide enough heat to dissociate the hydrates in the environment and release CH4. The location of the heat source right within the hydrate-bearing sediment is a major advantage for the gas production from natural gas hydrates as the heat is generated where it is needed without loss of energy due to transportation. As part of the second period of the SUGAR project the reactor prototype of the first project phase was developed further to a borehole tool. The dimensions of this counter-current heat-exchange reactor are about 540 cm in length and 9 cm in diameter. It is designed for applications up to depths of 2500 m. A functionality test and a pressure test of the reactor were successfully carried out in October 2013 at the continental deep drilling site (KTB) in Windischeschenbach, Germany, in 600 m depth and 2000 m depth, respectively. In this study we present technical details of the reactor, the catalyst and potential fields of application beside the production of natural gas from hydrate bearing sediments.

  19. Low-Dissolved-Oxygen Nitrifying Systems Exploit Ammonia-Oxidizing Bacteria with Unusually High Yields▿

    PubMed Central

    Bellucci, Micol; Ofiţeru, Irina D.; Graham, David W.; Head, Ian M.; Curtis, Thomas P.

    2011-01-01

    In wastewater treatment plants, nitrifying systems are usually operated with elevated levels of aeration to avoid nitrification failures. This approach contributes significantly to operational costs and the carbon footprint of nitrifying wastewater treatment processes. In this study, we tested the effect of aeration rate on nitrification by correlating ammonia oxidation rates with the structure of the ammonia-oxidizing bacterial (AOB) community and AOB abundance in four parallel continuous-flow reactors operated for 43 days. Two of the reactors were supplied with a constant airflow rate of 0.1 liter/min, while in the other two units the airflow rate was fixed at 4 liters/min. Complete nitrification was achieved in all configurations, though the dissolved oxygen (DO) concentration was only 0.5 ± 0.3 mg/liter in the low-aeration units. The data suggest that efficient performance in the low-DO units resulted from elevated AOB levels in the reactors and/or putative development of a mixotrophic AOB community. Denaturing gel electrophoresis and cloning of AOB 16S rRNA gene fragments followed by sequencing revealed that the AOB community in the low-DO systems was a subset of the community in the high-DO systems. However, in both configurations the dominant species belonged to the Nitrosomonas oligotropha lineage. Overall, the results demonstrated that complete nitrification can be achieved at low aeration in lab-scale reactors. If these findings could be extended to full-scale plants, it would be possible to minimize the operational costs and greenhouse gas emissions without risk of nitrification failure. PMID:21926211

  20. The Goal of Motivation in the Military. Soldier Satisfaction or Soldier Performance

    DTIC Science & Technology

    1978-06-09

    soldier’s (E- 1 through E-,4) perceptions of 18 job-related factors, his/her level of performance and-" FOR" 1473 EDfTON Or I NOV 65 Is OBSOLETE UJCLAS...iv LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . v CHAPTER 1 . THE PROBLEM AND ITS SETTING . ..... ....... .... 1 INTRODUCTION...81 RECOMKM•DATION .83. , . * 3 SELECTED BIBLIOGRAPHY . . . . . . . . . . .......... . . 84 liii LIST OF TABLES Table Page 1

  1. Validation of the Spanish version of the Edinburgh Feeding Evaluation in Dementia Scale for older people with dementia

    PubMed Central

    San Alberto Giraldos, Mercedes; López Leiva, Inmaculada; León Campos, Álvaro; Martí García, Celia; García Mayor, Silvia

    2018-01-01

    Aims To adapt the Edinburgh Feeding Evaluation in Dementia Scale (EdFED) for use in a Spanish-speaking population and to assess its validity and reliability in patients with dementia. Method A cross-sectional study was carried out in two stages: 1. Cross-cultural adaptation (translation, back-translation, review by committee of experts, pilot test and weighting of results); 2. Clinimetric validation comprising interobserver reliability assessment, test-retest reliability and internal consistency. To determine construct validity, confirmatory factorial analysis and principal components analysis were performed by oblique rotations. Criteria validity was analysed using the Pearson correlation (p<0.05) with the BMI, MNA and analytical values of albumin, transferrin, cholesterol, absolute lymphocytes and total proteins. Data collection was carried out for six months in 2016 in nursing homes and Alzheimer’s day centers in the province of Málaga (Spain), at nine centers, with 262 patients (aged over 60 years and presenting feeding difficulties), 20 nurses, 20 professional caregivers and 103 family caregivers. Results A version of EdFED culturally adapted to Spanish was obtained. The sample presented the following characteristics: 76.3% women, mean age 82.3 years (SD: 7.9); MNA 18.73 (SD: 4.44); BMI 23.99 (SD: 4.72); serum albumin 3.79 mg/dl (SD: 0.36). A Cronbach’s alpha of 0.88 was obtained, with an inter-item global correlation of 0.43 and a homogeneity index ranging from 0.42 to 0.73. The exploratory factor analysis reproduced the three-factor model identified by the original authors, explaining 62.32% of the total variance. The criterion validity showed a good inverse correlation with MNA and a moderate one with albumin, total proteins, transferrin and BMI. Discussion The Spanish version of EdFED is reliable and valid for use in elderly people with dementia. The most appropriate for our environment is the three-factor model, which maintains the original factors, with a slight redistribution of the items. PMID:29486002

  2. EAACI/GA(2)LEN/EDF/WAO guideline: management of urticaria.

    PubMed

    Zuberbier, T; Asero, R; Bindslev-Jensen, C; Walter Canonica, G; Church, M K; Giménez-Arnau, A M; Grattan, C E H; Kapp, A; Maurer, M; Merk, H F; Rogala, B; Saini, S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Schünemann, H; Staubach, P; Vena, G A; Wedi, B

    2009-10-01

    This guideline, together with its sister guideline on the classification of urticaria (Zuberbier T, Asero R, Bindslev-Jensen C, Canonica GW, Church MK, Giménez-Arnau AM et al. EAACI/GA(2)LEN/EDF/WAO Guideline: definition, classification and diagnosis of urticaria. Allergy 2009;64: 1417-1426), is the result of a consensus reached during a panel discussion at the Third International Consensus Meeting on Urticaria, Urticaria 2008, a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-funded network of excellence, the Global Allergy and Asthma European Network (GA(2)LEN), the European Dermatology Forum (EDF) and the World Allergy Organization (WAO). As members of the panel, the authors had prepared their suggestions regarding management of urticaria before the meeting. The draft of the guideline took into account all available evidence in the literature (including Medline and Embase searches and hand searches of abstracts at international allergy congresses in 2004-2008) and was based on the existing consensus reports of the first and the second symposia in 2000 and 2004. These suggestions were then discussed in detail among the panel members and with the over 200 international specialists of the meeting to achieve a consensus using a simple voting system where appropriate. Urticaria has a profound impact on the quality of life and effective treatment is, therefore, required. The recommended first line treatment is new generation, nonsedating H(1)-antihistamines. If standard dosing is not effective, increasing the dosage up to four-fold is recommended. For patients who do not respond to a four-fold increase in dosage of nonsedating H(1)-antihistamines, it is recommended that second-line therapies should be added to the antihistamine treatment. In the choice of second-line treatment, both their costs and risk/benefit profiles are most important to consider. Corticosteroids are not recommended for long-term treatment due to their unavoidable severe adverse effects. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS).

  3. ALARA and planning of interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocaboy, A.

    1995-03-01

    The implementation of ALARA programs implies integration of radiation protection criterion at all stages of outage management. Within the framework of its ALARA policy, Electricide de France (EDF) has given an incentive to all of its nuclear power plants to develop {open_quotes}good practices{close_quotes} in this domain, and to exchange their experience by the way of a national feed back file. Among the developments in the field of outage organization, some plants have focused on the planning stage of activities because of its influence on the radiological conditions of interventions and on the good succession of tasks within the radiological controlledmore » areas. This paper presents the experience of Chinon nuclear power plant. At Chinon, we are pursuing this goal through careful outage planning. We want the ALARA program during outages to be part of the overall maintenance task planning. This planning includes the provision of the availability of every safety-related component, and of the variations of water levels in hthereactor and steam generators to take advantage of the shield created by the water. We have developed a computerized data base with the exact position of all the components in the reactor building in order to avoid unnecessary interactions between different tasks performed in the same room. A common language between Operation and Maintenance had been established over the past years, using {open_quotes}Milestones and Corridors{close_quotes}. A real time dose rate counting system enables the Radiation Protection (RP) Department to do an accurate and efficient follow up during the outage for all the {open_quotes}ALARA{close_quotes} maintenance tasks.« less

  4. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.

    PubMed

    Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie

    2017-06-22

    Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    NASA Astrophysics Data System (ADS)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could provide a significant optimisation of the UCG process by means of CO2 storage efficiency. The proposed coupled UCG-CCS scheme allows for meeting EU targets for greenhouse gas emissions and increases the coal yield otherwise impossible to exploit.

  6. High Hydrogen Content Graphene Hydride Compounds & High Cross-­ Section Cladding Coatings for Fast Neutron Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrashekhar, MVS

    The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cyclesmore » to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.« less

  7. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGES

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  8. The EAACI/GA²LEN/EDF/WAO Guideline for the Definition, Classification, Diagnosis and Management of Urticaria. The 2017 Revision and Update.

    PubMed

    Zuberbier, T; Aberer, W; Asero, R; Abdul Latiff, A H; Baker, D; Ballmer-Weber, B; Bernstein, J A; Bindslev-Jensen, C; Brzoza, Z; Buense Bedrikow, R; Canonica, G W; Church, M K; Craig, T; Danilycheva, I V; Dressler, C; Ensina, L F; Giménez-Arnau, A; Godse, K; Gonçalo, M; Grattan, C; Hebert, J; Hide, M; Kaplan, A; Kapp, A; Katelaris, C H; Kocatürk, E; Kulthanan, K; Larenas-Linnemann, D; Leslie, T A; Magerl, M; Mathelier-Fusade, P; Meshkova, R Y; Metz, M; Nast, A; Nettis, E; Oude-Elberink, H; Rosumeck, S; Saini, S S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Staubach, P; Sussman, G; Toubi, E; Vena, G A; Vestergaard, C; Wedi, B; Werner, R N; Zhao, Z; Maurer, M

    2018-01-15

    This evidence and consensus-based guideline was developed following the methods recommended by Cochrane and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group. The conference was held on December 1st, 2016. It is a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-founded network of excellence, the Global Allergy and Asthma European Network (GA²LEN), the European Dermatology Forum (EDF), and the World Allergy Organization (WAO) with the participation of 48 delegates of 42 national and international societies. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS). Urticaria is a frequent, mast cell-driven disease, presenting with wheals, angioedema, or both. The lifetime prevalence for acute urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria are disabling, impair quality of life, and affect performance at work and school. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors and pathomechanisms. In addition, it outlines evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  10. Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration.

    PubMed

    Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui

    2006-09-15

    A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.

  11. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    PubMed

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    PubMed Central

    Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.

    2012-01-01

    A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  13. Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    PubMed Central

    2014-01-01

    Background Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. Results KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. Conclusions Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency. PMID:24401161

  14. Generating Breathable Air Through Dissociation of N2O

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Frankie, Brian

    2006-01-01

    A nitrous oxide-based oxygen-supply system (NOBOSS) is an apparatus in which a breathable mixture comprising 2/3 volume parts of N2 and 1/3 volume part of O2 is generated through dissociation of N2O. The NOBOSS concept can be adapted to a variety of applications in which there are requirements for relatively compact, lightweight systems to supply breathable air. These could include air-supply systems for firefighters, divers, astronauts, and workers who must be protected against biological and chemical hazards. A NOBOSS stands in contrast to compressed-gas and cryogenic air-supply systems. Compressed-gas systems necessarily include massive tanks that can hold only relatively small amounts of gases. Alternatively, gases can be stored compactly in greater quantities and at low pressures when they are liquefied, but then cryogenic equipment is needed to maintain them in liquid form. Overcoming the disadvantages of both compressed-gas and cryogenic systems, the NOBOSS exploits the fact that N2O can be stored in liquid form at room temperature and moderate pressure. The mass of N2O that can be stored in a tank of a given mass is about 20 times the mass of compressed air that can be stored in a tank of equal mass. In a NOBOSS, N2O is exothermically dissociated to N2 and O2 in a main catalytic reactor. In order to ensure the dissociation of N2O to the maximum possible extent, the temperature of the reactor must be kept above 400 C. At the same time, to minimize concentrations of nitrogen oxides (which are toxic), it is necessary to keep the reactor temperature at or below 540 C. To keep the temperature within the required range throughout the reactor and, in particular, to prevent the formation of hot spots that would be generated by local concentrations of the exothermic dissociation reaction, the N2O is introduced into the reactor through an injector tube that features carefully spaced holes to distribute the input flow of N2O widely throughout the reactor. A NOBOSS includes one or more "destroyer" subsystems for removing any nitrogen oxides that remain downstream of the main N2O-dissociation reactor. A destroyer includes a carbon bed in series with a catalytic reactor, and is in thermal contact with the main N2O-dissociation reactor. The gas mixture that leaves the main reactor first goes through a carbon bed, which adsorbs all of the trace NO and most of the trace NO2. The gas mixture then goes through the destroyer catalytic reactor, wherein most or all of the remaining NO2 is dissociated. A NOBOSS can be designed to regulate its reactor temperature across a range of flow rates. One such system includes three destroyer loops; these loops act, in combination with a heat sink, to remove heat from the main N2O-dissociation reactor. In this system, the N2O and product gases play an additional role as coolants; thus, as needed, the coolant flow increases in proportion to the rate of generation of heat, helping to keep the main-reactor temperature below 540 C.

  15. Vendor advertorial issue, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the July-August issue is on vendor advertorials. Major articles/reports in this issue include: A fascinating technology, by Andy White, GE Energy; Exciting times for the nuclear industry, by John Polcyn, AECL Technologies; SG replacement oversight program, by Ram Prabhakar, Palo Verde Nuclear Generating Station; Modifications for improvement, by Herbert Deutschmann, Swiss Federal Nuclear Safety Inspectorate, HSK, Switzerland; and, Human factor approach in engineering, by Laure Quentin, EDF and Didier Niger, UNIPE, France.

  16. Technical Reports Prepared Under Contract N00014-76-C-0475.

    DTIC Science & Technology

    1987-05-29

    264 Approximations to Densities in Geometric H. Solomon 10/27/78 Probability M.A. Stephens 3. Technical Relort No. Title Author Date 265 Sequential ...Certain Multivariate S. Iyengar 8/12/82 Normal Probabilities 323 EDF Statistics for Testing for the Gamma M.A. Stephens 8/13/82 Distribution with...20-85 Nets 360 Random Sequential Coding By Hamming Distance Yoshiaki Itoh 07-11-85 Herbert Solomon 361 Transforming Censored Samples And Testing Fit

  17. EDF's studies and first choices regarding the design of electrical equipment

    NASA Technical Reports Server (NTRS)

    Paris, Michel; Metzger, Gisele; Pays, Michel; Pasdeloup, Maurice

    1988-01-01

    In the performance of its studies and in its first choices, Electricite de France has taken into account the three parameters that have been judged essential for its electrical installations: flammability and flame propagation; smoke opacity; and corrosiveness and toxicity of emitted gases. In this research, materials tests have been widely developed in order to insure simple manufacturing controls, and to decrease the costly testing of near to full size models.

  18. Energy for lunar resource exploitation

    NASA Astrophysics Data System (ADS)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  19. Energy for lunar resource exploitation

    NASA Technical Reports Server (NTRS)

    Glaser, Peter E.

    1992-01-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  20. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control

    PubMed Central

    Molenaar, Sam D.; Saha, Pradip; Mol, Annemerel R.; Sleutels, Tom H. J. A.; ter Heijne, Annemiek; Buisman, Cees J. N.

    2017-01-01

    Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO2. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic) on both the start-up characteristics and steady-state performance of biocathodes using a non-enriched mixed-culture inoculum. Based on our results, it seems that kinetic differences exist between the two dominant functional microbial groups (i.e., homoacetogens and methanogens) and that by applying different current densities, these differences may be exploited to steer product selectivity and reactor performance. PMID:28106846

  1. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control.

    PubMed

    Molenaar, Sam D; Saha, Pradip; Mol, Annemerel R; Sleutels, Tom H J A; Ter Heijne, Annemiek; Buisman, Cees J N

    2017-01-19

    Microbial electrosynthesis is a useful form of technology for the renewable production of organic commodities from biologically catalyzed reduction of CO₂. However, for the technology to become applicable, process selectivity, stability and efficiency need strong improvement. Here we report on the effect of different electrochemical control modes (potentiostatic/galvanostatic) on both the start-up characteristics and steady-state performance of biocathodes using a non-enriched mixed-culture inoculum. Based on our results, it seems that kinetic differences exist between the two dominant functional microbial groups (i.e., homoacetogens and methanogens) and that by applying different current densities, these differences may be exploited to steer product selectivity and reactor performance.

  2. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  3. Alpha effect of Alfv{acute e}n waves and current drive in reversed-field pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Prager, S.C.

    Circularly polarized Alfv{acute e}n waves give rise to an {alpha}-dynamo effect that can be exploited to drive parallel current. In a {open_quotes}laminar{close_quotes} magnetic the effect is weak and does not give rise to significant currents for realistic parameters (e.g., in tokamaks). However, in reversed-field pinches (RFPs) in which magnetic field in the plasma core is stochastic, a significant enhancement of the {alpha} effect occurs. Estimates of this effect show that it may be a realistic method of current generation in the present-day RFP experiments and possibly also in future RFP-based fusion reactors. {copyright} {ital 1998 American Institute of Physics.}

  4. LLCEDATA and LLCECALC for Windows version 1.0, Volume 3: Software verification and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFadden, J.G.

    1998-09-04

    LLCEDATA and LLCECALC for Windows are user-friendly computer software programs that work together to determine the proper waste designation, handling, and disposition requirements for Long Length Contaminated Equipment (LLCE). LLCEDATA reads from a variety of data bases to produce an equipment data file(EDF) that represents a snapshot of both the LLCE and the tank from which it originates. LLCECALC reads the EDF and the gamma assay file (AV2) that is produced by the flexible Receiver Gamma Energy Analysis System. LLCECALC performs corrections to the AV2 file as it is being read and characterizes the LLCE. Both programs produce a varietymore » of reports, including a characterization report and a status report. The status report documents each action taken by the user, LLCEDATA, and LLCECALC. Documentation for LLCEDATA and LLCECALC for Windows is available in three volumes. Volume 1 is a user`s manual, which is intended as a quick reference for both LLCEDATA and LLCECALC. Volume 2 is a technical manual, which discusses system limitations and provides recommendations to the LLCE process. Volume 3 documents LLCEDATA and LLCECALC`s verification and validation. Two of the three installation test cases, from Volume 1, are independently confirmed. Data bases used in LLCEDATA are verified and referenced. Both phases of LLCECALC process gamma and characterization, are extensively tested to verify that the methodology and algorithms used are correct.« less

  5. Breast cancer detection using time reversal

    NASA Astrophysics Data System (ADS)

    Sheikh Sajjadieh, Mohammad Hossein

    Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.

  6. The EAACI/GA(2) LEN/EDF/WAO Guideline for the definition, classification, diagnosis, and management of urticaria: the 2013 revision and update.

    PubMed

    Zuberbier, T; Aberer, W; Asero, R; Bindslev-Jensen, C; Brzoza, Z; Canonica, G W; Church, M K; Ensina, L F; Giménez-Arnau, A; Godse, K; Gonçalo, M; Grattan, C; Hebert, J; Hide, M; Kaplan, A; Kapp, A; Abdul Latiff, A H; Mathelier-Fusade, P; Metz, M; Nast, A; Saini, S S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Simons, F E R; Staubach, P; Sussman, G; Toubi, E; Vena, G A; Wedi, B; Zhu, X J; Maurer, M

    2014-07-01

    This guideline is the result of a systematic literature review using the 'Grading of Recommendations Assessment, Development and Evaluation' (GRADE) methodology and a structured consensus conference held on 28 and 29 November 2012, in Berlin. It is a joint initiative of the Dermatology Section of the European Academy of Allergy and Clinical Immunology (EAACI), the EU-funded network of excellence, the Global Allergy and Asthma European Network (GA(2) LEN), the European Dermatology Forum (EDF), and the World Allergy Organization (WAO) with the participation of delegates of 21 national and international societies. Urticaria is a frequent, mast cell-driven disease, presenting with wheals, angioedema, or both. The life-time prevalence for acute urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria do not only cause a decrease in quality of life, but also affect performance at work and school and, as such, are members of the group of severe allergic diseases. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors and pathomechanisms. In addition, it outlines evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway.

    PubMed

    Erental, Ariel; Sharon, Idith; Engelberg-Kulka, Hanna

    2012-01-01

    In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, goodmore » heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.« less

  9. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    PubMed

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Characterization of an LED based photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2.

    PubMed

    Ghosh, Jyoti P; Langford, Cooper H; Achari, Gopal

    2008-10-16

    A detailed performance evaluation of a simple high intensity LED based photoreactor exploiting a narrow wavelength range of the LED to match the spectrum of a dye in a photocatalysis system is reported. A dye sensitized (coumarin-343, lambda max = 446 nm) TiO 2 photocatalyst was used for the degradation of 4-chlorophenol (4-CP) in an aqueous medium using the 436 nm LED based photoreactor. The LED reactor performed competitively with a conventional multilamp reactor and sunlight in the degradation of 4-CP. Light intensities entering the reaction vessel were measured by conventional ferrioxalate actinometry. The results can be fitted by approximate first order kinetic behavior in this system. Hydroxyl radicals were detected by spin trapping EPR, and effects of OH radical quenchers on kinetics suggest that the reaction is initiated by these radicals or their equivalents. LEDs operating at competitive intensities offer a number of advantages to the photochemist or the environmental engineer via long life, efficient current to light conversion, narrow bandwidth, forward directed output, and direct current power for remote operation. Matching light source spectrum to chromophore is a key.

  11. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine.

    PubMed

    Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham

    2017-06-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.

  12. Low rank approach to computing first and higher order derivatives using automatic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J. A.; Abdel-Khalik, H. S.; Utke, J.

    2012-07-01

    This manuscript outlines a new approach for increasing the efficiency of applying automatic differentiation (AD) to large scale computational models. By using the principles of the Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and higher orders can be calculated using minimized computational resources. The output obtained from nuclear reactor calculations typically has a much smaller numerical rank compared to the number of inputs and outputs. This rank deficiency can be exploited to reduce the number of derivatives that need to be calculated using AD. The effective rank can be determined according to ESM by computingmore » derivatives with AD at random inputs. Reduced or pseudo variables are then defined and new derivatives are calculated with respect to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia. OpenAD is used to determine the effective rank and the subspace that contains the derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo variables for the desired order. The overall approach is applied to two simple problems and to MATWS, a safety code for sodium cooled reactors. (authors)« less

  13. Generation of an ultrafast femtosecond soliton fiber laser by carbon nanotube as saturable absorber

    NASA Astrophysics Data System (ADS)

    Salim, M. A. M.; Ahmad, H.; Harun, S. W.; Bidin, N.; Krishnan, G.

    2018-05-01

    This paper reports the demonstration of ultrafast fiber laser in a simple erbium-doped fiber (EDF) laser that employed a carbon nanotube (CNT) thin film saturable absorber (SA) to generate a stable soliton pulse. The repetition rate of 10.8 MHz pulse consistently achieved has narrowest pulse width of 640 fs and 1555.78 nm central wavelength for an hour operation in room temperature. This proposed setup has the capability for reliable and stable system features.

  14. Environmental Impact Analysis Process. Final Environmental Impact Statement. Part 2. Proposed High Frequency Active Auroral Research Program.

    DTIC Science & Technology

    1993-07-01

    there are any. The recent set of articles in gcience (1) on the effects of Electromagnetic Fields (EDF) states quite clearly and accurately that we...gone into the explanation of how the HAARP will impact the areas most closely related to the study subject, associated electromagnetic fields and...during break-up each year. page 4-90. Exposure to Humans . This first paragraph is terrible. Concerned citizens will be looking here first to learn if

  15. Octupole correlations in the 144Ba nucleus described with symmetry-conserving configuration-mixing calculations

    NASA Astrophysics Data System (ADS)

    Bernard, Rémi N.; Robledo, Luis M.; Rodríguez, Tomás R.

    2016-06-01

    We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope 144Ba. A symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF) has been used. The method includes particle number, parity, and angular momentum restoration as well as axial quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation energies and electromagnetic transition probabilities are in good agreement with the most recent experimental data.

  16. REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, T.; Muller, E.; Federici, E.

    With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for fivemore » cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)« less

  17. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.« less

  18. Microbial removal of alkanes from dilute gaseous waste streams: kinetics and mass transfer considerations.

    PubMed

    Barton, J W; Klasson, K T; Koran, L J; Davison, B H

    1997-01-01

    Treatment of dilute gaseous hydrocarbon waste streams remains a current need for many industries, particularly as increasingly stringent environmental regulations and oversight force emission reduction. Biofiltration systems hold promise for providing low-cost alternatives to more traditional, energy-intensive treatment methods such as incineration and adsorption. Elucidation of engineering principles governing the behavior of such systems, including mass transfer limitations, will broaden their applicability. Our processes exploit a microbial consortium to treat a mixture of 0.5% n-pentane and 0.5% isobutane in air. Since hydrocarbon gases are sparingly soluble in water, good mixing and high surface area between the gas and liquid phases are essential for biodegradation to be effective. One liquid-continuous columnar bioreactor was operated for more than 30 months with continued degradation of n-pentane and isobutane as sole carbon and energy sources. The maximum degradation rate observed in this gas-recycle system was 2 g of volatile organic compounds (VOC)/(m3.h). A trickle-bed bioreactor was operated continuously for over 24 months to provide a higher surface area (using a structured packing) with increased rates. Degradation rates consistently achieved were approximately 50 g of VOC/(m3.h) via single pass in this gas-continuous columnar system. Effective mass transfer coefficients comparable to literature values were also measured for this reactor; these values were substantially higher than those found in the gas-recycle reactor. Control of biomass levels was implemented by limiting the level of available nitrogen in the recirculating aqueous media, enabling long-term stability of reactor performance.

  19. Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Clerc, Thomas

    With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).

  20. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

    PubMed

    Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike

    2017-11-01

    This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

  1. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, andmore » up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them are equipped with instrumentation for condensed matter physics research: - H3 - spectrometer and diffractometer with double monochromator; - H4 - small angle scattering spectrometer; - H5 - polarized neutrons spectrometer; - H6, H7 - two 3-axial crystal neutron spectrometers; - H8 - neutron radiography stand. For two horizontal channels are ongoing exploitation programs: - H2 - station with epithermal neutron beam produced in uranium converter is being developed. Intelligent converter will be installed on the periphery of reactor core. The intensity of the beam will be at the level 2x10{sup 9} n cm{sup -2}s{sup -1} what makes the beam unique in the Europe. - H1 - special pneumatic horizontal mail is being developed for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. The number of neutron irradiation facilities in MARIA reactor is increasing every year. Numerous of thermal neutron irradiation channels including fast hydraulic rabbit system and large size channels for fast neutron irradiation are used routinely. Recently new in-pile facility with ITER-like neutron energy spectrum for 14 MeV neutron irradiation has been constructed. Taking into account its performance and ability of almost incessant operation the facility appears as one of the most powerful 14 MeV neutron sources. The facility shall be used for material research connected with thermonuclear devices (ITER) and 4. generation nuclear reactors. The system of independent fuels channels used in MARIA reactor appear to be very flexible and very convenient to be used as irradiation channels for uranium targets for {sup 99}Mo production. Currently, MARIA reactor supplies ca. 18% world production of {sup 99}Mo. The MARIA reactor research activities are still extended. The current scientific projects are connected e.g. with silicon neutron transmutation doping, in-pile gamma heating measurements, French calculation codes implementation (TRIPOLI4, APOLLO2). The horizontal neutron beams utilization is also developed. The MARIA reactor, due to its primary application connected with loop and fuel testing, is very convenient for testing the nuclear instrumentation, control and measurement systems.« less

  2. Speculations on future opportunities to evolve Brayton powerplants aboard the space station

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1987-01-01

    The Space Station provides a unique, low-risk environment in which to evolve new capabilities. In this way, the Space Station will grow in capacity, in its range of capabilities, and its economy of operation as a laboratory and as a center for space operations. Although both Rankine and Brayton cycles, two concepts for solar dynamic power generation, now compete to power the station, this paper confines its attention to the Brayton cycle using a mixture of He and Xe as its working fluid. Such a Brayton powerplant to supply the station's increasing demands for both electric power and heat has the potential to gradually evolve higher and higher performance by exploiting already-evolved materials (ASTAR-811C and molten-Li heat storage), its peak cycle temperature rising ultimately to 1500 K. Adapting the station to exploit long tethers (200 to 300 km long) could yield increases in payloads to LEO, to GEO, and to distant destinations in the solar system. Such tethering of the Space Station would not only require additional power for electric propulsion but also would so increase nuclear safety that nuclear powerplants might provide this power. From an 8000-kWt SP-100 reactor, thermoelectric power generation could produce 300 kWe, or adapted solar-Brayton cycle, 2400 to 2800 kWe.

  3. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  4. Thermal exploitation of wastes with lignite for energy production.

    PubMed

    Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George

    2003-11-01

    The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.

  5. A Modified Cramer-von Mises and Anderson-Darling Test for the Weibull Distribution with Unknown Location and Scale Parameters.

    DTIC Science & Technology

    1981-12-01

    preventing the generation of 16 6 negative location estimators. Because of the invariant pro- perty of the EDF statistics, this transformation will...likelihood. If the parameter estimation method developed by Harter and Moore is used, care must be taken to prevent the location estimators from being...vs A 2 Critical Values, Level-.Ol, n-30 128 , 0 6N m m • w - APPENDIX E Computer Prgrams 129 Program to Calculate the Cramer-von Mises Critical Values

  6. Proceedings of the International Conference on the Performance of Off-Road Vehicles and Machines (8th). Volume 3. Held at Cambridge England, on August 5-11, 1984.

    DTIC Science & Technology

    1984-08-01

    energy-savIng propulsion systems for tracked all- -terrain vehicles with extremely high mobility. Mong many proposed idea, Sthoeof hybrid -electric...propulsion system are dominant. Hybrid -electric propulsion system are hybrids In which at least one of the energy stores, sources or convertors can...Aer’teed b*.of I F~ Po ’edfJr* dema. 1046 Modern newly designed energy-saving hybrid -electric propulsion systems work on tracked all-terrain vehicles are

  7. US Army Research Laboratory Directed Energy Internship Program 2014

    DTIC Science & Technology

    2015-11-01

    7 1400–1800 nm. However, when making EDFs, the solubility of Er in traditional silica ( SiO2 )-based glass is low and the ions that successfully...Thus, either half or all of the energy in a pair of excited ions could be wasted. In traditional SiO2 -based Er-doped glass (Er-SD), Er is co-doped...upconversion, Er-doped SiO2 NPs (Er-NP) are doped into the glass core of a fiber. This process is thought to create a cage of Al and O ions around each Er

  8. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

    PubMed Central

    Doloman, Anna; Soboh, Yousef; Walters, Andrew J.; Sims, Ronald C.

    2017-01-01

    Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated by Methanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment. PMID:29259629

  9. Radiation Resistance of the U(Al, Si)3 Alloy: Ion-Induced Disordering

    PubMed Central

    Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-01-01

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)3 composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)3, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program “Stopping and Range of Ions in Matter” (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed. PMID:29393870

  10. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyttenhove, W.; Baeten, P.; Ban, G.

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate on-line reactivity monitoring and subcriticality level determination in Accelerator Driven Systems. Therefore the VENUS reactor at SCK.CEN in Mol (Belgium) was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of the on-linemore » subcriticality monitoring methodology. Moreover a benchmarking tool is required for nuclear data research and code validation. In this paper the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the rod drop technique and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less

  11. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyttenhove, W.; Baeten, P.; Kochetkov, A.

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate online reactivity monitoring and subcriticality level determination in accelerator driven systems (ADS). Therefore, the VENUS reactor at SCK.CEN in Mol, Belgium, was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS. The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of themore » online subcriticality monitoring methodology. Moreover, a benchmarking tool is required for nuclear data research and code validation. In this paper, the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the positive period method and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less

  12. Radiation Resistance of the U(Al, Si)₃ Alloy: Ion-Induced Disordering.

    PubMed

    Meshi, Louisa; Yaniv, Gili; Horak, Pavel; Vacik, Jiri; Mykytenko, Natalia; Rafailov, Gennady; Dahan, Itzchak; Fuks, David; Kiv, Arik

    2018-02-02

    During the exploitation of nuclear reactors, various U-Al based ternary intermetallides are formed in the fuel-cladding interaction layer. Structure and physical properties of these intermetallides determine the radiation resistance of cladding and, ultimately, the reliability and lifetime of the nuclear reactor. In current research, U(Al, Si)₃ composition was studied as a potential constituent of an interaction layer. Phase content of the alloy of an interest was ordered U(Al, Si)₃, structure of which was reported earlier, and pure Al (constituting less than 20 vol % of the alloy). This alloy was investigated prior and after the irradiation performed by Ar ions at 30 keV. The irradiation was performed on the transmission electron microscopy (TEM, JEOL, Japan) samples, characterized before and after the irradiation process. Irradiation induced disorder accompanied by stress relief. Furthermore, it was found that there is a dose threshold for disordering of the crystalline matter in the irradiated region. Irradiation at doses equal or higher than this threshold resulted in almost solely disordered phase. Using the program "Stopping and Range of Ions in Matter" (SRIM), the parameters of penetration of Ar ions into the irradiated samples were estimated. Based on these estimations, the dose threshold for ion-induced disordering of the studied material was assessed.

  13. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations tomore » study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.« less

  14. Industries in space to benefit mankind: A view over the next 30 years

    NASA Technical Reports Server (NTRS)

    1977-01-01

    New products, services, and energy sources are available to man through the exploitation of the useful attributes of space and space shuttle operations. Benefits include: (1) industrial fuel conservation through the use of electronic teleconferencing, high temperature turbines, and the space processing of materials; (2) improved health care through the use of biotelemetry, teleoperators, and weightless hospitals; (3) more efficient communication systems such as portable telephones, individual warning devices, and direct satellite broadcasting for educational purposes; (4) more abundant crop growth and controlled climate modification by the use of space-based reflectors to direct the light of the sun and moon to specific areas on earth; (5) solar energy utilization; and (6) reduction in radiation hazards through the use of space-based nuclear fusion reactors.

  15. [Study of ammonium-nitrogen removal in suspended carrier biofilm reactor].

    PubMed

    Wang, Wen-bin; Qi, Pei-shi

    2006-12-01

    In order to improve the ammonium-nitrogen (NH4+ -N) biodegradation rate, a suspended carrier was exploited and biofilm was cultivated in three different phases in a sequencing batch reactor (SBR). A flimsy honeycomb-shape biofilm was formed between the endocentric columns on the suspended carrier,which increased the cling amount of nitrobacteria and provided the better condition for nitrobacteria. The bioreactor was operated at the temperature ranges of 24-29 degrees C and pH between 7.8 and 8.2. When the influent COD and NH4+-N concentrations varied in a range of 140-300 mg x L(-1) and 40- 78 mg x L(-1) , respectively, under 90 min aeration, the effluent concentrations were less than 40 mg x L(-1) and 2 mg x L(-1) , respectively. Under 180 min aeration, the influent COD concentration varied from 150 to 350 mg x L(-1) and NH4+-N concentration in the range of 80 - 130 mg x L (-1), the effluent concentration below 45 mg x L(-1) and 3.5 mg x L(-1), respectively. The results indicated that the ammonium-nitrogen biodegradation rate is much greater than that of the conventional activated sludge process. The active fraction of the biofilm is affected by the concentration of substrates in the bulk liquid, the actual metabolic rates within the biofilm, and the thickness of the biofilm. The suspended carrier configuration used in this investigation and the method of cultivating biofilm are beneficial for decreasing biofilm thickness, for increasing the activated biomass of nitrobacteria, and for increasing surface area of the biofilm relative to the volume of the reactors, which insulting in a high rate of nitrification.

  16. High energy Er-doped Q-switched fiber laser with WS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Li, Lu; Wang, Yonggang; Wang, Zhen Fu; Wang, Xi; Yang, Guowen

    2018-01-01

    The report presents a stable Q-switched Er-doped fiber (EDF) laser with WS2-based saturable absorber (SA). The SA is obtained by mixing WS2 dispersion with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form WS2/PVA film. The modulation depth (MD) of WS2/PVA is 2% and the saturable intensity (Isat) is 27.2 MW/cm2. Employing the WS2/PVA film into EDF laser cavity, stable Q-switched operation is achieved with central wavelength of 1560 nm. The repetition rate can be tuned from 16.15 to 60.88 kHz with increasing pump power from 30 to 320 mW. The single pulse energy increases from 82 to 195 nJ and then decreases down to 156 nJ with increasing pump power from 30 to 320 mW. The pulse width shows the same variation trend. The shortest pulse duration of 2.396 μs and the maximum single pulse energy of 195 nJ are obtained at the pump power of 220 mW. To the best of our knowledge, 195 nJ is the largest single pulse energy at 1.55 μm region with TMDs as Q-switcher. The signal-to-noise ratio (SNR) is measured to be 60 dB at the pump power of 130 mW. The long term stability of working is good too. The experimental results evidently show that the WS2/PVA SA can work as a promising Q-switcher for high power fiber lasers.

  17. Definition and sensitivity of the conceptual MORDOR rainfall-runoff model parameters using different multi-criteria calibration strategies

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Seyve, E.; Gottardi, F.; Le Lay, M.; Gailhard, J.; Garçon, R.

    2014-12-01

    MORDOR is a conceptual hydrological model extensively used in Électricité de France (EDF, French electric utility company) operational applications: (i) hydrological forecasting, (ii) flood risk assessment, (iii) water balance and (iv) climate change studies. MORDOR is a lumped, reservoir, elevation based model with hourly or daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt and routing. The model has been intensively used at EDF for more than 20 years, in particular for modeling French mountainous watersheds. In the matter of parameters calibration we propose and test alternative multi-criteria techniques based on two specific approaches: automatic calibration using single-objective functions and a priori parameter calibration founded on hydrological watershed features. The automatic calibration approach uses single-objective functions, based on Kling-Gupta efficiency, to quantify the good agreement between the simulated and observed runoff focusing on four different runoff samples: (i) time-series sample, (I) annual hydrological regime, (iii) monthly cumulative distribution functions and (iv) recession sequences.The primary purpose of this study is to analyze the definition and sensitivity of MORDOR parameters testing different calibration techniques in order to: (i) simplify the model structure, (ii) increase the calibration-validation performance of the model and (iii) reduce the equifinality problem of calibration process. We propose an alternative calibration strategy that reaches these goals. The analysis is illustrated by calibrating MORDOR model to daily data for 50 watersheds located in French mountainous regions.

  18. Evaluation of the Susceptibility to SCC Initiation of Alloy 690 in Simulated PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Kazuya; Couvant, Thierry

    Alloy 690 has been widely used in fabricating components of LWR plants as an alternative material to Alloy 600 which has exhibited a significant susceptibility to PWSCC. However, some authors have reported that Alloy 690 can suffer a significant susceptibility to SCC crack growth when highly cold worked. While most of the recent studies emphasize SCC propagation phase, EDF and its partners are focusing on the material's resistance to SCC initiation. This paper summarizes the current work carried out at EDF MAI on the SCC initiation. By means of constant elongation rate tests (CERTs) and constant displacement tests, experimental investigation of the susceptibility to PWSCC were performed. No SCC was observed on either an extruded bar or on two plates, even after 24%-1D cold rolling, confirming the superior PWSCC resistance of Alloy 690 independent of a amount of intergranular precipitation of carbides, and also revealing that such cold rolling does not necessarily decrease the resistance to SCC. On the other hand, a experimental steam generator tube that has a degraded microstructure due to specific heat-treatment revealed its susceptibility to SCC, probably because of the interactive effect of microstructure with heavy intragranular carbide precipitations and the cold worked superficial layer. This phenomenon is in good agreement with results previously published. In this study, the maximal crack depth slightly increased when DH increased from 5 to 60 cc.kg-1H2O. No significant prior ageing effect on the crack depth was observed, even when ageing was combined with high DH.

  19. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    NASA Astrophysics Data System (ADS)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  20. Industrial Program of Waste Management - Cigeo Project - 13033

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less

  1. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.

    PubMed

    Wirth, Roland; Lakatos, Gergely; Maróti, Gergely; Bagi, Zoltán; Minárovics, János; Nagy, Katalin; Kondorosi, Éva; Rákhely, Gábor; Kovács, Kornél L

    2015-01-01

    The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utilization routes. A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Through elimination of cost- and labor-demanding sulfur deprivation, sustainable biohydrogen production can be carried out by using microalgae and their mutualistic bacterial partners. The beneficial effect of the mutualistic mixed bacteria in O2 quenching is that the spent algal-bacterial biomass can be further exploited for biogas production. Anaerobic fermentation of the microbial biomass depends on the composition of the biogas-producing microbial community. Co-fermentation of the mixed microbial biomass with maize silage improved the biogas productivity.

  2. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T.; Grandy, C.

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium ismore » more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the best core performance characteristics for each of them. With the exception of the fuel type and enrichment, the reference AFR-100 core design characteristics were kept unchanged, including the general core layout and dimensions, assembly dimensions, materials and power rating. In addition, the mass of {sup 235}U required was kept within a reasonable range from that of the reference AFR-100 design. The core performance characteristics, kinetics parameters and reactivity feedback coefficients were calculated using the ANL suite of fast reactor analysis code systems. Orifice design calculations and the steady-state thermal-hydraulic analyses were performed using the SE2-ANL code. The thermal margins were evaluated by comparing the peak temperatures to the design limits for parameters such as the fuel melting temperature and the fuel-cladding eutectic temperature. The inherent safety features of AFR-100 cores proposed were assessed using the integral reactivity parameters of the quasi-static reactivity balance analysis. The design objectives and requirements, the computation methods used as well as a description of the core concept are provided in Section 2. The three major approaches considered are introduced in Section 3 and the neutronics performances of those approaches are discussed in the same section. The orifice zoning strategies used and the steady-state thermal-hydraulic performance are provided in Section 4. The kinetics and reactivity coefficients, including the inherent safety characteristics, are provided in Section 5, and the Conclusions in Section 6. Other scenarios studied and sensitivity studies are provided in the Appendix section.« less

  3. Impact of the volume of gaseous phase in closed reactors on ANC results and modelling

    NASA Astrophysics Data System (ADS)

    Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise

    2016-04-01

    The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system) and real reactors conditions (semi-closed systems). The solid phases tested are pure phases (calcite, sulfides, etc.) and synthetic assemblages mimicking complex polluted matrices. The modeling clearly shows that the systems are sensitive to the opening to the atmosphere. If the open system and the system with no gas are entirely different, "real" reactors also differ significantly from the other systems. Apparently, the presence of the gaseous phase in reactors greatly impacts pH and element release. This parameter should be accounted for in ANC experimental procedures and modeling. In addition to this numerical study, experimental results, previously obtained for urban polluted sediments, are analyzed in lights of the findings of the numerical study. This step allows us to strengthen conclusions and to pinpoint at the necessity to account for the gaseous phase when performing and modeling ANC experiments.

  4. GEODE An electrical energy supply with high availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertz, J.L.; Gerard, M.J.; Girard, J.

    1983-10-01

    Project GEODE describes an electrical energy supply characterized by its very high availability. It is to be used in the PTT (French Telephone Company) telephone exchanges and is targeted for an unavailability of better than 10/sup -6/. In order to achieve this performance Merlin Gerin has adopted: a double bus bar architecture, remote controlled electrical equipment, a motor-generator set specifically designed for this project, and computer assisted surveillance. The authors present the overall reliability calculations for this project along with that for energy sources. The E.d.F (French Utility Company) network and the Motor-Generators.

  5. The definition, diagnostic testing, and management of chronic inducible urticarias - The EAACI/GA(2) LEN/EDF/UNEV consensus recommendations 2016 update and revision.

    PubMed

    Magerl, M; Altrichter, S; Borzova, E; Giménez-Arnau, A; Grattan, C E H; Lawlor, F; Mathelier-Fusade, P; Meshkova, R Y; Zuberbier, T; Metz, M; Maurer, M

    2016-06-01

    These recommendations for the definition, diagnosis and management of chronic inducible urticaria (CIndU) extend, revise and update our previous consensus report on physical urticarias and cholinergic urticaria (Allergy, 2009). The aim of these recommendations is to improve the diagnosis and management of patients with CIndU. Our recommendations acknowledge the latest changes in our understanding of CIndU, and the available therapeutic options, as well as the development of novel diagnostic tools. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Dynamic rating curve assessment in hydrometric stations and calculation of the associated uncertainties : Quality and monitoring indicators

    NASA Astrophysics Data System (ADS)

    Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine

    2013-04-01

    Whether we talk about safety reasons, energy production or regulation, water resources management is one of EDF's (French hydropower company) main concerns. To meet these needs, since the fifties EDF-DTG operates a hydrometric network that includes more than 350 hydrometric stations. The data collected allow real time monitoring of rivers (hydro meteorological forecasts at points of interests), as well as hydrological studies and the sizing of structures. Ensuring the quality of stream flow data is a priority. A rating curve is an indirect method of estimating the discharge in rivers based on water level measurements. The value of discharge obtained thanks to the rating curve is not entirely accurate due to the constant changes of the river bed morphology, to the precision of the gaugings (direct and punctual discharge measurements) and to the quality of the tracing. As time goes on, the uncertainty of the estimated discharge from a rating curve « gets older » and increases: therefore the final level of uncertainty remains particularly difficult to assess. Moreover, the current EDF capacity to produce a rating curve is not suited to the frequency of change of the stage-discharge relationship. The actual method does not take into consideration the variation of the flow conditions and the modifications of the river bed which occur due to natural processes such as erosion, sedimentation and seasonal vegetation growth. In order to get the most accurate stream flow data and to improve their reliability, this study undertakes an original « dynamic» method to compute rating curves based on historical gaugings from a hydrometric station. A curve is computed for each new gauging and a model of uncertainty is adjusted for each of them. The model of uncertainty takes into account the inaccuracies in the measurement of the water height, the quality of the tracing, the uncertainty of the gaugings and the aging of the confidence intervals calculated with a variographic analysis. These rating curves enable to provide values of stream flow taking into account the variability of flow conditions, while providing a model of uncertainties resulting from the aging of the rating curves. By taking into account the variability of the flow conditions and the life of the hydrometric station, this original dynamic method can answer important questions in the field of hydrometry such as « How many gaugings a year have to be made so as to produce stream flow data with an average uncertainty of X% ? » and « When and in which range of water flow do we have to realize those gaugings ? ». KEY WORDS : Uncertainty, Rating curve, Hydrometric station, Gauging, Variogram, Stream Flow

  7. Comparison of ensemble post-processing approaches, based on empirical and dynamical error modelisation of rainfall-runoff model forecasts

    NASA Astrophysics Data System (ADS)

    Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.

    2012-04-01

    In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological dynamic and processes, i. e. sample heterogeneity. For a same streamflow range corresponds different processes such as rising limbs or recession, where uncertainties are different. The dynamical approach improves reliability, skills and sharpness of forecasts and globally reduces confidence intervals width. When compared in details, the dynamical approach allows a noticeable reduction of confidence intervals during recessions where uncertainty is relatively lower and a slight increase of confidence intervals during rising limbs or snowmelt where uncertainty is greater. The dynamic approach, validated by forecaster's experience that considered the empirical approach not discriminative enough, improved forecaster's confidence and communication of uncertainties. Montanari, A. and Brath, A., (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40, W01106, doi:10.1029/2003WR002540. Schaefli, B., Balin Talamba, D. and Musy, A., (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332, 303-315.

  8. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    DOE PAGES

    Li, Y.; Zakharov, D.; Zhao, S.; ...

    2015-06-29

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. Lastly,more » this method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.« less

  9. Stability of immobilized amyloglucosidase in the process of Cassava starch saccharification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, G.M.; De Moraes, F.F.

    1995-12-31

    The half-life of immobilized amyloglucosidase was determined in a fluidized-bed reactor operating continuously with a 30% w/v liquefied cassava starch solution at pH 4.5 and temperatures from 50 to 70{degrees}C. For the higher temperatures: 60, 65, and 70{degrees}C, thermal deactivation gives half-lives of 127, 38 and 7.3 h, respectively, in close agreement with corn starch data. For the lower temperatures: 55 and 60{degrees}C, the deposition of impurities over the immobilized enzyme particle contributes significantly to deactivation, lowering expected half-lives to 32.6 and 13.2 d, respectively. Commercial exploitation of this process would then require low temperature of operation, thorough purification ofmore » the substrate solution, and control of microbial contamination to achieve sufficiently long half-lives.« less

  10. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R.

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna,more » based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.« less

  11. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure

    PubMed Central

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Stan, George E.

    2017-01-01

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials. PMID:29149061

  12. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure.

    PubMed

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E

    2017-11-17

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  13. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine† †Electronic supplementary information (ESI) available: NMR spectra of selected product, mass spectra of selected products, crystallization information, and experimental procedures are supplied. See DOI: 10.1039/c7sc00905d Click here for additional data file.

    PubMed Central

    Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang

    2017-01-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759

  14. Determination of 2p Excitation Transfer Rate Coefficient in Neon Gas Discharges

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Stewart, R. S.

    2001-10-01

    We will discuss our theoretical modelling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally-induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electric fields ranging from 3x10-17 Vcm2 to 2x10-16 Vcm2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the 1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to more complex systems, including the addition of molecules for EDF determination. array of four complementary optical diagnostic techniques OGE LCIF determination of five sets of important collisional rate coefficients

  15. Ultra-high performance liquid chromatography tandem mass spectrometric method for the determination of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in dried blood spots--development, validation and clinical application during breast cancer adjuvant therapy.

    PubMed

    Antunes, Marina Venzon; Raymundo, Suziane; de Oliveira, Vanessa; Staudt, Dilana Elisabeth; Gössling, Gustavo; Peteffi, Giovana Piva; Biazús, Jorge Villanova; Cavalheiro, José Antônio; Tre-Hardy, Marie; Capron, Arnaud; Haufroid, Vincent; Wallemacq, Pierre; Schwartsmann, Gilberto; Linden, Rafael

    2015-01-01

    A LC-MSMS method for the simultaneous determination of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in dried blood spots samples was developed and validated. The method employs an ultrasound-assisted liquid extraction and a reversed phase separation in an Acquity(®) C18 column (150×2.1 mm, 1.7 µm). Mobile phase was a mixture of formic acid 0.1% (v/v) pH 2.7 and acetonitrile (gradient from 60:40 to 50:50, v/v). Total analytical run time was 8 min. Precision assays showed CV % lower than 10.75% and accuracy in the range 94.5 to 110.3%. Mean analytes recoveries from DBS ranged from 40% to 92%. The method was successfully applied to 91 paired clinical DBS and plasma samples. Dried blood spots concentrations were highly correlated to plasma, with rs>0.83 (P<0.01). Median estimated plasma concentrations after hematocrit and partition factor adjustment were: TAM 123.3 ng mL(-1); NDT 267.9 ng mL(-1), EDF 10.0 ng mL(-1) and HTF 1.3 ng mL(-1,) representing in average 98 to 104% of the actually measured concentrations. The DBS method was able to identify 96% of patients with plasma EDF concentrations below the clinical threshold related to better prognosis (5.9 ng mL(-1)). The procedure has adequate analytical performance and can be an efficient tool to optimize adjuvant breast cancer treatment, especially in resource limited settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Hybrid Imaging for Extended Depth of Field Microscopy

    NASA Astrophysics Data System (ADS)

    Zahreddine, Ramzi Nicholas

    An inverse relationship exists in optical systems between the depth of field (DOF) and the minimum resolvable feature size. This trade-off is especially detrimental in high numerical aperture microscopy systems where resolution is pushed to the diffraction limit resulting in a DOF on the order of 500 nm. Many biological structures and processes of interest span over micron scales resulting in significant blurring during imaging. This thesis explores a two-step computational imaging technique known as hybrid imaging to create extended DOF (EDF) microscopy systems with minimal sacrifice in resolution. In the first step a mask is inserted at the pupil plane of the microscope to create a focus invariant system over 10 times the traditional DOF, albeit with reduced contrast. In the second step the contrast is restored via deconvolution. Several EDF pupil masks from the literature are quantitatively compared in the context of biological microscopy. From this analysis a new mask is proposed, the incoherently partitioned pupil with binary phase modulation (IPP-BPM), that combines the most advantageous properties from the literature. Total variation regularized deconvolution models are derived for the various noise conditions and detectors commonly used in biological microscopy. State of the art algorithms for efficiently solving the deconvolution problem are analyzed for speed, accuracy, and ease of use. The IPP-BPM mask is compared with the literature and shown to have the highest signal-to-noise ratio and lowest mean square error post-processing. A prototype of the IPP-BPM mask is fabricated using a combination of 3D femtosecond glass etching and standard lithography techniques. The mask is compared against theory and demonstrated in biological imaging applications.

  17. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for themore » thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The paper will concern these two kinds of calorimetric sensors. It will focus in particular on studies on their out-of-pile calibrations. Firstly, the characteristics of the sensor designs will be detailed (such as geometry, dimension, material sample, assembly, instrumentation). Then the out-of-pile calibration methods will be described. Furthermore numerical results obtained thanks to 2D axisymmetrical thermal simulations (Finite Element Method, CAST3M) and experimental results will be presented for each sensor. A comparison of the two different thermal sensor behaviours will be realized. To conclude a discussion of the advantages and the drawbacks of each sensor will be performed especially regarding measurement methods. (authors)« less

  18. Preliminary Consideration of the ADS Research in China

    NASA Astrophysics Data System (ADS)

    Fang, Shouxian; Fu, Shinian

    2002-08-01

    Power supply is a key issue for China's further economic development. To meet the needs of our economic growth in the next century, the part of nuclear energy in the total newly increased power supply must become larger. However, the present nuclear power stations dominated by the PWR in the world are facing some troubles. Recently, a new concept, called ADS (Accelerator Driven Subcritical system), can avoid these troubles and it is recognized as a most prospective power system for fission energy. So during the early time of nuclear power development in our country, it is worthwhile to exploit this novel idea. In this paper, the ADS research program and a proposed verification facility are described. It consists of an 300MeV/3mA low energy accelerator, a swimming pool reactor and some basic research equipment. Beam physics, such as beam halo formation, in the intense-beam accelerator is also discussed.

  19. SERS- and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular-Level Spectroelectrochemical Investigation of Microliter Reactions.

    PubMed

    Koh, Charlynn Sher Lin; Lee, Hiang Kwee; Phan-Quang, Gia Chuong; Han, Xuemei; Lee, Mian Rong; Yang, Zhe; Ling, Xing Yi

    2017-07-17

    Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter-scale reactor for concurrent spectro- and electrochemical analyses. The three-dimensional Ag shell of PLMs are exploited as a bifunctional surface-enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read-out of transient electrochemical species, and elucidate the potential-dependent and multi-step reaction dynamics. The 3D configuration of our PLM-based EC-SERS system exhibits 2-fold and 10-fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular-level electrochemical insights and excellent EC-SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  1. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  2. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  3. Anaerobic digestion of microalgal biomass: Challenges, opportunities and research needs.

    PubMed

    Gonzalez-Fernandez, Cristina; Sialve, Bruno; Molinuevo-Salces, Beatriz

    2015-12-01

    Integration of anaerobic digestion (AD) with microalgae processes has become a key topic to support economic and environmental development of this resource. Compared with other substrates, microalgae can be produced close to the plant without the need for arable lands and be fully integrated within a biorefinery. As a limiting step, anaerobic hydrolysis appears to be one of the most challenging steps to reach a positive economic balance and to completely exploit the potential of microalgae for biogas and fertilizers production. This review covers recent investigations dealing with microalgae AD and highlights research opportunities and needs to support the development of this resource. Novel approaches to increase hydrolysis rate, the importance of the reactor design and the noteworthiness of the microbial anaerobic community are addressed. Finally, the integration of AD with microalgae processes and the potential of the carboxylate platform for chemicals and biofuels production are reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Recent Developments in Carbonylation Chemistry Using [13 C]CO, [11 C]CO and [14 C]CO.

    PubMed

    Nielsen, Dennis U; Neumann, Karoline T; Lindhardt, Anders T; Skrydstrup, Troels

    2018-06-01

    Carbon monoxide represents the most important C1-building block for the chemical industry, both for the production of bulk and fine chemicals, but also for synthetic fuels. Yet, its toxicity and subsequently its cautious handling has limited its applications in medicinal chemistry research and in particular for the synthesis of pharmaceutically relevant molecules. Recent years have nevertheless witnessed a considerable headway on the development of carbon monoxide surrogates and reactor systems, which provide an ideal setting for performing carbonylation chemistry with stoichiometric and sub-stoichiometric carbon monoxide. Such set-ups are particularly ideal for the introduction of isotope labels such as carbon-11, carbon-13 and carbon-14 into bioactive compounds. This review summarizes this growing field and examines the large number of carbonylation reactions that can be exploited for the introduction of a carbon isotope. This article is protected by copyright. All rights reserved.

  5. Biocolloids with ordered urease multilayer shells as enzymatic reactors.

    PubMed

    Lvov, Y; Caruso, F

    2001-09-01

    The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.

  6. New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Stavitski, Eli; Waluyo, Iradwikanari

    The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. Thus, in-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques pavedmore » a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.« less

  7. Dynamic evolution of the oscillatory Belousov--Zhabotinsky reaction upon addition of a non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Sciascia, Luciana; Lombardo, Renato; Turco Liveri, Maria Liria

    2006-10-01

    The dynamic evolution of the oscillatory Belousov-Zhabotinsky reaction upon addition of increasing amount of the non-ionic polymer polypropylene glycol with molecular weight 425 g mol -1 (PPG-425) was investigated in a stirred-batch reactor by monitoring the Ce(IV) absorbance changes. The oscillatory parameters are significantly altered by the presence of the polymer. The findings obtained in the present work revealed that the PPG-425 is not only more effective, than other polymer previously [R. Lombardo, C. Sbriziolo, M.L. Turco Liveri, K. Pelle, M. Wittmann, Z. Noszticzius, in: J.A. Pojman, Q. Tran-Cong-Miyata (Eds.), Nonlinear Dynamics in Polymeric Systems, American Chemical Society, Washington, DC, 869 (2004) 292] studied, in perturbing the BZ systems but also more capable of producing key radical species, which in turn can be exploited for the preparation of new polymeric materials.

  8. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    PubMed

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Production of fissioning uranium plasma to approximate gas-core reactor conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.

    1974-01-01

    The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.

  10. New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes

    DOE PAGES

    Palomino, Robert M.; Stavitski, Eli; Waluyo, Iradwikanari; ...

    2017-03-31

    The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. Thus, in-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques pavedmore » a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.« less

  11. Compact, Lightweight Electromagnetic Pump for Liquid Metal

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Palzin, Kurt

    2010-01-01

    A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.

  12. Robust and versatile ionic liquid microarrays achieved by microcontact printing

    NASA Astrophysics Data System (ADS)

    Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan

    2014-04-01

    Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

  13. Kinetics in the real world: linking molecules, processes, and systems.

    PubMed

    Kohse-Höinghaus, Katharina; Troe, Jürgen; Grabow, Jens-Uwe; Olzmann, Matthias; Friedrichs, Gernot; Hungenberg, Klaus-Dieter

    2018-04-25

    Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.

  14. Metric learning for automatic sleep stage classification.

    PubMed

    Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung

    2013-01-01

    We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.

  15. Theoretical exploration of the neural bases of behavioural disinhibition, apathy and executive dysfunction in preclinical Alzheimer's disease in people with Down's syndrome: potential involvement of multiple frontal-subcortical neuronal circuits.

    PubMed

    Ball, S L; Holland, A J; Watson, P C; Huppert, F A

    2010-04-01

    Recent research has suggested a specific impairment in frontal-lobe functioning in the preclinical stages of Alzheimer's disease (AD) in people with Down's syndrome (DS), characterised by prominent changes in personality or behaviour. The aim of the current paper is to explore whether particular kinds of change (namely executive dysfunction (EDF), disinhibition and apathy), associated in the literature with disruption of different underlying frontal-subcortical circuits, are a) more or less frequently reported than others and b) related to poor performance on tasks involving different cognitive processes. Seventy-eight participants (mean age 47 years, range 36-72) with DS and mild to moderate intellectual disability (based on ICD-10 criteria), without a diagnosis of dementia of Alzheimer's type (DAT) or other psychiatric disorders, were selected from a larger sample of older adults with DS (n = 122). Dementia diagnosis was based on the CAMDEX informant interview, conducted with each participant's main carer. Informant-reported changes in personality/behaviour and memory were recorded. Participants were scored based on symptoms falling into three behavioural domains and completed five executive function (EF) tasks, six memory tasks (two of which also had a strong executive component) and the BPVS (as a measure of general intellectual ability). Multiple regression analyses were conducted to determine the degree to which the behavioural variables of 'EDF', 'disinhibition' and 'apathy', along with informant-reported memory decline and antidepressant medication use, predicted performance on the cognitive tasks (whilst controlling for the effects of age and general intellectual ability). Strikingly, disinhibited behaviour was reported for 95.7% of participants with one or more behavioural change (n = 47) compared to 57.4% with reported apathy and 36.2% with reported EDF. 'Disinhibition' score significantly predicted performance on three EF tasks (designed to measure planning, response inhibition and working memory) and an object memory task, (also thought to place high demands on working memory), while 'apathy' score significantly predicted performance on two different tasks, those measuring spatial reversal and prospective memory (p < 0.05). Informant reported memory decline was associated only with performance on a delayed recall task while antidepressant medication use was associated with better performance on a working memory task (p < 0.05). Observed dissociation between performance on cognitive tasks associated with reported apathy and disinhibition is in keeping with proposed differences underlying neural circuitry and supports the involvement of multiple frontal-subcortical circuits in the early stages of DAT in DS. However, the prominence of disinhibition in the behavioural profile (which more closely resembles that of disinhibited subtype of DFT than that of AD in the general population) leads us to postulate that the serotonergically mediated orbitofrontal circuit may be disproportionately affected. A speculative theory is developed regarding the biological basis for observed changes and discussion is focused on how this understanding may aid us in the development of treatments directly targeting underlying abnormalities.

  16. TiO2 fotokatalyse in de gasfase van morfologisch ontwerp tot plasmoneffecten

    NASA Astrophysics Data System (ADS)

    Verbruggen, Sammy

    In this PhD TiO2 gas phase photocatalysis is investigated in all its facets. Work has been done on the level of the reactor as well as the catalyst and structural as well as electronic improvements have been proposed. Apart from actual experiments, also theoretical models and a techno-economic assessment have been carried out. The first main achievement is the development of a cost and material-efficient immobilization method and testing procedure. The design, based on glass bead supports packed around a lamp in a cylindrical glass reactor tube, offers the advantages of good immobilization, efficient light utilization, intimate contact with gaseous pollutants and a catalyst weight gain by a factor of 25 compared to self-supporting pellets. The reactor is used for performing a cost effectiveness analysis on six different commercial photocatalytic materials. The second achievement is the fundamental insight that is gathered in the driving factors for gas phase photocatalytic reactions. Structural properties such as large surface area and accessible pores seem to dominate over electronic properties. This knowledge is exploited in the development of well-immobilized, spacious T1O2 thin films. These films are prepared by depositing a thin, conformal TiO2 layer onto sacrificial carbonaceous templates by means of atomic layer deposition. After calcination, the sacrificial template is removed, TiO2 is crystallized into the anatase phase and the as-deposited continuous TiO2 layer has transformed into an interconnected network of nanoparticles. This way open thin films are prepared with surface area enhancement factors of up to 260 with regard to a dense, flat TiO 2 film. Thus obtained films exhibit superior photocatalytic activity compared to a commercial reference film. The final achievement is the extension of TiO2 photoactivity toward the visible light region of the spectrum. This is done by exploiting surface plasmon resonance effects of gold-silver alloy nanoparticles. Surface plasmon resonance can be regarded as a collective oscillation of free electrons in a metal. This way incident (visible) light energy can be 'captured' in the resonance and subsequently transferred to T1O2. First, a theoretical model is established that enables to predict the plasmon resonance wavelength of such alloy nanoparticles, based on the combined effect of particle size and alloy composition. It is shown that the feature of alloying presents high wavelength tunability of the visible light response. Next, alloy nanoparticles are deposited on TiO2. Thus obtained plasmonic photocatalysts are tested towards their self-cleaning performance in the degradation of stearic acid located at the catalyst-air interface. The highest quantum efficiency is obtained when the resonance wavelength of the plasmonic catalyst exactly matches that of the incident light. This is demonstrated for the case of Au 0.3Ag0.7, nanoparticles on TiO2 under 490 nm illumination, provided by LEDs.

  17. Microbiological and engineering aspects of biohydrogen production.

    PubMed

    Hallenbeck, Patrick C; Ghosh, Dipankar; Skonieczny, Monika T; Yargeau, Viviane

    2009-03-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention worldwide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels, and for realizing its full potential in reducing greenhouse gas emissions. One attractive option is to produce hydrogen through microbial fermentation. This process would use readily available wastes as well as presently unutilized bioresources, including enormous supplies of agricultural and forestry wastes. These potential energy sources are currently not well exploited, and in addition, pose environmental problems. However, fuels are relatively low value products, placing severe constraints on any production process. Therefore, means must be sought to maximize yields and rates of hydrogen production while at the same time minimizing energy and capital inputs to the bioprocess. Here we review the various attributes of the characterized hydrogen producing bacteria as well as the preparation and properties of mixed microflora that have been shown to convert various substrates to hydrogen. Factors affecting yields and rates are highlighted and some avenues for increasing these parameters are explored. On the engineering side, we review the potential waste pre-treatment technologies and discuss the relevant bioprocess parameters, possible reactor configurations, including emerging technologies, and how engineering design-directed research might provide insight into the exploitation of the significant energy potential of biomass resources.

  18. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantagemore » of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.« less

  19. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    PubMed

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.

  20. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    PubMed

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  2. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USGS Publications Warehouse

    Watten, Barnaby J.; Mudrak, Vincent A.; Echevarria, Carlos; Sibrell, Philip; Summerfelt, Steven T.; Boyd, Claude E.

    2017-01-01

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels thatlie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone’s (CaCO3) ability to react away hydrogen ions (H+) and carbon dioxide (CO2) while increasing alkalinity (HCO3−) and calcium (Ca2+) concentrations, i.e. CaCO3 + H+ ↔ HCO3− + Ca2+ CaCO3 + CO2 + H2O ↔ Ca2+ + 2HCO3− Limestone sand was tested in both pilot and full scale fluidized bed reactors (CycloBio®). We first established the bed expansion characteristics of three commercial limestone products then evaluated the effect of hydraulic flux and bed height on dissolution rate of a single selected product (Type A16 × 120). Pilot scale testing at 18C showed limestone dissolution rates were relatively insensitive to flux over the range 1.51–3.03 m3/min/m2 but were sensitive (P < 0.001; R2 = 0.881) to changes in bed height (BH, cm) over the range 83–165 cm following the relation: (Alkalinity, mg/L) = 123.51 − (3788.76 (BH)). Differences between filtered and non-filtered alkalinity were small(P > 0.05) demonstrating that limestone was present in the reactor effluent primarily in the form of dissolved Ca(HCO3)2. Effluent alkalinity exceeded our target level of 50 mg/L under most operating conditions evaluated with typical pilot scale values falling within the range of 90–100 mg/L despite influent concentrations of about 4 mg/L. Concurrently, CO2 fell from an average of 50.6 mg/L to 8.3 mg/L (90%), providing for an increase in pH from 5.27 to a mean of 7.71. The ability of the test reactor to provide changes in water chemistry variables that exceeded required changes allowed for a dilution ratio of 0.6. Here, alkalinity still exceeded 50 mg/L, the CO2 concentration remained well below our limit of 20 mg/L (15.4 mg/L) and the pH was near neutral (7.17). Applying the dilution ratio of 0.6 in a full scale treatment plant at the site reduced by 40% the volume of spring water that is directed through each of three parallel reactors that combined react away 49,000 kg of limestone/yr.

  3. Switchable narrow linewidth fiber laser with LP11 transverse mode output

    NASA Astrophysics Data System (ADS)

    Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng

    2018-01-01

    We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.

  4. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less

  5. Flow Accelerated Corrosion of Carbon Steel in the Feedwater System of PWR Plants - Behaviour of Welds and Weld Assemblies

    NASA Astrophysics Data System (ADS)

    Mansour, C.; Pavageau, E. M.; Faucher, A.; Inada, F.; Yoneda, K.; Miller, C.; Bretelle, J.-L.

    Flow Accelerated Corrosion (FAC) of carbon steel is a phenomenon that has been studied for many years. However, to date, the specific behavior of welds and weld assemblies of carbon steel towards this phenomenon has been scarcely examined. An experimental program of FAC of welds and weld assemblies is being conducted by EDF and CRIEPI. This paper describes the results obtained on the behavior of weld metal independently of its behavior in a weld assembly as well as the sensitivity to FAC of various weld assembly configurations. Tests are performed, at EDF, in the CIROCO loop which permits to follow the FAC rate by gammametry measurements, and at CRIEPI, in the PRINTEMPS loop where FAC is measured by laser displacement sensor. Welds are performed by two different methods: Submerged Arc Welding (SAW) and Gas Tungsten Arc Welding (GTAW). The influence of several parameters on FAC of welds is examined: welding method, chromium content and temperature. For weld assemblies, only the impact of chromium content is studied. All the tests are conducted in ammonia medium at pH 9.0 and oxygen concentration lower then 1 ppb. Chemical parameters, as the pH, the conductivity and oxygen concentration, are measured in situ during the test and surface characterizations are performed after the test. The results show that, with more than 0.15% chromium, no FAC is detected on the weld metal, which is similar to the base metal behaviour. For the same and lower chromium content, the two types of metal have the same FAC rate. Concerning the temperature effect, for both metals FAC rate decreases with temperature increase above 150°C. Below 150 °C, their behaviour seems to be different. For weld assemblies, the study of different configurations shows that the chromium content is the main parameter affecting the behaviour of the specimens. Additional tests and modeling studies will be conducted in order to complete the results.

  6. Single-mode single-frequency high peak power all-fiber MOPA at 1550 nm

    NASA Astrophysics Data System (ADS)

    Kotov, L. V.; Likhachev, M. E.; Bubnov, M. M.; Paramonov, V. M.; Belovolov, M. I.; Lipatov, D. S.; Guryanov, A. N.

    2014-10-01

    In this Report, we present a record-high-peak-power single-frequency master oscillator power amplifier (MOPA) system based on a newly developed double-clad large-mode-area Yb-free Er-doped fiber (DC-LMA-EDF). A fiber Bragg grating wavelength-stabilized fiber-coupled diode laser at λ=1551 nm with ~2 MHz spectral width was used as the master oscillator. Its radiation was externally modulated with a 5 kHz repetition rate and 92 ns pulse duration and then amplified in a core-pumped Er-doped fiber amplifier up to an average power of 4 mW. The amplified spontaneous emission (ASE) generated at the last preamplifier stage was suppressed by a narrow-band (0.7 nm) DWDM filter. The last MOPA stage was based on the recently developed single-mode DC-LMA-EDF with a mode field diameter of 25 microns and pump clad-absorption of 3 dB/m at λ=980 nm. The pump and the signal were launched into this fiber through a commercial pump combiner in a co-propagating amplifier scheme. At first, we used a 3-m long DC-LMAEDF. In such configuration, a peak power of 800 W was achieved at the output of the amplifier together with a ~ 12 % pump conversion slope efficiency. Further power scaling was limited by SBS. After that we shortened the fiber length to 1 m. As a result, owing to large unabsorbed pump power, the efficiency decreased to ~5 %. However, a peak power of more than 3.5 kW was obtained before the SBS threshold. In this case, the pulse shape changed and its duration decreased to ~60 ns owing to inversion depletion after propagation of the forward front of the pulse. To the best of our knowledge, the peak power of more than 3.5 kW reported here is the highest value ever published for a single-frequency single-mode silica-based fiber laser system operating near λ=1550 nm.

  7. Dietary patterns at 4 years old: Association with appetite-related eating behaviours in 7 year-old children.

    PubMed

    Albuquerque, Gabriela; Lopes, Carla; Durão, Catarina; Severo, Milton; Moreira, Pedro; Oliveira, Andreia

    2018-02-01

    A possible relationship between children's dietary intake and certain aspects of eating behaviours has been documented, but most studies are cross-sectional and do not consider the complexity of the diet. The aim of this study was to quantify the association between dietary patterns established at 4 years old and appetite-related eating behaviours identified at 7 years old. Participants are children from the Generation XXI population-based birth cohort. Trained interviewers collected data at birth, 4 and 7 years old on socio-demographics, health and lifestyles, and anthropometrics. At 4 years old, diet was assessed by a Food Frequency Questionnaire and three dietary patterns were identified by Latent Class Analysis: 'Healthier', 'Snacking' and 'Energy Dense Foods' (EDF). A Portuguese version of the original Children's Eating Behaviour Questionnaire (CEBQ) was self-completed by mothers at 7 year-old. This version has previously shown good psychometric properties and the 8 CEBQ sub-domains were combined into two wider dimensions: Appetite Restraint and Appetite Disinhibition. Generalized linear models were used to estimate the associations after adjustment for maternal characteristics (n = 4358). Interaction effects were tested. Children belonging to the 'Snacking' (β = 0.329, 95%CI: 0.265; 0.393) and to the 'EDF' (β = 0.138, 95%CI: 0.098; 0.179) dietary patterns at 4 years old scored increasingly higher, respectively, on Appetite Restraint and Appetite Disinhibition dimensions at 7 years old, comparatively to children in the 'Healthier' dietary pattern. Maternal BMI before pregnancy modified the 'Snacking' pattern associations; they were stronger in children from underweight/normal weight mothers for Appetite Restraint and present only among overweight/obese mothers for Appetite Disinhibition. This study suggests that children following less healthy dietary patterns early in life have more often disordered eating behaviours in later childhood. Maternal weight status may influence these associations. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondouin, M.

    1991-10-31

    The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Tablemore » 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.« less

  9. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.

    PubMed

    Bolivar, Juan M; Tribulato, Marco A; Petrasek, Zdenek; Nidetzky, Bernd

    2016-11-01

    Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5)  nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII  ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. European DEMO design strategy and consequences for materials

    NASA Astrophysics Data System (ADS)

    Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.

    2017-09-01

    Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.

  11. The AGHS at JET and preparations for a future DT campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.; JET-EFDA, Culham Science Centre, Abingdon

    2015-03-15

    The Active Gas Handling System (AGHS) at JET is a unique facility enabling JET to perform reactor like, DT operations. As a future DT experimental campaign (DTE2) is scheduled for 2017 this paper provides a brief overview of the AGHS and a summary of ongoing work supporting the currently JET experimental campaign. In order to improve tritium accountancy a solid state based detector for tritium is being developed. Another important upgrade concerns tritium injection, 4 existing GIMs (Tritium Gas Introduction Module) will inject a mix of D and T rather than T{sub 2} in the divertor region rather than inmore » the torus mid plane enabling a far better control and variability of the introduction of tritium into the plasma. An overview of the scale of DTE2 is included as well as an example of some of the upgrades currently being undertaken to fully exploit the learning opportunities for ITER and DEMO DTE2 provides. (authors)« less

  12. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  13. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  15. High Performance Radiation Transport Simulations on TITAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Christopher G; Davidson, Gregory G; Evans, Thomas M

    2012-01-01

    In this paper we describe the Denovo code system. Denovo solves the six-dimensional, steady-state, linear Boltzmann transport equation, of central importance to nuclear technology applications such as reactor core analysis (neutronics), radiation shielding, nuclear forensics and radiation detection. The code features multiple spatial differencing schemes, state-of-the-art linear solvers, the Koch-Baker-Alcouffe (KBA) parallel-wavefront sweep algorithm for inverting the transport operator, a new multilevel energy decomposition method scaling to hundreds of thousands of processing cores, and a modern, novel code architecture that supports straightforward integration of new features. In this paper we discuss the performance of Denovo on the 10--20 petaflop ORNLmore » GPU-based system, Titan. We describe algorithms and techniques used to exploit the capabilities of Titan's heterogeneous compute node architecture and the challenges of obtaining good parallel performance for this sparse hyperbolic PDE solver containing inherently sequential computations. Numerical results demonstrating Denovo performance on early Titan hardware are presented.« less

  16. SOX: Short Distance Neutrino Oscillations with Borexino

    NASA Astrophysics Data System (ADS)

    Bravo-Berguño, D.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Lewke, T.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; SOX Collaboration

    2016-04-01

    The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of νe (Cr) and νe ‾ (Ce). Interacting in the active volume of the liquid scintillator, each beam would create a spatial wave pattern in case of oscillation of the νe (or νe ‾) into the sterile state, which would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting very stringent limit on its existence.

  17. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  18. Recent advances in β-decay spectroscopy at CARIBU

    NASA Astrophysics Data System (ADS)

    Mitchell, A. J.; Copp, P.; Savard, G.; Lister, C. J.; Lane, G. J.; Carpenter, M. P.; Clark, J. A.; Zhu, S.; Ayangeakaa, A. D.; Bottoni, S.; Brown, T. B.; Chowdhury, P.; Chillery, T. W.; David, H. M.; Hartley, D. J.; Heckmaier, E.; Janssens, R. V. F.; Kolos, K.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Norman, E. B.; Padgett, S.; Scielzo, N. D.; Seweryniak, D.; Smith, M. L.; Wilson, G. L.

    2016-09-01

    β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities.

  19. Biomimetic and Aggregation-Driven Crystallization Route for Room-Temperature Material Synthesis: Growth of β-Ga2O3 Nanoparticles Using Peptide Assemblies as Nanoreactors

    PubMed Central

    Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi

    2008-01-01

    The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413

  20. Materials characterization with MeV ions

    NASA Astrophysics Data System (ADS)

    Conlon, T. W.

    1989-04-01

    The inherent atomic and nuclear properties of energetic ions in materials can be exploited to characterize as well as to modify materials' properties. In nuclear reactors keV ions from neutron collisions damage containment materials. However, basic studies of the interactions of such ions has yielded improved understanding of their properties and has even led to a tailoring of conditions so that the ions can be made to beneficially modify structures (by ion implantation). At higher energies an understanding of the ion-material interaction provides techniques such as PIXE, RBS, and ERD for nondestructive analysis, either in broad beam or "microbeam" mode. At high energies still penetration of the Coulomb barrier opens up activation methods for materials' characterization (CPAA, NRA, TLA etc.). A short discussion of the general properties of energetic ions in materials is followed by a brief introduction to our generic work in these areas, and some examples of current work in the areas of: activation for the radioisotope labelling of nonmetals, mass resolved ERDA using TOF techniques and submicron MeV microprobes.

  1. Dynamics of large-diameter water pipes in hydroelectric power plants

    NASA Astrophysics Data System (ADS)

    Pavić, G.; Chevillotte, F.; Heraud, J.

    2017-04-01

    An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.

  2. Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, E. R.; Yu, Y.; Kim, T. K.

    The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The effortsmore » in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the STAR-CCM+ calculations. The HCFs of the peak temperatures at cladding outer surface, cladding inner wall surface, and fuel centerline induced by cladding manufacturing tolerance and uncertainties on the cladding, coolant, and fuel properties were evaluated for the AFR-100. Some assessment on the effect of wire wrap configuration and size of the bundle shows that it is practical to use the 7-pin bare rod bundle to calculate the HCFs. The resulting HCFs obtained from the high-fidelity SHARP calculations are generally smaller than those developed for the earlier SFRs because the most uncertainties involved in the modeling and simulations were disappeared. For completeness, additional investigations are planned in FY 2018, which will use random sampling techniques.« less

  3. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memmi, F.; Falconi, L.; Cappelli, M.

    2012-07-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by usingmore » CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important aim of this work is the possibility to have a front panel available on a web interface: CompactRio acts as a remote server and it is accessible on a dedicated LAN. This supervisory system has been tested and validated on the basis of the real control console for the 1-MW TRIGA reactor RC-1 at the ENEA, Casaccia Research Center. In this paper we show some results obtained by recording each variable as the reactor reaches its maximum level of power. The choice of a research reactor for testing the developed system relies on its training and didactic importance for the education of plant operators: in this context a digital instrument can offer a better user-friendly tool for learning and training. It is worthwhile to remark that such a system does not interfere with the console instrumentation, the latter continuing to preserve the total control. (authors)« less

  4. Bioreactor engineering as an enabling technology to tap biodiversity. The case of taxol.

    PubMed

    Shuler, M L

    1994-11-30

    One barrier to exploiting the chemical and genetic diversity in nature is the difficulty of cultivating many organisms in a controlled manner. In some cases it is difficult to achieve growth. In many others, good growth is achieved, but the expression of the organism's genetic potential to make a desired product is not realized. The thesis of this paper is that a coupling of an understanding of reactor engineering principles with the basic knowledge of the biology is often necessary to circumvent these barriers. In many cases the construction of appropriate cultivation systems is a necessary step to better understanding of cellular physiology. In some cases the chemical of interest is of high social utility and comes from a natural source that is uncommon and difficult to secure. In these cases a method of controlled cultivation becomes a prerequisite for commercial exploitation. These points were illustrated using a taxol. Taxol is an important new anticancer drug whose development has been greatly impeded by supply problems. Taxol has been derived from the park of the pacific yew tree, a process that kills the tree. The pacific yew is a relatively uncommon tree and very slow growing. One alternative to the natural source is plant cell culture. Such cultures can produce significant levels of taxol with substantial release into the medium. Taxane products not observed in typical extracts from field-grown plants can be found in cell cultures, indicating the potential unmasking of pathways. These cultures are quite responsive to changes in their environments as illustrated by the summary of initial observations. With regard to natural compounds, biochemical engineers can play a major role in the capture and preservation of producing systems, in the discovery of useful compounds, and in providing the basis for commercial production of natural compounds.

  5. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes.

    PubMed

    Bilal, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-03-01

    In the present study, horseradish peroxidase (HRP), in-house isolated crude cocktail enzyme, from Armoracia rusticana was cross-linked using a new type of cross-linking agent, i.e., ethylene glycol-bis [succinic acid N-hydroxysuccinimide, (EG-NHS)], which is mild in nature as compared to the glutaraldehyde (GA). The HRP-immobilized cross-linked enzyme aggregates (HRP-CLEAs) were developed using a wider range of EG-NHS and notably no adverse effect was observed. In a comparative evaluation, in the case of EG-NHS, a high-level stability in the residual activity was recorded, whereas a sharp decrease was observed in the case of glutaraldehyde. Following initial cross-linker evaluation, the HRP-CLEAs were tested to investigate their bio-catalytic efficacy for bioremediation purposes using a newly developed packed bed reactor system (PBRS). A maximal of 94.26% degradation of textile-based methyl orange dye was recorded within the shortest time frame, following 91.73% degradation of basic red 9, 84.35% degradation of indigo, 81.47% degradation of Rhodamin B, and 73.6% degradation of Rhodamine 6G, respectively, under the same working environment. Notably, the HRP-CLEAs retained almost 60% of its original activity after methyl orange dye degradation in seven consecutive cycles using PBRS. Furthermore, after HRP-CLEAs-mediated treatment in the PBRS, a significant toxicity reduction in the dye samples was recorded as compared to their pristine counterparts. In conclusion, the results suggest that the newly developed HRP-CLEAs have a great potential for industrial exploitation, to tackle numerous industrial dye-based emergent pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Experimental demonstration of the switching dose-rate method on doped optical fibers

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.

    2017-11-01

    Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.

  7. Extreme flood estimation by the SCHADEX method in a snow-driven catchment: application to Atnasjø (Norway)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Lawrence, Deborah

    2013-04-01

    The SCHADEX method for extreme flood estimation was developed by Paquet et al. (2006, 2013), and since 2008, it is the reference method used by Electricité de France (EDF) for dam spillway design. SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard usingrainfall-runoff modelling. The MORDOR hydrological model (Garçon, 1999) has thus far been used for the rainfall-runoff modelling. MORDOR is a conceptual, lumped, reservoir model with daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt, and routing. The model has been intensively used at EDF for more than 15 years, in particular for inflow forecasts for French mountainous catchments. SCHADEX has now also been applied to the Atnasjø catchment (463 km²), a well-documented inland catchment in south-central Norway, dominated by snowmelt flooding during spring/early summer. To support this application, a weather pattern classification based on extreme rainfall was first established for Norway (Fleig, 2012). This classification scheme was then used to build a Multi-Exponential Weather Pattern distribution (MEWP), as introduced by Garavaglia et al. (2010) for extreme rainfall estimation. The MORDOR model was then calibrated relative to daily discharge data for Atnasjø. Finally, a SCHADEX simulation was run to build a daily discharge distribution with a sufficient number of simulations for assessing the extreme quantiles. Detailed results are used to illustrate how SCHADEX handles the complex and interacting hydrological processes driving flood generation in this snow driven catchment. Seasonal and monthly distributions, as well as statistics for several thousand simulated events reaching a 1000 years return level value and assessment of snowmelt role in extreme floods are presented. This study illustrates the complexity of the extreme flood estimation in snow driven catchments, and the need for a good representation of snow accumulation and melting processes in simulations for design flood estimations. In particular, the SCHADEX method is able to represent a range of possible catchment conditions (representing both soil moisture and snowmelt) in which extreme flood events can occur. This study is part of a collaboration between NVE and EDF, initiated within the FloodFreq COST Action (http://www.cost-floodfreq.eu/). References: Fleig, A., Scientific Report of the Short Term Scientific Mission Anne Fleig visiting Électricité de France, FloodFreq COST action - STSM report, 2012 Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and Bernardara, P., Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951-964, doi:10.5194/hess-14-951-2010, 2010 Garçon, R. Modèle global pluie-débit pour la prévision et la prédétermination des crues, La Houille Blanche, 7-8, 88-95. doi: 10.1051/lhb/1999088 Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi: 10.1051/lhb/2006091 Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision

  8. Constraining the surface properties of effective Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The latter is of particular interest because it provides asurf as a numerical integral without the need to solve self-consistent equations. Results for semi-infinite nuclear matter obtained with the HF, ETF, and MTF methods will be compared with one another and with asurf, as deduced from ETF calculations of very heavy fictitious nuclei. Results: The surface energy coefficient of 76 parametrizations of the Skyrme EDF have been calculated. Values obtained with the HF, ETF, and MTF methods are not identical, but differ by fairly constant systematic offsets. By contrast, extracting asurf from the binding energy of semi-infinite matter or of very large nuclei within the same method gives the same result within the numerical uncertainties. Conclusions: Despite having some drawbacks compared to the other methods studied here, the MTF approach provides sufficiently precise values for asurf such that it can be used as a very robust constraint on surface properties during a parameter fit at negligible additional cost. While the excitation energy of superdeformed states and the height of fission barriers is obviously strongly correlated to asurf, the presence of shell effects prevents a one-to-one correspondence between them. As in addition the value of asurf providing realistic fission barriers depends on the choices made for corrections for spurious motion, its "best value" (within a given scheme to calculate it) depends on the fit protocol. Through the construction of a series of eight parametrizations SLy5s1-SLy5s8 of the standard Skyrme EDF with systematically varied asurf value, it is shown how to arrive at a fit with realistic deformation properties.

  9. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  10. A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox.

    PubMed

    Qian, Jin; Zhang, Mingkuan; Wu, Yaoguo; Niu, Juntao; Chang, Xing; Yao, Hairui; Hu, Sihai; Pei, Xiangjun

    2018-06-12

    To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO 3 - → NO 2 - ) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of S 2 O 3 2- -S/NO 3 - -N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial S 2 O 3 2- -S/NO 3 - -N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m 3 in the anammox-SBR. At HRT of 30 min, the NO 3 - removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO 2 - → N 2 O → N 2 ), theoretically no N 2 O could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions. Copyright © 2018. Published by Elsevier Ltd.

  11. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering," in Geoscience and Remote Sensing, IEEE Transactions on , vol.44, no.9, pp.2393-2406, Sept. 2006 .

  12. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms that the adiabatic approximation provides an effective scheme to compute fission fragment yields. It also suggests that, at least in the framework of nuclear DFT, three-dimensional collective spaces may be a prerequisite to reach 10% accuracy in predicting pre-neutron emission fission fragment yields.

  13. JPRS Report, Science & Technology, China: Energy.

    DTIC Science & Technology

    1992-03-30

    breeder reactors should become...the primary type of reactors . In developing breeder reactors , we should follow the path of using metal fuel. Breeder reactors give us more time to...first reactor used for power generation was a fast reactor : the " Breeder 1" reactor at the Idaho National Reactor Test Center which was used to

  14. Catalysis study for space shuttle vehicle thermal protection systems. [for vehicle surface

    NASA Technical Reports Server (NTRS)

    Breen, J.; Rosner, D. E.; Delgass, W. N.; Nordine, P. C.; Cibrian, R.; Krishnan, N. G.

    1973-01-01

    Experimental results on the problem of reducing aerodynamic heating on space shuttle orbiter surfaces are presented. Data include: (1) development of a laboratory flow reactor technique for measuring gamma sub O and gamma sub N on candidate materials at surfaces, T sub w, in the nominal range 1000 to 2000, (2) measurements of gamma sub O and gamma sub N above 1000 K for both the glass coating of a reusable surface insulation material and the siliconized surface of a reinforced pyrolyzed plastic material, (3) measurement of the ablation behavior of the coated RPP material at T sub w is greater than or equal to 2150 K, (4) X-ray photoelectron spectral studies of the chemical constituents on these surfaces before and after dissociated gas exposure, (5) scanning electron micrograph examination of as-received and reacted specimens, and (6) development and exploitation of a method of predicting the aerodynamic heating consquences of these gamma sub O(T sub w) and gamma sub N(T sub w) measurements for critical locations on a radiation cooled orbiter vehicle.

  15. [Species diversity and ecological distribution of anaerobic ammonium-oxidizing bacteria].

    PubMed

    Chen, Ting-Ting; Zheng, Ping; Hu, Bao-Lan

    2009-05-01

    Anaerobic ammonium oxidation (anammox) is an important discovery in microbiology and environmental sciences, which can simultaneously remove NH4(+) -N and NO3(-) -N, being valuable in environmental engineering. However, anaerobic ammonium oxidizers are extremely slow-growing, and their population's doubling time is longer than 11 days, which seriously restricts the application of anammox process. Therefore, the study of anammox bacteria is of significance. It has been proved that besides planctomycetes, the first recognized anammox bacteria, both nitrifying bacteria and denitrifying bacteria are also capable of anaerobic ammonium oxidation. These anammox bacteria have wide-spread habitats, which offered a chance to exploit new bacterial resources for anammox. Nitrifying bacteria and denitrifying bacteria have the function of anammox, and their metabolic diversity provides a basis to speed up the start-up of anammox reactor. It was revealed that anaerobic digestion sludge can present anammox activity, with sulphate as electron acceptor. The new bioreaction lays a foundation for the development of novel N-removal biotechnology, being conducive to the development and application of anammox to get more bacterial resources for anammox and to make clear the ecological distribution of anammox bacteria.

  16. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials.

    PubMed

    Saikia, Ruprekha; Chutia, Rahul Singh; Kataki, Rupam; Pant, Kamal K

    2015-01-01

    In the present study, perennial grass species Arundo donax L. was pyrolysed in a fixed-bed reactor and characterization was performed for the liquid and the solid products. The effect of process parameters such as temperature (350-650 °C), heating rate (10 °C and 40 °C min(-1)) and sweeping gas flow rate (50-250 ml min(-1)) was also investigated. Maximum bio-oil yield of ∼ 26% was observed at 500 °C for the heating rate of 40 °C min(-1). Chemical composition of the bio-oil was analysed through NMR, FTIR and GC-MS. The biochar was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy along with elemental analysis (CHN). The biochar produced as a co-product of A. donax pyrolysis can be a potential soil amendment with multiple benefits including increased soil fertility and C-sequestration. Current investigation suggests suitability of A. donax as a potential feedstock for exploitation of energy and biomaterials through pyrolytic route. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Optimizing the separation performance of a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Wood, H. G.

    1997-11-01

    Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.

  18. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield.

    PubMed

    Kuruti, Kranti; Begum, Sameena; Ahuja, Shruti; Anupoju, Gangagni Rao; Juntupally, Sudharshan; Gandu, Bharath; Ahuja, Devender Kumar

    2017-02-01

    The aim of the present work was to study and infer a full scale experience on co-digestion of 1000kg of FW (400kg cooked food waste and 600kg uncooked food waste) and 2000L of rice gruel (RG) on daily basis based on a high rate biomethanation technology called "Anaerobic gas lift reactor" (AGR). The pH of raw substrate was low (5.2-5.5) that resulted in rapid acidification phenomena with in 12h in the feed preparation tank that facilitated to obtain a lower hydraulic residence time (HRT) of 10days. At full load, AGR was fed with 245kg of total solids, 205kg of volatile solids (167kg of organic matter in terms of chemical oxygen demand) which resulted in the generation of biogas and bio manure of 140m 3 /day and 110kg/day respectively. The produced biogas replaced 60-70kg of LPG per day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime

    DOE PAGES

    Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; ...

    2016-06-20

    Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of β p and β N despite strong ITBs. Good confinement has been achieved with reduced toroidal rotation. These high β p plasmas challenge the energy transport understanding, especiallymore » in the electron energy channel. A new turbulent transport model, named 2 TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. Finally, more investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.« less

  20. On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen.

    PubMed

    Giovannini, Giannina; Sbarciog, Mihaela; Steyer, Jean-Philippe; Chamy, Rolando; Vande Wouwer, Alain

    2018-05-01

    Hydrogen has been found to be an important intermediate during anaerobic digestion (AD) and a key variable for process monitoring as it gives valuable information about the stability of the reactor. However, simple dynamic models describing the evolution of hydrogen are not commonplace. In this work, such a dynamic model is derived using a systematic data driven-approach, which consists of a principal component analysis to deduce the dimension of the minimal reaction subspace explaining the data, followed by an identification of the kinetic parameters in the least-squares sense. The procedure requires the availability of informative data sets. When the available data does not fulfill this condition, the model can still be built from simulated data, obtained using a detailed model such as ADM1. This dynamic model could be exploited in monitoring and control applications after a re-identification of the parameters using actual process data. As an example, the model is used in the framework of a control strategy, and is also fitted to experimental data from raw industrial wine processing wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Polymerization amplified SPR-DNA assay on noncovalently functionalized graphene.

    PubMed

    Yuan, Pei-Xin; Deng, Sheng-Yuan; Yao, Chuan-Guang; Wan, Ying; Cosnier, Serge; Shan, Dan

    2017-03-15

    A highly efficient surface plasmon resonance (SPR)-based DNA assay was developed, by employing noncovalently functionalized graphene nanosheets as a substrate, and enzymatic catalysis-induced polymerization as mass relay. The objective of this strategy was manifold: first of all, to sensitize the overall SPR output by in situ optimized electrogeneration of graphene thin-film, which was characterized by atomic force microscopic topography; secondly, to regulate the self-assembly and orientation of biotinylated capture probes on nickel-chelated nitrilotriacetic acid (NTA) scaffolds, that anchored onto graphene-supported pyrenyl derivatives; and lastly, to synergize the signal amplification via real-time conversion of the additive aniline into polyaniline precipitation by horseradish peroxidase-tagged reporters. With this setup, a precise and replicable DNA sensing platform for specific targets was achieved with a detection limit down to femtomolar, thus demonstrating a beneficial exploration and exploitation of two-dimensional nanomaterials as unique SPR infrastructure. The possibility of such ″bottom-up″ architecture mounted with ″top-down″ weight reactor would be most likely extensible and adaptable to protein determinations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Integrated ecotechnology approach towards treatment of complex wastewater with simultaneous bioenergy production.

    PubMed

    Hemalatha, Manupati; Sravan, J Shanthi; Yeruva, Dileep Kumar; Venkata Mohan, S

    2017-10-01

    Sequential integration of three stage diverse biological processes was studied by exploiting the individual process advantage towards enhanced treatment of complex chemical based wastewater. A successful attempt to integrate sequence batch reactor (SBR) with bioelectrochemical treatment (BET) and finally with microalgae treatment was studied. The sequential integration has showed individual substrate degradation (COD) of 55% in SBR, 49% in BET and 56% in microalgae, accounting for a consolidated treatment efficiency of 90%. Nitrates removal efficiency of 25% was observed in SBR, 31% in BET and 44% in microalgae, with a total efficiency of 72%. The SBR treated effluents fed to BET with the electrode intervention showed TDS removal. BET exhibited relatively higher process performance than SBR. The integration approach significantly overcame the individual process limitations along with value addition as biomass (1.75g/L), carbohydrates (640mg/g), lipids (15%) and bioelectricity. The study resulted in providing a strategy of combining SBR as pretreatment step to BET process and finally polishing with microalgae cultivation achieving the benefits of enhanced wastewater treatment along with value addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    PubMed Central

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  4. Biological Status Monitoring of European Fresh Water with Sentinel-2

    NASA Astrophysics Data System (ADS)

    Serra, Romain; Mangin, Antoine; Fanton d'Andon, Odile Hembise; Lauters, Francois; Thomasset, Franck; Martin-Lauzer, Francois-Regis

    2016-08-01

    Thanks to a widening range of sensors available, the observation of continental water quality for lakes and reservoirs is gaining more and more consistency and accuracy.Consistency because back in 2012, the only free sensor with a sufficient resolution (30m) was Landsat-7 which has truncated data since 2003 and a 16-day revisit time. But today, Landsat-8 and Sentinel-2A are now operating so depending on the latitude of interest, the combined revisit time dropped to 2 to 4 days which is more appropriate for such a monitoring (especially considering the cloud cover).Accuracy because Landsat-7 has a poor contrast over water whereas Landsat-8 and Sentinel-2A have a better radiometric sensitivity (more bit) and moreover Sentinel-2 offers additional spectral bands in the visible which are helpful for Chlorophyll-A concentration assessment. To sum up, with Sentinel-2, continental water quality monitoring capabilities are making a giant leap and it is important to exploit this potential the sooner. ACRI-HE has already built a strong basis to prepare Sentinel-2 by using Landsat data.Indeed, more than 600 lakes are already constantly monitored using Landsat data and their biological statuses are available on EyeOnWater (see eyeonwater.eu). Chlorophyll-A retrieval from (fresh) water leaving reflectances is the result of research activities conducted by ACRI-HE in parallel with EDF (Electricité de France) to respond to an emerging very demanding environmental monitoring through European regulations (typically the Water Framework Directive). Two parallel and complementary algorithms have thus been derived for Chlorophyll-a retrieval.Upstream of Eyeonwater, there is a complex and complete system automatically collecting images, extracting areas of interest around lakes, applying atmospheric correction (very sensitive part as atmosphere can contribute to 90% of the signal at sensor level) and then algorithms to retrieve water transparency (Secchi disk), turbidity and Chlorophyll-A concentration. A wide range of in-situ measurements was gathered to calibrate these algorithms. We present here a clear and operational system working with Sentinel-2-like data that retrieves water ecological quality parameters and provides quantified level of uncertainty. We believe that this system is of prime relevance to fulfil water quality monitoring duties at local, national and regional levels.

  5. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  6. The exploitation argument against commercial surrogacy.

    PubMed

    Wilkinson, Stephen

    2003-04-01

    This paper discusses the exploitation argument against commercial surrogacy: the claim that commercial surrogacy is morally objectionable because it is exploitative. The following questions are addressed. First, what exactly does the exploitation argument amount to? Second, is commercial surrogacy in fact exploitative? Third, if it were exploitative, would this provide a sufficient reason to prohibit (or otherwise legislatively discourage) it? The focus throughout is on the exploitation of paid surrogates, although it is noted that other parties (e.g. 'commissioning parents') may also be the victims of exploitation. It is argued that there are good reasons for believing that commercial surrogacy is often exploitative. However, even if we accept this, the exploitation argument for prohibiting (or otherwise legislatively discouraging) commercial surrogacy remains quite weak. One reason for this is that prohibition may well 'backfire' and lead to potential surrogates having to do other things that are more exploitative and/or more harmful than paid surrogacy. It is concluded therefore that those who oppose exploitation should (rather than attempting to stop particular practices like commercial surrogacy) concentrate on: (a) improving the conditions under which paid surrogates 'work'; and (b) changing the background conditions (in particular, the unequal distribution of power and wealth) which generate exploitative relationships.

  7. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light.

  8. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  9. Two questions about surrogacy and exploitation.

    PubMed

    Wertheimer, Alan

    1992-01-01

    In this article I will consider two related questions about surrogacy and exploitation: (1) Is surrogacy exploitative? (2) If surrogacy is exploitative, what is the moral force of this exploitation? Briefly stated, I shall argue that whether surrogacy is exploitative depends on whether exploitation must be harmful to the exploited party or whether (as I think) there can be mutually advantageous exploitation. It also depends on some facts about surrogacy about which we have little reliable evidence and on our philosophical view on what counts as a harm to the surrogate. Our answer to the second question will turn in part on the account of exploitation we invoke in answering the first question and in part on the way in which we resolve some other questions about the justification of state interference. I shall suggest, however, that if surrogacy is a form of voluntary and mutually advantageous exploitation, then there is a strong presumption that surrogacy contracts should be permitted and even enforceable, although that presumption may be overridden on other grounds.

  10. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  11. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  12. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  13. 10 CFR 2.337 - Evidence at a hearing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...

  14. Nuclear reactor construction with bottom supported reactor vessel

    DOEpatents

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  15. Competing Discourses about Youth Sexual Exploitation in Canadian News Media.

    PubMed

    Saewyc, Elizabeth M; Miller, Bonnie B; Rivers, Robert; Matthews, Jennifer; Hilario, Carla; Hirakata, Pam

    2013-10-01

    Media holds the power to create, maintain, or break down stigmatizing attitudes, which affect policies, funding, and services. To understand how Canadian news media depicts the commercial sexual exploitation of children and youth, we examined 835 Canadian newspaper articles from 1989-2008 using a mixed methods critical discourse analysis approach, comparing representations to existing research about sexually exploited youth. Despite research evidence that equal rates of boys and girls experience exploitation, Canadian news media depicted exploited youth predominantly as heterosexual girls, and described them alternately as victims or workers in a trade, often both in the same story. News media mentioned exploiters far less often than victims, and portrayed them almost exclusively as male, most often called 'customers' or 'consumers,' and occasionally 'predators'; in contrast, research has documented the majority of sexually exploited boys report female exploiters. Few news stories over the past two decades portrayed the diversity of victims, perpetrators, and venues of exploitation reported in research. The focus on victims but not exploiters helps perpetuate stereotypes of sexual exploitation as business or a 'victimless crime,' maintains the status quo, and blurs responsibility for protecting youth under the UN Convention on the Rights of the Child. Health care providers and researchers can be advocates for accuracy in media coverage about sexual exploitation; news reporters and editors should focus on exploiters more than victims, draw on existing research evidence to avoid perpetuating stereotypes, and use accurate terms, such as commercial sexual exploitation, rather than terms related to business or trade.

  16. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  17. Heat transfer analysis of cylindrical anaerobic reactors with different sizes: a heat transfer model.

    PubMed

    Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu

    2017-10-01

    The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.

  18. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  19. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  20. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  1. Reactor pressure vessel head vents and methods of using the same

    DOEpatents

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  2. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  3. 10 CFR 52.167 - Issuance of manufacturing license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...

  4. A novel plant protection strategy for transient reactors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.

    A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.

  5. Process and apparatus for adding and removing particles from pressurized reactors

    DOEpatents

    Milligan, John D.

    1983-01-01

    A method for adding and removing fine particles from a pressurized reactor is provided, which comprises connecting the reactor to a container, sealing the container from the reactor, filling the container with particles and a liquid material compatible with the reactants, pressurizing the container to substantially the reactor pressure, removing the seal between the reactor and the container, permitting particles to fall into or out of the reactor, and resealing the container from the reactor. An apparatus for adding and removing particles is also disclosed.

  6. Effects of imperfect mixing on low-density polyethylene reactor dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, C.M.; Dihora, J.O.; Ray, W.H.

    1998-07-01

    Earlier work considered the effect of feed conditions and controller configuration on the runaway behavior of LDPE autoclave reactors assuming a perfectly mixed reactor. This study provides additional insight on the dynamics of such reactors by using an imperfectly mixed reactor model and bifurcation analysis to show the changes in the stability region when there is imperfect macroscale mixing. The presence of imperfect mixing substantially increases the range of stable operation of the reactor and makes the process much easier to control than for a perfectly mixed reactor. The results of model analysis and simulations are used to identify somemore » of the conditions that lead to unstable reactor behavior and to suggest ways to avoid reactor runaway or reactor extinction during grade transitions and other process operation disturbances.« less

  7. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam.

    PubMed

    van der Star, Wouter R L; Abma, Wiebe R; Blommers, Dennis; Mulder, Jan-Willem; Tokutomi, Takaaki; Strous, Marc; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2007-10-01

    The first full-scale anammox reactor in the world was started in Rotterdam (NL). The reactor was scaled-up directly from laboratory-scale to full-scale and treats up to 750 kg-N/d. In the initial phase of the startup, anammox conversions could not be identified by traditional methods, but quantitative PCR proved to be a reliable indicator for growth of the anammox population, indicating an anammox doubling time of 10-12 days. The experience gained during this first startup in combination with the availability of seed sludge from this reactor, will lead to a faster startup of anammox reactors in the future. The anammox reactor type employed in Rotterdam was compared to other reactor types for the anammox process. Reactors with a high specific surface area like the granular sludge reactor employed in Rotterdam provide the highest volumetric loading rates. Mass transfer of nitrite into the biofilm is limiting the conversion of those reactor types that have a lower specific surface area. Now the first full-scale commercial anammox reactor is in operation, a consistent and descriptive nomenclature is suggested for reactors in which the anammox process is employed.

  8. Competing Discourses about Youth Sexual Exploitation in Canadian News Media

    PubMed Central

    Saewyc, Elizabeth M.; Miller, Bonnie B.; Rivers, Robert; Matthews, Jennifer; Hilario, Carla; Hirakata, Pam

    2015-01-01

    Media holds the power to create, maintain, or break down stigmatizing attitudes, which affect policies, funding, and services. To understand how Canadian news media depicts the commercial sexual exploitation of children and youth, we examined 835 Canadian newspaper articles from 1989–2008 using a mixed methods critical discourse analysis approach, comparing representations to existing research about sexually exploited youth. Despite research evidence that equal rates of boys and girls experience exploitation, Canadian news media depicted exploited youth predominantly as heterosexual girls, and described them alternately as victims or workers in a trade, often both in the same story. News media mentioned exploiters far less often than victims, and portrayed them almost exclusively as male, most often called ‘customers’ or ‘consumers,’ and occasionally ‘predators’; in contrast, research has documented the majority of sexually exploited boys report female exploiters. Few news stories over the past two decades portrayed the diversity of victims, perpetrators, and venues of exploitation reported in research. The focus on victims but not exploiters helps perpetuate stereotypes of sexual exploitation as business or a ‘victimless crime,’ maintains the status quo, and blurs responsibility for protecting youth under the UN Convention on the Rights of the Child. Health care providers and researchers can be advocates for accuracy in media coverage about sexual exploitation; news reporters and editors should focus on exploiters more than victims, draw on existing research evidence to avoid perpetuating stereotypes, and use accurate terms, such as commercial sexual exploitation, rather than terms related to business or trade. PMID:26793015

  9. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  10. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  11. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  12. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  13. KINETICS OF TREAT USED AS A TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerman, C.E.; Johnson, R.D.; Gasidlo, J.

    1962-05-01

    An analysis is presented concerning the reactor kinetics of TREAT used as a pulsed, engineering test reactor for fast reactor fuel element studies. A description of the reactor performance is given for a wide range of conditions associated with its use as a test reactor. Supplemental information on meltdown experimentation is included. (J.R.D.)

  14. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, Douglas E.; Orr, Richard

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  15. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOEpatents

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  16. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  17. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  18. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  19. Sex trafficking and sexual exploitation in settings affected by armed conflicts in Africa, Asia and the Middle East: systematic review.

    PubMed

    McAlpine, Alys; Hossain, Mazeda; Zimmerman, Cathy

    2016-12-28

    Sex trafficking and sexual exploitation has been widely reported, especially in conflict-affected settings, which appear to increase women's and children's vulnerabilities to these extreme abuses. We conducted a systematic search of ten databases and extensive grey literature to gather evidence of sex trafficking and sexual exploitation in conflict-affected settings. International definitions of "sexual exploitation" and "sex trafficking" set the indicator parameters. We focused on sexual exploitation in forms of early or forced marriage, forced combatant sexual exploitation and sexual slavery. We extracted prevalence measures, health outcomes and sexual exploitation terminology definitions. The review adhered to PRISMA guidelines and includes quality appraisal. The search identified 29 eligible papers with evidence of sex trafficking and sexual exploitation in armed conflict settings in twelve countries in Africa, Asia, and the Middle East. The evidence was limited and not generalizable, due to few prevalence estimates and inconsistent definitions of "sexual exploitation". The prevalence estimates available indicate that females were more likely than males to be victims of sexual exploitation in conflict settings. In some settings, as many as one in four forced marriages took place before the girls reached 18 years old. Findings suggest that the vast majority of former female combatants were sexually exploited during the conflict. These studies provided various indicators of sexual exploitation compatible to the United Nation's definition of sex trafficking, but only 2 studies identified the exploitation as trafficking. None of the studies solely aimed to measure the prevalence of sex trafficking or sexual exploitation. Similar descriptions of types of sexual exploitation and trafficking were found, but the inconsistent terminology or measurements inhibited a meta-analysis. Findings indicate there are various forms of human trafficking and sexual exploitation in conflict-affected settings, primarily occurring as early or forced marriage, forced combatant sexual exploitation, and sexual slavery. The studies highlight the extraordinary vulnerability of women and girls to these extreme abuses. Simultaneously, this review suggests the need to clarify terminology around sex trafficking in conflict to foster a more cohesive future evidence-base, and in particular, robust prevalence figures from conflict-affected and displaced populations.

  20. METHOD AND APPARATUS FOR CONTROLLING DIRECT-CYCLE NEUTRONIC REACTORS

    DOEpatents

    Reed, G.A.

    1961-01-10

    A control arrangement is offered for a boiling-water reactor. Boric acid is maintained in the water in the reactor and the amount in the reactor is controlled by continuously removing a portion of the water from the reactor, concentrating the boric acid by evaporating the water therefrom, returning a controlled amount of the acid to the reactor, and simultaneously controlling the water level by varying the rate of spent steam return to the reactor.

  1. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  2. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  3. 10 CFR 2.621 - Acceptance and docketing of application for early review of site suitability issues in a combined...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...

  4. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor.

    PubMed

    Elmitwalli, Tarek A; Sklyar, Vladimir; Zeeman, Grietje; Lettinga, Gatze

    2002-05-01

    The pre-treatment of domestic sewage for removal of suspended solids (SS) at a process temperature of 13 degrees C and an hydraulic retention time (HRT) of 4 h was investigated in an anaerobic filter (AF) and anaerobic hybrid (AH) reactor. The AF and the top of the AH reactor consisted of vertical sheets of reticulated polyurethane foam (RPF) with knobs. All biomass in the AF was only in attached form to avoid clogging and sludge washout. The AF reactor showed a significantly higher removal of total and suspended chemical oxygen demand (COD) than the AH reactor, respectively, 55% and 82% in the AF reactor and 34% and 53% in the AH reactor. Because the reactors were operated at a short HRT and low temperature, the hydrolysis, acidification and methanogenesis based on the influent COD were limited to, respectively, 12%, 21% and 23% for the AF reactor and 12%, 17% and 16% for the AH reactor. The excess sludge from the AH reactor was more stabilised and had a better settling capacity and dewaterability. However, the excess sludge from both the AH and AF reactors needed stabilisation. Therefore, the AF reactor is recommended for the pretreatment of domestic sewage at low temperatures.

  5. Nuclear reactor cavity floor passive heat removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluidmore » communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.« less

  6. Methods and apparatuses for deoxygenating pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph

    Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactormore » effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.« less

  7. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  8. When Do Commercial Reactors Permanently Shut Down?

    EIA Publications

    2011-01-01

    For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

  9. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  10. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  11. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  12. 10 CFR 2.603 - Acceptance and docketing of application for early review of site suitability issues in a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...

  13. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  14. Abstract - Cooperative Research and Development Agreement between Environmental Defense Fund and National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Kelly K.; Zavala-Zraiza, Daniel

    Here, we summarize an effort to develop a global oil and gas infrastructure (GOGI) taxonomy and geodatabase, using a combination of big data computing, custom search and data integration algorithms, and expert driven spatio-temporal analytics to identify, access, and evaluate open oil and gas data resources and uncertainty trends worldwide. This approach leveraged custom National Energy Technology Laboratory (NETL) tools and capabilities in collaboration with Environmental Defense Fund (EDF) and Carbon Limits subject matter expertise, to identify over 380 datasets and integrate more than 4.8 million features into the GOGI database. In addition to acquisition of open oil and gasmore » infrastructure data, information was collected and analyzed to assess the spatial, temporal, and source quality of these resources, and estimate their completeness relative to the top 40 hydrocarbon producing and consuming countries.« less

  15. Sleep atlas and multimedia database.

    PubMed

    Penzel, T; Kesper, K; Mayer, G; Zulley, J; Peter, J H

    2000-01-01

    The ENN sleep atlas and database was set up on a dedicated server connected to the internet thus providing all services such as WWW, ftp and telnet access. The database serves as a platform to promote the goals of the European Neurological Network, to exchange patient cases for second opinion between experts and to create a case-oriented multimedia sleep atlas with descriptive text, images and video-clips of all known sleep disorders. The sleep atlas consists of a small public and a large private part for members of the consortium. 20 patient cases were collected and presented with educational information similar to published case reports. Case reports are complemented with images, video-clips and biosignal recordings. A Java based viewer for biosignals provided in EDF format was installed in order to move free within the sleep recordings without the need to download the full recording on the client.

  16. Distributed feedback fiber laser based on a fiber Bragg grating inscribed using the femtosecond point-by-point technique

    NASA Astrophysics Data System (ADS)

    Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.

    2018-03-01

    A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.

  17. Dynamic detailed model of a molten salt tower receiver, with ThermoSysPro library: Impacts of several failures or operational transients on the receiver dynamic behavior

    NASA Astrophysics Data System (ADS)

    Hefni, Baligh El; Bourdil, Charles

    2017-06-01

    Molten salt technology represents nowadays the most cost-effective technology for electricity generation for solar power plant. The molten salt tower receiver is based on a field of individually sun-tracking mirrors (heliostats) that reflect the incident sunshine to a receiver at the top of a centrally located tower. The objective of this study is to assess the impact of several transients issued from different scenarios (failure or normal operation mode) on the receiver dynamic behavior. A dynamic detailed model of Solar Two molten salt central receiver has been developed. The component model is meant to be used for receiver modeling with the ThermoSysPro library, developed by EDF. The paper also gives the results of the dynamic simulation for the selected scenarios on Solar Two receiver.

  18. A watermarking algorithm for polysomnography data.

    PubMed

    Jamasebi, R; Johnson, N L; Kaffashi, F; Redline, S; Loparo, K A

    2008-01-01

    A blind watermarking algorithm for polysomnography (PSG) data in European Data Format (EDF) has been developed for the identification and attribution of shared data. This is accomplished by hiding a unique identifier in the phase spectrum of each PSG epoch using an undisclosed key so that a third party cannot retrieve the watermark without knowledge of the key. A pattern discovery algorithm is developed to find the watermark pattern even though the data may have been altered. The method is evaluated using 25 PSG studies from the Sleep Heart Health Study database. The integrity of the signal data was determined using time series measures of both the original and watermarked signals, and by determining its effect on scoring sleep stages from the PSG data. The results of the analysis indicate that the proposed watermarking method for PSG data is an effective and efficient way to identify shared data without compromising its intended use.

  19. Crosstalk between the microbiome and cancer cells by quorum sensing peptides.

    PubMed

    Wynendaele, Evelien; Verbeke, Frederick; D'Hondt, Matthias; Hendrix, An; Van De Wiele, Christophe; Burvenich, Christian; Peremans, Kathelijne; De Wever, Olivier; Bracke, Marc; De Spiegeleer, Bart

    2015-02-01

    To date, the precise role of the human microbiome in health and disease states remains largely undefined. Complex and selective crosstalk systems between the microbiome and mammalian cells are also not yet reported. Research up till now mainly focused on bacterial synthesis of virulence factors, reactive oxygen/nitrogen species (ROS/RNS) and hydrogen sulphide, as well as on the activation of exogenous mutagen precursors by intestinal bacteria. We discovered that certain quorum sensing peptides, produced by bacteria, interact with mammalian cells, in casu cancer cells: Phr0662 (Bacillus sp.), EntF-metabolite (Enterococcus faecium) and EDF-derived (Escherichia coli) peptides initiate HCT-8/E11 colon cancer cell invasion, with Phr0662 also promoting angiogenesis. Our findings thus indicate that the human microbiome, through their quorum sensing peptides, may be one of the factors responsible for cancer metastasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less

  1. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid.

    PubMed

    Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina

    2009-06-01

    A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.

  2. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.

    PubMed

    Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu

    2018-05-01

    Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better performance of the thermophilic reactor. Copyright © 2018. Published by Elsevier Ltd.

  3. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Houts, Michael

    2001-02-01

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .

  4. Optimal exploitation strategies for an animal population in a stochastic serially correlated environment

    USGS Publications Warehouse

    Anderson, D.R.

    1974-01-01

    Optimal exploitation strategies were studied for an animal population in a stochastic, serially correlated environment. This is a general case and encompasses a number of important cases as simplifications. Data on the mallard (Anas platyrhynchos) were used to explore the exploitation strategies and test several hypotheses because relatively much is known concerning the life history and general ecology of this species and extensive empirical data are available for analysis. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. Desirable properties of an optimal exploitation strategy were defined. A mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. Both the literature and the analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, alternative hypotheses were formulated: (1) exploitation mortality represents a largely additive form of mortality, or (2 ) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. Assuming that exploitation is largely an additive force of mortality, optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slightly concave function of the environmental conditions. Optimal exploitation under this hypothesis tends to reduce the variance of the size of the population. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the breeding population. Environmental variables may be somewhat more important than the size of the breeding population to the production of young mallards. In contrast, the size of the breeding population appears to be more important in the exploitation process than is the state of the environment. The form of the exploitation strategy appears to be relatively insensitive to small changes in the production rate. In general, the relative importance of the size of the breeding population may decrease as fecundity increases. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, harvest rate, or designed to maintain a constant breeding population size is inefficient.

  5. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  6. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  7. An Effect Analysis of Comprehensive Treatment of Groundwater Over-Exploitation in Cheng’an County, Hebei Province, China

    PubMed Central

    Shao, Weiwei; Zhou, Jinjun; Liu, Jiahong; Zhang, Haixing; Wang, Jianhua; Xiang, Chenyao; Yang, Guiyu; Tang, Yun

    2017-01-01

    The comprehensive treatment project of groundwater over-exploitation in Hebei Province has been implemented for more than a year, and the effect of exploitation restriction is in urgent need of evaluation. This paper deals with Cheng’an County of Hebei Province as the research subject. Based on collected hydro-meteorological, socioeconomic, groundwater, and other related data, together with typical regional experimental research, this study generates the effective precipitation–groundwater exploitation (P-W) curve and accompanying research methods, and calculates the quantity of groundwater exploitation restriction. It analyzes the target completion status of groundwater exploitation restriction through water conservancy measures and agricultural practices of the groundwater over-exploitation comprehensive treatment project that was implemented in Cheng’an County in 2014. The paper evaluates the treatment effect of groundwater over-exploitation, as well as provides technical support for the effect evaluation of groundwater exploitation restriction of agricultural irrigation in Cheng’an County and relevant areas. PMID:28054979

  8. An Effect Analysis of Comprehensive Treatment of Groundwater Over-Exploitation in Cheng'an County, Hebei Province, China.

    PubMed

    Shao, Weiwei; Zhou, Jinjun; Liu, Jiahong; Zhang, Haixing; Wang, Jianhua; Xiang, Chenyao; Yang, Guiyu; Tang, Yun

    2017-01-04

    The comprehensive treatment project of groundwater over-exploitation in Hebei Province has been implemented for more than a year, and the effect of exploitation restriction is in urgent need of evaluation. This paper deals with Cheng'an County of Hebei Province as the research subject. Based on collected hydro-meteorological, socioeconomic, groundwater, and other related data, together with typical regional experimental research, this study generates the effective precipitation-groundwater exploitation (P-W) curve and accompanying research methods, and calculates the quantity of groundwater exploitation restriction. It analyzes the target completion status of groundwater exploitation restriction through water conservancy measures and agricultural practices of the groundwater over-exploitation comprehensive treatment project that was implemented in Cheng'an County in 2014. The paper evaluates the treatment effect of groundwater over-exploitation, as well as provides technical support for the effect evaluation of groundwater exploitation restriction of agricultural irrigation in Cheng'an County and relevant areas.

  9. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  10. Operators in the Plum Brook Reactor Facility Control Room

    NASA Image and Video Library

    1970-03-21

    Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.

  11. Optimal exploitation strategies for an animal population in a Markovian environment: A theory and an example

    USGS Publications Warehouse

    Anderson, D.R.

    1975-01-01

    Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general formulation for realistic solutions to the general optimal exploitation problem. The concepts of state vectors and stage transformations are completely general. Populations can be modeled stochastically and the objective function can include extra-biological factors. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, or harvest rate, or designed to maintain a constant breeding population size is inefficient.

  12. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  13. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  14. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  15. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  16. 10 CFR 50.70 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide... New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and... construction permit holder (nuclear power reactor only) shall ensure that the arrival and presence of an NRC...

  17. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  18. 10 CFR 2.101 - Filing of application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...

  19. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  20. The Illusions and Juxtapositions of Commercial Sexual Exploitation among Youth: Identifying Effective Street-Outreach Strategies

    PubMed Central

    HOLGER-AMBROSE, BETH; LANGMADE, CHEREE; EDINBURGH, LAUREL D.; SAEWYC, ELIZABETH

    2015-01-01

    To explore sexually exploited youths’ perspectives of how street outreach workers can effectively provide outreach and connections to services, we conducted qualitative interviews with 13 female participants, ages 14–22, in a Midwestern U.S. city. Participants reported multiple types of exploitation, most first exploited by age 13, plus substance use, and recurrent homelessness. Nearly all had a pimp, and all used the internet as a venue for sexual exploitation. Participants wanted outreach workers to use “soft words” to refer to exploitation. They expressed contradictory images of their “boyfriend” pimps and their exploitation. They wanted outreach workers to “provide resources,” “be non-judgmental,” ”listen,” and “care.” Street outreach can be one way to support sexually exploited youth, but should occur in multiple settings. PMID:23590353

  1. Demonstration of Robustness and Integrated Operation of a Series-Bosch System

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent

    2016-01-01

    Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.

  2. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  3. The role of nuclear reactors in space exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. Onemore » reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built and flew space reactors; it is time to do so again.« less

  4. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.

  5. 10 CFR 72.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...

  6. 10 CFR 72.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...

  7. Unmixed fuel processors and methods for using the same

    DOEpatents

    Kulkarni, Parag Prakash; Cui, Zhe

    2010-08-24

    Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.

  8. Thermionic switched self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.; Brummond, William A.

    1989-01-01

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  9. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  10. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less

  12. To defer or to stand up? How offender formidability affects third party moral outrage.

    PubMed

    Jensen, Niels Holm; Petersen, Michael Bang

    2011-03-16

    According to models of animal behavior, the relative formidability of conspecifics determines the utility of deferring versus aggressing in situations of conflict. Here we apply and extend these models by investigating how the formidability of exploiters shapes third party moral outrage in humans. Deciding whether to defer to or stand up against a formidable exploiter is a complicated decision as there is both much to lose (formidable individuals are able and prone to retaliate) and much to gain (formidable individuals pose a great future threat). An optimally designed outrage system should, therefore, be sensitive to these cost- benefit trade-offs. To test this argument, participants read scenarios containing exploitative acts (trivial vs. serious) and were presented with head-shot photos of the apparent exploiters (formidable vs. non-formidable). As predicted, results showed that, compared to the non- formidable exploiter, the formidable exploiter activated significantly more outrage in male participants when the exploitative act was serious. Conversely, when it was trivial, the formidable exploiter activated significantly less outrage in male participants. However, these findings were conditioned by the exploiters' perceived trustworthiness. Among female participants, the results showed that moral outrage was not modulated by exploiter formidability.

  13. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  14. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  15. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  16. 97. ARAIII. ML1 reactor has been moved into GCRE reactor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. ARA-III. ML-1 reactor has been moved into GCRE reactor building (ARA-608) for examination of corrosion on its underside and repair. May 24, 1963. Ineel photo no. 63-3485. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. NEUTRONIC REACTOR MANIPULATING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1962-08-01

    A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

  18. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  19. Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis.

    PubMed

    Plakas, K V; Georgiadis, A A; Karabelas, A J

    2016-01-01

    The multi-criteria analysis gives the opportunity to researchers, designers and decision-makers to examine decision options in a multi-dimensional fashion. On this basis, four tertiary wastewater treatment (WWT) technologies were assessed regarding their sustainability performance in producing recycled wastewater, considering a 'triple bottom line' approach (i.e. economic, environmental, and social). These are powdered activated carbon adsorption coupled with ultrafiltration membrane separation (PAC-UF), reverse osmosis, ozone/ultraviolet-light oxidation and heterogeneous photo-catalysis coupled with low-pressure membrane separation (photocatalytic membrane reactor, PMR). The participatory method called simple multi-attribute rating technique exploiting ranks was employed for assigning weights to selected sustainability indicators. This sustainability assessment approach resulted in the development of a composite index as a final metric, for each WWT technology evaluated. The PAC-UF technology appears to be the most appropriate technology, attaining the highest composite value regarding the sustainability performance. A scenario analysis confirmed the results of the original scenario in five out of seven cases. In parallel, the PMR was highlighted as the technology with the least variability in its performance. Nevertheless, additional actions and approaches are proposed to strengthen the objectivity of the final results.

  20. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Leo Szilard In Physics and Information

    NASA Astrophysics Data System (ADS)

    Garwin, Richard

    2014-03-01

    The excellent biography by William Lanouette, ``Genius in the Shadows,'' tells it the way it was, incredible though it may seem. The 1972 ``Collected Works of Leo Szilard: Scientific Papers'' Bernard T. Feld and Getrude W. Szilard, Editors, gives the source material both published and unpublished. Szilard's path-breaking but initially little-noticed 1929 paper, ``On the Decrease of Entropy in a Thermodynamic System by the Intervention of Intelligent Beings'' spawned much subsequent research. It connected what we now call a bit of information with a quantity k ln 2 of entropy, and showed that the process of acquiring, exploiting, and resetting this information in a one-molecule engine must dissipate at least kT ln 2 of energy at temperature T. His 1925 paper, ``On the Extension of Phenomenological Thermodynamics to Fluctuation Phenomena,'' showed that fluctuations were consistent with and predicted from equilibrium thermodynamics and did not depend on atomistic theories. His work on physics and technology, demonstrated an astonishing range of interest, ingenuity, foresight, and practical sense. I illustrate this with several of his fundamental contributions nuclear physics, to the neutron chain reaction and to nuclear reactors, and also to electromagnetic pumping of liquid metals.

  2. Enhancing Zeolite Performance by Catalyst Shaping in a Mesoscale Continuous-Flow Diels-Alder Process.

    PubMed

    Seghers, Sofie; Lefevere, Jasper; Mullens, Steven; De Vylder, Anton; Thybaut, Joris W; Stevens, Christian V

    2018-03-26

    In contrast to most lab-scale batch procedures, a continuous-flow implementation requires a thorough consideration of the solid catalyst design. In a previous study, irregular zeolite pellets were applied in a miniaturized continuous-flow reactor for the Diels-Alder reaction in the construction of norbornene scaffolds. After having faced the challenges of continuous operation, the aim of this study is to exploit catalyst structuring. To this end, microspheres with high uniformity and various sphere diameters were synthesized according to the vibrational droplet coagulation method. The influence of the use of these novel zeolite shapes in a mesoscale continuous-flow Diels-Alder process of cyclopentadiene and methyl acrylate is discussed. An impressive enhancement of catalyst lifetime is demonstrated, as even after a doubled process time of 14 h, the microspheres still exceeded the conversion after 7 h when using zeolite pellets by 30 %. A dual reason is found for this beneficial impact of catalyst shaping. The significant improvement in catalyst longevity can be attributed to the interplay of the chemical composition and the porosity structure of the microspheres. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  4. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY: The U.S..., Revision 10, ``Operator Licensing Examination Standards for Power Reactors.'' DATES: Submit comments [email protected] . Both of the Office of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U...

  5. 76 FR 55718 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor...'' for reactor coolant system (RCS) components, as mentioned in 10 CFR 50 Appendix A, GDC-4. The...

  6. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions by...

  7. 75 FR 58449 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor... would result in a major inconvenience. Dated: September 17, 2010. Antonio Dias, Chief, Reactor Safety...

  8. 151. ARAIII Reactor building (ARA608) Details of reactor pit and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    151. ARA-III Reactor building (ARA-608) Details of reactor pit and instrument plan. Aerojet-general 880-area/GCRE-608-T-19. Date: November 1958. Ineel index code no. 063-0608-25-013-102678. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  9. 10 CFR 72.120 - General considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...

  10. ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  12. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  13. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  14. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  15. A Review of Gas-Cooled Reactor Concepts for SDI Applications

    DTIC Science & Technology

    1989-08-01

    710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests

  16. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  17. Function of university reactors in operator licensing training for nuclear utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1985-11-01

    The director of the Division of the US Nuclear Regulatory Commission in generic letter 84-10, dated April 26, 1984, spoke the requirement that applicants for senior reactor operator licenses for power reactors shall have performed then reactor startups. Simulator startups were not acknowledged. Startups performed on a university reactor are acceptable. The content and results of a five-day program combining instruction and experiments with the Rensselaer reactor are summarized.

  18. Numerical Simulations of a 96-rod Polysilicon CVD Reactor

    NASA Astrophysics Data System (ADS)

    Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang

    2018-05-01

    With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.

  19. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  20. Characteristics and Dose Levels for Spent Reactor Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Cameron W

    2007-01-01

    Current guidance considers highly radioactive special nuclear materials to be those materials that, unshielded, emit a radiation dose [rate] measured at 1 m which exceeds 100 rem/h. Smaller, less massive fuel assemblies from research reactors can present a challenge from the point of view of self protection because of their size (lower dose, easier to handle) and the desirability of higher enrichments; however, a follow-on study to cross-compare dose trends of research reactors and power reactors was deemed useful to confirm/verify these trends. This paper summarizes the characteristics and dose levels of spent reactor fuels for both research reactors andmore » power reactors and extends previous studies aimed at quantifying expected dose rates from research reactor fuels worldwide.« less

  1. Comparing the new generation accelerator driven subcritical reactor system (ADS) to traditional critical reactors

    NASA Astrophysics Data System (ADS)

    Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza

    2017-02-01

    In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.

  2. Reactor operation environmental information document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselow, J.S.; Price, V.; Stephenson, D.E.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimalmore » impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.« less

  3. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A

    A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anodemore » of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.« less

  5. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  6. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  7. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  8. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  9. A comparison of the technological effectiveness of dairy wastewater treatment in anaerobic UASB reactor and anaerobic reactor with an innovative design.

    PubMed

    Jedrzejewska-Cicinska, M; Kozak, K; Krzemieniewski, M

    2007-10-01

    The present research was an investigation of the influence of an innovative design of reactor filled with polyethylene (PE) granulate on model dairy wastewater treatment efficiency under anaerobic conditions compared to that obtained in a typical UASB reactor. The experiment was conducted at laboratory scale. An innovative reactor was designed with the reaction chamber inclined 30 degrees in relation to the ground with upward waste flow and was filled with PE granular material. Raw model dairy wastewater was fed to two anaerobic reactors of different design at the organic loading rate of 4 kg COD m(-3)d(-1). Throughout the experiment, a higher removal efficiency of organic compounds was observed in the reactor with an innovative design and it was higher by 7.1% on average than in the UASB reactor. The total suspended solids was lower in the wastewater treated in the anaerobic reactor with the innovative design. Applying a PE granulated filling in the chamber of the innovative reactor contributed to an even distribution of sludge biomass in the reactor, reducing washout of anaerobic sludge biomass from the reaction chamber and giving a higher organic compounds removal efficiency.

  10. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  11. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  12. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  13. Long-term analyses of snow dynamics within the french Alps on the 1900-2100 period. Analyses of historical snow water equivalent observations, modelisations and projections of a hundred of snow courses.

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.

    2017-12-01

    The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.

  14. Compilation of the ``Atlas of Gamma-rays from the Inelastic Scattering of Reactor Fast Neutrons'' (1978DE41) by A.M. Demidov, L.I. Govor, Yu. K. Cherepantsev, M.R. Ahmed, S. Al-Najjar, M.A. Al-Amili, N. Al-Assafi, and N. Rammo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurst, Aaron M.; Bernstein, Lee A.; Chong, Su-Ann

    A Structured Query Language (SQL) relational database has been developed based on the original (n,n'gamma) work carried out by A.M. Demidov et al., at the Nuclear Research Institute in Baghdad, Iraq [``Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons'', Nuclear Research Institute, Baghdad, Iraq (Moscow, Atomizdat 1978)] for 105 independent measurements comprising 76 elemental samples of natural composition and 29 isotopically-enriched samples. The information from this ATLAS includes: gamma-ray energies and intensities; nuclide and level data corresponding to where the gamma-ray originated from; target (sample) experimental-measurement data. Taken together, this information allows for the extraction ofmore » the flux-weighted (n,n'gamma) cross sections for a given transition relative to a defined value. Currently, we are using the fast-neutron flux-weighted partial gamma-ray cross section from ENDF/B-VII.1 for the production of the 847-keV transition from the first excited 2+ state to the 0+ ground state in 56Fe, 468 mb. This value also takes into account contributions to the 847-keV transition following beta(-) decay of 56Mn formed in the 56Fe(n,p) reaction. However, this value can easily be adjusted to accommodate the user preference. The (n,n'gamma) data has been compiled into a series of ASCII comma separated value tables and a suite of Python scripts and C modules are provided to build the database. Upon building, the database can then be interacted with directly via the SQLite engine or accessed via the Jupyter Notebook Python-browser interface. Several examples exploiting these utilities are also provided with the complete software package.« less

  15. Californium-252: a remarkable versatile radioisotope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne-Lee, I.W.; Alexander, C.W.

    A product of the nuclear age, Californium-252 ({sup 252}Cf) has found many applications in medicine, scientific research, industry, and nuclear science education. Californium-252 is unique as a neutron source in that it provides a highly concentrated flux and extremely reliable neutron spectrum from a very small assembly. During the past 40 years, {sup 252}Cf has been applied with great success to cancer therapy, neutron radiography of objects ranging from flowers to entire aircraft, startup sources for nuclear reactors, fission activation for quality analysis of all commercial nuclear fuel, and many other beneficial uses, some of which are now ready formore » further growth. Californium-252 is produced in the High Flux Isotope Reactor (HFIR) and processed in the Radiochemical Engineering Development Center (REDC), both of which are located at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The REDC/HFIR facility is virtually the sole supplier of {sup 252}Cf in the western world and is the major supplier worldwide. Extensive exploitation of this product was made possible through the {sup 252}Cf Market Evaluation Program, sponsored by the United States Department of Energy (DOE) [then the Atomic Energy Commission (AEC) and later the Energy Research and Development Administration (ERDA)]. This program included training series, demonstration centers, seminars, and a liberal loan policy for fabricated sources. The Market Evaluation Program was instituted, in part, to determine if large-quantity production capability was required at the Savannah River Laboratory (SRL). Because of the nature of the product and the means by which it is produced, {sup 252}Cf can be produced only in government-owned facilities. It is evident at this time that the Oak Ridge research facility can meet present and projected near-term requirements. The production, shipment, and sales history of {sup 252}Cf from ORNL is summarized herein.« less

  16. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  17. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOEpatents

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  18. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    DOEpatents

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  19. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. System and method for temperature control in an oxygen transport membrane based reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  1. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-09-29

    to design a smaller scale version of a naval pressurized water reactor , or to design a new reactor type potentially using a thorium liquid salt...integrated nuclear power system capable of use on destroyer- sized vessels either using a pressurized water reactor or a thorium liquid salt reactor ...nuclear reactors for Navy surface ships. The text of Section 246 is as follows: SEC. 246. STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES

  2. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  3. Modification of UASB reactor by using CFD simulations for enhanced treatment of municipal sewage.

    PubMed

    Das, Suprotim; Sarkar, Supriya; Chaudhari, Sanjeev

    2018-02-01

    Up-flow anaerobic sludge blanket (UASB) has been in use since last few decades for the treatment of organic wastewaters. However, the performance of UASB reactor is quite low for treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. In the present research work, a modification was done in the design of UASB to improve mixing of reactor liquid which is important to enhance the reactor performance. The modified UASB (MUASB) reactor was designed by providing a slanted baffle along the height of the reactor having an angle of 5.7° with the vertical wall. A two-dimensional computational fluid dynamics (CFD) simulation of three phase gas-liquid-solid flow in MUASB reactor was performed and compared with conventional UASB reactor. The CFD study indicated better mixing in terms of vorticity magnitude in MUASB reactor as compared to conventional UASB, which was reflected in the reactor performance. The performance of MUASB was compared with conventional UASB reactor for the onsite treatment of domestic sewage as LSW. Around 16% higher total chemical oxygen demand removal efficiency was observed in MUASB reactor as compared to conventional UASB during this study. Therefore, this MUASB model demonstrates a qualitative relationship between mixing and performance during the treatment of LSW. From the study, it seems that MUASB holds promise for field applications.

  4. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  5. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  6. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  7. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  8. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and... 20, 2012 (77 FR 42771), ``License Renewal for the Dow Chemical TRIGA Research Reactor,'' to inform... Chemical Company which would authorize continued operation of the Dow TRIGA Research Reactor. The notice...

  9. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...

  10. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...

  11. PBF Reactor Building (PER620). Camera faces north into highbay/reactor pit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera faces north into high-bay/reactor pit area. Inside from for reactor enclosure is in place. Photographer: John Capek. Date: March 15, 1967. INEEL negative no. 67-1769 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  13. 155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  14. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  15. Breeder Reactors, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  16. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  17. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  18. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  19. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  20. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

Top