Implementation of ALARA at the design stage of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brissaud, A.; Ridoux, P.
1995-03-01
In the 1970s, Electricite de France (EdF) had limited knowledge and experience of pressurized water reactors (PWRs). Electricity generation by nuclear units was oriented towards gas-graphite reactors, even though EdF had a share in the PWR unit of CHOOZ A-1 (250 MWe, later upgraded to 320 MWe). Some facts about the origin of doses in that king of reactor were known to the research and development (R&D) support staff of EdF, which mainly comprises the French Atomic Commission (CEA), but only a few of EdF`s engineers were aware of these facts. One has to bear in mind that CHOOZ A-1more » only went critical in April 1967 and was officially connected to the grid in May 1970 after some important problems had been solved. Meanwhile, the nuclear program was launched at full speed, beginning with the order for FESSENHEIM 1 in 1970, FESSENHEIM 2 and BUGEY 2 and 3 in 1971. TIHANGE 1, in which EdF had a share, went on-line in September 1975. Also, supposing that EdF had had such knowledge and experience, it is quite evident that it would have been very difficult to modify the lay-out inside the reactor building.« less
Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source
NASA Astrophysics Data System (ADS)
Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.
2017-09-01
Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].
Comparison of JSFR design with EDF requirements for future SFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uematsu, M. M.; Prele, G.; Mariteau, P.
2012-07-01
A comparison of Japan sodium-cooled fast reactor (JSFR) design with future French SFR concept has been done based on the requirement of EDF, the investor-operator of future French SFR, and the French safety baseline, under the framework of EDF-JAEA bilateral agreement of research and development cooperation on future SFR. (authors)
EDF experience with {open_quotes}hot spot{close_quotes} management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guio, J.M. de
1995-03-01
During the past few years, {open_quotes}hot spots{close_quotes} due to the presence of particles of metal activated during their migration through the reactor core, have been detected at several French pressurized water reactor (PWR) units. These {open_quotes}hot spots,{close_quotes} which generate very high dose rates (from about 10 Gy/h to 200 G/h) are a significant factor in increase occupational exposures during outrates. Of particular concern are the difficult cases which prolong outage duration and increase the volume of radiological waste. Confronted with this situation, Electricite de France (EDF) has set up a national research group, as part of its ALARA program, tomore » establish procedures and techniques to avoid, detect, and eliminate of hot spots. In particular, specific processes have been developed to eliminate these hot spots which are most costly in terms of occupational exposure due to the need for reactor maintenance. This paper sets out the general approach adopted at EDF so far to cope with the problem of hot spots, illustrated by experience at Blayais 3 and 4.« less
Strategy proposed by Electricite de France in the development of automatic tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaing, C.; Cazin, B.
1995-03-01
The strategy proposed by EDF in the development of a means to limit personal and collective dosimetry is recent. It follows in the steps of a policy that consisted of developing remote operation means for those activities of inspection and maintenance on the reactor, pools bottom, steam generators (SGs), also reactor building valves; target activities because of their high dosimetric cost. One of the main duties of the UTO (Technical Support Department), within the EDF, is the maintenance of Pressurized Water Reactors in French Nuclear Power Plant Operations (consisting of 54 units) and the development and monitoring of specialized tools.more » To achieve this, the UTO has started a national think-tank on the implementation of the ALARA process in its field of activity and created an ALARA Committee responsible for running and monitoring it, as well as a policy for developing tools. This point will be illustrated in the second on reactor vessel heads.« less
Prospective scenarios of nuclear energy evolution over the 21. century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massara, S.; Tetart, P.; Garzenne, C.
2006-07-01
In this paper, different world scenarios of nuclear energy development over the 21. century are analyzed, by means of the EDF fuel cycle simulation code for nuclear scenario studies, TIRELIRE - STRATEGIE. Three nuclear demand scenarios are considered, and the performance of different nuclear strategies in satisfying these scenarios is analyzed and discussed, focusing on natural uranium consumption and industrial requirements related to the nuclear reactors and the associated fuel cycle facilities. Both thermal-spectrum systems (Pressurized Water Reactor and High Temperature Gas-cooled Reactor) and Fast Reactors are investigated. (authors)
Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucau, Joseph; Mirabella, C.; Nilsson, Lennart
2013-07-01
Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Centermore » for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzenne, Claude; Massara, Simone; Tetart, Philippe
2006-07-01
Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less
Li, Pei-Fang; Lee, Yung-I; Yang, Chang-Hsien
2015-01-01
In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. PMID:26063506
Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien
2015-08-01
In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. © 2015 American Society of Plant Biologists. All Rights Reserved.
Canavese, Federico; Botnari, Alexei; Dimeglio, Alain; Samba, Antoine; Pereira, Bruno; Gerst, Adeline; Granier, Marie; Rousset, Marie; Dubousset, Jean
2016-02-01
Juvenile scoliosis (JS), among different types of spinal deformity, remains still a challenge for orthopedic surgeons. Elongation, derotation and flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three-dimensional correction concept. The primary objective of the present study was to measure changes on plain radiographs of patients with JS treated with EDF plaster technique. The second aim was to evaluate the effectiveness of the EDF plaster technique realized under general anesthesia (GA) and neuromuscular blocking drugs, i.e. curare, on the radiological curve correction. A retrospective comparative case series study was performed in which were included forty-four skeletally immature patients. Three patient groups were selected. Group 1: EDF cast applied with patients awaken and no anesthesia; Group 2: EDF cast applied under GA without neuromuscular blocking drugs; Group 3: EDF cast applied under GA with neuromuscular blocking drugs. All the patients were treated with two serial EDF casts by 2 months and a half each. All measurements were taken from the radiographic exams. Cobb's angle; RVAD and Nash and Moe grade of rotation were assessed before and after applying the cast. Thirty-four (77.3 %) patients were followed up at least 24 months after removal of last EDF cast. Eighteen patients (3 males, 15 females) were included in Group 1, 12 (2 males, 10 females) in Group 2 and 14 (5 males, 9 females) in Group 3. Serial EDF casting was more effective at initial curve reduction and in preventing curve progression when applied under GA with neuromuscular blocking drugs, i.e. curare. RVAD and Nash and Moe score improved significantly in all groups of patients treated according to principles of EDF technique. During follow-up period, six patients required surgery in Group 1 (6/18; 33.3 %), 3 patients required surgery in Group 2 (3/12; 25 %) and 2 patients underwent surgery in Group 3 (2/14; 15 %). Preliminary results show EDF casting is effective in controlling the curve in both frontal (Cobb's angle) and transverse plane (rib vertebral angle and apical vertebral rotation degree).
R and D program for core instrumentation improvements devoted for French sodium fast reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeannot, J. P.; Rodriguez, G.; Jammes, C.
2011-07-01
Under the framework of French R and D studies for Generation IV reactors and more specifically for sodium-cooled fast reactors (SFR); the CEA, EDF and AREVA have launched a joint coordinated research programme. This paper deals with the R and D sets out to achieve better inspection, maintenance, availability and decommissioning. In particular the instrumentation requirements for core monitoring and detection in the case of accidental events. Requirements mainly involve diversifying the means of protection and improving instrumentation performance in terms of responsiveness and sensitivity. Operation feedback from the Phenix and Superphenix prototype reactors and studies, carried out within themore » scope of the EFR projects, has been used to define the needs for instrumentation enhancement. (authors)« less
78 FR 39724 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... Trading North America, LLC, EDF Industrial Power Services (NY), LLC, EDF Industrial Power Services (IL), LLC, EDF Industrial Power Services (CA), LLC, Tanner Street Generation, LLC. Description: Notice of...: AP Holdings, LLC, AP Gas & Electric (PA), LLC, AP Gas & Electric (TX), LLC, AP Gas & Electric (MD...
Electricite de France`s ALARA policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stricker, L.; Rollin, P.
1995-03-01
In 1992, Electricite de France - EDF decided to improve the degree to which radiological protection is incorporated in overall management of the utility and set itself the objective of ensuring the same level of protection for workers from contractors as for those from EDF. This decision was taken in a context marked by a deterioration in exposure figures for French plants and by the new recommendations issued by the ICRP. This document describes the policy adopted by EDF at both corporate and plant level to meet these objectives, by: (1) setting up management systems which were responsive but notmore » cumbersome; (2) a broad policy of motivation; (3) the development and use of suitable tools. The document then describes some quite positive results of EDF`s ALARA policy, giving concrete examples and analyzing the changes in global indicators.« less
Raynor, Hollie A; Steeves, Elizabeth A; Hecht, Jacki; Fava, Joseph L; Wing, Rena R
2012-06-01
Dietary variety is a factor that influences consumption but has received little attention in obesity treatment. This study examined the effect of limiting the variety of different non-nutrient-dense, energy-dense foods (NND-EDFs) (i.e., chips, ice cream, cookies) on dietary intake and weight loss during an 18-mo lifestyle intervention. Two hundred two adults aged 51.3 ± 9.5 y with a BMI (in kg/m2) of 34.9 ± 4.3 (57.8% women, 92.2% white) were randomly assigned to 1 of 2 interventions: Lifestyle (1200-1500 kcal/d, ≤30% of energy as fat; n = 101) or Lifestyle + limited variety (LV) (limit variety of NND-EDFs, i.e., 2 choices; n = 101). Both interventions involved 48 group sessions. Dietary intake, NND-EDF hedonics, NND-EDF variety in the home, and weight were assessed at 0, 6, 12, and 18 mo. Intent-to-treat analyses showed that the Lifestyle+LV group consumed less variety (P < 0.01) and energy daily (P < 0.05) from NND-EDFs than did the Lifestyle group at 6, 12, and 18 mo. The Lifestyle+LV group consumed less total energy daily (P < 0.05) at 6 mo than did the Lifestyle group. The Lifestyle+LV group reported less (P < 0.05) NND-EDF variety in the home at 6 and 18 mo than did the Lifestyle group. The hedonics of one chosen NND-EDF decreased more (P < 0.05) in the Lifestyle+LV group. Despite these effects, no difference in percentage weight loss occurred at 18 mo (Lifestyle+LV: -9.9 ± 7.6%; Lifestyle: -9.6 ± 9.2%). Limitations in dietary variety decreased intakes in the targeted area but did not affect weight loss. Limiting variety in more areas may be needed to improve weight loss and weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT01096719.
Steeves, Elizabeth A; Hecht, Jacki; Fava, Joseph L; Wing, Rena R
2012-01-01
Background: Dietary variety is a factor that influences consumption but has received little attention in obesity treatment. Objective: This study examined the effect of limiting the variety of different non-nutrient-dense, energy-dense foods (NND-EDFs) (ie, chips, ice cream, cookies) on dietary intake and weight loss during an 18-mo lifestyle intervention. Design: Two hundred two adults aged 51.3 ± 9.5 y with a BMI (in kg/m2) of 34.9 ± 4.3 (57.8% women, 92.2% white) were randomly assigned to 1 of 2 interventions: Lifestyle (1200–1500 kcal/d, ≤30% of energy as fat; n = 101) or Lifestyle + limited variety (LV) (limit variety of NND-EDFs, ie, 2 choices; n = 101). Both interventions involved 48 group sessions. Dietary intake, NND-EDF hedonics, NND-EDF variety in the home, and weight were assessed at 0, 6, 12, and 18 mo. Results: Intent-to-treat analyses showed that the Lifestyle+LV group consumed less variety (P < 0.01) and energy daily (P < 0.05) from NND-EDFs than did the Lifestyle group at 6, 12, and 18 mo. The Lifestyle+LV group consumed less total energy daily (P < 0.05) at 6 mo than did the Lifestyle group. The Lifestyle+LV group reported less (P < 0.05) NND-EDF variety in the home at 6 and 18 mo than did the Lifestyle group. The hedonics of one chosen NND-EDF decreased more (P < 0.05) in the Lifestyle+LV group. Despite these effects, no difference in percentage weight loss occurred at 18 mo (Lifestyle+LV: −9.9 ± 7.6%; Lifestyle: −9.6 ± 9.2%). Conclusions: Limitations in dietary variety decreased intakes in the targeted area but did not affect weight loss. Limiting variety in more areas may be needed to improve weight loss and weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT01096719. PMID:22552025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Mer, J.; Garzenne, C.; Lemasson, D.
In the frame of the French Act of June 28, 2006 on 'a sustainable management of nuclear materials and radioactive waste' EDF R and D assesses various research scenarios of transition between the actual French fleet and a Generation IV fleet with a closed fuel cycle where plutonium is multi-recycled. The basic scenarios simulate a deployment of 60 GWe of Sodium-cooled Fast Reactors (SFRs) in two steps: one third from 2040 to 2050 and the rest from 2080 to 2100 (scenarios 2040). These research scenarios assume that SFR technology will be ready for industrial deployment in 2040. One of themore » many sensitivity analyses that EDF, as a nuclear power plant operator, must evaluate is the impact of a delay of SFR technology in terms of uranium consumptions, plutonium needs and fuel cycle utilities gauging. The sensitivity scenarios use the same assumptions as scenarios 2040 but they simulate a different transition phase: SFRs are deployed in one step between 2080 and 2110 (scenarios 2080). As the French Act states to conduct research on minor actinides (MA) management, we studied different options for 2040 and 2080 scenarios: no MA transmutation, americium transmutation in heterogeneous mode based on americium Bearing Blankets (AmBB) in SFRs and all MA transmutation in heterogeneous mode based on MA Bearing Blankets (MABB). Moreover, we studied multiple parameters that could impact the deployment of these reactors (SFR load factor, increase of the use of MOX in Light Water Reactors, increase of the cooling time in spent nuclear fuel storage...). Each scenario has been computed with the EDF R and D fuel cycle simulation code TIRELIRE-STRATEGIE and optimized to meet various fuel cycle constraints such as using the reprocessing facility with long period of constant capacity, keeping the temporary stored mass of plutonium and MA under imposed limits, recycling older assemblies first... These research scenarios show that the transition from the current PWR fleet to an equivalent fleet of Generation IV SFR can follow different courses. The design of SFR-V2B that we used in our studies needs a high inventory of plutonium resulting in tension on this resource. Several options can be used in order to loosen this tension: our results lead to favour the use of axial breeding blanket in SFR. Load factor of upcoming reactors has to be regarded with attention as it has a high impact on plutonium resource for a given production of electricity. The deployment of SFRs beginning in 2080 instead of 2040 following the scenarios we described creates higher tensions on reprocessing capacity, separated plutonium storage and spent fuel storage. In the frame of the French Act, we studied minor actinides transmutation. The flux of MA in all fuel cycle plants is really high, which will lead to decay heat, a and neutron emission related problems. In terms of reduction of MA inventories, the deployment of MA transmutation cycle must not delay the installation of SFRs. The plutonium production in MABB and AmBB does not allow reducing the use of axial breeding blankets. The impact of MA or Am transmutation over the high level waste disposal is more important if the SFRs are deployed later. Transmutation option (americium or all MA) does not have a significant impact on the number of canister produced nor on its long-term thermal properties. (authors)« less
Industrial research for transmutation scenarios
NASA Astrophysics Data System (ADS)
Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel
2011-04-01
This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.
Experimental validation of the DARWIN2.3 package for fuel cycle applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
San-Felice, L.; Eschbach, R.; Bourdot, P.
2012-07-01
The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuelmore » inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)« less
Panthere V2: Multipurpose Simulation Software for 3D Dose Rate Calculations
NASA Astrophysics Data System (ADS)
Penessot, Gaël; Bavoil, Éléonore; Wertz, Laurent; Malouch, Fadhel; Visonneau, Thierry; Dubost, Julien
2017-09-01
PANTHERE is a multipurpose radiation protection software developed by EDF to calculate gamma dose rates in complex 3D environments. PANTHERE takes a key role in the EDF ALARA process, enabling to predict dose rates and to organize and optimize operations in high radiation environments. PANTHERE is also used for nuclear waste characterization, transport of nuclear materials, etc. It is used in most of the EDF engineering units and their design service providers and industrial partners.
Experimental adoption of RCM in EDF substations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroin, G.; Aupied, J.; Sanchis, G.
1996-08-01
EDF, after testing Reliability Centered Maintenance (RCM) on systems used in nuclear power plants, has now successfully extended RCM to all of its nuclear power plants. In the light of this experience, EDF has committed itself to a pilot study on a line bay of a 400 kV substation in 1992. The RCM method as applied benefited from EDF`s policy of maintenance, introduced five years ago on all substations, which has enhanced prospects of reliability. The original feature in the selection of maintenance tasks was that it brought into play two criteria for failure assessment - frequency and seriousness -more » and two criteria for maintenance task selection - efficiency and facility. The final outcome of RCM as applied to substation maintenance is to categorize maintenance tasks into: (1) essential maintenance tasks, (2) optional tasks, depending on the type and location of the substation, as well as on factors relating to local management of maintenance policy, and (3) unnecessary tasks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soubies, B.; Henry, J.Y.; Le Meur, M.
1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de Francemore » (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.« less
78 FR 23243 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
...: EDF Trading North America, LLC, EDF Industrial Power Services (NY), LLC, EDF Industrial Power Services (IL), LLC, EDF Industrial Power Services (CA), LLC, Tanner Street Generation, LLC Description: Notice... England Power Pool Participants Committee, ISO New England Inc. Description: Regulation Market Opportunity...
Nigam, Akanksha; Kumar, Sathish
2018-01-01
ABSTRACT mazEF is a toxin-antitoxin module located on chromosomes of most bacteria. MazF toxins are endoribonucleases antagonized by MazE antitoxins. Previously, we characterized several quorum sensing peptides called "extracellular death factors" (EDFs). When secreted from bacterial cultures, EDFs induce interspecies cell death. EDFs also enhance the endoribonucleolytic activity of Escherichia coli MazF. Mycobacterium tuberculosis carries several mazEF modules. Among them, the endoribonucleolytic activities of MazF proteins mt-1, mt-3, and mt-6 were identified. MazF-mt6 and MazF-mt-3 cleave M. tuberculosis rRNAs. Here we report the in vitro effects of EDFs on the endoribonucleolytic activities of M. tuberculosis MazFs. Escherichia coli EDF (EcEDF) and the three Pseudomonas aeruginosa EDFs (PaEDFs) individually enhance the endoribonucleolytic activities of MazF-mt6 and MazF-mt3 and overcome the inhibitory effect of MazE-mt3 or MazE-mt6 on the endoribonucleolytic activities of the respective toxins. We propose that these EDFs can serve as a basis for a novel class of antibiotics against M. tuberculosis. PMID:29717013
77 FR 66828 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... Industrial Power Services (NY), LLC, EDF Industrial Power Services (IL), LLC, EDF Industrial Power Services... reports: Docket Numbers: LA12-3-000. Applicants: Carolina Power & Light Company, Cimarron Windpower II... Duke Energy Ohio, Inc. Duke Energy Retail Sales, LLC, Duke Energy Washington II, LLC, Florida Power...
Hybrid parallel code acceleration methods in full-core reactor physics calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courau, T.; Plagne, L.; Ponicot, A.
2012-07-01
When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less
Dismantling of the 904 Cell at the HAO/Sud Facility - 13466
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaudey, C.E.; Crosnier, S.; Renouf, M.
2013-07-01
La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshopmore » to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia
Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT)more » signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.« less
Software for Building Models of 3D Objects via the Internet
NASA Technical Reports Server (NTRS)
Schramer, Tim; Jensen, Jeff
2003-01-01
The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.
International trade and waste and fuel managment issue, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: HLW management in France, by Michel Debes, EDF, France; Breakthroughs from future reactors, by Jacques Bouchard, CEA, France; 'MOX for peace' a reality, by Jean-Pierre Bariteau, AREVA Group, France; Swedish spent fuel and radwaste, by Per H. Grahn and Marie Skogsberg, SKB, Sweden; ENC2005 concluding remarks, by Larry Foulke, 'Nuclear Technology Matters'; Fuel crud formation and behavior, by Charles Turk, Entergy; and, Plant profile: major vote of confidence for NP, by Martti Katka, TVO, Finland.
NASA Astrophysics Data System (ADS)
Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang
2018-06-01
In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.
Erbium-doped fiber ring resonator for resonant fiber optical gyro applications
NASA Astrophysics Data System (ADS)
Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun
2018-04-01
This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.
Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yijun; College of Physics Science and Engineering Technology, Yichun University, Yichun, Jiangxi Province 336000; Yao, Yong, E-mail: yaoyong@hit.edu.cn
2014-01-28
We experimentally study the dependences of high-order Stokes lines on the erbium-doped fiber (EDF) pump power P{sub EDF}, the Brillouin pump (BP) power P{sub BP}, and its working wavelength in a multiwavelength Brillouin erbium-doped fiber laser (MBEFL). By using the rate and propagation equations, and the coupled wave equations of stimulated Brillouin scattering, we establish a lumped model to describe the MBEFL. Numerical simulations show that the number of Stokes lines can be increased by decreasing the spacing between the BP wavelength and the EDF peak gain or P{sub BP} as long as it is larger than a critical valuemore » P{sub BP}{sup (cr)}=1.7 mW, or by increasing P{sub EDF} without reaching a saturation value P{sub EDF}{sup (cr)}=250 mW. However, when P{sub BP} and P{sub EDF} are varied beyond P{sub BP}{sup (cr)} and P{sub EDF}{sup (cr)}, respectively, the number of Stokes lines is reduced, accompanied by some self-lasing cavity modes. These results by numerical simulation are consistent with experimental observations from the MBEFL.« less
Oxide dispersion strengthened ferritic steels: a basic research joint program in France
NASA Astrophysics Data System (ADS)
Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.
2014-12-01
AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.
Derivation and application of the energy dissipation factor in the design of fishways
Towler, Brett; Mulligan, Kevin; Haro, Alexander J.
2015-01-01
Reducing turbulence and associated air entrainment is generally considered advantageous in the engineering design of fish passage facilities. The well-known energy dissipation factor, or EDF, correlates with observations of the phenomena. However, inconsistencies in EDF forms exist and the bases for volumetric energy dissipation rate criteria are often misunderstood. A comprehensive survey of EDF criteria is presented. Clarity in the application of the EDF and resolutions to these inconsistencies are provided through formal derivations; it is demonstrated that kinetic energy represents only 1/3 of the total energy input for the special case of a broad-crested weir. Specific errors in published design manuals are identified and resolved. New, fundamentally sound, design equations for culvert outlet pools and standard Denil Fishway resting pools are developed. The findings underscore the utility of EDF equations, demonstrate the transferability of volumetric energy dissipation rates, and provide a foundation for future refinement of component-, species-, and life-stage-specific EDF criteria.
77 FR 41976 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
...-2200-002; ER12-1716-001. Applicants: Noble Americas Gas & Power Corp., Noble Americas Energy Solutions LLC, Your Energy Holdings, LLC. Description: Notice of Change in Status of Noble Americas Gas & Power...-004. Applicants: EDF Trading North America, LLC, EDF Industrial Power Services (IL), LLC, EDF...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josse, Florent; Lefebvre, Yannick; Todeschini, Patrick
2006-07-01
Assessing the structural integrity of a nuclear Reactor Pressure Vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients is extremely important to safety. In addition to conventional deterministic calculations to confirm RPV integrity, Electricite de France (EDF) carries out probabilistic analyses. Probabilistic analyses are interesting because some key variables, albeit conventionally taken at conservative values, can be modeled more accurately through statistical variability. One variable which significantly affects RPV structural integrity assessment is cleavage fracture initiation toughness. The reference fracture toughness method currently in use at EDF is the RCCM and ASME Code lower-bound K{sub IC} based on the indexing parameter RT{submore » NDT}. However, in order to quantify the toughness scatter for probabilistic analyses, the master curve method is being analyzed at present. Furthermore, the master curve method is a direct means of evaluating fracture toughness based on K{sub JC} data. In the framework of the master curve investigation undertaken by EDF, this article deals with the following two statistical items: building a master curve from an extract of a fracture toughness dataset (from the European project 'Unified Reference Fracture Toughness Design curves for RPV Steels') and controlling statistical uncertainty for both mono-temperature and multi-temperature tests. Concerning the first point, master curve temperature dependence is empirical in nature. To determine the 'original' master curve, Wallin postulated that a unified description of fracture toughness temperature dependence for ferritic steels is possible, and used a large number of data corresponding to nuclear-grade pressure vessel steels and welds. Our working hypothesis is that some ferritic steels may behave in slightly different ways. Therefore we focused exclusively on the basic french reactor vessel metal of types A508 Class 3 and A 533 grade B Class 1, taking the sampling level and direction into account as well as the test specimen type. As for the second point, the emphasis is placed on the uncertainties in applying the master curve approach. For a toughness dataset based on different specimens of a single product, application of the master curve methodology requires the statistical estimation of one parameter: the reference temperature T{sub 0}. Because of the limited number of specimens, estimation of this temperature is uncertain. The ASTM standard provides a rough evaluation of this statistical uncertainty through an approximate confidence interval. In this paper, a thorough study is carried out to build more meaningful confidence intervals (for both mono-temperature and multi-temperature tests). These results ensure better control over uncertainty, and allow rigorous analysis of the impact of its influencing factors: the number of specimens and the temperatures at which they have been tested. (authors)« less
Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket
NASA Astrophysics Data System (ADS)
Mulyana, A.; Faiz, L. A. A.
2018-02-01
The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.
Murad-Regadas, S M; Karbage, S A; Bezerra, L S; Regadas, F S P; da Silva Vilarinho, A; Borges, L B; Regadas Filho, F S P; Veras, L B
2017-07-01
The aim of this study was to evaluate the role of dynamic translabial ultrasound (TLUS) in the assessment of pelvic floor dysfunction and compare the results with echodefecography (EDF) combined with the endovaginal approach. Consecutive female patients with pelvic floor dysfunction were eligible. Each patient was assessed with EDF combined with the endovaginal approach and TLUS. The diagnostic accuracy of the TLUS was evaluated using the results of EDF as the standard for comparison. A total of 42 women were included. Four sphincter defects were identified with both techniques, and EDF clearly showed if the defect was partial or total and additionally identified the pubovisceral muscle defect. There was substantial concordance regarding normal relaxation and anismus. Perfect concordance was found with rectocele and cystocele. The rectocele depth was measured with TLUS and quantified according to the EDF classification. Fair concordance was found for intussusception. There was no correlation between the displacement of the puborectal muscle at maximum straining on EDF with the displacement of the anorectal junction (ARJ), compared at rest with maximal straining on TLUS to determine perineal descent (PD). The mean ARJ displacement was similar in patients with normal and those with excessive PD on TLUS. Both modalities can be used as a method to assess pelvic floor dysfunction. The EDF using 3D anorectal and endovaginal approaches showed advantages in identification of the anal sphincters and pubodefects (partial or total). There was good correlation between the two techniques, and a TLUS rectocele classification based on size that corresponds to the established classification using EDF was established.
Deformation properties of lead isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.
2016-01-15
The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes.more » The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo deformations, but the size of this region is substantially different for the different functionals being considered. Once again, it is maximal for the HFB-17 and HFB-27 functionals, is substantially narrower for the FaNDF{sup 0} functional, and is still narrower for the SKM* and SLy4 functionals. The two-neutron drip line proved to be A{sub drip}{sup 2n} = 266 for all of the EDF versions considered here, with the exception of SKM*, for which it is shifted to A{sub drip}{sup 2n}(SKM*) = 272.« less
Treatment of irradiated graphite from French Bugey reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Howard; Laurent, Gerard
In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long-lived radionuclides up to 95% for C-14 while minimizing mass loss to <5%, this would minimize the volume of any secondary waste streams and potentially lower the waste class of the larger bulk of graphite. Alternatively, if up to 95% decontamination of C-14 is achieved, the graphite may be completely gasified which could result in lower disposal. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamida, B A; Cheng, X S; Harun, S W
A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achievedmore » with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.« less
Collins, Á B; Grant, J; Barrett, D; Doherty, M L; Hallinan, A; Mee, J F
2017-08-01
Schmallenberg virus (SBV) is transmitted by Culicoides spp. biting midges and can cause abortions and congenital malformations in ruminants and milk drop in dairy cattle. Estimating true within-herd seroprevalence is an essential component of efficient and cost-effective SBV surveillance programs. The objectives of this study were: (1) determine the correlation between bulk-tank milk (BTM)-ELISA results and within-herd seroprevalence, (2) evaluate the ability of BTM-ELISA results to predict within-herd seroprevalence and (3) explore the distributions of individual animal serology results using novel statistical methodology. BTM samples (n=24) and blood samples (n=4019) collected from all lactating cows contributing to the BTM in 26 Irish dairy herds (58-444 cows/herd) in 2014 located in a region exposed to SBV in 2012/2013, were analysed for SBV-specific antibodies using IDVet ® ELISA kits. The correlation between BTM-ELISA results and within-herd seroprevalence was determined by calculating Pearson's correlation coefficient. Linear regression models were used to assess the ability of BTM-ELISA results to predict within-herd seroprevalence. The distributions of individual animal serology results were explored by determining the empirical distribution functions (EDF) of the individual animal serum ELISA results in each herd. EDFs were compared pairwise across herds, using the Kolmogorov-Smirnov statistical test. Herds with similar BTM-ELISA results, herds with similar within-herd seroprevalence and herds with similar mean-herd serology ELISA results were stratified in order to explore their respective paired-herd EDF comparisons. Statistical significance was set at p<0.05. Twenty-two herds were BTM-ELISA-positive (within-herd seroprevalence 30.6-100%) and two herds were BTM-ELISA-negative (within-herd seroprevalence 10.7 and 16.2%) indicating BTM-ELISA-negative herds can have seropositive animals present. BTM-ELISA results were highly correlated (r=0.807, p<0.0001) with, and predictive of (R 2 =0.832, p<0.0001) of within-herd seroprevalence. Predictions were most accurate for upper-range BTM-ELISA antibody titres, while they were less accurate at higher and lower antibody titres. This is likely a result of the overall high within-herd seroprevalence. In herds with similar BTM-ELISA results 82% of the paired-herd EDF comparisons were significantly different. In herds with similar within-herd seroprevalence and in herds with similar mean-herd serology ELISA results, 46% and 47% of the paired-herd EDF comparisons were significantly different, respectively. These results demonstrate that BTM antibody titres are highly predictive of within-herd seroprevalence in an SBV exposed region. Furthermore, exploring the serum EDFs revealed that the variation observed in the predicted within-herd seroprevalence in the regression models is likely a result of individual animal variation in serum antibody titres in these herds. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.
2014-05-01
A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.
Canavese, Federico; Rousset, Marie; Mansour, Mounira; Samba, Antoine; Dimeglio, Alain
2016-02-01
Infantile and juvenile scoliosis, among different types of spinal deformity, is still a challenge for pediatric orthopedic surgeons. The ideal treatment of infantile and juvenile scoliosis has not yet been identified as both clinicians and surgeons still face multiple challenges, including preservation of the thoracic spine, thoracic cage, lung growth and cardiac function without reducing spinal motion. Elongation, derotation, flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three dimensional correction concept. This cast offers three-dimensional correction and can control the evolution of the deformity in some cases. Spinal growth can be guided by EDF casting as it can influence the initially curved spine to grow straighter. This article aimed to provide a comprehensive review of how infantile and juvenile scoliosis can affect normal spine and thorax and how these deformities can be treated with serial EDF casting technique. A current literature review is mandatory in order to understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in young and very young patients.
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massara, Simone; Tetart, Philippe; Lecarpentier, David
2006-07-01
The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less
Hagenaars, Luc Louis; Jeurissen, Patrick Paulus Theodoor; Klazinga, Niek Sieds
2017-08-01
Taxation of energy-dense foods (EDFs) and sugar-sweetened beverages (SSBs) is increasingly of interest as a novel public health and fiscal policy instrument. However academic interest in policy determinants has remained limited. We address this paucity by comparing the policy content and policy context of EDF/SSB taxes witnessed in 13 case studies, of which we assume the tax is sufficiently high to induce behavioural change. The observational and non-randomized studies published on our case studies seem to indicate that the EDF/SSB taxes under investigation generally had the desired effects on prices and consumption of targeted products. The revenue collection of EDF/SSB taxes is minimal yet significant. Administrative practicalities in tax levying are important, possibly explaining why a drift towards solely taxing SSBs can be noted, as these can be demarcated more easily, with levies seemingly increasing in more recent case studies. Despite the growing body of evidence suggesting that EDF/SSB taxes have the potential to improve health, fiscal needs more often seem to lay their policy foundation rather than public health advocacy. A remarkable amount of conservative/liberal governments have adopted these taxes, although in many cases revenues are earmarked for benefits compensating regressive income effects. Governments voice diverse policy rationales, ranging from explicitly describing the tax as a public health instrument, to solely explicating revenue raising. Copyright © 2017 Elsevier B.V. All rights reserved.
Zou, Wenli; Cai, Ziyu; Wang, Jiankang; Xin, Kunyu
2018-04-29
Based on two-component relativistic atomic calculations, a free electron density function (EDF) library has been developed for nearly all the known ECPs of the elements Li (Z = 3) up to Ubn (Z = 120), which can be interfaced into modern quantum chemistry programs to save the .wfx wavefunction file. The applicability of this EDF library is demonstrated by the analyses of the quantum theory of atoms in molecules (QTAIM) and other real space functions on HeCuF, PtO42+, OgF 4 , and TlCl 3 (DMSO) 2 . When a large-core ECP is used, it shows that the corrections by EDF may significantly improve the properties of some density-derived real space functions, but they are invalid for the wavefunction-depending real space functions. To classify different chemical bonds and especially some nonclassical interactions, a list of universal criteria has also been proposed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Phonon-particle coupling effects in odd-even mass differences of semi-magic nuclei
NASA Astrophysics Data System (ADS)
Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.
2017-11-01
A method to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei, based on a direct solving the Dyson equation with PC corrected mass operator, is used for finding the odd-even mass difference between 18 even Pb isotopes and their odd-proton neighbors. The Fayans energy density functional (EDF) DF3-a is used which gives rather high accuracy of the predictions for these mass differences already on the mean-field level, with the average deviation from the existing experimental data equal to 0.389 MeV. It is only a bit worse than the corresponding value of 0.333 MeV for the Skyrme EDF HFB-17, which belongs to a family of Skyrme EDFs with the highest overall accuracy in describing the nuclear masses. Account for the PC corrections induced by the low-laying phonons 2 1 + and 3 1 - significantly diminishes the deviation of the theory from the data till 0.218 MeV.
NASA Astrophysics Data System (ADS)
Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun
2018-07-01
In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.
First Two Years of Observations NASA ACTS Propagation Experiment Central Oklahoma Site
NASA Technical Reports Server (NTRS)
Crane, Robert K.
1996-01-01
Continuous observations from December 1, 1993 through November 30, 1995 were made at the ACTS Propagation Terminal on the roof of the Sarkeys Energy Center at the University of Oklahoma in Norman, Oklahoma. Beacon and radiometer observations were combined to calibrate the beacon system for the estimation of total attenuation (attenuation relative to free space) and attenuation relative to clear sky (gaseous absorption component removed). Empirical cumulative distributions (edf's) were compiled for each month of observation and for each year. The annual edf's are displayed in the figures, the monthly and annual edf's are listed in the tables. The tables are organized by blocks and pages within a block. The blocks correspond to the headings in the edf files generated by the ACTS Preprocessing (actspp) software and contained in the fourth disk in the set of ACTS Propagation Experiment CD-ROMs generated by the University of Texas.
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.
1993-01-01
New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok
2016-01-01
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less
78 FR 21133 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... using an online survey tool. At this time, CSAT is requesting approval to extend the use of these five... (EDF). The EDF collects descriptive information about each of the events of the ATTC Network. This...
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Ageing management of french NPP civil work structures
NASA Astrophysics Data System (ADS)
Gallitre, E.; Dauffer, D.
2011-04-01
This paper presents EDF practice about concrete structure ageing management, from the mechanisms analysis to the formal procedure which allows the French company to increase 900 MWe NPP lifetime until 40 years; it will also introduce its action plan for 60 years lifetime extension. This practice is based on a methodology which identifies every ageing mechanism; both plants feedback and state of the art are screened and conclusions are drawn up into an "ageing analysis data sheet". That leads at first to a collection of 57 data sheets which give the mechanism identification, the components that are concerned and an analysis grid which is designed to assess the safety risk. This analysis screens the reference documents describing the mechanism, the design lifetime hypotheses, the associated regulation or codification, the feedback experiences, the accessibility, the maintenance actions, the repair possibility and so one. This analysis has to lead to a conclusion about the risk taking into account monitoring and maintenance. If the data sheet conclusion is not clear enough, then a more detailed report is launched. The technical document which is needed, is a formal detailed report which summarizes every theoretical knowledge and monitoring data: its objective is to propose a solution for ageing management: this solution can include more inspections or specific research development, or additional maintenance. After a first stage on the 900 MWe units, only two generic ageing management detailed reports have been needed for the civil engineering part: one about reactor building containment, and one about other structures which focuses on concrete inflating reactions. The second stage consists on deriving this generic analysis (ageing mechanism and detailed reports) to every plant where a complete ageing report is required (one report for all equipments and structures of the plant, but specific for each reactor). This ageing management is a continuous process because the 57 generic data sheets set is updated every year and the detailed generic reports every five years. After this 40 year lifetime extension, EDF is preparing a 60 years lifetime action plan which includes R&D actions, specific industrial studies and also monitoring improvements.
Influence of Stress Corrosion Crack Morphology on Ultrasonic Examination Performances
NASA Astrophysics Data System (ADS)
Dupond, O.; Duwig, V.; Fouquet, T.
2009-03-01
Stress Corrosion Cracking represents a potential damage for several components in PWR. For this reason, NDE of stress corrosion cracks corresponds to an important stake for Electricité de France (EDF) both for availability and for safety of plants. This paper is dedicated to the ultrasonic examination of SCC crack defects. The study mixes an experimental approach conducted on artificial flaws—meant to represent the characteristic morphologic features often encountered on SCC cracks—and a 2D finite element modelling with the code ATHENA 2D developed by EDF. Results indicate that ATHENA reproduces correctly the interaction of the beam on the complex defect. Indeed specific ultrasonic responses resulting from the defect morphology have been observed experimentally and reproduced with the modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Won; Kang, Jung-Woo; Lee, Sun-Mee, E-mail: sunmee@skku.edu
This study was designed to investigate the role of heme oxygenase-1 (HO-1) in hepatic drug metabolizing dysfunction after ischemia/reperfusion (IR) in alcoholic fatty liver (AFL). Rats were fed a Lieber–DeCarli diet for five weeks to allow for development of AFL and were then subjected to 90 min of hepatic ischemia and 5 h of reperfusion. Rats were pretreated with hemin (HO-1 inducer) or ZnPP (HO-1 inhibitor) for 16 h and 3 h before hepatic ischemia. After hepatic IR, ethanol diet (ED)-fed rats had higher serum aminotransferase activities and more severe hepatic necrosis compared to the control diet (CD)-fed rats. Thesemore » changes were attenuated by hemin and exacerbated by ZnPP. The activity and gene expression of HO-1 and its transcription factor (Nrf2) level increased significantly after 5 h of reperfusion in CD-fed rats but not in ED-fed rats. After reperfusion, cytochrome P450 (CYP) 1A1, 1A2, and 2B1 activities were reduced to levels lower than those observed in sham group, whereas CYP2E1 activity increased. The decrease in CYP2B1 activity and the increase in CYP2E1 activity were augmented after hepatic IR in ED-fed animals. These changes were significantly attenuated by hemin but aggravated by ZnPP. Finally, CHOP expression and PERK phosphorylation, microsomal lipid peroxidation, and levels of proinflammatory mediators increased in ED-fed rats compared to CD-fed rats after reperfusion. These increases were attenuated by hemin. Our results suggest that AFL exacerbates hepatic drug metabolizing dysfunction during hepatic IR via endoplasmic reticulum stress and lipid peroxidation and this is associated with impaired HO-1 induction. - Highlights: • Endogenous HO-1 is generated in insufficient quantities in steatotic ischemic injury. • Impaired HO-1 induction leads to excessive ER stress response and lipid peroxidation. • Alcoholic steatosis exacerbates IR-induced hepatic drug-metabolizing dysfunction. • HO-1 induction is required for appropriate medication in patients with steatosis.« less
Association of maternal characteristics and behaviours with 4-year-old children's dietary patterns.
Durão, Catarina; Severo, Milton; Oliveira, Andreia; Moreira, Pedro; Guerra, António; Barros, Henrique; Lopes, Carla
2017-04-01
This study examined the association of family and maternal characteristics with preschool children's dietary patterns. Trained interviewers evaluated subsample 3422 mothers and children enrolled in the population-based birth cohort Generation XXI (Porto, Portugal, 2005-2006). Maternal characteristics and behaviours (exercise, smoking habits, diet and child-feeding practices) and family characteristics were evaluated. Maternal diet was classified by a dietary score, and children's dietary patterns were identified by latent class analysis. Odds ratios (OR) and confidence intervals (95% CI) were estimated by multinomial regression models. The analysis was based on a framework with four conceptual levels: maternal socio-economic position (SEP) at 12 years, maternal socio-economic and demographic characteristics at child's delivery, family characteristics and maternal behaviours at child's 4 years. Three dietary patterns were identified in children: high in energy-dense foods (EDF); low in foods typically consumed at main meals and intermediate in snacks (Snacking); higher in healthy foods; and lower in unhealthy ones (Healthier, reference). Lower maternal SEP had an overall effect on children's diet (low vs. high SEP; EDF, OR = 1.76, 95% CI: 1.42-2.18; Snacking, OR = 1.73, 95% CI: 1.27-2.35), while maternal education was directly associated with it (≤9 vs. >12 schooling years, EDF, OR = 2.19, 95% CI: 1.70-2.81; Snacking, OR = 2.22, 95% CI: 1.82-3.55). Children whose mothers had worse dietary score were significantly more likely to follow unhealthier patterns (first vs. fourth quartile; EDF, OR = 9.94, 95% CI: 7.35-13.44, P-trend < 0.001; Snacking, OR = 4.21, 95% CI: 2.94-6.05, P-trend < 0.001). Maternal diet was the key factor associated with children's diet, above and beyond socio-economic and demographic characteristics, accounting for one-third of the determination coefficient of the fully adjusted model. At preschool age, interventions should give a particular focus on maternal diet and low SEP groups. © 2016 John Wiley & Sons.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis.
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-12-18
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-01-01
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois. PMID:26716089
Current and anticipated uses of the CATHARE code at EDF and FRAMATOME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandrille, J.L.; Vacher, J.L.; Poizat, F.
1997-07-01
This paper presents current industrial applications of the CATHARE code in the fields of Safety Studies and Simulators where the code is intensively used by FRAMATOME, EDF and CEA, the development partners of CATHARE. Future needs in these fields are also recapitulated.
Developing an ecosystem diversity framework for landscape assessment
Robert D. Pfister; Michael D. Sweet
2000-01-01
Ecological diversity is being addressed in various research and management efforts, but a common foundation is not explicitly defined or displayed. A formal Ecosystem Diversity Framework (EDF) would improve landscape analysis and communication across multiple scales. The EDF represents a multiple-component vegetation classification system with inherent flexibility for...
77 FR 31842 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
...-5152. Comments Due: 5 p.m. ET 6/11/12. Docket Numbers: ER12-1825-000. Applicants: EDF Industrial Power Services (CA), LLC. Description: EDF Industrial Power Services (CA), LLC submits tariff filing per 35.12... following electric securities filings: Docket Numbers: ES12-13-000. Applicants: AEP Texas North Company...
75 FR 57911 - Application to Export Electric Energy; EDF Trading North America, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... the proposed action will not adversely impact on the reliability of the U.S. electric power supply... from electric utilities, Federal power marketing agencies and other entities within the United States... DEPARTMENT OF ENERGY [OE Docket No. EA-373] Application to Export Electric Energy; EDF Trading...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
... Industrial Power Services (NY), LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...-referenced proceeding of EDF Industrial Power Services (NY), LLC's application for market-based rate... authorization, under 18 CFR part 34, of future issuances of securities and assumptions of liability. Any person...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... Industrial Power Services (CA), LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes... proceeding of EDF Industrial Power Services (CA), LLC's application for market-based rate [[Page 33211... authorization, under 18 CFR part 34, of future issuances of securities and assumptions of liability. Any person...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... Industrial Power Services (OH), LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes... proceeding, of EDF Industrial Power Services (OH), LLC's application for market- based rate authority, with... authorization, under 18 CFR Part 34, of future issuances of securities and assumptions of liability. Any person...
Characterization and Modeling of Dual Stage Quadruple Pass Configurations
NASA Astrophysics Data System (ADS)
Sellami, M.; Sellami, A.; Berrah, S.
In this paper, the proposed system achieves a gain of 62dBs. It employs a dual-stage (DS) to enhance the amplification and a tunable band-pass filter (TBF) to filter out the backward amplified spontaneous emission (ASE) that degrades the signal amplification at the input end of the EDFA. The technique there by reduces the effect of ASE self-saturation [1]. This configuration is also useful in reducing the sensitivity of the EDFA to extra strenuous reflections caused by imperfections of the splices and other optical components [2]. as well as improving noise figure and gain. The experimental work will build up by using the active component Silica based EDF (Si-EDF) in Dual Stage Quadruple Pass (DSQP) configuration. By using Tunable Band pass Filter (TBF) in DSQP between the port 1 and port 2 of circulators (CRT2, CRT3) to filter out the unwanted ASE.
EAACI/GA(2)LEN/EDF/WAO guideline: definition, classification and diagnosis of urticaria.
Zuberbier, T; Asero, R; Bindslev-Jensen, C; Walter Canonica, G; Church, M K; Giménez-Arnau, A; Grattan, C E H; Kapp, A; Merk, H F; Rogala, B; Saini, S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Schünemann, H; Staubach, P; Vena, G A; Wedi, B; Maurer, M
2009-10-01
This guideline, together with its sister guideline on the management of urticaria [Zuberbier T, Asero R, Bindslev-Jensen C, Canonica GW, Church MK, Giménez-Arnau AM et al. EAACI/GA(2)LEN/EDF/WAO Guideline: Management of urticaria. Allergy, 2009; 64:1427-1443] is the result of a consensus reached during a panel discussion at the 3rd International Consensus Meeting on Urticaria, Urticaria 2008, a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-funded network of excellence, the Global Allergy and Asthma European Network (GA(2)LEN), the European Dermatology Forum (EDF) and the World Allergy Organization (WAO). Urticaria is a frequent disease. The life-time prevalence for any subtype of urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria do not only cause a decrease in quality of life, but also affect performance at work and school and, as such, are members of the group of severe allergic diseases. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors, and pathomechanisms. In addition, it outlines evidence-based diagnostic approaches for different subtypes of urticaria. The correct management of urticaria, which is of paramount importance for patients, is very complex and is consequently covered in a separate guideline developed during the same consensus meeting. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS).
Li, Yanpeng; Hu, Xiaohua; Lin, Hongfei; Yang, Zhihao
2011-01-01
Feature representation is essential to machine learning and text mining. In this paper, we present a feature coupling generalization (FCG) framework for generating new features from unlabeled data. It selects two special types of features, i.e., example-distinguishing features (EDFs) and class-distinguishing features (CDFs) from original feature set, and then generalizes EDFs into higher-level features based on their coupling degrees with CDFs in unlabeled data. The advantage is: EDFs with extreme sparsity in labeled data can be enriched by their co-occurrences with CDFs in unlabeled data so that the performance of these low-frequency features can be greatly boosted and new information from unlabeled can be incorporated. We apply this approach to three tasks in biomedical literature mining: gene named entity recognition (NER), protein-protein interaction extraction (PPIE), and text classification (TC) for gene ontology (GO) annotation. New features are generated from over 20 GB unlabeled PubMed abstracts. The experimental results on BioCreative 2, AIMED corpus, and TREC 2005 Genomics Track show that 1) FCG can utilize well the sparse features ignored by supervised learning. 2) It improves the performance of supervised baselines by 7.8 percent, 5.0 percent, and 5.8 percent, respectively, in the tree tasks. 3) Our methods achieve 89.1, 64.5 F-score, and 60.1 normalized utility on the three benchmark data sets.
Non preemptive soft real time scheduler: High deadline meeting rate on overload
NASA Astrophysics Data System (ADS)
Khalib, Zahereel Ishwar Abdul; Ahmad, R. Badlishah; El-Shaikh, Mohamed
2015-05-01
While preemptive scheduling has gain more attention among researchers, current work in non preemptive scheduling had shown promising result in soft real time jobs scheduling. In this paper we present a non preemptive scheduling algorithm meant for soft real time applications, which is capable of producing better performance during overload while maintaining excellent performance during normal load. The approach taken by this algorithm has shown more promising results compared to other algorithms including its immediate predecessor. We will present the analysis made prior to inception of the algorithm as well as simulation results comparing our algorithm named gutEDF with EDF and gEDF. We are convinced that grouping jobs utilizing pure dynamic parameters would produce better performance.
Amplification and noise properties of an erbium-doped multicore fiber amplifier.
Abedin, K S; Taunay, T F; Fishteyn, M; Yan, M F; Zhu, B; Fini, J M; Monberg, E M; Dimarcello, F V; Wisk, P W
2011-08-15
A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Francisco, E.; Pendás, A. Martín; Blanco, M. A.
2008-04-01
Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer: 2.80 GHz Intel Pentium IV CPU Operating system: GNU/Linux RAM: 55 992 KB Word size: 32 bits Classification: 2.7 External routines: Netlib Nature of problem: Let us have an N-electron molecule and define an exhaustive partition of the physical space into m three-dimensional regions. The edf program computes the probabilities P(n,n,…,n)≡P({n}) of all possible allocations of n electrons to Ω, n electrons to Ω,…, and n electrons to Ω,{n} being integers. Solution method: Let us assume that the N-electron molecular wave function, Ψ(1,N), is a linear combination of M Slater determinants, Ψ(1,N)=∑rMCψ(1,N). Calling SΩrs the overlap matrix over the 3D region Ω between the (real) molecular spin-orbitals (MSO) in ψ(χ1r,…χNr) and the MSOs in ψ,(χ1s,…,χNs), edf finds all the P({n})'s by solving the linear system ∑{n}{∏kmtkn}P({n})=∑r,sMCCdet[∑kmtSΩrs], where t=1 and t,…,t are arbitrary real numbers. Restrictions: The number of {n} sets grows very fast with m and N, so that the dimension of the linear system (1) soon becomes very large. Moreover, the computer time required to obtain the determinants in the second member of Eq. (1) scales quadratically with M. These two facts limit the applicability of the method to relatively small molecules. Unusual features: Most of the real variables are of precision real*16. Running time: 0.030, 2.010, and 0.620 seconds for Test examples 1, 2, and 3, respectively. References: [1] A. Martín Pendás, E. Francisco, M.A. Blanco, Faraday Discuss. 135 (2007) 423-438. [2] A. Martín Pendás, E. Francisco, M.A. Blanco, J. Phys. Chem. A 111 (2007) 1084-1090. [3] A. Martín Pendás, E. Francisco, M.A. Blanco, Phys. Chem. Chem. Phys. 9 (2007) 1087-1092. [4] E. Francisco, A. Martín Pendás, M.A. Blanco, J. Chem. Phys. 126 (2007) 094102. [5] A. Martín Pendás, E. Francisco, M.A. Blanco, C. Gatti, Chemistry: A European Journal 113 (2007) 9362-9371.
Random fiber lasers based on artificially controlled backscattering fibers
NASA Astrophysics Data System (ADS)
Chen, Daru; Wang, Xiaoliang; She, Lijuan; Qiang, Zexuan; Yu, Zhangwei
2017-10-01
The random fiber laser (RFL) which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previous RFLs are based on distributed feedback of Rayleigh scattering amplified through stimulated Raman/Brillouin scattering effect in single mode fibers, which required long-distance (tens of kilometers) single mode fibers and high threshold up to watt-level due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open cavity RFL based on a segment of a artificially controlled backscattering SMF(ACB-SMF) with a length of 210m, 310m or 390m. A fiber Bragg grating with the central wavelength of 1530nm and a segment of ACB-SMF forms the half-open cavity. The proposed RFL achieves the threshold of 25mW, 30mW and 30mW, respectively. Random lasing at the wavelength of 1530nm and the extinction ratio of 50dB is achieved when a segment of 5m EDF is pumped by a 980nm LD in the RFL. Another half-open cavity RFL based on a segment of a artificially controlled backscattering EDF(ACBS-EDF) is also demonstrated without an ACB-SMF. The 3m ACB-EDF is fabricated by using the femtosecond laser with pulse energy of 0.34mJ which introduces about 50 reflectors in the EDF. Random lasing at the wavelength of 1530nm is achieved with the output power of 7.5mW and the efficiency of 1.88%. Two novel RFLs with much short cavities have been achieved with low threshold and high efficiency.
Cascade Model of Ionization Multiplication of Electrons in Glow Discharge Plasma
NASA Astrophysics Data System (ADS)
Romanenko, V. A.; Solodky, S. A.; Kudryavtsev, A. A.; Suleymanov, I. A.
1996-10-01
For determination of EDF in non-uniform fields a Monte-Carlo simulation(Tran Ngoc An et al., J.Phys.D: Appl. Phys. 10, 2317 (1977))^,(J.P. Boeuf et al., Phys.D: Appl.Phys. 15, 2169 (1982)) is applied. As alternative multi-beam cascade model(H.B. Valentini, Contrib.Plasma Phys. 27, 331 (1987)) is offered. Our model eliminates defects of that model and enables to determine EDF of low pressure plasma in non-uniform fields. A cascade model (with EDF dividing in monoenergetic electron groups) for arbitrary electric potential profile was used. Modeling was carried out for electron forward scattering only, constant electron mean free path; ionization was considered only. The equation system was solved for the region with kinetic energies more than ionization energy. The boundary conditions (on ionization energy curve) take into account electron transitions from higher-lying level in the less than ionization energy region and secondary electron production. The problem solution in analytical functions was obtained. The insertion of additional processes does not make significant difficulties. EDF and electrokinetical parameters in helium from numerical calculations are well agreed with above-mentioned authors. Work was carried out under RFFI (project N 96-02-18417) support.
Ribbon networks for modeling navigable paths of autonomous agents in virtual environments.
Willemsen, Peter; Kearney, Joseph K; Wang, Hongling
2006-01-01
This paper presents the Environment Description Framework (EDF) for modeling complex networks of intersecting roads and pathways in virtual environments. EDF represents information about the layout of streets and sidewalks, the rules that govern behavior on roads and walkways, and the locations of agents with respect to navigable structures. The framework serves as the substrate on which behavior programs for autonomous vehicles and pedestrians are built. Pathways are modeled as ribbons in space. The ribbon structure provides a natural coordinate frame for defining the local geometry of navigable surfaces. EDF includes a powerful runtime interface supported by robust and efficient code for locating objects on the ribbon network, for mapping between Cartesian and ribbon coordinates, and for determining behavioral constraints imposed by the environment.
Image Analysis of DNA Fiber and Nucleus in Plants.
Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi
2016-01-01
Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.
NASA Astrophysics Data System (ADS)
Hullo, J.-F.; Thibault, G.; Boucheny, C.
2015-02-01
In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".
Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.
Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K
2013-02-11
In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.
Suppression of thermal frequency noise in erbium-doped fiber random lasers.
Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang
2014-02-15
Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6 Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.
Murphy, Emily C-S; Carson, Linda; Neal, William; Baylis, Christine; Donley, David; Yeater, Rachel
2009-01-01
To determine whether an exercise intervention using an active video game (Dance Dance Revolution [DDR]) is effective in improving endothelial dysfunction (EDF) and other risk factors in overweight children. Thirty-five children (Body mass index > or = 85(th) percentile, mean age 10.21+/-1.67 years, 17 females) with EDF were assessed for flow-mediated dilation (FMD), lipids, insulin, glucose, NO(2)+NO(3), asymmetric dimethylarginine, symmetric dimethylarginine, l-arginine, height, weight, aerobic fitness, and blood pressure. In a subsample, tumor necrosis factor alpha, interleukin-6, C-reactive protein, and adiponectin were also assessed. Subjects were randomly assigned to 12-weeks of aerobic exercise (EX) using DDR or to a non-exercising delayed-treatment control group (DTC). EX had significant improvements in FMD ( 5.56+/-5.04% compared with 0.263+/-4.54%, p=0.008), exercise time on the graded exercise test (53.59+/-91.54 compared with -12.83+/-68.10 seconds, p=0.025), mean arterial pressure (MAP) (-5.62+/-7.03 compared with -1.44+/-2.16 mmHg, p=0.05), weight (0.91+/-1.53 compared with 2.43+/-1.80 kg, p=0.017) and peak VO(2) (2.38+/-3.91 compared with -1.23+/-3.18 mg/kg/min, p=0.005) compared with the DTC. Thirteen EX subjects achieved normal EDF while ten did not. These groups differed at baseline with regard to total cholesterol (TC) and low-density lipoprotein (LDL). Twelve weeks of DDR-use improved FMD, aerobic fitness, and MAP in overweight children. Improvements occurred without changes in inflammatory markers or nitric oxide production. The results document the need to explore relationships between obesity, endothelial function, inflammation, lipids, exercise intensity, and gender in a larger sample of overweight children.
The Nuclear Energy Density Functional Formalism
NASA Astrophysics Data System (ADS)
Duguet, T.
The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-109-000] Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development, Inc.; Notice of Petition for Declaratory...
MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisikalo, D. V.; Shematovich, V. I.; Gérard, J.-C.
2015-01-01
Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({supmore » 1}D) and O({sup 1}S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.« less
Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...
2015-06-15
Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less
NASA Astrophysics Data System (ADS)
Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.
2017-10-01
A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ → ,γ‧) experiment at the HI γ → S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB (E 1) ↑ and ΣB (M 1) ↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9 ± 0.2 e2fm2 and 8.3 ± 2.0 μN2, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of αD = 122 ± 10 mb /MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of Rskin206 = 0.12- 0.19 fm and a corresponding range for the slope of the symmetry energy of L = 48- 60 MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb (n , γ)206Pb at 30 keV to be σ = 130 ± 25 mb. The astrophysical impact of this measurement-on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter-is discussed.
Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; ...
2017-08-02
A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ→,γ') experiment at the HIγ→S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB(E1)↑ and ΣB(M1)↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9±0.2e 2fm 2 and 8.3±2.0μmore » $$2\\atop{N}$$, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of α D=122±10mb/MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of R$$206\\atop{skin}$$=0.12–0.19fm and a corresponding range for the slope of the symmetry energy of L=48–60MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb(n,γ)Pb 206 at 30 keV to be σ=130±25mb. In conclusion, the astrophysical impact of this measurement—on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter—is discussed.« less
Eddy current NDE performance demonstrations using simulation tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurice, L.; Costan, V.; Guillot, E.
2013-01-25
To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.
Moneuse, M
2001-01-01
In France, RF and microwave techniques are now mature. They are commercialized by industries having now reliable references in different fields of manufacturing industry. The present situation is the result of many studies and collaborations where universities and public technical centers were strongly involved during the last three decades. During this period, the "Club Rayonnements" sponsored by EDF has been a real "melting pot" for people coming from university, industry and technical centers.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai
2017-12-01
In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.
LLCEDATA and LLCECALC for Windows version 1.0, Volume 1: User`s manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, J.G.
LLCEDATA and LLCECALC for Windows are user-friendly computer software programs that work together to determine the proper waste designation, handling, and disposition requirements for Long Length Contaminated Equipment (LLCE). LLCEDATA reads from a variety of data bases to produce an equipment data file (EDF) that represents a snapshot of both the LLCE and the tank it originates from. LLCECALC reads the EDF and a gamma assay (AV2) file that is produced by the Flexible Receiver Gamma Energy Analysis System. LLCECALC performs corrections to the AV2 file as it is being read and characterizes the LLCE. Both programs produce a varietymore » of reports, including a characterization report and a status report. The status report documents each action taken by the user, LLCEDATA, and LLCECALC. Documentation for LLCEDATA and LLCECALC for Windows is available in three volumes. Volume 1 is a user`s manual, which is intended as a quick reference for both LLCEDATA and LLCECALC. Volume 2 is a technical manual, and Volume 3 is a software verification and validation document.« less
Isospin-symmetry breaking in masses of N ≃ Z nuclei
NASA Astrophysics Data System (ADS)
Bączyk, P.; Dobaczewski, J.; Konieczka, M.; Satuła, W.; Nakatsukasa, T.; Sato, K.
2018-03-01
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N = Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T = 1/2 doublets and T = 1 triplets, and TDEs for the T = 1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the differences in the NN scattering lengths, ann, app, and anp. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.
On electron bunching and stratification of glow discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golubovskii, Yuri B.; Kolobov, Vladimir I.; Nekuchaev, Vladimir O.
2013-10-15
Plasma stratification and excitation of ionization waves is one of the fundamental problems in gas discharge physics. Significant progress in this field is associated with the name of Lev Tsendin. He advocated the need for the kinetic approach to this problem contrary to the traditional hydrodynamic approach, introduced the idea of electron bunching in spatially periodic electric fields, and developed a theory of kinetic resonances for analysis of moving striations in rare gases. The present paper shows how Tsendin's ideas have been further developed and applied for understanding the nature of the well-known S-, P-, and R-striations observed in glowmore » discharges of inert gases at low pressures and currents. We review numerical solutions of a Fokker-Planck kinetic equation in spatially periodic electric fields under the effects of elastic and inelastic collisions of electrons with atoms. We illustrate the formation of kinetic resonances at specific field periods for different shapes of injected Electron Distribution Functions (EDF). Computer simulations illustrate how self-organization of the EDFs occurs under nonlocal conditions and how Gaussian-like peaks moving along resonance trajectories are formed in a certain range of discharge conditions. The calculated EDFs agree well with the experimentally measured EDFs for the S, P, and R striations in noble gases. We discuss how kinetic resonances affect dispersion characteristics of moving striations and mention some non-linear effects associated with glow discharge stratification. We propose further studies of stratification phenomena combining physical kinetics and non-linear physics.« less
Golla, K; Selokar, N L; Saini, M; Chauhan, M S; Manik, R S; Palta, P; Singla, S K
2012-10-01
Somatic cells in milk are a potential source of nuclei for nuclear transfer to produce genetically identical animals; this is especially important in animals that are susceptible to risks of bacterial infection on biopsy collection. In this study, a minimum of 10 milk samples were collected from each of the three buffaloes representing Murrah breed. All the samples were processed immediately and cell colonies were obtained. Cell colonies from one buffalo (MU-442) survived beyond 10 passages and were evaluated by fluorescence microscopy and used in nuclear transfer experiments. In culture, these cells expressed vimentin, indicating they were of fibroblast origin similar to ear cells. We compared the effectiveness of cloning using those milk-derived fibroblast (MDF) cells and fibroblast cells derived from the ear derived fibroblast (EDF). Fusion and cleavage rates of MDF-NT and EDF-NT embryos were found to be similar (92.43 ± 1.28% vs 94.98 ± 1.24%, and 80.27 ± 1.75% vs 84.56 ± 3.73%, respectively; p > 0.01); however, development to blastocyst stage and total cell number was higher for EDF-NT embryos (50.24 ± 2.54%, 227.14 ± 13.04, respectively, p < 0.01), than for MDF-NT embryos (16.44 ± 0.75%, 170.57 ± 4.50 respectively). We conclude that somatic cells from milk can be cultured effectively and used as nucleus donor to produce cloned blastocyst-stage embryos. © 2012 Blackwell Verlag GmbH.
Fast and slow light property improvement in erbium-doped amplifier
NASA Astrophysics Data System (ADS)
Peng, P. C.; Wu, F. K.; Kao, W. C.; Chen, J.; Lin, C. T.; Chi, S.
2013-01-01
This work experimentally demonstrates improvement of the fast light property in erbium-doped amplifiers at room temperature. The difference between the signal power and the pump power associated with bending loss is used to control the signal power at the different positions of the erbium-doped fiber (EDF) to improve the fast light property. Periodic bending of the EDF increases the time advance of the probe signal by over 288%. Additionally, this concept also could improve the fast light property using coherent population oscillations in semiconductor optical amplifiers.
Daschewski, M; Kreutzbruck, M; Prager, J
2015-12-01
In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can be applied for design and optimization of thermo-acoustic airborne ultrasound emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
Goodness-of-Fit Tests for Generalized Normal Distribution for Use in Hydrological Frequency Analysis
NASA Astrophysics Data System (ADS)
Das, Samiran
2018-04-01
The use of three-parameter generalized normal (GNO) as a hydrological frequency distribution is well recognized, but its application is limited due to unavailability of popular goodness-of-fit (GOF) test statistics. This study develops popular empirical distribution function (EDF)-based test statistics to investigate the goodness-of-fit of the GNO distribution. The focus is on the case most relevant to the hydrologist, namely, that in which the parameter values are unidentified and estimated from a sample using the method of L-moments. The widely used EDF tests such as Kolmogorov-Smirnov, Cramer von Mises, and Anderson-Darling (AD) are considered in this study. A modified version of AD, namely, the Modified Anderson-Darling (MAD) test, is also considered and its performance is assessed against other EDF tests using a power study that incorporates six specific Wakeby distributions (WA-1, WA-2, WA-3, WA-4, WA-5, and WA-6) as the alternative distributions. The critical values of the proposed test statistics are approximated using Monte Carlo techniques and are summarized in chart and regression equation form to show the dependence of shape parameter and sample size. The performance results obtained from the power study suggest that the AD and a variant of the MAD (MAD-L) are the most powerful tests. Finally, the study performs case studies involving annual maximum flow data of selected gauged sites from Irish and US catchments to show the application of the derived critical values and recommends further assessments to be carried out on flow data sets of rivers with various hydrological regimes.
Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z
A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)
Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Cormis, F.
1991-01-01
The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.
Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.
2010-07-07
Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less
NASA Astrophysics Data System (ADS)
Greiner, Nathan
Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small albeit not negligible for UOX-type and MOX-type assemblies. The specific behavior of gadolinium-stuffed fuel pins in an UO2Gd2O 3-type assembly is highlighted.
Correlative Light-Electron Fractography of Interlaminar Fracture in a Carbon-Epoxy Composite.
Hein, Luis Rogerio de O; Campos, Kamila A de
2015-12-01
This work evaluates the use of light microscopes (LMs) as a tool for interlaminar fracture of polymer composite investigation with the aid of correlative fractography. Correlative fractography consists of an association of the extended depth of focus (EDF) method, based on reflected LM, with scanning electron microscopy (SEM) to evaluate interlaminar fractures. The use of these combined techniques is exemplified here for the mode I fracture of carbon-epoxy plain-weave reinforced composite. The EDF-LM is a digital image-processing method that consists of the extraction of in-focus pixels for each x-y coordinate in an image from a stack of Z-ordered digital pictures from an LM, resulting in a fully focused picture and a height elevation map for each stack. SEM is the most used tool for the identification of fracture mechanisms in a qualitative approach, with the combined advantages of a large focus depth and fine lateral resolution. However, LMs, with EDF software, may bypass the restriction on focus depth and present enough lateral resolution at low magnification. Finally, correlative fractography can provide the general comprehension of fracture processes, with the benefits of the association of different resolution scales and contrast modes.
Francisco, E; Martín Pendás, A; Blanco, M A
2009-09-28
We show in this article how for single-determinant wave functions the one-electron functions derived from the diagonalization of the Fermi hole, averaged over an arbitrary domain Omega of real space, and expressed in terms of the occupied canonical orbitals, describe coarse-grained statistically independent electrons. With these domain-averaged Fermi hole (DAFH) orbitals, the full electron number distribution function (EDF) is given by a simple product of one-electron events. This useful property follows from the simultaneous orthogonality of the DAFH orbitals in Omega, Omega(')=R(3)-Omega, and R(3). We also show how the interfragment (shared electron) delocalization index, delta(Omega,Omega(')), transforms into a sum of one-electron DAFH contributions. Description of chemical bonding in terms of DAFH orbitals provides a vivid picture relating bonding and delocalization in real space. DAFH and EDF analyses are performed on several test systems to illustrate the close relationship between both concepts. Finally, these analyses clearly prove how DAFH orbitals well localized in Omega or Omega(') can be simply ignored in computing the EDFs and/or delta(Omega,Omega(')), and thus do not contribute to the chemical bonding between the two fragments.
López-Barrón, Rita Gabriela; Jiménez-Cruz, Arturo; Bacardí-Gascón, Montserrat
2015-05-01
The increasing overweight (OW) and obesity (OB) prevalence in Mexican children warrant the assessment of the environmental risk factors. To assess whether there is an association between food availability in children's environments and their food consumption with BMI z-score and waist circumference (WC). Six hundred and eighty four children, 264 parents, 22 teachers and cafeteria staff in the schools and street vendors participated in the study. Weight, height, and WC of 5(th) grade children were assessed. Food frequency, physical activity (PA) and eating habits questionnaires were applied to parents, children and teachers. A food inventory questionnaire was applied to parents, cafeteria staff in the schools, street vendors and stores near the schools. The children's mean age was 10.5. Twenty eight per cent of the children were overweight, 26% obese and 25% had abdominal obesity. A positive correlation was found between energy-dense foods (EDF), fruit and vegetable availability at home and their weekly consumption. Also a correlation between consumption of soft drinks and other EDF was found. The largest contributors to food consumption were the availability at home and at school (R2 = 0.11, p = 0.0001). Children's TV viewing was positively correlated with parents TV viewing time. For each hour of increase (from cero to seven) in daily TV viewing children were more likely to be overweight or obese (OR=1.22 95% CI 1.02-1.45, p=0.026). EDF, fruit and vegetable availability in and near home and school along with hours of TV viewing were positively associated with obesity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen
2010-05-01
This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burchell, Timothy D
2014-07-01
The experimental results obtained here will assist in the development and validation of future models of irradiation induced creep of graphite by providing the following data: Inert creep stain data from low to lifetime AGR fluence Inert creep-property data (especially CTE) from low to lifetime AGR fluence Effect of oxidation on creep modulus (by indirect comparison with experiment 1 and direct comparison with experiment 3 NB. Experiment 1 and 3 are not covered here) Data to develop a mechanistic understanding, including oAppropriate creep modulus (including pinning and high dose effects on structure) oInvestigation of CTE-creep strain behavior under inert conditionsmore » oInformation on the effect of applied stress/creep strain on crystallite orientation (requires XRD) oEffect of creep strain on micro-porosity (requires tomography & microscopy) This document describes the experimental work planned to meet the requirements of project technical specification [1] and EDF Energy requests for additional Pre-IE work. The PIE work is described in detail in this revision (Section 8 and 9).« less
EAACI/GA(2)LEN/EDF/WAO guideline: management of urticaria.
Zuberbier, T; Asero, R; Bindslev-Jensen, C; Walter Canonica, G; Church, M K; Giménez-Arnau, A M; Grattan, C E H; Kapp, A; Maurer, M; Merk, H F; Rogala, B; Saini, S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Schünemann, H; Staubach, P; Vena, G A; Wedi, B
2009-10-01
This guideline, together with its sister guideline on the classification of urticaria (Zuberbier T, Asero R, Bindslev-Jensen C, Canonica GW, Church MK, Giménez-Arnau AM et al. EAACI/GA(2)LEN/EDF/WAO Guideline: definition, classification and diagnosis of urticaria. Allergy 2009;64: 1417-1426), is the result of a consensus reached during a panel discussion at the Third International Consensus Meeting on Urticaria, Urticaria 2008, a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-funded network of excellence, the Global Allergy and Asthma European Network (GA(2)LEN), the European Dermatology Forum (EDF) and the World Allergy Organization (WAO). As members of the panel, the authors had prepared their suggestions regarding management of urticaria before the meeting. The draft of the guideline took into account all available evidence in the literature (including Medline and Embase searches and hand searches of abstracts at international allergy congresses in 2004-2008) and was based on the existing consensus reports of the first and the second symposia in 2000 and 2004. These suggestions were then discussed in detail among the panel members and with the over 200 international specialists of the meeting to achieve a consensus using a simple voting system where appropriate. Urticaria has a profound impact on the quality of life and effective treatment is, therefore, required. The recommended first line treatment is new generation, nonsedating H(1)-antihistamines. If standard dosing is not effective, increasing the dosage up to four-fold is recommended. For patients who do not respond to a four-fold increase in dosage of nonsedating H(1)-antihistamines, it is recommended that second-line therapies should be added to the antihistamine treatment. In the choice of second-line treatment, both their costs and risk/benefit profiles are most important to consider. Corticosteroids are not recommended for long-term treatment due to their unavoidable severe adverse effects. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS).
Treatment of Irradiated Graphite from French Bugey Reactor - 13424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Thomas; Poncet, Bernard
2013-07-01
Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. Themore » BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36 is released during roasting tests. (authors)« less
Noise removal in extended depth of field microscope images through nonlinear signal processing.
Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J
2013-04-01
Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng
2017-02-01
In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.
NASA Astrophysics Data System (ADS)
Hamburg, S.
2016-12-01
Environmental Defense Fund (EDF) launched a series of 16 research studies in 2012 to quantify methane emissions from the U.S. oil and gas (O&G) supply chain. In addition to EDF's funding from philanthropic individuals and foundations and in-kind contributions from universities, over forty O&G companies contributed money to the studies. For a subset of studies that required partner companies to provide site access to measure their equipment, five common principles were followed to assure that research was objective and scientifically rigorous. First, academic scientists were selected as principal investigators (PIs) to lead the studies. In line with EDF's policy of not accepting money from corporate partners, O&G companies provided funding directly to academic PIs. Technical work groups and steering committees consisting of EDF and O&G partner staff advised the PIs in the planning and implementation of research, but PIs had the final authority in scientific decisions including publication content. Second, scientific advisory panels of independent experts advised the PIs in the study design, data analysis, and interpretation. Third, studies employed multiple methodologies when possible, including top-down and bottom-up measurements. This helped overcome the limitations of individual approaches to decrease the uncertainty of emission estimates and minimize concerns with data being "cherry-picked". Fourth, studies were published in peer-reviewed journals to undergo an additional round of independent review. Fifth, transparency of data was paramount. Study data were released after publication, although operator and site names of individual data points were anonymized to ensure transparency and allow independent analysis. Following these principles allowed an environmental organization, O&G companies, and academic scientists to collaborate in scientific research while minimizing conflicts of interest. This approach can serve as a model for a scientifically rigorous process minimally influenced by study partners.
High energy Er-doped Q-switched fiber laser with WS2 saturable absorber
NASA Astrophysics Data System (ADS)
Li, Lu; Wang, Yonggang; Wang, Zhen Fu; Wang, Xi; Yang, Guowen
2018-01-01
The report presents a stable Q-switched Er-doped fiber (EDF) laser with WS2-based saturable absorber (SA). The SA is obtained by mixing WS2 dispersion with polyvinyl alcohol (PVA) into polystyrene cells, and then evaporating them to form WS2/PVA film. The modulation depth (MD) of WS2/PVA is 2% and the saturable intensity (Isat) is 27.2 MW/cm2. Employing the WS2/PVA film into EDF laser cavity, stable Q-switched operation is achieved with central wavelength of 1560 nm. The repetition rate can be tuned from 16.15 to 60.88 kHz with increasing pump power from 30 to 320 mW. The single pulse energy increases from 82 to 195 nJ and then decreases down to 156 nJ with increasing pump power from 30 to 320 mW. The pulse width shows the same variation trend. The shortest pulse duration of 2.396 μs and the maximum single pulse energy of 195 nJ are obtained at the pump power of 220 mW. To the best of our knowledge, 195 nJ is the largest single pulse energy at 1.55 μm region with TMDs as Q-switcher. The signal-to-noise ratio (SNR) is measured to be 60 dB at the pump power of 130 mW. The long term stability of working is good too. The experimental results evidently show that the WS2/PVA SA can work as a promising Q-switcher for high power fiber lasers.
Leak-Before-Break: Further developments in regulatory policies and supporting research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkowski, G.M.; Chao, K.-S.
1990-02-01
The fourth in a series of international Leak-Before-Break (LBB) Seminars supported in part by the US Nuclear Regulatory Commission was held at the National Central Library in Taipei, Taiwan on May 11 and 12, 1989. The seminar updated the international polices and supporting research on LBB. Attendees included representatives from regulatory agencies, electric utilities, nuclear power plant fabricators, research organizations, and academic institutions. Regulatory policy was the subject of presentations by Mr. G. Arlotto (US NRC, USA) Dr. B. Jarman (AECB, Canada), Dr.P. Milella (ENEA-DISP, Italy), Dr. C. Faidy (EDF/Septen, France ), and Dr. K. Takumi (NUPEC, Japan). A papermore » by Mr. K. Wichman and Mr. A. Lee of the US NRC Office of Nuclear Reactor Regulation is included as background material to these proceedings; it discusses the history and status of LBB applications in US nuclear power plants. In addition, several papers on the supporting research programs described regulatory policy or industry standards for flaw evaluations, e.g., the ASME Section XI code procedures. Supporting research programs were reviewed on the first and second day by several participants from Taiwan, US, Japan, Canada, Italy, and France. Each individual paper has been cataloged separately.« less
LLCEDATA and LLCECALC for Windows version 1.0, Volume 3: Software verification and validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, J.G.
1998-09-04
LLCEDATA and LLCECALC for Windows are user-friendly computer software programs that work together to determine the proper waste designation, handling, and disposition requirements for Long Length Contaminated Equipment (LLCE). LLCEDATA reads from a variety of data bases to produce an equipment data file(EDF) that represents a snapshot of both the LLCE and the tank from which it originates. LLCECALC reads the EDF and the gamma assay file (AV2) that is produced by the flexible Receiver Gamma Energy Analysis System. LLCECALC performs corrections to the AV2 file as it is being read and characterizes the LLCE. Both programs produce a varietymore » of reports, including a characterization report and a status report. The status report documents each action taken by the user, LLCEDATA, and LLCECALC. Documentation for LLCEDATA and LLCECALC for Windows is available in three volumes. Volume 1 is a user`s manual, which is intended as a quick reference for both LLCEDATA and LLCECALC. Volume 2 is a technical manual, which discusses system limitations and provides recommendations to the LLCE process. Volume 3 documents LLCEDATA and LLCECALC`s verification and validation. Two of the three installation test cases, from Volume 1, are independently confirmed. Data bases used in LLCEDATA are verified and referenced. Both phases of LLCECALC process gamma and characterization, are extensively tested to verify that the methodology and algorithms used are correct.« less
Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; ...
2015-07-29
In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ≤ Z ≤ 104 and 144 ≤ N ≤ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd–even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using themore » EDF modelling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabot, A.; Petit, A.; Taillebois, J.P.
1996-07-01
This paper summarizes the Electricite de France experience with insulation co-ordination of GIS. After a review of the insulation co-ordination practice mainly dealing with fast front overvoltage and the one minute AC test, some results of the on-site test procedure applied since 30 years are presented and related to the insulation co-ordination practice. The in-service return of experience dealing with dielectric failures is analyzed then the dielectric diagnostic techniques now available are briefly presented with their possibilities and limitations. According to this survey, the expectations of EDF from these diagnostic techniques as well as the new on-site test and on-linemore » monitoring tendencies at EDF are presented.« less
Density dependence of the nuclear energy-density functional
NASA Astrophysics Data System (ADS)
Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho
2018-01-01
Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic results, to which it has not been fitted. It also predicts a neutron-star mass-radius relation consistent with observations. The coefficients display naturalness. Conclusions: Having been already determined for homogeneous matter, a functional of the present form can be mapped onto extended Skyrme-type functionals in a straightforward manner, as we outline here, for applications to finite nuclei. At the same time, the statistical analysis can be extended to higher orders and for different microscopic (ab initio) calculations with sufficient pseudodata points and for polarized matter.
US Army Research Laboratory Directed Energy Internship Program 2014
2015-11-01
7 1400–1800 nm. However, when making EDFs, the solubility of Er in traditional silica ( SiO2 )-based glass is low and the ions that successfully...Thus, either half or all of the energy in a pair of excited ions could be wasted. In traditional SiO2 -based Er-doped glass (Er-SD), Er is co-doped...upconversion, Er-doped SiO2 NPs (Er-NP) are doped into the glass core of a fiber. This process is thought to create a cage of Al and O ions around each Er
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Scarlett R.; Leonard, Keith J.
The goal of the Mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) task in the LWRS Program is to conduct experimental research into understanding how multiple variables influence the crack initiation and crack growth in materials subjected to stress under corrosive conditions. This includes understanding the influences of alloy composition, radiation condition, water chemistry and metallurgical starting condition (i.e., previous cold work or heat treatments and the resulting microstructure) has on the behavior of materials. Testing involves crack initiation and growth testing on irradiated specimens of single-variable alloys in simulated Light Water Reactor (LWR) environments, tensile testing, hardness testing, microstructuralmore » and microchemical analysis, and detailed efforts to characterize localized deformation. Combined, these single-variable experiments will provide mechanistic understanding that can be used to identify key operational variables to mitigate or control IASCC, optimize inspection and maintenance schedules to the most susceptible materials/locations, and, in the long-term, design IASCC-resistant materials. In support of this research, efforts are currently underway to arrange shipment of “free” high fluence austenitic alloys available through Électricité de France (EDF) for post irradiation testing at the Oak Ridge National Laboratory (ORNL) and IASCC testing at the University of Michigan. These high fluence materials range in damage values from 45 to 125 displacements per atom (dpa). The samples identified for transport to the United States, which include nine, no-cost, 304, 308 and 316 tensile bars, were relocated from the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad, Ulyanovsk Oblast, Russia, and received at the Halden Reactor in Halden, Norway, on August 23, 2016. ORNL has been notified that a significant amount of work is required to prepare the samples for further shipment to Oak Ridge, Tennessee. The preliminary work for sample shipment between Halden and Oak Ridge includes fabrication of an inner cask sample container, decontamination and preparation of a Type A container, preparation of new activity calculations, all necessary paperwork, and handling. ORNL will continue to work to track progress of sample preparation and shipment status, and to work toward an agreement that covers material shipping costs between the Halden Reactor and the Oak Ridge National Laboratory.« less
Maternal child-feeding practices and dietary inadequacy of 4-year-old children.
Durão, Catarina; Andreozzi, Valeska; Oliveira, Andreia; Moreira, Pedro; Guerra, António; Barros, Henrique; Lopes, Carla
2015-09-01
This study aimed to evaluate the association between maternal perceived responsibility and child-feeding practices and dietary inadequacy of 4-year-old children. We studied 4122 mothers and children enrolled in the population-based birth cohort - Generation XXI (Porto, Portugal). Mothers self-completed the Child Feeding Questionnaire and a scale on covert and overt control, and answered to a food frequency questionnaire in face-to-face interviews. Using dietary guidelines for preschool children, adequacy intervals were defined: fruit and vegetables (F&V) 4-7 times/day; dairy 3-5 times/day; meat and eggs 5-10 times/week; fish 2-4 times/week. Inadequacy was considered as below or above these cut-points. For energy-dense micronutrient-poor foods and beverages (EDF), a tolerable limit was defined (<6 times/week). Associations between maternal perceived responsibility and child-feeding practices (restriction, monitoring, pressure to eat, overt and covert control) and children's diet were examined by logistic regression models. After adjustment for maternal BMI, education, and diet, and children's characteristics (sex, BMI z-scores), restriction, monitoring, overt and covert control were associated with 11-18% lower odds of F&V consumption below the interval defined as adequate. Overt control was also associated with 24% higher odds of their consumption above it. Higher perceived responsibility was associated with higher odds of children consuming F&V and dairy above recommendations. Pressure to eat was positively associated with consumption of dairy above the adequate interval. Except for pressure to eat, maternal practices were associated with 14-27% lower odds of inadequate consumption of EDF. In conclusion, children whose mothers had higher levels of covert control, monitoring, and restriction were less likely to consume F&V below recommendations and EDF above tolerable limits. Higher overt control and pressure to eat were associated, respectively, with higher possibility of children consuming F&V and dairy above recommendations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Executive Energy Leadership Academy | NREL
Management-Development, EDF Renewable Energy, Class of 2017 Executive Energy Leadership Academy Alumni Since Energy Leadership Academy. See the list of alumni sorted by program and year
Study of Selected Petroleum Refining Residuals
The document describes EPA's approach to conducting the industry study required by the Environmental Defense Fund (EDF)/EPA consent decree and characterizes the study residuals and how they are managed.
Nonextensive models for earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R.; Franca, G.S.; Vilar, C.S.
2006-02-15
We have revisited the fragment-asperity interaction model recently introduced by Sotolongo-Costa and Posadas [Phy. Rev. Lett. 92, 048501 (2004)] by considering a different definition for mean values in the context of Tsallis nonextensive statistics and introducing a scale between the earthquake energy and the size of fragment {epsilon}{proportional_to}r{sup 3}. The energy-distribution function (EDF) deduced in our approach is considerably different from the one obtained in the above reference. We have also tested the viability of this EDF with data from two different catalogs (in three different areas), namely, the NEIC and the Bulletin Seismic of the Revista Brasileira de Geofisica.more » Although both approaches provide very similar values for the nonextensive parameter q, other physical quantities, e.g., energy density, differ considerably by several orders of magnitude.« less
Descriptions of carbon isotopes within the energy density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly themore » blocking effect plays a significant role in the shell model configurations.« less
Microscopic derivation of IBM and structural evolution in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Kosuke
A Hamiltonian of the interacting boson model (IBM) is derived based on the mean-field calculations with nuclear energy density functionals (EDFs). The multi-nucleon dynamics of the surface deformation is simulated in terms of the boson degrees of freedom. The interaction strengths of the IBM Hamiltonian are determined by mapping the potential energy surfaces (PESs) of a given EDF with quadrupole degrees of freedom onto the corresponding PES of IBM. A fermion-to-boson mapping for a rotational nucleus is discussed in terms of the rotational response, which reflects a specific time-dependent feature. Ground-state correlation energy is evaluated as a signature of structuralmore » evolution. Some examples resulting from the present spectroscopic calculations are shown for neutron-rich Pt, Os and W isotopes including exotic ones.« less
Nonextensive models for earthquakes.
Silva, R; França, G S; Vilar, C S; Alcaniz, J S
2006-02-01
We have revisited the fragment-asperity interaction model recently introduced by Sotolongo-Costa and Posadas [Phy. Rev. Lett. 92, 048501 (2004)] by considering a different definition for mean values in the context of Tsallis nonextensive statistics and introducing a scale between the earthquake energy and the size of fragment epsilon proportional to r3. The energy-distribution function (EDF) deduced in our approach is considerably different from the one obtained in the above reference. We have also tested the viability of this EDF with data from two different catalogs (in three different areas), namely, the NEIC and the Bulletin Seismic of the Revista Brasileira de Geofísica. Although both approaches provide very similar values for the nonextensive parameter , other physical quantities, e.g., energy density, differ considerably by several orders of magnitude.
Getting ready for petaflop capacities and beyond: a utility perspective
NASA Astrophysics Data System (ADS)
Hamelin, J. F.; Berthou, J. Y.
2008-07-01
Why should EDF, the leading producer and marketer of electricity in Europe, start adding teraflops to its terawatt-hours and become involved in high-performance computing (HPC)? In this paper we answer this question through examples of major opportunities that HPC brings to our business today and, we hope well into the future of petaflop and exaflop computing. Five cases are presented dealing with nondestructive testing, nuclear fuel management, mechanical behavior of nuclear fuel assemblies, water management, and energy management. For each case we show the benefits brought by HPC, describe the current level of numerical simulation performance, and discuss the perspectives for future steps. We also present the general background that explains why EDF is moving to this technology and briefly comment on the development of user-oriented simulation platforms.
NASA Astrophysics Data System (ADS)
Demidov, V. I.; Koepke, M. E.; Kurlyandskaya, I. P.; Malkov, M. A.
2018-02-01
This paper reviews existing theories for interpreting probe measurements of electron distribution functions (EDF) at high gas pressure when collisions of electrons with atoms and/or molecules near the probe are pervasive. An explanation of whether or not the measurements are realizable and reliable, an enumeration of the most common sources of measurement error, and an outline of proper probe-experiment design elements that inherently limit or avoid error is presented. Additionally, we describe recent expanded plasma-condition compatibility for EDF measurement, including in applications of large wall probe plasma diagnostics. This summary of the authors’ experiences gained over decades of practicing and developing probe diagnostics is intended to inform, guide, suggest, and detail the advantages and disadvantages of probe application in plasma research.
Zuberbier, T; Aberer, W; Asero, R; Bindslev-Jensen, C; Brzoza, Z; Canonica, G W; Church, M K; Ensina, L F; Giménez-Arnau, A; Godse, K; Gonçalo, M; Grattan, C; Hebert, J; Hide, M; Kaplan, A; Kapp, A; Abdul Latiff, A H; Mathelier-Fusade, P; Metz, M; Nast, A; Saini, S S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Simons, F E R; Staubach, P; Sussman, G; Toubi, E; Vena, G A; Wedi, B; Zhu, X J; Maurer, M
2014-07-01
This guideline is the result of a systematic literature review using the 'Grading of Recommendations Assessment, Development and Evaluation' (GRADE) methodology and a structured consensus conference held on 28 and 29 November 2012, in Berlin. It is a joint initiative of the Dermatology Section of the European Academy of Allergy and Clinical Immunology (EAACI), the EU-funded network of excellence, the Global Allergy and Asthma European Network (GA(2) LEN), the European Dermatology Forum (EDF), and the World Allergy Organization (WAO) with the participation of delegates of 21 national and international societies. Urticaria is a frequent, mast cell-driven disease, presenting with wheals, angioedema, or both. The life-time prevalence for acute urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria do not only cause a decrease in quality of life, but also affect performance at work and school and, as such, are members of the group of severe allergic diseases. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors and pathomechanisms. In addition, it outlines evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields
NASA Astrophysics Data System (ADS)
McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.
2017-12-01
The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schieber, C.; Perin, M.; Saumon, P.
1995-03-01
At the request of Electricite de France (EDF) and Framatome, the Nuclear Protection Evaluation Centre (CEPN) developed a three-year research project, between 1991 and 1993, to evaluate the impact of various work management factors that can influence occupational exposures in nuclear power plants (NPPs) and to assess the effectiveness of protective actions implemented to reduce them. Three different categories of factors have been delineated: those linked to working conditions (such as ergonomic of work areas and protective suits), those characterizing the operators (qualification, experience level, motivation, etc.). In order to quantify the impact of these factors, a detailed survey wasmore » carried out in five French NPPs, focusing on three types of operations: primary valves maintenance, decontamination of reactor cavity, and specialized maintenance operations on the steam generator. This survey was augmented by a literature review on the influence of {open_quotes}hostile{close_quotes} environment on working conditions. Finally, a specific study was performed in order to quantify the impact of various types of protective suits used in French nuclear installations according to the type of work to be done. All of these factors have been included in a model aiming at quantifying the effectiveness of protection actions, both from dosimetric and economic point of views.« less
1993-07-01
there are any. The recent set of articles in gcience (1) on the effects of Electromagnetic Fields (EDF) states quite clearly and accurately that we...gone into the explanation of how the HAARP will impact the areas most closely related to the study subject, associated electromagnetic fields and...during break-up each year. page 4-90. Exposure to Humans . This first paragraph is terrible. Concerned citizens will be looking here first to learn if
The pre-conceptual design of the nuclear island of ASTRID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez, M.; Menou, S.; Uzu, B.
The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main componentsmore » with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps, Intermediate Heat Exchangers, and Decay Heat Exchangers are now under consideration. Under normal conditions, power release is achieved using the steam/water plant (in case of Rankine steam cycle) or the gas plant (in case of Brayton gas cycle). The diverse design and operating modes of Decay Heat Removal systems provide protection against common cause failures. A Decay Heat Removal system through the reactor vault is in particular studied with the objective to complement Direct Reactor Cooling systems. At this stage of the studies, the secondary system comprises four independent sodium loops (two and three sodium loops configurations are also investigated). Each loop includes one mechanical pump (or a large capacity Annular Linear Induction Electromagnetic Pump), and three modular Steam Generator Units characterized by once through straight tube units with a ferritic tube bundle; nevertheless, helical coil steam generator with tubes made of Alloy 800, and inverted type steam generator with a ferritic tube bundle are also investigated. The limited power of each modular Steam Generator Unit allows the whole secondary loop to withstand a large water/sodium reaction consecutive to the postulated simultaneous rupture of all the heat exchange tubes of one module. The arrangement of the components is based on the 'Regain' concept, in which the secondary pump is situated at a low level in the circuit; conventional arrangement, as SUPERPHENIX type, is a back-up option. Alternative arrangements based on gas cycles are also studied together with Na-gas heat exchanger design. This paper presents a status of the ASTRID pre-conceptual design. The most promising options are highlighted as well as less risky and back-up options. (authors)« less
Determination of 2p Excitation Transfer Rate Coefficient in Neon Gas Discharges
NASA Astrophysics Data System (ADS)
Smith, D. J.; Stewart, R. S.
2001-10-01
We will discuss our theoretical modelling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally-induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electric fields ranging from 3x10-17 Vcm2 to 2x10-16 Vcm2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the 1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to more complex systems, including the addition of molecules for EDF determination. array of four complementary optical diagnostic techniques OGE LCIF determination of five sets of important collisional rate coefficients
Nuclear equation of state from ground and collective excited state properties of nuclei
NASA Astrophysics Data System (ADS)
Roca-Maza, X.; Paar, N.
2018-07-01
This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.
San Alberto Giraldos, Mercedes; López Leiva, Inmaculada; León Campos, Álvaro; Martí García, Celia; García Mayor, Silvia
2018-01-01
Aims To adapt the Edinburgh Feeding Evaluation in Dementia Scale (EdFED) for use in a Spanish-speaking population and to assess its validity and reliability in patients with dementia. Method A cross-sectional study was carried out in two stages: 1. Cross-cultural adaptation (translation, back-translation, review by committee of experts, pilot test and weighting of results); 2. Clinimetric validation comprising interobserver reliability assessment, test-retest reliability and internal consistency. To determine construct validity, confirmatory factorial analysis and principal components analysis were performed by oblique rotations. Criteria validity was analysed using the Pearson correlation (p<0.05) with the BMI, MNA and analytical values of albumin, transferrin, cholesterol, absolute lymphocytes and total proteins. Data collection was carried out for six months in 2016 in nursing homes and Alzheimer’s day centers in the province of Málaga (Spain), at nine centers, with 262 patients (aged over 60 years and presenting feeding difficulties), 20 nurses, 20 professional caregivers and 103 family caregivers. Results A version of EdFED culturally adapted to Spanish was obtained. The sample presented the following characteristics: 76.3% women, mean age 82.3 years (SD: 7.9); MNA 18.73 (SD: 4.44); BMI 23.99 (SD: 4.72); serum albumin 3.79 mg/dl (SD: 0.36). A Cronbach’s alpha of 0.88 was obtained, with an inter-item global correlation of 0.43 and a homogeneity index ranging from 0.42 to 0.73. The exploratory factor analysis reproduced the three-factor model identified by the original authors, explaining 62.32% of the total variance. The criterion validity showed a good inverse correlation with MNA and a moderate one with albumin, total proteins, transferrin and BMI. Discussion The Spanish version of EdFED is reliable and valid for use in elderly people with dementia. The most appropriate for our environment is the three-factor model, which maintains the original factors, with a slight redistribution of the items. PMID:29486002
78 FR 25260 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
...: Boardwalk Storage Company, LLC. Description: Revise Hub Services and Umbrella Pro Forma Agmts to be... Pipeline Company of America. Description: Negotiated Rate--EDF Trading to be effective 5/1/2013. Filed Date...: Kern River Gas Transmission Company. [[Page 25261
1981-12-01
preventing the generation of 16 6 negative location estimators. Because of the invariant pro- perty of the EDF statistics, this transformation will...likelihood. If the parameter estimation method developed by Harter and Moore is used, care must be taken to prevent the location estimators from being...vs A 2 Critical Values, Level-.Ol, n-30 128 , 0 6N m m • w - APPENDIX E Computer Prgrams 129 Program to Calculate the Cramer-von Mises Critical Values
Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee
NASA Astrophysics Data System (ADS)
Clerc, Thomas
With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).
Guidelines on the use of extracorporeal photopheresis
Knobler, R; Berlin, G; Calzavara-Pinton, P; Greinix, H; Jaksch, P; Laroche, L; Ludvigsson, J; Quaglino, P; Reinisch, W; Scarisbrick, J; Schwarz, T; Wolf, P; Arenberger, P; Assaf, C; Bagot, M; Barr, M; Bohbot, A; Bruckner-Tuderman, L; Dreno, B; Enk, A; French, L; Gniadecki, R; Gollnick, H; Hertl, M; Jantschitsch, C; Jung, A; Just, U; Klemke, C-D; Lippert, U; Luger, T; Papadavid, E; Pehamberger, H; Ranki, A; Stadler, R; Sterry, W; Wolf, IH; Worm, M; Zic, J; Zouboulis, CC; Hillen, U
2014-01-01
Background After the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma was published in 1983 with its subsequent recognition by the FDA for its refractory forms, the technology has shown significant promise in the treatment of other severe and refractory conditions in a multi-disciplinary setting. Among the major studied conditions are graft versus host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection and inflammatory bowel disease. Materials and methods In order to provide recognized expert practical guidelines for the use of this technology for all indications the European Dermatology Forum (EDF) proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. Results and conclusion These guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. PMID:24354653
All-fiber tunable MMI fiber laser
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.
2009-05-01
We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.
Transient flow analysis linked to fast pressure disturbance monitored in pipe systems
NASA Astrophysics Data System (ADS)
Kueny, J. L.; Lourenco, M.; Ballester, J. L.
2012-11-01
EDF Hydro Division has launched the RENOUVEAU program in order to increase performance and improve plant availability through anticipation. Due to this program, a large penstocks fleet is equipped with pressure transducers linked to a special monitoring system. Any significant disturbance of the pressure is captured in a snapshot and the waveform of the signal is stored and analyzed. During these transient states, variations in flow are unknown. In order to determine the structural impact of such overpressure occurring during complex transients conditions over the entire circuit, EDF DTG has asked ENSE3 GRENOBLE to develop a code called ACHYL CF*. The input data of ACHYL CF are circuit topology and pressure boundaries conditions. This article provide a description of the computer code developed for modeling the transient flow in a pipe network using the signals from pressure transducers as boundary conditions. Different test cases will be presented, simulating real hydro power plants for which measured pressure signals are available.
Magerl, M; Altrichter, S; Borzova, E; Giménez-Arnau, A; Grattan, C E H; Lawlor, F; Mathelier-Fusade, P; Meshkova, R Y; Zuberbier, T; Metz, M; Maurer, M
2016-06-01
These recommendations for the definition, diagnosis and management of chronic inducible urticaria (CIndU) extend, revise and update our previous consensus report on physical urticarias and cholinergic urticaria (Allergy, 2009). The aim of these recommendations is to improve the diagnosis and management of patients with CIndU. Our recommendations acknowledge the latest changes in our understanding of CIndU, and the available therapeutic options, as well as the development of novel diagnostic tools. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.
Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike
2017-11-01
This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.
Antunes, Marina Venzon; Raymundo, Suziane; de Oliveira, Vanessa; Staudt, Dilana Elisabeth; Gössling, Gustavo; Peteffi, Giovana Piva; Biazús, Jorge Villanova; Cavalheiro, José Antônio; Tre-Hardy, Marie; Capron, Arnaud; Haufroid, Vincent; Wallemacq, Pierre; Schwartsmann, Gilberto; Linden, Rafael
2015-01-01
A LC-MSMS method for the simultaneous determination of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in dried blood spots samples was developed and validated. The method employs an ultrasound-assisted liquid extraction and a reversed phase separation in an Acquity(®) C18 column (150×2.1 mm, 1.7 µm). Mobile phase was a mixture of formic acid 0.1% (v/v) pH 2.7 and acetonitrile (gradient from 60:40 to 50:50, v/v). Total analytical run time was 8 min. Precision assays showed CV % lower than 10.75% and accuracy in the range 94.5 to 110.3%. Mean analytes recoveries from DBS ranged from 40% to 92%. The method was successfully applied to 91 paired clinical DBS and plasma samples. Dried blood spots concentrations were highly correlated to plasma, with rs>0.83 (P<0.01). Median estimated plasma concentrations after hematocrit and partition factor adjustment were: TAM 123.3 ng mL(-1); NDT 267.9 ng mL(-1), EDF 10.0 ng mL(-1) and HTF 1.3 ng mL(-1,) representing in average 98 to 104% of the actually measured concentrations. The DBS method was able to identify 96% of patients with plasma EDF concentrations below the clinical threshold related to better prognosis (5.9 ng mL(-1)). The procedure has adequate analytical performance and can be an efficient tool to optimize adjuvant breast cancer treatment, especially in resource limited settings. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robledo, L. M.; Baldo, M.; Schuck, P.
We explore the deformation properties of the newly postulated Barcelona-Catania-Paris (BCP) energy density functional (EDF). The results obtained for three isotope chains of Mg, Dy, and Ra are compared to the available experimental data as well as to the results of the Gogny-D1S force. Results for the fission barrier of {sup 240}Pu are also discussed.
Multi-core fiber amplifier arrays for intra-satellite links
NASA Astrophysics Data System (ADS)
Kechagias, Marios; Crabb, Jonathan; Stampoulidis, Leontios; Farzana, Jihan; Kehayas, Efstratios; Filipowicz, Marta; Napierala, Marek; Murawski, Michal; Nasilowski, Tomasz; Barbero, Juan
2017-09-01
In this paper we present erbium doped fibre (EDF) aimed at signal amplification within satellite photonic payload systems operating in C telecommunication band. In such volume-hungry applications, the use of advanced optical transmission techniques such as space division multiplexing (SDM) can be advantageous to reduce the component and cable count.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... decommission an up to 150-megawatt (MW), nominal capacity, alternating current, solar photovoltaic (PV) energy... Solar Field Project and California Desert Conservation Area Plan Amendment, Riverside County, California... California Desert Conservation Area (CDCA) Plan, for the Desert Harvest Solar Project (DHSP), in Riverside...
75 FR 26202 - Application To Export Electric Energy; EDF Trading North America, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... power supply system. Copies of this application will be made available, upon request, for public... energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES... from the United States to Canada as a power marketer using existing international transmission...
The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics.
Sonuga-Barke, Edmund J S
2003-11-01
The currently dominant neuro-cognitive model of Attention Deficit Hyperactivity Disorder (AD/HD) presents the condition as executive dysfunction (EDF) underpinned by disturbances in the fronto-dorsal striatal circuit and associated dopaminergic branches (e.g. meso-cortical). In contrast, motivationally-based accounts focus on altered reward processes and implicate fronto-ventral striatal reward circuits and those meso-limbic branches that terminate in the ventral striatum especially the nucleus accumbens. One such account, delay aversion (DEL), presents AD/HD as a motivational style-characterised by attempts to escape or avoid delay-arising from fundamental disturbances in these reward centres. While traditionally regarded as competing, EDF and DEL models have recently been presented as complimentary accounts of two psycho-patho-physiological subtypes of AD/HD with different developmental pathways, underpinned by different cortico-striatal circuits and modulated by different branches of the dopamine system. In the current paper we describe the development of this model in more detail. We elaborate on the neuro-circuitry possibly underpinning these two pathways and explore their developmental significance within a neuro-ecological framework.
Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem
NASA Astrophysics Data System (ADS)
Servan-Camas, Borja; Tsai, Frank T.-C.
2010-02-01
This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).
Surface symmetry energy of nuclear energy density functionals
NASA Astrophysics Data System (ADS)
Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.
2011-03-01
We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
NASA Astrophysics Data System (ADS)
Solari, Sebastián.; Egüen, Marta; Polo, María. José; Losada, Miguel A.
2017-04-01
Threshold estimation in the Peaks Over Threshold (POT) method and the impact of the estimation method on the calculation of high return period quantiles and their uncertainty (or confidence intervals) are issues that are still unresolved. In the past, methods based on goodness of fit tests and EDF-statistics have yielded satisfactory results, but their use has not yet been systematized. This paper proposes a methodology for automatic threshold estimation, based on the Anderson-Darling EDF-statistic and goodness of fit test. When combined with bootstrapping techniques, this methodology can be used to quantify both the uncertainty of threshold estimation and its impact on the uncertainty of high return period quantiles. This methodology was applied to several simulated series and to four precipitation/river flow data series. The results obtained confirmed its robustness. For the measured series, the estimated thresholds corresponded to those obtained by nonautomatic methods. Moreover, even though the uncertainty of the threshold estimation was high, this did not have a significant effect on the width of the confidence intervals of high return period quantiles.
Guidelines on the use of extracorporeal photopheresis.
Knobler, R; Berlin, G; Calzavara-Pinton, P; Greinix, H; Jaksch, P; Laroche, L; Ludvigsson, J; Quaglino, P; Reinisch, W; Scarisbrick, J; Schwarz, T; Wolf, P; Arenberger, P; Assaf, C; Bagot, M; Barr, M; Bohbot, A; Bruckner-Tuderman, L; Dreno, B; Enk, A; French, L; Gniadecki, R; Gollnick, H; Hertl, M; Jantschitsch, C; Jung, A; Just, U; Klemke, C-D; Lippert, U; Luger, T; Papadavid, E; Pehamberger, H; Ranki, A; Stadler, R; Sterry, W; Wolf, I H; Worm, M; Zic, J; Zouboulis, C C; Hillen, U
2014-01-01
After the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma was published in 1983 with its subsequent recognition by the FDA for its refractory forms, the technology has shown significant promise in the treatment of other severe and refractory conditions in a multi-disciplinary setting. Among the major studied conditions are graft versus host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection and inflammatory bowel disease. In order to provide recognized expert practical guidelines for the use of this technology for all indications the European Dermatology Forum (EDF) proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. These guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. © 2013 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.
630 kVA high temperature superconducting transformer
NASA Astrophysics Data System (ADS)
Zueger, H.
This document describes the 630 KVA HTS transformer project made by ABB jointly with EDF and ASC. The project started April 1994 and its goal was to manufacture a real scale superconducting distribution transformer and to operate it during one year in the grid of Geneva's utility (SIG). The conclusion highlights the future perspective of HTS transformers.
Evaluation of the Susceptibility to SCC Initiation of Alloy 690 in Simulated PWR Primary Water
NASA Astrophysics Data System (ADS)
Tsutsumi, Kazuya; Couvant, Thierry
Alloy 690 has been widely used in fabricating components of LWR plants as an alternative material to Alloy 600 which has exhibited a significant susceptibility to PWSCC. However, some authors have reported that Alloy 690 can suffer a significant susceptibility to SCC crack growth when highly cold worked. While most of the recent studies emphasize SCC propagation phase, EDF and its partners are focusing on the material's resistance to SCC initiation. This paper summarizes the current work carried out at EDF MAI on the SCC initiation. By means of constant elongation rate tests (CERTs) and constant displacement tests, experimental investigation of the susceptibility to PWSCC were performed. No SCC was observed on either an extruded bar or on two plates, even after 24%-1D cold rolling, confirming the superior PWSCC resistance of Alloy 690 independent of a amount of intergranular precipitation of carbides, and also revealing that such cold rolling does not necessarily decrease the resistance to SCC. On the other hand, a experimental steam generator tube that has a degraded microstructure due to specific heat-treatment revealed its susceptibility to SCC, probably because of the interactive effect of microstructure with heavy intragranular carbide precipitations and the cold worked superficial layer. This phenomenon is in good agreement with results previously published. In this study, the maximal crack depth slightly increased when DH increased from 5 to 60 cc.kg-1H2O. No significant prior ageing effect on the crack depth was observed, even when ageing was combined with high DH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, T.; Muller, E.; Federici, E.
With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for fivemore » cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)« less
ERIC Educational Resources Information Center
Maluwa-Banda, Dixie; MacJessie-Mbewe, Samson
2005-01-01
Teacher education is an essential part of the teacher development process that deals with the art of acquiring knowledge, attitudes, and skills for the teaching profession. This paper discusses the creation of an educational foundations (EDF) knowledge base and the challenges for the tertiary education of secondary school teachers, using the…
Ohmido, Nobuko; Fukui, Kiichi; Kinoshita, Toshiro
2010-01-01
Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Futrell, Jean H.
2015-02-01
We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less
Unmixed fuel processors and methods for using the same
Kulkarni, Parag Prakash; Cui, Zhe
2010-08-24
Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.
Switchable narrow linewidth fiber laser with LP11 transverse mode output
NASA Astrophysics Data System (ADS)
Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng
2018-01-01
We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.
The Goal of Motivation in the Military. Soldier Satisfaction or Soldier Performance
1978-06-09
soldier’s (E- 1 through E-,4) perceptions of 18 job-related factors, his/her level of performance and-" FOR" 1473 EDfTON Or I NOV 65 Is OBSOLETE UJCLAS...iv LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . v CHAPTER 1 . THE PROBLEM AND ITS SETTING . ..... ....... .... 1 INTRODUCTION...81 RECOMKM•DATION .83. , . * 3 SELECTED BIBLIOGRAPHY . . . . . . . . . . .......... . . 84 liii LIST OF TABLES Table Page 1
Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.
Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E
2006-02-01
A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.
ALARA and planning of interventions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocaboy, A.
1995-03-01
The implementation of ALARA programs implies integration of radiation protection criterion at all stages of outage management. Within the framework of its ALARA policy, Electricide de France (EDF) has given an incentive to all of its nuclear power plants to develop {open_quotes}good practices{close_quotes} in this domain, and to exchange their experience by the way of a national feed back file. Among the developments in the field of outage organization, some plants have focused on the planning stage of activities because of its influence on the radiological conditions of interventions and on the good succession of tasks within the radiological controlledmore » areas. This paper presents the experience of Chinon nuclear power plant. At Chinon, we are pursuing this goal through careful outage planning. We want the ALARA program during outages to be part of the overall maintenance task planning. This planning includes the provision of the availability of every safety-related component, and of the variations of water levels in hthereactor and steam generators to take advantage of the shield created by the water. We have developed a computerized data base with the exact position of all the components in the reactor building in order to avoid unnecessary interactions between different tasks performed in the same room. A common language between Operation and Maintenance had been established over the past years, using {open_quotes}Milestones and Corridors{close_quotes}. A real time dose rate counting system enables the Radiation Protection (RP) Department to do an accurate and efficient follow up during the outage for all the {open_quotes}ALARA{close_quotes} maintenance tasks.« less
Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi
2015-03-01
Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3 + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...
Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Bergeron, A.; Dionne, B.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...
Complex-energy approach to sum rules within nuclear density functional theory
Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...
2015-04-27
The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less
Zuberbier, T; Aberer, W; Asero, R; Abdul Latiff, A H; Baker, D; Ballmer-Weber, B; Bernstein, J A; Bindslev-Jensen, C; Brzoza, Z; Buense Bedrikow, R; Canonica, G W; Church, M K; Craig, T; Danilycheva, I V; Dressler, C; Ensina, L F; Giménez-Arnau, A; Godse, K; Gonçalo, M; Grattan, C; Hebert, J; Hide, M; Kaplan, A; Kapp, A; Katelaris, C H; Kocatürk, E; Kulthanan, K; Larenas-Linnemann, D; Leslie, T A; Magerl, M; Mathelier-Fusade, P; Meshkova, R Y; Metz, M; Nast, A; Nettis, E; Oude-Elberink, H; Rosumeck, S; Saini, S S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Staubach, P; Sussman, G; Toubi, E; Vena, G A; Vestergaard, C; Wedi, B; Werner, R N; Zhao, Z; Maurer, M
2018-01-15
This evidence and consensus-based guideline was developed following the methods recommended by Cochrane and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group. The conference was held on December 1st, 2016. It is a joint initiative of the Dermatology Section of the European Academy of Allergology and Clinical Immunology (EAACI), the EU-founded network of excellence, the Global Allergy and Asthma European Network (GA²LEN), the European Dermatology Forum (EDF), and the World Allergy Organization (WAO) with the participation of 48 delegates of 42 national and international societies. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS). Urticaria is a frequent, mast cell-driven disease, presenting with wheals, angioedema, or both. The lifetime prevalence for acute urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria are disabling, impair quality of life, and affect performance at work and school. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors and pathomechanisms. In addition, it outlines evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of a Mars Airplane Entry, Descent, and Flight Trajectory
NASA Technical Reports Server (NTRS)
Murray, James E.; Tartabini, Paul V.
2001-01-01
An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.
Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui
2006-09-15
A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.
NASA Astrophysics Data System (ADS)
Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.
2012-04-01
In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological dynamic and processes, i. e. sample heterogeneity. For a same streamflow range corresponds different processes such as rising limbs or recession, where uncertainties are different. The dynamical approach improves reliability, skills and sharpness of forecasts and globally reduces confidence intervals width. When compared in details, the dynamical approach allows a noticeable reduction of confidence intervals during recessions where uncertainty is relatively lower and a slight increase of confidence intervals during rising limbs or snowmelt where uncertainty is greater. The dynamic approach, validated by forecaster's experience that considered the empirical approach not discriminative enough, improved forecaster's confidence and communication of uncertainties. Montanari, A. and Brath, A., (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40, W01106, doi:10.1029/2003WR002540. Schaefli, B., Balin Talamba, D. and Musy, A., (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332, 303-315.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note: A nuclear reactor... core of a nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2...
A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.
1995-09-01
This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.
75 FR 11375 - Revision of Fee Schedules; Fee Recovery for FY 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... Spent Fuel Storage/Reactor Decommissioning..... 2.7 0.2 0.2 Test and Research Reactors 0.2 0.0 0.0 Fuel... categories of licenses. The FY 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual...) Spent Fuel Storage/Reactor 122,000 143,000 Decommissioning Test and Research Reactors (Non-power 87,600...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...
Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas.
Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan
2013-09-03
An innovative plasma reactor, which generates hybrid surface/packed-bed discharge (HSPBD) plasmas, was employed for the degradation of benzene. The HSPBD reactor was found to display remarkably better benzene degradation, mineralization, and energy performance than surface or packed-bed discharge reactors alone. The degradation efficiency, CO2 selectivity, and energy yield in the HSPBD reactor were 21%, 11%, and 3.9 g kWh-1 higher, respectively, than in a surface discharge reactor and 30%, 21%, and 5.5 g kWh-1 higher, respectively, than in a packed-bed discharge reactor operated at 280 J L-1. Particularly, the benzene degradation in the HSPBD reactor exhibited an unambiguous synergistic enhancement rather than a simple additive effect using the surface discharge and packed-bed discharge reactors. Moreover, in the HSPBD reactor, the formation of byproducts, such as NO2, was suppressed, while O3 was promoted. The use of N2 as the carrier gas was found to be effective for benzene degradation because of the fast reaction rate of N2(A3∑u+) with benzene, and oxygen species derived from the dissociation of O2 were found to be significant in the mineralization process. Thus, the addition of O2 to N2 allows for efficient degradation of benzene, and the optimized amount of O2 was determined to be 3%.
Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.
2016-01-01
Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...
Vendor advertorial issue, 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the July-August issue is on vendor advertorials. Major articles/reports in this issue include: A fascinating technology, by Andy White, GE Energy; Exciting times for the nuclear industry, by John Polcyn, AECL Technologies; SG replacement oversight program, by Ram Prabhakar, Palo Verde Nuclear Generating Station; Modifications for improvement, by Herbert Deutschmann, Swiss Federal Nuclear Safety Inspectorate, HSK, Switzerland; and, Human factor approach in engineering, by Laure Quentin, EDF and Didier Niger, UNIPE, France.
Technical Reports Prepared Under Contract N00014-76-C-0475.
1987-05-29
264 Approximations to Densities in Geometric H. Solomon 10/27/78 Probability M.A. Stephens 3. Technical Relort No. Title Author Date 265 Sequential ...Certain Multivariate S. Iyengar 8/12/82 Normal Probabilities 323 EDF Statistics for Testing for the Gamma M.A. Stephens 8/13/82 Distribution with...20-85 Nets 360 Random Sequential Coding By Hamming Distance Yoshiaki Itoh 07-11-85 Herbert Solomon 361 Transforming Censored Samples And Testing Fit
EDF's studies and first choices regarding the design of electrical equipment
NASA Technical Reports Server (NTRS)
Paris, Michel; Metzger, Gisele; Pays, Michel; Pasdeloup, Maurice
1988-01-01
In the performance of its studies and in its first choices, Electricite de France has taken into account the three parameters that have been judged essential for its electrical installations: flammability and flame propagation; smoke opacity; and corrosiveness and toxicity of emitted gases. In this research, materials tests have been widely developed in order to insure simple manufacturing controls, and to decrease the costly testing of near to full size models.
78 FR 58575 - Review of Experiments for Research Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0219] Review of Experiments for Research Reactors AGENCY... Commission (NRC) is withdrawing Regulatory Guide (RG) 2.4, ``Review of Experiments for Research Reactors... withdrawing RG 2.4, ``Review of Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because...
Chen, Kai; Ding, Si-Jing; Luo, Zhi-Jun; Pan, Gui-Ming; Wang, Jia-Hong; Liu, Jia; Zhou, Li; Wang, Qu-Quan
2018-02-22
An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS 2 /Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS 2 shell (∼2.6 nm). Due to efficient charge transfer across the XS 2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS 2 /Au exhibits a 3.59-fold enhancement, whereas Au/MoS 2 /Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS 2 /Au and Au/MoS 2 /Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS 2 /Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.
10 CFR 52.167 - Issuance of manufacturing license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...
Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP
NASA Astrophysics Data System (ADS)
Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.
Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...
2017-03-01
The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less
10 CFR 2.1115 - Designation of issues for adjudicatory hearing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... at Civilian Nuclear Power Reactors § 2.1115 Designation of issues for adjudicatory hearing. (a) After... reactor already licensed to operate at the site, or any civilian nuclear power reactor for which a... the issuance of a construction permit or operating license for a civilian nuclear power reactor at...
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
Design options for a bunsen reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Robert Charles
2013-10-01
This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project.more » Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.« less
Liu, Yong-Qiang; Tay, Joo-Hwa
2015-09-01
The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain results and guide the operation with this fast strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
Stegenta, Sylwia; Dębowski, Marcin; Bukowski, Przemysław; Randerson, Peter F; Białowiec, Andrzej
2018-02-01
The opinion, that the use of foil reactors for the aerobic biostabilization of municipal wastes is not a valid method, due to vulnerability to perforation, and risk of uncontrolled release of exhaust gasses, was verified. This study aimed to determine the intensity of greenhouse gas (GHG) emissions to the atmosphere from the surface of foil reactors in relation to the extent of foil surface perforation. Three scenarios were tested: intact (airtight) foil reactor, perforated foil reactor, and torn foil reactor. Each experimental variant was triplicated, and the duration of each experiment cycle was 5 weeks. Temperature measurements demonstrated a significant decrease in temperature of the biostabilization in the torn reactor. The highest emissions of CO 2 , CO and SO 2 were observed at the beginning of the process, and mostly in the torn reactor. During the whole experiment, observed emissions of CO, H 2 S, NO, NO 2 , and SO 2 were at a very low level which in extreme cases did not exceed 0.25 mg t -1 .h -1 (emission of gasses mass unit per waste mass unit per unit time). The lowest average emissions of greenhouse gases were determined in the case of the intact reactor, which shows that maintaining the foil reactors in an airtight condition during the process is extremely important. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors
NASA Astrophysics Data System (ADS)
Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong
2014-11-01
To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.
Breast cancer detection using time reversal
NASA Astrophysics Data System (ADS)
Sheikh Sajjadieh, Mohammad Hossein
Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.
Erental, Ariel; Sharon, Idith; Engelberg-Kulka, Hanna
2012-01-01
In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2014-09-01
This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...
The competition of particle-vibration coupling and tensor interaction in spherical nuclei
NASA Astrophysics Data System (ADS)
Afanasjev, Anatoli; Litvinova, Elena
2014-09-01
The search for missing terms in the energy density functionals (EDF) is one of the leading directions in the development of nuclear density functional theory (DFT). Tensor force is one of possible candidates. However, despite extensive studies the questions about its effective strength and unambiguous signals still remain open. One of the main experimental benchmarks for the studies of tensor interaction is provided by the data on the single-particle states in the N = 82 and Z = 50 isotopes. The energy splittings of the proton h11 / 2 and g7 / 2 states in the Z = 50 isotopes and neutron 1i13 / 2 and 1h9 / 2 states in the N = 82 isotones are used in the definition of tensor force in the Skyrme DFT. However, in experiment these states are not ``mean-field'' states because of coupling with vibrations. Employing relativistic particle-vibration coupling (PVC) model we show that many features of these splittings can be reproduced when PVC is taken into account. This suggests the competition of PVC and tensor interaction and that tensor interaction should be weaker as compared with previous estimates. The search for missing terms in the energy density functionals (EDF) is one of the leading directions in the development of nuclear density functional theory (DFT). Tensor force is one of possible candidates. However, despite extensive studies the questions about its effective strength and unambiguous signals still remain open. One of the main experimental benchmarks for the studies of tensor interaction is provided by the data on the single-particle states in the N = 82 and Z = 50 isotopes. The energy splittings of the proton h11 / 2 and g7 / 2 states in the Z = 50 isotopes and neutron 1i13 / 2 and 1h9 / 2 states in the N = 82 isotones are used in the definition of tensor force in the Skyrme DFT. However, in experiment these states are not ``mean-field'' states because of coupling with vibrations. Employing relativistic particle-vibration coupling (PVC) model we show that many features of these splittings can be reproduced when PVC is taken into account. This suggests the competition of PVC and tensor interaction and that tensor interaction should be weaker as compared with previous estimates. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459 and National Science Foundation Award PHY-1204486.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on October 2, 2012, Room T-2B1, 11545 Rockville Pike, Rockville...
Comparative performance of fixed-film biological filters: Application of reactor theory
Watten, B.J.; Sibrell, P.L.
2006-01-01
Nitrification is classified as a two-step consecutive reaction where R1 represents the rate of formation of the intermediate product NO2-N and R2 represents the rate of formation of the final product NO3-N. The relative rates of R1 and R2 are influenced by reactor type characterized hydraulically as plug-flow, plug-flow with dispersion and mixed-flow. We develop substrate conversion models for fixed-film biofilters operating in the first-order kinetic regime based on application of chemical reactor theory. Reactor type, inlet conditions and the biofilm kinetic constants Ki (h-1) are used to predict changes in NH4-N, NO2-N, NO3-N and BOD5. The inhibiting effects of the latter on R1 and R2 were established based on the ?? relation, e.g.:{A formula is presented}where BOD5,max is the concentration that causes nitrification to cease and N is a variable relating Ki to increasing BOD5. Conversion models were incorporated in spreadsheet programs that provided steady-state concentrations of nitrogen and BOD5 at several points in a recirculating aquaculture system operating with input values for fish feed rate, reactor volume, microscreen performance, make-up and recirculating flow rates. When rate constants are standardized, spreadsheet use demonstrates plug-flow reactors provide higher rates of R1 and R2 than mixed-flow reactors thereby reducing volume requirements for target concentrations of NH4-N and NO2-N. The benefit provided by the plug-flow reactor varies with hydraulic residence time t as well as the effective vessel dispersion number, D/??L. Both reactor types are capable of providing net increases in NO2-N during treatment but the rate of decrease in the mixed-flow case falls well behind that predicted for plug-flow operation. We show the potential for a positive net change in NO2-N increases with decreases in the dimensionless ratios K2, (R2 )/K1,( R1 ) and [NO2-N]/[NH4-N] and when the product K1, (R1) t provides low to moderate NH4-N conversions. Maintaining high levels of the latter reduces the effective reactor utilization rate (%) defined here as (RNavg/RNmax)100 where RNavg is the mean reactive nitrogen concentration ([NH4-N] + [NO2-N]) within the reactor, and RNmax represents the feed concentration of the same. Low utilization rates provide a hedge against unexpected increases in substrate loading and reduce water pumping requirements but force use of elevated reactor volumes. Further ?? effects on R1 and R2 can be reduced through use of a tanks-in-series versus a single mixed-flow reactor configuration and by improving the solids removal efficiency of microscreen treatment.
Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E
2010-07-01
The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...
Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.
Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal
2015-10-15
Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
10 CFR 2.809 - Participation by the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Participation by the Advisory Committee on Reactor Safeguards. 2.809 Section 2.809 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS Rulemaking § 2.809 Participation by the Advisory Committee on Reactor...
Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Dionne, B.; Sikik, E.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less
ETR BUILDING, TRA642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER ...
ETR BUILDING, TRA-642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER OF VIEW. CAMERA FACES NORTHWEST. NOTE CRANE RAILS AND DANGLING ELECTRICAL CABLE AT UPPER PART OF VIEW FOR "MOFFETT 2 TON" CRANE. INL NEGATIVE NO. HD46-14-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H
2010-11-01
Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.
Ball, S L; Holland, A J; Watson, P C; Huppert, F A
2010-04-01
Recent research has suggested a specific impairment in frontal-lobe functioning in the preclinical stages of Alzheimer's disease (AD) in people with Down's syndrome (DS), characterised by prominent changes in personality or behaviour. The aim of the current paper is to explore whether particular kinds of change (namely executive dysfunction (EDF), disinhibition and apathy), associated in the literature with disruption of different underlying frontal-subcortical circuits, are a) more or less frequently reported than others and b) related to poor performance on tasks involving different cognitive processes. Seventy-eight participants (mean age 47 years, range 36-72) with DS and mild to moderate intellectual disability (based on ICD-10 criteria), without a diagnosis of dementia of Alzheimer's type (DAT) or other psychiatric disorders, were selected from a larger sample of older adults with DS (n = 122). Dementia diagnosis was based on the CAMDEX informant interview, conducted with each participant's main carer. Informant-reported changes in personality/behaviour and memory were recorded. Participants were scored based on symptoms falling into three behavioural domains and completed five executive function (EF) tasks, six memory tasks (two of which also had a strong executive component) and the BPVS (as a measure of general intellectual ability). Multiple regression analyses were conducted to determine the degree to which the behavioural variables of 'EDF', 'disinhibition' and 'apathy', along with informant-reported memory decline and antidepressant medication use, predicted performance on the cognitive tasks (whilst controlling for the effects of age and general intellectual ability). Strikingly, disinhibited behaviour was reported for 95.7% of participants with one or more behavioural change (n = 47) compared to 57.4% with reported apathy and 36.2% with reported EDF. 'Disinhibition' score significantly predicted performance on three EF tasks (designed to measure planning, response inhibition and working memory) and an object memory task, (also thought to place high demands on working memory), while 'apathy' score significantly predicted performance on two different tasks, those measuring spatial reversal and prospective memory (p < 0.05). Informant reported memory decline was associated only with performance on a delayed recall task while antidepressant medication use was associated with better performance on a working memory task (p < 0.05). Observed dissociation between performance on cognitive tasks associated with reported apathy and disinhibition is in keeping with proposed differences underlying neural circuitry and supports the involvement of multiple frontal-subcortical circuits in the early stages of DAT in DS. However, the prominence of disinhibition in the behavioural profile (which more closely resembles that of disinhibited subtype of DFT than that of AD in the general population) leads us to postulate that the serotonergically mediated orbitofrontal circuit may be disproportionately affected. A speculative theory is developed regarding the biological basis for observed changes and discussion is focused on how this understanding may aid us in the development of treatments directly targeting underlying abnormalities.
NASA Astrophysics Data System (ADS)
Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel
2016-04-01
For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering," in Geoscience and Remote Sensing, IEEE Transactions on , vol.44, no.9, pp.2393-2406, Sept. 2006 .
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant
NASA Astrophysics Data System (ADS)
Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.
2017-03-01
The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.
Single-mode single-frequency high peak power all-fiber MOPA at 1550 nm
NASA Astrophysics Data System (ADS)
Kotov, L. V.; Likhachev, M. E.; Bubnov, M. M.; Paramonov, V. M.; Belovolov, M. I.; Lipatov, D. S.; Guryanov, A. N.
2014-10-01
In this Report, we present a record-high-peak-power single-frequency master oscillator power amplifier (MOPA) system based on a newly developed double-clad large-mode-area Yb-free Er-doped fiber (DC-LMA-EDF). A fiber Bragg grating wavelength-stabilized fiber-coupled diode laser at λ=1551 nm with ~2 MHz spectral width was used as the master oscillator. Its radiation was externally modulated with a 5 kHz repetition rate and 92 ns pulse duration and then amplified in a core-pumped Er-doped fiber amplifier up to an average power of 4 mW. The amplified spontaneous emission (ASE) generated at the last preamplifier stage was suppressed by a narrow-band (0.7 nm) DWDM filter. The last MOPA stage was based on the recently developed single-mode DC-LMA-EDF with a mode field diameter of 25 microns and pump clad-absorption of 3 dB/m at λ=980 nm. The pump and the signal were launched into this fiber through a commercial pump combiner in a co-propagating amplifier scheme. At first, we used a 3-m long DC-LMAEDF. In such configuration, a peak power of 800 W was achieved at the output of the amplifier together with a ~ 12 % pump conversion slope efficiency. Further power scaling was limited by SBS. After that we shortened the fiber length to 1 m. As a result, owing to large unabsorbed pump power, the efficiency decreased to ~5 %. However, a peak power of more than 3.5 kW was obtained before the SBS threshold. In this case, the pulse shape changed and its duration decreased to ~60 ns owing to inversion depletion after propagation of the forward front of the pulse. To the best of our knowledge, the peak power of more than 3.5 kW reported here is the highest value ever published for a single-frequency single-mode silica-based fiber laser system operating near λ=1550 nm.
Generation of an ultrafast femtosecond soliton fiber laser by carbon nanotube as saturable absorber
NASA Astrophysics Data System (ADS)
Salim, M. A. M.; Ahmad, H.; Harun, S. W.; Bidin, N.; Krishnan, G.
2018-05-01
This paper reports the demonstration of ultrafast fiber laser in a simple erbium-doped fiber (EDF) laser that employed a carbon nanotube (CNT) thin film saturable absorber (SA) to generate a stable soliton pulse. The repetition rate of 10.8 MHz pulse consistently achieved has narrowest pulse width of 640 fs and 1555.78 nm central wavelength for an hour operation in room temperature. This proposed setup has the capability for reliable and stable system features.
NASA Astrophysics Data System (ADS)
Bernard, Rémi N.; Robledo, Luis M.; Rodríguez, Tomás R.
2016-06-01
We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope 144Ba. A symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF) has been used. The method includes particle number, parity, and angular momentum restoration as well as axial quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation energies and electromagnetic transition probabilities are in good agreement with the most recent experimental data.
Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor
NASA Astrophysics Data System (ADS)
Abedi-Varaki, Mehdi
2017-08-01
Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.
CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor.
Noji, Tomoyasu; Jin, Tetsuro; Nango, Mamoru; Kamiya, Nobuo; Amao, Yutaka
2017-02-01
In this study, we demonstrated the conversion of CO 2 to formic acid under ambient conditions in a photoreduction nanoporous reactor using a photosensitizer, methyl viologen (MV 2+ ), and formate dehydrogenase (FDH). The overall efficiency of this reactor was 14 times higher than that of the equivalent solution. The accumulation rate of formic acid in the nanopores of 50 nm is 83 times faster than that in the equivalent solution. Thus, this CO 2 photoreduction nanoporous glass reactor will be useful as an artificial photosynthesis system that converts CO 2 to fuel.
Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo
2015-02-01
This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Generating Breathable Air Through Dissociation of N2O
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Frankie, Brian
2006-01-01
A nitrous oxide-based oxygen-supply system (NOBOSS) is an apparatus in which a breathable mixture comprising 2/3 volume parts of N2 and 1/3 volume part of O2 is generated through dissociation of N2O. The NOBOSS concept can be adapted to a variety of applications in which there are requirements for relatively compact, lightweight systems to supply breathable air. These could include air-supply systems for firefighters, divers, astronauts, and workers who must be protected against biological and chemical hazards. A NOBOSS stands in contrast to compressed-gas and cryogenic air-supply systems. Compressed-gas systems necessarily include massive tanks that can hold only relatively small amounts of gases. Alternatively, gases can be stored compactly in greater quantities and at low pressures when they are liquefied, but then cryogenic equipment is needed to maintain them in liquid form. Overcoming the disadvantages of both compressed-gas and cryogenic systems, the NOBOSS exploits the fact that N2O can be stored in liquid form at room temperature and moderate pressure. The mass of N2O that can be stored in a tank of a given mass is about 20 times the mass of compressed air that can be stored in a tank of equal mass. In a NOBOSS, N2O is exothermically dissociated to N2 and O2 in a main catalytic reactor. In order to ensure the dissociation of N2O to the maximum possible extent, the temperature of the reactor must be kept above 400 C. At the same time, to minimize concentrations of nitrogen oxides (which are toxic), it is necessary to keep the reactor temperature at or below 540 C. To keep the temperature within the required range throughout the reactor and, in particular, to prevent the formation of hot spots that would be generated by local concentrations of the exothermic dissociation reaction, the N2O is introduced into the reactor through an injector tube that features carefully spaced holes to distribute the input flow of N2O widely throughout the reactor. A NOBOSS includes one or more "destroyer" subsystems for removing any nitrogen oxides that remain downstream of the main N2O-dissociation reactor. A destroyer includes a carbon bed in series with a catalytic reactor, and is in thermal contact with the main N2O-dissociation reactor. The gas mixture that leaves the main reactor first goes through a carbon bed, which adsorbs all of the trace NO and most of the trace NO2. The gas mixture then goes through the destroyer catalytic reactor, wherein most or all of the remaining NO2 is dissociated. A NOBOSS can be designed to regulate its reactor temperature across a range of flow rates. One such system includes three destroyer loops; these loops act, in combination with a heat sink, to remove heat from the main N2O-dissociation reactor. In this system, the N2O and product gases play an additional role as coolants; thus, as needed, the coolant flow increases in proportion to the rate of generation of heat, helping to keep the main-reactor temperature below 540 C.
Nuclear reactors built, being built, or planned, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, B.
1992-07-01
This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor ismore » an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
10 CFR 140.12 - Amount of financial protection required for other reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...
10 CFR 140.12 - Amount of financial protection required for other reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...
155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...
155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
Surveillance application using patten recognition software at the EBR-II Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, D.L.
1992-01-01
The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodiummore » Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.« less
Surveillance application using patten recognition software at the EBR-II Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, D.L.
1992-05-01
The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory`s Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodiummore » Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.« less
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... the proceeding under subpart A of part 51 of this chapter by the Director, Office of Nuclear Reactor... 10 Energy 1 2014-01-01 2014-01-01 false Evidence at a hearing. 2.337 Section 2.337 Energy NUCLEAR...
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... the proceeding under subpart A of part 51 of this chapter by the Director, Office of Nuclear Reactor... 10 Energy 1 2013-01-01 2013-01-01 false Evidence at a hearing. 2.337 Section 2.337 Energy NUCLEAR...
Osuna, M Begoña; Sipma, Jan; Emanuelsson, Maria A E; Carvalho, M Fátima; Castro, Paula M L
2008-08-01
Two up-flow fixed-bed reactors (UFBRs), inoculated with activated sludge and operated for 162 days, were fed 1mmolL(-1)d(-1) with two model halogenated compounds, 2-fluorobenzoate (2-FB) and dichloromethane (DCM). Expanded clay (EC) and granular activated carbon (GAC) were used as biofilm carrier. EC did not have any adsorption capacity for both model compounds tested, whereas GAC could adsorb 1.3mmolg(-1) GAC for 2-FB and 4.5mmolg(-1) GAC for DCM. Both pollutants were degraded in both reactors under simultaneous feeding. However, biodegradation in the EC reactor was more pronounced, and re-inoculation of the GAC reactor was required to initiate 2-FB degradation. Imposing sequential alternating pollutant (SAP) feeding caused starvation periods in the EC reactor, requiring time-consuming recovery of 2-FB biodegradation after resuming its feeding, whereas DCM degradation recovered significantly faster. The SAP feeding did not affect performance in the GAC reactor as biodegradation of both pollutants was continuously observed during SAP feeding, indicating the absence of true starvation.
NASA Astrophysics Data System (ADS)
Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.
2018-05-01
The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.
Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...
de Sousa, José Tavares; Lima, Jéssyca de Freitas; da Silva, Valquíria Cordeiro; Leite, Valderi Duarte; Lopes, Wilton Silva
2017-03-01
The aim of the present study was to evaluate the biological oxidation of sulphide in two different UASB reactors by assessing the occurrence of oxidized forms of sulphur in the effluents and the amount of S 0 that could be recovered in the process. The bioreactors employed were an anaerobic hybrid (AH) reactor employing porous polyurethane foam as support media and a micro-aerated UASB reactor equipped with an aeration device above the digestion zone. The AH reactor produced a final effluent containing low concentrations of S 2- (3.87% of total sulphur load). It was achieved due to a complete oxidation of 56.1% of total sulphur. The partial biological oxidation that occurred in the AH reactor allowed the recovery of 30% of the sulphur load as S 0 . The effluent from the micro-aerated UASB reactor contained 5% of the sulphur load in the form of S 2- , while 20.9% was present as dissolved SO 4 2- and 46% was precipitated as S 0 . It is concluded that the AH reactor or micro-aeration carried out above the digestion zone of the UASB reactor favoured the biological oxidation of S 2- and the release of odourless effluents. Both technologies represent feasible and low-cost alternatives for the anaerobic treatment of domestic sewage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...
76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Hearing Procedures for Expansion of Spent Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian... reactor following irradiation, the constituent elements of which have not been separated by reprocessing. ...
10 CFR 2.102 - Administrative review of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of...) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office... Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance...
10 CFR 2.102 - Administrative review of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of...) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office... Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance...
Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system
NASA Technical Reports Server (NTRS)
Tew, R. C.; Jefferies, K. S.
1974-01-01
A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.
Qambrani, Naveed Ahmed; Oh, Sang-Eun
2013-01-01
The effect of dissolved oxygen (DO) and agitation rate in open and closed reactors was examined for sulfur-utilizing autotrophic denitrification. The reaction rate constants were determined based on a half-order kinetic model. Declining denitrification rate constants obtained for open reactors those of 8.46, 8.03, and 2.18 for 50 mg NO(3) (-)-N/L, while 11.12, 9.14, and 0.12 mg(1/2)/L(1/2) h were for 100 mg NO(3) (-)-N/L at agitation speeds of 0, 100, and 200 rpm. In closed reactors, the ever-increasing denitrification rates were 10.13, 22.56, and 37.03, whereas for the same nitrate concentrations and speeds the rates were 13.17, 15.63, and 26.67 mg(1/2)/L(1/2) h. The rate constants correlated well (r ( 2 ) = 0.89-0.99) with a half-order kinetic model. In open reactors, high SO(4) (2-)/N ratios (8.02-75.10) while in closed reactors comparatively low SO(4) (2-)/N ratios (6.10-13.39) were obtained. Sulfur oxidation occurred continuously in the presence of DO, resulting in mixed cultures acclimated to sulfur and nitrate. SO(4) (2-) was produced as an end product, which reduced alkalinity and lowered pH over time. Furthermore, DO inhibited sulfur denitrification in open reactors, while agitation in closed reactors increased the rate of denitrification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...
75 FR 34219 - Revision of Fee Schedules; Fee Recovery for FY 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
....8 $6.3 $7.5 Spent Fuel Storage/Reactor Decommissioning..... -- -- 2.7 0.2 0.2 Test and Research... 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual Fees FY2009 Annual FY 2010... Decommissioning Test and Research Reactors (Non-power 87,600 81,700 Reactors) High Enriched Uranium Fuel Facility...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Office of New Reactors, or Director, Office of Nuclear Reactor Regulation, as appropriate shall publish... Nuclear Reactor Regulation, as appropriate shall publish in the Federal Register a determination as to... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Office of Nuclear Reactor Regulation, as appropriate shall publish in the Federal Register a notice of... Director, Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate shall... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Office of Nuclear Reactor Regulation, as appropriate shall publish in the Federal Register a notice of... Director, Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate shall... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR...
Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza
2015-01-01
A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.
Benchmark tests of JENDL-3.2 for thermal and fast reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takano, Hideki; Akie, Hiroshi; Kikuchi, Yasuyuki
1994-12-31
Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k{sub eff} and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k{sub eff} reactivity worths of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as...) The Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation... of Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the...
Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi
Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.
Li, Wenping; Zhu, Xuefeng; Chen, Shuguang; Yang, Weishen
2016-07-18
The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2 /N2 and H2 /CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic-electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2 S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
Deng, Liangwei; Chen, Huijuan; Chen, Ziai; Liu, Yi; Pu, Xiaodong; Song, Li
2009-12-01
The feasibility of a new flowchart describing simultaneous hydrogen sulfide removal from biogas and nitrogen removal from wastewater was investigated. It took 30 days for the reactor inoculated with aerobic sludge to attain a removal rate of 60% for H(2)S and NO(x)-N simultaneously. It took 34 and 48 days to attain the same removal rate for the reactor without inoculated sludge and the reactor inoculated with anaerobic sludge respectively. The reactor without inoculated sludge still operated successfully, despite requiring a slightly longer startup time. The packing material was capable of enhancing the removal efficiency of reactors. Based on the concentration of NO(x)-N and H(2)S in the effluent, the loading rate and the ability of the system to resist shock loading, the performance of the reactor filled with hollow plastic balls was greater than that of the reactor filled with elastic packing and the reactor filled with Pall rings.
Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun
2011-11-30
In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.
Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana
2012-01-01
An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
77 FR 41670 - Definition of Terms
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... cryptography'', 2. On page 642, add the term ``Explosives'', 3. On page 650, add the term ``Nuclear reactor... ``Commerce Control List''. * * * * * Nuclear reactor. (Cat 0 and 2) includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the...
Degradation of aqueous phenol solutions by coaxial DBD reactor
NASA Astrophysics Data System (ADS)
Dojcinovic, B. P.; Manojlovic, D.; Roglic, G. M.; Obradovic, B. M.; Kuraica, M. M.; Puric, J.
2008-07-01
Solutions of 2-chlorophenol, 4-chlorophenol and 2,6-dichlorophenol in bidistilled and water from the river Danube were treated in plasma reactor. In this reactor, based on coaxial dielectric barrier discharge at atmospheric pressure, plasma is formed over a thin layer of treated water. After one pass through the reactor, starting chlorophenols concentration of 20 mg/l was diminished up to 95 %. Kinetics of the chlorophenols degradation was monitored by High Pressure Liquid Chromatography method (HPLC).
An Analysis of Warfighter Sleep, Fatigue, and Performance on the USS Nimitz
2014-09-01
35 1. Chernobyl Reactor 4 .............................................................. 36 2...deprivation and fatigue can be disastrous, as demonstrated by the accidents at Chernobyl Reactor 4, Three Mile Island Unit 2, Bhopal Union Carbide, and the...deprivation and fatigue can be disastrous, as demonstrated by the accidents at Chernobyl Reactor 4, Three Mile Island Unit 2, Bhopal Union Carbide, and
Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream
Comolli, Alfred G.; McLean, Joseph B.
1989-01-01
A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).
Latest progress from the Daya Bay reactor neutrino experiment
NASA Astrophysics Data System (ADS)
Wang, Zhe;
2016-05-01
Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.
Development of a Novel Catalytic Membrane Reactor for Heterogeneous Catalysis in Supercritical CO2
Islam, Nazrul M.; Chatterjee, Maya; Ikushima, Yutaka; Yokoyama, Toshiro; Kawanami, Hajime
2010-01-01
A novel type of high-pressure membrane reactor has been developed for hydrogenation in supercritical carbon dioxide (scCO2). The main objectives of the design of the reactor are the separate feeding of hydrogen and substrate in scCO2 for safe reactions in a continuous flow process, and to reduce the reaction time. By using this new reactor, hydrogenation of cinnamaldehyde into hydrocinnamaldehyde has been successfully carried out with 100% selectivity at 50 °C in 10 MPa (H2: 1 MPa, CO2: 9 MPa) with a flow rate of substrate ranging from 0.05 to 1.0 mL/min. PMID:20162008
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tanaka, Yasuo
2002-08-01
A wastewater treatment system employing a UASB reactor in temperate regions requires biogas as a heat source for the UASB reactor during low temperature seasons. In this case, removal of H2S in the biogas by means of a scrubber before burning is necessary in order to prevent the boilers from corroding. Heating of the UASB reactor is, however, unnecessary in a warm season, and the scrubber and biogas become useless. Methane-dependent water quality improvement using the scrubber and biogas would be one way to use them efficiently during the warm season. The possible dual-purpose use of a packed-bed reactor was examined, with one of its uses being the scrubbing of biogas during the cold season and the other being the methane-dependent improvement of effluent water quality during the warm season. A bench scale packed-bed filled with plastic latticed-ring media was installed in a livestock wastewater treatment plant consisting of a UASB reactor and a trickling filter for post-treatment. The packed-bed was operated with biogas flowing at a superficial velocity of 0.14-0.39 m h(-1) and the hydraulic loading of trickling filter effluent sprayed onto the media 9.4-26.1 m3 m2 day(-1). H2S in the biogas from the UASB reactor was reduced from 1,200-2,500 ppm to less than 2 ppm by the reactor. Methane-dependent water quality improvement was examined using a laboratory scale reactor to which methane and/or air was supplied from the bottom, while plant effluent was spread from the top of the reactor. When the mixture gas of methane and air (volume ratio 1:3) was added to the reactor, biofilm grew on the surface of the media. Accompanying this growth, ammonium and phosphate in the spread water decreased, probably due to assimilation by the methane-oxidizing bacteria. Though assimilation activity dropped after the accumulation of biomass, it could be reactivated by washing out the excess biomass. Periodical backwash at a rate of more than once a week seemed to efficiently maintain the removal activity. The dark brown color of the wastewater could be also reduced in concert with methane oxidation. It seemed that methane-oxidizing bacteria degraded color-causing compounds. These results suggest that the packed-bed reactor is useful for both H2S purification of biogas and methane-dependent effluent water quality improvement.
NASA Astrophysics Data System (ADS)
Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.
2018-01-01
Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.
NASA Astrophysics Data System (ADS)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.
2014-12-01
We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.
10 CFR 54.25 - Report of the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Report of the Advisory Committee on Reactor Safeguards. 54.25 Section 54.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF... Reactor Safeguards. Each renewal application will be referred to the Advisory Committee on Reactor...
10 CFR 54.25 - Report of the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Report of the Advisory Committee on Reactor Safeguards. 54.25 Section 54.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF... Reactor Safeguards. Each renewal application will be referred to the Advisory Committee on Reactor...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... other time as may be specified. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office..., will rule whether an application should be denied by the Director, Office of Nuclear Reactor Regulation...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... other time as may be specified. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office..., will rule whether an application should be denied by the Director, Office of Nuclear Reactor Regulation...
Cavity temperature and flow characteristics in a gas-core test reactor
NASA Technical Reports Server (NTRS)
Putre, H. A.
1973-01-01
A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.
Status report on the fusion breeder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1980-12-12
The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW m/sup -2/, and the hybrid should cost lessmore » than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are unusually rapid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... power reactors. (a) In the case of an application under subpart F of part 52 of this chapter for a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... power reactors. (a) In the case of an application under subpart F of part 52 of this chapter for a...
Pawar, Sudhanshu S; Vongkumpeang, Thitiwut; Grey, Carl; van Niel, Ed Wj
2015-01-01
Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming potential of pure and co-cultures of Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor owensensis in continuously stirred tank reactors (CSTR) and up-flow anaerobic (UA) reactors. We also evaluate biofilms as a means to retain biomass in the reactor and its influence on Q H2. Moreover, we explore the factors influencing the formation of biofilm. Co-cultures of C. saccharolyticus and C. owensensis form substantially more biofilm than formed by C. owensensis alone. Biofilms improved substrate conversion in both of the reactor systems, but improved the Q H2 only in the UA reactor. When grown in the presence of each other's culture supernatant, both C. saccharolyticus and C. owensensis were positively influenced on their individual growth and H2 production. Unlike the CSTR, UA reactors allowed retention of C. saccharolyticus and C. owensensis when subjected to very high substrate loading rates. In the UA reactor, maximum Q H2 (approximately 20 mmol · L(-1) · h(-1)) was obtained only with granular sludge as the carrier material. In the CSTR, stirring negatively affected biofilm formation. Whereas, a clear correlation was observed between elevated (>40 μM) intracellular levels of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and biofilm formation. In co-cultures C. saccharolyticus fortified the trade of biofilm formation by C. owensensis, which was mediated by elevated levels of c-di-GMP in C. owensensis. These biofilms were effective in retaining biomass of both species in the reactor and improving Q H2 in a UA reactor using granular sludge as the carrier material. This concept forms a basis for further optimizing the Q H2 at laboratory scale and beyond.
10 CFR 140.52 - Indemnity agreements.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) authorizing the licensee to operate the nuclear reactor involved; or (2) The effective date of the license... material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after... 10 Energy 2 2014-01-01 2014-01-01 false Indemnity agreements. 140.52 Section 140.52 Energy NUCLEAR...
10 CFR 140.52 - Indemnity agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) authorizing the licensee to operate the nuclear reactor involved; or (2) The effective date of the license... material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after... 10 Energy 2 2010-01-01 2010-01-01 false Indemnity agreements. 140.52 Section 140.52 Energy NUCLEAR...
Composting of 4-nonylphenol-contaminated river sediment with inocula of Phanerochaete chrysosporium.
Huang, Danlian; Qin, Xingmeng; Xu, Piao; Zeng, Guangming; Peng, Zhiwei; Wang, Rongzhong; Wan, Jia; Gong, Xiaomin; Xue, Wenjing
2016-12-01
A composting study was performed to investigate the degradation of 4-nonylphenol (4-NP) in river sediment by inoculating Phanerochaete chrysosporium (Pc). Pc was inoculated into composting Reactor A, C and D, while Reactor B without inocula was used as control. The results showed that composting with Pc accelerated the degradation of 4-NP, increased the catalase and polyphenol oxidase enzyme activities in contaminated sediment. The dissipation half-life (t 1/2 ) of 4-NP in Reactor A, C and D with inocula of Pc were 2.079, 2.558, 2.424days, while in Reactor B without inocula of Pc it was 3.239days, respectively. Correlation analysis showed that the contents of 4-NP in sediment in Reactor A and D were negatively correlated with the actives of laccase, whereas no obvious correlation was observed in Reactor B and C. All these findings also indicated that Pc enhanced the maturity of compost, and the best composting C/N ratio was 25.46:1. Copyright © 2016 Elsevier Ltd. All rights reserved.
New results from RENO and future RENO-50 project
NASA Astrophysics Data System (ADS)
Kim, S. B.
2017-07-01
RENO (Reactor Experiment for Neutrino Oscillation) has obtained a more precise value of the smallest mixing angle θ_{13} and the first result on neutrino squared-mass difference \\vertΔ m_{ee}^2\\vert from an energy- and baseline-dependent disappearance of reactor electron antineutrinos (overline{ν}_e) using 500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured between two identical far and near detectors, we obtain sin^2 2 θ_{13} = 0.082 ± 0.009({stat.}) ± 0.006({syst.}) and \\vertΔ m_{ee}^2\\vert =[2.62_{-0.23}^{+0.21}({stat.}) _{-0.13} ^{+0.12}({syst.})]× 10^{-3} eV2. An excess of reactor antineutrinos near 5MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A future reactor experiment of RENO-50 is proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ_{12} , Δ m_{21}^2 , and \\vertΔ m_{ee}^2\\vert.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.
2016-08-31
Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. Themore » objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.« less
Ionescu, Danny; Buchmann, Bettina; Heim, Christine; Häusler, Stefan; de Beer, Dirk; Polerecky, Lubos
2014-01-01
If O2 is available at circumneutral pH, Fe2+ is rapidly oxidized to Fe3+, which precipitates as FeO(OH). Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe2+-rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe2+ concentrations (0.9 μM vs. 26 μM) in the Äspö Hard Rock Laboratory (HRL), Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe2+-poor reactors were encrusted in iron, whereas those in the Fe2+-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe2+-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe2+ concentrations. Measurements with enrichment cultures showed that cyanobacteria from the Fe2+-rich environment increased their photosynthesis with increasing Fe2+ concentrations, whereas those from the low Fe2+ environment were inhibited at Fe2+ > 5 μM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe2+-rich reactor were not exposed to significant Fe2+ concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe2+-rich environments forms a protective zone where Fe2+ precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations. PMID:25228899
1984-08-01
energy-savIng propulsion systems for tracked all- -terrain vehicles with extremely high mobility. Mong many proposed idea, Sthoeof hybrid -electric...propulsion system are dominant. Hybrid -electric propulsion system are hybrids In which at least one of the energy stores, sources or convertors can...Aer’teed b*.of I F~ Po ’edfJr* dema. 1046 Modern newly designed energy-saving hybrid -electric propulsion systems work on tracked all-terrain vehicles are
Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E
2009-10-01
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.
Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D
2014-01-01
Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.
A study on using fireclay as a biomass carrier in an activated sludge system.
Tilaki, Ramazan Ali Dianati
2011-01-01
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufacturing plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l(-1), and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 3,000 mg l(-1) and in the batch mode was 2,400 mg l(-1). The attached biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 1,500 mg l(-1) and in the batch mode was 980 mg l(-1). Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.
Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.
Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua
2013-10-15
To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling residence-time distribution in horizontal screw hydrolysis reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Circulating moving bed system for CO.sub.2 separation, and method of same
Elliott, Jeannine Elizabeth; Copeland, Robert James
2016-12-27
A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.
Modeling residence-time distribution in horizontal screw hydrolysis reactors
Sievers, David A.; Stickel, Jonathan J.
2017-10-12
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors.
Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Ødegaard, Hallvard
2017-02-01
The present paper reports the results of a nitrous oxide (N 2 O) production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the University of Cape Town layout for biological phosphorous removal. Gaseous and liquid samples were collected in order to measure the gaseous as well as the dissolved concentration of N 2 O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N 2 O was, however, also found in the anaerobic reactor, thus indicating a probable occurrence of the denitrifying phosphate accumulating organism activity. The highest N 2 O fluxes were emitted from the aerated reactors (3.09 g N 2 ON m -2 h -1 and 9.87 g N 2 ON m -2 h -1 , aerobic and MBR tank, respectively). The emission factor highlighted that only 1% of the total treated nitrogen was emitted from the pilot plant. Furthermore, the measured N 2 O concentrations in the permeate flow were comparable with other reactors. Nitrous oxide mass balances outlined a moderate production also in the MBR reactor despite the low hydraulic retention time. On the other hand, the mass balance showed that in the aerobic reactor a constant consumption of nitrous oxide (up to almost 15 mg N 2 O h -1 ) took place, due to the high amount of stripped gas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on June 4, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on June 23, 2011, Room T-2B3, 11545 Rockville Pike, Rockville...
75 FR 66168 - Seeks Qualified Candidates for the Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... NUCLEAR REGULATORY COMMISSION Seeks Qualified Candidates for the Advisory Committee on Reactor... Reactor Safeguards (ACRS). Submit r[eacute]sum[eacute]s to Ms. Brandi Hamilton, ACRS, Mail Stop T2E-26, U... of existing and proposed nuclear power plants and on the adequacy of proposed reactor safety...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on February 6, 2013, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on December 15, 2011, Room T-2B1, 11545 Rockville Pike...
10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on January 16, 2013, Room T-2B3, 11545 Rockville Pike...
10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on May 22, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on November 30, 2011, Room T-2B1, 11545...
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the Acrs Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on June 17, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on January 16, 2013, Room T-2B3, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on September 19, 2013, Room T-2B3, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on January 14, 2014, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on December 4, 2013, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on May 10, 2011, Room T-2B1, 11545 Rockville Pike, Rockville...
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry Y. S.
2015-01-31
This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, F.C.; Gray, D.D.; Hyndman, J.R.
The thermal, ecological, and social impacts of a 40-reactor NEC are compared to impacts from four 10-reactor NECs and ten 4-reactor power plants. The comparison was made for surrogate sites in western Tennessee. The surrogate site for the 40-reactor NEC is located on Kentucky Lake. A layout is postulated for ten clusters of four reactors each with 2.5-mile spacing between clusters. The plants use natural-draft cooling towers. A transmission system is proposed for delivering the power (48,000 MW) to five load centers. Comparable transmission systems are proposed for the 10-reactor NECs and the 4-reactor dispersed sites delivering power to themore » same load centers. (auth)« less
NASA Technical Reports Server (NTRS)
Jefferies, K. S.; Tew, R. C.
1974-01-01
A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum.
Botta, Lívia Silva; Ratti, Regiane Priscila; Sakamoto, Isabel Kimiko; Ramos, Lucas Rodrigues; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio
2016-12-01
In this study, a microbial consortium from an acid-treated rumen fluid was used to improve the yields of H 2 production from paper residues in batch reactors. The anaerobic batch reactors, which contained paper and cellulose, were operated under three conditions: (1) 0.5 g paper/L, (2) 2 g paper/L, and (3) 4 g paper/L. Cellulase was added to promote the hydrolysis of paper to soluble sugars. The H 2 yields were 5.51, 4.65, and 3.96 mmol H 2 /g COD, respectively, with substrate degradation ranging from 56 to 65.4 %. Butyric acid was the primary soluble metabolite in the three reactors, but pronounced solventogenesis was detected in the reactors incubated with increased paper concentrations (2.0 and 4.0 g/L). A substantial prevalence of Clostridium acetobutylicum (99 % similarity) was observed in the acid-treated rumen fluid, which has been recognized as an efficient H 2 -producing strain in addition to ethanol and n-butanol which were also detected in the reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballagny, A.
1997-08-01
The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (exceptmore » if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Powers, Jeffrey J.; Mueller, Don
In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy researchmore » and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.« less
International Research Reactor Decommissioning Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopando, Leonardo; Warnecke, Ernst
2008-01-15
Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less
Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins
Hui Pan; Todd F. Shupe; Chung-Yun Hse
2008-01-01
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three-necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac-type liquefied wood/phenol/...
NASA Astrophysics Data System (ADS)
Ilham, Muhammad; Su'ud, Zaki
2017-01-01
Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.
Khanitchaidecha, W; Koshy, P; Kamei, T; Shakya, M; Kazama, F
2013-01-01
A drinking water supply system operates at Chyasal (in the Kathmandu Valley, Nepal) for purifying the groundwater that has high levels of ammonium nitrogen (NH4-N). However, high NO3-N concentrations were seen in the water after treatment. To further improve the quality of the drinking water, two types of attached growth reactors were developed for the purification system: (i) a hydrogenotrophic denitrification (HD reactor) and (ii) a concurrent reactor with anammox and hydrogenotrophic denitrification (AnHD reactor). For the HD reactor fed by water containing NO3-N, the denitrification efficiency was high (95-98%) for all NO3-N feed rates (20-40 mg/L). The nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N) concentrations in the effluent were ∼0.5 mg/L. On the other hand, the AnHD reactor fed with water containing NH4-N and NO2-N was operated under varying flow rates of H2(30-70 mL/min) and intermittent supply periods (1-2 h). The efficiency of the anammox process was found to increase with decreasing H2flow rates or with increasing intermittency of the H2supply, while the efficiency of denitrification decreased under these conditions. For the optimal condition of 1.5 h intermittent H2supply, the anammox and denitrification efficiencies of the AnHD reactor reached 80% and 42%, respectively, while the concentrations of both NH4-N and NO2-N in the effluent were <1.0 mg/L, and no NO3-N was detected. From the experimental results, it is clear that both HD and AnHD reactors can function as efficient and critical units of the water purification system.
Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor
NASA Astrophysics Data System (ADS)
Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi
2017-03-01
A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki; Anshari, Rio
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Su'ud, Zaki; Anshari, Rio
2012-06-01
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Materials, Metallurgy And Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy and Reactor Fuels will hold a meeting on April 6, 2011, Room T-2B3, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on June 21, 2011, Room T-2B1, 11545 Rockville Pike, Rockville...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Amounts of financial protection for certain reactors. 140... reactors. (a) Each licensee is required to have and maintain financial protection: (1) In the amount of $1,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Amounts of financial protection for certain reactors. 140... reactors. (a) Each licensee is required to have and maintain financial protection: (1) In the amount of $1,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on October 21, 2011, Room T-2B1, 11545 Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on May 26, 2011, Room T-2B1, 11545 Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on November 6, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2012 CFR
2012-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in the...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2014 CFR
2014-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
Scott, C.D.; Davison, B.H.
1993-09-28
A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.
Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro
2018-04-05
A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.
2015-03-01
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.
Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Syutsubo, Kazuaki
2011-01-01
A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Barnett, Bill; Stanley, Christine M.; Junaedi, Christian; Vilekar, Saurabh A.; Kent, Ryan
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a RWGS reactor containing Incofoam(TradeMark) catalyst and designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith(TradeMark) technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The Microlith(TradeMark) RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with the Incofoam(TradeMark) RWGS reactor. Separately, in 2015, a fully integrated demonstration of an S-Bosch system was conducted. In an effort to mitigate risk, a second integrated test was conducted to evaluate the effect of membrane failure on a closed-loop Bosch system. Here, we report and discuss the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level. 1
NASA Astrophysics Data System (ADS)
Kim, Soo-Bong
2016-07-01
RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat.)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.
Pyrolysis of furan in a microreactor
NASA Astrophysics Data System (ADS)
Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney
2013-09-01
A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.
Enhanced photodegradation of phenolic compounds by adding TiO2 to soil in a rotary reactor.
Wang, Jing-xian; Chen, Shuo; Quan, Xie; Zhao, Hui-min; Zhao, Ya-zhi
2006-01-01
Photodegradation of pentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.
NASA Astrophysics Data System (ADS)
Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu
2016-08-01
The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.
Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu
2016-08-22
The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured (134)Cs/(137)Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of (134)Cs/(137)Cs are different in reactor units owing to fuel burnup differences, the (134)Cs/(137)Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.
Kim, Saewon; Cho, Hyekyung; Joo, Hyunku; Her, Namguk; Han, Jonghun; Yi, Kwangbok; Kim, Jong-Oh; Yoon, Jaekyung
2017-08-15
In this study, the performances of photocatalytic reactors of the small and scale-up rotating and flat types were evaluated to investigate the treatment of new emerging contaminants such as bisphenol A (BPA), 17α-ethynyl estradiol (EE2), and 17β-estradiol (E2) that are known as endocrine disrupting compounds (EDCs). In the laboratory tests with the small-scale rotating and flat reactors, the degradation efficiencies of the mixed EDCs were significantly influenced by the change of the hydraulic retention time (HRT). In particular, considering the effective two-dimensional reaction area with light and nanotubular TiO 2 (NTT) on a Ti substrate, the rotating reactors showed the more effective performance than the flat reactor because the degradation efficiencies are similar in the small effective area. In addition, the major parameters affecting the photocatalytic activities of the NTT were evaluated for the rotating reactors according to the effects of single and mixed EDCs, the initial concentrations of the EDCs, the UV intensity, and dissolved oxygen. In the extended outdoor tests with the scale-up photocatalytic reactors and NTT, it was confirmed from the four representative demonstrations that an excellent rotating-reactor performance is consistently shown in terms of the degradation of the target pollutants under solar irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.
Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu
2016-01-01
The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12–21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2. PMID:27546490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-11-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less
NASA Astrophysics Data System (ADS)
Bosch, Timo; Carré, Maxime; Heinzel, Angelika; Steffen, Michael; Lapicque, François
2017-12-01
A novel reactor of a natural gas (NG) fueled, 1 kW net power solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) is experimentally investigated. The reactor operates as pre-reformer, is of the type radial reactor with centrifugal z-flow, has the shape of a hollow cylinder with a volume of approximately 1 L and is equipped with two different precious metal wire-mesh catalyst packages as well as with an internal electric heater. Reforming investigations of the reactor are done stand-alone but as if the reactor would operate within the total SOFC system with AOGR. For the tests presented here it is assumed that the SOFC system runs on pure CH4 instead of NG. The manuscript focuses on the various phases of reactor operation during the startup process of the SOFC system. Startup process reforming experiments cover reactor operation points at which it runs on an oxygen to carbon ratio at the reactor inlet (ϕRI) of 1.2 with air supplied, up to a ϕRI of 2.4 without air supplied. As confirmed by a Monte Carlo simulation, most of the measured outlet gas concentrations are in or close to equilibrium.
Upadhyaya, Giridhar; Clancy, Tara M; Snyder, Kathryn V; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde
2012-03-15
Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3- was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p>0.05) and arsenic concentrations were reduced from approximately 200 μg/L to below 20 μg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Roadmap of Innovative Nuclear Energy System
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.
Instability study for LOFT for L2-1, L2-2, and L2-3 pretest steady-state operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eide, S.A.
The results are presented of a thermal-hydrodynamic flow instability study of the LOFT reactor for the L2-1, L2-2, and L2-3 pretest steady-state operating conditions. Comparison is made between the LOFT reactor and a typical PWR, and the effects on stability of differences in operating parameters and geometry are discussed. Results indicate that the LOFT reactor will be thermal-hydrodynamically stable for nominal and worst case operating conditions. The study supports the LOFT Experimental Safety Analyses for the L2-1, L2-2, and L2-3 tests.
Solar photocatalytic disinfection with immobilised TiO(2) at pilot-plant scale.
Sordo, Carlos; Van Grieken, Rafael; Marugán, Javier; Fernández-Ibáñez, Pilar
2010-01-01
The photocatalytic disinfection efficiency has been investigated for two immobilized TiO(2) catalytic systems (wall reactor and fixed-bed reactor) in a solar pilot plant. Their performances have been compared with the use of a slurry reactor and the solar disinfection without catalyst. The use of photocatalytic TiO(2) wall reactors does no show clear benefits over the solar disinfection process in the absence of catalyst. The reason is that the efficiency of the solar disinfection is so high that the presence of titania in the reactor wall reduces the global efficiency due to the competition for the absorption of photons. As expected, the maximum efficiency was shown by the slurry TiO(2) reactor, due to the optimum contact between bacteria and catalyst. However, it is noticeable that the use of the fixed-bed reactor leads to inactivation rate quite close to that of the slurry, requiring comparable accumulated solar energy of about 6 kJ L(-1) to achieve a 6-log decrease in the concentration of viable bacteria and allowing a total disinfection of the water (below the detection limit of 1 CFU mL(-1)). Not only the high titania surface area of this configuration is responsible for the bacteria inactivation but the important contribution of the mechanical stress has to be considered. The main advantage of the fixed-bed TiO(2) catalyst is the outstanding stability, without deactivation effects after ten reaction cycles, being readily applicable for continuous water treatment systems.
Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.
First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set relatively well, with the (110) surface being more active at higher temperaures; in contrast, for the other experimental data set, our reactor simulations achieve surprisingly and perhaps fortuitously good agreement with the activity and phenomenological pressure dependence when it is assumed that the (111) facet is the only active facet present. Lastly, the active phase of catalytic CO oxidation over RuO 2 remains unsettled, but the present study presents proof of principle (and progress) toward more accurate multiscale modeling from electrons to reactors and new simulation results.« less
Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2
Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.; ...
2018-04-20
First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set relatively well, with the (110) surface being more active at higher temperaures; in contrast, for the other experimental data set, our reactor simulations achieve surprisingly and perhaps fortuitously good agreement with the activity and phenomenological pressure dependence when it is assumed that the (111) facet is the only active facet present. Lastly, the active phase of catalytic CO oxidation over RuO 2 remains unsettled, but the present study presents proof of principle (and progress) toward more accurate multiscale modeling from electrons to reactors and new simulation results.« less
Martin, Stephen B.; Schauer, Elizabeth S.; Blum, David H.; Kremer, Paul A.; Bahnfleth, William P.; Freihaut, James D.
2017-01-01
We developed, characterized, and tested a new dual-collimation aqueous UV reactor to improve the accuracy and consistency of aqueous k-value determinations. This new system is unique because it collimates UV energy from a single lamp in two opposite directions. The design provides two distinct advantages over traditional single-collimation systems: 1) real-time UV dose (fluence) determination; and 2) simple actinometric determination of a reactor factor that relates measured irradiance levels to actual irradiance levels experienced by the microbial suspension. This reactor factor replaces three of the four typical correction factors required for single-collimation reactors. Using this dual-collimation reactor, Bacillus subtilis spores demonstrated inactivation following the classic multi-hit model with k = 0.1471 cm2/mJ (with 95% confidence bounds of 0.1426 to 0.1516). PMID:27498232
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Dominques, Jesus A.
2012-01-01
The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.
Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes
NASA Astrophysics Data System (ADS)
Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.
2017-02-01
International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.
NASA Astrophysics Data System (ADS)
Garavaglia, F.; Seyve, E.; Gottardi, F.; Le Lay, M.; Gailhard, J.; Garçon, R.
2014-12-01
MORDOR is a conceptual hydrological model extensively used in Électricité de France (EDF, French electric utility company) operational applications: (i) hydrological forecasting, (ii) flood risk assessment, (iii) water balance and (iv) climate change studies. MORDOR is a lumped, reservoir, elevation based model with hourly or daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt and routing. The model has been intensively used at EDF for more than 20 years, in particular for modeling French mountainous watersheds. In the matter of parameters calibration we propose and test alternative multi-criteria techniques based on two specific approaches: automatic calibration using single-objective functions and a priori parameter calibration founded on hydrological watershed features. The automatic calibration approach uses single-objective functions, based on Kling-Gupta efficiency, to quantify the good agreement between the simulated and observed runoff focusing on four different runoff samples: (i) time-series sample, (I) annual hydrological regime, (iii) monthly cumulative distribution functions and (iv) recession sequences.The primary purpose of this study is to analyze the definition and sensitivity of MORDOR parameters testing different calibration techniques in order to: (i) simplify the model structure, (ii) increase the calibration-validation performance of the model and (iii) reduce the equifinality problem of calibration process. We propose an alternative calibration strategy that reaches these goals. The analysis is illustrated by calibrating MORDOR model to daily data for 50 watersheds located in French mountainous regions.
Radiation hardening of optical fibers and fiber sensors for space applications: recent advances
NASA Astrophysics Data System (ADS)
Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.
2017-11-01
In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.
Industrial Program of Waste Management - Cigeo Project - 13033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butez, Marc; Bartagnon, Olivier; Gagner, Laurent
2013-07-01
The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less
Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael
2016-01-01
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less
Bioreactor design studies for a hydrogen-producing bacterium.
Wolfrum, Edward J; Watt, Andrew S
2002-01-01
Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.
NASA Astrophysics Data System (ADS)
Kim, Keunjoo; Noh, Sam Kyu
2000-08-01
The thermal process of the growth of GaN-based semiconductors was analysed for two home-made horizontal reactors. The reactors were designed to make the ammonia gas flow in the opposite direction to the main gas flow. For two horizontal reactors different in dimension, the low Reynolds numbers of Re = 2.94 and 4.15 were chosen for stable laminar flow and the Rayleigh numbers governing the heat convection were optimized to the values of Ra = 6.0 and 76.2, respectively. The qualities of GaN and InGaN films were characterized by Hall effect measurement, x-ray diffraction and photoluminescence and compared with respect to the reactor dependency.
Pilot plant operation of a nonadiabatic methanation reactor. [15 refs. ; Raney nickel catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schehl, R.R.; Pennline, H.W.; Strakey, J.P.
The design and operation of a pilot plant scale hybrid methanation reactor is discussed. The hybrid methanator, utilizing a finned, Raney nickel coated insert, consolidates features of the tube-wall and hot-gas-recycle methanation reactors. Data are presented from four tests lasting from 3/sup 1///sub 2/ weeks to three months. Topics discussed include conversion, product yields, catalyst properties, and reactor temperature profiles. A one-dimensional mathematical model capable of explaining reactor performance trends is employed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor (US-APWR) will hold a meeting on July 9-10, 2012, Room T-2B3, 11545...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on August 18, 2011, Room T-2B3, 11545 Rockville Pike...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS, Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on January 17, 2013, Room T-2B1, 11545 Rockville Pike...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on January 12, 2011, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on November 22, 2013, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The meeting will be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on July 9, 2013, Room T-2B3, 11545 Rockville Pike, Rockville, Maryland. The meeting will be open to...
REACTOR SERVICES BUILDING, TRA635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING ...
REACTOR SERVICES BUILDING, TRA-635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING AREA AND LABORATORY. CAMERA ON FIRST FLOOR FACING NORTH TOWARD MTR BUILDING. MOCK-UP AREA WAS TO THE RIGHT OF VIEW. INL NEGATIVE NO. HD46-10-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
Maugans, Clayton B; Akgerman, Aydin
2003-01-01
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.
Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor
NASA Astrophysics Data System (ADS)
Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat
2013-08-01
Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.
Gas phase oxidation downstream of a catalytic combustor
NASA Technical Reports Server (NTRS)
Tien, J. S.; Anderson, D. N.
1979-01-01
Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.
Piña-Salazar, E Z; Cervantes, F J; Meraz, M; Celis, L B
2011-01-01
In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.
REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, T.; Beals, D.; Sternat, M.
2011-07-18
Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less
NASA Astrophysics Data System (ADS)
Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.
2017-12-01
The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.
Safety and Regulatory Issues of the Thorium Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian; Worrall, Andrew; Powers, Jeffrey
2014-02-01
Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less
Design of a laboratory scale fluidized bed reactor
NASA Astrophysics Data System (ADS)
Wikström, E.; Andersson, P.; Marklund, S.
1998-04-01
The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.
NASA Astrophysics Data System (ADS)
Shi, Yue
2017-03-01
Background: Recent years have seen considerable effort in associating the shell evolution (SE) for a chain of isotones or isotopes with the underlying nuclear interactions. In particular, it has been fairly well established that the tensor part of the Skyrme interaction is indispensable for understanding certain SE above Z ,N =50 shell closures, as a function of nucleon numbers. Purpose: The purpose of the present work is twofold: (1) to study the effect of deformation due to blocking on the SE above Z ,N =50 shell closures and (2) to examine the optimal parametrizations in the tensor part which gives a proper description of the SE above Z ,N =50 shell closures. Methods: I use the Skyrme-Hartree-Fock-Bogoliubov (SHFB) method to compute the even-even vacua of the Z =50 isotopes and N =50 isotones. For Sb and odd-A Sn isotopes, I perform calculations with a blocking procedure which accounts for the polarization effects, including deformations. Results: The blocking SHFB calculations show that the light odd-A Sb isotopes, with only one valence proton occupying down-sloping Ω =11 /2- and Ω =7 /2+ Nilsson orbits, assume finite oblate deformations. This reduces the energy differences between 11 /2- and 7 /2+ states by about 500 keV for 51Sb56 -66 , bringing the energy-difference curve closer to the experimental one. With une2t1 energy density functional (EDF), which differs from unedf2 parametrization by tensor terms, a better description of the slope of Δ e (π 1 h11 /2-π 1 g7 /2) as a function of neutron number has been obtained. However, the trend of Δ e (π 1 g7 /2-π 2 d5 /2) curve is worse using une2t1 EDF. Δ e (ν 3 s1 /2-ν 2 d5 /2) and Δ e (ν 1 g7 /2-ν 2 d5 /2) curve for N =50 isotones using une2t1 seems to be consistent with experimental data. The neutron SE of Δ e (ν 1 h11 /2-ν 1 g7 /2) and Δ e (ν 1 g7 /2-ν 2 d5 /2) for Sn isotopes are shown to be sensive to αT tensor parameter. Conclusions: Within the Skyrme self-consistent mean-field model, the deformation degree of freedom has to be taken into account for Sb isotopes, N =51 isotones, and odd-A Sn isotopes when discussing variation of quantities like shell gap etc. The tensor terms are important for describing the strong variation of Δ E (Ωπ=11 /2--7 /2+) in Sb isotopes. The SE of 1 /2+ and 7 /2+ states in N =51 isotones may show signature for the existence of tensor interaction. The experimental excitation energies of 11 /2- and 7 /2+ states in odd-A Sn isotopes close to 132Sn give prospects for constraining the αT parameter.
Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz
2011-02-01
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. Copyright © 2010 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
...). The Office of New Reactors and Office of Nuclear Reactor Regulation are revising SRP Section 19.1... of the Code of Federal Regulations (10 CFR), 50.71(h)(1), (h)(2), and (h)(3) for new reactors, (2... searching on http://www.regulations.gov under Docket ID NRC-2012-0113. You may submit comments by the...
Performance of intermittent aeration reactor on NH4-N removal from groundwater resources.
Khanitchaidecha, W; Nakamura, T; Sumino, T; Kazama, F
2010-01-01
To study the effect of intermittent aeration period on ammonium-nitrogen (NH4-N) removal from groundwater resources, synthetic groundwater was prepared and three reactors were operated under different conditions--"reactor A" under continuous aeration, "reactor B" under 6 h intermittent aeration, and "reactor C" under 2 h intermittent aeration. To facilitate denitrification simultaneously with nitrification, "acetate" was added as an external carbon source with step-wise increase from 0.5 to 1.5 C/N ratio, where C stands for total carbon content in the system, and N for NH4-N concentration in the synthetic groundwater. Results show that complete NH4-N removal was obtained in "reactor B" and "reactor C" at 1.3 and 1.5 C/N ratio respectively; and partial NH4-N removal in "reactor A". These results suggest that intermittent aeration at longer interval could enhance the reactor performance on NH4-N removal in terms of efficiency and low external carbon requirement. Because of consumption of internal carbon by the process, less amount of external carbon is required. Further increase in carbon in a form of acetate (1.5 to 2.5 C/N ratios) increases removal rate (represented by reaction rate coefficient (k) of kinetic equation) as well as occurrence of free cells. It suggests that the operating condition at reactor B with 1.3 C/N ratio is more appropriate for long-term operation at a pilot-scale.
Umaña, Oscar; Nikolaeva, Svetlana; Sánchez, Enrique; Borja, Rafael; Raposo, Francisco
2008-10-01
Two laboratory-scale anaerobic fixed bed reactors were evaluated while treating dairy manure at upflow mode and semicontinuous feeding. One reactor was packed with a combination of waste tyre rubber and zeolite (R1) while the other had only waste tyre rubber as a microorganism immobilization support (R2). Effluent quality improved when the hydraulic retention time (HRT) increased from 1.0 to 5.5 days. Higher COD, BOD5, total and volatile solids removal efficiencies were always achieved in the reactor R1. No clogging was observed during the operation period. Methane yield was also a function of the HRT and of the type of support used, and was 12.5% and 40% higher in reactor R1 than in R2 for HRTs of 5.5 and 1.0 days, respectively. The results obtained demonstrated that this type of reactor is capable of operating with dairy manure at a HRT 5 times lower than that used in a conventional reactor.
Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2013-04-01
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra
High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. Themore » result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.« less
Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.
This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less
Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina
2009-06-01
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... processing, the Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor... days. (b)(1) The Director of the Office of New Reactors or the Director of the Office of Nuclear... Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the application is...
Saran, Sarangapany; Arunkumar, Patchaiyappan; Manjari, Gangarapu; Devipriya, Suja P
2018-05-05
Application of pilot-scale slurry-type tubular photocatalytic reactor was tested for the decentralized treatment of actual grey water. The reactors were fabricated by reusing the locally available materials at low cost, operated in batch recycle mode with 25 L of grey water. The influence of operational parameters such as catalysts' concentration, initial slurry pH and addition of H 2 O 2 on COD abatement were optimized. The results show that Ag-decorated TiO 2 showed a two-fold increase in COD abatement than did pure TiO 2 . Better COD abatement was observed under acidic conditions, and addition of H 2 O 2 significantly increases the rate of COD abatement. Within 2 h, 99% COD abatement was observed when the reactor was operated with optimum operational conditions. Silver ion lixiviate was also monitored during the experiment and is five times less than the permissible limits. The catalyst shows good stability even after five cycles without much loss in its photocatalytic activity. The results clearly reveal that pilot-scale slurry tubular solar photocatalytic reactors could be used as a cost-effective method to treat grey water and the resulting clean water could be reused for various non-potable purposes, thus conserving precious water resource. This study favours decentralized grey water treatment and possible scaling up of solar photocatalytic reactor using locally available materials for the potential reuse of treated water.
Evaluation of infrared thermography as a diagnostic tool in CVD applications
NASA Astrophysics Data System (ADS)
Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.
1998-05-01
This research is focused on the feasibility of using infrared temperature measurements on the exterior of a chemical vapor deposition (CVD) reactor to ascertain both real-time information on the operating characteristics of a CVD system and provide data which could be post-processed to provide quantitative information for research and development on CVD processes. Infrared thermography techniques were used to measure temperatures on a horizontal CVD reactor of rectangular cross section which were correlated with the internal gas flow field, as measured with the laser velocimetry (LV) techniques. For the reactor tested, thermal profiles were well correlated with the gas flow field inside the reactor. Correlations are presented for nitrogen and hydrogen carrier gas flows. The infrared data were available to the operators in real time with sufficient sensitivity to the internal flow field so that small variations such as misalignment of the reactor inlet could be observed. The same data were post-processed to yield temperature measurements at known locations on the reactor surface. For the experiments described herein, temperatures associated with approximately 3.3 mm 2 areas on the reactor surface were obtained with a precision of ±2°C. These temperature measurements were well suited for monitoring a CVD production reactor, development of improved thermal boundary conditions for use in CFD models of reactors, and for verification of expected thermal conditions.
CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, J.F.; Stroh, K.R.
1983-01-01
The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less
Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.
Sun, Wenjie; Sun, Mei; Barlaz, Morton A
2016-07-01
Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, R.W.
1982-11-01
This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)
PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.L.
1961-02-01
BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less
10 CFR 100.4 - Communications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Communications. 100.4 Section 100.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.4 Communications. Except where otherwise... Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission...
10 CFR 100.4 - Communications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Communications. 100.4 Section 100.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.4 Communications. Except where otherwise... Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission...
NASA Technical Reports Server (NTRS)
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
24. ARAIII Reactor building ARA608 interior. Camera facing south. Chalk ...
24. ARA-III Reactor building ARA-608 interior. Camera facing south. Chalk marks on wall indicate presence or absence of spot contamination. Ineel photo no. 3-2. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
10 CFR 100.4 - Communications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 100.4 Section 100.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.4 Communications. Except where otherwise...
Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida.
Najar, Ishtiyaq Ahmed; Khan, Anisa B
2013-09-01
In the present study, potential of Eisenia fetida to recycle the different types of fresh water weeds (macrophytes) used as substrate in different reactors (Azolla pinnata reactor, Trapa natans reactor, Ceratophyllum demersum reactor, free-floating macrophytes mixture reactor, and submerged macrophytes mixture reactor) during 2 months experiment is investigated. E. fetida showed significant variation in number and weight among the reactors and during the different fortnights (P <0.05) with maximum in A. pinnata reactor (number 343.3 ± 10.23 %; weight 98.62 ± 4.23 % ) and minimum in submerged macrophytes mixture reactor (number 105 ± 5.77 %; weight 41.07 ± 3.97 % ). ANOVA showed significant variation in cocoon production (F4 = 15.67, P <0.05) and mean body weight (F4 = 13.49, P <0.05) among different reactors whereas growth rate (F3 = 23.62, P <0.05) and relative growth rate (F3 = 4.91, P <0.05) exhibited significant variation during different fortnights. Reactors showed significant variation (P <0.05) in pH, Electrical conductivity (EC), Organic carbon (OC), Organic nitrogen (ON), and C/N ratio during different fortnights with increase in pH, EC, N, and K whereas decrease in OC and C/N ratio. Hierarchical cluster analysis grouped five substrates (weeds) into three clusters-poor vermicompost substrates, moderate vermicompost substrate, and excellent vermicompost substrate. Two principal components (PCs) have been identified by factor analysis with a cumulative variance of 90.43 %. PC1 accounts for 47.17 % of the total variance represents "reproduction factor" and PC2 explaining 43.26 % variance representing "growth factor." Thus, the nature of macrophyte affects the growth and reproduction pattern of E. fetida among the different reactors, further the addition of A. pinnata in other macrophytes reactors can improve their recycling by E. fetida.
SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor
NASA Astrophysics Data System (ADS)
Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.
2016-04-01
Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.
GEODE An electrical energy supply with high availability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertz, J.L.; Gerard, M.J.; Girard, J.
1983-10-01
Project GEODE describes an electrical energy supply characterized by its very high availability. It is to be used in the PTT (French Telephone Company) telephone exchanges and is targeted for an unavailability of better than 10/sup -6/. In order to achieve this performance Merlin Gerin has adopted: a double bus bar architecture, remote controlled electrical equipment, a motor-generator set specifically designed for this project, and computer assisted surveillance. The authors present the overall reliability calculations for this project along with that for energy sources. The E.d.F (French Utility Company) network and the Motor-Generators.
2014-01-01
Background Lignocellulosic biomass is a renewable, naturally mass-produced form of stored solar energy. Thermochemical pretreatment processes have been developed to address the challenge of biomass recalcitrance, however the optimization, cost reduction, and scalability of these processes remain as obstacles to the adoption of biofuel production processes at the industrial scale. In this study, we demonstrate that the type of reactor in which pretreatment is carried out can profoundly alter the micro- and nanostructure of the pretreated materials and dramatically affect the subsequent efficiency, and thus cost, of enzymatic conversion of cellulose. Results Multi-scale microscopy and quantitative image analysis was used to investigate the impact of different biomass pretreatment reactor configurations on plant cell wall structure. We identify correlations between enzymatic digestibility and geometric descriptors derived from the image data. Corn stover feedstock was pretreated under the same nominal conditions for dilute acid pretreatment (2.0 wt% H2SO4, 160°C, 5 min) using three representative types of reactors: ZipperClave® (ZC), steam gun (SG), and horizontal screw (HS) reactors. After 96 h of enzymatic digestion, biomass treated in the SG and HS reactors achieved much higher cellulose conversions, 88% and 95%, respectively, compared to the conversion obtained using the ZC reactor (68%). Imaging at the micro- and nanoscales revealed that the superior performance of the SG and HS reactors could be explained by reduced particle size, cellular dislocation, increased surface roughness, delamination, and nanofibrillation generated within the biomass particles during pretreatment. Conclusions Increased cellular dislocation, surface roughness, delamination, and nanofibrillation revealed by direct observation of the micro- and nanoscale change in accessibility explains the superior performance of reactors that augment pretreatment with physical energy. PMID:24690534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...
2015-03-18
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
NASA Astrophysics Data System (ADS)
Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine
2013-04-01
Whether we talk about safety reasons, energy production or regulation, water resources management is one of EDF's (French hydropower company) main concerns. To meet these needs, since the fifties EDF-DTG operates a hydrometric network that includes more than 350 hydrometric stations. The data collected allow real time monitoring of rivers (hydro meteorological forecasts at points of interests), as well as hydrological studies and the sizing of structures. Ensuring the quality of stream flow data is a priority. A rating curve is an indirect method of estimating the discharge in rivers based on water level measurements. The value of discharge obtained thanks to the rating curve is not entirely accurate due to the constant changes of the river bed morphology, to the precision of the gaugings (direct and punctual discharge measurements) and to the quality of the tracing. As time goes on, the uncertainty of the estimated discharge from a rating curve « gets older » and increases: therefore the final level of uncertainty remains particularly difficult to assess. Moreover, the current EDF capacity to produce a rating curve is not suited to the frequency of change of the stage-discharge relationship. The actual method does not take into consideration the variation of the flow conditions and the modifications of the river bed which occur due to natural processes such as erosion, sedimentation and seasonal vegetation growth. In order to get the most accurate stream flow data and to improve their reliability, this study undertakes an original « dynamic» method to compute rating curves based on historical gaugings from a hydrometric station. A curve is computed for each new gauging and a model of uncertainty is adjusted for each of them. The model of uncertainty takes into account the inaccuracies in the measurement of the water height, the quality of the tracing, the uncertainty of the gaugings and the aging of the confidence intervals calculated with a variographic analysis. These rating curves enable to provide values of stream flow taking into account the variability of flow conditions, while providing a model of uncertainties resulting from the aging of the rating curves. By taking into account the variability of the flow conditions and the life of the hydrometric station, this original dynamic method can answer important questions in the field of hydrometry such as « How many gaugings a year have to be made so as to produce stream flow data with an average uncertainty of X% ? » and « When and in which range of water flow do we have to realize those gaugings ? ». KEY WORDS : Uncertainty, Rating curve, Hydrometric station, Gauging, Variogram, Stream Flow
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
...). Pilgrim is a boiling water nuclear reactor that is owned by Entergy Nuclear and operated by ENO. The... Generating Unit No. 1 (IP1). IP1 is a pressurized water nuclear reactor that is owned by ENIP2 and maintained... nuclear reactors that are owned by ENIP2 and ENIP3, respectively, and operated by ENO. The facilities are...
Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M
2014-01-01
The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Ping; Li, Xiuting; Xiang, Mufei; Zhai, Qian
2007-06-01
By adopting two sequencing batch reactors (SBRs) A and B, nitrate as the substrate, and the intermittent aeration mode, activated sludge was domesticated to enrich aerobic denitrifiers. The pHs of reactor A were approximately 6.3 at DOs 2.2-6.1 mg/l for a carbon source of 720 mg/l COD; the pHs of reactor B were 6.8-7.8 at DOs 2.2-3.0 mg/l for a carbon source of 1500 mg/l COD. Both reactors maintained an influent nitrate concentration of 80 mg/l NO3- -N. When the total inorganic nitrogen (TIN) removal efficiency of both reactors reached 60%, aerobic denitrifier accumulation was regarded completed. By bromthymol blue (BTB) medium, 20 bacteria were isolated from the two SBRs and DNA samples of 8 of these 20 strains were amplified by PCR and processed for 16SrRNA sequencing. The obtained results were analysed by a Blast similarity search of the GenBank database, and constructing a phylogenetic tree for identification by comparison. The 8 bacteria were found to belong to the genera Pseudomonas, Delftia, Herbaspirillum and Comamonas. At present, no Delftia has been reported to be an aerobic denitrifier.
Reactor on-off antineutrino measurement with KamLAND
NASA Astrophysics Data System (ADS)
Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Yoshida, S.; Piepke, A.; Banks, T. I.; Fujikawa, B. K.; Han, K.; O'Donnell, T.; Berger, B. E.; Learned, J. G.; Matsuno, S.; Sakai, M.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.
2013-08-01
The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor ν¯e flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor ν¯e oscillation analysis. The data set also has improved sensitivity for other ν¯e signals, in particular ν¯e’s produced in β-decays from U238 and Th232 within the Earth’s interior, whose energy spectrum overlaps with that of reactor ν¯e’s. Including constraints on θ13 from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of tan2θ12=0.436-0.025+0.029, Δm212=7.53-0.18+0.18×10-5eV2, and sin2θ13=0.023-0.002+0.002. Assuming a chondritic Th/U mass ratio, we obtain 116-27+28 ν¯e events from U238 and Th232, corresponding to a geo ν¯e flux of 3.4-0.8+0.8×106cm-2s-1 at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo ν¯e rate.
Kobayashi, Tsutomu; Tang, Yueqin; Urakami, Toyoshi; Morimura, Shigeru; Kida, Kenji
2014-02-01
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 10(5) tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a full-scale treatment plant using fixed-bed reactors (8 reactors x 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3 x day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Scope. 100.2 Section 100.2 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.2 Scope. The siting requirements contained in this part... and testing reactors pursuant to the provisions of part 50 or part 52 of this chapter. [61 FR 65175...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Scope. 100.2 Section 100.2 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.2 Scope. The siting requirements contained in this part... and testing reactors pursuant to the provisions of part 50 or part 52 of this chapter. [61 FR 65175...
Biogeochemical controls on interactions of microbial iron and sulfate reduction
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Paper, J. M.; Haller, B. R.; Shodunke, G. O.; Marquart, K. A.; Jin, Q.
2016-12-01
Although iron and sulfate reduction are two of the most common microbial electron accepting processes in anoxic settings, the relative influences of environmental factors that guide interactions between each are poorly known. Identifying these factors is a key to predicting how those interactions will respond to future environmental changes. In this study, we used semi-continuous bioreactors to examine the influence of pH, electron donor flux, and sulfate availability. The reactors contained 100 mL of aqueous media and 1 g of marsh sediment amended with goethite (1 mmol). One set of reactors received acidic media (pH 6) while the other set received alkaline media (pH 7.5). Media for both sets of reactors included acetate (0.25 and 1 mM), which served as an electron donor, and sulfate (2.5 mM). We also included sets of sulfate-deficient and acetate-deficient control reactors. We maintained a fluid residence time of 35 days in the reactors by sampling and feeding them every seven days during the 91-day incubation. Our results show that, under the conditions tested, pH had a larger influence on the balance between each reaction than acetate concentration. In acidic reactors, the molar amount of iron reduced exceeded the amount of sulfate reduced by a factor of 3 in reactors receiving media with 0 and 0.25 mM acetate and a factor of 2 in reactors receiving 1 mM acetate. Under alkaline conditions, iron and sulfate were reduced in nearly equal proportions, regardless of influent acetate concentration. Results from sulfate-deficient control reactors show that the presence of sulfate reduction increased the extent of iron reduction in all reactors, but particularly those with alkaline pH. Under acidic conditions, the amount of iron reduced was greater by a factor of 1.2 if sulfate reduction occurred simultaneously than if it did not. Under alkaline conditions, that factor increased to 8.2. Hence, pH influenced the extent to which sulfate reduction promoted iron reduction.
Preliminary plan for testing a thermionic reactor in the Plum Brook Space Power Facility
NASA Technical Reports Server (NTRS)
Haley, F. A.
1972-01-01
A preliminary plan is presented for testing a thermionic reactor in the Plum Brook Space Power Facility (SPF). A technical approach, cost estimate, manpower estimate, and schedule are presented to cover a 2 year full power reactor test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... determination of no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor...
Code of Federal Regulations, 2013 CFR
2013-01-01
... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... determination of no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor...
Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1977-01-01
Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-03-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
Real-time LMR control parameter generation using advanced adaptive synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.W.; Mott, J.E.
1990-01-01
The reactor delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups.more » A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to {plus}/{minus}1{percent}. 5 refs., 7 figs.« less
NASA Technical Reports Server (NTRS)
Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.
1983-01-01
Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-06-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J. R.; Bergeron, A.; Dionne, B.
2015-12-01
BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less
Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J
2013-01-01
Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.
Nuansawan, Nararatchporn; Boonnorat, Jarungwit; Chiemchaisri, Wilai; Chiemchaisri, Chart
2016-06-01
Methane (CH4) and nitrous oxide (N2O) emissions and responsible microorganisms during the treatment of municipal solid waste leachate in two-stage membrane bioreactor (MBR) was investigated. The MBR system, consisting of anaerobic and aerobic stages, were operated at hydraulic retention time (HRT) of 5 and 2.5days in each reactor under the presence and absence of sludge recirculation. Organic and nitrogen removals were more than 80% under all operating conditions during which CH4 emission were found highest under no sludge recirculation condition at HRT of 5days. An increase in hydraulic loading resulted in a reduction in CH4 emission from anaerobic reactor but an increase from the aerobic reactor. N2O emission rates were found relatively constant from anaerobic and aerobic reactors under different operating conditions. Diversity of CH4 and N2O producing microorganisms were found decreasing when hydraulic loading rate to the reactors was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.
D-He-3 spherical torus fusion reactor system study
NASA Astrophysics Data System (ADS)
Macon, William A., Jr.
1992-04-01
This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.
Target-fueled nuclear reactor for medical isotope production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coats, Richard L.; Parma, Edward J.
A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7more » to 21 days.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... Hearing Procedures for Expansion of Spent Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian... 10 Energy 1 2011-01-01 2011-01-01 false Definitions. 2.1105 Section 2.1105 Energy NUCLEAR...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Hearing Procedures for Expansion of Spent Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian... 10 Energy 1 2012-01-01 2012-01-01 false Definitions. 2.1105 Section 2.1105 Energy NUCLEAR...
Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.
Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein
2012-01-01
Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.
TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.
Ferguson, Megan A; Hering, Janet G
2006-07-01
Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally benign method for As(III) oxidation.
Recycled and virgin plastic carriers in hybrid reactors for wastewater treatment.
Paul, Etienne; Wolff, Delmira Beatriz; Ochoa, Juan Carlos; da Costa, Rejane Helena Ribeiro
2007-07-01
The reduction of organic and nitrogen pollution of wastewater was investigated in two hybrid reactors and compared with the reduction obtained by using a conventional activated sludge reactor (ASR) run as a control. Both HR-1 and HR-2 were activated sludge systems where a low-density carrier, P1 (polyethylene) for HR-1 and P2 (recycled plastics) for HR-2, was added. Firstly, the three reactors were operated at 10 days Suspended Solid Retention Time (SRT(SS)), leading to a complete nitrification. Secondly, the SRT(SS) for each reactor was lowered to 3 days. Nitrification was lost for the ASR but remained complete for HR's. Respirometric techniques were used to measure fixed or suspended biomass activities for heterotrophic and autotrophic biomass. More than 90% of the autotrophic activity was found on the supports whatever the SRT(SS) used. The results may underline the role of the carrier geometry or surface characteristics on the autotrophic/heterotrophic microorganism distribution.
Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung
NASA Astrophysics Data System (ADS)
Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.
Briggiler Marcó, Mariángeles; Negro, Antonio Carlos; Alfano, Orlando Mario; Quiberoni, Andrea Del Luján
2017-04-12
The aims of this work were to design and build a photocatalytic reactor (UV-A/TiO 2 ) to study the inactivation of phages contained in bioaerosols, which constitute the main dissemination via phages in industrial environments. The reactor is a close system with recirculation that consists of a stainless steel camera (cubic form, side of 60 cm) in which air containing the phage particles circulates and an acrylic compartment with six borosilicate plates covered with TiO 2 . The reactor is externally illuminated by 20 UV-A lamps. Both compartments are connected by a fan to facilitate the sample circulation. Samples are injected into the camera using two piston nebulizers working in series whereas several methodologies for sampling (impinger/syringe, sampling on photocatalytic plates, and impact of air on slide) were assayed. The reactor setup was carried out using phage B1 (Lactobacillus plantarum), and assays demonstrated a decrease of phage counts of 2.7 log orders after 1 h of photocatalytic treatment. Photonic efficiencies of inactivation were assessed by phage sampling on the photocatalytic plates or by impact of air on a glass slide at the photocatalytic reactor exit. Efficiencies of the same order of magnitude were observed using both sampling methods. This study demonstrated that the designed photocatalytic reactor is effective to inactivate phage B1 (Lb. plantarum) contained in bioaerosols.
The effect of catalyst length and downstream reactor distance on catalytic combustor performance
NASA Technical Reports Server (NTRS)
Anderson, D.
1980-01-01
A study was made to determine the effects on catalytic combustor performance which resulted from independently varying the length of a catalytic reactor and the length available for gas-phase reactions downstream of the catalyst. Monolithic combustion catalysts from three manufacturers were tested in a combustion test rig with no. 2 diesel fuel. Catalytic reactor lengths of 2.5 and 5.4 cm, and downstream gas-phase reaction distances of 7.3, 12.4, 17.5, and 22.5 cm were evaluated. Measurements of carbon monoxide, unburned hydrocarbons, nitrogen oxides, and pressure drop were made. The catalytic-reactor pressure drop was less than 1 percent of the upstream total pressure for all test configurations and test conditions. Nitrogen oxides and unburned hydrocarbons emissions were less than 0.25 g NO2/kg fuel and 0.6 g HC/kg fuel, respectively. The minimum operating temperature (defined as the adiabatic combustion temperature required to obtain carbon monoxide emissions below a reference level of 13.6 g CO/kg fuel) ranged from 1230 K to 1500 K for the various conditions and configurations tested. The minimum operating temperature decreased with increasing total (catalytic-reactor-plus-downstream-gas-phase-reactor-zone) residence time but was independent of the relative times spent in each region when the catalytic-reactor residence time was greater than or equal to 1.4 ms.
Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel
2013-01-01
Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempe, Joy L.; Knudson, Darrell L.
2015-02-01
The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken bymore » these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.« less
VERA Core Simulator methodology for pressurized water reactor cycle depletion
Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane; ...
2017-01-12
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...
2016-12-21
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Brucellosis-reactor goats. 309.14... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have reacted to a test for brucellosis shall not be slaughtered in an official establishment. ...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Brucellosis-reactor goats. 309.14... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have reacted to a test for brucellosis shall not be slaughtered in an official establishment. ...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Brucellosis-reactor goats. 309.14... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have reacted to a test for brucellosis shall not be slaughtered in an official establishment. ...
Explosive demolition of K East Reactor Stack
None
2017-12-09
Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.
Looking East at BottomHalf of Reactor Number One and TopHalf ...
Looking East at Bottom-Half of Reactor Number One and Top-Half of Reactor Number 2 Including Weigh Hopper on Third Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Flat-plate collector research area: Silicon material task
NASA Technical Reports Server (NTRS)
Lutwack, R.
1982-01-01
Silane decomposition in a fluidized-bed reactor (FBR) process development unit (PDU) to make semiconductor-grade Si is reviewed. The PDU was modified by installation of a new heating system to provide the required temperature profile and better control, and testing was resumed. A process for making trichlorosilane by the hydrochlorination of metallurgical-grade Si and silicon tetrachloride is reported. Fabrication and installation of the test system employing a new 2-in.-dia reactor was completed. A process that converts trichlorosilane to dichlorosilane (DCS), which is reduced by hydrogen to make Si by a chemical vapor deposition step in a Siemens-type reactor is described. Testing of the DCS PDU integraled with Si deposition reactors continued. Experiments in a 2-in.-dia reactor to define the operating window and to investigate the Si deposition kinetics were completed.
Heat pipe nuclear reactor for space power
NASA Technical Reports Server (NTRS)
Koening, D. R.
1976-01-01
A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.
NASA Astrophysics Data System (ADS)
Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.
1999-01-01
The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.
Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang
2014-02-01
A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased. Copyright © 2014. Published by Elsevier Ltd.
2017-01-01
We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513
Design test request No. 1263 K Reactor graphite key and VSR channel sleeve test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempf, F.J.
1964-12-10
The objectives of this test were: (1) Determine the coefficient of friction between two adjacent layers of K Reactor graphite at room temperature. (2) Determine the average load required to cause failure of an unirradiated K Reactor side reflector bar, when subjected to tensile loading applied through the reflector keys. (3) Determine the average load at failure and the average deflection at failure of a single VSR channel key when loaded in keyways with clearances equal to those used in original stack construction. (4) Determine the average load and deflection required to break the four K Reactor VSR keys whenmore » loaded simultaneously in both `3-layer` and `7-layer` mockups. Also determine the mode of key failure; i.e., shear, flexure or combined compression and bending. Following these key rupture tests, determine the strength and deflection characteristics of the proposed K Reactor VSR channel sleeve when loaded in a manner identical to that used to fracture the keys. (5) Determine the average load and deflection at failure of both the proposed K Reactor VSR channel sleeves and the proposed C Reactor sleeves when subjected to crushing loads. (6) Determine the extent of damage to the proposed K Reactor VSR channel sleeve when subjected to the following vertical rod loading conditions. (a) Full rod drop in a channel mockup which has been misaligned 2 1/2 inches. (b) Full rod drop in a channel which has been misaligned an amount equal to the maximum flexibility of a `universal` VSR.« less
Catalytic Reactor for Inerting of Aircraft Fuel Tanks
1974-06-01
Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft
Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions
NASA Astrophysics Data System (ADS)
Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.
2016-04-01
This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.
van Lier, J B; Lens, P N; Pol, L W
2001-01-01
Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is applied. Concomitant energy conservation inside the mill results in process water temperatures of 50-60 degrees C. Thermophilic anaerobic treatment complemented with appropriate post-treatment is considered as the most cost-effective solution to meet re-use criteria of the process water and to keep its temperature. In the proposed closed-cycle, the anaerobic treatment step removes the largest fraction of the biodegradable COD and eliminates "S" as H2S from the process stream, without the use of additional chemicals. The anaerobic step is regarded as the only possible location to bleed "S" from the process water cycle. In laboratory experiments, the effect of upward liquid velocity (Vupw) and the specific gas loading rate (Vgas) on the S removal capacity of thermophilic anaerobic bio-reactors was investigated. Acidifying, sulphate reducing sludge bed reactors were fed with partly acidified synthetic paper mill wastewater and were operated at 55 degrees C and pH 6. The reactors were operated at organic loading rates up to 50 g COD.l-1.day-1 at COD/SO4(2-) ratios of 10. The effect of Vupw was researched by comparing the performance of a UASB reactor operated at 1.0 m.h-1 and an EGSB reactor, operated at 6.8 m.h-1. The Vupw had a strong effect on the fermentation patterns. In the UASB reactor, acidification yielded H2, acetate and propionate, leading to an accumulation of reducing equivalents. These were partly disposed of by the production of n-butyrate and n-valerate from propionate. In the EGSB reactor net acetate consumption was observed as well as high volumetric gas (CO2 and CH4) production rates. The higher gas production rates in the EGSB reactor resulted in higher S-stripping efficiencies. The effect of Vgas was further researched by comparing 2 UASB reactors which were sparged with N2 gas at a specific gas loading rate of 30 m3.m-2.day-1. In contrast to the regular UASB reactors, the gas-supplied UASB showed a more stable performance when the organic loading rates were increased. Also, the H2S stripping efficiency was 3-4 times higher in the gas-supplied UASB, reaching values of 67%. Higher values were not obtained owing to the relatively poor sulphate reduction efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less