Sample records for edge control surface

  1. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  2. Numerical study on influence of single control surface on aero elastic behavior of forward-swept wing

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Su, Xinbing; Ma, Binlin; Zhang, Xiaofei

    2017-10-01

    In order to study the influence of elastic forward-swept wing (FSW) with single control surface, the computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling static aero elastic numerical calculation method was adopted for numerical simulation. The effects of the elastic FSW with leading- or trailing-edge control surface on aero elastic characteristics were calculated and analysed under the condition of high subsonic speed. The result shows that, the deflection of every single control surface could change the aero elastic characteristics of elastic FSW greatly. Compared with the baseline model, when leading-edge control surface deflected up, under the condition of small angles of attack, the aerodynamic characteristics was poor, but the bending and torsional deformation decreased. Under the condition of moderate angles of attack, the aerodynamic characteristics was improved, but bending and torsional deformation increased; When leading-edge control surface deflected down, the aerodynamic characteristics was improved, the bending and torsional deformation decreased/increased under the condition of small/moderate angles of attack. Compared with the baseline model, when trailing-edge control surface deflected down, the aerodynamic characteristics was improved. The bending and torsional deformation increased under the condition of small angles of attack. The bending deformation increased under the condition of small angles of attack, but torsional deformation decreases under the condition of moderate angles of attack. So, for the elastic FSW, the deflection of trailing-edge control surface play a more important role on the improvement of aerodynamic and elastic deformation characteristics.

  3. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    PubMed

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  4. Method for a Leading Edge Slat on a Wing of an Aircraft

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2016-01-01

    A method for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  5. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Hu, Haiyan; Zhao, Yonghui

    2013-10-01

    In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.

  6. Real-time edge tracking using a tactile sensor

    NASA Technical Reports Server (NTRS)

    Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.

    1989-01-01

    Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.

  7. Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  8. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses.

    PubMed

    Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P

    2017-03-01

    Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.

  9. Suppression of flutter

    NASA Technical Reports Server (NTRS)

    Nissim, E. (Inventor)

    1973-01-01

    An active aerodynamic control system to control flutter over a large range of oscillatory frequencies is described. The system is not affected by mass, stiffness, elastic axis, or center of gravity location of the system, mode of vibration, or Mach number. The system consists of one or more pairs of leading edge and trailing edge hinged or deformable control surfaces, each pair operated in concert by a stability augmentation system. Torsion and bending motions are sensed and converted by the stability augmentation system into leading and trailing edge control surface deflections which produce lift forces and pitching moments to suppress flutter.

  10. Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function.

    PubMed

    Hu, Haixiang; Zhang, Xin; Ford, Virginia; Luo, Xiao; Qi, Erhui; Zeng, Xuefeng; Zhang, Xuejun

    2016-11-14

    Edge effect is regarded as one of the most difficult technical issues in a computer controlled optical surfacing (CCOS) process. Traditional opticians have to even up the consequences of the two following cases. Operating CCOS in a large overhang condition affects the accuracy of material removal, while in a small overhang condition, it achieves a more accurate performance, but leaves a narrow rolled-up edge, which takes time and effort to remove. In order to control the edge residuals in the latter case, we present a new concept of the 'heterocercal' tool influence function (TIF). Generated from compound motion equipment, this type of TIF can 'transfer' the material removal from the inner place to the edge, meanwhile maintaining the high accuracy and efficiency of CCOS. We call it the 'heterocercal' TIF, because of the inspiration from the heterocercal tails of sharks, whose upper lobe provides most of the explosive power. The heterocercal TIF was theoretically analyzed, and physically realized in CCOS facilities. Experimental and simulation results showed good agreement. It enables significant control of the edge effect and convergence of entire surface errors in large tool-to-mirror size-ratio conditions. This improvement will largely help manufacturing efficiency in some extremely large optical system projects, like the tertiary mirror of the Thirty Meter Telescope.

  11. Aerodynamic analysis of seamless horizontal stabilizer

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Kanimozhi, S.

    2017-05-01

    This project presents an investigative view into the concept of seamless aeroelastic wing and hingeless flexible trailing edge. Wings are designed to provide maximum lift and minimal drag and weight. But with conventional wings where rivets are used and the control surfaces are separately hinged, parasite drag comes into play. This project is about analysing a smooth seamless wing with hinge-less flexible trailing edge. This type of wing reduces the drag considerably and the hinge-less trailing edge leads to a minimal control demand and reduces the noise produced when the aircraft comes for landing. Seamless aeroelastic wing will function as an integrated one piece lifting and control surface. It has been designed to enhance a desirable wing camber for control by deflecting a hinge-less flexible trailing edge part instead of a traditional hinged control surface. This kind of flexible wing can be achieved either by a curved beam and disc actuation mechanism or by piezo-electric materials, whose shape change can be achieved by electricity. The intent of this project is to analyze the effects of introducing the concept of Seamless Wing to the horizontal stabilizer. While the removal of rivets and serrations that hinge the elevators to the stabilizer reduces the overall drag by a reasonable value, the overall concept of a control surface-less stabilizer where the maneuvers are done by deflecting the trailing edge offers better maneuverability.

  12. Gas turbine engine exhaust diffuser including circumferential vane

    DOEpatents

    Orosa, John A.; Matys, Pawel

    2015-05-19

    A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries.

  13. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was the most significant factor for all the contaminants generally detected at less than 1 atom percent, or detected only occasionally (i.e., all but Si, O, and C). Flight control surfaces, including sample backsides not exposed to space radiation or atomic oxygen flux, have accumulated some contamination on flight (compared to laboratory controls), but experimentally, the LDEF exposed surface contamination levels are generally higher for the contaminants Si and O. For most materials analyzed, Si contamination levels were higher on the leading edge surfaces than on the trailing edge surfaces. This was true even for the composite samples where considerable atomic oxygen erosion of the leading edge surfaces was observed by SEM. It is probable that the return flux associated with atmospheric backscatter resulted in enhanced deposition of silicones and other contaminants on the leading edge flight surfaces relative to the trailing edge. Although the Si concentration data suggested greater on-flight deposition of contaminants on the leading edge surfaces, the XPS analyses did not conclusively show different relative total thicknesses of flight deposited contamination for leading and trailing edge surfaces. It is possible that atomic oxygen reactions on the leading edge resulted in greater volatilization of the carbon component of the deposited silicones, effectively 'thinning' the leading edge deposited overlayer. Unlike other materials, exposed polymers such as Kapton and FEP-type Teflon had very low contamination on the leading edge surfaces. SEM evidence showed that undercutting of the contaminant overlayer and damaged polymer layers occurred during atomic oxygen erosion, which would enhance loss of material from the exposed surface.

  14. Method of control position of laser focus during surfacing teeth of cutters

    NASA Astrophysics Data System (ADS)

    Zvezdin, V. V.; Hisamutdinov, R. M.; Rakhimov, R. R.; Israfilov, I. H.; Akhtiamov, R. F.

    2017-09-01

    Providing the quality laser of surfacing the edges of teeth requires control not only the energy of the radiation parameters, but also the position of the focal spot. The control channel of position of laser focus during surfacing, which determines the parameters of quality of the deposited layer, was calculated in the work. The parameters of the active opto-electronic system for the subsystem adjust the focus position relative to the deposited layer with a laser illumination of the cutting edges the teeth cutters were calculated, the model of a control channel based on thermal phenomena occurring in the zone of surfacing was proposed.

  15. Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface.

    PubMed

    Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2012-08-27

    Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.

  16. Optimization technique for rolled edge control process based on the acentric tool influence functions.

    PubMed

    Du, Hang; Song, Ci; Li, Shengyi; Xu, Mingjin; Peng, Xiaoqiang

    2017-05-20

    In the process of computer controlled optical surfacing (CCOS), the uncontrollable rolled edge restricts further improvements of the machining accuracy and efficiency. Two reasons are responsible for the rolled edge problem during small tool polishing. One is that the edge areas cannot be processed because of the orbit movement. The other is that changing the tool influence function (TIF) is difficult to compensate for in algorithms, since pressure step appears in the local pressure distribution at the surface edge. In this paper, an acentric tool influence function (A-TIF) is designed to remove the rolled edge after CCOS polishing. The model of A-TIF is analyzed theoretically, and a control point translation dwell time algorithm is used to verify that the full aperture of the workpiece can be covered by the peak removal point of the tool influence functions. Thus, surface residual error in the full aperture can be effectively corrected. Finally, the experiments are carried out. Two fused silica glass samples of 100  mm×100  mm are polished by traditional CCOS and the A-TIF method, respectively. The rolled edge was clearly produced in the sample polished by the traditional CCOS, while residual errors do not show this problem the sample polished by the A-TIF method. Therefore, the rolled edge caused by the traditional CCOS process is successfully suppressed during the A-TIF process. The ability to suppress the rolled edge of the designed A-TIF has been confirmed.

  17. Development and demonstration of a flutter-suppression system using active controls. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Abel, I.; Gray, D. L.

    1975-01-01

    The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results.

  18. Parametric Evaluation of Thin, Transonic Circulation-Control Airfoils

    NASA Technical Reports Server (NTRS)

    Schlecht, Robin; Anders, Scott

    2007-01-01

    Wind-tunnel tests were conducted in the NASA Langley Transonic Dynamics Tunnel on a 6 percent-thick, elliptical circulation-control airfoil with upper-surface and lower-surface blowing capability. Results for elliptical Coanda trailing-edge geometries, biconvex Coanda trailing-edge geometries, and leading-edge geometries are reported. Results are presented at subsonic and transonic Mach numbers of 0.3 and 0.8, respectively. When considering one fixed trailing-edge geometry, for both the subsonic and transonic conditions it was found that the [3.0:1] ratio elliptical Coanda surface with the most rounded leading-edge [03] performed favorably and was determined to be the best compromise between comparable configurations that took advantage of the Coanda effect. This configuration generated a maximum. (Delta)C(sub 1) = 0.625 at a C(sub mu) = 0.06 at M = 0.3, alpha = 6deg. This same configuration generated a maximum (Delta)C(sub 1) = 0.275 at a C(sub mu) = 0.0085 at M = 0.8, alpha = 3deg.

  19. Edge effect modeling of small tool polishing in planetary movement

    NASA Astrophysics Data System (ADS)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  20. Surface characterization of selected LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.

    1993-01-01

    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.

  1. Steady and unsteady transonic pressure measurements on a clipped delta wing for pitching and control-surface oscillations

    NASA Technical Reports Server (NTRS)

    Hess, Robert W.; Cazier, F. W., Jr.; Wynne, Eleanor C.

    1986-01-01

    Steady and unsteady pressures were measured on a clipped delta wing with a 6-percent circular-arc airfoil section and a leading-edge sweep angle of 50.40 deg. The model was oscillated in pitch and had an oscillating trailing-edge control surface. Measurements were concentrated over a Mach number range from 0.88 to 0.94; less extensive measurements were made at Mach numbers of 0.40, 0.96, and 1.12. The Reynolds number based on mean chord was approximately 10 x 10 to the 6th power. The interaction of wing or control-surface deflection with the formation of shock waves and with a leading-edge vortex generated complex pressure distributions that were sensitive to frequency and to small changes in Mach number at transonic speeds.

  2. Blowing momentum and duty cycle effect on aerodynamic performance of flap by pulsed blowing

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Wang, Yankui; Wang, Jinjun; Sha, Yongxiang

    2017-04-01

    Control surface, which is often located in the trailing edge of wings, is important in the attitude control of an aircraft. However, the efficiency of the control surface declines severely under the high deflect angle of the control surface because of the flow separation. To improve the efficiency of control surface, this study discusses a flow-control technique aimed at suppressing the flow separation by pulsed blowing at the leading edge of the control surface. Results indicated that flow separation over the control surface can be suppressed by pulsed blowing, and the maximum average lift coefficient of the control surface can be 95% times higher than that of without blowing when average blowing momentum coefficient is 0.03 relative to that of without blowing. Finally, this study shows that the average blowing momentum coefficient and non-dimensional frequency of pulsed blowing are two of the key parameters of the pulsed blowing control technique. Otherwise, duty cycle also has influence on the effect of pulsed blowing. Numerical simulation is used in this study.

  3. Effect of control surface mass unbalance on the stability of a closed-loop active control system

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The effects on stability of inertial forces arising from closed-loop activation of mass-unbalanced control surfaces are studied analytically using inertial energy approach, similar to the aerodynamic energy approach used for flutter suppression. The limitations of a single control surface like a leading-edge (LE) control or a trailing-edge (TE) control are demonstrated and compared to the superior combined LE-TE mass unbalanced system. It is shown that a spanwise section for sensor location can be determined which ensures minimum sensitivity to the mode shapes of the aircraft. It is shown that an LE control exhibits compatibility between inertial stabilization and aerodynamic stabilization, and that a TE control lacks such compatibility. The results of the present work should prove valuable, both for the purpose of flutter suppression using mass unbalanced control surfaces, or for the stabilization of structural modes of large space structures by means of inertial forces.

  4. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  5. Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.

    1994-01-01

    Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.

  6. Design of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Li, Xiufeng; Ge, Peng

    2017-02-01

    We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.

  7. Effects of boundary-layer separation controllers on a desktop fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  8. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  9. Langley Full-scale-tunnel Investigation of Maximum Lift and Stability Characteristics of an Airplane Having Approximately Triangular Plan Form (DM-1 Glider)

    NASA Technical Reports Server (NTRS)

    Lovell, J Calvin; Wilson, Herbert A JR

    1947-01-01

    An investigation of the DM-1 Glider, which had approximately triangular plan form, an aspect ratio of 1.8 and a 60 degree sweptback leading edge, has been conducted in the Langley full-scale tunnel. The investigation consisted of the determination of the separate effects of the following modifications made to the glider on its maximum lift and stability characteristics: (a) installation of sharp leading edges over the inboard semispan of the wing, (b) removal of the vertical fin, (c) sealing of the elevon control-balance slots, (d) installation of redesigned thin vertical surfaces, (e) installation of faired sharp leading edges, and (f) installation of canopy. The maximum lift coefficient of the DM-1 glider was increased from 0.61 to 1.01 by the installation of semispan sharp leading edges, and from 1.01 to 1.24 by the removal of the vertical fin and sealing of the elevon control-balance slots. The highest maximum lift coefficient (1.32) was obtained when the faired sharp leading edges and the thin vertical surfaces were attached to the glider. The original DM-1 glider was longitudinally stable. The semispan sharp leading edges shifted the neutral point forward approximately 3 percent of the root chord at moderate lift coefficients, and the glider configuration with these sharp leading edges attached was longitudinally unstable, for the assumed center-of-gravity location, at lift coefficients above 0.73. Sealing the elevon control-balance slots and installing the faired sharp leading edges, the thin vertical surfaces, and the canopy shifted the neutral point forward approximately 8 percent of the root chord.

  10. Modeling the acid-base surface chemistry of montmorillonite.

    PubMed

    Bourg, Ian C; Sposito, Garrison; Bourg, Alain C M

    2007-08-15

    Proton uptake on montmorillonite edge surfaces can control pore water pH, solute adsorption, dissolution kinetics and clay colloid behavior in engineered clay barriers and natural weathering environments. Knowledge of proton uptake reactions, however, is currently limited by strong discrepancies between reported montmorillonite titration data sets and by conflicting estimates of edge structure, reactivity and electrostatics. In the present study, we show that the apparent discrepancy between titration data sets results in large part from the widespread use of an erroneous assumption of zero specific net proton surface charge at the onset of titration. Using a novel simulation scheme involving a surface chemistry model to simulate both pretreatment and titration, we find that montmorillonite edge surface chemistry models that account for the "spillover" of electrostatic potential from basal onto edge surfaces and for the stabilization of deprotonated Al-Si bridging sites through bond-length relaxation at the edge surface can reproduce key features of the best available experimental titration data (the influence of pretreatment conditions on experimental results, the absence of a point of zero salt effect, buffer capacity in the acidic pH range). However, no combination of current models of edge surface structure, reactivity and electrostatics can quantitatively predict, without fitted parameters, the experimental titration data over the entire range of pH (4.5 to 9) and ionic strength (0.001 to 0.5 mol dm(-3)) covered by available data.

  11. Control surfaces of aquatic vertebrates: active and passive design and function.

    PubMed

    Fish, Frank E; Lauder, George V

    2017-12-01

    Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance. © 2017. Published by The Company of Biologists Ltd.

  12. Light Control and Image Transmission Through Photonic Lattices with Engineered Coupling

    DTIC Science & Technology

    2015-05-05

    HOLLOWAY AVE BUILDING NAD ROOM 358C SAN FRANCISCO, CA 941321722 US 8.  PERFORMING ORGANIZATION      REPORT NUMBER 9.  SPONSORING/MONITORING AGENCY NAME(S...include mainly beam control in engineered photonic lattices, Tamm and Shockley-like edge states and topological surface states in 2D honey- comb lattices...like edge states and topological surface states in 2D honey- comb lattices (“photonic graphene”), and light localization and transport in disordered

  13. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  14. Simulated-airline-service flight tests of laminar-flow control with perforated-surface suction system

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Braslow, Albert L.

    1990-01-01

    The effectiveness and practicality of candidate leading edge systems for suction laminar flow control transport airplanes were investigated in a flight test program utilizing a modified JetStar airplane. The leading edge region imposes the most severe conditions on systems required for any type of laminar flow control. Tests of the leading edge systems, therefore, provided definitive results as to the feasibility of active laminar flow control on airplanes. The test airplane was operated under commercial transport operating procedures from various commercial airports and at various seasons of the year.

  15. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    PubMed

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the surface element integrated DLVO model. The point of zero charge of the muscovite edge surface was estimated to be pH 7-8.

  16. Method and System for Weakening Shock Wave Strength at Leading Edge Surfaces of Vehicle in Supersonic Atmospheric Flight

    NASA Technical Reports Server (NTRS)

    Pritchett, Victor E., II (Inventor); Wang, Ten-See (Inventor); Blankson, Isaiah M. (Inventor); Daso, Endwell O. (Inventor); Farr, Rebecca Ann (Inventor); Auslender, Aaron Howard (Inventor); Plotkin, Kenneth J. (Inventor)

    2015-01-01

    A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.

  17. Laboratory modeling of edge wave generation over a plane beach by breaking waves

    NASA Astrophysics Data System (ADS)

    Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim

    2015-04-01

    Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential growth rate index on the amplitude of surface wave is found. On the plane of parameters (amplitude - frequency) of surface wave we have found a region corresponding parametric instability leading to excitation of edge waves. It is shown that for small super criticalities, the amplitude of edge wave grows with amplitude of surface wave. For large amplitude of surface wave, wave breaking appears and parametric instability is suppressed. Such suppression of instability is caused by increasing of turbulent viscosity in near shore zone. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up. Theoretical model is developed to explain suppression of instability due to turbulent viscosity. This theoretical model is based on nonlinear mode amplitude equation including terms responsible for parametric forcing, frequency detuning, nonlinear detuning, linear and nonlinear edge wave damping. Dependence of coefficients on turbulent viscosity is discussed.

  18. Controlling condensation and frost growth with chemical micropatterns.

    PubMed

    Boreyko, Jonathan B; Hansen, Ryan R; Murphy, Kevin R; Nath, Saurabh; Retterer, Scott T; Collier, C Patrick

    2016-01-22

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events.

  19. Controlling condensation and frost growth with chemical micropatterns

    PubMed Central

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; Nath, Saurabh; Retterer, Scott T.; Collier, C. Patrick

    2016-01-01

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events. PMID:26796663

  20. Vibratory tactile display for textures

    NASA Technical Reports Server (NTRS)

    Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi

    1994-01-01

    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.

  1. A study of aerodynamic heating distributions on a tip-fin controller installed on a Space Shuttle Orbiter model

    NASA Technical Reports Server (NTRS)

    Wittliff, C. E.

    1982-01-01

    The aerodynamic heating of a tip-fin controller mounted on a Space Shuttle Orbiter model was studied experimentally in the Calspan Advanced Technology Center 96 inch Hypersonic Shock Tunnel. A 0.0175 scale model was tested at Mach numbers from 10 to 17.5 at angles of attack typical of a shuttle entry. The study was conducted in two phases. In phase 1 testing a thermographic phosphor technique was used to qualitatively determine the areas of high heat-transfer rates. Based on the results of this phase, the model was instrumented with 40 thin-film resistance thermometers to obtain quantitative measurements of the aerodynamic heating. The results of the phase 2 testing indicate that the highest heating rates, which occur on the leading edge of the tip-fin controller, are very sensitive to angle of attack for alpha or = 30 deg. The shock wave from the leading edge of the orbiter wing impinges on the leading edge of the tip-fin controller resulting in peak values of h/h(Ref) in the range from 1.5 to 2.0. Away from the leading edge, the heat-transfer rates never exceed h/h(Ref) = 0.25 when the control surface, is not deflected. With the control surface deflected 20 deg, the heat-transfer rates had a maximum value of h/h(Ref) = 0.3. The heating rates are quite nonuniform over the outboard surface and are sensitive to angle of attack.

  2. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.

    PubMed

    Rao, Chen; Ikeda, Teruaki; Nakata, Toshiyuki; Liu, Hao

    2017-07-04

    Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0°  <  AoA  <  20°), and hence play a crucial role in aerodynamic force and sound production. We find that there exists a tradeoff between force production and sound suppression: serrated leading-edges reduce aerodynamic performance at lower AoAs  <  15° compared to clean leading-edges but are capable of achieving both noise reduction and aerodynamic performance at higher AoAs  >  15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.

  3. Vortex Flap Technology: a Stability and Control Assessment

    NASA Technical Reports Server (NTRS)

    Carey, K. M.; Erickson, G. E.

    1984-01-01

    A comprehensive low-speed wind tunnel investigation was performed of leading edge vortex flaps applied to representative aircraft configurations. A determination was made of the effects of analytically- and empirically-designed vortex flaps on the static longitudinal and lateral-directional aerodynamics, stability, and control characteristics of fighter wings having leading-edge sweep angles of 45 to 76.5 degrees. The sensitivity to several configuration modifications was assessed, which included the effects of flap planform, leading- and trailing-edge flap deflection angles, wing location on the fuselage, forebody strakes, canards, and centerline and outboard vertical tails. Six-component forces and moments, wing surface static pressure distributions, and surface flow patterns were obtained using the Northrop 21- by 30-inch low-speed wind tunnel.

  4. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2003-01-01

    Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.

  5. Apparatus for cutting elastomeric materials

    NASA Technical Reports Server (NTRS)

    Corbett, A. B.

    1974-01-01

    Sharp thin cutting edge is held in head of milling machine designed for metal working. Controls of machine are used to position cutting edge in same plane as vibrating specimen. Controls then are operated, making blade come into contact with specimen, to cut it into shapes and sizes desired. Cut surfaces appear mirror-smooth; vibrating mechanism causes no visible striations.

  6. Active control using control allocation for UAVs with seamless morphing wing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-jie; Sun, Yin-di; Yang, Da-qing; Guo, Shi-jun

    2012-04-01

    In this paper, a small seamless morphing wing aircraft of MTOW=51 kg is investigated. The leading edge (LE) and trailing edge (TE) control surfaces are positioned in the wing section in span wise. Based on the studying results of aeroelastic wing characteristics, the controller should be designed depending on the flight speed. Compared with a wing of rigid hinged aileron, the morphing wing produces the rolling moment by deflecting the flexible TE and LE surfaces. An iteration method of pseudo-inverse allocation and quadratic programming allocation within the constraints of actuators have be investigated to solve the nonlinear control allocation caused by the aerodynamics of the effectors. The simulation results will show that the control method based on control allocation can achieve the control target.

  7. Active control using control allocation for UAVs with seamless morphing wing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-jie; Sun, Yin-di; Yang, Da-qing; Guo, Shi-jun

    2011-11-01

    In this paper, a small seamless morphing wing aircraft of MTOW=51 kg is investigated. The leading edge (LE) and trailing edge (TE) control surfaces are positioned in the wing section in span wise. Based on the studying results of aeroelastic wing characteristics, the controller should be designed depending on the flight speed. Compared with a wing of rigid hinged aileron, the morphing wing produces the rolling moment by deflecting the flexible TE and LE surfaces. An iteration method of pseudo-inverse allocation and quadratic programming allocation within the constraints of actuators have be investigated to solve the nonlinear control allocation caused by the aerodynamics of the effectors. The simulation results will show that the control method based on control allocation can achieve the control target.

  8. Chiral surface and edge plasmons in ferromagnetic conductors

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2018-06-01

    The recently introduced concept of "surface Berry plasmons" is studied in the concrete instance of a ferromagnetic conductor in which the Berry curvature, generated by spin-orbit (SO) interaction, has opposite signs for carrier with spins parallel or antiparallel to the magnetization. By using collisionless hydrodynamic equations with appropriate boundary conditions, we study both the surface plasmons of a three-dimensional ferromagnetic conductor and the edge plasmons of a two-dimensional one. The anomalous velocity and the broken inversion symmetry at the surface or the edge of the conductor create a "handedness" whereby the plasmon frequency depends not only on the angle between the wave vector and the magnetization, but also on the direction of propagation along a given line. In particular, we find that the frequency of the edge plasmon depends on the direction of propagation along the edge. These Berry curvature effects are compared and contrasted with similar effects on plasmon dispersions induced by an external magnetic field in the absence of Berry curvature. We argue that Berry curvature effects may be used to control the direction of propagation of the surface plasmons via coupling with the magnetization of ferromagnetic conductors, and thus create a link between plasmonics and spintronics.

  9. Contact lens-induced circumlimbal staining in silicone hydrogel contact lenses worn on a daily wear basis.

    PubMed

    Maïssa, Cécile; Guillon, Michel; Garofalo, Renee J

    2012-01-01

    The principal objective of the study was to measure the conjunctival staining produced in the circumlimbal region by silicone hydrogel contact lenses with different edge designs. The secondary objective was to investigate the association between circumlimbal staining and comfort. Four silicone hydrogel contact lenses: ACUVUE OASYS (knife edge design), AIR OPTIX, Biofinity (chisel edge rounded edge combination), and PureVision (rounded edge design), and 1 hydrogel contact lens, ACUVUE 2 (knife edge design), were tested. The study was conducted on a cohort population of 27 established soft contact lens wearers, who wore each contact lens type, in a random order, for a period of 10 (±2) days. Circumlimbal staining was measured in a double-masked fashion through image analysis of digital photographs of lissamine green taken under controlled experimental conditions. The results obtained showed that contact lens edge design was the primary factor controlling circumlimbal staining for silicone hydrogel lenses: a rounded edge away from the ocular surface produced the lowest staining (average, 0.19%) and a knife edge in close apposition to the ocular surface produced the highest staining (average, 1.34%). Contact lens material rigidity was also identified to affect circumlimbal staining and an inverse association between circumlimbal staining and contact lens comfort was demonstrated: the rounded edge design produced the lowest comfort (72 of 100) and the knife edge design produced the highest (87 out of 100). Soft contact lens wear induces circumlimbal staining, the level of staining being influenced by the contact lens edge design. However, high level of circumlimbal staining is not associated with decreased comfort.

  10. Microstructured block copolymer surfaces for control of microbe capture and aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.

    2014-01-01

    The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less

  11. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE PAGES

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...

    2017-05-16

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  12. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  13. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    PubMed Central

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-01-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866

  14. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    NASA Astrophysics Data System (ADS)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-05-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

  15. Natural laminar flow and airplane stability and control

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1986-01-01

    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  16. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  17. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  18. Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert; Ahuja, K.; Gaeta, R.

    2003-01-01

    Circulation Control Wing (CCW) technology is a very effective way of achieving very high lift coefficients needed by aircraft during take-off and landing. This technology can also be used to directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate the required values of lift coefficient C(sub L,max) during take-off/landing with fewer or no moving parts and much less complexity. Earlier designs of CCW configurations used airfoils with a large radius rounded trailing edge to maximize the lift benefit. However, these designs also produced very high drag. These high drag levels associated with the blunt, large radius trailing edge can be prohibitive under cruise conditions when Circulation Control is no longer necessary. To overcome this difficulty, an advanced CCW section, i.e., a circulation hinged flap was developed to replace the original rounded trailing edge CC airfoil. This concept developed by Englar is shown. The upper surface of the CCW flap is a large-radius arc surface, but the lower surface of the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an aircraft takes-off or lands, the flap is deflected as in a conventional high lift system. Then this large radius on the upper surface produces a large jet turning angle, leading to high lift. When the aircraft is in cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly reducing the drag. This kind of flap does have some moving elements that increase the weight and complexity over an earlier CCW design. But overall, the hinged flap design still maintains most of the Circulation Control high lift advantages, while greatly reducing the drag in cruising condition associated with the rounded trailing edge CCW design. In the present work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to this advanced CCW configuration. The solver can be used in both a 2-D and a 3-D mode, and can thus model airfoils as well as finite wings. The jet slot location, slot height, and the flap angle can all be varied easily and individually in the grid generator and the flow solver. Steady jets, pulsed jets, the leading edge and trailing edge blowing can all be studied with this solver.

  19. Bio-Inspired Control of Roughness and Trailing Edge Noise

    NASA Astrophysics Data System (ADS)

    Clark, Ian Andrew

    Noise from fluid flow over rough surfaces is an important consideration in the design and performance of certain vehicles with high surface-area-to-perimeter ratios. A new method of noise control based on the anatomy of owls is developed and consists of fabric or fibrous canopies suspended above the surface. The method is tested experimentally and is found to reduce the total far-field noise emitted by the surface. The treatment also is found to reduce the magnitude of pressure fluctuations felt by the underlying surface by up to three orders of magnitude. Experimental investigations into the effects of geometric parameters of the canopies lead to an optimized design which maximizes noise reduction. The results obtained during the canopy experiment inspired a separate new device for the reduction of trailing edge noise. This type of noise is generated by flow past the wing of an aircraft or the blades of a wind turbine, and is a source of annoyance for those in surrounding communities. The newly developed treatment consists of small fins, or "finlets," placed near the trailing edge of an airfoil. The treatment is tested experimentally at near-full-scale conditions and is found to reduce the magnitude of far-field noise by up to 10 dB. Geometric parameters of the finlets are tested to determine the optimal size and spacing of the finlets to maximize noise reduction. Follow-up computational and experimental studies reveal the fluid mechanics behind the noise reduction by showing that the finlets produce a velocity deficit in the flow near the trailing edge and limit the magnitude and spanwise correlation lengthscale of turbulence near the trailing edge, factors which determine the magnitude of far-field noise. In a final experiment, the finlets are applied to a marine propeller and are found to reduce not only trailing edge noise, but also noise caused by the bluntness of the trailing edge. The results of this experiment show the potential usefulness of finlets to reduce noise from rotating systems, such as fans or propellers, as well as from structures which feature blunt trailing edges.

  20. Surface Hold Advisor Using Critical Sections

    NASA Technical Reports Server (NTRS)

    Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)

    2013-01-01

    The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.

  1. Recent Progress in Biomimetic Flow Control

    DTIC Science & Technology

    2014-09-19

    trailing-edge, and wing surface devices, respectively. 2 Leading-edge devices Among various marine animals, the humpback whale is one of the... whale : a humpback whale (left) and the detailed view of a pectoral flipper (right). Photographs: William Rossitier. Figure 2: Variation of the lift...Fish, F. E. (2004), Leading-edge tubercles delay stall on humpback whale (Megaptera novaeanglieae) flippers, Phys. Fluids, Vol. 16, L39-L42

  2. High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.

    2007-01-01

    Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.

  3. Application of smart materials for improved flight performance of military aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudva, J.; Appa, K.; Martin, C.

    1995-12-31

    This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits ofmore » the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.« less

  4. Lifting-surface theory for calculating the loading induced on a wing by a flap

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.

    1972-01-01

    A method is described for using lifting-surface theory to obtain the pressure distribution on a wing with a trailing-edge flap or control surface. The loading has a logarithmic singularity at the flap edges, which may be determined directly by the method of matched asymptotic expansions. Expressions are given for the singular flap loading for various flap hinge line and side edge geometries, both for steady and unsteady flap deflection. The regular part of the flap loading must be obtained by inverting the lifting-surface-theory integral equation relating the pressure and the downwash on the wing: procedures are described to accomplish this for a general wing and flap geometry. The method is applied to several example wings, and the results are compared with experimental data. Theory and test correlate well.

  5. Experimental and simulated control of lift using trailing edge devices

    NASA Astrophysics Data System (ADS)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  6. An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations

    DOE PAGES

    Liu, Zhun; Wang, Ru-Zhi; Zapol, Peter

    2016-10-12

    We present elucidation of homoepitaxial growth mechanisms on vicinal non-polar surfaces of GaN that is highly important for gaining an understanding of and control thin film surface morphology and properties. Using first-principles calculations, we study the step-flow growth in m-plane GaN based on atomic row nucleation and kink propagation kinetics. Ga–N dimer adsorption onto the m-plane is energetically more favorable than that of Ga and N isolated adatoms. Therefore, we have treated the dimers as the dominant growth species attached to the step edges. By calculating the free energies of sequentially attached Ga–N dimers, we have elucidated that the a-stepmore » edge kink growth proceeds by parallel attachment rather than by across the step edge approach. We found a series of favorable configurations of kink propagation and calculated the free energy and nucleation barriers for kink evolution on five types of step edges (a, +c, -c, +a + c, and -a - c). By changing the chemical potential μGa and the excess chemical potential Δμ, the growth velocities at the five types of edges are controlled by the corresponding kink pair nucleation barrier E* in their free energy profiles. To explore the kink-flow growth instability observed at different Ga/N flux ratios, calculations of kink pairs on the incompact -c and +c-step edges are further performed to study their formation energies. Variations of these step edge morphologies with a tuned chemical environment are consistent with previous experimental observations, including stable diagonal ±a ± c-direction steps. In conclusion, our work provides a first-principles approach to explore step growth and surface morphology of the vicinal m-plane GaN, which is applicable to analyze and control the step-flow growth of other binary thin films.« less

  7. Surface heat loads on the ITER divertor vertical targets

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R. A.; Corre, Y.; Dejarnac, R.; Firdaouss, M.; Kočan, M.; Komm, M.; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-04-01

    The heating of tungsten monoblocks at the ITER divertor vertical targets is calculated using the heat flux predicted by three-dimensional ion orbit modelling. The monoblocks are beveled to a depth of 0.5 mm in the toroidal direction to provide magnetic shadowing of the poloidal leading edges within the range of specified assembly tolerances, but this increases the magnetic field incidence angle resulting in a reduction of toroidal wetted fraction and concentration of the local heat flux to the unshadowed surfaces. This shaping solution successfully protects the leading edges from inter-ELM heat loads, but at the expense of (1) temperatures on the main loaded surface that could exceed the tungsten recrystallization temperature in the nominal partially detached regime, and (2) melting and loss of margin against critical heat flux during transient loss of detachment control. During ELMs, the risk of monoblock edge melting is found to be greater than the risk of full surface melting on the plasma-wetted zone. Full surface and edge melting will be triggered by uncontrolled ELMs in the burning plasma phase of ITER operation if current models of the likely ELM ion impact energies at the divertor targets are correct. During uncontrolled ELMs in pre-nuclear deuterium or helium plasmas at half the nominal plasma current and magnetic field, full surface melting should be avoided, but edge melting is predicted.

  8. Design and development of LED-based irregular leather area measuring machine

    NASA Astrophysics Data System (ADS)

    Adil, Rehan; Khan, Sarah Jamal

    2012-01-01

    Using optical sensor array, a precision motion control system in a conveyer follows the irregular shaped leather sheet to measure its surface area. In operation, irregular shaped leather sheet passes on conveyer belt and optical sensor array detects the leather sheet edge. In this way outside curvature of the leather sheet is detected and is then feed to the controller to measure its approximate area. Such system can measure irregular shapes, by neglecting rounded corners, ellipses etc. To minimize the error in calculating surface area of irregular curve to the above mentioned system, the motion control system only requires the footprint of the optical sensor to be small and the distance between the sensors is to be minimized. In the proposed technique surface area measurement of irregular shaped leather sheet is done by defining velocity and detecting position of the move. The motion controller takes the information and creates the necessary edge profile on point-to-point bases. As a result irregular shape of leather sheet is mapped and is then feed to the controller to calculate surface area.

  9. Containment of a silicone fluid free surface in reduced gravity using barrier coatings

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Jacobson, Thomas P.

    1988-01-01

    In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.

  10. Spray formation during the vertical impact of a flat plate on a quiescent water surface

    NASA Astrophysics Data System (ADS)

    Wang, An; Duncan, James H.

    2017-11-01

    Spay formation during the impact of a rigid flat plate (122 cm by 38 cm) on a quiescent water surface is studied experimentally. The plate is mounted on a carriage that is driven by an electric servo motor that can slam the plate vertically into the water surface under feedback-controlled motions at various speeds. The long edges of the plate are kept horizontal and the short edges are set at various angles (roll angles) with respect to the quiescent water surface. A laser light sheet is created in a vertical plane at the middle of the long edges of the plate. The evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique. Two types of spray are found with nonzero roll angles. The first type is a cloud of high-speed droplets and ligaments that are generated when the plate's leading edge impacts the free surface. The second type is a thin water sheet that is connected to the trailing edge of the plate via a crater and is formed after the trailing edge moves below the local water level. In a reference frame moving with the plate, the profiles of the crater collapse when scaled with a power law function of time. The characteristics of the two types of spray are found to be affected by both the roll angle and the impact velocity. The support of the Office of Naval Research is gratefully acknowledged.

  11. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    PubMed

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  12. Superhydrophobic floatability of a hydrophilic object driven by edge effect

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-11-01

    It is generally believed that a water-repellent surface is necessary for small insects to stand on water. Through a combined experimental and theoretical study, we demonstrate that an object with hydrophilic surface can float with apparent contact angle greater than 90° due to edge effect. The apparent contact angle rises with increasing loading even to a value typically displayed only by superhydrophobic surfaces. On the basis of free energy minimization, two regimes are identified. When buoyancy controls, the meniscus meets the object with the intrinsic contact angle. As surface tension dominates, however, contact angle is regulated by total force balance.

  13. Computational Test Cases for a Clipped Delta Wing with Pitching and Trailing-Edge Control Surface Oscillations

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Walker, Charlotte E.

    1999-01-01

    Computational test cases have been selected from the data set for a clipped delta wing with a six-percent-thick circular-arc airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, trailing-edge control surface oscillation frequency, and Mach numbers from subsonic to low supersonic values. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.

  14. Leading edge flap system for aircraft control augmentation

    NASA Technical Reports Server (NTRS)

    Rao, D. M. (Inventor)

    1984-01-01

    Traditional roll control systems such as ailerons, elevons or spoilers are least effective at high angles of attack due to boundary layer separation over the wing. This invention uses independently deployed leading edge flaps on the upper surfaces of vortex stabilized wings to shift the center of lift outboard. A rolling moment is created that is used to control roll in flight at high angles of attack. The effectiveness of the rolling moment increases linearly with angle of attack. No adverse yaw effects are induced. In an alternate mode of operation, both leading edge flaps are deployed together at cruise speeds to create a very effective airbrake without appreciable modification in pitching moment. Little trim change is required.

  15. The reversibility of virus attachment to mineral surfaces

    USGS Publications Warehouse

    Loveland, J.P.; Ryan, J.N.; Amy, G.L.; Harvey, R.W.

    1996-01-01

    Virus transport through groundwater is limited by attachment to mineral surfaces and inactivation. Current virus transport models do not consider the implications of the reversibility of virus attachment to minerals. To explore the reversibility of virus attachment to mineral surfaces, we attached PRD1, a bacteriophage considered to be a good model of enteric viruses, to quartz and ferric oxyhydroxide-coated quartz surfaces over a range of pH values in equilibrium 'static columns'. Following attachment, we detached the viruses by replacing the pore solution with solutions of equal and higher pH. The extent of virus attachment followed an attachment 'edge' that occurred at a pH value about 2.5-3.5 pH units above the pH(IEP) of the mineral surfaces. Viruses attached below this edge were irreversibly attached until the pH of the detachment solution exceeded the pH value of the attachment edge. Viruses attached above this edge were reversibly attached. Derjaguin-Landau-Verwey-Overbeek (DEVO) potential energy calculations showed that the attachment edge occurred at the pH at which the potential energy of the primary minimum was near zero, implying that the position of the primary minimum (attractive or repulsive) controlled the equilibrium distribution of the viruses. The results suggest that the reversibility of virus attachment must be considered in virus transport models for accurate predictions of virus travel time.

  16. Factors Influencing the Accuracy of Aerodynamic Hinge-Moment Prediction

    DTIC Science & Technology

    1978-08-01

    condition on the aft lifting surfaces and flaps. A new modeling technique for trailing-edge wake analysis using a potential- flow program based on the...control surface as depicLed in figure 21.. Three different models are used to simulate the flow on the wing, the flap, and the gaps. In the first two panel...ized sense, similar to that implemented in the FLEXSTAB program. The modeling of the wake on the side-edge gaps differs in the first two panel models

  17. Research on reducing the edge effect in magnetorheological finishing.

    PubMed

    Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin

    2011-03-20

    The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.

  18. Edge Length and Surface Area of a Blank: Experimental Assessment of Measures, Size Predictions and Utility

    PubMed Central

    Dogandžić, Tamara; Braun, David R.; McPherron, Shannon P.

    2015-01-01

    Blank size and form represent one of the main sources of variation in lithic assemblages. They reflect economic properties of blanks and factors such as efficiency and use life. These properties require reliable measures of size, namely edge length and surface area. These measures, however, are not easily captured with calipers. Most attempts to quantify these features employ estimates; however, the efficacy of these estimations for measuring critical features such as blank surface area and edge length has never been properly evaluated. In addition, these parameters are even more difficult to acquire for retouched implements as their original size and hence indication of their previous utility have been lost. It has been suggested, in controlled experimental conditions, that two platform variables, platform thickness and exterior platform angle, are crucial in determining blank size and shape meaning that knappers can control the interaction between size and efficiency by selecting specific core angles and controlling where fracture is initiated. The robustness of these models has rarely been tested and confirmed in context other than controlled experiments. In this paper, we evaluate which currently employed caliper measurement methods result in the highest accuracy of size estimations of blanks, and we evaluate how platform variables can be used to indirectly infer aspects of size on retouched artifacts. Furthermore, we investigate measures of different platform management strategies that control the shape and size of artifacts. To investigate these questions, we created an experimental lithic assemblage, we digitized images to calculate 2D surface area and edge length, which are used as a point of comparison for the caliper measurements and additional analyses. The analysis of aspects of size determinations and the utility of blanks contributes to our understanding of the technological strategies of prehistoric knappers and what economic decisions they made during process of blank production. PMID:26332773

  19. Airfoil

    DOEpatents

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  20. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander; Gilyard, Glenn B.

    1999-01-01

    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  1. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  2. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  3. Photonic and phononic surface and edge modes in three-dimensional phoxonic crystals

    NASA Astrophysics Data System (ADS)

    Ma, Tian-Xue; Wang, Yue-Sheng; Zhang, Chuanzeng

    2018-04-01

    We investigate the photonic and phononic surface and edge modes in finite-size three-dimensional phoxonic crystals. By appropriately terminating the phoxonic crystals, the photons and phonons can be simultaneously guided at the two-dimensional surface and/or the one-dimensional edge of the terminated crystals. The Bloch surface and edge modes show that the electromagnetic and acoustic waves are highly localized near the surface and edge, respectively. The surface and edge geometries play important roles in tailoring the dispersion relations of the surface and edge modes, and dual band gaps for the surface or edge modes can be simultaneously achieved by changing the geometrical configurations. Furthermore, as the band gaps for the bulk modes are the essential prerequisites for the realization of dual surface and edge modes, the photonic and phononic bulk-mode band gap properties of three different types of phoxonic crystals with six-connected networks are revealed. It is found that the geometrical characteristic of the crystals with six-connected networks leads to dual large bulk-mode band gaps. Compared with the conventional bulk modes, the surface and edge modes provide a new approach for the photon and phonon manipulation and show great potential for phoxonic crystal devices and optomechanics.

  4. Internal tidal mixing as a control on continental margin ecosystems

    NASA Astrophysics Data System (ADS)

    Sharples, Jonathan; Moore, C. Mark; Hickman, Anna E.; Holligan, Patrick M.; Tweddle, Jacqueline F.; Palmer, Matthew R.; Simpson, John H.

    2009-12-01

    We show that a breaking internal tide at a shelf edge is a fundamental control on the structural and functional properties of ecosystems. Contrasts in vertical mixing of nitrate between the shelf and the open ocean correspond with horizontal and vertical changes in phytoplankton communities, with largest cells found in surface waters at the shelf edge. Intense fishing activity is commonly seen at continental shelf edges, targeting spawning fish stocks. We suggest that the internal tide, a globally ubiquitous physical process at steep shelf edge bathymetry, supports shelf edge fisheries by providing large-celled phytoplankton for first-feeding fish larvae. The repeatability of the internal tide removes fish from the need to time spawning with a spring bloom. Also, with large phytoplankton cells dominating particulate organic carbon export, the internal tides could be an important influence on spatial and temporal variability in patterns of global carbon sequestration in deep water and sediments.

  5. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities regardless of the water chemical potential. The equilibrium morphology of pyrophyllite crystals is also expected to be dependent on these two environmental variables. Surface defects may impact the surface reactivity. We discuss the thermodynamic stability of a possible Si cation vacancy defect which provides additional hydroxyl group on the surface.

  6. Wind Tunnel Investigation of Passive Porosity Applied to the Leading-Edge Extension and Leading-Edge Flaps on a Slender Wing at Subsonic Speed

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2017-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center 7- by 10-Foot High Speed Tunnel to determine the effects of passive surface porosity on the subsonic vortex flow interactions about a general research fighter configuration. Flow-through porosity was applied to the leading-edge extension, or LEX, and leading-edge flaps mounted to a 65deg cropped delta wing model as a potential vortex flow control technique at high angles of attack. All combinations of porous and nonporous LEX and flaps were investigated. Wing upper surface static pressure distributions and six-component forces and moments were obtained at a free-stream Mach number of 0.20 corresponding to a Reynolds number of 1.35(106) per foot, angles of attack up to 45deg, angles of sideslip of 0deg and +/-5deg, and leading-edge flap deflections of 0deg and 30deg.

  7. Vortex developments over steady and accelerated airfoils incorporating a trailing edge jet

    NASA Technical Reports Server (NTRS)

    Finaish, F.; Okong'o, N.; Frigerio, J.

    1993-01-01

    Computational and experimental studies are conducted to investigate the influence of a trailing edge jet on flow separation and subsequent vortex formation over steady and accelerated airfoils at high angles of attack. A computer code, employing the stream function-vorticity approach, is developed and utilized to conduct numerical experiments on the flow problem. To verify and economize such efforts, an experimental system is developed and incorporated into a subsonic wind tunnel where streamline and vortex flow visualization experiments are conducted. The study demonstrates the role of the trailing edge jet in controlling flow separation and subsequent vortex development for steady and accelerating flow at angles past the static stall angle of attack. The results suggest that the concept of the trailing edge jet may be utilized to control the characteristics of unsteady separated flows over lifting surfaces. This control possibility seems to be quite effective and could have a significant role in controlling unsteady separated flows.

  8. Investigations of Control Surface Seals for Re-entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen

    2002-01-01

    Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.

  9. WINGDES2 - WING DESIGN AND ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1994-01-01

    This program provides a wing design algorithm based on modified linear theory which takes into account the effects of attainable leading-edge thrust. A primary objective of the WINGDES2 approach is the generation of a camber surface as mild as possible to produce drag levels comparable to those attainable with full theoretical leading-edge thrust. WINGDES2 provides both an analysis and a design capability and is applicable to both subsonic and supersonic flow. The optimization can be carried out for designated wing portions such as leading and trailing edge areas for the design of mission-adaptive surfaces, or for an entire planform such as a supersonic transport wing. This program replaces an earlier wing design code, LAR-13315, designated WINGDES. WINGDES2 incorporates modifications to improve numerical accuracy and provides additional capabilities. A means of accounting for the presence of interference pressure fields from airplane components other than the wing and a direct process for selection of flap surfaces to approach the performance levels of the optimized wing surfaces are included. An increased storage capacity allows better numerical representation of those configurations that have small chord leading-edge or trailing-edge design areas. WINGDES2 determines an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. The objective of the design is the recovery of unrealized theoretical leading-edge thrust of the input flat surface by shaping of the design surface to create a distributed thrust and thus minimize drag. The input consists of airfoil section thickness data, leading and trailing edge planform geometry, and operational parameters such as Mach number, Reynolds number, and design lift coefficient. Output includes optimized camber surface ordinates, pressure coefficient distributions, and theoretical aerodynamic characteristics. WINGDES2 is written in FORTRAN V for batch execution and has been implemented on a CDC CYBER computer operating under NOS 2.7.1 with a central memory requirement of approximately 344K (octal) of 60 bit words. This program was developed in 1984, and last updated in 1990. CDC and CYBER are trademarks of Control Data Corporation.

  10. Active edge control in the precessions polishing process for manufacturing large mirror segments

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Zhang, Wei; Walker, David; Yu, Gouyo

    2014-09-01

    The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The `Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under `Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the `Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.

  11. On the Use pf Active Flow Control to Trim and Control a Tailles Aircraft Model

    NASA Astrophysics Data System (ADS)

    Jentzsch, Marvin

    The Stability And Control CONfiguration (SACCON) model represents an emerging trend in airplane design where the classical tube, wing and empennage are replaced by a single tailless configuration. The challenge is to assure that these designs are stable and controllable. Nonlinear aerodynamic behavior is observed on the SACCON at higher incidence angles due to leading edge vortex structures. Active Flow Control (AFC) used in preliminary design represents a promising solution to the longitudinal stability problems and this was demonstrated experimentally on a semi span model. AFC can be used to trim the SACCON in pitch and it alters forces and moments comparable to common control surface deflections. A combination of AFC and control surface deflection may increase the overall efficiency and opens up a variety of maneuvering possibilities. This implies that AFC should be treated concomitantly with other design parameters and should be considered in the preliminary design process already and not as an add-on tool. Integral force and moment data was supplemented by observations using Pressure Sensitive Paint (PSP) and flow visualization. Two arrays of individually controlled sweeping jets, one located along the leading edge and the other along the flap hinge provided the AFC input needed to alter the flow. The array positioned over the flap-hinge of the model was most effective in stabilizing the wing by decreasing the pitching moment at lower and intermediate angles of incidence. This effect was achieved by reducing the spanwise flow on the swept back portion of the wing through jet-entrainment that also affected the leading edge vortex. Leading edge actuation showed some beneficial effects by inhibiting the formation of the leading edge vortex near the wing tip. A preliminary study using suction was carried out. The tests were carried out at Mach numbers smaller than 0.2 and Reynolds numbers based on the root chord of the model that approached 106.

  12. Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert

    2005-01-01

    The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.

  13. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  14. Some data on the static longitudinal stability and control of airplanes : design of control surfaces

    NASA Technical Reports Server (NTRS)

    Martinov, A; Kolosov, E

    1940-01-01

    In the solution of a number of problems on the stability and controllability of airplanes, there arises the necessity for knowing the characteristics of the tail surfaces of the types in common use today. Of those characteristics, the most important are the effectiveness and hinge moments of the tail surfaces. As has been shown in the present paper, there exists the possibility of determining these characteristics by the formulas obtained with a degree of accuracy sufficient for the purposes of preliminary computation. These formulas take into account a number of fundamental tail characteristics such as tail cut-outs on the control surface and the form of the control surface leading edge.

  15. Geometrical and structural properties of an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.; Spain, Charles V.

    1989-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing known as the DAST ARW-2 wing. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading edge sweepback angle of 28.8 deg and is equipped with two inboard and one outboard trailing edge control surfaces. The geometrical and structural characteristics are presented of this elastic wing, using a combination of measured and calculated data, to permit future analyst to compare the experimental surface pressure data with theoretical predictions.

  16. Supramolecular engineering of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Jian, Kengqing

    This thesis identifies a new and flexible route to control graphene layer structure in carbons, which is the key to carbon properties and applications, and focuses on the synthesis, structure-property relationships, and potential applications of new "supramolecular" carbon nanomaterials. This new approach begins with the studies of surface anchoring and assembly mechanisms among planar discotic liquid crystals. The results show that disk-like polyaromatics exhibit weak noncovalent interactions with most surfaces and prefer edge-on anchoring at these surfaces; only on a few surfaces such as graphite and platinum, they prefer face-on anchoring. A theory of pi-pi bond preservation has been proposed to explain the wetting, anchoring, and assembly phenomena. Based on the assembly study, a supramolecular approach was developed, which uses surfaces, flows, and confinement to create well-defined order in discotic liquid crystals, which can then be covalently captured by cross-linking and converted into a carbon material whose structure is an accurate replica of the molecular order in the precursor. This technique has been successfully applied to create innovative nanocarbons with controllable nanostructures. The new nanomaterials synthesized by supramolecular route include organic and carbon films with precise crystal structure control using surface anchoring and flow. Lithographic techniques were employed to make micro-patterned surfaces with preprogrammed molecular orientations. Fully dense and ordered carbon thin films were prepared from lytropic liquid crystals. These films exhibit surfaces rich in edge-sites and are either anisotropic unidirectional or multi-domain. In addition, four different types of high-aspect-ratio nanocarbons were synthesized and analyzed: (1) "orthogonal" carbon nanofibers with perpendicular graphene layers, (2) "concentric" C/C-composite nanofibers with graphene layers parallel to the fiber axis, (3) "inverted" nanotubes exhibiting graphene edge planes at both inner and outer surfaces, and (4) nanoribbons. Finally, a set of mesoporous carbons were synthesized with both porous structure and interfacial structure systematically controlled by liquid crystal templating. A quantitative model was developed for carbon surface area prediction. In addition to synthesis, this thesis includes extensive structural analysis and some surface characterization of these nanomaterials, and offers ideas to exploit their unique properties for applications in composites, displays, nanomedicine, and the environment.

  17. Meltwater Evolution during Defrosting on Superhydrophobic Surfaces.

    PubMed

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2018-01-10

    Defrosting is essential for removing frost from engineering surfaces, but some fundamental issues are still unclear, especially for defrosting on superhydrophobic surfaces. Here, defrosting experiments on prepared superhydrophobic surfaces were conducted along with the investigation on meltwater evolution characteristics. According to the experiments, the typical meltwater evolution process on superhydrophobic surfaces can be divided into two stages: dewetting by edge curling and dewetting by shrinkage. The edge curling of a meltwater film is a distinct phenomenon and has been first reported in this work. Profiting from the ultralow adhesion of the superhydrophobic surface, edge curling is mainly attributed to two unbalanced forces (one at the interface between the ice slurry layer and pure water layer and the other in the triple phase line area) acting on the layered meltwater film. During the multi-meltwater evolution process, the nonbreaking of chained droplets on superhydrophobic surfaces is also an interesting phenomenon, which is controlled by the interaction between the surface tension and the retentive force because of contact angle hysteresis. An approximate criterion was then developed to explain and determine the status of chained droplets, and experimental data from various surfaces have validated the effectiveness of this criterion. This work may deepen the understanding of defrosting on superhydrophobic surfaces and promote antifrosting/icing applications in engineering.

  18. Polarization-Directed Surface Plasmon Polariton Launching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.

    The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges alsomore » show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.« less

  19. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    PubMed

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  20. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    NASA Astrophysics Data System (ADS)

    Shimoyama, Iwao; Baba, Yuji; Hirao, Norie

    2017-05-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N2+-irradiated substrates, and show no polarization dependence for an Ar+-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N2+-irradiated, and Ar+-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  1. Thermal control paints on LDEF: Results of M0003 sub-experiment 18

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.; Coggi, J. M.

    1993-01-01

    Several thermal control paints were flown on the Long Duration Exposure Facility (LDEF), including the white paints Chemglaze A276, S13GLO, and YB-71, and the black paint D-111. The effects of low earth orbit, which includes those induced by UV radiation and atomic oxygen, varied significantly with each paint and its location on LDEF. For example, samples of Chemglaze A276 located on the trailing edge of LDEF darkened significantly due to UV-induced degradation of the paint's binder, while leading edge samples remained white but exhibited severe atomic oxygen erosion of the binder. Although the response of S13GLO to low earth orbit is much more complicated, it also exhibited greater darkening on trailing edge samples as compared to leading edge samples. In contrast, YB-71 and D-111 remained relatively stable and showed minimal degradation. The performance of these paints as determined by changes in their optical and physical properties, including solar absorptance as well as surface chemical changes and changes in surface morphology is examined. It will also provide a correlation of these optical and physical property changes to the physical phenomena that occurred in these materials during the LDEF mission.

  2. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  3. Aerothermodynamic heating and performance analysis of a high-lift aeromaneuvering AOTV concept

    NASA Technical Reports Server (NTRS)

    Menees, G. P.; Brown, K. G.; Wilson, J. F.; Davies, C. B.

    1985-01-01

    The thermal-control requirements for design-optimized aeromaneuvering performance are determined for space-based applications and low-earth orbit sorties involving large, multiple plane-inclination changes. The leading-edge heating analysis is the most advanced developed for hypersonic-rarefied flow over lifting surfaces at incidence. The effects of leading-edge bluntness, low-density viscous phenomena, and finite-rate flow-field chemistry and surface catalysis are accounted for. The predicted aerothermodynamic heating characteristics are correlated with thermal-control and flight-performance capabilities. The mission payload capability for delivery, retrieval, and combined operations is determined for round-trip sorties extending to polar orbits. Recommendations are given for future design refinements. The results help to identify technology issues required to develop prototype operational systems.

  4. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  5. Extraction of edge-based and region-based features for object recognition

    NASA Astrophysics Data System (ADS)

    Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima

    1993-08-01

    One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.

  6. Control of an Estuarine Microfouling Sequence on Optical Surfaces Using Low-Intensity Ultraviolet Irradiation

    PubMed Central

    DiSalvo, L. H.; Cobet, A. B.

    1974-01-01

    Ultraviolet light has been investigated as an active energy input for the control of slime film formation on optical surfaces submerged in San Francisco Bay for periods up to 6 weeks. Irradiation of quartz underwater windows was carried out from three positions: (i) exterior to the window, (ii) from directly behind the window, and (iii) from the edge of the window with the ultraviolet (UV) energy refracted through the front of the window. Internally administered irradiation reaching levels of 10 to 30 μW per cm2 measurable at the glass surface was effective in preventing bacterial slime film formation and settlement of metazoan larvae. When administered from the external position, over one order of magnitude more (500 to 600 μW/cm2) UV energy was required to accomplish the same result. Irradiation from the edge position was most promising logistically and was effective in fouling control for 6 weeks. The results provide a preliminary quantitation of the energy requirement for control of the marine microfouling sequence which precedes development of macrofouling communities. Images PMID:16349978

  7. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    NASA Astrophysics Data System (ADS)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  8. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1974-01-01

    The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.

  9. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  10. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods

    NASA Astrophysics Data System (ADS)

    Viswamurthy, S. R.; Ganguli, Ranjan

    2007-03-01

    This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.

  11. Controllable Edge Feature Sharpening for Dental Applications

    PubMed Central

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry. PMID:24741376

  12. Controllable edge feature sharpening for dental applications.

    PubMed

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  13. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    PubMed

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  14. Electrochemical formation and characterization of Au nanostructures on a highly ordered pyrolytic graphite surface

    NASA Astrophysics Data System (ADS)

    Gómez, José J. Arroyo; Zubieta, Carolina; Ferullo, Ricardo M.; García, Silvana G.

    2016-02-01

    The electrochemical formation of Au nanoparticles on a highly ordered pyrolytic graphite (HOPG) substrate using conventional electrochemical techniques and ex-situ AFM is reported. From the potentiostatic current transients studies, the Au electrodeposition process on HOPG surfaces was described, within the potential range considered, by a model involving instantaneous nucleation and diffusion controlled 3D growth, which was corroborated by the microscopic analysis. Initially, three-dimensional (3D) hemispherical nanoparticles distributed on surface defects (step edges) of the substrate were observed, with increasing particle size at more negative potentials. The double potential pulse technique allowed the formation of rounded deposits at low deposition potentials, which tend to form lines of nuclei aligned in defined directions leading to 3D ordered structures. By choosing suitable nucleation and growth pulses, one-dimensional (1D) deposits were possible, preferentially located on step edges of the HOPG substrate. Quantum-mechanical calculations confirmed the tendency of Au atoms to join selectively on surface defects, such as the HOPG step edges, at the early stages of Au electrodeposition.

  15. Built-up edge investigation in vibration drilling of Al2024-T6.

    PubMed

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  17. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    NASA Astrophysics Data System (ADS)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  18. Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality.

    PubMed

    Nguyen, Michelle A; Bedford, Nicholas M; Ren, Yang; Zahran, Elsayed M; Goodin, Robert C; Chagani, Fatima F; Bachas, Leonidas G; Knecht, Marc R

    2015-06-24

    We report a synthetic approach to form octahedral Cu2O microcrystals with a tunable edge length and demonstrate their use as catalysts for the photodegradation of aromatic organic compounds. In this particular study, the effects of the Cu(2+) and reductant concentrations and stoichiometric ratios were carefully examined to identify their roles in controlling the final material composition and size under sustainable reaction conditions. Varying the ratio and concentrations of Cu(2+) and reductant added during the synthesis determined the final morphology and composition of the structures. Octahedral particles were prepared at selected Cu(2+):glucose ratios that demonstrated a range of photocatalytic reactivity. The results indicate that material composition, surface area, and substrate charge effects play important roles in controlling the overall reaction rate. In addition, analysis of the post-reacted materials revealed photocorrosion was inhibited and that surface etching had preferentially occurred at the particle edges during the reaction, suggesting that the reaction predominately occurred at these interfaces. Such results advance the understanding of how size and composition affect the surface interface and catalytic functionality of materials.

  19. Analysis of Leading Edge and Trailing Edge Cover Glass Samples Before and After Treatment with Advanced Satellite Contamination Removal Techniques

    DTIC Science & Technology

    1993-04-01

    surface analysis, 40 contamination control, ANCC ( Aerogel Mesh Contamination Collector) iPRICECODE 17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION...operational parameter space (temperature, vibration, radiation, vacuum and micrometorite environments). One embodiment of this device, the Aerogel Mesh...Lippey and Dan Demeo of Hughes Aircraft Corporation for their kind hospitality and research collaboration on the contamination removal phase of this work

  20. Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts

    NASA Astrophysics Data System (ADS)

    Senn, Sergei; Liewald, Mathias

    2018-05-01

    This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.

  1. Application of the aerodynamic energy concept to flutter suppression and gust alleviation by use of active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Caspi, A.; Lottati, I.

    1976-01-01

    The effects of active controls on flutter suppression and gust alleviation of the Arava twin turboprop STOL transport and the Westwind twinjet business transport are investigated. The active control surfaces are introduced in pairs which include, in any chosen wing strip, a 20-percent chord leading-edge control and a 20-percent chord trailing-edge control. Each control surface is driven by a combined linear-rotational sensor system located on the activated strip. The control law is based on the concept of aerodynamic energy and utilizes previously optimized control law parameters based on two-dimensional aerodynamic theory. The best locations of the activated system along the span of the wing are determined for bending-moment alleviation, reduction in fuselage accelerations, and flutter suppression. The effectiveness of the activated system over a wide range of maximum control deflections is also determined. Two control laws are investigated. The first control law utilizes both rigid-body and elastic contributions of the motion. The second control law employs primarily the elastic contribution of the wing and leads to large increases in the activated control effectiveness as compared with the basic control law. The results indicate that flutter speed can be significantly increased (over 70 percent increase) and that the bending moment due to gust loading can be almost totally eliminated by a control system of about 10 to 20 percent span with reasonable control-surface rotations.

  2. Smart wing wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; Appa, Kari; Kudva, Jayanth N.; West, Mark N.

    1997-05-01

    The use of smart materials technologies can provide unique capabilities in improving aircraft aerodynamic performance. Northrop Grumman built and tested a 16% scale semi-span wind tunnel model of the F/A-18 E/F for the on-going DARPA/WL Smart Materials and Structures-Smart Wing Program. Aerodynamic performance gains to be validated included increase in the lift to drag ratio, increased pitching moment (Cm), increased rolling moment (Cl) and improved pressure distribution. These performance gains were obtained using hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist via a SMA torque tube and are compared to a conventional wind tunnel model with hinged control surfaces. This paper presents an overview of the results from the first wind tunnel test performed at the NASA Langley's 16 ft Transonic Dynamic Tunnel. Among the benefits demonstrated are 8 - 12% increase in rolling moment due to wing twist, a 10 - 15% increase in rolling moment due to contoured aileron, and approximately 8% increase in lift due to contoured flap, and improved pressure distribution due to trailing edge control surface contouring.

  3. Flight investigation of insect contamination and its alleviation

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Fisher, D. F.

    1978-01-01

    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.

  4. Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.

    2015-01-01

    This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements.

  5. Low-speed wind-tunnel investigation of the stability and control characteristics of a series of flying wings with sweep angles of 70 deg

    NASA Technical Reports Server (NTRS)

    Ross, Holly M.; Fears, Scott P.; Moul, Thomas M.

    1995-01-01

    A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 70 deg, and all the trailing edges and control surface hinge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.

  6. Reconfigurable topological photonic crystal

    NASA Astrophysics Data System (ADS)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  7. Sulfur redox reactions on nanostructured highly oriented pyrolytic graphite (HOPG) electrodes: Direct evidence for superior electrocatalytic performance on defect sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gongwei; Zheng, Dong; Liu, Dan

    Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.

  8. Sulfur redox reactions on nanostructured highly oriented pyrolytic graphite (HOPG) electrodes: Direct evidence for superior electrocatalytic performance on defect sites

    DOE PAGES

    Wang, Gongwei; Zheng, Dong; Liu, Dan; ...

    2017-04-28

    Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.

  9. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    PubMed

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    NASA Astrophysics Data System (ADS)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  11. Aerodynamic Performance of an Active Flow Control Configuration Using Unstructured-Grid RANS

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Viken, Sally A.

    2001-01-01

    This research is focused on assessing the value of the Reynolds-Averaged Navier-Stokes (RANS) methodology for active flow control applications. An experimental flow control database exists for a TAU0015 airfoil, which is a modification of a NACA0015 airfoil. The airfoil has discontinuities at the leading edge due to the implementation of a fluidic actuator and aft of mid chord on the upper surface. This paper documents two- and three-dimensional computational results for the baseline wing configuration (no control) with tile experimental results. The two-dimensional results suggest that the mid-chord discontinuity does not effect the aerodynamics of the wing and can be ignored for more efficient computations. The leading-edge discontinuity significantly affects tile lift and drag; hence, the integrity of the leading-edge notch discontinuity must be maintained in the computations to achieve a good match with the experimental data. The three-dimensional integrated performance results are in good agreement with the experiments inspite of some convergence and grid resolution issues.

  12. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  13. Vacuum Ultraviolet (VUV) radiation-induced degradation of Fluorinated Ethylene Propylene (FEP) Teflon aboard the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Stiegman, A. E.; Staszak, Paul R.; Laue, Eric G.; Liang, Ranty H.

    1992-01-01

    Examination of fluorinated ethylene propylene (FEP) copolymer specimens recovered from the Long Duration Exposure Facility (LDEF) provides evidence for degradation attributed to extended solar vacuum ultraviolet (VUV) irradiation. Scanning electron microscope (SEM) images of sheared FEP film edges reveal the presence of a highly embrittled layer on the exposed surface of specimens obtained from the trailing edge of the LDEF. Similar images obtained for leading edge and control FEP films do not exhibit evidence for such an embrittled layer. Laboratory VUV irradiation of FEP films is found to produce a damage layer similar to that witnessed in the LDEF trailing edge films. Spectroscopic analyses of irradiated films provide data to advance a photochemical mechanism for degradation.

  14. Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.

    2000-01-01

    As a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data sets from the first two tests have been chosen for Test Cases for computational comparisons concentrating on static conditions and cases with harmonically oscillating control surfaces. Several flutter Test Cases from both tests have also been included. Some aerodynamic comparisons with the BACT data have been made using computational fluid dynamics codes at the Navier-Stokes level (and in the accompanying chapter SC). Some mechanical and active control studies have been presented. In this report several Test Cases are selected to illustrate trends for a variety of different conditions with emphasis on transonic flow effects. Cases for static angles of attack, static trailing-edge and upper-surface spoiler deflections are included for a range of conditions near those for the oscillation cases. Cases for trailing-edge control and upper-surface spoiler oscillations for a range of Mach numbers, angle of attack, and static control deflections are included. Cases for all three types of flutter instability are selected. In addition some cases are included for dynamic response measurements during forced oscillations of the controls on the flexible mount. An overview of the model and tests is given, and the standard formulary for these data is listed. Some sample data and sample results of calculations are presented. Only the static pressures and the first harmonic real and imaginary parts of the pressures are included in the data for the Test Cases, but digitized time histories have been archived. The data for the Test Cases are also available as separate electronic files.

  15. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc.

    PubMed

    Yan, Lujie; Masliyah, Jacob H; Xu, Zhenghe

    2013-08-15

    Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Project HyBuJET

    NASA Technical Reports Server (NTRS)

    Ramsay, Tom; Collet, Bill; Igar, Karyn; Kendall, Dewayne; Miklosovic, Dave; Reuss, Robyn; Ringer, Mark; Scheidt, Tony

    1990-01-01

    A conceptual Hypersonic Business Jet (HyBuJet) was examined. The main areas of concentration include: aerodynamics, propulsion, stability and control, mission profile, and atmospheric heating. In order to optimize for cruise conditions, a waverider configuration was chosen for the high lift drag ratio and low wave drag. The leading edge and lower surface of a waverider was mapped out from a known flow field and optimized for cruising at Mach 6 and at high altitudes. The shockwave generated by a waverider remains attached along the entire leading edge, allowing for a larger compression along the lower surface. Three turbofan ramjets were chosen as the propulsion of the aircraft due to the combination of good subsonic performance along with high speed propulsive capabilities. A combination of liquid silicon convective cooling for the leading edges with a highly radiative outer skin material was chosen to reduce the atmospheric heating to acceptable level.

  17. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1995-01-01

    An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.

  18. Current-induced switching of magnetic molecules on topological insulator surfaces

    NASA Astrophysics Data System (ADS)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  19. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  20. Measurements of noise produced by flow past lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1978-01-01

    Wind tunnel studies have been conducted to determine the specific locations of aerodynamic noise production within the flow field about various lifting-surface configurations. The models tested included low aspect ratio shapes intended to represent aircraft flaps, a finite aspect ratio NACA 0012 wing, and a multi-element wing section consisting of a main section, a leading edge flap, and dual trailing edge flaps. Turbulence was induced on the models by surface roughness. Lift and drag were measured for the flap models. Hot-wire anemometry was used for study of the flap-model vortex roll-up. Apparent noise source distributions were measured by use of a directional microphone system, located outside the tunnel, which was scanned about the flow region to be analyzed under computer control. These distributions exhibited a diversity of pattern, suggesting that several flow processes are important to lifting-surface noise production. Speculation concerning these processes is offered.

  1. Flap survey test of a combined surface blowing model: Flow measurements at static flow conditions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.

    1978-01-01

    The Combined Surface Blowing (CSB) V/STOL lift/propulsion system consists of a blown flap system which deflects the exhaust from a turbojet engine over a system of flaps deployed at the trailing edge of the wing. Flow measurements consisting of velocity measurements using split film probes and total measure surveys using a miniature Kiel probe were made at control stations along the flap systems at two spanwise stations, the centerline of the nozzle and 60 percent of the nozzle span outboard of the centerline. Surface pressure measurements were made in the wing cove and the upper surface of the first flap element. The test showed a significant flow separation in the wing cove. The extent of the separation is so large that the flow into the first flap takes place only at the leading edge of the flap. The velocity profile measurements indicate that large spanwise (3 dimensional) flow may exist.

  2. DNA molecules on periodically microstructured lipid membranes: Localization and coil stretching

    NASA Astrophysics Data System (ADS)

    Hochrein, Marion B.; Leierseder, Judith A.; Golubović, Leonardo; Rädler, Joachim O.

    2007-02-01

    We explore large scale conformations of DNA molecules adsorbed on curved surfaces. For that purpose, we investigate the behavior of DNA adsorbed on periodically shaped cationic lipid membranes. These unique membrane morphologies are supported on grooved, one-dimensionally periodic microstructured surfaces. Strikingly, we find that these periodically structured membranes are capable to stretch DNA coils. We elucidate this phenomenon in terms of surface curvature dependent potential energy attained by the adsorbed DNA molecules. Due to it, DNA molecules undergo a localization transition causing them to stretch by binding to highly curved sections (edges) of the supported membranes. This effect provides a new venue for controlling conformations of semiflexible polymers such as DNA by employing their interactions with specially designed biocompatible surfaces. We report the first experimental observation of semiflexible polymers unbinding transition in which DNA molecules unbind from one-dimensional manifolds (edges) while remaining bound to two-dimensional manifolds (cationic membranes).

  3. Thermodynamics and kinetics of graphene chemistry: a graphene hydrogenation prototype study.

    PubMed

    Pham, Buu Q; Gordon, Mark S

    2016-12-07

    The thermodynamic and kinetic controls of graphene chemistry are studied computationally using a graphene hydrogenation reaction and polyaromatic hydrocarbons to represent the graphene surface. Hydrogen atoms are concertedly chemisorped onto the surface of graphene models of different shapes (i.e., all-zigzag, all-armchair, zigzag-armchair mixed edges) and sizes (i.e., from 16-42 carbon atoms). The second-order Z-averaged perturbation theory (ZAPT2) method combined with Pople double and triple zeta basis sets are used for all calculations. It is found that both the net enthalpy change and the barrier height of graphene hydrogenation at graphene edges are lower than at their interior surfaces. While the thermodynamic product distribution is mainly determined by the remaining π-islands of functionalized graphenes (Phys. Chem. Chem. Phys., 2013, 15, 3725-3735), the kinetics of the reaction is primarily correlated with the localization of the electrostatic potential of the graphene surface.

  4. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  5. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief

    PubMed Central

    Egan, John; Sharman, Rebecca J.; Scott-Brown, Kenneth C.; Lovell, Paul George

    2016-01-01

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief. PMID:27922058

  6. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    PubMed

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  7. Optical panel system including stackable waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, Leonard; Veligdan, James T.

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less

  8. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  9. Precision control of drying using rhythmic dancing of sessile nanoparticle laden droplets

    NASA Astrophysics Data System (ADS)

    Sanyal, Apratim; Basu, Saptarshi; Chowdhuri, Subham; Kabi, Prasenjit; Chaudhuri, Swetaprovo

    2014-04-01

    This work analyses the unique spatio-temporal alteration of the deposition pattern of evaporating nanoparticle laden droplets resting on a hydrophobic surface through targeted low frequency substrate vibrations. External excitation near the lowest resonant mode (n = 2) of the droplet initially de-pins and then subsequently re-pins the droplet edge creating pseudo-hydrophilicity (low contact angle). Vibration subsequently induces droplet shape oscillations (cyclic elongation and flattening) resulting in strong flow recirculation. This strong radially outward liquid flow augments nanoparticle transport, vaporization, and agglomeration near the pinned edge resulting in much reduced drying time under certain characteristic frequency of oscillations. The resultant deposit exhibits a much flatter structure with sharp, defined peripheral wedge topology as compared to natural drying. Such controlled manipulation of transport enables tailoring of structural and topological morphology of the deposits and offers possible routes towards controlling the formation and drying timescales which are crucial for applications ranging from pharmaceutics to surface patterning.

  10. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    PubMed

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  11. Shock Interaction Control for Scramjet Cowl Leading Edges

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Venkat, Venki, S.

    2005-01-01

    An experimental study was conducted to qualitatively determine the effectiveness of stagnation-region gas injection in protecting a scramjet cowl leading edge from the intense heating produced by Type III and Type IV shock interactions. The model consisted of a two-dimensional leading edge, representative of that of a scramjet cowl. Tests were conducted at a nominal freestream Mach number of 6. Gaseous nitrogen was supersonically injected through the leading-edge nozzles at various mass flux ratios and with the model pitched at angles of 0deg and -20deg relative to the freestream flow. Qualitative data, in the form of focusing and conventional schlieren images, were obtained of the shock interaction patterns. Results indicate that large shock displacements can be achieved and both the Type III and IV interactions can be altered such that the interaction does not impinge on the leading edge surface.

  12. Wind-tunnel Investigation of High-lift and Stall-control Devices on a 37 Degree Sweptback Wing of Aspect Ratio 6 at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Koven, William; Graham, Robert R

    1948-01-01

    Results are presented of an investigation in the Langley 19-foot pressure tunnel of the longitudinal characteristics of a semispan model wing having 37 degrees sweepback of the leading edge, an aspect ratio of 6, and NACA 641-212 airfoil section perpendicular to the 27-percent-chord line. Several types of stall-control devices including extensible round-nose leading-edge flaps, a leading-edge slat, and a drooped leading edge were investigated; partial- and full-span trailing-edge split and double slotted flaps were also tested. In addition, various combinations of the aforementioned leading- and trailing-edge flaps were investigated. The tests covered a range of Reynolds numbers between 2.00 x 10(6) and 9.35 x 10(6). The wing with or without trailing-edge splity of double slotted flap was longitudinally unstable near maximum lift due to tip stalling. The addition of an outboard half-span leading-edge flap or a leading-edge slat to the plain wing or wing with inboard half-span split flaps eliminated tip stalling and resulted in stable moment variations at the stall. The drooped leading edge, on the other hand, was only effective when used in conjunction with an upper-surface fence. The combination of an outboard leading-edge device and inboard half-span double slotted flap resulted in an undesirable loop in the pitching-moment curve near maximum lift in spite of an inboard stall. The loop is attributed to the section characteristics of the double slotted flap. Air-flow surveys behind the wing indicated that a suitably placed horizontal tail would eliminate the loop in the moment curve.

  13. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.

  14. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.

  15. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  16. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1991-01-01

    Cumulative space environment effects on Ag/fluorinated ethylene propylene (FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition and chemistry were observed. Researchers hypothesize that the FEP surfaces on LDEF were degraded by ultraviolet radiation exposure at all orientations, but that the damaged material had been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage on trays flanking the trailing edge.

  17. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2006-01-01

    Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.

  18. Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface

    NASA Astrophysics Data System (ADS)

    Masud, M. H.; Naim-Ul-Hasan, Arefin, Amit Md. Estiaque; Joardder, Mohammad U. H.

    2017-06-01

    Airfoil is widely used for aircraft wings and blades of helicopters, turbines, propellers, fans and compressors. Many researches have been conducted on focusing the leading edge, surface and trailing edge of airfoil in order to maximize airfoil lift and to reduce drag. Literature shows that using protuberances along the leading edge of NACA 2412, it is possible to attain better performance from the baseline. Besides, the inward dimpled surface of NACA 0018 produces lesser drag at a positive angle of attacks. However, there is no literature that integrates sinusoidal leading edge and dimpled to attain the benefits of the both. In this study, simulation has been done for design improvement of airfoil by integrating sinusoidal leading edge and dimpled surface. Simulations have been run using finite element method environment. Significant improvement has been observed from the simulation results.

  19. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC havemore » low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.« less

  20. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  1. Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651

    PubMed Central

    Jomaa, Walid; Songmene, Victor; Bocher, Philippe

    2014-01-01

    The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534

  2. The influence of the membrane-polymer interface on colloidal membrane dynamics and phase behavior

    NASA Astrophysics Data System (ADS)

    Zakhary, Mark J.

    A primary challenge in the field of self-assembly is to identify simple interactions that produce well-defined, complex, and controllable materials. A large part of this task is to creatively engineer appropriate assembly components with such suitable interactions built-in. Here, we demonstrate that rod-like subunits, experimentally modeled by fd bacteriophage viruses, with simple and predictable hard-core repulsive interactions, exhibit a great wealth of fascinating self-assembly behavior. These rods form two-dimensional liquid crystalline colloidal membranes consisting of monolayers of aligned particles owing purely to entropic considerations. Due to surface tension, rods near the edge of the monolayers twist, resulting in an elastic nematic ring surrounding the fluid-like membrane interior, and it is the rich phenomena rooted in the interplay between the edge and the interior that is the subject of this thesis. The chiral nature of the fd subunits causes a symmetry breaking at the membrane edge, which leads to chiral control of interfacial tension and resultantly a controllable, reversible morphological transition between membranes and one-dimensional twisted ribbons. Using optical microscopic and optical tweezer techniques, we show that a nucleation barrier exists in association with the membrane-ribbon transition, and investigate this barrier using fluctuation analysis as well as highly controlled force-extension experiments. The finite bending rigidity of the membrane edge is studied, and we show that long filamentous polymers spontaneously adhere to the edge, introducing the concept of geometrical edge-active agents. By analyzing the suppressed edge fluctuations of filament-bound membranes, it is found that the edge bending rigidity varies by up to an order of magnitude in a predictable and controllable way. Finally, we study the effect of the monolayer edge on the membrane coalescence, and observe two types of stable liquid crystalline defects that form at the coalescence site due to chiral incompatibility and frustration. By observing the fluctuations of these structures under various sample conditions, we quantify physical parameters associated with the defects, as well as their respective regions of stability. Optical tweezers are used to easily effect controllable membrane self-coalescence, which allows for imprinting defect networks, transforming between defect types, and imparting irreversible topological alterations to defects.

  3. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  4. Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B; Bernot, Peter T

    1958-01-01

    An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 deg the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 deg flared afterbody. The tests were made through an angle-of-attack range of -2 deg to 20 deg at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge -flap configuration. The flared -after body configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift drag ratio.

  5. Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.; Robinson, R. B.

    1958-01-01

    An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 degrees; the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 degrees flared afterbody. The tests were made through an angle-of-attack range of -2 degrees to 20 degrees at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared-afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge-flap configuration. The flared-afterbody configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift-drag ratio.

  6. Grounding the figure: surface attachment influences figure-ground organization.

    PubMed

    Vecera, Shaun P; Palmer, Stephen E

    2006-08-01

    We investigated whether the lower region effect on figure-ground organization (Vecera, Vogel, and Woodman, 2002) would generalize to contextual depth planes in vertical orientations, as is predicted by a theoretical analysis based on the ecological statistics of edges arising from objects that are attached to surfaces of support. Observers viewed left/right ambiguous figure-ground displays that occluded middle sections of four types of contextual inducers: two types of attached, receding, vertical planes (walls) that used linear perspective and/or texture gradients to induce perceived depth and two types of similar trapezoidal control figures that used either uniform color or random texture to reduce or eliminate perceived depth. The results showed a reliable bias toward seeing as "figure" the side of the figure-ground display that was attached to the receding depth plane, but no such bias for the corresponding side in either of the control conditions. The results are interpreted as being consistent with the attachment hypothesis that the lower region cue to figure-ground organization results from ecological biases in edge interpretation that arise when objects are attached to supporting surfaces in the terrestrial gravitational field.

  7. Evaluation of pressure and thermal data from a wind tunnel test of a large-scale, powered, STOL fighter model

    NASA Technical Reports Server (NTRS)

    Howell, G. A.; Crosthwait, E. L.; Witte, M. C.

    1981-01-01

    A STOL fighter model employing the vectored-engine-over wing concept was tested at low speeds in the NASA/Ames 40 by 80-foot wind tunnel. The model, approximately 0.75 scale of an operational fighter, was powered by two General Electric J-97 turbojet engines. Limited pressure and thermal instrumentation were provided to measure power effects (chordwise and spanwise blowing) and control-surface-deflection effects. An indepth study of the pressure and temperature data revealed many flow field features - the foremost being wing and canard leading-edge vortices. These vortices delineated regions of attached and separated flow, and their movements were often keys to an understanding of flow field changes caused by power and control-surface variations. Chordwise blowing increased wing lift and caused a modest aft shift in the center of pressure. The induced effects of chordwise blowing extended forward to the canard and significantly increased the canard lift when the surface was stalled. Spanwise blowing effectively enhanced the wing leading-edge vortex, thereby increasing lift and causing a forward shift in the center of pressure.

  8. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    NASA Astrophysics Data System (ADS)

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; Stavitski, Eli; Sadowski, Jerzy T.; Vescovo, Elio; Walter, Andrew; Attenkofer, Klaus; Stacchiola, Darío J.; Liu, Mingzhao

    2017-12-01

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices such as ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of the reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.

  9. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less

  10. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    DOE PAGES

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; ...

    2017-12-04

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less

  11. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.

    PubMed

    Tan, Shu Min; Ambrosi, Adriano; Sofer, Zdenĕk; Huber, Štěpán; Sedmidubský, David; Pumera, Martin

    2015-05-04

    The layered structure of molybdenum disulfide (MoS2 ) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2 : basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X-ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k(0) of 4.96×10(-5) and 1.1×10(-3)  cm s(-1) for [Fe(CN)6 ](3-/4-) and [Ru(NH3 )6 ](3+/2+) redox probes, respectively, compared to the basal plane, which yielded k(0) tending towards zero for [Fe(CN)6 ](3-/4-) and about 9.3×10(-4)  cm s(-1) for [Ru(NH3 )6 ](3+/2+) . The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6 ](3-/4-) in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  13. Computational theory of line drawing interpretation

    NASA Technical Reports Server (NTRS)

    Witkin, A. P.

    1981-01-01

    The recovery of the three dimensional structure of visible surfaces depicted in an image by emphasizing the role of geometric cues present in line drawings, was studied. Three key components are line classification, line interpretation, and surface interpolation. A model for three dimensional line interpretation and surface orientation was refined and a theory for the recovery of surface shape from surface marking geometry was developed. A new approach to the classification of edges was developed and implemented signatures were deduced for each of several edge types, expressed in terms of correlational properties of the image intensities in the vicinity of the edge. A computer program was developed that evaluates image edges as compared with these prototype signatures.

  14. A novel method for automated grid generation of ice shapes for local-flow analysis

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  15. Optical coherence tomography to evaluate the interaction of different edge designs of four different silicone hydrogel lenses with the ocular surface.

    PubMed

    Turhan, Semra Akkaya; Toker, Ebru

    2015-01-01

    To evaluate the lens edge interaction with the ocular surface with different edge designs using optical coherence tomography and to examine the effect of lens power on the lens edge interactions. Four types of silicone hydrogel lenses with different edge designs (round-, semi-round-, chisel-, and knife-edged) at six different powers (+5.0, +3.0, +1.0, -1.0, -3.0, and -5.0 diopters) were fitted to both eyes of 20 healthy volunteers. Optical coherence tomography images were taken at the corneal center and at the limbus within 15-30 minutes after insertion. The images were evaluated with respect to two parameters: conjunctival indentation exerted by the lens edge; and the tear film gaps between the posterior surface of the lens and the ocular surface. The amount of conjunctival indentation was measured with the distortion angle of the conjunctiva at the lens edge. The degree of conjunctival indentation was highest with the chisel-edged design followed by the semi-round design (P<0.0001). Knife- and round-edged lenses exerted similar levels of conjunctival indentation that was significantly lower compared to chisel-edged lens (P<0.001). For each one of the tested lens edge designs, no significant difference was observed in the conjunctival indentation with respect to lens power. The chisel-edged lens produced the highest amount of conjunctival indentation for each one of the six lens powers (P<0.0001). Post-lens tear film gaps at the limbus were observed at most in the round-edge design (P=0.001). The fitting properties of contact lenses may be influenced by their edge design but not by their lens power.

  16. Optical coherence tomography to evaluate the interaction of different edge designs of four different silicone hydrogel lenses with the ocular surface

    PubMed Central

    Turhan, Semra Akkaya; Toker, Ebru

    2015-01-01

    Purpose To evaluate the lens edge interaction with the ocular surface with different edge designs using optical coherence tomography and to examine the effect of lens power on the lens edge interactions. Methods Four types of silicone hydrogel lenses with different edge designs (round-, semi-round-, chisel-, and knife-edged) at six different powers (+5.0, +3.0, +1.0, −1.0, −3.0, and −5.0 diopters) were fitted to both eyes of 20 healthy volunteers. Optical coherence tomography images were taken at the corneal center and at the limbus within 15–30 minutes after insertion. The images were evaluated with respect to two parameters: conjunctival indentation exerted by the lens edge; and the tear film gaps between the posterior surface of the lens and the ocular surface. The amount of conjunctival indentation was measured with the distortion angle of the conjunctiva at the lens edge. Results The degree of conjunctival indentation was highest with the chisel-edged design followed by the semi-round design (P<0.0001). Knife- and round-edged lenses exerted similar levels of conjunctival indentation that was significantly lower compared to chisel-edged lens (P<0.001). For each one of the tested lens edge designs, no significant difference was observed in the conjunctival indentation with respect to lens power. The chisel-edged lens produced the highest amount of conjunctival indentation for each one of the six lens powers (P<0.0001). Post-lens tear film gaps at the limbus were observed at most in the round-edge design (P=0.001). Conclusion The fitting properties of contact lenses may be influenced by their edge design but not by their lens power. PMID:26045658

  17. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  18. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    PubMed

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  19. Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries.

    PubMed

    Song, Jongchan; Choo, Min-Ju; Noh, Hyungjun; Park, Jung-Ki; Kim, Hee-Tak

    2014-12-01

    Nafion is known to suppress the polysulfide (PS) shuttle effect, a major obstacle to achieving high capacity and long cycle life for lithium-sulfur batteries. However, elaborate control of the layer's configuration is required for high performance. In this regard, we designed a Nafion-enveloped sulfur cathode, where the Nafion layer is formed on the skin of the cathode, covering its surface and edge while not restricting the porosity. Discharge capacity and efficiency were enhanced with the enveloping configuration, demonstrating suppression of shuttle. The edge protection exhibited better cycling stability than an edge-open configuration. In the absence of the Nafion envelope, charged sulfur concentrated on the top region of the cathode because of the relatively lower PS concentration at the cathode surface. Surprisingly, for the Nafion-enveloped cathode, sulfur was evenly distributed along the cathode, indicating that the configuration imparts a uniform PS concentration within the cathode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. ERK reinforces actin polymerization to power persistent edge protrusion during motility.

    PubMed

    Mendoza, Michelle C; Vilela, Marco; Juarez, Jesus E; Blenis, John; Danuser, Gaudenz

    2015-05-19

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. We tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular signal-regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell surface receptors, and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. Copyright © 2015, American Association for the Advancement of Science.

  1. ERK reinforces actin polymerization to power persistent edge protrusion during motility

    PubMed Central

    Mendoza, Michelle C.; Vilela, Marco; Juarez, Jesus E.; Blenis, John; Danuser, Gaudenz

    2016-01-01

    Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. Here, we tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell-surface receptors and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy (qFSM) and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. Arp2/3 activity generates branched actin networks that can produce pushing force. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. PMID:25990957

  2. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  3. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  4. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    PubMed

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  5. Mask aligner for ultrahigh vacuum with capacitive distance control

    NASA Astrophysics Data System (ADS)

    Bhaskar, Priyamvada; Mathioudakis, Simon; Olschewski, Tim; Muckel, Florian; Bindel, Jan Raphael; Pratzer, Marco; Liebmann, Marcus; Morgenstern, Markus

    2018-04-01

    We present a mask aligner driven by three piezomotors which guides and aligns a SiN shadow mask under capacitive control towards a sample surface. The three capacitors for read out are located at the backside of the thin mask such that the mask can be placed at a μm distance from the sample surface, while keeping it parallel to the surface, without touching the sample by the mask a priori. Samples and masks can be exchanged in-situ and the mask can additionally be displaced parallel to the surface. We demonstrate an edge sharpness of the deposited structures below 100 nm, which is likely limited by the diffusion of the deposited Au on Si(111).

  6. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1992-01-01

    Cumulative space environmental effects on silver/fluorinated ethylene propylene (Ag/FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition, and chemistry were observed. We hypothesize that the FEP surfaces on the LDEF are degraded by UV radiation at all orientations, but that the damaged material has been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage in some areas on the trays flanking the trailing edge.

  7. Active Flow Separation Control on a NACA 0015 Wing Using Fluidic Actuators

    NASA Technical Reports Server (NTRS)

    Melton, Latunia P.

    2014-01-01

    Results are presented from a recent set of wind tunnel experiments using sweeping jet actuators to control ow separation on the 30% chord trailing edge ap of a 30 deg. swept wing model with an aspect ratio (AR) of 4.35. Two sweeping jet actuator locations were examined, one on the flap shoulder and one on the trailing edge flap. The parameters that were varied included actuator momentum, freestream velocity, and trailing edge flap deflection (Delta f ) angle. The primary focus of this set of experiments was to determine the mass flow and momentum requirements for controlling separation on the flap, especially at large flap deflection angles which would be characteristic of a high lift system. Surface pressure data, force and moment data, and stereoscopic particle image velocimetry (PIV) data were acquired to evaluate the performance benefits due to applying active flow control. Improvements in lift over the majority of the wing span were obtained using sweeping jet actuator control. High momentum coefficient, Cu, levels were needed when using the actuators on the ap because they were located downstream of separation. Actuators on the flap shoulder performed slightly better but actuator size, orientation, and spacing still need to be optimized.

  8. Hα line shape in front of the limiter in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group

    1999-11-01

    The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.

  9. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Hao, Huilian; Wang, Linlin

    2016-12-01

    Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  10. Selective adsorption of toluene-3,4-dithiol on Si(553)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Suchkova, Svetlana; Hogan, Conor; Bechstedt, Friedhelm; Speiser, Eugen; Esser, Norbert

    2018-01-01

    The adsorption of small organic molecules onto vicinal Au-stabilized Si(111) surfaces is shown to be a versatile route towards controlled growth of ordered organic-metal hybrid one-dimensional nanostructures. Density functional theory is used to investigate the site-specific adsorption of toluene-3,4-dithiol (TDT) molecules onto the clean Si(553)-Au surface and onto a co-doped surface whose steps are passivated by hydrogen. We find that the most reactive sites involve bonding to silicon at the step edge or on the terraces, while gold sites are relatively unfavored. H passivation and TDT adsorption both induce a controlled charge redistribution within the surface layer, causing the surface metallicity, electronic structure, and chemical reactivity of individual adsorption sites to be substantially altered.

  11. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    PubMed

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  12. Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping

    NASA Astrophysics Data System (ADS)

    Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.

    2018-04-01

    We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.

  13. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  14. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  15. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the NASA Gulfstream GIII test bed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight.

  16. Effects of Edge Directions on the Structural Controllability of Complex Networks

    PubMed Central

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042

  17. Method and system for edge cladding of laser gain media

    DOEpatents

    Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

    2014-03-25

    A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

  18. Vortex interaction with a leading-edge of finite thickness

    NASA Technical Reports Server (NTRS)

    Sohn, D.; Rockwell, Donald

    1987-01-01

    Vortex interaction with a thick elliptical leading-edge at zero relative offset produces a pronounced secondary vortes of opposite sense that travels with the same phase speed as the primaty vortex along the lower surface of the edge. The edge thickness (scale) relative to the incident vorticity field has a strong effect on the distortion of the incident primary vortex during the impingement processs. When the thickness is sufficiently small, there is a definite severing of the incident vortex and the portion of the incident vortex that travels along the upper part of the elliptical surface has a considerably larger phase speed than that along the lower surface; this suggests that the integrated loading along the upper surface is more strongly correlated. When the thickness becomes too large, then most, if not all, of the incident vortex passes below the leading-edge. On the other hand, the relative tranverse offset of the edge with respect to the center of the incident vortex has a significant effect on the secondary vortex formation.

  19. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    PubMed Central

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-01-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267

  20. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-07-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps).

  1. Further investigations of experiment A0034 atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Thermal control coatings within the recessed compartments of LDEF Experiment A0034 experienced the maximum leading edge fluence of atomic oxygen with considerably less solar UV radiation exposure than top-surface mounted materials of other LDEF experiments on either the leading or the trailing edge. This combination of exposure within A0034 resulted in generally lower levels of darkening attributable to solar UV radiation than for similar materials on other LDEF experiments exposed to greater cumulative solar UV radiation levels. Changes in solar absorptance and infrared thermal emittance of the exposed coatings are thus unique to this exposure. Analytical results for other applications have been found for environmentally induced changes in fluorescence, surface morphology, light scattering, and the effects of coating outgassing products on adjacent mirrors and windows of the A0034 experiment. Some atmospheric bleaching of the thermal control coatings, in addition to that presumably experience during reentry and recovery operations, has been found since initial post-flight observations and measurements.

  2. The numerical study of the rake angle of impeller blade in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Galerkin, Y.

    2017-08-01

    Investigated impellers have blade surfaces formed by straight generatrix. Blade profiles on shroud and disc surfaces are optimized by velocity diagram control (inviscid, quasi-three dimensional calculations). The blade profiles at hub and shroud blade-to-blade surfaces must be coordinated. A designer can choose the generatrix position at a trailing edge for it. The position is defined by the rake angle that is the angle between a trailing edge generatrix and a meridional plane. Two stages with 3D impellers, vaneless diffusers and return channels were investigated. Seven candidates of impellers of these stages with rake angles in range plus-minus 30 degrees were designed and investigated by quasi-three-dimensional inviscid calculation. CFD-calculations were made for the stages with these impellers. The optimal rake angle is minus 20 degrees for the high flow rate impeller due to lesser blade surface area and favorable meridian velocity field. Zero rake angle is optimal for the medium flow rate impeller where blade surface area is not so important. The combination of inviscid and viscid calculations is the informative instrument for further studies.

  3. Edge electrospinning: a facile needle-less approach to realize scaled up production of quality nanofibers

    NASA Astrophysics Data System (ADS)

    Bochinski, J. R.; Curtis, C.; Roman, M. P.; Clarke, L. I.; Wang, Q.; Thoppey, N. M.; Gorga, R. E.

    2014-03-01

    Utilizing unconfined polymer fluids (e.g., from solution or melt), edge electrospinning provides a straightforward approach for scaled up production of high quality nanofibers through the formation of many parallel jets. From simple geometries (using solution contained within a sharp-edged bowl or on a flat plate), jets form and spontaneously re-arrange on the fluid surface near the edge. Using appropriate control of the electric field induced feed rate, comparable per jet fabrication as traditional single-needle electrospinning can be realized, resulting in nanofibers with similar diameters, diameter distribution, and collected mat porosity. The presence of multiple jets proportionally enhances the production rate of the system, with minimal experimental complexity and without the possibility of clogging. Extending this needle-less approach to commercial polyethylene polymers, micron scale fibers can be melt electrospun using a similar apparatus. Support from National Science Foundation (CMMI-0800237).

  4. The topographic development and areal parametric characterization of a stratified surface polished by mass finishing

    NASA Astrophysics Data System (ADS)

    Walton, Karl; Blunt, Liam; Fleming, Leigh

    2015-09-01

    Mass finishing is amongst the most widely used finishing processes in modern manufacturing, in applications from deburring to edge radiusing and polishing. Processing objectives are varied, ranging from the cosmetic to the functionally critical. One such critical application is the hydraulically smooth polishing of aero engine component gas-washed surfaces. In this, and many other applications the drive to improve process control and finish tolerance is ever present. Considering its widespread use mass finishing has seen limited research activity, particularly with respect to surface characterization. The objectives of the current paper are to; characterise the mass finished stratified surface and its development process using areal surface parameters, provide guidance on the optimal parameters and sampling method to characterise this surface type for a given application, and detail the spatial variation in surface topography due to coupon edge shadowing. Blasted and peened square plate coupons in titanium alloy are wet (vibro) mass finished iteratively with increasing duration. Measurement fields are precisely relocated between iterations by fixturing and an image superimposition alignment technique. Surface topography development is detailed with ‘log of process duration’ plots of the ‘areal parameters for scale-limited stratified functional surfaces’, (the Sk family). Characteristic features of the Smr2 plot are seen to map out the processing of peak, core and dale regions in turn. These surface process regions also become apparent in the ‘log of process duration’ plot for Sq, where lower core and dale regions are well modelled by logarithmic functions. Surface finish (Ra or Sa) with mass finishing duration is currently predicted with an exponential model. This model is shown to be limited for the current surface type at a critical range of surface finishes. Statistical analysis provides a group of areal parameters including; Vvc, Sq, and Sdq, showing optimal discrimination for a specific range of surface finish outcomes. As a consequence of edge shadowing surface segregation is suggested for characterization purposes.

  5. Atomistic Insights Into the Oriented Attachment of Tunnel-Based Oxide Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yifei; Wood, Stephen M; He, Kun

    Controlled synthesis of nanomaterials is one of the grand challenges facing materials scientists. In particular, how tunnel-based nanomaterials aggregate during synthesis while maintaining their well-aligned tunneled structure is not fully understood. Here, we describe the atomistic mechanism of oriented attachment (OA) during solution synthesis of tunneled α-MnO2 nanowires based on a combination of in situ liquid cell transmission electron microscopy (TEM), aberration-corrected scanning TEM with subangstrom spatial resolution, and first-principles calculations. It is found that primary tunnels (1 × 1 and 2 × 2) attach along their common {110} lateral surfaces to form interfaces corresponding to 2 × 3 tunnelsmore » that facilitate their short-range ordering. The OA growth of α-MnO2 nanowires is driven by the stability gained from elimination of {110} surfaces and saturation of Mn atoms at {110}-edges. During this process, extra [MnOx] radicals in solution link the two adjacent {110} surfaces and bond with the unsaturated Mn atoms from both surface edges to produce stable nanowire interfaces. Our results provide insights into the controlled synthesis and design of nanomaterials in which tunneled structures can be tailored for use in catalysis, ion exchange, and energy storage applications.« less

  6. Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect

    DOEpatents

    Ortega, Jason M.; Sabari, Kambiz

    2006-03-07

    An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

  7. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  8. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  9. Low-speed wind-tunnel investigation of a large scale advanced arrow-wing supersonic transport configuration with engines mounted above wing for upper-surface blowing

    NASA Technical Reports Server (NTRS)

    Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.

    1976-01-01

    Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.

  10. Flight test results from a supercritical mission adaptive wing with smooth variable camber

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.

    1992-01-01

    The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.

  11. Segmentation via fusion of edge and needle map

    NASA Astrophysics Data System (ADS)

    Ahn, Hong-Young; Tou, Julius T.

    1991-03-01

    This paper presents an integrated image segmentation method using edge and needle map which compensates deficiencies of using either edge-based approach or region-based approach. Segmentation of an image is the first and most difficult step toward symbolic transformation of a raw image, which is essential in image understanding. In industrial applications, the task is further complicated by the ubiquitous presence of specularity in most industrial parts. Three images taken from three different illumination directions were used to separate specular and Lambertian components in the images. Needle map is generated from Lambertian component images using photometric stereo technique. In one channel, edges are extracted and linked from the averaged Lambertian images providing one source of segmentation. The other channel, Gaussian curvature and mean curvature values are estimated at each pixel from least square local surface fit of needle map. Labeled surface type image is then generated using the signs of Gaussian and mean curvatures, where one of ten surface types is assigned to each pixel. Connected regions of identical surface type pixels provide the first level grouping, a rough initial segmentation. Edge information and initial segmentation of surface type are fed to an integration module which interprets the edges and regions in a consistent way. During interpretation regions are merged or split, edges are discarded or generated depending upon global surface fit error and consistency with neighboring regions. The output of integrated segmentation is an explicit description of surface type and contours of each region which facilitates recognition, localization and attitude determination of objects in the image.

  12. Edge plasma boundary layer generated by kink modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2011-06-01

    This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  13. A high-efficiency spin polarizer based on edge and surface disordered silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Chen, Qiao; Ding, Jianwen

    2018-07-01

    Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.

  14. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  15. Gradient cuts and extremal edges in relative depth and figure-ground perception.

    PubMed

    Ghose, Tandra; Palmer, Stephen E

    2016-02-01

    Extremal edges (EEs) are borders consisting of luminance gradients along the projected edge of a partly self-occluding curved surface (e.g., a cylinder), with equiluminant contours (ELCs) that run approximately parallel to that edge. Gradient cuts (GCs) are similar luminance gradients with ELCs that intersect (are "cut" by) an edge that could be due to occlusion. EEs are strongly biased toward being seen as closer/figural surfaces (Palmer & Ghose, Psychological Science, 19(1), 77-83, 2008). Do GCs produce a complementary bias toward being seen as ground? Experiment 1 shows that, with EEs on the opposite side, GCs produce a ground bias that increases with increasing ELC angles between ELCs and the shared edge. Experiment 2 shows that, with flat surfaces on the opposite side, GCs do not produce a ground bias, suggesting that more than one factor may be operating. We suggest that two partially dissociable factors may operate for curved surfaces-ELC angle and 3-D surface convexity-that reinforce each other in the figural cues of EEs but compete with each other in GCs. Moreover, this figural bias is modulated by the presence of EEs and GCs, as specified by the ELC angle between ELCs and the shared contour.

  16. Loitering of the retreating sea ice edge in the Arctic Seas.

    PubMed

    Steele, Michael; Ermold, Wendy

    2015-12-01

    Each year, the arctic sea ice edge retreats from its winter maximum extent through the Seasonal Ice Zone (SIZ) to its summer minimum extent. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan-arctic ice edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior "ice edge loitering," and identify areas that are more prone to loitering than others. Generally, about 20-25% of the SIZ area experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in areas from which the ice has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force ice floes into this water cause melting. Thus, while individual ice floes are moving, the ice edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the area of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ area has grown. This is because rapid ice retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the ice edge during the retreat season.

  17. Archeological Investigations at the Three Rivers Flood Control Project.

    DTIC Science & Technology

    1980-01-01

    quartzite, jasper and chert-rich Uvalde gravels. In Pleistocene to Holocene times, valley incision ENVIRONMENTAL SETTING 6 and the topographic...fragments and a thick bi-,ace. The latter is elliptical in outline, plano -convex in cross section, and has sinuous edges. The dorsal surface retains

  18. External occulter edge scattering control using metamaterials for exoplanet detection

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Sirbu, Dan; Liu, Zhaowei; Martin, Stefan; Lu, Dylan

    2015-09-01

    Direct imaging of earth-like exoplanets in the Habitable Zone of sun-like stars requires image contrast of ~10^10 at angular separations of around a hundred milliarcseconds. One approach for achieving this performance is to fly a starshade at a long distance in front of the telescope, shading the telescope from the direct starlight, but allowing planets around the star to be seen. The starshade is positioned so that sunlight falls on the surface away from the telescope, so the sun does not directly illuminate it. However, sunlight scattered from the starshade edge can enter the telescope, raising the background light level and potentially preventing the starshade from delivering the required contrast. As a result, starshade edge design has been identified as one of the highest priority technology gaps for external occulter missions in the NASAs Exoplanet Exploration Program Technology Plan 2013. To reduce the sunlight edge scatter to an acceptable level, the edge Radius Of Curvature (ROC) should be 1μm or less (commercial razor blades have ROC of a few hundred nanometer). This poses a challenging manufacturing requirement and may make the occulter difficult to handle. In this paper we propose an alternative approach to controlling the edge scattering by applying a flexible metamaterial to the occulter edge. Metamaterials are artificially structured materials, which have been designed to display properties not found in natural materials. Metamaterials can be designed to direct the scatter at planned incident angles away from the space telescope, thereby directly decreasing the contaminating background light. Reduction of the background light translates into shorter integration time to characterize a target planet and therefore improves the efficiency of the observations. As an additional benefit, metamaterials also have potential to produce increased tolerance to edge defects.

  19. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1989-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  20. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.

    1990-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  1. Living on the edge: transfer and traffic of E. coli in a confined flow.

    PubMed

    Figueroa-Morales, Nuris; Leonardo Miño, Gastón; Rivera, Aramis; Caballero, Rogelio; Clément, Eric; Altshuler, Ernesto; Lindner, Anke

    2015-08-21

    We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.

  2. Minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Bailey, Sheila G.

    1993-01-01

    A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.

  3. Laser surface texturing of cast iron steel: dramatic edge burr reduction and high speed process optimisation for industrial production using DPSS picosecond lasers

    NASA Astrophysics Data System (ADS)

    Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris

    2015-07-01

    In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.

  4. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  5. Edge detection and mathematic fitting for corneal surface with Matlab software.

    PubMed

    Di, Yue; Li, Mei-Yan; Qiao, Tong; Lu, Na

    2017-01-01

    To select the optimal edge detection methods to identify the corneal surface, and compare three fitting curve equations with Matlab software. Fifteen subjects were recruited. The corneal images from optical coherence tomography (OCT) were imported into Matlab software. Five edge detection methods (Canny, Log, Prewitt, Roberts, Sobel) were used to identify the corneal surface. Then two manual identifying methods (ginput and getpts) were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve (y=Ax 2 +Bx+C), Polynomial curve [p(x)=p1x n +p2x n-1 +....+pnx+pn+1] and Conic section (Ax 2 +Bxy+Cy 2 +Dx+Ey+F=0) were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally, the eccentricity (e) obtained by corneal topography and conic section were compared with paired t -test. Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis, eccentricity, circle center, etc . There were no significant differences between 'e' values by corneal topography and conic section ( t =0.9143, P =0.3760 >0.05). It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.

  6. Comparing subjective contours for Kanizsa squares and linear edge alignments ('New York Titanic' figures).

    PubMed

    Gillam, Barbara; Marlow, Phillip J

    2014-01-01

    One current view is that subjective contours may involve high-level detection of a salient shape with back propagation to early visual areas where small receptive fields allow for scrutiny of relevant details. This idea applies to Kanizsa-type figures. However, Gillam and Chan (2002 Psychological Science, 13, 279-282) using figures based on Gillam's graphic 'New York Titanic' (Gillam, 1997 Thresholds: Limits of perception. New York: Arts Magazine) showed that strong subjective contours can be seen along the linearly aligned edges of a set of shapes if occlusion cues of 'extrinsic edge' and 'entropy contrast' are strong. Here we compared ratings of the strength of subjective contours along linear alignments with those seen in Kanizsa figures. The strongest subjective contour for a single set of linearly aligned shapes was similar in strength to the edges of a Kanizsa square (controlling for support ratio) despite the lack of a salient region. The addition of a second set of linearly aligned inducers consistent with a common surface increased subjective-contour strength, as did having four rather than two 'pacmen' in the Kanizsa figure, indicating a role for surface support. We argue that linear subjective contours allow for the investigation of certain occlusion cues and the interactions between them that are not easily explored with Kanizsa figures.

  7. Surface versus Edge-Based Determinants of Visual Recognition.

    ERIC Educational Resources Information Center

    Biederman, Irving; Ju, Ginny

    1988-01-01

    The latency at which objects could be identified by 126 subjects was compared through line drawings (edge-based) or color photography (surface depiction). The line drawing was identified about as quickly as the photograph; primal access to a mental representation of an object can be modeled from an edge-based description. (SLD)

  8. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading- and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, William C.; Burnside, Nathan J.

    2013-01-01

    The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.

  9. High-Fidelity Geometric Modeling and Mesh Generation for Mechanics Characterization of Polycrystalline Materials

    DTIC Science & Technology

    2015-01-07

    and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality...shade-off. Halos are bright or dark thin regions around the boundary of the sample. These false edges around the object make many segmentation

  10. The right wing of the LEFT airplane

    NASA Technical Reports Server (NTRS)

    Powell, Arthur G.

    1987-01-01

    The NASA Leading-Edge Flight Test (LEFT) program addressed the environmental issues which were potential problems in the application of Laminar Flow Control (LFC) to transport aircraft. These included contamination of the LFC surface due to dirt, rain, insect remains, snow, and ice, in the critical leading-edge region. Douglas Aircraft Company designed and built a test article which was mounted on the right wing of the C-140 JetStar aircraft. The test article featured a retractable leading-edge high-lift shield for contamination protection and suction through perforations on the upper surface for LFC. Following a period of developmental flight testing, the aircraft entered simulated airline service, which included exposure to airborne insects, heavy rain, snow, and icing conditions both in the air and on the ground. During the roughly 3 years of flight testing, the test article has consistently demonstrated laminar flow in cruising flight. The experience with the LEFT experiment was summarized with emphasis on significant test findings. The following items were discussed: test article design and features; suction distribution; instrumentation and transition point reckoning; problems and fixes; system performance and maintenance requirements.

  11. Reconfiguration control system for an aircraft wing

    NASA Technical Reports Server (NTRS)

    Wakayama, Sean R. (Inventor)

    2008-01-01

    Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.

  12. A possibility of avoiding surface roughness due to insects

    NASA Technical Reports Server (NTRS)

    Wortmann, F. X.

    1984-01-01

    Discussion of a method for eliminating turbulence caused by the formation of insect roughness upon the leading edges and fuselage, particularly in aircraft using BLC. The proposed technique foresees the use of elastic surfaces on which insect roughness cannot form. The operational characteristics of highly elastic rubber surface fastened to the wing leading edges and fuselage edges are examined. Some preliminary test results are presented. The technique is seen to be advantageous primarily for short-haul operations.

  13. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    PubMed

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  14. Rotatable crucible for rapid solidification process

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas (Inventor)

    1990-01-01

    This invention relates to an apparatus for producing filament, fiber, ribbon or film from a molten material, comprising a preferably heat extracting crucible which contains a pool of molten material at a selected horizontal level in the pool. The crucible has an opening extending from above the free surface level to a bottom edge of the opening, the bottom edge being sufficiently below the free surface level so that the molten material cannot form and hold a meniscus by surface tension between the edge and the level of the free surface and further comprises a heat extracting substrate laterally disposed with respect to the crucible and which rotates about an axis of rotation. The substrate is positioned adjacent the edge of the opening which confines the molten material and prevents it from overflowing downwardly out of the crucible. The invention features rotating means which includes a first drive means for tiltably rotating the crucible about an axis of rotation which is coaxial with the axis of rotation of the substrate, so the crucible edge can be maintained a predetermined constant distance from the substrate. The distance chosen is suitable for depositing molten material on the substrate and the apparatus also has a second drive means which is drivingly connected to the substrate for continuously moving the surface of the substrate upwardly past the edge and a melt front formed at the interface of the molten material and the substrate surface.

  15. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  16. Molecular dynamics simulations of cesium adsorption on illite nanoparticles.

    PubMed

    Lammers, Laura N; Bourg, Ian C; Okumura, Masahiko; Kolluri, Kedarnath; Sposito, Garrison; Machida, Masahiko

    2017-03-15

    The charged surfaces of micaceous minerals, especially illite, regulate the mobility of the major radioisotopes of Cs ( 134 Cs, 135 Cs, 137 Cs) in the geosphere. Despite the long history of Cs adsorption studies, the nature of the illite surface sites remains incompletely understood. To address this problem, we present atomistic simulations of Cs competition with Na for three candidate illite adsorption sites - edge, basal plane, and interlayer. Our simulation results are broadly consistent with affinities and selectivities that have been inferred from surface complexation models. Cation exchange on the basal planes is thermodynamically ideal, but exchange on edge surfaces and within interlayers shows complex, thermodynamically non-ideal behavior. The basal planes are weakly Cs-selective, while edges and interlayers have much higher affinity for Cs. The dynamics of NaCs exchange are rapid for both cations on the basal planes, but considerably slower for Cs localized on edge surfaces. In addition to new insights into Cs adsorption and exchange with Na on illite, we report the development of a methodology capable of simulating fully-flexible clay mineral nanoparticles with stable edge surfaces using a well-tested interatomic potential model. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Theoretical characteristics in supersonic flow of two types of control surfaces on triangular wings

    NASA Technical Reports Server (NTRS)

    Tucker, Warren A; Nelson, Robert L

    1949-01-01

    Methods based on the linearized theory for supersonic flow were used to find the characteristics of two types of control surfaces on thin triangular wings. The first type, the constant-chord partial-span flap, was considered to extend either outboard from the center of the wing or inboard from the wing tip. The second type, the full-triangular-tip flap, was treated only for the case in which the Mach number component normal to the leading edge is supersonic. For each type, expressions were found for the lift, rolling-moment, pitching-moment, and hinge-moment characteristics.

  18. Experiments with an Airfoil Model on which the Boundary Layers are Controlled Without the Use of Supplementary Equipment

    NASA Technical Reports Server (NTRS)

    Abbott, I H

    1931-01-01

    This report describes test made in the Variable Density Wind Tunnel of the NACA to determine the possibility of controlling the boundary layer on the upper surface of an airfoil by use of the low pressure existing near the leading edge. The low pressure was used to induce flow through slots in the upper surface of the wing. The tests showed that the angle of attack for maximum lift was increased at the expense of a reduction in the maximum lift coefficient and an increase in the drag coefficient.

  19. Theoretical characteristics of two-dimensional supersonic control surfaces

    NASA Technical Reports Server (NTRS)

    Morrissette, Robert R; Oborny, Lester F

    1951-01-01

    The "Busemann second-order-approximation theory" for the pressure distribution over a two-dimensional airfoil in supersonic flow was used to determine some of the aerodynamic characteristics of uncambered symmetrical parabolic and double-wedge airfoils with leading-edge and trailing-edge flaps. The characteristics presented and discussed in this paper are: flap effectiveness factor, rate of change of hinge-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient with flap deflection, rate of change of the pitching-moment coefficient about the mid chord with flap deflection, and the location of the center of pressure of the airfoil-flap combination.

  20. Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.

    2015-09-01

    Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.

  1. Compliant flow designs for optimum lift control of wind turbine rotors

    NASA Astrophysics Data System (ADS)

    Williams, Theodore J. H.

    An optimization approach was formulated to determine geometric designs that are most compliant to flow control devices. Single dielectric barrier discharge (SDBD) plasma actuators are used in the flow control design optimization as they are able to be incorporated into CFD simulations. An adjoint formulation was derived in order to have a numerically efficient way of calculating the shape derivatives on the surface of the geometric design. The design of a wind turbine blade retrofit for the JIMP 25kW wind turbine at Notre Dame is used to motivate analyses that utilize the optimization approach. The CFD simulations of the existing wind turbine blade were validated against wind tunnel testing. A one-parameter optimization was performed in order to design a trailing edge addition for the current wind turbine blade. The trailing edge addition was designed to meet a desired lift target while maximizing the lift-to-drag ratio. This analysis was performed at seven radial locations on the wind turbine blade. The new trailing edge retrofits were able to achieve the lift target for the outboard radial locations. The designed geometry has been fabricated and is currently being validated on a full-scale turbine and it is predicted to have an increase in annual energy production of 4.30%. The design of a trailing edge retrofit that includes the use of a SDBD plasma actuator was performed using a two-parameter optimization. The objective of this analysis was to meet the lift target and maximize the controllability of the design. The controllability is defined as the difference in lift between plasma on and plasma off cases. A trailing edge retrofit with the plasma actuator located on the pressure side was able to achieve the target passive lift increase while using plasma flow control to reduce the lift to below the original design. This design resulted in a highly compliant flow.

  2. Adhesion of osteoblasts to a nanorough titanium implant surface

    PubMed Central

    Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš

    2011-01-01

    This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478

  3. The SKED: speckle knife edge detector

    NASA Astrophysics Data System (ADS)

    Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.

    2014-06-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.

  4. A determination of the external forces required to move the benchmark active controls testing model in pure plunge and pure pitch

    NASA Technical Reports Server (NTRS)

    Dcruz, Jonathan

    1993-01-01

    In view of the strong need for a well-documented set of experimental data which is suitable for the validation and/or calibration of modern Computational Fluid Dynamics codes, the Benchmark Models Program was initiated by the Structural Dynamics Division of the NASA Langley Research Center. One of the models in the program, the Benchmark Active Controls Testing Model, consists of a rigid wing of rectangular planform with a NACA 0012 profile and three control surfaces (a trailing-edge control surface, a lower-surface spoiler, and an upper-surface spoiler). The model is affixed to a flexible mount system which allows only plunging and/or pitching motion. An approximate analytical determination of the forces required to move this model, with its control surfaces fixed, in pure plunge and pure pitch at a number of test conditions is included. This provides a good indication of the type of actuator system required to generate the aerodynamic data resulting from pure plunging and pure pitching motion, in which much interest was expressed. The analysis makes use of previously obtained numerical results.

  5. Exploring nonlinear topological states of matter with exciton-polaritons: Edge solitons in kagome lattice.

    PubMed

    Gulevich, D R; Yudin, D; Skryabin, D V; Iorsh, I V; Shelykh, I A

    2017-05-11

    Matter in nontrivial topological phase possesses unique properties, such as support of unidirectional edge modes on its interface. It is the existence of such modes which is responsible for the wonderful properties of a topological insulator - material which is insulating in the bulk but conducting on its surface, along with many of its recently proposed photonic and polaritonic analogues. We show that exciton-polariton fluid in a nontrivial topological phase in kagome lattice, supports nonlinear excitations in the form of solitons built up from wavepackets of topological edge modes - topological edge solitons. Our theoretical and numerical results indicate the appearance of bright, dark and grey solitons dwelling in the vicinity of the boundary of a lattice strip. In a parabolic region of the dispersion the solitons can be described by envelope functions satisfying the nonlinear Schrödinger equation. Upon collision, multiple topological edge solitons emerge undistorted, which proves them to be true solitons as opposed to solitary waves for which such requirement is waived. Importantly, kagome lattice supports topological edge mode with zero group velocity unlike other types of truncated lattices. This gives a finer control over soliton velocity which can take both positive and negative values depending on the choice of forming it topological edge modes.

  6. Controlled formation of GeSi nanostructures on pillar-patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Zeng, Ceng; Fan, Yongliang; Jiang, Zuimin; Xia, Jinsong; Zhong, Zhenyang; Fudan University Team; Huazhong University of Science; Technology Collaboration

    2015-03-01

    GeSi quantum nanostructures (QNs) have potential applications in optoelectronic devices due to their unique properties and compatibility with the sophisticated Si technology. However, the disadvantages of poor quantum efficiency of the GeSi QNs on flat Si (001) substrates hinder their optoelectronic applications. Today, numerous growth strategies have been proposed to control the formation of GeSi QNs in hope of improving the optoelectronic performances. One of the ways is to fabricate GeSi QNs on patterned substrates, where the GeSi QNs can be greatly manipulated in aspects of size, shape, composition, orientation and arrangement. Here, self-assembled GeSi QNs on periodic Si (001) sub-micro pillars (SPMs) are systematically studied. By controlling the growth conditions and the diameters of the SPMs, different GeSi QNs, including circularly arranged quantum dots (QDs), quantum rings (QRs), and quantum dot molecules (QDMs), are realized at the top edge of SMPs. Meanwhile, fourfold symmetric GeSi QDMs can be also obtained at the base edges of the SPMs. The promising features of self-assembled GeSi QNs are explained in terms of the surface chemical potential, which disclose the critical effect of surface morphology on the diffusion and the aggregation of Ge adatoms.

  7. A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Swinford, G. R.

    1976-01-01

    The results of an aircraft wing design study are reported. The selected study airplane configuration is defined. The suction surface, ducting, and compressor systems are described. Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined. Leading and trailing edge structures of composite construction are described. Control surfaces, engine installation, and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing, weight, operations, and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built, and that such a wing will be lighter than an equivalent metal wing. As a result, a program of suction surface evaluation and other studies of configuration, aerodynamics, structural design and manufacturing, and suction systems are recommended.

  8. The Spectrum of Thermally Stimulated Surface Plasmon Polaritons of a Linear Sample

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. V.; Nikitin, A. K.; Khasanov, I. Sh.; Trang, Ta Thu

    2017-12-01

    An analytical model of the spectrum of thermally stimulated surface plasmon polaritons (TSSPPs) coming to the edge of a linear conducting sample has been developed. It has been found that the spectrum of such TSSPPs obeys neither the Wien law nor the Stefan-Boltzmann law for thermal radiation. The maximum of this spectrum is shifted to the low-frequency region with respect to the spectrum of the absolutely black body, and the magnitude of the shift is proportional to the sample length. The plasmon nature of the intensity increment of thermal radiation from the edge of a plane face of a duralumin sample has been verified experimentally. It has been shown that the intensity and spectrum of this increment can be controlled both by the sample temperature and by the extension of the face.

  9. Higher-order topological insulators and superconductors protected by inversion symmetry

    NASA Astrophysics Data System (ADS)

    Khalaf, Eslam

    2018-05-01

    We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of "higher-order" topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We provide a complete classification of inversion-protected higher-order topological insulators and superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator (class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.

  10. The dynamics and control of large flexible space structures, 3. Part A: Shape and orientation control of a platform in orbit using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.; Krishna, R.; James, P. K.

    1980-01-01

    The dynamics, attitude, and shape control of a large thin flexible square platform in orbit are studied. Attitude and shape control are assumed to result from actuators placed perpendicular to the main surface and one edge and their effect on the rigid body and elastic modes is modelled to first order. The equations of motion are linearized about three different nominal orientations: (1) the platform following the local vertical with its major surface perpendicular to the orbital plane; (2) the platform following the local horizontal with its major surface normal to the local vertical; and (3) the platform following the local vertical with its major surface perpendicular to the orbit normal. The stability of the uncontrolled system is investigated analytically. Once controllability is established for a set of actuator locations, control law development is based on decoupling, pole placement, and linear optimal control theory. Frequencies and elastic modal shape functions are obtained using a finite element computer algorithm, two different approximate analytical methods, and the results of the three methods compared.

  11. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu; Ma, Wen

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction ratesmore » of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.« less

  12. Structural and Dynamical Properties of 2:1 Phyllosilicates Edges and Nanoparticles

    NASA Astrophysics Data System (ADS)

    Newton, A. G.; Sposito, G.

    2012-12-01

    Classical mechanics simulations of bulk 2:1 phyllosilicate minerals provide atomic scale perspectives of the macroscopic sorption and diffusion phenomena in interlayer nanopores. An equivalent perspective of these interfacial phenomena in macropores bounded by the edges of stacked phyllosilicate particles is not possible due to the absence of a forcefield for the edges of phyllosilicate minerals. A valid forcefield to describe the phyllosilicate edge is essential to link the quantum and continuum mechanical models. The inherently disordered edge of 2:1 phyllosilicate minerals and rarity of well-crystallized samples further complicates the task of validating a forcefield for the phyllosilicate edge. Periodic bond chain theory identifies three tetrahedral-octahedral-tetrahedral (TOT) structures that parallel the edge faces of pseudohexagonal phyllosilicate particles. These TOT structures are the basis of atomistic models of the dominant edge interface and nanoparticles. The CLAYFF forcefield describes all pairwise atomic interactions with only minimal partial charge adjustments to maintain model neutrality, where necessary. Atomistic simulations in the isobaric-isothermal ensemble at nanosecond timescales predict equilibrium edge structures and dynamical properties of the aqueous interface. The CLAYFF forcefield and the limited adjustments to parameters predict edge and particle structures that are consistent with the results of ab initio MD simulations, support macroscopic observations of phyllosilicate reactivity, and provide legitimacy for disordered models of 2:1 phyllosilicates. The heterogeneous edge structures can be explained by the chemistry of the octahedral cation and surface charge anisotropy. In the plane of the octahedral sheet, the cations of the octahedral layer can assume four-, five-, and six-coordinate polyhedral geometries at the edge interface. These disordered edge structures create alternate alignments in the tetrahedral sheet. The structural and dynamical properties of the phyllosilicate edge interface differ from those of the 2:1 phyllosilicate basal surface. The non-planar surface structure and abundant oxygen atoms and hydroxyl groups at the edge order the water layers such that a steep gradient in the water self-diffusion coefficient exists near the surface. Isolated phyllosilicate nanoparticles maintain the original crystal habit; disordered edge structures emerge upon stacking of the particles. These simulations validate CLAYFF as a general forcefield for 2:1 phyllosilicate edges and nanoparticles and demonstrate a powerful method for future investigations of geologic media at the mesoscale.

  13. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    NASA Astrophysics Data System (ADS)

    Tatar, V.; Yildizay, H.; Aras, H.

    2015-05-01

    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  14. 49 CFR 572.86 - Test conditions and dummy adjustment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...

  15. 49 CFR 572.86 - Test conditions and dummy adjustment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...

  16. 49 CFR 572.86 - Test conditions and dummy adjustment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...

  17. 49 CFR 572.86 - Test conditions and dummy adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...

  18. 49 CFR 572.86 - Test conditions and dummy adjustment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...

  19. Airfoil shape for flight at subsonic speeds. [design analysis and aerodynamic characteristics of the GAW-1 airfoil

    NASA Technical Reports Server (NTRS)

    Whitcomb, R. T. (Inventor)

    1976-01-01

    An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.

  20. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2015-02-01

    The effect of a DC bias on the electrohydrodynamics (EHD) force induced by a surface dielectric barrier AC discharge actuator for airflow control at the atmospheric pressure is investigated. The measurement of the surface potential due to charge deposition at different DC biases is carried out by using a special designed corona like discharge potential probe. From the surface potential data, the plasma electromotive force is shown not affected much by the DC biases except for some reduction of the DC bias near the exposed electrode edge for the sheath-like configuration. The total thrust is measured by an analytical balance, and an almost linear relationship to the potential voltage at the exposed electrode edge is found for the direct thrust force. The temporally averaged ionic wind characteristics are investigated by Pitot tube sensor and schlieren visualization system. It is found that the ionic wind velocity profiles with different DC biases are almost the same in the AC discharge plasma area but gradually diversified in the further downstream area as well as the upper space away from the discharge plasma area. Also, the DC bias can significantly modify the topology of the ionic wind produced by the AC discharge actuator. These results can provide an insight into how the DC biases to affect the force generation.

  1. How differential deflection of the inboard and outboard leading-edge flaps affected the handling qua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center. The Active Aeroelastic Wing program at NASA's Dryden Flight Research Center seeks to determine the advantages of twisting flexible wings for primary maneuvering roll control at transonic and supersonic speeds, with traditional control surfaces such as ailerons and leading-edge flaps used to aerodynamically induce the twist. From flight test and simulation data, the program intends to develop structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during the first flight series, new flight control software will be developed and a second series of research flights will then evaluate the AAW concept in a real-world environment. The program uses wings that were modified to the flexibility of the original pre-production F-18 wing. Other modifications include a new actuator to operate the outboard leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians.

  2. Adsorption of Potassium on the MoS2(100) Surface: A First-Principles Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.

    2011-04-15

    Periodic density functional theory calculations were performed to investigate the interaction that potassium with the Mo and S edges of the MoS2(100) surface. Both neutral and cationic (+1) charged potassium-promoted systems at different sulfur coverages were considered. Our calculations indicate that the potassium atom readily donates its single 4s valence electron to the MoS2 structure for the neutral potassium-promoted system, and the neutral and cationic potassium-promoted systems demonstrate a similar adsorption behavior. Moreover, potassium changes the magnetic properties known to occur at the metallic edge surface, which have implications for electron spin dependent surface characterization methods (i.e., electron spin/paramagnetic spectroscopy).more » Potassium in both the neutral and cationic systems tends to maximize its interactions with the available sulfur atoms at the edge surface, preferring sites over four-fold S hollows on fully sulfided Mo and S edges and over the interstitial gap where two to four edge surface S atoms are available for coordination. As the potassium coverage increases, the adsorption energy per potassium atom, surface work function, and transfer of the K 4s electron to the MoS2(100) surface decreases, which is in line with an increased metallization of the potassium adlayer. The potassium adlayer tends to form chains along the interstitial with K-K distances ~1 Å, which is notably less than those of bulk bcc K metal (4.61 Å). Density of states for the potassium-saturated surface suggests enhanced involvement of broad K 3d states beginning just above the Fermi level. Potassium-promotion of MoS2(100) has implications for alcohol catalysis: increasing the surface basicity by increasing the electron charge of the surface, providing hydrogenation-promoting CO site, blocking edge surface that dissociate CO and lead to methanation, and limiting H2 dissociative adsorption to the edge surface and possibly inhibiting the H2 dissociative adsorption via s character electron repulsion. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less

  3. Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.

    2010-01-01

    A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESAT AN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the additional effort.

  4. Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.

    2010-01-01

    A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESATAN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the additional effort.

  5. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2014-09-30

    During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (SeaState DRI

  6. Band-edge engineering of Silicon by Surface Functionalization: a Combined Ab-initio and Photoemission Study

    NASA Astrophysics Data System (ADS)

    Li, Yan; O'Leary, Leslie; Lewis, Nathan; Galli, Giulia

    2012-02-01

    The electrode material choice is limited in solar to fuel formation devices because of the requirement of band-edge matching to the fixed fuel formation potential. This limitation can be relieved via band-edge engineering. The changes of band-edge positions of Si electrodes induced by the adsorption of H-, Cl-, Br- and short-chain alkyl groups were investigated by combining density functional (DFT), many-body perturbation theory (MBPT), and ultraviolet photoelectron spectroscopy. The band edge shifts are related to the formation of surface dipole moments, and determine the barrier height of electrons and holes in doped silicon surfaces. We find that the trends of the sign and magnitude of the computed surface dipoles as a function of the adsorbate may be explained by simple electronegative rules. We show that quasi-particle energies obtained within MBPT are in good agreement with experiment, while DFT values may exhibit substantial errors. However computed band edge differences are in good agreement with spectroscopic and electrical measurements even at the DFT level of theory. [1] Y. Li and G. Galli, Phys. Rev. B 82, 045321 (2010). [2] Y. Li, L. O'Leary, N. Lewis and G. Galli, to be submitted.

  7. Three-dimensional contour edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yizhou; Ong, Sim Heng; Kassim, Ashraf A.; Foong, Kelvin W. C.

    2000-06-01

    This paper presents a novel algorithm for automatically extracting 3D contour edges, which are points of maximum surface curvature in a surface range image. The 3D image data are represented as a surface polygon mesh. The algorithm transforms the range data, obtained by scanning a dental plaster cast, into a 2D gray scale image by linearly converting the z-value of each vertex to a gray value. The Canny operator is applied to the median-filtered image to obtain the edge pixels and their orientations. A vertex in the 3D object corresponding to the detected edge pixel and its neighbors in the direction of the edge gradient are further analyzed with respect to their n-curvatures to extract the real 3D contour edges. This algorithm provides a fast method of reducing and sorting the unwieldy data inherent in the surface mesh representation. It employs powerful 2D algorithms to extract features from the transformed 3D models and refers to the 3D model for further analysis of selected data. This approach substantially reduces the computational burden without losing accuracy. It is also easily extended to detect 3D landmarks and other geometrical features, thus making it applicable to a wide range of applications.

  8. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  9. Surface stress mediated image force and torque on an edge dislocation

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  10. 33 CFR 177.07 - Other unsafe conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discretion, the continued operation of the vessel would create an unsafe condition. (c) Has a fuel leakage... applies to boats built after July 31, 1980); (e) Does not meet the requirements for backfire flame control... from the lowest point along the upper strake edge to the surface of the water. W=Maximum wave height in...

  11. Some aspects of precise laser machining - Part 2: Experimental

    NASA Astrophysics Data System (ADS)

    Grabowski, Marcin; Wyszynski, Dominik; Ostrowski, Robert

    2018-05-01

    The paper describes the role of laser beam polarization on quality of laser beam machined cutting tool edge. In micromachining the preparation of the cutting tools in play a key role on dimensional accuracy, sharpness and the quality of the cutting edges. In order to assure quality and dimensional accuracy of the cutting tool edge it is necessary to apply laser polarization control. In the research diode pumped Nd:YAG 532nm pulse laser was applied. Laser beam polarization used in the research was linear (horizontal, vertical). The goal of the carried out research was to describe impact of laser beam polarization on efficiency of the cutting process and quality of machined parts (edge, surface) made of polycrystalline diamond (PCD) and cubic boron nitride (cBN). Application of precise cutting tool in micromachining has significant impact on the minimum uncut chip thickness and quality of the parts. The research was carried within the INNOLOT program funded by the National Centre for Research and Development.

  12. Low speed wind tunnel test of ground proximity and deck edge effects on a lift cruise fan V/STOL configuration, volume 1

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1979-01-01

    The characteristics were determined of a lift cruise fan V/STOL multi-mission configuration in the near proximity to the edge of a small flat surface representation of a ship deck. Tests were conducted at both static and forward speed test conditions. The model (0.12 scale) tested was a four fan configuration with modifications to represent a three fan configuration. Analysis of data showed that the deck edge effects were in general less critical in terms of differences from free air than a full deck (in ground effect) configuration. The one exception to this was when the aft edge of the deck was located under the center of gravity. This condition, representative of an approach from the rear, showed a significant lift loss. Induced moments were generally small compared to the single axis control power requirements, but will likely add to the pilot work load.

  13. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach.

    PubMed

    Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K

    2015-11-13

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  14. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach

    NASA Astrophysics Data System (ADS)

    Gianfrancesco, Anthony G.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2015-11-01

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ˜0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  15. Effect of spanwise blowing on leading-edge vortex bursting of a highly swept aspect ratio 1.18 delta wing

    NASA Technical Reports Server (NTRS)

    Scantling, W. L.; Gloss, B. B.

    1974-01-01

    An investigation was conducted in the Langley 1/8-scale V/STOL model tunnel on a semispan delta wing with a leading-edge sweep of 74 deg, to determine the effectiveness of various locations of upper surface and reflection plane blowing on leading-edge vortex bursting. Constant area nozzles were located on the wing upper surface along a ray swept 79 deg, which was beneath the leading-edge vortex core. The bursting and reformation of the leading-edge vortex was viewed by injecting helium into the vortex core, and employing a schlieren system.

  16. Hot gas path component trailing edge having near wall cooling features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Miranda, Carlos Miguel

    A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage ismore » coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.« less

  17. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less

  18. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    DOE PAGES

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; ...

    2017-10-06

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less

  19. Control of Flow Structure on Low Swept Delta Wing with Steady Leading Edge Blowing

    NASA Astrophysics Data System (ADS)

    Ozturk, Ilhan; Zharfa, Mohammadreza; Yavuz, Mehmet Metin

    2014-11-01

    Interest in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs) has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate values of sweep angle. In the present study, the flow structure is characterized on a delta wing of low sweep 35-degree angle, which is subjected to steady leading edge blowing. The techniques of laser illuminated smoke visualization, laser Doppler anemometry (LDA), and surface pressure measurements are employed to investigate the steady and unsteady nature of the flow structure on delta wing, in relation to the dimensionless magnitude of the blowing coefficient. Using statistics and spectral analysis, unsteadiness of the flow structure is studied in detail. Different injection locations are utilized to apply different blowing patterns in order to identify the most efficient control, which provides the upmost change in the flow structure with the minimum energy input. The study aims to find the optimum flow control strategy to delay or to prevent the stall and possibly to reduce the buffeting on the wing surface. Since the blowing set-up is computer controlled, the unsteady blowing patterns compared to the present steady blowing patterns will be studied next. This project was supported by the Scientific and Technological Research Council of Turkey (Project Number: 3501 111M732).

  20. STOL Characteristics of a Propeller-Driven, Aspect-Ratio-10, Straight-Wing Airplane with Boundary-Layer Control Flaps, as Estimated from Large-Scale Wind-Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Weiberg, James A; Holzhauser, Curt A.

    1961-01-01

    A study is presented of the improvements in take-off and landing distances possible with a conventional propeller-driven transport-type airplane when the available lift is increased by propeller slipstream effects and by very effective trailing-edge flaps and ailerons. This study is based on wind-tunnel tests of a 45-foot span, powered model, with BLC on the trailing-edge flaps and controls. The data were applied to an assumed airplane with four propellers and a wing loading of 50 pounds per square foot. Also included is an examination of the stability and control problems that may result in the landing and take-off speed range of such a vehicle. The results indicated that the landing and take-off distances could be more than halved by the use of highly effective flaps in combination with large amounts of engine power to augment lift (STOL). At the lowest speeds considered (about 50 knots), adequate longitudinal stability was obtained but the lateral and directional stability were unsatisfactory. At these low speeds, the conventional aerodynamic control surfaces may not be able to cope with the forces and moments produced by symmetric, as well as asymmetric, engine operation. This problem was alleviated by BLC applied to the control surfaces.

  1. Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water

    DOE PAGES

    Pham, Tuan Anh; Lee, Donghwa; Schwegler, Eric; ...

    2014-11-17

    By combining ab initio molecular dynamics simulations and many-body perturbation theory calculations of electronic energy levels, we determined the band edge positions of functionalized Si(111) surfaces in the presence of liquid water, with respect to vacuum and to water redox potentials. We considered surface terminations commonly used for Si photoelectrodes in water splitting experiments. We found that, when exposed to water, the semiconductor band edges were shifted by approximately 0.5 eV in the case of hydrophobic surfaces, irrespective of the termination. The effect of the liquid on band edge positions of hydrophilic surfaces was much more significant and determined bymore » a complex combination of structural and electronic effects. These include structural rearrangements of the semiconductor surfaces in the presence of water, changes in the orientation of interfacial water molecules with respect to the bulk liquid, and charge transfer at the interfaces, between the solid and the liquid. Our results showed that the use of many-body perturbation theory is key to obtain results in agreement with experiments; they also showed that the use of simple computational schemes that neglect the detailed microscopic structure of the solid–liquid interface may lead to substantial errors in predicting the alignment between the solid band edges and water redox potentials.« less

  2. Compact illumination optic with three freeform surfaces for improved beam control.

    PubMed

    Sorgato, Simone; Mohedano, Rubén; Chaves, Julio; Hernández, Maikel; Blen, José; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan Carlos; Thienpont, Hugo; Duerr, Fabian

    2017-11-27

    Multi-chip and large size LEDs dominate the lighting market in developed countries these days. Nevertheless, a general optical design method to create prescribed intensity patterns for this type of extended sources does not exist. We present a design strategy in which the source and the target pattern are described by means of "edge wavefronts" of the system. The goal is then finding an optic coupling these wavefronts, which in the current work is a monolithic part comprising up to three freeform surfaces calculated with the simultaneous multiple surface (SMS) method. The resulting optic fully controls, for the first time, three freeform wavefronts, one more than previous SMS designs. Simulations with extended LEDs demonstrate improved intensity tailoring capabilities, confirming the effectiveness of our method and suggesting that enhanced performance features can be achieved by controlling additional wavefronts.

  3. Folded membrane dialyzer with mechanically sealed edges

    DOEpatents

    Markley, Finley W.

    1976-01-01

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  4. Electronic Structure of Ytterbium-Doped Strontium Fluoroapatite: Photoemission and Photoabsorption Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Art J.; Van Buuren, Tony W.; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium-doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure and Sr 3d, P 2p and 2s, Yb 4d and 4p, F 1s and O 1s core lines were used to evaluate the surface and near surface chemistry of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N4,5-edge), Sr 3d (M4,5-edge), P 2p (L2,3-edge), F 1s and O 1s (K-edges) absorption edges. These results provide themore » first measurements of the electronic structure and surface chemistry of this material.« less

  5. Numerical analysis of the impact of permeability on trailing-edge noise

    NASA Astrophysics Data System (ADS)

    Koh, Seong Ryong; Meinke, Matthias; Schröder, Wolfgang

    2018-05-01

    The impact of porous surfaces on the near-wall turbulent structures and the generated trailing-edge noise is analyzed for several trailing-edge shapes of finite thickness using a high resolution large-eddy simulation (LES)/computational aeroacoustics (CAA) method. The porous surface of the trailing edge is defined by the porosity and the viscous permeability determined by the solution of a turbulent flat plate boundary layer at a Reynolds number 1280 based on the displacement thickness in the inflow cross section. The volume-averaged approach for the homogeneous porous medium shows that the porous impedance scales linearly with the porosity and exponentially with the mean structure size of a porous medium. The drag induced by the porous surface changes the friction velocity and the permeability Reynolds number ReK which determines the porous impedance Rs scaled by ReK-2/3. The trailing-edge noise is analyzed for three solid and three porous trailing edges. The effect of a finite span is investigated by the spanwise correlation model based on the measured coherence distribution. The acoustic prediction shows a good agreement with measurements of the broadband spectrum and the strong tone generated by a finite trailing-edge thickness. The pressure gradient inside the porous media is redistributed by the Darcy drag defined by the viscous permeability and the porosity. The mean pressure increases in the upstream direction inside the porous medium such that the flow acceleration involved in the acoustic generation is reduced inside the porous medium. The noise reduction by a porous medium reaches 11 dB for the trailing-edge shape which possesses a sharp corner for the solid surface. The porous surface applied to a semi-circular trailing edge achieves a 4 dB noise reduction. The directivity pattern for individual components of the acoustic spectrum shows that the massive noise reduction is determined at the tone. Enhanced wave diffraction by the thick flat plate changes the directivity pattern in the high frequency range.

  6. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1975-01-01

    Application of the aerodynamic energy approach to some problems of flutter suppression and gust alleviation were considered. A simple modification of the control-law is suggested for achieving the required pitch control in the use of a leading edge - trailing edge activated strip. The possible replacement of the leading edge - trailing edge activated strip by a trailing edge - tab strip is also considered as an alternate solution. Parameters affecting the performance of the activated leading edge - trailing edge strip were tested on the Arava STOL Transport and the Westwind Executive Jet Transport and include strip location, control-law gains and a variation in the control-law itself.

  7. Unsteady behavior and control of vortices in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Ohta, Yutaka; Fujisawa, Nobumichi

    2014-10-01

    Two examples of the use of vortex control to reduce noise and enhance the stable operating range of a centrifugal compressor are presented in this paper. In the case of high-flow operation of a centrifugal compressor with a vaned diffuser, a discrete frequency noise induced by interaction between the impeller-discharge flow and the diffuser vane, which appears most notably in the power spectra of the radiated noise, can be reduced using a tapered diffuser vane (TDV) without affecting the performance of the compressor. Twin longitudinal vortices produced by leakage flow passing through the tapered portion of the diffuser vane induce secondary flow in the direction of the blade surface and prevent flow separation from the leading edge of the diffuser. The use of a TDV can effectively reduce both the discrete frequency noise generated by the interaction between the impeller-discharge flow and the diffuser surface and the broadband turbulent noise component. In the case of low-flow operation, a leading-edge vortex (LEV) that forms on the shroud side of the suction surface near the leading edge of the diffuser increases significantly in size and blocks flow in the diffuser passage. The formation of an LEV may adversely affect the performance of the compressor and may cause the diffuser to stall. Using a one-side tapered diffuser vane to suppress the evolution of an LEV, the stable operating range of the compressor can be increased by more than 12 percent, and the pressure-rise characteristics of the compressor can be improved. The results of a supplementary examination of the structure and unsteady behavior of LEVs, conducted by means of detailed numerical simulations, are also presented.

  8. Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling

    NASA Astrophysics Data System (ADS)

    Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang

    2018-05-01

    This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.

  9. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  10. On the Flow Physics of Effectively Controlled Open Cavity Flows

    DTIC Science & Technology

    2013-05-01

    Receptivity Feedback Source 6 be more effective at reducing the surface pressure fluctuations. Zhuang et al. (2006) used leading edge microjets to alter...cavity. In a precursor to the current study, Ukeiley et al. (2008) used both microjets and spanwise-aligned slots to control the cavity flow and reduce...orientations. Two- and three-component data were acquired for laser sheet orientations aligned with the flow and perpendicular to it, respectively. A

  11. Experimental visualization of the cathode layer in AC surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Kim, Sang-You; Lho, Taihyeop; Chung, Kyu-Sun

    2018-06-01

    A narrow etched polyimide line at the bottom edge of a biased electrode (BE) and a non-etched dielectric surface near the biased electrode were observed in an atmospheric AC flexible surface dielectric barrier discharge of polyimide dielectric. These findings are attributed to the bombardment of positive oxygen ions on the bottom edge of the BE and the electron breakdown trajectory not contacting the polyimide surface following the electric field lines formed between the BE edge and the surface charge layer on the dielectric. The length of the non-etched dielectric surface during the first micro-discharge was observed as 22 μm. This occurred, regardless of three different operating durations, which is in good agreement with the length of the cathode layer according to Paschen's law.

  12. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    PubMed

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  13. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-01-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.

  14. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  15. Aeroacoustic Measurements of a Wing-Flap Configuration

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Brooks, Thomas F.; Humphreys, William M.; Hunter, William H.; Gerhold, Carl H.

    1997-01-01

    Aeroacoustic measurements are being conducted to investigate the mechanisms of sound generation in high-lift wing configurations, and initial results are presented. The model is approximately 6 percent of a full scale configuration, and consists of a main element NACA 63(sub 2) - 215 wing section and a 30 percent chord half-span flap. Flow speeds up to Mach 0.17 are tested at Reynolds number up to approximately 1.7 million. Results are presented for a main element at a 16 degree angle of attack, and flap deflection angles of 29 and 39 degrees. The measurement systems developed for this test include two directional arrays used to localize and characterize the noise sources, and an array of unsteady surface pressure transducers used to characterize wave number spectra and correlate with acoustic measurements. Sound source localization maps show that locally dominant noise sources exist on the flap-side edge. The spectral distribution of the noise sources along the flap-side edge shows a decrease in frequency of the locally dominant noise source with increasing distance downstream of the flap leading edge. Spectra are presented which show general spectral characteristics of Strouhal dependent flow-surface interaction noise. However, the appearance of multiple broadband tonal features at high frequency indicates the presence of aeroacoustic phenomenon following different scaling characteristics. The scaling of the high frequency aeroacoustic phenomenon is found to be different for the two flap deflection angles tested. Unsteady surface pressure measurements in the vicinity of the flap edge show high coherence levels between adjacent sensors on the flap-side edge and on the flap edge upper surface in a region which corresponds closely to where the flap-side edge vortex begins to spill over to the flap upper surface. The frequency ranges where these high levels of coherence occur on the flap surface are consistent with the frequency ranges in which dominant features appear in far field acoustic spectra. The consistency of strongly correlated unsteady surface pressures and far field pressure fluctuations suggests the importance of regions on the flap edge in generating sound.

  16. DNA Molecules Adsorbed on Rippled Supported Cationic Lipid Membranes -- A new way to stretch DNAs

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo

    2005-03-01

    We discuss a novel approach to control to shapes of DNA molecules. We elucidate the recent experimental work of M. Hochrein, L. Golubovic and J. Raedler, on the conformational behavior of DNA molecules adsorbed on lipid membranes that are supported on grooved micro-structured surfaces. We explain the striking ability of the edges formed on these supported membranes to adsorb and completely orient (stretch) very long DNA molecules. Here we explain the experimentally observed DNA stretching effect in terms of the surface curvature dependent electrostatic potential seen by the adsorbed DNA molecules. On the curved, rippled membrane, we show that the DNA molecules undergo localization transitions causing them to stretch by binding to the ripple edges of the supported membrane. In the future, this stretching will allow to directly image, by the common fluorescence microscopy, fundamental biological processes of the interactions between DNA and single protein molecules.

  17. Off-axis mirror fabrication from spherical surfaces under mechanical stress

    NASA Astrophysics Data System (ADS)

    Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Percino-Zacarías, M. E.; Granados-Agustín, Fermin-Salomon

    2013-09-01

    The preliminary results in the fabrication of off-axis optical surfaces are presented. The propose using the conventional polishing method and with the surface under mechanical stress at its edges. It starts fabricating a spherical surface using ZERODUR® optical glass with the conventional polishing method, the surface is deformed by applying tension and/or compression at the surface edges using a specially designed mechanical mount. To know the necessary deformation, the interferogram of the deformed surface is analyzed in real time with a ZYGO® Mark II Fizeau type interferometer, the mechanical stress is applied until obtain the inverse interferogram associated to the off-axis surface that we need to fabricate. Polishing process is carried out again until obtain a spherical surface, then mechanical stress in the edges are removed and compares the actual interferogram with the theoretical associated to the off-axis surface. To analyze the resulting interferograms of the surface we used the phase shifting analysis method by using a piezoelectric phase-shifter and Durango® interferometry software from Diffraction International™.

  18. Low-speed aerodynamic characteristics of a generic forward-swept-wing aircraft

    NASA Technical Reports Server (NTRS)

    Ross, J. C.; Matarazzo, A. D.

    1982-01-01

    Low-speed wind-tunnel tests were performed on a generic forward-swept-wing aircraft model in the 7- by 10-Foot Wind Tunnel (No. 2) at Ames Research Center. The effects of various configurational changes and control-surface deflections on the performance of the model were measured. Six-component force measurements were augmented by flow-visualization photographs, using both surface oil-flow and tufts. It was found that the tendency toward premature root separation on the forward-swept wing could be reduced by use of either canards or leading-edge wing strakes and that differential canard deflections can be used to produce a direct side-force control.

  19. Influence matrix program for aerodynamic lifting surface theory. [in subsonic flows

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Ray, K. S.

    1973-01-01

    A users manual is described for a USA FORTRAN 4 computer program which computes an aerodynamic influence matrix and is one of several computer programs used to analyze lifting, thin wings in steady, subsonic flow according to a kernel function method lifting surface theory. The most significant features of the program are that it can treat unsymmetrical wings, control points can be placed on the leading and/or trailing edges, and a stable, efficient algorithm is used to compute the influence matrix.

  20. Heat transfer characteristics of hypersonic waveriders with an emphasis on the leading edge effects. M.S. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Vanmol, Denis O.; Anderson, John D., Jr.

    1992-01-01

    The heat transfer characteristics in surface radiative equilibrium and the aerodynamic performance of blunted hypersonic waveriders are studied along two constant dynamic pressure trajectories for four different Mach numbers. The inviscid leading edge drag was found to be a small (4 to 8 percent) but not negligible fraction of the inviscid drag of the vehicle. Although the viscous drag at the leading edge can be neglected, the presence of the leading edge will influence the transition pattern of the upper and the lower surfaces and therefore affect the viscous drag of the entire vehicle. For an application similar to the National Aerospace Plane (NASP), the present study demonstrates that the waverider remains a valuable concept at high Mach numbers if a state-of-the-art active cooling device is used along the leading edge. At low Mach number (less than 5), the study shows the surface radiative cooling might be sufficient. In all cases, radiative cooling is sufficient for the upper and lower surfaces of the vehicle if ceramic composites are used as thermal protection.

  1. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    PubMed

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  2. Lift producing device exhibiting low drag and reduced ventilation potential and method for producing the same

    NASA Technical Reports Server (NTRS)

    Caldwell, Richard A. (Inventor)

    1991-01-01

    A lift producing device is disclosed which is adapted to be connected to a vehicle to provide lift to the vehicle when the vehicle is moved relative to a first fluid medium having a first density and viscosity and being in contact with a second fluid medium adjacent the vehicle. The second fluid medium has a second fluid density which is different from the first fluid density. The lift producing device comprises opposed first and second major surfaces joined at a longitudinally extending leading edge and at a longitudinally extending trailing edge, with at least a portion of the longitudinally extending leading edge being spaced from the longitudinally extending trailing edge by a predetermined mean chord length. When the vehicle is moved relative to the first fluid medium at a velocity within a range of predetermined velocities, with each of the velocities having a direction inclined from a plane extending through the leading edge and the trailing edge within a predetermined angular range, a region of high pressure is generated in the first fluid medium adjacent the first major surface and a region of low pressure is generated in the first fluid medium adjacent the second major surface. The lift producing device has a cross-sectional shape which will generate a pressure distribution around the device when the vehicle is moved relative to the first fluid medium at a velocity within the range of predetermined velocities such that the first fluid medium exhibits attached laminar flow along the device for a portion of the predetermined mean chord length from the leading edge to the trailing edge and will neither form a laminar separation bubble adjacent the second major surface of the device, nor exhibit turbulent separation adjacent the second major surface for substantially all of the predetermined mean chord length from the leading edge to the trailing edge. The portion along which attached laminar flow is maintained is the longest portion which will still fulfill the flow separation requirements. A method for producing the foil is also disclosed.

  3. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    PubMed

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermal barriers for compartments

    DOEpatents

    Kreutzer, Cory J.; Lustbader, Jason A.

    2017-10-17

    An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.

  5. Manipulating the one-dimensional topological edge state of Bi bilayer nanoribbons via magnetic orientation and electric field

    NASA Astrophysics Data System (ADS)

    Kim, Jeongwoo; Wu, Ruqian

    2018-03-01

    Despite the superiority of two-dimensional (2D) topological insulators (TIs) over their three-dimensional (3D) counterparts in various aspects and the essential distinction between them in structural symmetry, the variation of the topological one-dimensional (1D) edge states upon magnetic interaction and their application for spintronic devices have not been sufficiently illuminated. Here, we reveal that 1D edge states of 2D TIs have a unique magnetic response never observed in 2D surface states of 3D TIs, and using this exotic nature we propose a way to utilize the spin-polarized channel for spintronic applications. We investigate the effects of width and magnetic decoration on the 1D topological edge state of Bi bilayer nanoribbons (BNRs). Through the Zak phase, we find that the zero-energy states are enforced at the magnetic domain boundaries in the Cr-decorated BNR and directly examine their robustness using short-range magnetic domain structures. We also demonstrate that 1D edge states of BNRs can be selectively and reversibly controlled by the combination of magnetic reorientation and electric field without compromising their structural integrity. Our work provides a fundamental understanding of 1D topological edge states and shows the opportunity of using these features in spintronic devices.

  6. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. Report 4; Suction System Design and Manufacture

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design of the leading edge suction system for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane. The exterior pressures on the wing surface and the required suction quantity and distribution were determined in previous work. A system consisting of porous skin, sub-surface spanwise passages ("flutes"), pressure regulating screens and valves, collection fittings, ducts and a turbocompressor was defined to provide the required suction flow. Provisions were also made for flexible control of suction distribution and quantity for HLFC research purposes. Analysis methods for determining pressure drops and flow for transpiration heating for thermal anti-icing are defined. The control scheme used to observe and modulate suction distribution in flight is described.

  7. Trailing Edge Blowing on a Two-Dimensional Six-Percent Thick Elliptical Circulation Control Airfoil Up to Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.; Florance, Jennifer P.; Keller, Donald F.

    2005-01-01

    A wind tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing capability. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at momentum coefficients (Cm) from 0.0 to 0.12. Test data were acquired at Mach numbers of 0.3, 0.5, 0.7, 0.8, and 0.84 at Reynolds numbers per foot of 2.43 x 105 to 1.05 x 106. For a transonic condition, (Mach = 0.8 at alpha = 3 degrees), it was generally found the smaller slot and larger Coanda surface combination was overall more effective than other slot/Coanda surface combinations. Lower surface blowing was not as effective as the upper surface blowing over the same range of momentum coefficients. No appreciable Coanda surface, slot height, or slot blowing position preference was indicated transonically with the dual slot blowing.

  8. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  9. Some factors influencing radiation of sound from flow interaction with edges of finite surfaces

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Fox, H. L.; Chanaud, R. C.

    1976-01-01

    Edges of surfaces which are exposed to unsteady flow cause both strictly acoustic effects and hydrodynamic effects, in the form of generation of new hydrodynamic sources in the immediate vicinity of the edge. An analytical model is presented which develops the explicit sound-generation role of the velocity and Mach number of the eddy convection past the edge, and the importance of relative scale lengths of the turbulence, as well as the relative intensity of pressure fluctuations. The Mach number (velocity) effects show that the important paramater is the convection Mach number of the eddies. The effects of turbulence scale lengths, isotropy, and spatial density (separation) are shown to be important in determining the level and spectrum of edge sound radiated for the edge dipole mechanism. Experimental data is presented which provides support for the dipole edge noise model in terms of Mach number (velocity) scaling, parametric dependence on flow field parameter, directivity, and edge diffraction effects.

  10. PIV Measurements on a Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.

    2004-01-01

    PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.

  11. An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    NASA Technical Reports Server (NTRS)

    Ghaffari, F.; Chaturvedi, S. K.

    1984-01-01

    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape.

  12. Surface analyses of composites exposed to the space environment on LDEF

    NASA Technical Reports Server (NTRS)

    Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.

    1993-01-01

    A series of surface analyses on carbon fiber/poly(arylacetylene) (PAA) matrix composites that were exposed to the space environment on the Long Duration Exposure Facility (LDEF) satellite were conducted. These composite panels were arranged in pairs on both the leading edge and trailing edge of LDEF. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited from 25 to 125 microns of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing an important role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS) results showed contamination from in-flight sources of silicone.

  13. Method for determining depth and shape of a sub-surface conductive object

    NASA Astrophysics Data System (ADS)

    Lee, D. O.; Montoya, P. C.; Wayland, J. R., Jr.

    1984-06-01

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak.

  14. Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals

    NASA Astrophysics Data System (ADS)

    Baum, Yuval; Refael, Gil

    2018-03-01

    When a d -dimensional quantum system is subjected to a periodic drive, it may be treated as a (d +1 )-dimensional system, where the extra dimension is a synthetic one. This approach, however, affords only a limited level of control of the effective potential along the synthetic direction. In this work, we introduce a new mean for controlling the Floquet synthetic dimension. We show that arbitrary potentials, as well as edges in the synthetic dimension, could be introduced using a memory component in the system's dynamics. We demonstrate this principle by exploring topological edge states propagating normal to synthetic dimensions. Such systems may act as an optical isolator which allows the transmission of light in a directional way. Also, we suggest an experimental realization of the memory effect in spins coupled to nanofabricated Weyl semimetal surface states.

  15. Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals.

    PubMed

    Baum, Yuval; Refael, Gil

    2018-03-09

    When a d-dimensional quantum system is subjected to a periodic drive, it may be treated as a (d+1)-dimensional system, where the extra dimension is a synthetic one. This approach, however, affords only a limited level of control of the effective potential along the synthetic direction. In this work, we introduce a new mean for controlling the Floquet synthetic dimension. We show that arbitrary potentials, as well as edges in the synthetic dimension, could be introduced using a memory component in the system's dynamics. We demonstrate this principle by exploring topological edge states propagating normal to synthetic dimensions. Such systems may act as an optical isolator which allows the transmission of light in a directional way. Also, we suggest an experimental realization of the memory effect in spins coupled to nanofabricated Weyl semimetal surface states.

  16. Initial Assessment of a Variable-Camber Continuous Trailing-Edge Flap System on a Rigid Wing for Drag Reduction in Subsonic Cruise

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Totah, Joe; Trinh, Khanh; Ting, Eric

    2013-01-01

    In this paper, we describe an initial optimization study of a Variable-Camber Continuous Trailing-Edge Flap (VCCTEF) system. The VCCTEF provides a light-weight control system for aircraft with long flexible wings, providing efficient high-lift capability for takeoff and landing, and greater efficiency with reduced drag at cruising flight by considering the effects of aeroelastic wing deformations in the control law. The VCCTEF system is comprised of a large number of distributed and individually-actuatable control surfaces that are constrained in movement relative to neighboring surfaces, and are non-trivially coupled through structural aeroelastic dynamics. Minimzation of drag results in a constrained, coupled, non-linear optimization over a high-dimension search space. In this paper, we describe the modeling, analysis, and optimization of the VCCTEF system control inputs for minimum drag in cruise. The purpose of this initial study is to quantify the expected benefits of the system concept. The scope of this analysis is limited to consideration of a rigid wing without structural flexibility in a steady-state cruise condition at various fuel weights. For analysis, we developed an optimization engine that couples geometric synthesis with vortex-lattice analysis to automate the optimization procedure. In this paper, we present and describe the VCCTEF system concept, optimization approach and tools, run-time performance, and results of the optimization at 20%, 50%, and 80% fuel load. This initial limited-scope study finds the VCCTEF system can potentially gain nearly 10% reduction in cruise drag, provides greater drag savings at lower operating weight, and efficiency is negatively impacted by the severity of relative constraints between control surfaces.

  17. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.

    PubMed

    Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D

    1991-07-15

    To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.

  18. Gas-path leakage seal for a turbine

    DOEpatents

    Bagepalli, B.S.; Aksit, M.F.; Farrell, T.R.

    1999-08-10

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges. 5 figs.

  19. Gas-path leakage seal for a turbine

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Aksit, Mahmut Faruk; Farrell, Thomas Raymond

    1999-01-01

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges.

  20. Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite.

    PubMed

    Pecini, Eliana M; Avena, Marcelo J

    2013-12-03

    The isoelectric point (IEP) of the edge surface of a montmorillonite sample was determined by using electrophoretic mobility measurements. This parameter, which is fundamental for the understanding of the charging behavior of clay mineral surfaces, was never measured so far because of the presence of permanent negative charges within the montmorillonite structure, charges that mask the electrokinetic behavior of the edges. The strategy was to block or neutralize the structural charges with two different cations, methylene blue (MB(+)) and tetraethylenepentaminecopper(II) ([Cu(tetren)](2+)), so that the charging behavior of the particles becomes that of the edge surfaces. Adsorption isotherms of MB(+) and [Cu(tetren)](2+) at different ionic strengths (NaCl) were performed to establish the uptakes that neutralize the cation exchange capacity (CEC, 0.96 meq g(-1)) of the sample. At high adsorptive concentrations, there was a superequivalent adsorption of MB(+) (adsorption exceeding the CEC) and an equivalent adsorption of [Cu(tetren)](2+) (adsorption reaching the CEC). In both cases, structural charges were neutralized at uptakes very close to the CEC. Zeta potential (ζ) vs pH data at different ionic strengths of montmorillonite with adsorbed MB(+) allowed to estimate an upper limit of the edge's IEP, 5.3 ± 0.2. The same kind of data obtained with adsorbed [Cu(tetren)](2+) provided a lower limit of the IEP, 4.0 ± 0.2. These values are in agreement with previously informed IEP and point of zero charge of pyrophyllite, which is structurally analogous to montmorillonite but carries no permanent charges. The importance of knowing the IEP of the edge surface of clay minerals is discussed. This value characterizes the intrinsic reactivity of edges, that is, the protonating capacity of edge groups in absence of any electric field generated by structural charges. It also allows us to correct relative edge charge vs pH curves obtained by potentiometric titrations and to obtain the true edge charge vs pH curves at different electrolyte concentrations.

  1. Dissolution of minerals with rough surfaces

    NASA Astrophysics Data System (ADS)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate laws of our model give rough rates in the range 10-6 -10-5 mol/(m2 s). This estimate is consistent with the range of calcite dissolution rates obtained in a recent work after treatment of literature data, which suggests the universal control of kink site dissolution in short term laboratory works. The weak effects of lattice size on our results also suggest that smoothing of mineral grain surfaces across geological times may be a microscopic explanation for the difference of chemical weathering rate of silicate minerals in laboratory and in the environment.

  2. Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Gao; Xiao-Wei, Xue; Jiang-Jiang, Li; Xun, Wang; Yan-Hui, Xing; Bi-Feng, Cui; De-Shu, Zou

    2016-06-01

    Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r 0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).

  3. Side Flow Effect on Surface Generation in Nano Cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-05-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  4. Side Flow Effect on Surface Generation in Nano Cutting.

    PubMed

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  5. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    PubMed

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2)-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.

  6. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGES

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  7. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  8. Reduction of Flap Side Edge Noise - the Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, THomas F.

    2005-01-01

    A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.

  9. The external kink mode in diverted tokamaks

    DOE PAGES

    Turnbull, Alan D.; Hanson, Jeremy M.; Turco, Francesca; ...

    2016-06-16

    Here, an explanation is provided for the disruptive instability in diverted tokamaks when the safety factor at the 95% poloidal flux surface, q 95, is driven below 2.0. The instability is a resistive kink counterpart to the current-driven ideal mode that traditionally explained the corresponding disruption in limited cross-sections when q edge, the safety factor at the outermost closed flux surface, lies just below a rational value. Experimentally, external kink modes are observed in limiter configurations as the current in a tokamak is ramped up and q edge decreases through successive rational surfaces. For q edge < 2, the instabilitymore » is always encountered and is highly disruptive. However, diverted plasmas, in which q edge is formally infinite in the magnetohydrodynamic (MHD) model, have presented a longstanding difficulty since the theory would predict stability, yet, the disruptive limit occurs in practice when q 95, reaches 2. It is shown from numerical calculations that a resistive kink mode is linearly destabilized by the rapidly increasing resistivity at the plasma edge when q 95 < 2, but q edge >> 2. The resistive kink behaves much like the ideal kink with predominantly kink or interchange parity and no real sign of a tearing component. However, the growth rates scale with a fractional power of the resistivity near the q = 2 surface. The results have a direct bearing on the conventional edge cutoff procedures used in most ideal MHD codes, as well as implications for ITER and for future reactor options.« less

  10. Spin-dependent electron scattering at graphene edges on Ni(111).

    PubMed

    Garcia-Lekue, A; Balashov, T; Olle, M; Ceballos, G; Arnau, A; Gambardella, P; Sanchez-Portal, D; Mugarza, A

    2014-02-14

    We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of the Shockley bands of Ni, which we attribute to their distinct coupling to bulk states. Moreover, we find a strong dependence of the scattering amplitude on the atomic structure of the edges, depending on the orbital character and energy of the surface states.

  11. Insulator edge voltage gradient effects in spacecraft charging phenomena

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Purvis, C. K.; Staskus, J. V.

    1978-01-01

    Insulating surfaces on geosynchronous satellites were charged by geomagnetic substorms to a point where discharges occur. The electromagnetic pulses from these discharges couple into satellite electronic systems disrupting operations are examined. Laboratory tests conducted on insulator charging have indicated that discharges appear to be initiated at insulator edges where voltage gradients can exist. An experimental investigation was conducted to measure edge voltage gradients on silvered Teflon samples as they are charged by monoenergetic electron beams. It was found that the surface voltage at insulator edges can be approximated by an exponential expression based on an electron current density balance.

  12. Recent advances in aerodynamic energy concept for flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1977-01-01

    Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.

  13. Measurement of the minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Hakimzadeh, Roshanak

    1993-01-01

    A scanning electron microscope (SEM) was used to measure the electron (minority carrier) diffusion length (L(sub n)) and the edge surface-recombination velocity (V(sub s)) in zinc-doped Czochralski-grown InP wafers. Electron-beam-induced current (EBIC) profiles were obtained in specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure V(sub s), and these values were used in a theoretical expression for normalized EBIC. A fit of the experimental data with this expression enabled us to determine L(sub n).

  14. Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs: Toward Design Rules for Oriented Attachment.

    PubMed

    Ondry, Justin C; Hauwiller, Matthew R; Alivisatos, A Paul

    2018-04-24

    Using in situ high-resolution TEM, we study the structure and dynamics of well-defined edge dislocations in imperfectly attached PbTe nanocrystals. We identify that attachment of PbTe nanocrystals on both {100} and {110} facets gives rise to b = a/2⟨110⟩ edge dislocations. Based on the Burgers vector of individual dislocations, we can identify the glide plane of the dislocations. We observe that defects in particles attached on {100} facets have glide planes that quickly intersect the surface, and HRTEM movies show that the defects follow the glide plane to the surface. For {110} attached particles, the glide plane is collinear with the attachment direction, which does not provide an easy path for the dislocation to reach the surface. Indeed, HRTEM movies of dislocations for {110} attached particles show that defect removal is much slower. Further, we observe conversion from pure edge dislocations in imperfectly attached particles to dislocations with mixed edge and screw character, which has important implications for crystal growth. Finally, we observe that dislocations initially closer to the surface have a higher speed of removal, consistent with the strong dislocation free surface attractive force. Our results provide important design rules for defect-free attachment of preformed nanocrystals into epitaxial assemblies.

  15. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.

  16. Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)

    DOE PAGES

    Kiraly, Brian; Mannix, Andrew J.; Jacobberger, Robert M.; ...

    2016-05-23

    Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward such devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ~10 nm via atmospheric pressure chemical vapor deposition. In this work, we extend the growth of GNRs on Ge(001) to ultra-high vacuummore » conditions and realize GNRs narrower than 5 nm. Armchair graphene nanoribbons directed along the Ge <110> surface directions are achieved with excellent width control and relatively large bandgaps. As a result, the bandgap magnitude and electronic uniformity make these new materials excellent candidates for future developments in nanoelectronics.« less

  17. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  18. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(ii) and Pb(ii) sorption by δ-MnO2 and ferrihydrite.

    PubMed

    van Genuchten, Case M; Peña, Jasquelin

    2016-08-10

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(ii) and Pb(ii) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(ii) and Pb(ii) both bind to birnessite layer vacancies, only Pb(ii) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(ii) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(ii) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(ii) < Cd(ii) < Ni(ii) < Zn(ii) < Cu(ii) < Pb(ii).

  19. Microfabricated discontinuous-edge surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro.

    PubMed

    Hamilton, D W; Wong, K S; Brunette, D M

    2006-05-01

    The fabrication of surfaces that stimulate increased adhesion, migration, and differentiated function of osteoblasts has been viewed as being desirable for many orthopedic applications. Previous studies have shown that microfabricated pits and grooves alter adhesion, spreading, matrix secretion, and production of mineral by rat calvarial osteoblasts (RCOs). The mechanisms underlying these effects are unknown, although microenvironment and cell alignment are considered to play a role. The aim of this work was to investigate the behavior of RCOs on microfabricated discontinuous-edge surfaces (DESs), which could provide an alternative means to control both the microenvironment and cellular alignment. Two types of discontinuous-type structures were employed, gap-cornered boxes and micron scale pillars. DES gap-cornered boxes and the pillars influenced the arrangement of F-actin, microtubules, and vinculin. Osteoblasts were guided in their direction of migration on both types of substrata. Both box DESs and pillars altered the staining intensity and localization pattern of phosphotyrosine and src-activated FAK localization. Cell multilayering, matrix deposition, and mineralization were enhanced on both discontinuous topographies when compared with smooth controls. This study shows that DESs alter adhesion, migration, and proliferative responses from osteoblasts at early time points (<1 week) and promote multilayering, matrix deposition, and mineral deposition at later times (2-6 weeks). Such topographical patterns could potentially be employed as effective surface features on bone-contacting implants or in membrane-based periodontal applications.

  20. Rapid fabrication of miniature lens arrays by four-axis single point diamond machining

    PubMed Central

    McCall, Brian; Tkaczyk, Tomasz S.

    2013-01-01

    A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion – X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond ball endmill is mounted to the work spindle of a 4-axis ultra-precision computer numerical control (CNC) machine. Unlike 3-axis micro-milling, the C-axis is used to hold the cutting edge of the tool in contact with the lens surface for the entire cut. This allows the feed rates to be doubled compared to the current state of the art of micro-milling while producing an optically smooth surface with very low surface form error and exceptionally low radius error. PMID:23481813

  1. Homochiral polymerization-driven selective growth of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hiroshi; Song, Shaotang; Kojima, Takahiro; Nakae, Takahiro

    2017-01-01

    The surface-assisted bottom-up fabrication of graphene nanoribbons (GNRs), which consists of the radical polymerization of precursors followed by dehydrogenation, has attracted attention because of the method's ability to control the edges and widths of the resulting ribbon. Although these reactions on a metal surface are believed to be catalytic, the mechanism has remained unknown. Here, we demonstrate 'conformation-controlled surface catalysis': the two-zone chemical vapour deposition of a 'Z-bar-linkage' precursor, which represents two terphenyl units linked in a 'Z' shape, results in the efficient formation of acene-type GNRs with a width of 1.45 nm through optimized cascade reactions. These precursors exhibit flexibility that allows them to adopt chiral conformations with height asymmetry on a Au(111) surface, which enables the production of self-assembled homochiral polymers in a chain with a planar conformation, followed by dehydrogenation via a conformation-controlled mechanism. This is conceptually analogous to enzymatic catalysis and will be useful for the fabrication of new nanocarbon materials.

  2. Control of neutral particle fueling and exhaust by plasma edge topology optimization in Wendelstein 7-X and HSX

    NASA Astrophysics Data System (ADS)

    Stephey, Laurie

    2016-10-01

    Comparative experiments at the HSX and Wendelstein 7-X stellarators are being performed. At W7-X it was shown that fine control of the edge magnetic structure in W7-X is a feasible actuator to control global particle confinement. During the startup campaign of W7-X, the edge magnetic structure is defined by five poloidal limiters. Inside of the last closed flux surface in the standard magnetic configuration, the 5/6 resonance and corresponding magnetic island are located directly inside of the plasma source region. Inward movement of the island in a predominantly electron-root transport regime has been found to increase the effective helium confinement time τp* He, a critical metric for plasma purity control in future burning plasmas, by a factor of two. The experimental analysis is supported by fully 3-D fluid plasma and kinetic neutral modeling using the EMC3-EIRENE code and will be compared to these experimental results from both devices. A single reservoir, single species particle balance will be extracted from experimental measurements aided by the fully 3-D modeling analysis from EMC3-EIRENE to quantify the causal link established above based on measured parameters. At HSX, similar investigations to those performed at W7-X are ongoing. HSX has substantial flexibility in both its edge magnetic configuration and also in edge connection lengths via limiter insertion. Both are being examined to study any resulting changes global particle confinement and provide insight into the physics of the underlying mechanism. Together with the results from W7-X, both experiments will provide information on the link between the plasma edge topology and the global particle confinement. This work was supported in part by the U.S. Department of Energy under Grants DE-SC0014210, DE-FG02-93ER54222, DE-AC05-00OR22725, DOE LANS Contract DE-AC52- 06NA25396, and within the EUROfusion Consortium under Euratom Grant No 633053.

  3. Edge-localized-modes in tokamaks

    DOE PAGES

    Leonard, Anthony W.

    2014-09-11

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heatmore » flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. As a result, encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.« less

  4. F-16XL Wing Pressure Distributions and Shock Fence Results from Mach 1.4 to Mach 2.0

    NASA Technical Reports Server (NTRS)

    Landers, Stephen F.; Saltzman, John A.; Bjarke, Lisa J.

    1997-01-01

    Chordwise pressure distributions were obtained in-flight on the upper and lower surfaces of the F-16XL ship 2 aircraft wing between Mach 1.4 and Mach 2.0. This experiment was conducted to determine the location of shock waves which could compromise or invalidate a follow-on test of a large chord laminar flow control suction panel. On the upper surface, the canopy closure shock crossed an area which would be covered by a proposed laminar flow suction panel. At the laminar flow experiment design Mach number of 1.9, 91 percent of the suction panel area would be forward of the shock. At Mach 1.4, that value reduces to 65 percent. On the lower surface, a shock from the inlet diverter would impinge on the proposed suction panel leading edge. A chordwise plate mounted vertically to deflect shock waves, called a shock fence, was installed between the inlet diverter and the leading edge. This plate was effective in reducing the pressure gradients caused by the inlet shock system.

  5. Edge-localized-modes in tokamaksa)

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.

    2014-09-01

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.

  6. Main roll for an air press of a papermaking machine

    DOEpatents

    Beck, David A.

    2004-03-09

    A roll for use in an air press assembly of a papermaking machine has a pair of ends associated therewith. The roll includes a pair of edge portions with each edge portion extending to one of the pair of ends. Each edge portion has an edge surface portion composed of a first material, the first material having a first hardness. The roll further includes a middle portion located between the pair of edge portions, the middle portion having a middle surface portion composed of a second material. The second material has a second hardness, the second material being harder than the first material. The first material is preferably a soft, seal material which promotes reduced air leakage from the air press assembly.

  7. Role of step edges on the structure formation of α-6T on Ag(441)

    NASA Astrophysics Data System (ADS)

    Wagner, Thorsten; Fritz, Daniel Roman; Rudolfová, Zdena; Zeppenfeld, Peter

    2018-01-01

    Controlling the orientation of organic molecules on surfaces is important in order to tune the physical properties of the organic thin films and, thereby, increase the performance of organic thin film devices. Here, we present a scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM) study of the deposition of the organic dye pigment α-sexithiophene (α-6T) on the vicinal Ag(441) surface. In the presence of the steps on the Ag(441) surface, the α-6T molecules exclusively align parallel to the step edges oriented along the [1 1 bar0]-direction of the substrate. The STM results further reveal that the adsorption of the α-6T molecules is accompanied by various restructuring of the substrate surface: Initially, the molecules prefer the Ag(551) building blocks of the Ag(441) surface. The Ag(551) termination of the terraces is then changed to a predominately Ag(331) one upon completion of the first α-6T monolayer. When closing the two layer thick wetting layer, the original ratio of Ag(331) and Ag(551) building blocks ( ≈ 1:1) is recovered, but a phase separation into microfacets, which are composed either of Ag(331) or of Ag(551) building blocks, is found.

  8. Aerodynamic Impact of an Aft-Facing Slat-Step on High Re Airfoils

    NASA Astrophysics Data System (ADS)

    Kibble, Geoffrey; Petrin, Chris; Jacob, Jamey; Elbing, Brian; Ireland, Peter; Black, Buddy

    2016-11-01

    Typically, the initial aerodynamic design and subsequent testing and simulation of an aircraft wing assumes an ideal wing surface without imperfections. In reality, however the surface of an in-service aircraft wing rarely matches the surface characteristics of the test wings used during the conceptual design phase and certification process. This disconnect is usually deemed negligible or overlooked entirely. Specifically, many aircraft incorporate a leading edge slat; however, the mating between the slat and the top surface of the wing is not perfectly flush and creates a small aft-facing step behind the slat. In some cases, the slat can create a step as large as one millimeter tall, which is entirely submerged within the boundary layer. This abrupt change in geometry creates a span-wise vortex behind the step and in transonic flow causes a shock to form near the leading edge. This study investigates both experimentally and computationally the implications of an aft-facing slat-step on an aircraft wing and is compared to the ideal wing surface for subsonic and transonic flow conditions. The results of this study are useful for design of flow control modifications for aircraft currently in service and important for improving the next generation of aircraft wings.

  9. Ethylene dissociation on flat and stepped Ni(1 1 1): A combined STM and DFT study

    NASA Astrophysics Data System (ADS)

    Vang, Ronnie T.; Honkala, Karoliina; Dahl, Søren; Vestergaard, Ebbe K.; Schnadt, Joachim; Lægsgaard, Erik; Clausen, Bjerne S.; Nørskov, Jens K.; Besenbacher, Flemming

    2006-01-01

    The dissociative adsorption of ethylene (C 2H 4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges. DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces. The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms. Finally a high surface area NiAg alloy catalyst supported on MgAl 2O 4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.

  10. Optical Assessment of Soft Contact Lens Edge-Thickness.

    PubMed

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P

    2016-08-01

    To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.

  11. Optical Assessment of Soft Contact Lens Edge-Thickness

    PubMed Central

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.

    2016-01-01

    Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902

  12. Experimental study of flow separation control on a low- Re airfoil using leading-edge protuberance method

    NASA Astrophysics Data System (ADS)

    Zhang, M. M.; Wang, G. F.; Xu, J. Z.

    2014-04-01

    An experimental study of flow separation control on a low- Re c airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22°-80°). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.

  13. Non-resonant divertors for stellarators

    NASA Astrophysics Data System (ADS)

    Boozer, Allen; Punjabi, Alkesh

    2017-10-01

    The outermost confining magnetic surface in optimized stellarators has sharp edges, which resemble tokamak X-points. The plasma cross section has an even number of edges at the beginning but an odd number half way through the period. Magnetic field lines cannot cross sharp edges, but stellarator edges have a finite length and do not determine the rotational transform on the outermost confining surface. Just outside the last confining surface, surfaces formed by magnetic field lines have splits containing two adjacent magnetic flux tubes: one with entering and the other with an equal existing flux to the walls. The splits become wider with distance outside the outermost confining surface. These flux tubes form natural non-resonant stellarator divertors, which we are studying using maps. This work is supported by the US DOE Grants DE-FG02-95ER54333 to Columbia University and DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-.

  14. Strongly reduced Ehrlich-Schwoebel barriers at the Cu (111) stepped surface with In and Pb surfactants

    NASA Astrophysics Data System (ADS)

    Hao, Jialei; Zhang, Lixin

    2018-01-01

    A surfactant can modify the properties of the surface and induce different mode of epitaxy growth. The atomistic mechanism is not fully understood yet. In this first-principles study, taking Cu homoepitaxy along (111) direction as an example, we show that the distribution of the surfactant atoms on the surface is the key. For In and Pb, they prefer to locate at the step edges and remain isolated. Once the growth is started, the distribution can be further modified by Cu adatoms. The uniquely decorated step edges have much lowered Ehrlich-Schwoebel (ES) barriers than that of the clean edges, thus the two dimensional growth on Cu (111) surface is promoted significantly. On the other hand, for Rh, Ir, and Au, these atoms are not favored at the step edges. The ES barriers can't be affected and these metals are not surfactants. The result is very helpful for searching of the optimal surfactants in metal homoepitaxy.

  15. Analysis of the leading edge effects on the boundary layer transition

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1990-01-01

    A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.

  16. Electron Pair Repulsion Responsible for the Peculiar Edge Effects and Surface Chemistry of Black Phosphorus.

    PubMed

    Kong, Xiang-Peng; Shen, Xiaomei; Jang, Joonkyung; Gao, Xingfa

    2018-03-01

    The electronic and optical properties of black phosphorus (black-P) are significantly modulated by fabricating the edges of this two-dimensional material. Electron lone pairs (ELPs) are ubiquitous in black-P, but their role in creating the edge effects of black-P is poorly understood. Using first-principle calculations, we report ELPs of black-P experience severe Coulomb repulsion and play a central role in creating the edge effects of black-P. We discover the outermost P atoms of the zigzag edges of black-PQDs are free of the Coulomb repulsion, but the P atoms of the armchair edges do experience the Coulomb repulsion. The Coulomb repulsion serves as a new chemical driving force to make electron donor-acceptor bonds with chemical groups bearing vacant orbitals. Our results provide insights into the mechanism responsible for the peculiar edge effects of black-P and highlight the opportunity to use the ELPs of black-P for their damage-free surface functionalization.

  17. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  18. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  19. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Homoepitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2017-07-01

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.

  20. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  1. Nanoindentation near the edge

    Treesearch

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  2. Method for determining depth and shape of a sub-surface conductive object

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, Jr.

    1984-06-27

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

  3. Window flaw detection by backscatter lighting

    NASA Technical Reports Server (NTRS)

    Crockett, L. K.; Minton, F. R.

    1978-01-01

    Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.

  4. Melt dumping in string stabilized ribbon growth

    DOEpatents

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  5. Wind tunnel test of a tailless aircraft with a belly-flap control surface used in combination with wing flaps

    NASA Astrophysics Data System (ADS)

    Dougherty, Daniel A.

    A wind tunnel tat of a tailless aircraft configuration that has been quipped with a belly-flap control surface, was conducted with the goal of improving the trimmed maximum-lift coefficient. Tailless aircraft have aerodynamic and structural efficiencies that are superior to those of a traditionally configured wing/body/tail aircraft. However, tailless aircraft have a low maximum-lift coefficient such that; when sized for equivalent takeoff performance, the tailless aircraft suffers a large reduction in aerodynamic and structural efficiencies. A Belly-Flap control surface used in combination with wing trailing edge flaps was tested in a wind tunnel with the goal of achieving a longitudinally trimmed solution at a higher maximum lift coefficient. It was determined that, though the Belly-Flap increases the trimmed lift of the tailless configuration at low angles of attack, the maximum lift coefficient is slightly reduced in relation to the controls neutral configuration.

  6. A numerical study of the effect of geometry variation, turbulence models, and dissipation on the flow past control surfaces

    NASA Technical Reports Server (NTRS)

    Chaussee, Denny S.

    1993-01-01

    The steady 3D viscous flow past the ONERA M6 wing and a slender delta wing-body with trailing edge control surfaces has been computed. A cell-centered finite-volume Navier-Stokes patched zonal method has been used for the numerical simulation. Both diagonalized and LUSGS schemes have been implemented. Besides the standard nonplanar zonal interfacing techniques, a new virtual zone capability has been employed. For code validation, the transonic flow past the ONERA M5 wing is calculated for angles-of-attack of 3.06 deg and 5.06 deg and compared with the available experiments. The wing-body computational results are compared with experimental data for both trailing-edge flaps deflected. The experimental flow conditions are M subinfinity = 0.4, a turbulent Reynolds number of 5.41 million based on a mean aerodynamic chord of 25.959 inches, adiabatic wall, and angles-of-attack varying from 0 deg to 23.85 deg. The computational results are presented for the 23.85 deg angle-of-attack case. The effects of the base flow due to a model sting, the varying second and fourth order numerical dissipation, and the turbulence model are all considered.

  7. Bluff-body drag reduction using a deflector

    NASA Astrophysics Data System (ADS)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi; Gilliéron, Patrick

    2011-02-01

    A passive flow control on a generic car model was experimentally studied. This control consists of a deflector placed on the upper edge of the model rear window. The study was carried out in a wind tunnel at Reynolds numbers based on the model height of 3.1 × 105 and 7.7 × 105. The flow was investigated via standard and stereoscopic particle image velocimetry, Kiel pressure probes and surface flow visualization. The aerodynamic drag was measured using an external balance and calculated using a wake survey method. Drag reductions up to 9% were obtained depending on the deflector angle. The deflector increases the separated region on the rear window. The results show that when this separated region is wide enough, it disrupts the development of the counter-rotating longitudinal vortices appearing on the lateral edges of the rear window. The current study suggests that flow control on such geometries should consider all the flow structures that contribute to the model wake flow.

  8. Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1975-01-01

    The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.

  9. Integrative application of active controls (IAAC) technology to an advanced subsonic transport project. Initial act configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance and economic benefits of a constrained application of Active Controls Technology (ACT) are identified, and the approach to airplane design is established for subsequent steps leading to the development of a less constrained final ACT configuration. The active controls configurations are measured against a conventional baseline configuration, a state-of-the-art transport, to determine whether the performance and economic changes resulting from ACT merit proceeding with the project. The technology established by the conventional baseline configuration was held constant except for the addition of ACT. The wing, with the same planform, was moved forward on the initial ACT configuration to move the loading range aft relative to the wing mean aerodynamic chord. Wing trailing-edge surfaces and surface controls also were reconfigured for load alleviation and structural stabilization.

  10. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  11. Isometric deformations of unstretchable material surfaces, a spatial variational treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chao; Fosdick, Roger; Fried, Eliot

    2018-07-01

    The stored energy of an unstretchable material surface is assumed to depend only upon the curvature tensor. By control of its edge(s), the surface is deformed isometrically from its planar undistorted reference configuration into an equilibrium shape. That shape is to be determined from a suitably constrained variational problem as a state of relative minimal potential energy. We pose the variational problem as one of relative minimum potential energy in a spatial form, wherein the deformation of a flat, undistorted region D in E2 to its distorted form S in E3 is assumed specified. We then apply the principle that the first variation of the potential energy, expressed as a functional over S ∪ ∂S , must vanish for all admissible variations that correspond to isometric deformations from the distorted configuration S and that also contain the essence of flatness that characterizes the reference configuration D , but is not covered by the single statement that the variation of S correspond to an isometric deformation. We emphasize the commonly overlooked condition that the spatial expression of the variational problem requires an additional variational constraint of zero Gaussian curvature to ensure that variations from S that are isometric deformations also contain the notion of flatness. In this context, it is particularly revealing to observe that the two constraints produce distinct, but essential and complementary, conditions on the first variation of S. The resulting first variation integral condition, together with the constraints, may be applied, for example, to the case of a flat, undistorted, rectangular strip D that is deformed isometrically into a closed ring S by connecting its short edges and specifying that its long edges are free of loading and, therefore, subject to zero traction and couple traction. The elementary example of a closed ring without twist as a state of relative minimum potential energy is discussed in detail, and the bending of the strip by opposing specific bending moments on its short edges is treated as a particular case. Finally, the constrained variational problem, with the introduction of appropriate constraint reactions as Lagrangian multipliers to account for the requirements that the deformation from D to S is isometric and that D is flat, is formulated in the spatial form, and the associated Euler-Lagrange equations are derived. We then solve the Euler-Lagrange equations for two representative problems in which a planar undistorted rectangular material strip is isometrically deformed by applied edge tractions and couple tractions (i.e., specific edge moments) into (i) a bent and twisted circular cylindrical helical state, and (ii) a state conformal with the surface of a right circular conical form.

  12. Insights into Near-Surface Structural Control of Hydrothermal Fluid Movement at Rabbit Creek Thermal Area, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Carr, B.; Elliot, M.; Sims, K. W. W.

    2017-12-01

    Recent geophysical imaging efforts at Yellowstone National Park have generated questions about the geologic controls of hydrothermal fluid movement within the parks thermal areas. Currently, faults and lava flow contacts are assumed to be the primary permeability pathways for deeper fluid migration to the surface. Although intuition dictates that these structures are responsible, few studies have definitively shown that this is true. Earlier geophysical imaging efforts of phase separation in Norris Geyser Basin have shown strong evidence for fractures and faulting conducting hydrothermal waters. However, no geologically mapped faults are at the surface to confirm these interpretations. Therefore, during the summer of 2017, UW surface geophysical data acquisition focused on understanding the geologic controls for a thermal area within the well-mapped Rabbit Creek Fault Zone (RCFZ). The RCFZ strikes N-S along the eastern edge of Midway Geyser Basin (i.e. the western edge of the Mallard Lake Dome) about 2.8 Km SE of Grand Prismatic spring. The section of the fault zone within the Rabbit Creek thermal area is exposed on the eastern valley wall and dips steeply to the west. Regardless at our site, this puts the two of the plateau rhyolites (i.e. the Biscuit Basin Flow and Mallard Lake flow) next to each other ( 100 m apart) with a small amount of overlying alluvial, glacial and hydrothermal deposits covering the actual fault trace. Interestingly, at least two mapped reverse faults from the Mallard Lake Dome trend NW-SE into the site and are interpreted to intersect to the RCFZ. At RCFZ, DC resistivity and seismic refraction profiling combined with Self-Potential, Magnetics, and Transient Electromagnetic soundings were acquired to provide images and in situ geophysical properties. These data highlight the variable fracturing and surface expressions of the hydrothermal fluids associated with the RCFZ and the NW trending fault zone associated with the Mallard Lake Dome. Therefore, the shallow geophysics at this one study area indicates faulting is the dominant control for hydrothermal waters reaching the surface.

  13. Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge.

    PubMed

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H

    2013-01-01

    High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to experimental data. Using the same turbulence model shows that the height of ribs used in the study is not suitable for inducing secondary flow. Also, the orthogonal rib does not strengthen the secondary flow rotational momentum. The comparison between the new designs for trailing edge shows that if pressure drop is acceptable, staggered arrangement is suitable for the outlet pass heat transfer. For the trailing edge wall, the thermal performance for the ribbed trailing edge only was found about 8% better than other configurations.

  14. Overview of the DARPA/AFRL/NASA Smart Wing Phase II program

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim

    2001-06-01

    The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of the Phase 2 effort is presented here; detailed discussions of the wind tunnel testing, model design and fabrication, and actuation system development are given in companion papers.

  15. Evidence for asymmetric edge-on Langmuir monolayer: Application to surface potential measurements

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Ionov, R.; Goldmann, M.; Fontaine, P.; Billard, J.; Peretti, P.

    2001-10-01

    We show, using surface pressure vs. molecular area isotherm measurements and synchrotron grazing X-ray diffraction, that 4BCD12 molecules, which consist of a central flexible bowl-like core to which eight long lateral hydrocarbon chains are bound, form a stable edge-on monolayer. Experimental data indicate that six lateral hydrocarbon chains orient upwards to form a quasi-rectangular lattice of 43° tilted hydrocarbon chains. The obtained axially asymmetric phase, which we label edge26-on, allows using surface potential measurements, for the validation of literature electric models of a single monolayer spread at the air-water interface.

  16. Global Radius of Curvature Estimation and Control System for Segmented Mirrors

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M. (Inventor)

    2006-01-01

    An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.

  17. Magnetic barriers and their q95 dependence at DIII-D

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Kessler, J.; Ali, H.; Evans, T. E.; Punjabi, A.

    2012-05-01

    It is well known that externally generated resonant magnetic perturbations (RMPs) can form islands in the plasma edge. In turn, large overlapping islands generate stochastic fields, which are believed to play a role in the avoidance and suppression of edge localized modes (ELMs) at DIII-D. However, large coalescing islands can also generate, in the middle of these stochastic regions, KAM surfaces effectively acting as ‘barriers’ against field-line dispersion and, indirectly, particle diffusion. It was predicted in Ali and Punjabi (2007 Plasma Phys. Control. Fusion 49 1565-82) that such magnetic barriers can form in piecewise analytic DIII-D plasma equilibria. In this work, the formation of magnetic barriers at DIII-D is corroborated by field-line tracing calculations using experimentally constrained EFIT (Lao et al 1985 Nucl. Fusion 25 1611) DIII-D equilibria perturbed to include the vacuum field from the internal coils utilized in the experiments. According to these calculations, the occurrence and location of magnetic barriers depend on the edge safety factor q95. It was thus suggested that magnetic barriers might contribute to narrowing the edge stochastic layer and play an indirect role in the RMPs failing to control ELMs for certain values of q95. The analysis of DIII-D discharges where q95 was varied, however, does not show anti-correlation between barrier formation and ELM suppression.

  18. Surface layer motion in planetary atmosphere containing fog of condensed gases

    NASA Astrophysics Data System (ADS)

    Datsenko, E. N.; Vasiliev, N. I.; Orlova, I. O.; Avakimyan, N. N.

    2017-11-01

    The article contains a simplified model of a wave motion of the atmospheric surface of planets containing finely dispersed particles of condensed gases, it is assumed that the surface of planets is heated above the saturation temperature of gas condensate, and the surface layers of the foggy atmosphere are strongly cooled. The mechanism of formation and growth of such waves is proposed and justified. It was found that the existence of growing waves on the surface of such an atmosphere is possible, as well as, in the course of time, the formation of a vortex in the atmosphere around the planet. Perturbations of the atmosphere thickness lead to the formation of gravitational waves propagating along its surface. The thickness of the atmosphere at the crest of the wave is greater than that in the trough. While the temperature of the atmosphere under the ridge increases, it decreases under the trough due to shielding of the thermal radiation of the planet. When the crest of a gravitational wave moves, the atmosphere under the trailing edge of the crest has a temperature higher than that under the front edge, since the trailing edge of the crest is heated more intensively by radiation from the surface of the planet. The partial pressure of the vapor of the condensed gases at the rear edge of the ridge is higher than that at the front edge; the work of the pressure difference during the motion of the ridge increases its energy and height. The authors demonstrate the analogy between the mechanisms of wave growth in a foggy atmosphere of planets and the mechanism of wave growth in a thin vapor layer between a strongly heated solid surface or a metal melt and a volatile liquid.

  19. Technical and economic assessment of swept-wing span-distributed load concepts for civil and military air cargo transports

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility of large freighter aircraft was assessed, including the impact of military requirements on the performance, economics, and fuel consumption characteristics. Only configurations having net payloads of 272,155 to 544,311 kilograms contained within swept wings of constant chord were studied. These configurations were of advanced composite construction with controllable winglets and full-span digitally-controlled trailing-edge surfaces. Civil, military, and joint civil/military production programs were considered.

  20. A Three-Dimensional Solution of Flows over Wings with Leading-Edge Vortex Separation. Part 1: Engineering Document

    NASA Technical Reports Server (NTRS)

    Brune, G. W.; Weber, J. A.; Johnson, F. T.; Lu, P.; Rubbert, P. E.

    1975-01-01

    A method of predicting forces, moments, and detailed surface pressures on thin, sharp-edged wings with leading-edge vortex separation in incompressible flow is presented. The method employs an inviscid flow model in which the wing and the rolled-up vortex sheets are represented by piecewise, continuous quadratic doublet sheet distributions. The Kutta condition is imposed on all wing edges. Computed results are compared with experimental data and with the predictions of the leading-edge suction analogy for a selected number of wing planforms over a wide range of angle of attack. These comparisons show the method to be very promising, capable of producing not only force predictions, but also accurate predictions of detailed surface pressure distributions, loads, and moments.

  1. Active Control of Flow Separation Over an Airfoil

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  2. Topological aspect and transport property in multi-band spin-triplet chiral p-wave superconductor Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2015-03-01

    Considering the superconductor Sr2RuO4, we analyze a three-band tight-binding model with one hole-like and two electron-like Fermi surfaces corresponding to the α, β and γ bands of Sr2RuO4 by means of a self-consistent Bogoliubov-de Gennes approach for ribbonshaped system to investigate topological properties and edge states. In the superconducting phase two types of gapless edge states can be identified, one of which displays an almost flat dispersion at zero energy, while the other, originating from the γ band, has a linear dispersion and constitutes a genuine chiral edge states. Not only a charge current appears at the edges but also a spin current due to the multi-band effect in the superconducting phase. In particular, the chiral edge state from the γ band is closely tied to topological properties, and the chiral p-wave superconducting states are characterized by an integer topological number, the so-called Chern number. We show that the γ band is close to a Lifshitz transition. Since the sign of the Chern number may be very sensitive to the surface condition, we consider the effect of the surface reconstruction observed in Sr2RuO4 on the topological property and show the possibility of the hole-like Fermi surface at the surface.

  3. Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic

    NASA Astrophysics Data System (ADS)

    Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong

    2017-09-01

    Transparent magnesium aluminate spinel (MgAl2O4) ceramic is one of an important optical materials. However, due to its pronounced hardness and brittleness, the optical machining of this material is very difficult. Diamond turning has advantages over the grinding process in flexibility and material removal rate. However, there is a lack of research that could support the use of diamond turning technology in the machining of MgAl2O4 spinel ceramic. Using brittle-ductile transition theory of brittle material machining, this work provides critical information that may help to realize ductile-regime turning of MgAl2O4 spinel ceramic. A characterization method of determination the cutting edge radius is introduced here. Suitable diamond tools were measured for sharpness and then chosen from a large number of candidate tools. The influence of rounded cutting edges on surface roughness of the MgAl2O4 spinel ceramic is also investigated. These results indicate that surface quality of MgAl2O4 spinel is relate to the radius of diamond tool's cutting edge, cutting speed, and feed rate. Sharp diamond tools (small radius of cutting edge) facilitated ductile-regime turning of MgAl2O4 spinel and shows great potential to reduce surface roughness and produce smoother final surface.

  4. Low-Speed Wind-Tunnel Investigation of Blowing Boundary-Layer Control on Leading- and Trailing-Edge Flaps of a Large-Scale, Low-Aspect-Ratio, 45 Swept-wing Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Maki, Ralph L.

    1959-01-01

    Blowing boundary-layer control was applied to the leading- and trailing-edge flaps of a 45 deg sweptback-wing complete model in a full-scale low-speed wind-tunnel study. The principal purpose of the study was to determine the effects of leading-edge flap deflection and boundary-layer control on maximum lift and longitudinal stability. Leading-edge flap deflection alone was sufficient to maintain static longitudinal stability without trailing-edge flaps. However, leading-edge flap blowing was required to maintain longitudinal stability by delaying leading-edge flow separation when trailing-edge flaps were deflected either with or without blowing. Partial-span leading-edge flaps deflected 60 deg with moderate blowing gave the major increase in maximum lift, although higher deflection and additional blowing gave some further increase. Inboard of 0.4 semispan leading-edge flap deflection could be reduced to 40 deg and/or blowing could be omitted with only small loss in maximum lift. Trailing-edge flap lift increments were increased by boundary-layer control for deflections greater than 45 deg. Maximum lift was not increased with deflected trailing-edge flaps with blowing.

  5. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    PubMed

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  6. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd( ii ) and Pb( ii ) sorption by δ-MnO 2 and ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Genuchten, Case M.; Peña, Jasquelin

    2016-01-01

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(II) and Pb(II) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that ofmore » the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(II) and Pb(II) both bind to birnessite layer vacancies, only Pb(II) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(II) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(II) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(II) < Cd(II) < Ni(II) < Zn(II) < Cu(II) < Pb(II).« less

  7. Snowmelt and Surface Freeze/Thaw Timings over Alaska derived from Passive Microwave Observations using a Wavelet Classifier

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Dinardo, S. J.; Miller, C. E.

    2015-12-01

    Arctic permafrost soils contain a vast amount of organic carbon that will be released into the atmosphere as carbon dioxide or methane when thawed. Surface to air greenhouse gas fluxes are largely dependent on such surface controls as the frozen/thawed state of the snow and soil. Satellite remote sensing is an important means to create continuous mapping of surface properties. Advances in the ability to determine soil and snow freeze/thaw timings from microwave frequency observations improves upon our ability to predict the response of carbon gas emission to warming through synthesis with in-situ observation, such as the 2012-2015 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). Surface freeze/thaw or snowmelt timings are often derived using a constant or spatially/temporally variable threshold applied to time-series observations. Alternately, time-series singularity classifiers aim to detect discontinuous changes, or "edges", in time-series data similar to those that occur from the large contrast in dielectric constant during the freezing or thaw of soil or snow. We use multi-scale analysis of continuous wavelet transform spectral gradient brightness temperatures from various channel combinations of passive microwave radiometers, Advanced Microwave Scanning Radiometer (AMSR-E, AMSR2) and Special Sensor Microwave Imager (SSM/I F17) gridded at a 10 km posting with resolution proportional to the observational footprint. Channel combinations presented here aim to illustrate and differentiate timings of "edges" from transitions in surface water related to various landscape components (e.g. snow-melt, soil-thaw). To support an understanding of the physical basis of observed "edges" we compare satellite measurements with simple radiative transfer microwave-emission modeling of the snow, soil and vegetation using in-situ observations from the SNOw TELemetry (SNOTEL) automated weather stations. Results of freeze/thaw and snow-melt timings and trends are reported for Alaska and the North-West Canadian Arctic for the period 2002 to 2015.

  8. Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.

    Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less

  9. Molecular Dynamics Simulation of Resin Adsorption at Kaolinite Edge Sites: Effect of Surface Deprotonation on Interfacial Structure

    DOE PAGES

    Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.; ...

    2017-10-05

    Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less

  10. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote vorticities which result in drag rises as well as noise sources. The variable camber trailing edge flap concept could provide a substantial drag reduction benefit over a conventional discrete flap system. Aerodynamic simulations show a drag reduction of over 50% could be achieved with the flap concept over a conventional discrete flap system.

  11. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  12. Visualization of the separation and subsequent transition near the leading edge of airfoils

    NASA Technical Reports Server (NTRS)

    Arena, A. V.; Mueller, T. J.

    1978-01-01

    A visual study was performed using the low speed smoke wind tunnels with the objective of obtaining a better understanding of the structure of leading edge separation bubbles on airfoils. The location of separation, transition and reattachment for a cylindrical nose constant-thickness airfoil model were obtained from smoke photographs and surface oil flow techniques. These data, together with static pressure distributions along the leading edge and upper surface of the model, produced the influence of Reynolds number, angle of attack, and trailing edge flap angle on the size and characteristics of the bubble. Additional visual insight into the unsteady nature of the separation bubble was provided by high speed 16 mm movies. The 8 mm color movies taken of the surface oil flow supported the findings of the high speed movies and clearly showed the formation of a scalloped spanwise separation line at the higher Reynolds number.

  13. Extremal edges: a powerful cue to depth perception and figure-ground organization.

    PubMed

    Palmer, Stephen E; Ghose, Tandra

    2008-01-01

    Extremal edges (EEs) are projections of viewpoint-specific horizons of self-occlusion on smooth convex surfaces. An ecological analysis of viewpoint constraints suggests that an EE surface is likely to be closer to the observer than the non-EE surface on the other side of the edge. In two experiments, one using shading gradients and the other using texture gradients, we demonstrated that EEs operate as strong cues to relative depth perception and figure-ground organization. Image regions with an EE along the shared border were overwhelmingly perceived as closer than either flat or equally convex surfaces without an EE along that border. A further demonstration suggests that EEs are more powerful than classical figure-ground cues, including even the joint effects of small size, convexity, and surroundedness.

  14. L-connect routing of die surface pads to the die edge for stacking in a 3D array

    DOEpatents

    Petersen, Robert W.

    2000-01-01

    Integrated circuit chips and method of routing the interface pads from the face of the chip or die to one or more sidewall surfaces of the die. The interconnection is routed from the face of the die to one or more edges of the die, then routed over the edge of the die and onto the side surface. A new pad is then formed on the sidewall surface, which allows multiple die or chips to be stacked in a three-dimensional array, while enabling follow-on signal routing from the sidewall pads. The routing of the interconnects and formation of the sidewall pads can be carried out in an L-connect or L-shaped routing configuration, using a metalization process such as laser pantography.

  15. Layer-selective synthesis of bilayer graphene via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Choi, Kyoungjun; Robertson, John; Park, Hyung Gyu

    2017-09-01

    A controlled synthesis of high-quality AB-stacked bilayer graphene by chemical vapor deposition demands a detailed understanding of the mechanism and kinetics. By decoupling the growth of the two layers via a growth-and-regrowth scheme, we report the kinetics and termination mechanisms of the bilayer graphene growth on copper. We observe, for the first time, that the secondary layer growth follows Gompertzian kinetics. Our observations affirm the postulate of a time-variant transition from a mass-transport-limited to a reaction-limited regimes and identify the mechanistic disparity between the monolayer growth and the secondary-layer expansion underneath the monolayer cover. It is the continuous carbon supply that drives the expansion of the graphene secondary layer, rather than the initially captured carbon amount, suggesting an essential role of the surface diffusion of reactant adsorbates in the interspace between the top graphene layer and the underneath copper surface. We anticipate that the layer selectivity of the growth relies on the entrance energetics of the adsorbed reactants to the graphene-copper interspace across the primary-layer edge, which could be engineered by tailoring the edge termination state. The temperature-reliant saturation area of the secondary-layer expansion is understood as a result of competitive attachment of carbon and hydrogen adatoms to the secondary-layer graphene edge.

  16. Analytical study of a free-wing/free-trimmer concept. [for gust alleviation and high lift

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Hall, D. W.; Brown, J. H., Jr.; Gregorek, G. M.

    1978-01-01

    The free-wing/free-trimmer is a NASA-Conceived extension of the free-wing concept intended to permit the use of high-lift flaps. Wing pitching moments are balanced by a smaller, external surface attached by a boom or equivalent structure. The external trimmer is, itself, a miniature free wing, and pitch control of the wing-trimmer assembly is effected through a trailing-edge control tab on the trimmer surface. The longitudinal behavior of representative small free-wing/free-trimmer aircraft was analyzed. Aft-mounted trimmer surfaces are found to be superior to forward trimmers, although the permissible trimmer moment arm is limited, in both cases, by adverse dynamic effects. Aft-trimmer configurations provide excellent gust alleviation and meet fundamental stick-fixed stability criteria while exceeding the lift capabilities of pure free-wing configurations.

  17. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  18. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  19. Application of sound and temperature to control boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Parikh, Paresh; Bayliss, A.; Huang, L. S.; Bryant, T. D.

    1987-01-01

    The growth and decay of a wave packet convecting in a boundary layer over a concave-convex surface and its active control by localized surface heating are studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiations are computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wave packet increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically, exhibiting a decay characteristic of acoustic waves in two dimensions. The far-field acoustic behavior exhibits a super-directivity type of behavior with a beaming downstream. Active control by surface heating is shown to reduce the growth of the wave packet but have little effect on acoustic far field behavior for the cases considered. Active control by sound emanating from the surface of an airfoil in the vicinity of the leading edge is experimentally investigated. The purpose is to control the separated region at high angles of attack. The results show that injection of sound at shedding frequency of the flow is effective in an increase of lift and reduction of drag.

  20. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    PubMed

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Differential surface models for tactile perception of shape and on-line tracking of features

    NASA Technical Reports Server (NTRS)

    Hemami, H.

    1987-01-01

    Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.

  2. A Program to Improve the Triangulated Surface Mesh Quality Along Aircraft Component Intersections

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.

    2005-01-01

    A computer program has been developed for improving the quality of unstructured triangulated surface meshes in the vicinity of component intersections. The method relies solely on point removal and edge swapping for improving the triangulations. It can be applied to any lifting surface component such as a wing, canard or horizontal tail component intersected with a fuselage, or it can be applied to a pylon that is intersected with a wing, fuselage or nacelle. The lifting surfaces or pylon are assumed to be aligned in the axial direction with closed trailing edges. The method currently maintains salient edges only at leading and trailing edges of the wing or pylon component. This method should work well for any shape of fuselage that is free of salient edges at the intersection. The method has been successfully demonstrated on a total of 125 different test cases that include both blunt and sharp wing leading edges. The code is targeted for use in the automated environment of numerical optimization where geometric perturbations to individual components can be critical to the aerodynamic performance of a vehicle. Histograms of triangle aspect ratios are reported to assess the quality of the triangles attached to the intersection curves before and after application of the program. Large improvements to the quality of the triangulations were obtained for the 125 test cases; the quality was sufficient for use with an automated tetrahedral mesh generation program that is used as part of an aerodynamic shape optimization method.

  3. Management of Vortices Trailing Flapped Wings via Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  4. Influence of Additional Leading-Edge Surface Roughness on Performances in Highly Loaded Compressor Cascade

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Xu, Hao; Sun, Shijun; Zhang, Longxin; Wang, Songtao

    2015-05-01

    Experimental research has been carried out at low speed to investigate the effect of additional leading-edge surface roughness on a highly-loaded axial compressor cascade. A 5-hole aerodynamic probe has been traversed across one pitch to obtain the distribution of total pressure loss coefficient, secondary flow vector, flow angles and other aerodynamic parameters at the exit section. Meanwhile, ink-trace flow visualization has been used to measure the flow fields on the walls of cascades and a detailed topology structure of the flow on the walls has been obtained. Aerodynamic parameters and flow characteristics are compared by arranging different levels of roughness on various parts of the leading edge. The results show that adding surface roughness at the leading edge and on the suction side obviously influences cascade performance. Aggravated 3-D flow separation significantly increases the loss in cascades, and the loss increases till 60% when the level of emery paper is 80 mm. Even there is the potential to improve cascade performance in local area of cascade passage. The influence of the length of surface roughness on cascade performance is not always adverse, and which depends on the position of surface roughness.

  5. Measurement of Solid Rocket Propellant Burning Rate Using X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Denny, Matthew D.

    The burning rate of solid propellants can be difficult to measure for unusual burning surface geometries, but X-ray imaging can be used to measure burning rate. The objectives of this work were to measure the baseline burning rate of an electrically-controlled solid propellant (ESP) formulation with real-time X-ray radiography and to determine the uncertainty of the measurements. Two edge detection algorithms were written to track the burning surface in X-ray videos. The edge detection algorithms were informed by intensity profiles of simulated 2-D X-ray images. With a 95% confidence level, the burning rates measured by the Projected-Slope Intersection algorithm in the two combustion experiments conducted were 0.0839 in/s +/-2.86% at an average pressure of 407 psi +/-3.6% and 0.0882 in/s +/-3.04% at 410 psi +/-3.9%. The uncertainty percentages were based on the statistics of a Monte Carlo analysis on burning rate.

  6. From voxel to curvature

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ayache, Nicholas; Sander, Peter T.

    1991-09-01

    Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.

  7. Submerged beachrock preservation in the context of wave ravinement

    NASA Astrophysics Data System (ADS)

    Pretorius, Lauren; Green, Andrew N.; Andrew Cooper, J.

    2018-02-01

    This study examines a Holocene-aged submerged shoreline, Limestone Reef, located in the shallow subtidal zone of South Africa's east coast. It comprises an elongate, coast-oblique, slab-like outcrop of beachrock situated above the contemporary fair-weather wave base. It is currently undergoing mechanical disintegration. Its unique and rare preservation in a high-energy setting affords an opportunity to examine the mechanical processes occurring during wave ravinement associated with rising sea level. The submerged shoreline and the adjacent shoreface were examined using high-resolution seismic reflection, side-scan sonar and shallow-water multibeam echosounding techniques. Limestone Reef rests on top of unconsolidated Holocene deposits. The structure's surface is characterised by reef-perpendicular gullies with rubble derived from the slab fringing its seaward edge. Limestone Reef slopes gently seawards and has a steep landward-facing edge where gullies are most prominently developed. Teardrop-shaped rippled scour depressions, marked by high backscatter, are located seawards of the submerged shoreline. These elongate in a seaward direction and are filled with bioclastic gravels and residual rubble from Limestone Reef. The gullies in the upstanding structure are indicative of wave plucking and abrasion of the shoreline. The material exposed by the rippled scour depressions is identical to that comprising the postglacial ravinement surface identified in the offshore stratigraphy. These deposits are considered to represent the contemporary, actively forming wave ravinement surface. The results suggest that wave ravinement of submerged shorelines is a discontinuous process dominated by the seaward entrainment of material from its landward edge controlled by high-energy drawback during storm surges. The ravinement process appears to operate at the seasonal scale and averages out over the long-term millennial scale for the continuous surface.

  8. Edge profiles and limiter tests in Extrap T2

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Hedin, G.; Ilyinsky, L.; Larsson, D.; Möller, A.

    New edge profile measurements, including calorimetric measurements of the parallel heat flux, were made in Extrap T2. Test limiters of pure molybdenum and the TZM molybdenum alloy have been exposed in the edge plasma. The surface damage was studied, mainly by microscopy. Tungsten coated graphite probes were also exposed, and the surfaces were studied by microscopy, ion beam analysis and XPS. In this case cracking and mixing of carbon and tungsten at the interface was observed in the most heated areas, whereas carbide formation at the surface was seen in less heated areas. In these tests pure Mo generally fared better than TZM, and thin and cleaner coatings fared better than thicker and less clean.

  9. Modeling of transient heat pipe operation

    NASA Technical Reports Server (NTRS)

    Colwell, Gene T.

    1987-01-01

    The use of heat pipes is being considered as a means of reducing the peak temperature and large thermal gradients at the leading edges of reentry vehicles and hypersonic aircraft and in nuclear reactors. In the basic cooling concept, the heat pipe covers the leading edge, a portion of the lower wing surface, and a portion of the upper wing surface. Aerodynamic heat is mainly absorbed at the leading edge and transported through the heat pipe to the upper and lower wing surface, where it is rejected by thermal radiation and convection. Basic governing equations are written to determine the startup, transient, and steady state performance of a haet pipe which has initially frozen alkali-metal as the working fluid.

  10. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    DOE PAGES

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  11. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    PubMed

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  12. Results of investigations (OA77 and OA78) on an 0.015-scale 140A/B configuration space shuttle vehicle orbiter model 49-0 in the AEDC VKF B and C wind tunnels, revision A

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1975-01-01

    Aerodynamic data obtained from wind tunnel tests of an 0.015-scale 140A/B configuration SSV Orbiter model in the AEDC VKF B and C wind tunnels are presented. Tests were conducted at Mach numbers of 6 and 8 in the B tunnel and at a Mach number of 10 to in the C tunnel to verify hypersonic stability and control characteristics, determine control surface effectiveness, and investigate Reynolds number effects of the 140A/B configuration. Force data were obtained for various control surface settings and Reynolds numbers in the angle-of-attack range of 15 deg to 45 deg and at angles of sideslip of -5 deg to +10 deg. Data were obtained for a few configurations at angles of attack from -27 deg to 45 deg. Control surface variables included elevon, rudder, speedbrake and bodyflap deflections. The effects of an alternate wing leading edge shape were investigated to determine its hypersonic stability and control characteristics.

  13. Innovative Flow Control Concepts for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs. The ERA systems analysis studies performed by NASA indicated that AFC-enhanced vertical tail could produce approximately 0.9% drag reduction for a large twin aisle aircraft and IAM coatings could enable approximately 1.2% drag reduction recovery for a potential total drag reduction of approximately 3.3% for a single aisle aircraft with a natural laminar flow (NLF) wing design.

  14. 29 CFR 1915.73 - Guarding of deck openings and edges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Guarding of deck openings and edges. 1915.73 Section 1915..., Ladders and Other Working Surfaces § 1915.73 Guarding of deck openings and edges. (a) The provisions of... coamings to a height of 24 inches or around other large openings, the edge of the opening shall be guarded...

  15. An experimental study of airfoil instability tonal noise with trailing edge serrations

    NASA Astrophysics Data System (ADS)

    Chong, Tze Pei; Joseph, Phillip F.

    2013-11-01

    This paper presents an experimental study of the effect of trailing edge serrations on airfoil instability noise. Detailed aeroacoustic measurements are presented of the noise radiated by an NACA-0012 airfoil with trailing edge serrations in a low to moderate speed flow under acoustical free field conditions. The existence of a separated boundary layer near the trailing edge of the airfoil at an angle of attack of 4.2 degree has been experimentally identified by a surface mounted hot-film arrays technique. Hot-wire results have shown that the saw-tooth surface can trigger a bypass transition and prevent the boundary layer from becoming separated. Without the separated boundary layer to act as an amplifier for the incoming Tollmien-Schlichting waves, the intensity and spectral characteristic of the radiated tonal noise can be affected depending upon the serration geometry. Particle Imaging Velocimetry (PIV) measurements of the airfoil wakes for a straight and serrated trailing edge are also reported in this paper. These measurements show that localized normal-component velocity fluctuations that are present in a small region of the wake from the laminar airfoil become weakened once serrations are introduced. Owing to the above unique characteristics of the serrated trailing edges, we are able to further investigate the mechanisms of airfoil instability tonal noise with special emphasis on the assessment of the wake and non-wake based aeroacoustic feedback models. It has been shown that the instability tonal noise generated at an angle of attack below approximately one degree could involve several complex mechanisms. On the other hand, the non-wake based aeroacoustic feedback mechanism alone is sufficient to predict all discrete tone frequencies accurately when the airfoil is at a moderate angle of attack. Larger Δf, which is defined as (fn+1-fn). In other words, a larger margin of velocity increase is required in order to "shift" the fn and fn+1 across fs sequentially, which is the condition for a ladder jump to occur. Lower amplification factor A for the T-S waves, which can result in a radiation of lower noise levels for the broadband hump peak at fs. This phenomenon will proportionally reduce the noise level difference for fn and fn+1, thus making an identification of a ladder jump event more difficult. Finally, we believe that the tone noise generated in this experimental study is of genuine tones of an isolated airfoil. This can be supported by the fact that, when considering either a straight trailing edge or a serrated trailing edge, the overall airfoil geometry at the same angle of attack is still retained and the wind tunnel setup and locations of the laboratory equipment, which could potentially become an anchor point for the acoustic feedback loop, are exactly the same. However, the straight S0 and serrated S2" trailing edges have been shown to produce systematically different spectral characteristics, especially in the forms of tonal rungs, which can be predicted accurately by the original and slightly modified acoustic feedback Model A respectively. In summary, the trailing edge serration is a useful device for the suppression of airfoil instability self-noise. For greater control effectiveness, however, the laminar separation bubble must be situated within the serration region of the trailing edge. This connection imposes restrictions on the angle of attack and velocity over which trailing edge serrations are effective. The feedback loop structure about the wake noise source and the suction surface of the airfoil in Model B is ignored in the present case. This assumption should be reasonably valid given that, in our previous study [3], we cannot identify any significant role of the boundary layer flow at the suction surface in contributing the instability tonal noise radiation across a wide range of Reynolds numbers.

  16. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission

    PubMed Central

    Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal

    2016-01-01

    Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919

  17. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  18. Evaluation of a research circulation control airfoil using Navier-Stokes methods

    NASA Technical Reports Server (NTRS)

    Shrewsbury, George D.

    1987-01-01

    The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.

  19. Improved Edge Performance in MRF

    NASA Technical Reports Server (NTRS)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc

    2004-01-01

    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  20. Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity.

    PubMed

    Shingles, A; McKenzie, D J; Claireaux, G; Domenici, P

    2005-01-01

    In hypoxia, gray mullet surface to ventilate well-oxygenated water in contact with air, an adaptive response known as aquatic surface respiration (ASR). Reflex control of ASR and its behavioral modulation by perceived threat of aerial predation and turbid water were studied on mullet in a partly sheltered aquarium with free surface access. Injections of sodium cyanide (NaCN) into either the bloodstream (internal) or ventilatory water stream (external) revealed that ASR, hypoxic bradycardia, and branchial hyperventilation were stimulated by chemoreceptors sensitive to both systemic and water O2 levels. Sight of a model avian predator elicited bradycardia and hypoventilation, a fear response that inhibited reflex hyperventilation following external NaCN. The time lag to initiation of ASR following NaCN increased, but response intensity (number of events, time at the surface) was unchanged. Mullet, however, modified their behavior to surface under shelter or near the aquarium edges. Turbid water abolished the fear response and effects of the predator on gill ventilation and timing of ASR following external NaCN, presumably because of reduced visibility. However, in turbidity, mullet consistently performed ASR under shelter or near the aquarium edges. These adaptive modulations of ASR behavior would allow mullet to retain advantages of the chemoreflex when threatened by avian predators or when unable to perceive potential threats in turbidity.

  1. Polarity control of h-BN nanoribbon edges by strain and edge termination.

    PubMed

    Yamanaka, Ayaka; Okada, Susumu

    2017-03-29

    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  2. Novel process for production of micro lenses with increased centering accuracy and imaging performance

    NASA Astrophysics Data System (ADS)

    Wilde, C.; Langehanenberg, P.; Schenk, T.

    2017-10-01

    For modern production of micro lens systems, such as cementing of doublets or more lenses, precise centering of the lens edge is crucial. Blocking the lens temporarily on a centering arbor ensures that the centers of all optical lens surfaces coincide with the lens edge, while the arbor's axis serves as reference for both alignment and edging process. This theoretical assumption of the traditional cementing technology is not applicable for high-end production. In reality cement wedges between the bottom lens surface and the arbor's ring knife edge may occur and even expensive arbors with single-micron precision suffer from reduced quality of the ring knife edge after multiple usages and cleaning cycles. Consequently, at least the position of the bottom lens surface is undefined and the optical axis does not coincide with the arbor's reference axis! In order to overcome this basic problem in using centering arbors, we present a novel and efficient technique which can measure and align both surfaces of a lens with respect to the arbor axis with high accuracy and furthermore align additional lenses to the optical axis of the bottom lens. This is accomplished by aligning the lens without mechanical contact to the arbor. Thus the lens can be positioned in four degrees of freedom, while the centration errors of all lens surfaces are measured and considered. Additionally the arbor's reference axis is not assumed to be aligned to the rotation axis, but simultaneously measured with high precision.

  3. Spin-split silicon states at step edges of Si(553)-Au

    NASA Astrophysics Data System (ADS)

    Biedermann, K.; Regensburger, S.; Fauster, Th.; Himpsel, F. J.; Erwin, S. C.

    2012-06-01

    The quasi-one-dimensional Si(553)-Au surface is investigated with time-resolved two-photon photoemission and laser-based photoemission. Several occupied and unoccupied states inside and outside the bulk band gap of silicon were found near the center of the surface Brillouin zone. A nondispersing unoccupied state 0.62 eV above the Fermi level with a lifetime of 125 fs matches the spin-split silicon step-edge state predicted by density functional theory calculations. Two occupied bands can be associated with the bands calculated for nonpolarized step-edge atoms.

  4. Pharmaceutical Compounds Studied Using NEXAFS

    NASA Astrophysics Data System (ADS)

    Murray Booth, A.; Braun, Simon; Lonsbourough, Tom; Purton, John; Patel, Sunil; Schroeder, Sven L. M.

    2007-02-01

    Total Electron Yield (TEY) oxygen K-edge NEXAFS detects the presence of strongly adsorbed water molecules on poloxamer-coated pharmaceutical actives, which provides a useful spectroscopic indicator for bioavailability. The results are supported by complementary XPS measurements. Carbon K-edge spectra obtained in a high-pressure NEXAFS cell were used in situ to establish how a polymer coating spread on a drug surface by using humidity induced dispersion of the coating. Finally, we demonstrate how combined Carbon and Oxygen K-edge measurements can be used to characterize amorphous surface layers on micronised crystals of a drug compound.

  5. Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes

    NASA Astrophysics Data System (ADS)

    Burd, Steven Wayne

    1998-12-01

    Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without imposing aerodynamic penalties. Such performance is contrary to the performance of present vane cooling schemes. The results of this investigation support designs which incorporate combustor coolant injection upstream of the airfoil leading edges. To complement, a short exploratory study regarding the effects of surface roughness was also performed. Results indicate modified cooling performance and significantly higher aerodynamic losses with rough surfaces.

  6. Numerical Investigations of the Influence of Unsteady Vane Trailing Edge Shock Wave on Film Cooling Effectiveness of Rotor Blade Leading Edge

    NASA Astrophysics Data System (ADS)

    Wang, Yufeng; Cai, Le; Wang, Songtao; Zhou, Xun

    2018-04-01

    Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.

  7. Statistical Analysis to Develop a Three-Dimensional Surface Model of a Midsize-Male Foot

    DTIC Science & Technology

    2013-10-31

    alignment  of  the  landmarks  was  conducted  to  remove  differences  in   posture,  particularly   rotation  about  the...edge of long underwear cuff at midline of ankle 59 9 CuffInfEdge_MalleolusLateral Interior edge of long underwear cuff superior to lateral malleolus...60 0 CuffInfEdge_AnkleMidline_Posterior Posterior-inferior edge of long underwear cuff at midline of ankle 61 1 CuffInfEdge_MalleolusMedial Interior

  8. The flexibility controlling study for 3D printed splint

    NASA Astrophysics Data System (ADS)

    Li, Jianyou; Tanaka, Hiroya

    2017-04-01

    The 3D printed splint's light weight, ventilation and water proof are considered as significant improvement for patients' comfortableness. Somehow, the flexible material is required in the splint to avoid skin friction may cased by its rigid edge, but this would increase the complexity and timeconsuming. In this study, two main techniques to control the infilling densities and printing temperature are applied on printing splint prototype. The gradual increasing of infilling density from splint outside to inside would turn the partial strength from hard to flexible. Besides, higher printing temperature can also achieve stronger hardness after cooling. Such structural can provide high strength in outside surface to keep the immovable function, and give flexible touch of inside surface to decrease friction on the patient's skin.

  9. Formation of a vortex at the edge of a plate

    NASA Technical Reports Server (NTRS)

    Anton, Leo

    1956-01-01

    The flow about the plate of infinite width may be represented as a potential flow with discontinuity surfaces which extend from the plate edges. For prescribed form and vortex distribution of the discontinuity surfaces, the velocity field may be calculated by means of a conformal representation. One condition is that the velocity at the plate edges must be finite. However, it is not sufficient for determination of the form and vortex distribution of the surface. However, on the basis of a similitude requirement one succeeds in finding a solution of this problem for the plate of infinite width which is correct for the very beginning of the motion of the fluid. Starting from this solution, the further development of the vortex distribution and shape of the surface are observed in the case of a plate of finite width.

  10. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    NASA Astrophysics Data System (ADS)

    Razzaghmanesh, Mostafa; Borst, Michael

    2018-02-01

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary School, on Fort Riley, Kansas was selected for this study. An 80-space parking lot was built behind the school as part of an EPA collaboration with the U.S. Army. The parking lot design includes a permeable interlocking concrete pavement section along the downgradient edge. This study monitored the clogging progress of the pavement section using twelve water content reflectometers and three buried tipping bucket rain gauges. This clogging dynamic investigation was divided into three stages namely pre-clogged, transitional, and clogged. Recorded initial relative water content of all three stages were significantly and negatively correlated to antecedent dry weather periods with stronger correlations during clogged conditions. The peak relative water content correlation with peak rainfall 10-min intensity was significant for the water content reflectometers located on the western edge away from the eastern edge; this correlation was strongest during transition stage. Once clogged, rainfall measurements no longer correlated with the buried tipping bucket rain gauges. Both water content reflectometers and buried tipping bucket rain gauges showed the progress of surface clogging. For every 6 mm of rain, clogging advanced 1 mm across the surface. The results generally support the hypothesis that the clogging progresses from the upgradient to the downgradient edge. The magnitude of the contributing drainage area and rainfall characteristics are effective factors on rate and progression of clogging.

  11. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOEpatents

    Murphy, Michael J.

    1993-01-01

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or .beta. angle of the inner liner.

  12. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOEpatents

    Murphy, M.J.

    1993-10-12

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or [beta] angle of the inner liner. 12 figures.

  13. Flow visualization study of the horseshoe vortex in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1982-01-01

    Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically.

  14. Strong motion from surface waves in deep sedimentary basins

    USGS Publications Warehouse

    Joyner, W.B.

    2000-01-01

    It is widely recognized that long-period surface waves generated by conversion of body waves at the boundaries of deep sedimentary basins make an important contribution to strong ground motion. The factors controlling the amplitude of such motion, however, are not widely understood. A study of pseudovelocity response spectra of strong-motion records from the Los Angeles Basin shows that late-arriving surface waves with group velocities of about 1 km/sec dominate the ground motion for periods of 3 sec and longer. The rate of amplitude decay for these waves is less than for the body waves and depends significantly on period, with smaller decay for longer periods. The amplitude can be modeled by the equation log y = f(M, RE) + c + bRB where y is the pseudovelocity response, f(M, RE) is an attenuation relation based on a general strong-motion data set, M is moment magnitude, RE is the distance from the source to the edge of the basin, RB is the distance from the edge of the basin to the recording site, and b and c are parameters fit to the data. The equation gives values larger by as much as a factor of 3 than given by the attenuation relationships based on general strong-motion data sets for the same source-site distance. It is clear that surface waves need to be taken into account in the design of long-period structures in deep sedimentary basins. The ground-motion levels specified by the earthquake provisions of current building codes, in California at least, accommodate the long-period ground motions from basin-edge-generated surface waves for periods of 5 sec and less and earthquakes with moment magnitudes of 7.5 or less located more than 20 km outside the basin. There may be problems at longer periods and for earthquakes located closer to the basin edge. The results of this study suggest that anelastic attenuation may need to be included in attempts to model long-period motion in deep sedimentary basins. To obtain better data on surface waves in the future, operators of strong-motion networks should take special care for the faithful recording of the long-period components of ground motion. It will also be necessary to insure that at least some selected recorders, once triggered, continue to operate for a time sufficient for the surface waves to traverse the basin. With velocities of about 1 km/sec, that time will be as long as 100 sec for a basin the size of the Los Angeles Basin.

  15. Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 2; Simulation Results

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Bunker, R. S.

    1999-01-01

    A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines (>1OOMW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip were considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade.

  16. Super-resolved terahertz microscopy by knife-edge scan

    NASA Astrophysics Data System (ADS)

    Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.

    2017-08-01

    We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.

  17. Mechanical and thermal buckling analysis of rectangular sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.

  18. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  19. Thermal Protection System with Staggered Joints

    NASA Technical Reports Server (NTRS)

    Simon, Xavier D. (Inventor); Robinson, Michael J. (Inventor); Andrews, Thomas L. (Inventor)

    2014-01-01

    The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.

  20. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling methods developed herein.

  1. Flap Edge Aeroacoustic Measurements and Predictions

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2000-01-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling method developed herein.

  2. A PIV Study of Baseline and Controlled Flow over the Highly Deflected Flap of a Generic Low Aspect Ratio Trapezoidal Wing

    NASA Astrophysics Data System (ADS)

    Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel

    2017-11-01

    A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.

  3. Solar cell modules with improved backskin and methods for forming same

    DOEpatents

    Hanoka, Jack I.

    1998-04-21

    A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.

  4. Close-loop Dynamic Stall Control on a Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Giles, Ian; Corke, Thomas

    2017-11-01

    A closed-loop control scheme utilizing a plasma actuator to control dynamic stall is presented. The plasma actuator is located at the leading-edge of a pitching airfoil. It initially pulses at an unsteady frequency that perturbs the boundary layer flow over the suction surface of the airfoil. As the airfoil approaches and enters stall, the amplification of the unsteady disturbance is detected by an onboard pressure sensor also located near the leading edge. Once detected, the actuator is switched to a higher voltage control state that in static airfoil experiments would reattach the flow. The threshold level of the detection is a parameter in the control scheme. Three stall regimes were examined: light, medium, and deep stall, that were defined by their stall penetration angles. The results showed that in general, the closed-loop control scheme was effective at controlling dynamic stall. The cycle-integrated lift improved in all cases, and increased by as much as 15% at the lowest stall penetration angle. As important, the cycle-integrated aerodynamic damping coefficient also increased in all cases, and was made to be positive at the light stall regime where it traditionally is negative. The latter is important in applications where negative damping can lead to stall flutter.

  5. Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling

    NASA Technical Reports Server (NTRS)

    Turner, E. R.; Wilson, M. D.; Hylton, L. D.; Kaufman, R. M.

    1985-01-01

    Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection.

  6. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  7. AlxGa1-xAs Single-Quantum-Well Surface-Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Kim, Jae H.

    1992-01-01

    Surface-emitting solid-state laser contains edge-emitting Al0.08Ga0.92As single-quantum-well (SQW) active layer sandwiched between graded-index-of-refraction separate-confinement-heterostructure (GRINSCH) layers of AlxGa1-xAs, includes etched 90 degree mirrors and 45 degree facets to direct edge-emitted beam perpendicular to top surface. Laser resembles those described in "Pseudomorphic-InxGa1-xAs Surface-Emitting Lasers" (NPO-18243). Suitable for incorporation into optoelectronic integrated circuits for photonic computing; e.g., optoelectronic neural networks.

  8. Toward Edge-Defined Holey Boron Nitride Nanosheets

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Liao, Yunlong; Chen, Zhongfan; Connell, John W.

    2015-01-01

    "Holey" two-dimensional (2D) nanosheets with well-defined holy morphology and edge chemistry are highly desirable for applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. For example, holey grapheme is currently under extensive investigation for energy storage applications because of the improvement in ion transport due to through the thickness pathways provided by the holes. Without the holes, the 2D materials have significant limitations for such applications in which efficient ion transport is important. As part of an effort to apply this approach to other 2D nanomaterials, a method to etch geometrically defined pits or holes on the basal plane surface of hexagonal boron nitride (h-BN) nanosheets has been developed. The etching, conducted via heating in ambient air using metal nanoparticles as catalysts, was facile, controllable, and scalable. Starting h-BN layered crystals were etched and subsequently exfoliated into boron nitride nanosheets (BNNSs). The as-etched and exfoliated h-BN nanosheets possessed defined pit and hole shapes that were comprised of regulated nanostructures at the edges. The current finding are the first step toward the bulk preparation of holey BNNSs with defined holes and edges.

  9. Improvements to the kernel function method of steady, subsonic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1974-01-01

    The application of a kernel function lifting surface method to three dimensional, thin wing theory is discussed. A technique for determining the influence functions is presented. The technique is shown to require fewer quadrature points, while still calculating the influence functions accurately enough to guarantee convergence with an increasing number of spanwise quadrature points. The method also treats control points on the wing leading and trailing edges. The report introduces and employs an aspect of the kernel function method which apparently has never been used before and which significantly enhances the efficiency of the kernel function approach.

  10. Methane emissions from western Canadian peatland lakes: assessing interactive effects of groundwater connectivity and permafrost thaw

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Riechert, C.; Estop Aragones, C.; Broder, T.; Bastviken, D.; Knorr, K. H.; Olefeldt, D.

    2017-12-01

    Rising temperatures and the submergence of recently thawed permafrost into lakes has been identified as a major driver of methane (CH4) emissions in northern regions. Lakes on the vast Taiga Plains in western Canada represent a vital unknown with respect to CH4 fluxes and their sensitivity to permafrost thaw. The Taiga Plains has several characteristics that could influence magnitude and controls on lake CH4 emissions in comparison to other regions, including high soil organic carbon stores, distinct permafrost history, and complex groundwater interactions that influence availability of terminal electron acceptor concentrations among lakes. The goal of this research is to describe the similarities and differences in processes governing lake CH4 emissions between western Canada and other northern regions. We carried out biweekly diffusive and ebullition flux measurements and monitored sediment redox profiles from two lakes near the border between Alberta and the Northwest Territories. The two lakes differ in contributions of surface water and groundwater inputs, respectively. Floating chamber-based fluxes were measured leading from the edges to the centers of the lakes from ice-out in early May until ice-cover in the fall. Preliminary redox profile analyses suggest the groundwater-fed lake has extremely high concentrations of sulfides (>200 µmol L-1) down to a depth of 30 cm, while the surface water lake has little to no sulfide, but high concentrations of reduced iron (>200 µmol L-1 ). Despite high sulfide concentrations in the sediments, the groundwater-fed lake had generally higher diffusive fluxes compared to the surface water lake, but there were no differences between the center and along the actively collapsing thermokarst edges. However, ebullition fluxes were highest from a recently thawed lake edge compared to the center of the lake and stable, non-thaw influenced edges. The results of this project will help improve current regional CH4 models by including ground-based methane flux measurements from the vast and previously unstudied region of western Canada.

  11. 75 FR 15642 - Schedules of Controlled Substances: Exempted Prescription Product; River Edge Pharmaceutical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... 1117-AB28 Schedules of Controlled Substances: Exempted Prescription Product; River Edge Pharmaceutical... new applications for exemption. DEA has received one new application for exemption for River Edge... application for exemption pursuant to the provisions of 21 CFR 1308.32 for: River Edge Pharmaceutical's...

  12. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  13. Flight Wing Surface Pressure and Boundary-Layer Data Report from the F-111 Smooth Variable-Camber Supercritical Mission Adaptive Wing

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.

    1997-01-01

    Flight tests were conducted using the advanced fighter technology integration F-111 (AFTI/F-111) aircraft modified with a variable-sweep supercritical mission adaptive wing (MAW). The MAW leading- and trailing-edge variable-camber surfaces were deflected in flight to provide a near-ideal wing camber shape for the flight condition. The MAW features smooth, flexible upper surfaces and fully enclosed lower surfaces, which distinguishes it from conventional flaps that have discontinuous surfaces and exposed or semi-exposed mechanisms. Upper and lower surface wing pressure distributions were measured along four streamwise rows on the right wing for cruise, maneuvering, and landing configurations. Boundary-layer measurements were obtained near the trailing edge for one of the rows. Cruise and maneuvering wing leading-edge sweeps were 26 deg for Mach numbers less than 1 and 45 deg or 58 deg for Mach numbers greater than 1. The landing wing sweep was 9 deg or 16 deg. Mach numbers ranged from 0.27 to 1.41, angles of attack from 2 deg to 13 deg, and Reynolds number per unit foot from 1.4 x 10(exp 6) to 6.5 x 10(exp 6). Leading-edge cambers ranged from O deg to 20 deg down, and trailing-edge cambers ranged from 1 deg up to 19 deg down. Wing deflection data for a Mach number of 0.85 are shown for three cambers. Wing pressure and boundary-layer data are given. Selected data comparisons are shown. Measured wing coordinates are given for three streamwise semispan locations for cruise camber and one spanwise location for maneuver camber.

  14. Virtual Shaping of a Two-dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jenq; Beeler, George B.

    2002-01-01

    The Aircraft Morphing Program at NASA Langley envisions an aircraft without conventional control surfaces. Instead of moving control surfaces, the vehicle control systems may be implemented with a combination of propulsive forces, micro surface effectors, and fluidic devices dynamically operated by an intelligent flight control system to provide aircraft maneuverability over each mission segment. As a part of this program, a two-dimensional NACA 0015 airfoil model was designed to test mild maneuvering capability of synthetic jets in a subsonic wind tunnel. The objective of the experiments is to assess the applicability of using unsteady suction and blowing to alter the aerodynamic shape of an airfoil with a purpose to enhance lift and/or to reduce drag. Synthetic jet actuation at different chordwise locations, different forcing frequencies and amplitudes, under different freestream velocities are investigated. The effect of virtual shape change is indicated by a localized increase of surface pressure in the neighborhood of synthetic jet actuation. That causes a negative lift to the airfoil with an upper surface actuation. When actuation is applied near the airfoil leading edge, it appears that the stagnation line is shifted inducing an effect similar to that caused by a small angle of attack to produce an overall lift change.

  15. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    NASA Astrophysics Data System (ADS)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  16. Nanometric edge profile measurement of cutting tools on a diamond turning machine

    NASA Astrophysics Data System (ADS)

    Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei

    2008-10-01

    Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.

  17. Composite adaptive control of belt polishing force for aero-engine blade

    NASA Astrophysics Data System (ADS)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and significantly reduces the surface roughness.

  18. Quantification of Magnetic Surface and Edge States in an FeGe Nanostripe by Off-Axis Electron Holography

    NASA Astrophysics Data System (ADS)

    Song, Dongsheng; Li, Zi-An; Caron, Jan; Kovács, András; Tian, Huanfang; Jin, Chiming; Du, Haifeng; Tian, Mingliang; Li, Jianqi; Zhu, Jing; Dunin-Borkowski, Rafal E.

    2018-04-01

    Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization MS by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of MS inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.

  19. Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir H.; Lopez, Juan M.

    2017-04-01

    Circular systems are advantageous for interfacial studies since they do not suffer from end effects, but their hydrodynamics is more complicated because their flows are not unidirectional. Here, we analyze the shear rheology of a harmonically driven knife-edge viscometer through experiments and computations based on the Navier-Stokes equations with a Newtonian interface. The measured distribution of phase lag in the surface velocity relative to the knife-edge speed is found to have a good signal-to-noise ratio and provides robust comparisons to the computations. For monomolecular films of stearic acid, the surface shear viscosity deduced from the model was found to be the same whether the film is driven steady or oscillatory, for an order of magnitude range in driving frequencies and amplitudes. Results show that increasing either the amplitude or forcing frequency steepens the phase lag next to the knife edge. In all cases, the phase lag is linearly proportional to the radial distance from the knife edge and scales with surface shear viscosity to the power -1 /2 .

  20. LT-STM/STS studies of clean armchair edge

    NASA Astrophysics Data System (ADS)

    Ju, Zheng; Zhang, Wenhan; Wu, Weida; Weida Wu Team

    It was predicted and observed that the passivated zigzag edges of graphene host highly localized edge state. This edge state is predicted to be spin-polarized, which is appealing for spintronic applications. In contrast, no edge state was expected at passivated armchair graphene edge. Here we report low temperature scanning tunneling microscopy and spectroscopy (STM/STS) studies of electronic properties of clean monoatomic step edges on cleaved surface of HOPG. Most of step edges are armchair edges, in agreement with previous STM results. We observed only (√{ 3} ×√{ 3}) R30° superstructure near armchair edges, which has been reported in previous STM studies. On the other hand, no honeycomb superstructure was observed in our STM data. In addition, our STM results reveal an intriguing localized electronic state at clean armchair edges. Spectroscopic and spatial evolution of this edge state will be presented. This work is supported by NSF DMR-1506618.

  1. Band positions of Rutile surfaces and the possibility of water splitting

    NASA Astrophysics Data System (ADS)

    Esch, Tobit R.; Bredow, Thomas

    2017-11-01

    It is well known that both the band gap and the band edge positions of oxide semiconductors are important for the photocatalytic water splitting. In this study, we show that different surface terminations of the same crystalline solid lead to considerable variations of the band gaps and band edges. As an example, we investigate the low-index surfaces of rutile TiO2. A series of hybrid methods based on the PBE exchange-correlation functional, PBE0, HSE06 and HISS, are employed to study the effect of long-range exchange on the electronic properties. In aqueous solution, the oxide particles employed in photocatalysis are fully covered with water molecules. We therefore study the influence of molecularly and dissociatively adsorbed water on the band positions. It is found that water adsorption leads to significant shifts of the band edge positions due to changes of the electrostatic potential at the surface atom positions.

  2. Improved DESI-MS Performance using Edge Sampling and aRotational Sample Stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2008-01-01

    The position of the surface to be analyzed relative to the sampling orifice or capillary into the mass spectrometer has been known to dramatically affect the observed signal levels in desorption electrospray ionization mass spectrometry (DESIMS). In analyses of sample spots on planar surfaces, DESI-MS signal intensities as much as five times greater were routinely observed when the bottom of the sampling capillary was appropriately positioned beneath the surface plane ( edge sampling") compared to when the capillary just touched the surface. To take advantage of the optimum "edge sampling" geometry and to maximize the number of samples that couldmore » be analyzed in this configuration, a rotational sample stage was integrated into a typical DESI-MS setup. The rapid quantitative determination of caffeine in two diet sport drinks (Diet Turbo Tea, Speed Stack Grape) spiked with an isotopically labeled internal standard demonstrated the utility of this approach.« less

  3. Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height

    NASA Technical Reports Server (NTRS)

    Hammond, D. L.; Mennella, R. A.; Walsh, E. J.

    1977-01-01

    A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.

  4. Surface mass diffusion over an extended temperature range on Pt(111)

    NASA Astrophysics Data System (ADS)

    Rajappan, M.; Swiech, W.; Ondrejcek, M.; Flynn, C. P.

    2007-06-01

    Surface mass diffusion is investigated on Pt(111) at temperatures in the range 710-1220 K. This greatly extends the range over which diffusion is known from step fluctuation spectroscopy (SFS). In the present research, a beam of Pt- self-ions is employed to create a suitable structure on step edges. The surface mass diffusion coefficients then follow from the decay of Fourier components observed by low-energy electron microscopy (LEEM) at selected annealing temperatures. The results agree with SFS values where they overlap, and continue smoothly to low temperature. This makes it unlikely that diffusion along step edges plays a major role in step edge relaxation through the temperature range studied. The surface mass diffusion coefficient for the range 710-1520 K deduced from the present work, together with previous SFS data, is Ds = 4 × 10-3 exp(-1.47 eV/kBT) cm2 s-1.

  5. Imbibition of a textured surface decorated by short pillars with rounded edges.

    PubMed

    Obara, Noriko; Okumura, Ko

    2012-08-01

    Imbibition of micropatterned surfaces can have broad technological and fundamental implications for areas ranging from biomedical devices and fuel transport to writing with ink. Despite rapidly growing interests aimed at various applications, a fundamental physical understanding of the imbibition dynamics is still in its infancy. Recently, two simple scaling regimes for the dynamics have been established for a textured surface decorated with long pillars whose top and bottom edges are sharp. Here, we study the imbibition dynamics of textured surfaces decorated by short pillars with rounded edges, to find a different scaling regime. Interestingly, this regime originates not from the balance of two effects but from the hybrid balance of three effects. Furthermore, this scaling law can be universal or independent of the details of the texture geometry. We envision that this potentially universal scaling regime might be ubiquitous and will be useful in the handling and transportation of a small amount of liquid.

  6. Analysis of the separated boundary layer flow on the surface and in the wake of blunt trailing edge airfoils

    NASA Technical Reports Server (NTRS)

    Goradia, S. H.; Mehta, J. M.; Shrewsbury, G. S.

    1977-01-01

    The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements.

  7. Composite materials with improved phyllosilicate dispersion

    DOEpatents

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  8. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion

    PubMed Central

    Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai

    2013-01-01

    Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications. PMID:23981909

  9. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.

    1993-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  10. Drag reduction of a car model by linear genetic programming control

    NASA Astrophysics Data System (ADS)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  11. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms adsorbed at step edges (on the platinum surfaces). The results herein provide several novel observations regarding the adsorptive behavior of xenon on vicinal copper and platinum surfaces.

  12. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities.

    PubMed

    Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John

    2016-06-01

    The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.

  13. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  14. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson Andrew; Schaefer, Jacob Robert

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.

  15. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  16. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.

    PubMed

    Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A

    2017-11-28

    We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.

  17. The diagnosed mobile limiters of the TJ-II stellarator for plasma boundary studies

    NASA Astrophysics Data System (ADS)

    de la Cal, E.; Tabarés, F. L.; Tafalla, D.; Cortés, I. García.; Hidalgo, C.; López-Fraguas, A.

    TJ-II is a medium size (major radius R=1.5 m, average plasma radius a <0.25 m, on axis magnetic field B=1 T) helical axis stellarator. The main characteristic is its magnetic configuration flexibility, due to the separate control of the different magnetic field coils. The two diagnosed mobile limiters are installed to reduce thermal loads on the thin protection plates of the contacting plasma-chamber regions and to study the plasma edge. First diagnostics are a set of thermocouples, Langmuir probes, H α-detectors and a CCD video camera with different filters (atomic lines of HeI, H α and near IR) looking at the limiter. A method of passive spectroscopy is proposed to map the electron temperature and density over the whole limiter surface by analysing the emission of helium recycling neutrals. It is expected from previous results of other stellarators, that the boundary magnetic topology will have a strong influence on the plasma-wall interaction. The mobile limiters can control the last closed magnetic surface and diagnose the plasma boundary. A qualitative different plasma edge scenario is foreseen between the limiter and the natural island divertor configuration (rational rotational transform inside the limiter radius). Plasma-wall interaction in TJ-II shows very specific features and the optimisation of the plasma edge topology can influence strongly the core plasma parameters. In particular, impurity screening will be a challenge due to the large power density which will be available in future (up to 2 MW NBI for 0.5 s). A safe operation for future high β-plasmas is also required and the mobile limiters should help to remove a fraction of the conductive/convective power.

  18. Geometries for roughness shapes in laminar flow

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J. (Inventor); Martin, Glenn L. (Inventor); Domack, Christopher S. (Inventor); Obara, Clifford J. (Inventor); Hassan, Ahmed A. (Inventor)

    1986-01-01

    A passive interface mechanism between upper and lower skin structures, and a leading edge structure of a laminar flow airfoil is described. The interface mechanism takes many shapes. All are designed to be different than the sharp orthogonal arrangement prevalent in the prior art. The shapes of the interface structures are generally of two types: steps away from the centerline of the airfoil with a sloping surface directed toward the trailing edge and, the other design has a gap before the sloping surface. By properly shaping the step, the critical step height is increased by more than 50% over the orthogonal edged step.

  19. Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.

  20. Detail view of the leading and top edge of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the leading and top edge of the vertical stabilizer of the Orbiter Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFRSI) blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges. The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Optimized method for manufacturing large aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Xusheng; Li, Shengyi; Dai, Yifan; Xie, Xuhui

    2007-12-01

    Aspheric optics are being used more and more widely in modern optical systems, due to their ability of correcting aberrations, enhancing image quality, enlarging the field of view and extending the range of effect, while reducing the weight and volume of the system. With optical technology development, we have more pressing requirement to large-aperture and high-precision aspheric surfaces. The original computer controlled optical surfacing (CCOS) technique cannot meet the challenge of precision and machining efficiency. This problem has been thought highly of by researchers. Aiming at the problem of original polishing process, an optimized method for manufacturing large aspheric surfaces is put forward. Subsurface damage (SSD), full aperture errors and full band of frequency errors are all in control of this method. Lesser SSD depth can be gained by using little hardness tool and small abrasive grains in grinding process. For full aperture errors control, edge effects can be controlled by using smaller tools and amendment model with material removal function. For full band of frequency errors control, low frequency errors can be corrected with the optimized material removal function, while medium-high frequency errors by using uniform removing principle. With this optimized method, the accuracy of a K9 glass paraboloid mirror can reach rms 0.055 waves (where a wave is 0.6328μm) in a short time. The results show that the optimized method can guide large aspheric surface manufacturing effectively.

  2. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  3. Flap-edge aeroacoustic measurements and predictions

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.; Humphreys, William M.

    2003-03-01

    An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a small aperture directional array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by computational fluid dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that the prediction models capture much of the physics. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. The complexity of the directivity results demonstrate the strong role of edge source geometry and frequency in the noise radiation. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary-layer scaling methods developed herein.

  4. Dimer formation and surface alloying: a STM study of lead on Cu(211)

    NASA Astrophysics Data System (ADS)

    Bartels, L.; Zöphel, S.; Meyer, G.; Henze, E.; Rieder, K.-H.

    1997-02-01

    We present a STM investigation of Pb adsorption on the Cu(211) surface in the temperature range between 30 K and room temperature. We observe three different kinds of ordered 1D Pb and PbCu chains (nanowires) located at the intrinsic step edges of the Cu(211) surface. On room temperature prepared samples, Pb is found to be incorporated into the step edges of the (211) surface. The first ordered structure consists of CuPb chains at the step edges (p(2 × disorder)) and is followed with increasing coverage by a close packed row of Pb-atoms (p(4 × disorder)). Preparation at low temperature yields Pb-dimers, and the first ordered structure is a row of Pb-dimers at the step edge (p(3 × disorder)) followed with increased coverage by a structure as described above. By systematic manipulation with the tunneling tip, we could get additional insight into the structural elements of the PbCu layer on the atomic scale. Furthermore, by measuring the threshold resistance to detach atoms from different ad-sites, we can approximately determine the binding energy and gain some insight into the thermodynamical parameters involved.

  5. Process Damping and Cutting Tool Geometry in Machining

    NASA Astrophysics Data System (ADS)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  6. Effect of the coating material on root dentin remineralization in vitro.

    PubMed

    Shiiya, Toru; Tomiyama, Kiyoshi; Iizuka, Junko; Hasegawa, Haruhiko; Kuramochi, Erika; Fujino, Fukue; Ohashi, Katsura; Nihei, Tomotaro; Teranaka, Toshio; Mukai, Yoshiharu

    2014-10-01

    A fluoride-releasing coating material containing surface pre-reacted glass-ionomer (S-PRG) filler has become commercially available. However, there has been no detailed investigation of its remineralization effects at various tooth surface regions. The remineralization effects of S-PRG filler-containing coating material at different sites of demineralized dentin surfaces in vitro were evaluated. Baseline lesions were prepared on bovine root dentin surfaces by immersion in demineralization buffer and divided into four groups: (B)--baseline lesion; (P)--S-PRG filler-containing material; (V)--S-PRG filler-free coating material as negative control; and (X)--resin-modified glass- ionomer as positive control. Material was applied to half the lesion surface, then P, V and X were remineralized in a gel system. Mineral profiles, integrated mineral loss (IML) and lesion depth (LD) at four regions, i.e. 1--exposed dentin surface adjacent to the material; 2--at a distance from the material; 3--beneath the material near to the edge; and 4--at a distance from the edge, were analyzed by transversal microradiography. Data were analyzed using ANOVA and Games-Howell test with α = 0.05. B showed typical artificial demineralized lesion. The IMLs of V, P and X at regions 1 and 2, and P and X at region 3 were significantly lower than that of B, however, those of V at region 3 and the other three groups at region 4 were not significantly different from that of B. At region 1, P and X showed significantly lower IMLs than V. At region 2, the IML of X showed significantly lower IML than V. There was no significant difference between P and X. The LD values of V, P and X at all regions were not significantly different from that of B. Fluoride, strontium and silicate ions released from the S-PRG filler would provide a favorable environment for remineralization of the demineralized dentin in P.

  7. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  8. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  9. Physical and chemical characteristics and development of the Changuinola peat deposit of northwestern Panama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.D.; Raymond, R. Jr.; Thayer, G.

    1987-08-01

    A peat deposit occupying over 80 square kilometers, and averaging 8 meters in thickness, was discovered on the Caribbean coast of northwestern Panama near the town of Changuinola. This deposit occurs inland (behind) the present beach-barrier shoreline. It is thickest in the center and thins toward all edges (as if domed). The surface vegetation in the central regions consists primarily of ombrotrophic plants (especially sedges, grasses, Sphagnum, Sagittaria, and various scattered shrubs). Toward the edges, the deposit has a surface cover of more minerotrophic plants (such as swamp-forest trees, ferns, and palms). Petrographic/botanical analysis of the deposit with depth revealsmore » the presence of five peat types (swamp-forest, sedge-grass-fern, Sagittaria et al., Nymphaea et al., and Rhizophora). Typically peats of the thick, central portions of the deposit are very low in ash and sulfur (less than 2% ash and 0.3% sulfur). Ash contents tend to increase abruptly at the base and more gradually toward the edges of the deposit and sulfur contents increasing gradually toward the ocean and bay. Vertical and lateral variations in botanical, chemical, and physical properties of this deposit can be related to factors that have controlled: (1) the surrounding rocks and water chemistry; (2) the source vegetation; and (3) the environments in which these source ingredients were deposited. 3 refs., 10 figs.« less

  10. Hybrid Ultra-Low VOC and Non-HAP Rain Erosion Coatings

    DTIC Science & Technology

    2018-01-12

    cavitation test stand for running the modified ASTM G32 method...Objective Numerous military aircraft and shipboard surfaces, such as radomes, antennas, gun shields, wing leading edges, and helicopter blade leading edges... blades , and helicopter blade leading edges. The application market is extremely widespread. Luna will leverage existing internal contacts for

  11. Wing Leading Edge Debris Analysis

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Jerman, Gregory

    2004-01-01

    This is a slide presentation showing the Left Wing Leading Edge (WLE) heat damage observations: Heavy "slag" deposits on select RCC panels. Eroded and knife-edged RCC rib sections. Excessive overheating and slumping of carrier panel tiles. Missing or molten attachment bolts but intact bushing. Deposit mainly on "inside" RCC panel. Deposit on some fractured RCC surface

  12. Streamlines behind curved shock waves in axisymmetric flow fields

    NASA Astrophysics Data System (ADS)

    Filippi, A. A.; Skews, B. W.

    2018-07-01

    Streamlines behind axisymmetric curved shock waves were used to predict the internal surfaces that produced them. Axisymmetric ring wedge models with varying internal radii of curvature and leading-edge angles were used to produce numerical results. Said numerical simulations were validated using experimental shadowgraph results for a series of ring wedge test pieces. The streamlines behind curved shock waves for lower leading-edge angles are examined at Mach 3.4, whereas the highest leading-edge angle cases are explored at Mach 2.8 and 3.4. Numerical and theoretical streamlines are compared for the highest leading-edge angle cases at Mach 3.6. It was found that wall-bounding theoretical streamlines did not match the internal curved surface. This was due to extreme streamline curvature curving the streamlines when the shock angle approached the Mach angle at lower leading-edge angles. Increased Mach number and internal radius of curvature produced more reasonable results. Very good agreement was found between the theoretical and numerical streamlines at lower curvatures before the influence of the trailing edge expansion fan.

  13. Simultaneous calculation of three optical surfaces in the 3D SMS freeform RXI optic

    NASA Astrophysics Data System (ADS)

    Sorgato, Simone; Chaves, Julio; Mohedano, Rubén.; Hernández, Maikel; Blen, José; Benitez, Pablo; Miñano, Juan C.; Grabovickic, Dejan; Thienpont, Hugo; Duerr, Fabian

    2016-09-01

    The Freeform RXI collimator is a remarkable example of advanced nonimaging device designed with the 3D Simultaneous Multiple Surface (SMS) Method. In the original design, two (the front refracting surface and the back mirror) of the three optical surfaces of the RXI are calculated simultaneously and one (the cavity surrounding the source) is fixed by the designer. As a result, the RXI perfectly couples two input wavefronts (coming from the edges of the extended LED source) with two output wavefronts (defining the output beam). This allows for LED lamps able to produce controlled intensity distributions, which can and have been successfully applied to demanding applications like high- and low-beams for Automotive Lighting. Nevertheless, current trends in this field are moving towards smaller headlamps with more shape constraints driven by car design. We present an improved version of the 3D RXI in which also the cavity surface is computed during the design, so that there are three freeform surfaces calculated simultaneously and an additional degree of freedom for controlling the light emission: now the RXI can perfectly couple three input wavefronts with three output wavefronts. The enhanced control over ray beams allows for improved light homogeneity and better pattern definition.

  14. Estimation of Sorption Behavior of Europium(III) Using Biotite Flakes - 13272

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Go; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The interaction of biotite and Eu(III) (europium (III)) was examined by using secondary ion-microprobe mass spectrometer (SIMS), fluorescence emission spectrum and decay behavior of fluorescence emission spectrum in addition to the time-changes of Eu(III) and potassium ions concentrations in a solution, using the flake form samples. The results of SIMS showed that the intensity of Eu was gradually decreasing with depth, while the intensity of Eu in the case shaken for 30 days exceeded that in the case for 1 day. Furthermore, the spatial distribution of Eu(III) and potassium ions in the flake of biotite suggested that Eu ions diffusemore » mainly from the edges of biotite flake, while Eu ions can slightly diffuse through some small cracks existing on the flake surface far from the edges. Besides, the elution amount of potassium from the biotite flakes into a solution was proportional to the sorption amount of Eu(III). The changes nearly revealed ion exchange between these ions, while muscovite flake sample did not show such ion exchange reaction. In addition, from the time-change of Eu(III) concentration, an apparent diffusion coefficient was estimated to be 8.0x10{sup -12} m{sup 2}/s, by using two-dimensional diffusion model coupled with a film between the solid phase and the liquid phase. Furthermore, the fluorescent intensity decreased with the shaking (contacting) time. This means that Eu(III) gradually diffuses into the inside of biotite edges of the biotite flakes, after the sorption of Eu(III) in the edges. This tendency was observed also in the powder samples. The observed fluorescence decay (at 592 nm in wave length) showed almost similar curve in any samples, indicating a certain sorption form of Eu(III) onto the edges of the biotite flakes. These results mentioned above suggest that the diffusion processes through internal layer in biotite mainly control the sorption behavior of multivalent ions. Such diffusion processes affect the retardation-effects on fracture surfaces in the rock matrix, depending on the fluid flow velocity of groundwater. That is, a more reliable model considering the mass transfer in the internal layer of biotite may be required to estimate the sorption behavior of RNs with biotite which controls the whole sorption behavior of granite. (authors)« less

  15. Flight Testing Surfaces Engineered for Mitigating Insect Adhesion on a Falcon HU-25C

    NASA Technical Reports Server (NTRS)

    Shanahan, Michelle; Wohl, Chris J.; Smith, Joseph G., Jr.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Penner, Ronald K.

    2015-01-01

    Insect residue contamination on aircraft wings can decrease fuel efficiency in aircraft designed for natural laminar flow. Insect residues can cause a premature transition to turbulent flow, increasing fuel burn and making the aircraft less environmentally friendly. Surfaces, designed to minimize insect residue adhesion, were evaluated through flight testing on a Falcon HU-25C aircraft flown along the coast of Virginia and North Carolina. The surfaces were affixed to the wing leading edge and the aircraft remained at altitudes lower than 1000 feet throughout the flight to assure high insect density. The number of strikes on the engineered surfaces was compared to, and found to be lower than, untreated aluminum control surfaces flown concurrently. Optical profilometry was used to determine insect residue height and areal coverage. Differences in results between flight and laboratory tests suggest the importance of testing in realistic use environments to evaluate the effectiveness of engineered surface designs.

  16. Fly-by-feel aeroservoelasticity

    NASA Astrophysics Data System (ADS)

    Suryakumar, Vishvas Samuel

    Recent experiments have suggested a strong correlation between local flow features on the airfoil surface such as the leading edge stagnation point (LESP), transition or the flow separation point with global integrated quantities such as aerodynamic lift. "Fly-By-Feel" refers to a physics-based sensing and control framework where local flow features are tracked in real-time to determine aerodynamic loads. This formulation offers possibilities for the development of robust, low-order flight control architectures. An essential contribution towards this objective is the theoretical development showing the direct relationship of the LESP with circulation for small-amplitude, unsteady, airfoil maneuvers. The theory is validated through numerical simulations and wind tunnel tests. With the availability of an aerodynamic observable, a low-order, energy-based control formulation is derived for aeroelastic stabilization and gust load alleviation. The sensing and control framework is implemented on the Nonlinear Aeroelastic Test Apparatus at Texas A&M University. The LESP is located using hot-film sensors distributed around the wing leading edge. Stabilization of limit cycle oscillations exhibited by a nonlinear wing section is demonstrated in the presence of gusts. Aeroelastic stabilization is also demonstrated on a flying wing configuration exhibiting body freedom flutter through numerical simulations.

  17. Transient induced tungsten melting at the Joint European Torus (JET)

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET

    2017-12-01

    Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15{}\\circ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.

  18. Influence of the cutting edge angle of a titanium instrument on chip formation in the machining of trabecular and cortical bone.

    PubMed

    von See, Constantin; Stoetzer, Marcus; Ruecker, Martin; Wagner, Max; Schumann, Paul; Gellrich, Nils-Claudius

    2014-01-01

    The placement of self-tapping implants is associated with microfractures and the formation of bone chips along the cutting flutes. This study was conducted to investigate the effect of different cutting edge angles on chip formation during the machining of trabecular and cortical bone using instruments with a rough titanium surface. Mandibular cortical and trabecular bone specimens were obtained from freshly slaughtered domestic pigs. A predefined thrust force was applied to the specimens. Four specially designed cutting instruments that simulated dental implants and had a rough titanium surface were allowed to complete one full revolution at cutting edge angles of 55, 65, 75, and 85 degrees, respectively. Torque and thrust were measured during the cutting process. Bone chips were measured and weighed under a microscope. Different cutting edge angles did not lead to significant differences in torque. The lowest torque values were measured when the cutting edges were positioned at 65 degrees in trabecular bone and at 85 degrees in cortical bone. Bone chips were significantly larger and heavier at angles of 55 and 65 degrees than at angles of 75 and 85 degrees in trabecular bone. Instruments with a rough titanium surface show considerable angle-dependent differences in chip formation. In addition to bone density, the angle of the cutting edges should be taken into consideration during the placement of dental implants. Good results were obtained when the cutting edges were positioned at an angle of 65 degrees. This angle can have positive effects on osseointegration.

  19. Analysis of current-driven oscillatory dynamics of single-layer homoepitaxial islands on crystalline conducting substrates

    NASA Astrophysics Data System (ADS)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    2018-03-01

    We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.

  20. Semi-analytical model for a static sheath including a weakly collisional presheath

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Denpoh, Kazuki

    2018-06-01

    A semi-analytical static sheath (SASS) model can provide a spatial potential profile on a biased surface with microstructures, which can be used for predicting ion trajectories on the surface. However, two- or three-dimensional SASS models require a search procedure for a sheath edge equipotential profile, at which ions have the Bohm velocity, as the starting positions for calculating ion trajectories. This procedure can be troublesome when surface microstructures have complex structures. This difficulty is due to the fact that the SASS model cannot handle a presheath region. In this work, we propose a modified SASS model that can handle a presheath region. By using the modified SASS model, ion trajectories can be calculated from edges with arbitrary geometry without searching for the equipotential profile corresponding to sheath edges.

Top