Sample records for edge current drive

  1. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less

  2. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electricmore » field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.« less

  3. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  4. Experiments Using Local Helicity Injectors in the Lower Divertor Region as the Majority Current Drive in a Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Perry, Justin M.

    Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.

  5. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Masanori; Park, Jin Myung; Giruzzi, G.

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less

  6. Oscillating field current drive experiments in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Blair, Arthur P., Jr.

    Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.

  7. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  8. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    NASA Astrophysics Data System (ADS)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  9. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  10. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    DOE PAGES

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive (IDCD) theory is used to predict the toroidal current evolution in the HIT-SI experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  11. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive (IDCD) theory is used to predict the toroidal current evolution in the HIT-SI experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  12. Stable Spheromaks with Profile Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R

    A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.

  13. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive theory is used to predict the toroidal current evolution in the helicity injected torus with steady inductive helicity injection (HIT-SI) experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  14. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  15. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  16. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  17. Equilibrium drives of the low and high field side n  =  2 plasma response and impact on global confinement

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.

    2016-05-01

    The nature of the multi-modal n  =  2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n  =  2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n  =  2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.

  18. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE PAGES

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...

    2016-03-31

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  19. Observation of EHO in NSTX and Theoretical Study of its Active Control Using HHFW Antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.-K. Park, et. al.

    2013-01-14

    Two important topics in the tokamak ELM control, using the non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: Experimental observations of the edge harmonic oscillation in NSTX (not necessarily the same as EHOs in DIII-D), and theoretical study of its external drive using the high harmonic fast wave (HHFW) antenna as a 3D field coil. Edge harmonic oscillations were observed particularly well in NSTX ELM-free operation with low n core modes, with various diagnostics confirming n = 4 ~ 6 edge-localized and coherent oscillations in 2 ~ 8kHz frequency range.more » These oscillations seem to have a favored operational window in rotational shear, similarly to EHOs in DIII-D QH modes . However, in NSTX, they are not observed to provide particle or impurity control, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4 ~ 6 while minimizing n = 1 ~ 3. Also, IPEC calculations show that the optimized configuration with only 1kAt current can produce comparable or larger displacements than the observed internal modes. If this optimized external drive can be constructively combined, or further resonated with the internal modes, the edge harmonic oscillations in NSTX may be able to produce sufficient particle control to modify ELMs.« less

  20. Material condition assessment with eddy current sensors

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Sheiretov, Yanko K. (Inventor); Schlicker, Darrell E. (Inventor); Lyons, Robert J. (Inventor); Windoloski, Mark D. (Inventor); Craven, Christopher A. (Inventor); Tsukernik, Vladimir B. (Inventor); Grundy, David C. (Inventor)

    2010-01-01

    Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.

  1. Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2016-10-01

    Understanding the electron temperature (Te) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive Te measurements during LHI reveal centrally-peaked profiles with Te > 100 eV for plasma current Ip > 120 kA, toroidal field 0.15 T, and electron density ne 1019 m-3. Te rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of Te at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with Ip 50 kA and reduced Te , max. Inboard divertor injection achieves higher Ip using minimal inductive drive and thus isolates effects of LHI drive on Te. Initial results in this configuration show Te rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate ne and high-Te, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric

    2013-10-01

    The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.

  3. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  4. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t < τ E ) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  5. Lower Hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.

    2015-11-01

    For the first time, the power deposition of Lower Hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t <τE) response of the scrape-off-layer (SOL) plasma to LHRF power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be key for the LHRF edge power deposition physics. These observations support the existence a loss mechanism near the edge for LHRF at high density (ne > 1 . 0 .1020 [m-3]). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivates the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE award DE-FC02-99ER54512.

  6. High performance advanced tokamak regimes in DIII-D for next-step experiments

    NASA Astrophysics Data System (ADS)

    Greenfield, C. M.; Murakami, M.; Ferron, J. R.; Wade, M. R.; Luce, T. C.; Petty, C. C.; Menard, J. E.; Petrie, T. W.; Allen, S. L.; Burrell, K. H.; Casper, T. A.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gorelov, I. A.; Groebner, R. J.; Hobirk, J.; Hyatt, A. W.; Jayakumar, R. J.; Kessel, C. E.; La Haye, R. J.; Jackson, G. L.; Lohr, J.; Makowski, M. A.; Pinsker, R. I.; Politzer, P. A.; Prater, R.; Strait, E. J.; Taylor, T. S.; West, W. P.; DIII-D Team

    2004-05-01

    Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts.

  7. Pump impeller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickoren, D.R.

    1990-02-27

    This patent describes an impeller for pumping highly viscous liquids. It comprises: a substantially circular drive plate having first and second sides, a geometric center, and a marginal edge. The drive plate being adapted for rotation within a pump housing; a plurality of symmetrical, evenly spaced blades extending radially outwardly to present a tip. Each of the blades being connected only to the drive plate and extending substantially normal thereto to present a sharpened top edge opposite the drive plate. Each of the blades including a leading face corresponding to the direction of rotation of the impeller during operation andmore » a trailing face oriented away from a direction of rotation of the impeller during operation thereof. Each of the blades including winglet means secured to the leading face thereof and located intermediate aid top edge and the drive plate and positioned more proximate to the top edge than to the drive plate.« less

  8. Numerical optimization of three-dimensional coils for NSTX-U

    DOE PAGES

    Lazerson, S. A.; Park, J. -K.; Logan, N.; ...

    2015-09-03

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n = 1 character can drive a large core torque. It is also shown that fields with n = 3 features are capablemore » of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. In conclusion, comparison between error field correction experiments on DIII-D and the optimizer show good agreement.« less

  9. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    DOE PAGES

    Li, M.; Breizman, B. N.; Zheng, L. J.; ...

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less

  10. Development of Long-Pulse Heating and Current Drive Actuators and Operational Techniques Compatible with a High-Z Divertor and First Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guiding

    Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less

  11. Experimental investigation of density behaviors in front of the lower hybrid launcher in experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Ding, B. J.; Li, M. H.

    2013-06-15

    A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lowermore » hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.« less

  12. Edge Stability and Performance of the ELM-Free Quiescent H-Mode and the Quiescent Double Barrier Mode on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, W P; Burrell, K H; Casper, T A

    2004-12-03

    The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less

  13. Accurate electrical prediction of memory array through SEM-based edge-contour extraction using SPICE simulation

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan; Rotstein, Israel; Peltinov, Ram; Latinski, Sergei; Adan, Ofer; Levi, Shimon; Menadeva, Ovadya

    2009-03-01

    The continues transistors scaling efforts, for smaller devices, similar (or larger) drive current/um and faster devices, increase the challenge to predict and to control the transistor off-state current. Typically, electrical simulators like SPICE, are using the design intent (as-drawn GDS data). At more sophisticated cases, the simulators are fed with the pattern after lithography and etch process simulations. As the importance of electrical simulation accuracy is increasing and leakage is becoming more dominant, there is a need to feed these simulators, with more accurate information extracted from physical on-silicon transistors. Our methodology to predict changes in device performances due to systematic lithography and etch effects was used in this paper. In general, the methodology consists on using the OPCCmaxTM for systematic Edge-Contour-Extraction (ECE) from transistors, taking along the manufacturing and includes any image distortions like line-end shortening, corner rounding and line-edge roughness. These measurements are used for SPICE modeling. Possible application of this new metrology is to provide a-head of time, physical and electrical statistical data improving time to market. In this work, we applied our methodology to analyze a small and large array's of 2.14um2 6T-SRAM, manufactured using Tower Standard Logic for General Purposes Platform. 4 out of the 6 transistors used "U-Shape AA", known to have higher variability. The predicted electrical performances of the transistors drive current and leakage current, in terms of nominal values and variability are presented. We also used the methodology to analyze an entire SRAM Block array. Study of an isolation leakage and variability are presented.

  14. Characterization of peeling modes in a low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.

    2014-11-01

    Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.

  15. MHD and Reconnection Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.

    2016-10-01

    Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  16. Edge coating apparatus with movable roller applicator for solar cell substrates

    DOEpatents

    Pavani, Luca; Abas, Emmanuel

    2012-12-04

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  17. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  18. HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Levesque, J. P.; Mauel, M. E.; Stewart, I. G.; Hansen, C. J.

    2017-10-01

    The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. Comparison of kink mode structure and RMP response in circular versus diverted plasmas shows good agreement with DCON modeling. SOL current measurements have been used to study SOL current dynamics and current-sharing with the vacuum vessel wall during kink-mode growth and disruptions. A multi-chord extreme UV/soft X-ray array is being installed to provide detailed internal mode structure information. Internal local electrodes were used to apply local bias voltage at two radial locations to study the effect of rotation profile on MHD mode rotation and stability and radial current flow through the SOL. A GPU-based low latency control system using 96 inputs and 64 outputs to apply magnetic perturbations for active control of kink modes is extended to directly control the SOL currents for kink-mode control. An extensive array of SOL current monitors and edge drive electrodes are being installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  19. Tape SCSI monitoring and encryption at CERN

    NASA Astrophysics Data System (ADS)

    Laskaridis, Stefanos; Bahyl, V.; Cano, E.; Leduc, J.; Murray, S.; Cancio, G.; Kruse, D.

    2017-10-01

    CERN currently manages the largest data archive in the HEP domain; over 180PB of custodial data is archived across 7 enterprise tape libraries containing more than 25,000 tapes and using over 100 tape drives. Archival storage at this scale requires a leading edge monitoring infrastructure that acquires live and lifelong metrics from the hardware in order to assess and proactively identify potential drive and media level issues. In addition, protecting the privacy of sensitive archival data is becoming increasingly important and with it the need for a scalable, compute-efficient and cost-effective solution for data encryption. In this paper, we first describe the implementation of acquiring tape medium and drive related metrics reported by the SCSI interface and its integration with our monitoring system. We then address the incorporation of tape drive real-time encryption with dedicated drive hardware into the CASTOR [1] hierarchical mass storage system.

  20. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.

    2017-07-01

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV  ⩽  650 eV, which is in contrast to T i,OV  ⩽  70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.

  1. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    DOE PAGES

    Burke, Marcus G.; Barr, Jayson L.; Bongard, Michael W.; ...

    2017-05-16

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ≤ 650 eV, which is in contrast to T i,OV ≤ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, whilemore » $${{T}_{\\text{i},\\parallel}}$$ experiences little change, in agreement with two-fluid reconnection theory. In conclusion, this ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.« less

  2. Validation of extended magnetohydrodynamic simulations of the HIT-SI3 experiment using the NIMROD code

    NASA Astrophysics Data System (ADS)

    Morgan, K. D.; Jarboe, T. R.; Hossack, A. C.; Chandra, R. N.; Everson, C. J.

    2017-12-01

    The HIT-SI3 experiment uses a set of inductively driven helicity injectors to apply a non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. These helicity injectors drive a non-axisymmetric perturbation that oscillates in time, with relative temporal phasing of the injectors modifying the mode structure of the applied perturbation. A set of three experimental discharges with different perturbation spectra are modelled using the NIMROD extended magnetohydrodynamics code, and comparisons are made to both magnetic and fluid measurements. These models successfully capture the bulk dynamics of both the perturbation and the equilibrium, though disagreements related to the pressure gradients experimentally measured exist.

  3. H-mode pedestal stability and ELMs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mossessian, Dmitri

    2002-11-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.

  4. Theory of ion Bernstein wave induced shear suppression of turbulence

    NASA Astrophysics Data System (ADS)

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  5. Integrated modeling of high βN steady state scenario on DIII-D

    DOE PAGES

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...

    2018-01-10

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  6. Integrated modeling of high βN steady state scenario on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  7. Integrated modeling of high βN steady state scenario on DIII-D

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.

    2018-01-01

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.

  8. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... installation and at various heights under the edge of the door and located in line with the driving point of... installation, the bottom edge of the door under the driving force of the operator is to be against the floor... that represents the most severe operating condition. Any accessories having an effect on the intended...

  9. Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Jardin; C.E. Kessel; T.K. Mau

    2003-10-07

    The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads tomore » a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.« less

  10. Clinical operations generation next… The age of technology and outsourcing

    PubMed Central

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations. PMID:26623386

  11. Clinical operations generation next… The age of technology and outsourcing.

    PubMed

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  12. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  13. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  14. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    DOE PAGES

    Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-04-20

    Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less

  15. The high-βN hybrid scenario for ITER and FNSF steady-state missions

    DOE PAGES

    Turco, Francesca; Petty, Clinton C.; Luce, Timothy C.; ...

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and βN up to 3.7 sustained for ~3 s (~1.5 current diffusion time, τ R, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H 98y2~1.6) without performance limiting tearing modes. Furthermore, the hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficientmore » current drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ R when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β N~4-4.5. Off-axis NBI power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ', as calculated by the DCON and PEST3 codes. Our results are based on measured profiles that predict ideal limits at βN>4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, βN and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q=5 mission and the FNSF 6.7 MA scenario with Q=3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-βN hybrid represents an attractive high performance option for the steady-state missions of these devices.« less

  16. A nonlinear merging protocol for consensus in multi-agent systems on signed and weighted graphs

    NASA Astrophysics Data System (ADS)

    Feng, Shasha; Wang, Li; Li, Yijia; Sun, Shiwen; Xia, Chengyi

    2018-01-01

    In this paper, we investigate the multi-agent consensus for networks with undirected graphs which are not connected, especially for the signed graph in which some edge weights are positive and some edges have negative weights, and the negative-weight graph whose edge weights are negative. We propose a novel nonlinear merging consensus protocol to drive the states of all agents to converge to the same state zero which is not dependent upon the initial states of agents. If the undirected graph whose edge weights are positive is connected, then the states of all agents converge to the same state more quickly when compared to most other protocols. While the undirected graph whose edge weights might be positive or negative is unconnected, the states of all agents can still converge to the same state zero under the premise that the undirected graph can be divided into several connected subgraphs with more than one node. Furthermore, we also discuss the impact of parameter r presented in our protocol. Current results can further deepen the understanding of consensus processes for multi-agent systems.

  17. Edge states and phase diagram for graphene under polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  18. Lower hybrid current drive in experiments for transport barriers at high βN of JET (Joint European Torus)

    NASA Astrophysics Data System (ADS)

    Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.

    2007-09-01

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  19. Simulations of thermionic suppression during tungsten transient melting experiments

    NASA Astrophysics Data System (ADS)

    Komm, M.; Tolias, P.; Ratynskaia, S.; Dejarnac, R.; Gunn, J. P.; Krieger, K.; Podolnik, A.; Pitts, R. A.; Panek, R.

    2017-12-01

    Plasma-facing components receive enormous heat fluxes under steady state and especially during transient conditions that can even lead to tungsten (W) melting. Under these conditions, the unimpeded thermionic current density emitted from the W surfaces can exceed the incident plasma current densities by several orders of magnitude triggering a replacement current which drives melt layer motion via the {\\boldsymbol{J}}× {\\boldsymbol{B}} force. However, in tokamaks, the thermionic current is suppressed by space-charge effects and prompt re-deposition due to gyro-rotation. We present comprehensive results of particle-in-cell modelling using the 2D3V code SPICE2 for the thermionic emissive sheath of tungsten. Simulations have been performed for various surface temperatures and selected inclinations of the magnetic field corresponding to the leading edge and sloped exposures. The surface temperature dependence of the escaping thermionic current and its limiting value are determined for various plasma parameters; for the leading edge geometry, the results agree remarkably well with the Takamura analytical model. For the sloped geometry, the limiting value is observed to be proportional to the thermal electron current and a simple analytical expression is proposed that accurately reproduces the numerical results.

  20. Topological Edge Modes in Active Mikado Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Leyou; Mao, Xiaoming

    Mechanical properties of disordered fiber networks are not only important in understanding a broad range of natural (such as the cytoskeleton and the extracellular matrix) and manmade materials (such as aerogels and porous media) but also exhibit interesting and rich physics. In this talk, we discuss how topological floppy edge modes can emerge from these fiber networks as a result of active driving. It is known that straight fibers in a network carries a state of self-stress and bears a bulk floppy mode. We find that, interestingly, by driving the network with a tiny perturbation, the bulk modes evolve into edge modes. We introduce a new transfer matrix formulation that can be applied to this strongly disordered system, to characterize the topological edge modes. We also discuss possible implications of these edge modes in biological processes. NSF-DMR-1609051.

  1. The spectral basis of optimal error field correction on DIII-D

    DOE PAGES

    Paz-Soldan, Carlos A.; Buttery, Richard J.; Garofalo, Andrea M.; ...

    2014-04-28

    Here, experimental optimum error field correction (EFC) currents found in a wide breadth of dedicated experiments on DIII-D are shown to be consistent with the currents required to null the poloidal harmonics of the vacuum field which drive the kink mode near the plasma edge. This allows the identification of empirical metrics which predict optimal EFC currents with accuracy comparable to that of first- principles modeling which includes the ideal plasma response. While further metric refinements are desirable, this work suggests optimal EFC currents can be effectively fed-forward based purely on knowledge of the vacuum error field and basic equilibriummore » properties which are routinely calculated in real-time.« less

  2. Transport, shot noise, and topology in AC-driven dimer arrays

    NASA Astrophysics Data System (ADS)

    Niklas, Michael; Benito, Mónica; Kohler, Sigmund; Platero, Gloria

    2016-11-01

    We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.

  3. Steering Control in a Low-Cost Driving Simulator: A Case for the Role of Virtual Vehicle Cab.

    PubMed

    Mecheri, Sami; Lobjois, Régis

    2018-04-01

    The aim of this study was to investigate steering control in a low-cost driving simulator with and without a virtual vehicle cab. In low-cost simulators, the lack of a vehicle cab denies driver access to vehicle width, which could affect steering control, insofar as locomotor adjustments are known to be based on action-scaled visual judgments of the environment. Two experiments were conducted in which steering control with and without a virtual vehicle cab was investigated in a within-subject design, using cornering and straight-lane-keeping tasks. Driving around curves without vehicle cab information made drivers deviate more from the lane center toward the inner edge in right (virtual cab = 4 ± 19 cm; no cab = 42 ± 28 cm; at the apex of the curve, p < .001) but not in left curves. More lateral deviation from the lane center toward the edge line was also found in driving without the virtual cab on straight roads (virtual cab = 21 ± 28 cm; no cab = 36 ± 27 cm; p < .001), whereas driving stability and presence ratings were not affected. In both experiments, the greater lateral deviation in the no-cab condition led to significantly more time driving off the lane. The findings strongly suggest that without cab information, participants underestimate the distance to the right edge of the car (in contrast to the left edge) and thus vehicle width. This produces considerable differences in the steering trajectory. Providing a virtual vehicle cab must be encouraged for more effectively capturing drivers' steering control in low-cost simulators.

  4. Magnetless magnetic fusion

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  5. Rotatable crucible for rapid solidification process

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas (Inventor)

    1990-01-01

    This invention relates to an apparatus for producing filament, fiber, ribbon or film from a molten material, comprising a preferably heat extracting crucible which contains a pool of molten material at a selected horizontal level in the pool. The crucible has an opening extending from above the free surface level to a bottom edge of the opening, the bottom edge being sufficiently below the free surface level so that the molten material cannot form and hold a meniscus by surface tension between the edge and the level of the free surface and further comprises a heat extracting substrate laterally disposed with respect to the crucible and which rotates about an axis of rotation. The substrate is positioned adjacent the edge of the opening which confines the molten material and prevents it from overflowing downwardly out of the crucible. The invention features rotating means which includes a first drive means for tiltably rotating the crucible about an axis of rotation which is coaxial with the axis of rotation of the substrate, so the crucible edge can be maintained a predetermined constant distance from the substrate. The distance chosen is suitable for depositing molten material on the substrate and the apparatus also has a second drive means which is drivingly connected to the substrate for continuously moving the surface of the substrate upwardly past the edge and a melt front formed at the interface of the molten material and the substrate surface.

  6. Both texting and eating are associated with impaired simulated driving performance.

    PubMed

    Alosco, Michael L; Spitznagel, Mary Beth; Fischer, Kimberly Hall; Miller, Lindsay A; Pillai, Vivek; Hughes, Joel; Gunstad, John

    2012-09-01

    Distracted driving is a known contributor to traffic accidents, and many states have banned texting while driving. However, little is known about the potential accident risk of other common activities while driving, such as eating. The objective of the current study was to examine the adverse impact of eating/drinking behavior relative to texting and nondistracted behaviors on a simulated driving task. A total of 186 participants were recruited from undergraduate psychology courses over 2 semesters at Kent State University. We utilized the Kent Multidimensional Assessment Driving Simulation (K-MADS) to compare simulated driving performance among participants randomly assigned to texting (N = 45), eating (N = 45), and control (N = 96) conditions. Multivariate analyses of variance (MANOVA) were conducted to examine between-group differences on simulated driving indices. MANOVA analyses indicated that groups differed in simulated driving performance, F(14, 366) = 7.70, P < .001. Both texting and eating produced impaired driving performance relative to controls, though these behaviors had approximately equal effect. Specifically, both texting and eating groups had more collisions, pedestrian strikes, and center line crossings than controls. In addition, the texting group had more road edge excursions than either eating or control participants and the eating group missed more stop signs than controls. These findings suggest that both texting and eating are associated with poorer simulated driving performance. Future work is needed to determine whether these findings generalize to real-world driving and the development of strategies to reduce distracted driving.

  7. Are Scots pine forest edges particularly prone to drought-induced mortality?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette

    2018-02-01

    Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.

  8. Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.

    2016-10-01

    Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  9. Numerical optimization of three-dimensional coils for NSTX-U

    NASA Astrophysics Data System (ADS)

    Lazerson, S. A.; Park, J.-K.; Logan, N.; Boozer, A.

    2015-10-01

    A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n  =  1 character can drive a large core torque. It is also shown that fields with n  =  3 features are capable of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. Comparison between error field correction experiments on DIII-D and the optimizer show good agreement. Notice: This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive,paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  10. Fluctuation reduction and enhanced confinement in the MST reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Brett Edward

    1997-10-01

    Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0more » $$\\vec{J}$$∙$$\\vec{B}$$/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP.« less

  11. Non-Solenoidal Startup via Helicity Injection in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip <= 200 kA, Δtpulse 20 ms and BT <= 0 . 15 T are produced to date, sustained by two injectors with Ainj = 4 cm2 , Vinj 1 . 5 kV, and Iinj 8 kA, facilitated by improvements to the injectors, limiters, and divertor plates that mitigate deleterious PMI. These plasmas feature anomalous, reconnection-driven ion heating with Ti >=Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  12. Characterization of onset of parametric decay instability of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B. L.; Lau, C.

    2014-02-01

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (n¯e) increases above 1020m-3. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near n¯e≈1.2×1020m-3. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the JLH(r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.

  13. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  14. Bifurcation of quiescent H-mode to a wide pedestal regime in DIII-D and advances in the understanding of edge harmonic oscillations

    DOE PAGES

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...

    2017-06-14

    New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E×B shear required for the EHO decreases linearly with pedestal collisionalitymore » $$\

  15. Investigating High Frequency Magnetic Activity During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Richner, N. J.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Reusch, J. A.

    2017-10-01

    Understanding the current drive mechanism(s) of Local Helicity Injection (LHI) is needed for confident scaling to next-step devices. 3D resistive MHD NIMROD simulations ascribe large-scale reconnection events of helical injector current streams as a current drive mechanism. The events generate n = 1 B fluctuations on outboard Mirnov coils, consistent with experiment. New results suggest additional mechanisms are also active during LHI. Reconnection-driven ion heating is better correlated with high frequency activity than the n = 1 bursts. Experiments with inboard injectors can exhibit an abrupt ( 250 μs) transition to a reduced MHD state on outboard Mirnovs where the n = 1 feature vanishes, while still maintaining current growth and/or sustainment. A new insertable magnetics probe was developed to investigate these phenomena. It measures TeXBz up to 3.5 MHz at 15 points over a 14 cm radial extent (ΔR 1 cm). Measurements with this probe are consistent with the outboard Mirnovs when positioned far from the plasma boundary. However, measurements near the plasma edge lack the reduction in broadband power (up to 2 MHz) following the transition. The probe shows power is concentrated at higher frequencies during LHI, with mostly flat B spectra up to 600-800 kHz ( fci) at which there is a resonance-like feature; at higher frequencies, the power decreases. These measurements suggest short-wavelength activity may play a significant role in LHI current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  16. The high-β{sub N} hybrid scenario for ITER and FNSF steady-state missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turco, F.; Petty, C. C.; Luce, T. C.

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and β{sub N} up to 3.7 sustained for ∼3 s (∼1.5 current diffusion time, τ{sub R}, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H{sub 98y2} ∼ 1.6) without performance limiting tearing modes. The hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficient currentmore » drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ{sub R} when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β{sub N} ∼ 4–4.5. Off-axis Neutral Beam Injection (NBI) power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ′, as calculated by the DCON and PEST3 codes. Results based on measured profiles predict ideal limits at β{sub N} > 4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, β{sub N} and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q = 5 mission and the FNSF 6.7 MA scenario with Q = 3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-β{sub N} hybrid represents an attractive high performance option for the steady-state missions of these devices.« less

  17. Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Thorén, E.; Bazylev, B.; Ratynskaia, S.; Tolias, P.; Krieger, K.; Pitts, R. A.; Pestchanyi, S.; Komm, M.; Sieglin, B.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.

  18. Integrated tokamak modeling: when physics informs engineering and research planning

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2017-10-01

    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.

  19. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the same time.

  20. Observation of Electron Bernstein Wave Heating in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Dubois, Ami; Almagri, Abdulgader; Nonn, Paul; McCollam, Karsten; Chapman, Brett; Goetz, John; Forest, Cary

    2016-10-01

    We report the first observation of electron Bernstein wave heating in the MST RFP. Similar to a high density stellarator, the RFP is inaccessible to electromagnetic ECRH. The plasma current and |B|operating range of MST allows a 5.5 GHz RF source (100kW, 4ms pulse) to heat on the fundamental and up to 4th harmonic EC resonances. With an x-ray diagnostic most sensitive to edge electrons located +12 degrees toroidally from the antenna, the measured emission is a strong function of predicted heating inside versus outside the Bt =0 reversal layer of the RFP. Measured during a scan of plasma current, distinct edges in a plot of emissivity versus predicted deposition layer align with the deposition layers crossing of this reversal layer and confirm EBW heating on the fundamental through 4th EC harmonic. Additional confirmation of the absorption location has been demonstrated by using auxiliary poloidal current drive to reduce electron diffusion rates and sweep the location of the Bt =0 surface across a static RF absorption location in RFP discharges. In these discharges EBW enhancement of the 15-40keV x-ray energies has been observed. Work supported by USDOE.

  1. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  2. Current Flow in the Bubble and Stripe Phases

    NASA Astrophysics Data System (ADS)

    Friess, B.; Umansky, V.; von Klitzing, K.; Smet, J. H.

    2018-03-01

    The spontaneous ordering of spins and charges in geometric patterns is currently under scrutiny in a number of different material systems. A topic of particular interest is the interaction of such ordered phases with itinerant electrons driven by an externally imposed current. It not only provides important information on the charge ordering itself but potentially also allows manipulating the shape and symmetry of the underlying pattern if current flow is strong enough. Unfortunately, conventional transport methods probing the macroscopic resistance suffer from the fact that the voltage drop along the sample edges provides only indirect information on the bulk properties because a complex current distribution is elicited by the inhomogeneous ground state. Here, we promote the use of surface acoustic waves to study these broken-symmetry phases and specifically address the bubble and stripe phases emerging in high-quality two-dimensional electron systems in GaAs /AlGaAs heterostructures as prototypical examples. When driving a unidirectional current, we find a surprising discrepancy between the sound propagation probing the bulk of the sample and the voltage drop along the sample edges. Our results prove that the current-induced modifications observed in resistive transport measurements are in fact a local phenomenon only, leaving the majority of the sample unaltered. More generally, our findings shed new light on the extent to which these ordered electron phases are impacted by an external current and underline the intrinsic advantages of acoustic measurements for the study of such inhomogeneous phases.

  3. Mechanisms Driving Galling Success in a Fragmented Landscape: Synergy of Habitat and Top-Down Factors along Temperate Forest Edges

    PubMed Central

    Kelch, Nina-S.; Neves, Frederico S.; Fernandes, G. Wilson

    2016-01-01

    Edge effects play key roles in the anthropogenic transformation of forested ecosystems and their biota, and are therefore a prime field of contemporary fragmentation research. We present the first empirical study to address edge effects on the population level of a widespread galling herbivore in a temperate deciduous forest. By analyzing edge effects on abundance and trophic interactions of beech gall midge (Mikiola fagi Htg.), we found 30% higher gall abundance in the edge habitat as well as lower mortality rates due to decreased top-down control, especially by parasitoids. Two GLM models with similar explanatory power (58%) identified habitat specific traits (such as canopy closure and altitude) and parasitism as the best predictors of gall abundance. Further analyses revealed a crucial influence of light exposure (46%) on top-down control by the parasitoid complex. Guided by a conceptual framework synthesizing the key factors driving gall density, we conclude that forest edge proliferation of M. fagi is due to a complex interplay of abiotic changes and trophic control mechanisms. Most prominently, it is caused by the microclimatic regime in forest edges, acting alone or in synergistic concert with top-down pressure by parasitoids. Contrary to the prevailing notion that specialists are edge-sensitive, this turns M. fagi into a winner species in fragmented temperate beech forests. In view of the increasing proportion of edge habitats and the documented benefits from edge microclimate, we call for investigations exploring the pest status of this galling insect and the modulators of its biological control. PMID:27310599

  4. Self-Regulation of E×B Flow Shear via Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Spada, E.; Antoni, V.; Spolaore, M.; Serianni, G.; Regnoli, G.; Cavazzana, R.; Bergsåker, H.; Drake, J. R.

    2005-04-01

    The momentum balance has been applied to the E×B flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the E×B flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.

  5. Self-regulation of E x B flow shear via plasma turbulence.

    PubMed

    Vianello, N; Spada, E; Antoni, V; Spolaore, M; Serianni, G; Regnoli, G; Cavazzana, R; Bergsåker, H; Drake, J R

    2005-04-08

    The momentum balance has been applied to the ExB flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the ExB flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge. Balancing the sheared flow driving and damping terms, the plasma viscosity is found anomalous and consistent with the diffusivity due to electrostatic turbulence.

  6. Veff Scaling of Te and ne Measurements During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2017-10-01

    Understanding the electron confinement of local helicity injection (LHI) is critical in order to evaluate its scalability as a startup technique to MA-class devices. Electron confinement in the Pegasus Toroidal Experiment is investigated using multi-point Thomson scattering (TS). The Pegasus TS system utilizes a set of high-throughput transmission gratings and intensified CCDs to measure Te and ne profiles. Previous TS measurements indicated peaked Te profiles 120 eV in outboard injector discharges characterized by strong inductive drive and low LHI drive. Injectors designed to have dominant non-inductive drive have recently been installed in the divertor region of Pegasus to understand the relationship between effective drive voltage, Veff, and plasma performance. At low Veff and reduced plasma current, Ip 60 kA, TS measurements reveal a flat Te profile 50 eV, with a peaked ne profile 1 ×1019 m-3, resulting in a slightly peaked pe profile. As current drive is increased, the Te profiles become hollow with a core Te 50 eV and an edge Te 120 -150 eV. These hollow profiles appear after the start of the Ip flattop and are sustained until the discharge terminates. The ne profiles drop in magnitude to < 1 ×1019 m-3 but remain somewhat peaked. Initial results suggest a weak scaling between input power and core Te. Additional studies are planned to identify the mechanisms behind the anomalous profile features. Work supported by US DOE Grant DE-FG02-96ER54375.

  7. Characterization of onset of parametric decay instability of lower hybrid waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, S. G.; Bonoli, P. T.; Parker, R. R.

    2014-02-12

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (nМ„{sub e}) increases above 10{sup 20}m{sup −3}. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmasmore » 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near nМ„{sub e}≈1.2×10{sup 20}m{sup −3}. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the J{sub LH}(r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.« less

  8. Dynamically enriched topological orders in driven two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Potter, Andrew C.; Morimoto, Takahiro

    2017-04-01

    Time-periodic driving of a quantum system can enable new dynamical topological phases of matter that could not exist in thermal equilibrium. We investigate two related classes of dynamical topological phenomena in 2D systems: Floquet symmetry-protected topological phases (FSPTs) and Floquet enriched topological orders (FETs). By constructing solvable lattice models for a complete set of 2D bosonic FSPT phases, we show that bosonic FSPTs can be understood as topological pumps which deposit loops of 1D SPT chains onto the boundary during each driving cycle, which protects a nontrivial edge state by dynamically tuning the edge to a self-dual point poised between the 1D SPT and trivial phases of the edge. By coupling these FSPT models to dynamical gauge fields, we construct solvable models of FET orders in which anyon excitations are dynamically transmuted into topologically distinct anyon types during each driving period. These bosonic FSPT and gauged FSPT models are classified by group cohomology methods. In addition, we also construct examples of "beyond cohomology" FET orders, which can be viewed as topological pumps of 1D topological chains formed of emergent anyonic quasiparticles.

  9. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    NASA Astrophysics Data System (ADS)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  10. Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal

    PubMed Central

    Assis, J.; Berecibar, E.; Claro, B.; Alberto, F.; Reed, D.; Raimondi, P.; Serrão, E. A.

    2017-01-01

    Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of ~30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting ~38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning. PMID:28276501

  11. Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Reusch, Joshua

    2017-10-01

    A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  12. Bootstrap current control studies in the Wendelstein 7-X stellarator using the free-plasma-boundary version of the SIESTA MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.

    2018-02-01

    The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.

  13. New HErschel Multi-wavelength Extragalactic Survey of Edge-on Spirals (NHEMESES)

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Bianchi, S.; Baes, M.; de Jong, R. S.; Dalcanton, J. J.; Radburn-Smith, D.; Gordon, K.; Xilouris, M.

    2012-08-01

    Edge-on spiral galaxies offer a unique perspective on the vertical structure of spiral disks, both stars and the iconic dark dustlanes. The thickness of these dustlanes can now be resolved for the first time with Herschel in far-infrared and sub-mm emission. We present NHEMESES, an ongoing project that targets 12 edge-on spiral galaxies with the PACS and SPIRE instruments on Herschel. These vertically resolved observations of edge-on spirals will impact on several current topics. First and foremost, these Herschel observations will settle whether or not there is a phase change in the vertical structure of the ISM with disk mass. Previously, a dramatic change in dustlane morphology was observed as in massive disks the dust collapses into a thin lane. If this is the case, the vertical balance between turbulence and gravity dictates the ISM structure and consequently star-formation and related phenomena (spiral arms, bars etc.). We specifically target lower mass nearby edge-ons to complement existing Herschel observations of high-mass edge-on spirals (the HEROES project). Secondly, the combined data-set, together with existing Spitzer observations, will drive a new generation of spiral disk Spectral Energy Distribution models. These model how dust reprocesses starlight to thermal emission but the dust geometry remains the critical unknown. And thirdly, the observations will provide an accurate and unbiased census of the cold dusty structures occasionally seen extending out of the plane of the disk, when backlit by the stellar disk. To illustrate the NHEMESES project, we present early results on NGC 4244 and NGC 891, two well studies examples of a low and high-mass edge-on spiral.

  14. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  15. Linear calculations of edge current driven kink modes with BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less

  16. CHI during an ohmic discharge in HIT-II

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis; Nelson, Brian A.; Redd, Aaron J.; Hamp, William T.

    2004-11-01

    Coaxial Helicity Injection (CHI) has been used on the National Spherical Torus Experiment (NSTX), the Helicity Injected Torus (HIT) and HIT-II to initiate plasma and to drive up to 400 kA of toroidal current. The primary goal of the CHI systems is to provide a start-up plasma with substantial toroidal current that can be heated and sustained with other methods. We have investigated the use of CHI systems to add current to an established, inductively driven plasma. This may be an attractive method to add edge current that may modify the stability characteristics of the discharge or modify the particle and energy transport in a spherical torus. For example, divertor biasing experiments have been successful in modifying particle and energy transport in the scrape-off layer of tokamaks. Use of IGBT power supplies to modulate the injector current makes analysis of current penetration feasible by comparisons of before and after CHI using EFIT analysis of the data.

  17. Where We Look When We Drive with or without Active Steering Wheel Control

    PubMed Central

    Mars, Franck; Navarro, Jordan

    2012-01-01

    Current theories on the role of visuomotor coordination in driving agree that active sampling of the road by the driver informs the arm-motor system in charge of performing actions on the steering wheel. Still under debate, however, is the nature of visual cues and gaze strategies used by drivers. In particular, the tangent point hypothesis, which states that drivers look at a specific point on the inside edge line, has recently become the object of controversy. An alternative hypothesis proposes that drivers orient gaze toward the desired future path, which happens to be often situated in the vicinity of the tangent point. The present study contributed to this debate through the analyses of the distribution of gaze orientation with respect to the tangent point. The results revealed that drivers sampled the roadway in the close vicinity of the tangent point rather than the tangent point proper. This supports the idea that drivers look at the boundary of a safe trajectory envelop near the inside edge line. Furthermore, the study investigated for the first time the reciprocal influence of manual control on gaze control in the context of driving. This was achieved through the comparison of gaze behavior when drivers actively steered the vehicle or when steering was performed by an automatic controller. The results showed an increase in look-ahead fixations in the direction of the bend exit and a small but consistent reduction in the time spent looking in the area of the tangent point when steering was passive. This may be the consequence of a change in the balance between cognitive and sensorimotor anticipatory gaze strategies. It might also reflect bidirectional coordination control between the eye and arm-motor systems, which goes beyond the common assumption that the eyes lead the hands when driving. PMID:22928043

  18. Topological Edge Floppy Modes in Disordered Fiber Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Leyou; Mao, Xiaoming

    2018-02-01

    Disordered fiber networks are ubiquitous in a broad range of natural (e.g., cytoskeleton) and manmade (e.g., aerogels) materials. In this Letter, we discuss the emergence of topological floppy edge modes in two-dimensional fiber networks as a result of deformation or active driving. It is known that a network of straight fibers exhibits bulk floppy modes which only bend the fibers without stretching them. We find that, interestingly, with a perturbation in geometry, these bulk modes evolve into edge modes. We introduce a topological index for these edge modes and discuss their implications in biology.

  19. Phase space effects on fast ion transport modeling in tokamaks

    NASA Astrophysics Data System (ADS)

    Podesta, Mario

    2015-11-01

    Simulations of burning plasmas require a consistent treatment of energetic particles (EP), possibly including the effects of instabilities. Reduced EP transport models are emerging as an effective tool to account for those effects in long time-scale simulations. Available models essentially differ for the main transport drive, which is associated to gradients in real or phase space. It is crucial to assess to what extent those different assumptions affect computed quantities such as EP profile, Neutral Beam (NB) driven current and energy/momentum transfer to the thermal populations. These issues are investigated through a kick model, which includes modifications of the EP distribution by instabilities in real and velocity space. TRANSP simulations including the kick model are applied to NB-heated NSTX discharges featuring unstable toroidal Alfvén eigenmodes (TAEs). Results show that TAEs mainly affect fast ions with large parallel velocity, i.e. the most effective for NB current drive. Other portions of the EP distribution are nearly unperturbed. Core NB driven current decreases by 10-30%, with even larger relative changes toward the plasma edge. When TAEs evolve in so-called avalanches, the model reproduces measured drops of ~ 10% in the neutron rate. Consistently with previous results, the drop is caused by both EP energy loss and EP redistribution. These results are compared to those from a simple diffusive model and a ``critical gradient'' model, which postulates radial EP gradient as the only transport drive. The importance of EP velocity space modifications is discussed in terms of accuracy of the predictions, with emphasis on Neutral Beam driven current. Work supported by U.S. DOE Contract DE-AC02-09CH11466.

  20. Hanbury Brown and Twiss noise correlations in a topological superconductor beam splitter

    NASA Astrophysics Data System (ADS)

    Jonckheere, T.; Rech, J.; Zazunov, A.; Egger, R.; Martin, T.

    2017-02-01

    We study Hanbury Brown and Twiss current cross-correlations in a three-terminal junction where a central topological superconductor (TS) nanowire, bearing Majorana bound states at its ends, is connected to two normal leads. Relying on a nonperturbative Green function formalism, our calculations allow us to provide analytical expressions for the currents and their correlations at subgap voltages, while also giving exact numerical results valid for arbitrary external bias. We show that when the normal leads are biased at voltages V1 and V2 smaller than the gap, the sign of the current cross-correlations is given by -sgn(V1V2) . In particular, this leads to positive cross-correlations for opposite voltages, a behavior in stark contrast with the one of a standard superconductor, which provides direct evidence of the presence of the Majorana zero mode at the edge of the TS. We further extend our results, varying the length of the TS (leading to an overlap of the Majorana bound states) as well as its chemical potential (driving it away from half-filling), generalizing the boundary TS Green function to those cases. In the case of opposite bias voltages, sgn(V1V2)=-1 , driving the TS wire through the topological transition leads to a sign change of the current cross-correlations, providing yet another signature of the physics of the Majorana bound state.

  1. High Field Side MHD Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.

    2017-10-01

    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. 5. SOUTH SIDE DRIVE AT CHAPEL STRAIGHT. NOTE BIKE PATH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTH SIDE DRIVE AT CHAPEL STRAIGHT. NOTE BIKE PATH AND BOULDER LANE EDGING. CHAPEL SPIRE AT CENTER. LOCATION OF OLD YOSEMITE VILLAGE AT CENTER DISTANCE. NORTH DOME AT REAR. LOOKING NNE. GIS: N-37 44 21.8 / W-119 35 39.3 - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

  3. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.

  4. Spirit Begins Drive Around Home Plate

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The hazard avoidance camera on the front of NASA's Mars Exploration Rover Spirit took this image after a drive by Spirit on the 1,829th Martian day, or sol, of Spirit's mission on the surface of Mars (Feb. 24, 2009).

    On Sol 1829, Spirit drove 6.29 meters (21 feet) northwestward, away from the northern edge of the low plateau called 'Home Plate.' The track dug by the dragged right-front wheel as the rover drove backward is visible in this image, receding toward the southeast. Rock layers of the northern slope of Home Plate are visible in the upper right portion of the image.

    In sols prior to 1829, the rover team had been trying to maneuver Spirit to climb onto the northern edge of Home Plate, ready to drive southward across the top of the plateau toward science destinations south of Home Plate. The Sol 1829 drive was the first move of a revised strategy to circle at least partway around Home Plate on the trek toward the sites south of the plateau.

  5. 20 years of research on the Alcator C-Mod tokamaka)

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Bader, A.; Baek, S.; Bakhtiari, M.; Barnard, H.; Beck, W.; Bergerson, W.; Bespamyatnov, I.; Bonoli, P.; Brower, D.; Brunner, D.; Burke, W.; Candy, J.; Churchill, M.; Cziegler, I.; Diallo, A.; Dominguez, A.; Duval, B.; Edlund, E.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Garcia, O.; Gao, C.; Goetz, J.; Golfinopoulos, T.; Granetz, R.; Grulke, O.; Hartwig, Z.; Horne, S.; Howard, N.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J.; Izzo, V.; Kessel, C.; LaBombard, B.; Lau, C.; Li, C.; Lin, Y.; Lipschultz, B.; Loarte, A.; Marmar, E.; Mazurenko, A.; McCracken, G.; McDermott, R.; Meneghini, O.; Mikkelsen, D.; Mossessian, D.; Mumgaard, R.; Myra, J.; Nelson-Melby, E.; Ochoukov, R.; Olynyk, G.; Parker, R.; Pitcher, S.; Podpaly, Y.; Porkolab, M.; Reinke, M.; Rice, J.; Rowan, W.; Schmidt, A.; Scott, S.; Shiraiwa, S.; Sierchio, J.; Smick, N.; Snipes, J. A.; Snyder, P.; Sorbom, B.; Stillerman, J.; Sung, C.; Takase, Y.; Tang, V.; Terry, J.; Terry, D.; Theiler, C.; Tronchin-James, A.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wilson, J.; Wolfe, S.; Wright, G.; Wright, J.; Wukitch, S.; Zweben, S.

    2014-11-01

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.

  6. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.

  7. Interplay of network dynamics and heterogeneity of ties on spreading dynamics.

    PubMed

    Ferreri, Luca; Bajardi, Paolo; Giacobini, Mario; Perazzo, Silvia; Venturino, Ezio

    2014-07-01

    The structure of a network dramatically affects the spreading phenomena unfolding upon it. The contact distribution of the nodes has long been recognized as the key ingredient in influencing the outbreak events. However, limited knowledge is currently available on the role of the weight of the edges on the persistence of a pathogen. At the same time, recent works showed a strong influence of temporal network dynamics on disease spreading. In this work we provide an analytical understanding, corroborated by numerical simulations, about the conditions for infected stable state in weighted networks. In particular, we reveal the role of heterogeneity of edge weights and of the dynamic assignment of weights on the ties in the network in driving the spread of the epidemic. In this context we show that when weights are dynamically assigned to ties in the network, a heterogeneous distribution is able to hamper the diffusion of the disease, contrary to what happens when weights are fixed in time.

  8. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges [A New, Quasi-stationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish; Rhodes, Terry L.; Burrell, Keith H.

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high-performance DIII-D tokamak plasma discharges. These LCOs are localized and comprised of density turbulence, gradient drives, and E X B velocity shear damping ( E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E X B velocity shear. Reported here for the first time, a unique spatiotemporal variation of the local E X B velocity which is foundmore » to be essential for the existence of this system. The LCO system is quasi-stationary, existing from 3 to 12 plasma energy confinement times (~30 to 900 LCO cycles) limited by hardware constraints. In conclusion, this plasma system appears to contribute strongly to the edge transport in these high-performance and transient-free plasmas as evident from oscillations in transport relevant edge parameters at LCO timescale.« less

  9. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges [A New, Quasi-stationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E × B Flow During High Performance DIII-D Tokamak Discharges

    DOE PAGES

    Barada, Kshitish; Rhodes, Terry L.; Burrell, Keith H.; ...

    2018-03-27

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high-performance DIII-D tokamak plasma discharges. These LCOs are localized and comprised of density turbulence, gradient drives, and E X B velocity shear damping ( E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E X B velocity shear. Reported here for the first time, a unique spatiotemporal variation of the local E X B velocity which is foundmore » to be essential for the existence of this system. The LCO system is quasi-stationary, existing from 3 to 12 plasma energy confinement times (~30 to 900 LCO cycles) limited by hardware constraints. In conclusion, this plasma system appears to contribute strongly to the edge transport in these high-performance and transient-free plasmas as evident from oscillations in transport relevant edge parameters at LCO timescale.« less

  10. Te and H_α Measurements on the HT-7 Tokamak: A Collaboration between the Fusion Research Center and the Institute of Plasma Physics

    NASA Astrophysics Data System (ADS)

    Winslow, D. L.; Carter, K. R.; Chatterjee, R.; Huang, H.; Phillips, P. E.; Rowan, W. L.; Kuang, G. L.; Li, J. G.; Luo, J. R.; Wan, B. N.; Wan, Y. X.; Xie, J. K.

    1998-11-01

    A team from the Fusion Research Center at the University of Texas at Austin visited the HT-7 Tokamak at the Institute of Plasma Physics at the Chinese Academy of Sciences in Hefei, Anhui, China to study the effects of lower hybrid current drive (LHCD) in the HT-7 plasma. HT-7(HT-7 Group, Fusion Energy 1996 Vol. 1, 685 (1997).) is a medium-sized (R = 1.22 m) tokamak with superconducting toroidal field coils and long--pulse capabilities utilizing LHCD to assist ohmic current drive. Core and edge diagnostics supported by a stand-alone data acquisition system were installed for the spring 1998 campaign. The diagnostics included an ECE radiometer which allows determination of both electron temperature profiles and fluctuation levels in the core plasma and an H_α array detector for measurement of turbulence in regions not easily accessible to probes. In addition, a reciprocating Langmuir probe system was developed for use on HT-7 and should be available for the next campaign. The effects of LHCD upon fluctuation levels in the plasma will be discussed.

  11. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  12. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice

    PubMed Central

    Mukherjee, Sebabrata; Spracklen, Alexander; Valiente, Manuel; Andersson, Erika; Öhberg, Patrik; Goldman, Nathan; Thomson, Robert R.

    2017-01-01

    Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime. PMID:28051060

  13. Nonlinear reconnecting edge localized modes in current-carrying plasmas

    DOE PAGES

    Ebrahimi, F.

    2017-05-22

    Nonlinear edge localized modes in a tokamak are examined using global three-dimensional resistive magnetohydrodynamics simulations. Coherent current-carrying filament (ribbon-like) structures wrapped around the torus are nonlinearly formed due to nonaxisymmetric reconnecting current sheet instabilities, the so-called peeling-like edge localized modes. These fast growing modes saturate by breaking axisymmetric current layers isolated near the plasma edge and go through repetitive relaxation cycles by expelling current radially outward and relaxing it back. The local bidirectional fluctuation-induced electromotive force (emf) from the edge localized modes, the dynamo action, relaxes the axisymmetric current density and forms current holes near the edge. Furthermore, the three-dimensionalmore » coherent current-carrying filament structures (sometimes referred to as 3-D plasmoids) observed here should also have strong implications for solar and astrophysical reconnection.« less

  14. Polarization-Directed Surface Plasmon Polariton Launching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.

    The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges alsomore » show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.« less

  15. Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima

    2017-10-01

    We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.

  16. Edge instability in a chiral stripe domain under an electric current and skyrmion generation

    DOE PAGES

    Lin, Shi -Zeng

    2016-07-05

    Motivated by the recent experimental observations on the skyrmion creation by cutting chiral stripe domains under a current drive [Jiang et al., Science 349, 283 (2015)], we study the mechanism of skyrmion generation by simulating the dynamics of stripe domains. Our theory for skyrmion generation is based on the fact that there are two half skyrmions attached to the ends of a stripe domain. These half skyrmions move due to the coupling between the skyrmion topological charge and current. As a consequence, the stripe domain is bent or stretched depending on the direction of motion of the half skyrmions. Formore » a large current, skyrmions are created by chopping the stripe domains via strong bending or stretching. Our theory provides an explanation to the experiments and is supported by the new experiments. Moreover, we predict that skyrmions can also be generated using a Bloch stripe domain under a spin transfer torque which can be realized in B20 compounds.« less

  17. Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.

    2018-05-01

    A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.

  18. Edge instability in a chiral stripe domain under an electric current and skyrmion generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shi -Zeng

    Motivated by the recent experimental observations on the skyrmion creation by cutting chiral stripe domains under a current drive [Jiang et al., Science 349, 283 (2015)], we study the mechanism of skyrmion generation by simulating the dynamics of stripe domains. Our theory for skyrmion generation is based on the fact that there are two half skyrmions attached to the ends of a stripe domain. These half skyrmions move due to the coupling between the skyrmion topological charge and current. As a consequence, the stripe domain is bent or stretched depending on the direction of motion of the half skyrmions. Formore » a large current, skyrmions are created by chopping the stripe domains via strong bending or stretching. Our theory provides an explanation to the experiments and is supported by the new experiments. Moreover, we predict that skyrmions can also be generated using a Bloch stripe domain under a spin transfer torque which can be realized in B20 compounds.« less

  19. Computations of Vertical Displacement Events with Toroidal Asymmetry

    NASA Astrophysics Data System (ADS)

    Sovinec, C. R.; Bunkers, K. J.

    2017-10-01

    Nonlinear numerical MHD modeling with the NIMROD code [https://nimrodteam.org] is being developed to investigate asymmetry during vertical displacement events. We start from idealized up/down symmetric tokamak equilibria with small levels of imposed toroidally asymmetric field errors. Vertical displacement results when removing current from one of the two divertor coils. The Eulerian reference-frame modeling uses temperature-dependent resistivity and anisotropic thermal conduction to distinguish the hot plasma region from surrounding cold, low-density conditions. Diffusion through a resistive wall is slow relative to Alfvenic scales but much faster than resistive plasma diffusion. Loss of the initial edge pressure and current distributions leads to a narrow layer of parallel current, which drives low-n modes that may be related to peeling-dominated ELMs. These modes induce toroidal asymmetry in the conduction current, which connects the simulated plasma to the wall. Work supported by the US DOE through Grant Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  20. Error Estimation and Compensation in Reduced Dynamic Models of Large Space Structures

    DTIC Science & Technology

    1987-04-23

    PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (if aplicable ) AFWAL I FIBRA F33615-84-C-3219 8c. ADDRESS (City, Stateand ZIP Code) ?0 SOURCE...10 Modes of the Full Model 15 5 Comparison of Various Reduced Models 18 6 Driving Point Mobilities , Wing Tip (Z55) 19 7 Driving Point Mobilities , Wing...Root Trailing Edge (Z19) 20 8 AMI Improvement 23 9 Frequency Domain Solution, Driving Point Mobilities , Wing Tip (Z55), RM1I 25 10 Frequency Domain

  1. D-DIA High Pressure Facility at the Australian Synchrotron: First Results

    NASA Astrophysics Data System (ADS)

    Rushmer, T. A.; Wykes, J.

    2016-12-01

    The recent acquisition of a D-DIA type cubic multi-anvil apparatus for use at the Australian Synchrotron provides exciting opportunities for conducting a wide range of in situ experiments at high pressure and temperature. The MQ-AS D-DIA apparatus was designed as a mobile system capable of moving between beamlines. The apparatus was installed at the XAS beamline in May, 2016 and experiments performed since then include 1) a proof-of-concept in situ U and Th L3-edge XANES study of MORB liquid; 2) a proof-of-concept falling sphere viscometry of silicate liquid; and 3) room temperature transmission XANES in the high pressure assembly at energies as low as the Ga K-edge and as high as Sb K-edge. The MQ-AS D-DIA apparatus comprises a 350 ton ram in a four post press frame. The press is installed on a positioning table with motorised X-Y-Z-θ axes capable of positioning accuracy of <10 microns. The Rockland Research D-DIA module is equipped with 4 mm and 6 mm TEL anvils, capable of producing maximum sample pressure of 6 GPa. Stepper motors drive the main and differential ram hydraulic pressure generators in a control loop closed by pressure transducers. Samples are heated by graphite resistance furnaces driven by a Eurotherm 3504 PID controller driving a 5 V 200 A step down transformer via a phase angle power controller. Temperature is monitored via a thermocouple and power by true RMS voltage and current transducers. The XAS beamline at the Australian Synchrotron comprises a 1.9 T 40 pole wiggler, a bendable collimating mirror, a Si(111) / Si(311) DCM and a toroidal focussing mirror. Accessible energies are 5-34 keV with photon fluxes of 108-1012 photons/sec at the sample. Here we present an overview of our recent results. More detailed results of the in situ U and Th L3-edge XANES study are presented by Mallmann et al. (this meeting). In situ imaging and XRD experiments with the D-DIA apparatus on the AS Imaging and Medical Beamline are planned for the coming year.

  2. Floquet Topological Order in Interacting Systems of Bosons and Fermions

    NASA Astrophysics Data System (ADS)

    Harper, Fenner; Roy, Rahul

    2017-03-01

    Periodically driven noninteracting systems may exhibit anomalous chiral edge modes, despite hosting bands with trivial topology. We find that these drives have surprising many-body analogs, corresponding to class A, which exhibit anomalous charge and information transport at the boundary. Drives of this form are applicable to generic systems of bosons, fermions, and spins, and may be characterized by the anomalous unitary operator that acts at the edge of an open system. We find that these operators are robust to all local perturbations and may be classified by a pair of coprime integers. This defines a notion of dynamical topological order that may be applied to general time-dependent systems, including many-body localized phases or time crystals.

  3. Subsonic Swept Fan Blade

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)

    2017-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.

  4. Performance of ASML YieldStar μDBO overlay targets for advanced lithography nodes C028 and C014 overlay process control

    NASA Astrophysics Data System (ADS)

    Blancquaert, Yoann; Dezauzier, Christophe; Depre, Jerome; Miqyass, Mohamed; Beltman, Jan

    2013-04-01

    Continued tightening of overlay control budget in semiconductor lithography drives the need for improved metrology capabilities. Aggressive improvements are needed for overlay metrology speed, accuracy and precision. This paper is dealing with the on product metrology results of a scatterometry based platform showing excellent production results on resolution, precision, and tool matching for overlay. We will demonstrate point to point matching between tool generations as well as between target sizes and types. Nowadays, for the advanced process nodes a lot of information is needed (Higher order process correction, Reticle fingerprint, wafer edge effects) to quantify process overlay. For that purpose various overlay sampling schemes are evaluated: ultra- dense, dense and production type. We will show DBO results from multiple target type and shape for on product overlay control for current and future node down to at least 14 nm node. As overlay requirements drive metrology needs, we will evaluate if the new metrology platform meets the overlay requirements.

  5. NIMROD Simulations of the HIT-SI and HIT-SI3 Devices

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Jarboe, Tom; Hossack, Aaron; Chandra, Rian; Everson, Chris

    2017-10-01

    The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) experiment uses a set of inductively driven helicity injectors to apply non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. Significant improvements have been made to extended MHD modeling of HIT-SI, with both the resolution of disagreement at high injector frequencies in HIT-SI in addition to successes with the new upgraded HIT-SI3 device. Previous numerical studies of HIT-SI, using a zero-beta eMHD model, focused on operations with a drive frequency of 14.5 kHz, and found reduced agreement with both the magnetic profile and current amplification at higher frequencies (30-70 kHz). HIT-SI3 has three helicity injectors which are able to operate with different mode structures of perturbations through the different relative temporal phasing of the injectors. Simulations that allow for pressure gradients have been performed in the parameter regimes of both devices using the NIMROD code and show improved agreement with experimental results, most notably capturing the observed Shafranov-shift due to increased beta observed at higher finj in HIT-SI and the variety of toroidal perturbation spectra available in HIT-SI3. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 96ER54361.

  6. Magnetic bilayer-skyrmions without skyrmion Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-01-01

    Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed.

  7. Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment

    NASA Astrophysics Data System (ADS)

    Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor

    2015-11-01

    Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.

  8. Development of ITER non-activation phase operation scenarios

    DOE PAGES

    Kim, S. H.; Poli, F. M.; Koechl, F.; ...

    2017-06-29

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  9. Development of ITER non-activation phase operation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S. H.; Poli, F. M.; Koechl, F.

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  10. Lower hybrid accessibility in a large, hot reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziubek, R.A.

    1995-02-01

    Recent theoretical and experimental results indicate that driving a current in the outer radius of an RPF suppresses sawtooth activity and increases particle and energy confinement times. One candidate for a form of steady state current drive is the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave in an RFP plasma is investigated theoretically, with focus on the RFX machine of Padua, Italy. To drive current, the slow wave with frequency between 1.0--1.5 GHz is considered where optimal Landau damping is desired at r/a {approximately} 0.7. By numerically determining the values of the wave`smore » perpendicular index of refraction which satisfy the hot plasma dispersion relation, regions of propagation and evanescence can be found. The path of the wave can then be traced over a contour map of these regions so that accessibility can be clearly seen. The possibility of mode conversion events can be ascertained by plotting the values of the perpendicular index of refraction for the fast and slow wave and observing convergence points. To locate regions of maximum Landau damping, a technique developed by Stix was adapted for use with the slow wave in an RFP plasma. Results show that the slow wave is accessible to the target region without mode conversion so long as the value of the parallel index of refraction is correctly chosen at the edge of the plasma. Landau damping can also be optimized with this method. In an RFP, 2--20% of the electron population consists of fast electrons. Because this species alters the total electron distribution function and raises the effective temperature in the outer regions of the plasma, its presence is expected to shift the location of ideal Landau damping.« less

  11. Twenty Years of Research on the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  12. Non-solenoidal Startup with High-Field-Side Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Local Helicity Injection (LHI) is a non-solenoidal startup technique utilizing electron current injectors at the plasma edge to initiate a tokamak-like plasma at high Ip . Recent experiments on Pegasus explore the inherent tradeoffs between high-field-side (HFS) injection in the lower divertor region and low-field-side (LFS) injection at the outboard midplane. Trade-offs include the relative current drive contributions of HI and poloidal induction, and the magnetic geometry required for relaxation to a tokamak-like state. HFS injection using a set of two increased-area injectors (Ainj = 4 cm2, Vinj 1.5 kV, and Iinj 8 kA) in the lower divertor is demonstrated over the full range of toroidal field available on Pegasus (BT 0 <= 0.15 T). Increased PMI on both the injectors and the lower divertor plates was observed during HFS injection, and was substantively mitigated through optimization of injector geometry and placement of local limiters to reduce scrape-off density in the divertor region. Ip up to 200 kA is achieved with LHI as the dominant current drive, consistent with expectations from helicity balance. To date, experiments support Ip increasing linearly with helicity injection rate. The high normalized current (IN >= 10) attainable with LHI and the favorable stability of the ultra-low aspect ratio, low-li LHI-driven plasmas allow access to high βt-up to 100 % , as indicated by kinetically-constrained equilibrium reconstructions. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. An Overview of Research and Design Activities at CTFusion

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Hossack, A. C.

    2016-10-01

    CTFusion, a newly formed company dedicated to the development of compact, toroidal fusion energy, is a spin-off from the University of Washington that will build upon the successes of the HIT-SI research program. The mission of the company to develop net-gain fusion power cores that will serve as the heart of economical fusion power plants or radioactive-waste destroying burner reactors. The overarching vision and development plan of the company will be presented, along with a detailed justification and design for our next device, the HIT-TD (Technology Demonstration) prototype. By externally driving the edge current and imposing non-axisymmetric magnetic perturbations, HIT-TD should demonstrate the sustainment of stable spheromak configurations with Imposed-Dynamo Current Drive (IDCD), as was accomplished in the HIT-SI device, with higher current gains and temperatures than previously possible. HIT-TD, if successful, will be an instrumental step along this path to economical fusion energy, and will serve as the stepping stone to our Proof-Of-Principle device (HIT-PoP). Beyond the implications of higher performance, sustained spheromaks for fusion applications, the HIT-TD platform will provide a unique system to observe plasma self-organizational phenomena of interest for other fusion devices, and astrophysical systems as well. Lastly, preliminary nuclear engineering design simulations with the MCNP6 code of the HIT-FNSF (Fusion Nuclear Science Facility) device will be presented.

  14. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  15. Dynamics of edge currents in a linearly quenched Haldane model

    NASA Astrophysics Data System (ADS)

    Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

    2018-03-01

    In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

  16. Electron Pair Repulsion Responsible for the Peculiar Edge Effects and Surface Chemistry of Black Phosphorus.

    PubMed

    Kong, Xiang-Peng; Shen, Xiaomei; Jang, Joonkyung; Gao, Xingfa

    2018-03-01

    The electronic and optical properties of black phosphorus (black-P) are significantly modulated by fabricating the edges of this two-dimensional material. Electron lone pairs (ELPs) are ubiquitous in black-P, but their role in creating the edge effects of black-P is poorly understood. Using first-principle calculations, we report ELPs of black-P experience severe Coulomb repulsion and play a central role in creating the edge effects of black-P. We discover the outermost P atoms of the zigzag edges of black-PQDs are free of the Coulomb repulsion, but the P atoms of the armchair edges do experience the Coulomb repulsion. The Coulomb repulsion serves as a new chemical driving force to make electron donor-acceptor bonds with chemical groups bearing vacant orbitals. Our results provide insights into the mechanism responsible for the peculiar edge effects of black-P and highlight the opportunity to use the ELPs of black-P for their damage-free surface functionalization.

  17. Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Burrell, K. H.; Wilson, H. R.; Chu, M. S.; Fenstermacher, M. E.; Leonard, A. W.; Moyer, R. A.; Osborne, T. H.; Umansky, M.; West, W. P.; Xu, X. Q.

    2007-08-01

    Understanding the physics of the edge pedestal and edge localized modes (ELMs) is of great importance for ITER and the optimization of the tokamak concept. The peeling-ballooning model has quantitatively explained many observations, including ELM onset and pedestal constraints, in the standard H-mode regime. The ELITE code has been developed to efficiently evaluate peeling-ballooning stability for comparison with observation and predictions for future devices. We briefly review recent progress in the peeling-ballooning model, including experimental validation of ELM onset and pedestal height predictions, and nonlinear 3D simulations of ELM dynamics, which together lead to an emerging understanding of the physics of the onset and dynamics of ELMs in the standard intermediate to high collisionality regime. We also discuss new studies of the apparent power dependence of the pedestal, and studies of the impact of sheared toroidal flow. Recently, highly promising low collisionality regimes without ELMs have been discovered, including the quiescent H-mode (QH) and resonant magnetic perturbation (RMP) regimes. We present recent observations from the DIII-D tokamak of the density, shape and rotation dependence of QH discharges, and studies of the peeling-ballooning stability in this regime. We propose a model of the QH-mode in which the observed edge harmonic oscillation (EHO) is a saturated kink/peeling mode which is destabilized by current and rotation, and drives significant transport, allowing a near steady-state edge plasma. The model quantitatively predicts the observed density dependence and qualitatively predicts observed mode structure, rotation dependence and outer gap dependence. Low density RMP discharges are found to operate in a similar regime, but with the EHO replaced by an applied magnetic perturbation.

  18. High-harmonic fast-wave power flow along magnetic field lines in the scrape-off layer of NSTX.

    PubMed

    Perkins, R J; Hosea, J C; Kramer, G J; Ahn, J-W; Bell, R E; Diallo, A; Gerhardt, S; Gray, T K; Green, D L; Jaeger, E F; Jaworski, M A; LeBlanc, B P; McLean, A; Maingi, R; Phillips, C K; Roquemore, L; Ryan, P M; Sabbagh, S; Taylor, G; Wilson, J R

    2012-07-27

    A significant fraction of high-harmonic fast-wave (HHFW) power applied to NSTX can be lost to the scrape-off layer (SOL) and deposited in bright and hot spirals on the divertor rather than in the core plasma. We show that the HHFW power flows to these spirals along magnetic field lines passing through the SOL in front of the antenna, implying that the HHFW power couples across the entire width of the SOL rather than mostly at the antenna face. This result will help guide future efforts to understand and minimize these edge losses in order to maximize fast-wave heating and current drive.

  19. Fan Stagger Angle for Dirt Rejection

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  20. The Microwave SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Mates, John Arthur Benson

    2011-12-01

    This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the performance required for the future development of a large-scale astronomical instrument.

  1. FY2014 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  2. FY2016 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  3. FY2015 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  4. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAO, LL; SNYDER, PB; LEONARD, AW

    2002-07-01

    OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n {approx} 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P{prime} and the associated large edge bootstrap current density J{sub BS}. the interplay betweenmore » P{prime} and J{sub BS} as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J{sub BS} is reduced.« less

  5. High-power piezo drive amplifier for large stack and PFC applications

    NASA Astrophysics Data System (ADS)

    Clingman, Dan J.; Gamble, Mike

    2001-08-01

    This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Philip Michael; Ahn, Joonwook; Bell, R. E.

    High-harmonic fast wave (HHFW) heating and current drive is being developed in NSTX to provide bulk electron heating and q(0) control during non-inductively sustained Hmode plasmas fuelled by deuterium neutral-beam injection (NBI). In addition, it is used to assist the plasma current ramp-up. A major modification to increase the RF power limit was made in 2009; the original end-grounded, single end-powered current straps of the 12- element array were replaced with center-grounded, double end-powered straps. Greater than 3 MW have been coupled into NBI-driven, ELMy H-mode plasmas with this upgraded antenna. Improved core HHFW heating, particularly at longer wavelengths andmore » during low-density start-up and plasma current ramp-up, has been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for fast-wave propagation away from the vessel wall [1]. Significant core electron heating of NBI-fuelled H-modes has been observed for the first time over a range of launched wavelengths and H-modes can be accessed by HHFW alone. Visible and IR camera images of the antenna and divertor indicate that fast wave interactions can deposit considerable RF energy on the outboard divertor plate, especially at longer wavelengths that begin to propagate closer to the vessel walls. Edge power loss can also arise from HHFWgenerated parametric decay instabilities; edge ion heating is observed that is wavelength dependent. During plasmas where HHFW is combined with NBI, there is a significant enhancement in neutron rate, and fast-ion D-alpha (FIDA) emission measurements clearly show broadening of the fast-ion profile in the plasma core. Large edge localized modes (ELMs) have been observed immediately following the termination of RF power, whether the power turn off is programmed or due to antenna arcing. Causality has not been established but new experiments are planned and will be reported. Fast digitization of the reflected power signal indicates a much faster rise time for arcs than for ELMs. Based on this observation, an ELM/arc discrimination system is being implemented to maintain RF power during ELMs even when the reflection coefficient becomes large. This work is supported by US DOE contracts DE-AC-05-00OR22725 and DE-AC02- 09CH11466. References [1] C. K. Phillips, et al, Nuclear Fusion 10, 075015 (2009)« less

  7. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E ×B Flow During High Performance DIII-D Tokamak Discharges

    NASA Astrophysics Data System (ADS)

    Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.

    2018-03-01

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

  8. Spirit's View Beside 'Home Plate' on Sol 1823

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this 180-degree view of the rover's surroundings during the 1,823rd Martian day, or sol, of Spirit's surface mission (Feb. 17, 2009).

    The center of the view is toward the south-southwest.

    The rover had driven 7 meters (23 feet) eastward earlier on Sol 1823, part of maneuvering to get Spirit into a favorable position for climbing onto the low plateau called 'Home Plate.' However, after two driving attempts with negligible progress during the following three sols, the rover team changed its strategy for getting to destinations south of Home Plate. The team decided to drive Spirit at least partway around Home Plate, instead of ascending the northern edge and taking a shorter route across the top of the plateau.

    Layered rocks forming part of the northern edge of Home Plate can be seen near the center of the image. Rover wheel tracks are visible at the lower edge.

    This view is presented as a cylindrical projection with geometric seam correction.

  9. Two-dimensional simulation of argon dielectric barrier discharge excited by a Gaussian voltage at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Wang, Jing; Li, Jing; Lei, Bingying; Tang, Jie; Wang, Yishan; Li, Yongfang; Zhao, Wei; Duan, Yixiang

    2017-04-01

    A two-dimensional self-consistent fluid model was employed to investigate the spatiotemporal characteristics of discharges in atmospheric pressure argon (Ar) dielectric barrier discharge driven by a Gaussian voltage. The simulation results show that a discharge with multiple current pulses occurs each half-cycle in the gas gap. A transition from the Townsend mode to the glow mode is observed with the increasing applied voltage each half-cycle at a lower driving frequency (7.5 kHz). It is also found that the glow mode survives all the discharge phases at a higher driving frequency (12.5 kHz and 40 kHz). The change in the discharge mode with the driving frequency mainly lies in the fact that a lot of charged particles created in the discharge gap have no enough time to drift and diffuse around, and then these particles are assembled in the discharge space at higher frequency. Additionally, the spatial distributions of the electron density indicate that a center-advantage discharge is ignited at the driving frequencies of interest, resulting in the radial non-uniformity of discharge because of the edge effects. However, this overall non-uniformity is weakened with the driving frequency increased to 40 kHz, at which concentric ring patterns are observed. These distinct behaviors are mainly attributed to the fact that many charged particles generated are trapped in the gas gap and then accumulated to make the extension along the radial direction due to the charged particles transport and diffusion, and that the effective overlapping of a large number of avalanches induced by the increased "seed" electron density with the driving frequency. Meanwhile, the surface charged particles accumulated on the dielectric barriers are also shown to play a role in the formation of the discharge structure.

  10. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  11. Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.

    2015-11-01

    Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.

  12. Optimizing LHCD launcher using poloidal steering on Alcator C-Mod and ADX

    NASA Astrophysics Data System (ADS)

    Bonoli, P.; Labombard, B.; Parker, R.; Shiraiwa, S.; Wallace, G.; Wukitch, S.; Leccacorvi, R.; Vieira, R.; Alcator C-Mod Team

    2014-10-01

    The poloidal location of the lower hybrid current drive (LHCD) launcher has a strong influence on the trajectory and absorption of the LH wave (poloidal steering). The physics design of an additional off-midplane launcher (LH3) for Alcator C-Mod exploits this characteristic. By shifting the launcher from the mid-plane by 25cm, it is predicted to realize strong (>80%) single pass absorption localized at about r/a = 0.7 in conjunction with the mid-plane (LH2) antenna. While LH3 is a proposal to overcome the LH density limit and to provide a unique opportunity to validate LHCD simulation codes under reactor-like conditions, poloidal steering can be used more extensively by launching waves from the high field side (HFS). On ADX, the LHCD launcher is proposed to be located on the HFS. Better accessibility due to higher magnetic field allows for using lower N//, which results in higher current drive efficiency. Also a more quiescent edge plasma may reduce the effect of N// shifts due to scattering from density fluctuations. LHCD simulations for target plasmas expected on ADX, optimization of poloidal steering, and RF simulation of high field side launcher will be presented. This work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  13. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  14. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  15. Highlights of the Alcator C-Mod Research Campaign

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Alcator Team

    2011-10-01

    Alcator C-Mod has completed an experimental campaign focusing on broad scientific issues with particular emphasis on ITER needs and requests. Experiments with no NBI torque have investigated spontaneous flow reversal, creation of transport barriers aided by the shear of intrinsic rotation and a variety of RF flow drive schemes. Studies of I-mode have found conditions where a wide operating regime opens up, allowing easy access to long-lived, high-performance discharges with L-mode like particle confinement. We are validating the EPED and BOUT++ models for pedestal height/width and ELM onset using extended parameter scans in ELMy H-mode. The challenge of high-Z impurity generation with ICRF is being addressed first by deployment of a novel antenna whose current straps and antenna box are perpendicular to the total magnetic field -second by studies of the modification of edge impurity transport, where fine-scale Er structures in the SOL in the presence of ICRF heating have been found. LH current drive has produced non-inductive reversed shear regimes at n ~ 5x1019 which exhibit electron temperature ITBs. The first observations have been made of in-tokamak production of divertor tungsten nano-structures (fuzz), which had previously been seen only in linear laboratory experiments. Supported by DoE DE-FC02-99ER54512.

  16. High brightness nonpolar a-plane (11-20) GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jung, Sukkoo; Chang, Younghak; Bang, Kyu-Hyun; Kim, Hyung-Gu; Choi, Yoon-Ho; Hwang, Sung-Min; Baik, Kwang Hyeon

    2012-02-01

    We report on high brightness nonpolar a-plane InGaN/GaN LEDs using patterned lateral overgrowth (PLOG) epitaxy. High crystal-quality and smooth surfaces for a-plane GaN (a-GaN) films were achieved using PLOG with an array of hexagonal SiO2 patterns. The XRC FWHMs of as-grown PLOG a-GaN films were found to be 414 and 317 arcsec (450 and 455 arcsec for planar a-GaN films) along the c-axis and m-axis directions, respectively. Plan-view CL clearly reveals the periodic hexagonal patterns with higher band edge emission intensity, implying that the luminescence properties of a-GaN films lying above the SiO2 mask are improved. The light output powers of a-InGaN/GaN PLOG LEDs were measured to be 7.5 mW and 20 mW at drive currents of 20 mA and 100 mA, respectively. A negligible blue-shift was observed in the peak emission wavelength with increasing drive current up to 100 mA, indicating that there are no strong internal fields in nonpolar a-InGaN/GaN LEDs. We believe that nonpolar a-plane InGaN/GaN LEDs hold promise for efficient nitride emitters if the growth conditions are further optimized.

  17. Direct observation of lubricant additives using tomography techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yunyun; Sanchez, Carlos; Parkinson, Dilworth Y.

    Lubricants play important roles in daily activities such as driving, walking, and cooking. The current understanding of mechanisms of lubrication, particularly in mechanical systems, has been limited by the lack of capability in direct observation. Here, we report an in situ approach to directly observe the motion of additive particles in grease under the influence of shear. Using the K-edge tomography technique, it is possible to detect particular additives in a grease and observe their distribution through 3D visualization. A commercial grease as a reference was studied with and without an inorganic additive of Fe{sub 3}O{sub 4} microparticles. The resultsmore » showed that it was possible to identify these particles and track their movement. Under a shear stress, Fe{sub 3}O{sub 4} particles were found to adhere to the edge of calcium complex thickeners commonly used in grease. Due to sliding, the grease formed a film with increased density. This approach enables in-line monitoring of a lubricant and future investigation in mechanisms of lubrication.« less

  18. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T; Dayeh, Shadi A

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5}more » I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.« less

  19. Current-induced switching of magnetic molecules on topological insulator surfaces

    NASA Astrophysics Data System (ADS)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  20. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.

    2013-01-01

    To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.

  1. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  2. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  3. Gyro-Landau-Fluid Theory and Simulations of Edge-Localized-Modes

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2012-10-01

    We report on the theory and simulations of edge-localized-modes (ELMs) using a gyro-Landau-fluid (GLF) extension of the BOUT++ code. Consistent with the two-fluid model (including 1st order FLR corrections), large ELMs, which are low-to-intermediate toroidal mode number (n) peeling-ballooning (P-B) modes, are suppressed by finite Larmor radius (FLR) effects as the ion temperature increases, while small ELMs (at intermediate n's) remain unstable. This result is good news for high ion temperatures in ITER due to the large stabilizing effects of FLR. Because the FLR effects are proportional to both Ti and n, the maximum growth rate is inversely proportional to Ti and the P-B mode is stabilized at high n. Nonlinear gyro-fluid simulations show results similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Hyper-resistivity limits the radial spreading of ELMs by facilitating magnetic reconnection. The gyro-fluid ion model further limits the radial spreading of ELMs due to FLR-corrected nonlinear ExB convection of the ion gyro-center density. A gyro-fluid ETG model is being developed to self-consistently calculate the hyper-resistivity. Zonal magnetic fields arise from an ELM event and finite beta drift-wave turbulence when electron inertia effects are included. These lead to current generation and self-consistent current transport as a result of ExB convection in the generalized Ohm's law. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of Landau-fluid closure terms based on an accurate and tunable approximation. The accuracy and the fast computational scaling of the method are demonstrated.

  4. Non-solenoidal Plasma Startup in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Sontag, Aaron

    2008-11-01

    Non-solenoidal (NS) startup will simplify the design of future tokamaks by eliminating need for a central solenoid and is required for an ST based CTF. In Pegasus, washer-stack current sources (plasma guns) are used to initiate NS discharges via point-source DC helicity injection. Current injected parallel to the helical vacuum field can relax into a tokamak-like configuration with toroidally-averaged closed flux and tokamak-like confinement. This requires no modification of the vacuum vessel and is scalable to fusion grade systems with proper geometry. Guns in the divertor region create discharges with Ip up to 50 kA, 3 times the vacuum windup. Nonlinear 3D simulation with NIMROD shows excitation of a line-tied kink, producing poloidal flux amplification. Evidence of flux amplification includes: reversal of edge poloidal magnetic flux; Ip increase over vacuum geometric windup; plasma position subject to radial force balance; and persistence of Ip after gun shut-off. Equilibria show high edge current (li = 0.2) and elevated q (qmin> 6), allowing access to high IN (IN> 12). Guns at the outboard midplane produce Ip up to 7 times the vacuum windup with large n=1 activity when edge q passes through rational surfaces. Line averaged density up to 2x10^19 m-3 after relaxation shows an increase in particle confinement over non-relaxed cases. Maximum Ip is determined by helicity and radial force balance, tokamak stability, and Taylor relaxation. Coupling midplane gun discharges to other CD is straightforward due to Ip decay times >3 ms. Poloidal field induction has been used to create NS discharges up to 80 kA and gun plasmas with Ip of 60 kA have been ramped to over 100 kA by including OH drive. Present research is aimed at understanding the physics of this technique in order to form NS targets in excess of 200 kA and design NS startup systems for larger devices.

  5. The topographic development and areal parametric characterization of a stratified surface polished by mass finishing

    NASA Astrophysics Data System (ADS)

    Walton, Karl; Blunt, Liam; Fleming, Leigh

    2015-09-01

    Mass finishing is amongst the most widely used finishing processes in modern manufacturing, in applications from deburring to edge radiusing and polishing. Processing objectives are varied, ranging from the cosmetic to the functionally critical. One such critical application is the hydraulically smooth polishing of aero engine component gas-washed surfaces. In this, and many other applications the drive to improve process control and finish tolerance is ever present. Considering its widespread use mass finishing has seen limited research activity, particularly with respect to surface characterization. The objectives of the current paper are to; characterise the mass finished stratified surface and its development process using areal surface parameters, provide guidance on the optimal parameters and sampling method to characterise this surface type for a given application, and detail the spatial variation in surface topography due to coupon edge shadowing. Blasted and peened square plate coupons in titanium alloy are wet (vibro) mass finished iteratively with increasing duration. Measurement fields are precisely relocated between iterations by fixturing and an image superimposition alignment technique. Surface topography development is detailed with ‘log of process duration’ plots of the ‘areal parameters for scale-limited stratified functional surfaces’, (the Sk family). Characteristic features of the Smr2 plot are seen to map out the processing of peak, core and dale regions in turn. These surface process regions also become apparent in the ‘log of process duration’ plot for Sq, where lower core and dale regions are well modelled by logarithmic functions. Surface finish (Ra or Sa) with mass finishing duration is currently predicted with an exponential model. This model is shown to be limited for the current surface type at a critical range of surface finishes. Statistical analysis provides a group of areal parameters including; Vvc, Sq, and Sdq, showing optimal discrimination for a specific range of surface finish outcomes. As a consequence of edge shadowing surface segregation is suggested for characterization purposes.

  6. DAVs: Red Edge and Outbursts

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500K< Teff < 10800K . Known as DAVs or ZZ Ceti stars, their oscillations are attributed to overstable g-modes excited by convective driving. The effective temperature at the blue edge of the instability strip is slightly lower than that at which a surface convection zone appears. The temperature at the red edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  7. Analysis of double stub tuner control stability in a many element phased array antenna with strong cross-coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.

    2014-02-12

    Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” Themore » relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.« less

  8. Current Status of the Quality of 4H-SiC Substrates and Epilayers for Power Device Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudley, M.; Wang, H.; Guo, Jianqiu

    ABSTRACT Interfacial dislocations (IDs) and half-loop arrays (HLAs) present in the epilayers of 4H-SiC crystal are known to have a deleterious effect on device performance. Synchrotron X-ray Topography studies carried out on n-type 4H-SiC offcut wafers before and after epitaxial growth show that in many cases BPD segments in the substrate are responsible for creating IDs and HLAs during CVD growth. This paper reviews the behaviors of BPDs in the substrate during the epitaxial growth in different cases: (1) screw-oriented BPD segments intersecting the surface replicate directly through the interface during the epitaxial growth and take part in stress relaxationmore » process by creating IDs and HLAs (Matthews-Blakeslee model [1] ); (2) non-screw oriented BPD half loop intersecting the surface glides towards and replicates through the interface, while the intersection points convert to threading edge dislocations (TEDs) and pin the half loop, leaving straight screw segments in the epilayer and then create IDs and HLAs; (3) edge oriented short BPD segments well below the surface get dragged towards the interface during epitaxial growth, leaving two long screw segments in their wake, some of which replicate through the interface and create IDs and HLAs. The driving force for the BPDs to glide toward the interface is thermal stress and driving force for the relaxation process to occur is the lattice parameter difference at growth temperature which results from the doping concentration difference between the substrate and epilayer.« less

  9. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE PAGES

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.; ...

    2018-03-14

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  10. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  11. Edge plasma boundary layer generated by kink modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2011-06-01

    This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  12. [Medical image segmentation based on the minimum variation snake model].

    PubMed

    Zhou, Changxiong; Yu, Shenglin

    2007-02-01

    It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.

  13. Combination Of Investment And Centrifugal Casting

    NASA Technical Reports Server (NTRS)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  14. Impedance matching for repetitive high voltage all-solid-state Marx generator and excimer DBD UV sources

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Tong, Liqing; Liu, Kefu

    2017-06-01

    The purpose of impedance matching for a Marx generator and DBD lamp is to limit the output current of the Marx generator, provide a large discharge current at ignition, and obtain fast voltage rising/falling edges and large overshoot. In this paper, different impedance matching circuits (series inductor, parallel capacitor, and series inductor combined with parallel capacitor) are analyzed. It demonstrates that a series inductor could limit the Marx current. However, the discharge current is also limited. A parallel capacitor could provide a large discharge current, but the Marx current is also enlarged. A series inductor combined with a parallel capacitor takes full advantage of the inductor and capacitor, and avoids their shortcomings. Therefore, it is a good solution. Experimental results match the theoretical analysis well and show that both the series inductor and parallel capacitor improve the performance of the system. However, the series inductor combined with the parallel capacitor has the best performance. Compared with driving the DBD lamp with a Marx generator directly, an increase of 97.3% in radiant power and an increase of 59.3% in system efficiency are achieved using this matching circuit.

  15. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger-By, G.; Decampy, J.; Goniche, M.

    2014-02-12

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequencymore » spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.« less

  16. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Berger-By, G.; Decampy, J.; Antar, G. Y.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Tore Supra Team

    2014-02-01

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 1019 m-3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  17. Fusion Plasma Performance and Confinement Studies on JT-60 and JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, Y.; Fujita, T.; Ishida, S.

    2002-09-15

    Fusion plasma performance and confinement studies on JT-60 and JT-60U are reviewed. With the main aim of providing a physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of high fusion plasma performances such as the equivalent breakeven condition (Q{sub DT}{sup eq} up to 1.25) and a high fusion triple product n{sub D}(0){tau}{sub E}T{sub i}(0) = 1.5 x 10{sup 21} m{sup -3}skeV, JT-60U has demonstrated the integrated performance of highmore » confinement, high {beta}{sub N}, full non-inductive current drive with a large fraction of bootstrap current. These favorable performances have been achieved in the two advanced operation regimes, the reversed magnetic shear (RS) and the weak magnetic shear (high-{beta}{sub p}) ELMy H modes characterized by both internal transport barriers (ITB) and edge transport barriers (ETB). The key factors in optimizing these plasmas towards high integrated performance are control of profiles of current, pressure, rotation, etc. utilizing a variety of heating, current drive, torque input, and particle control capabilities and high triangularity operation. As represented by discovery of ITBs (density ITB in the central pellet mode, ion temperature ITB in the high-{beta}{sub p} mode, and electron temperature ITB in the reversed shear mode), confinement studies in JT-60/JT-60U have been emphasizing freedom and also restriction of radial profiles of temperature and density. In addition to characterization of confinement and analyses of transport properties of the OH, the L-mode, the H-mode, the pellet mode, the high-{beta}{sub p} mode, and the RS mode, JT-60U has clarified formation conditions, spatial structures and dynamics of edge and internal transport barriers, and evaluated effects of repetitive MHD events on confinement such as sawteeth and ELMs. Through these studies, JT-60U has demonstrated applicability of the high confinement modes to ITER and the steady-state tokamak reactors.« less

  18. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2004-12-01

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less

  19. Edge Currents and Stability in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D M; Fenstermacher, M E; Finkenthal, D K

    2005-05-05

    Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schlueter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven [1]. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model [2]. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters [3,4] and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scale lengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. [5,6]. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less

  20. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    PubMed

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  1. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less

  2. X-ray backlighting of imploding aluminium liners on PTS facility

    NASA Astrophysics Data System (ADS)

    Yang, Qingguo; Liu, Dongbing; Mu, Jian; Huang, Xianbin; Dan, Jiakun; Xie, Xudong; Deng, Wu; Feng, Shuping; Wang, Meng; Ye, Yan; Peng, Qixian; Li, Zeren

    2016-09-01

    The x-ray backlighting systems, including a 1.865 keV (Si Heα line) spherically bent crystal imaging system and an ˜8.3 keV (Cu Heα line) point-projection imaging system, newly fielded on the Primary Test Stand facility are introduced and its preliminary experimental results in radiography of the aluminium (Al) liners with seeded sinusoidal perturbations are presented. The x-ray backlighter source is created using a 1 TW, 1 kJ Nd: glass high power laser, kilo-joule laser system, recently constructed at China Academy of Engineering Physics. The ablation melt and instability of the imploding Al liner outer edge under the driving current of ˜7.5 MA are successfully observed using these two backlighting systems, respectively.

  3. Reconfigurable Drive Current System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.

  4. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2018-02-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.

  5. Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Fidkowski, Lukasz; Vishwanath, Ashvin; Potter, Andrew C.

    2017-12-01

    We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels that propagate a quantized fractional number of qubits along the sample edge during each driving period. These phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and bulk "anyon time-crystal" order characterized by dynamical transmutation of electric-charge into magnetic-flux excitations in the bulk.

  6. Ion heating and short wavelength fluctuations in a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scime, E. E.; Carr, J. Jr.; Galante, M.

    2013-03-15

    For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped 'helicon' wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperaturesmore » observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.« less

  7. Modeling and Positioning of a PZT Precision Drive System.

    PubMed

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  8. Modeling and Positioning of a PZT Precision Drive System

    PubMed Central

    Liu, Che; Guo, Yanling

    2017-01-01

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied. PMID:29117140

  9. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, Burak

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy« less

  10. Recent progress of RF-dominated experiments on EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.

    2017-10-01

    The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.

  11. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito.

    PubMed

    Medley, Kim A; Jenkins, David G; Hoffman, Eric A

    2015-01-01

    Human-aided transport is responsible for many contemporary species introductions, yet the contribution of human-aided transport to dispersal within non-native regions is less clear. Understanding dispersal dynamics for invasive species can streamline mitigation efforts by targeting routes that contribute disproportionally to spread. Because of its limited natural dispersal ability, rapid spread of the Asian tiger mosquito (Aedes albopictus) has been attributed to human-aided transport, but until now, the relative roles of human-aided and natural movement have not been rigorously evaluated. Here, we use landscape genetics and information-theoretic model selection to evaluate 52 models representing 9240 pairwise dispersal paths among sites across the US range for Ae. albopictus and show that recent gene flow reflects a combination of natural and human-aided dispersal. Highways and water availability facilitate dispersal at a broad spatial scale, but gene flow is hindered by forests at the current distributional limit (range edge) and by agriculture among sites within the mosquito's native climatic niche (range core). Our results show that highways are important to genetic structure between range-edge and range-core pairs, suggesting a role for human-aided mosquito transport to the range edge. In contrast, natural dispersal is dominant at smaller spatial scales, reflecting a shifting dominance to natural movement two decades after introduction. These conclusions highlight the importance of (i) early intervention for species introductions, particularly those with readily dispersed dormant stages and short generation times, and (ii) strict monitoring of commercial shipments for transported immature stages of Ae. albopictus, particularly towards the northern edge of the US range. © 2014 John Wiley & Sons Ltd.

  12. Th17 Cells and Activated Dendritic Cells Are Increased in Vitiligo Lesions

    PubMed Central

    Fuentes-Duculan, Judilyn; Moussai, Dariush; Gulati, Nicholas; Sullivan-Whalen, Mary; Gilleaudeau, Patricia; Cohen, Jules A.; Krueger, James G.

    2011-01-01

    Background Vitiligo is a common skin disorder, characterized by progressive skin de-pigmentation due to the loss of cutaneous melanocytes. The exact cause of melanocyte loss remains unclear, but a large number of observations have pointed to the important role of cellular immunity in vitiligo pathogenesis. Methodology/Principal Findings In this study, we characterized T cell and inflammation-related dermal dendritic cell (DC) subsets in pigmented non-lesional, leading edge and depigmented lesional vitiligo skin. By immunohistochemistry staining, we observed enhanced populations of CD11c+ myeloid dermal DCs and CD207+ Langerhans cells in leading edge vitiligo biopsies. DC-LAMP+ and CD1c+ sub-populations of dermal DCs expanded significantly in leading edge and lesional vitiligo skin. We also detected elevated tissue mRNA levels of IL-17A in leading edge skin biopsies of vitiligo patients, as well as IL-17A positive T cells by immunohistochemistry and immunofluorescence. Langerhans cells with activated inflammasomes were also noted in lesional vitiligo skin, along with increased IL-1ß mRNA, which suggest the potential of Langerhans cells to drive Th17 activation in vitiligo. Conclusions/Significance These studies provided direct tissue evidence that implicates active Th17 cells in vitiligo skin lesions. We characterized new cellular immune elements, in the active margins of vitiligo lesions (e.g. populations of epidermal and dermal dendritic cells subsets), which could potentially drive the inflammatory responses. PMID:21541348

  13. Quantized transport and steady states of Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.

    2018-06-01

    Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.

  14. Enrichment of magnetic particles using temperature and magnetic field gradients induced by benchtop fabricated micro-electromagnets.

    PubMed

    Hosseini, A; Philpott, D N; Soleymani, L

    2017-11-21

    The active transport of analytes inside biosensing systems is important for reducing the response time and enhancing the limit-of-detection of these systems. Due to the ease of functionalization with bio-recognition agents and manipulation with magnetic fields, magnetic particles are widely used for active and directed transport of biological analytes. On-chip active electromagnets are ideally suited for manipulating magnetic particles in an automated and miniaturized fashion inside biosensing systems. Unfortunately, the magnetic force exerted by these devices decays rapidly as we move away from the device edges, and increasing the generated force to the levels necessary for particle manipulation requires a parallel increase in the applied current and the resultant Joule heating. In this paper, we designed a study to understand the combined role of thermal and magnetic forces on the movement of magnetic particles in order to extend the interaction distance of on-chip magnetic devices beyond the device edges. For this purpose, we used a rapid prototyping method to create an active/passive on-chip electromagnet with a micro/nano-structured active layer and a patterned ferromagnetic passive layer. We demonstrated that the measured terminal velocities of particles positioned near the electromagnet edge (∼5.5 μm) closely reflect the values obtained by multi-physics modelling. Interestingly, we observed a two orders of magnitude deviation between the experimental and modelling results for the terminal velocities of particles far from the electromagnet edge (∼55.5 μm). Heat modelling of the system using experimentally-measured thermal gradients indicates that this discrepancy is related to the enhanced fluid movement caused by thermal forces. This study enables the rational design of thermo-magnetic systems for thermally driving and magnetically capturing particles that are positioned at distances tens to hundreds of microns away from the edges of on-chip magnetic devices.

  15. Topological energy conversion through the bulk or the boundary of driven systems

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  16. Physics basis for an advanced physics and advanced technology tokamak power plant configuration: ARIES-ACT1

    DOE PAGES

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; ...

    2015-01-01

    Here, the advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at an aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2, and triangularity of 0.63. The broadest pressure cases reached wall-stabilized β N ~ 5.75, limited by n = 3 external kink mode requiring a conducting shell at b/a = 0.3, requiring plasma rotation, feedback, and/or kinetic stabilization. The medium pressure peaking case reaches β N = 5.28 with B T = 6.75, while the peaked pressure case reaches β N < 5.15. Fast particle magnetohydrodynamicmore » stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling shows that 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while >95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring ~1.1 MA of external current drive. This current is supplied with 5 MW of ion cyclotron radio frequency/fast wave and 40 MW of lower hybrid current drive. Electron cyclotron is most effective for safety factor control over ρ~0.2 to 0.6 with 20 MW. The pedestal density is ~0.9×10 20/m 3, and the temperature is ~4.4 keV. The H98 factor is 1.65, n/n Gr = 1.0, and the ratio of net power to threshold power is 2.8 to 3.0 in the flattop.« less

  17. Recent Heating and Current Drive results on JET

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Baranov, Y.; Barbato, E.; Bibet, Ph.; Castaldo, C.; Cesario, R.; Cocilovo, V.; Crisanti, F.; De Angelis, R.; Ekedahl, A. C.; Figueiredo, A.; Graham, M.; Granucci, G.; Hartmann, D.; Heikkinen, J.; Hellsten, T.; Imbeaux, F.; Jones, T. T. H.; Johnson, T.; Kirov, K. V.; Lamalle, P.; Laxaback, M.; Leuterer, F.; Litaudon, X.; Maget, P.; Mailloux, J.; Mantsinen, M. J.; Mayoral, M. L.; Meo, F.; Monakhov, I.; Nguyen, F.; Noterdaeme, J.-M.; Pericoli-Ridolfini, V.; Podda, S.; Panaccione, L.; Righi, E.; Rimini, F.; Sarazin, Y.; Sibley, A.; Staebler, A.; Tala, T.; Van Eester, D.

    2001-10-01

    An overview is presented of the results obtained on JET by the Heating and Current Drive Task Force (TF-H) in the period May 2000—March 2001. A strongly improved Lower Hybrid (LH) coupling was achieved by optimizing the plasma shape and by controlling the local edge density via the injection of CD4. Up to 4 MW have been coupled in type III ELMy H-mode and/or on Internal Transport Barrier (ITB) plasmas with reflection coefficients as low as 4%. Long lasting quasi steady-state ITBs have been obtained by adding the LH current to the bootstrap and beam driven components. Furthermore the use of LH in the pre-heat phase results in electron temperature in excess of 10 keV, deep negative magnetic shear and strongly reduced power threshold for ITB formation. Preliminary results on ICRF coupling are reported including the effect of CD4 injection and the commissioning of the wide band matching system on ELMy plasmas. IC CD scenarios have been studied in H and 3He minority and used to modify the stability of the sawtooth to influence the formation of seed islands for the appearance of NTM. Up to 3 MW of IC power was coupled in the high magnetic field fast wave CD scenario. Preliminary MSE measurements indicate differences in the current profiles between -90° and +90° phasing. Careful measurements of the toroidal rotation, in plasmas heated by ICRF only show some dependence on the position of the resonance layer. Finally the use of ICRF minority heating under real-time control, in response to measured plasma parameters to simulate the effect of alpha particles, is presented. ICRF heating results in ITER non-activated scenarios are reported in a companion paper.

  18. 2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF MEDIAN. NOTE VOLCANIC STONE CURBING (EDGING) TYPICAL OF MOST PARKING AREAS; TRIANGLING AT END NOT TYPICAL. MAUNA LOA VOLCANO IN BACK. - Crater Rim Drive, Volcano, Hawaii County, HI

  19. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    NASA Astrophysics Data System (ADS)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic patterns occur in the model, but with typically smaller magnitudes and with season-specific geographical and directional differences.

  20. Theory of step on leading edge of negative corona current pulse

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.

    2000-03-01

    Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.

  1. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  2. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects.

    PubMed

    Padovani, Gislaine C; Feitosa, Victor P; Sauro, Salvatore; Tay, Franklin R; Durán, Gabriela; Paula, Amauri J; Durán, Nelson

    2015-11-01

    Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chiral Maxwell demon in a quantum Hall system with a localized impurity

    NASA Astrophysics Data System (ADS)

    Rosselló, Guillem; López, Rosa; Platero, Gloria

    2017-08-01

    We investigate the role of chirality on the performance of a Maxwell demon implemented in a quantum Hall bar with a localized impurity. Within a stochastic thermodynamics description, we investigate the ability of such a demon to drive a current against a bias. We show that the ability of the demon to perform is directly related to its ability to extract information from the system. The key features of the proposed Maxwell demon are the topological properties of the quantum Hall system. The asymmetry of the electronic interactions felt at the localized state when the magnetic field is reversed joined to the fact that we consider energy-dependent (and asymmetric) tunneling barriers that connect such state with the Hall edge modes allow the demon to properly work.

  4. A tangentially viewing fast ion D-alpha diagnostic for NSTX.

    PubMed

    Bortolon, A; Heidbrink, W W; Podestà, M

    2010-10-01

    A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

  5. Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...

    2017-09-04

    Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less

  6. Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.

    Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less

  7. A top-down manner-based DCNN architecture for semantic image segmentation.

    PubMed

    Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin

    2017-01-01

    Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

  8. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.

    2009-05-15

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxationmore » of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.« less

  9. Twist seal for high-pressure vessels such as space shuttle rocket motors

    NASA Technical Reports Server (NTRS)

    von Pragenau, George L. (Inventor)

    1989-01-01

    Seals for sealing clevis and flange joints (14) of a solid rocket booster motor, and more particularly to a seal (30) which is twisted upon application of expansion forces to an edge seal (36). This twisting motion initially causes a leading edge seal (44) to be urged into sealing engagement with a surface (48) of an adjacent member (20) and thereafter, increasing fluid pressure on a pressurized side (64) of a seal (30) drives a broad sealing region (46) into sealing engagement with a surface (48).

  10. V/STOL aircraft and method

    DOEpatents

    Owens, Phillip R.

    1997-01-01

    Aircraft apparatus and method capable of V/STOL (vertical, short takeoff and landing) in addition to conventional flight. For V/STOL operation, induced lift is provided by blowing air over the upper surface of each wing through a duct installed near the leading edge. Intake air is supplied to the blowing fan through a duct installed near the trailing edge, thus providing suction as well as blowing. Two fans in series are required. The engine provides power not only to the propeller but also to a transmission which provides power to the pulleys driving the belt-driven fans.

  11. Dynamic Analysis of Heavy Vehicle Medium Duty Drive Shaft Using Conventional and Composite Material

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Jain, Rajat; Patil, Pravin P.

    2016-09-01

    The main highlight of this study is structural and modal analysis of single piece drive shaft for selection of material. Drive shaft is used for torque carrying from vehicle transmission to rear wheel differential system. Heavy vehicle medium duty transmission drive shaft was selected as research object. Conventional materials (Steel SM45 C, Stainless Steel) and composite materials (HS carbon epoxy, E Glass Polyester Resin Composite) were selected for the analysis. Single piece composite material drive shaft has advantage over conventional two-piece steel drive shaft. It has higher specific strength, longer life, less weight, high critical speed and higher torque carrying capacity. The main criteria for drive shaft failure are strength and weight. Maximum modal frequency obtained is 919 Hz. Various harmful vibration modes (lateral vibration and torsional vibration) were identified and maximum deflection region was specified. For single-piece drive shaft the natural bending frequency should be higher because it is subjected to torsion and shear stress. Single piece drive shaft was modelled using Solid Edge and Pro-E. Finite Element Analysis was used for structural and modal analysis with actual running boundary condition like frictional support, torque and moment. FEA simulation results were validated with experimental literature results.

  12. 13. Detail view of drum screen short shaft gears, journal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of drum screen short shaft gears, journal bearing, rotation drive chain, upper sprocket gear, and drum screen edge in background, facing southeast (downstream) from drum screen cover. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA

  13. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.

    2014-06-01

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  14. Boundary conditions and formation of pure spin currents in magnetic field

    NASA Astrophysics Data System (ADS)

    Eliashvili, Merab; Tsitsishvili, George

    2017-09-01

    Schrödinger equation for an electron confined to a two-dimensional strip is considered in the presence of homogeneous orthogonal magnetic field. Since the system has edges, the eigenvalue problem is supplied by the boundary conditions (BC) aimed in preventing the leakage of matter away across the edges. In the case of spinless electrons the Dirichlet and Neumann BC are considered. The Dirichlet BC result in the existence of charge carrying edge states. For the Neumann BC each separate edge comprises two counterflow sub-currents which precisely cancel out each other provided the system is populated by electrons up to certain Fermi level. Cancelation of electric current is a good starting point for developing the spin-effects. In this scope we reconsider the problem for a spinning electron with Rashba coupling. The Neumann BC are replaced by Robin BC. Again, the two counterflow electric sub-currents cancel out each other for a separate edge, while the spin current survives thus modeling what is known as pure spin current - spin flow without charge flow.

  15. Drive-induced delocalization in the Aubry-André model

    NASA Astrophysics Data System (ADS)

    Ray, S.; Ghosh, A.; Sinha, S.

    2018-01-01

    Motivated by the recent experiment by Bordia et al. [Nat. Phys. 13, 460 (2017), 10.1038/nphys4020], we study the single particle delocalization phenomena of the Aubry-André (AA) model subjected to periodic drives. In two distinct cases we construct an equivalent classical description to illustrate that the drive-induced delocalization phenomena stems from an instability and the onset of chaos in the underlying dynamics. In the first case we analyze the delocalization and the thermalization in a time modulated AA potential with respect to driving frequency and demonstrate that there exists a threshold value of the amplitude of the drive. In the next example, we show that the periodic modulation of the phase of the hopping amplitude induced by a gauge field leads to an unusual effect on delocalization with a nonmonotonic dependence on the driving frequency. Within a window of such a driving frequency a delocalized Floquet band with a mobility edge appears, exhibiting multifractality in the spectrum as well as in the Floquet eigenfunctions. Finally, we explore the effect of interaction and discuss how the results of the present analysis can be tested experimentally.

  16. E  ×  B flow shear drive of the linear low-n modes of EHO in the QH-mode regime

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Wan, B. N.; Wang, Y. F.; Wu, X. Q.; Chen, Xi; Peng, Y.-K. Martin; Guo, H. Y.; Burrell, K. H.; Garofalo, A. M.; Osborne, T. H.; Groebner, R. J.; Wang, H. Q.; Chen, R.; Yan, N.; Wang, L.; Ding, S. Y.; Shao, L. M.; Hu, G. H.; Li, Y. L.; Lan, H.; Yang, Q. Q.; Chen, L.; Ye, Y.; Xu, J. C.; Li, J.

    2017-08-01

    A new model for the edge harmonic oscillations (EHOs) in the quiescent H-mode regime has been developed, which successfully reproduces the recent observations in the DIII-D tokamak. In particular, at high E  ×  B flow shear only a few low-n kink modes remain unstable at the plasma edge, consistent with the EHO behavior, while at low E  ×  B flow shear, the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior. The model is based on a new mechanism for destabilizing low-n kink/peeling modes by the E  ×  B flow shear, which underlies the EHOs, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E  ×  B flows modifies the 2D pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drive as the parallel wavenumber increases significantly away from the rational surface at the plasma edge where the magnetic shear is also strong. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.

  17. Interband interference effects at the edge of a multiband chiral p -wave superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Long; Huang, Wen; Sigrist, Manfred; Yao, Dao-Xin

    2017-12-01

    Chiral superconductors support chiral edge modes and potentially spontaneous edge currents at their boundaries. Motivated by the putative multiband chiral p -wave superconductor Sr2RuO4 , we study the influence of the interference between different bands at the edges, which may appear in the presence of moderate edge disorder or in edge tunneling measurements. We show that interband interference can strongly modify the measurable quantities at the edges when the order parameter exhibits phase difference between the bands. This is illustrated by investigating the edge dispersion and the edge current distribution in the presence of interband mixing, as well as the conductance at a tunneling junction. The results are discussed in connection with the putative chiral p -wave superconductor Sr2RuO4 . In passing, we also discuss similar interference effects in multiband models with other pairing symmetries.

  18. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  19. Numerical optimization of perturbative coils for tokamaks

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team

    2014-10-01

    Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less

  1. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    PubMed

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  2. Overview of recent and current research on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    S. Codathe TCV Team

    2013-10-01

    Through a diverse research programme, the Tokamak à Configuration Variable (TCV) addresses physics issues and develops tools for ITER and for the longer term goals of nuclear fusion, relying especially on its extreme plasma shaping and electron cyclotron resonance heating (ECRH) launching flexibility and preparing for an ECRH and NBI power upgrade. Localized edge heating was unexpectedly found to decrease the period and relative energy loss of edge localized modes (ELMs). Successful ELM pacing has been demonstrated by following individual ELM detection with an ECRH power cut before turning the power back up to trigger the next ELM, the duration of the cut determining the ELM period. Negative triangularity was also seen to reduce the ELM energy release. H-mode studies have focused on the L-H threshold dependence on the main ion species and on the divertor leg length. Both L- and H-modes have been explored in the snowflake configuration with emphasis on edge measurements, revealing that the heat flux to the strike points on the secondary separatrix increases as the X-points approach each other, well before they coalesce. In L-mode, a systematic scan of the auxiliary power deposition profile, with no effect on confinement, has ruled it out as the cause of confinement degradation. An ECRH power absorption observer based on transmitted stray radiation was validated for eventual polarization control. A new profile control methodology was introduced, relying on real-time modelling to supplement diagnostic information; the RAPTOR current transport code in particular has been employed for joint control of the internal inductance and central temperature. An internal inductance controller using the ohmic transformer has also been demonstrated. Fundamental investigations of neoclassical tearing mode (NTM) seed island formation by sawtooth crashes and of NTM destabilization in the absence of a sawtooth trigger were carried out. Both stabilizing and destabilizing agents (electron cyclotron current drive on or inside the q = 1 surface, respectively) were used to pace sawtooth oscillations, permitting precise control of their period. Locking of the sawtooth period to a pre-defined ECRH modulation period was also demonstrated. Sawtooth control has permitted nearly failsafe NTM prevention when combined with backup NTM stabilization by ECRH.

  3. Determination of functions of controlling drives of main executive mechanisms of mining excavators

    NASA Astrophysics Data System (ADS)

    Lagunova, Yu A.; Komissarov, A. P.; Lukashuk, O. A.

    2018-03-01

    It is shown that a special shovel is a feature of the structure of the drives of the main mechanisms (mechanisms of lifting and pressure) of career excavators with working equipment, the presence in the transfer device of a two-crank-lever mechanism of working equipment that connects the main mechanisms with the working body (bucket). In this case, the transformation of the mechanical energy parameters of the motors into energy-force parameters realized at the cutting edge of the bucket (teeth) takes place depending on the type of the kinematic scheme of the two-link-lever mechanism. The concept of “control function” defining the relationship between the parameters characterizing the position of the bucket in the face (the coordinates of the tip of the cutting edge of the bucket, the digging speed) and the required control level are introduced. These are the values of the lifting and head speeds ensuring the bucket movement along a given trajectory.

  4. Long-range doublon transfer in a dimer chain induced by topology and ac fields

    NASA Astrophysics Data System (ADS)

    Bello, M.; Creffield, C. E.; Platero, G.

    2016-03-01

    The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain’s end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving.

  5. Overview of ASDEX Upgrade results

    DOE PAGES

    Aguiam, D.

    2017-06-28

    Here, the ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current ofmore » $${{I}_{\\text{p}}}=0.8$$ MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD).« less

  6. Discriminating the Drivers of Edge Effects on Nest Predation: Forest Edges Reduce Capture Rates of Ship Rats (Rattus rattus), a Globally Invasive Nest Predator, by Altering Vegetation Structure

    PubMed Central

    Ruffell, Jay; Didham, Raphael K.; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P.

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches. PMID:25412340

  7. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure.

    PubMed

    Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  8. Influence of a falling edge on high power microwave pulse combination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts offmore » the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.« less

  9. Influence of a falling edge on high power microwave pulse combination

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Huang, Wenhua; Zhu, Qi; Xiao, Renzhen; Shao, Hao

    2016-07-01

    This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts off the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.

  10. In Patients With Cirrhosis, Driving Simulator Performance Is Associated With Real-life Driving.

    PubMed

    Lauridsen, Mette M; Thacker, Leroy R; White, Melanie B; Unser, Ariel; Sterling, Richard K; Stravitz, Richard T; Matherly, Scott; Puri, Puneet; Sanyal, Arun J; Gavis, Edith A; Luketic, Velimir; Siddiqui, Muhammad S; Heuman, Douglas M; Fuchs, Michael; Bajaj, Jasmohan S

    2016-05-01

    Minimal hepatic encephalopathy (MHE) has been linked to higher real-life rates of automobile crashes and poor performance in driving simulation studies, but the link between driving simulator performance and real-life automobile crashes has not been clearly established. Furthermore, not all patients with MHE are unsafe drivers, but it is unclear how to distinguish them from unsafe drivers. We investigated the link between performance on driving simulators and real-life automobile accidents and traffic violations. We also aimed to identify features of unsafe drivers with cirrhosis and evaluated changes in simulated driving skills and MHE status after 1 year. We performed a study of outpatients with cirrhosis (n = 205; median 55 years old; median model for end-stage liver disease score, 9.5; none with overt hepatic encephalopathy or alcohol or illicit drug use within previous 6 months) seen at the Virginia Commonwealth University and McGuire Veterans Administration Medical Center, from November 2008 through April 2014. All participants were given paper-pencil tests to diagnose MHE (98 had MHE; 48%), and 163 patients completed a standardized driving simulation. Data were collected on traffic violations and automobile accidents from the Virginia Department of Motor Vehicles and from participants' self-assessments when they entered the study, and from 73 participants 1 year later. Participants also completed a questionnaire about alcohol use and cessation patterns. The driving simulator measured crashes, run-time, road center and edge excursions, and illegal turns during navigation; before and after each driving simulation session, patients were asked to rate their overall driving skills. Drivers were classified as safe or unsafe based on crashes and violations reported on official driving records; simulation results were compared with real-life driving records. Multivariable regression analyses of real-life crashes and violations was performed using data on demographics, cirrhosis details, MHE status, and alcohol cessation patterns, at baseline and at 1 year. Drivers categorized as unsafe had more crashes and made more illegal turns on the driving simulator than drivers categorized as safe; a higher proportion of subjects with MHE were categorized as unsafe drivers at baseline (16%) than subjects without MHE (7%; P = .02), and at 1-year follow-up (18% vs 0%; P = .02). Alcohol cessation within <1 year and illegal turns during simulator navigation tasks were associated with real-life automobile crashes and MHE in regression analysis; road edge excursions in the simulator were associated with real-life traffic violations. Personal assessment of driving skills improved after each simulation episode. In a study of 205 patients with cirrhosis, we associated results from driving simulation tests with real-life driving records and MHE. Traffic safety counseling should focus on patients with cirrhosis who recently quit consuming alcohol and perform poorly on driving simulation. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Asunta, O.; Kurki-Suonio, T.; Tala, T.; Sipilä, S.; Salomaa, R.; contributors, JET-EFDA

    2008-12-01

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger (~16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  12. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  13. 98. LEAD SCAVENGER CELLS, LOOKING NORTHEAST. NOTE VSHAPED LAUNDER TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. LEAD SCAVENGER CELLS, LOOKING NORTHEAST. NOTE V-SHAPED LAUNDER TO COLLECT CONCENTRATE FROTH THAT SPILLED OVER WIER ALONG EDGE OF CELLS. EACH ELECTRIC MOTOR TURNED AGITATORS IN TWO CELLS VIA BELT DRIVES. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  14. Heating and current drive on NSTX

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.

    1997-04-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.

  15. Advances in understanding quiescent H-mode plasmas in DIII-Da)

    NASA Astrophysics Data System (ADS)

    Burrell, K. H.; West, W. P.; Doyle, E. J.; Austin, M. E.; Casper, T. A.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Hyatt, A. W.; Jayakumar, R. J.; Kaplan, D. H.; Lao, L. L.; Leonard, A. W.; Makowski, M. A.; McKee, G. R.; Osborne, T. H.; Snyder, P. B.; Solomon, W. M.; Thomas, D. M.; Rhodes, T. L.; Strait, E. J.; Wade, M. R.; Wang, G.; Zeng, L.

    2005-05-01

    Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasing power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of ν* and βT bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.

  16. Advances in understanding quiescent H-mode plasmas in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, K.H.; West, W.P.; Gohil, P.

    2005-05-15

    Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasingmore » power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of {nu}{sub *} and {beta}{sub T} bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.« less

  17. Controllable transport of a skyrmion in a ferromagnetic narrow channel with voltage-controlled magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Junlin; Xia, Jing; Zhang, Xichao; Zhao, G. P.; Ye, Lei; Wu, Jing; Xu, Yongbing; Zhao, Weisheng; Zou, Zhigang; Zhou, Yan

    2018-05-01

    Magnetic skyrmions have potential applications in next-generation spintronic devices with ultralow energy consumption. In this work, the current-driven skyrmion motion in a narrow ferromagnetic nanotrack with voltage-controlled magnetic anisotropy (VCMA) is studied numerically. By utilizing the VCMA effect, the transport of skyrmion can be unidirectional in the nanotrack, leading to a one-way information channel. The trajectory of the skyrmion can also be modulated by periodically located VCMA gates, which protects the skyrmion from destruction by touching the track edge. In addition, the location of the skyrmion can be controlled by adjusting the driving pulse length in the presence of the VCMA effect. Our results provide guidelines for practical realization of the skyrmion-based information channel, diode, and skyrmion-based electronic devices such as racetrack memory.

  18. V/STOL aircraft and method

    DOEpatents

    Owens, P.R.

    1997-11-18

    Aircraft apparatus and method capable of V/STOL (vertical, short takeoff and landing) in addition to conventional flight are disclosed. For V/STOL operation, induced lift is provided by blowing air over the upper surface of each wing through a duct installed near the leading edge. Intake air is supplied to the blowing fan through a duct installed near the trailing edge, thus providing suction as well as blowing. Two fans in series are required. The engine provides power not only to the propeller but also to a transmission which provides power to the pulleys driving the belt-driven fans. 10 figs.

  19. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system

    NASA Astrophysics Data System (ADS)

    Gong, Z. R.; Ian, H.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco

    2009-12-01

    Using the Born-Oppenheimer approximation, we derive an effective Hamiltonian for an optomechanical system that leads to a nonlinear Kerr effect in the system’s vacuum. The oscillating mirror at one edge of the optomechanical system induces a squeezing effect in the intensity spectrum of the cavity field. A near-resonant laser field is applied at the other edge to drive the cavity field in order to enhance the Kerr effect. We also propose a quantum-nondemolition-measurement setup to monitor a system with two cavities separated by a common oscillating mirror based on our effective Hamiltonian approach.

  20. Impedance of an intense plasma-cathode electron source for tokamak startup

    DOE PAGES

    Hinson, Edward Thomas; Barr, Jayson L.; Bongard, Michael W.; ...

    2016-05-31

    In this study, an impedance model is formulated and tested for the ~1kV, ~1kA/cm 2, arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma (n arc ≈ 10 21 m -3) within the electron source, and the less dense external tokamak edge plasma (n edge ≈ 10 18 m -3) into which current is injected at the applied injector voltage, V inj. Experiments on the Pegasus spherical tokamak show the injected current, I inj, increases with V inj according to the standard double layer scaling I injmore » ~ V inj 3/2 at low current and transitions to I inj ~ V inj 1/2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density n b ~ I inj/V inj 1/2. For low tokamak edge density n edge and high I inj, the inferred beam density n b is consistent with the requirement n b ≤ n edge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, n b ~ n arc is observed, consistent with a limit to n b imposed by expansion of the double layer sheath. These results suggest that n arc is a viable control actuator for the source impedance.« less

  1. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOEpatents

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  2. Exciton Transport and Perfect Coulomb Drag

    NASA Astrophysics Data System (ADS)

    Nandi, Debaleena

    2013-03-01

    Exciton condensation is realized in closely-spaced bilayer quantum Hall systems at νT = 1 when the total density in the two 2D electron layers matches the Landau level degeneracy. In this state, electrons in one layer become tightly bound to holes in the other layer, forming a condensate similar to the Cooper pairs in a superconductor. Being charge neutral, these excitons ought to be free to move throughout the bulk of the quantum Hall fluid. One therefore expects that electron current driven in one layer would spontaneously generate a ``hole'' current in the other layer, even in the otherwise insulating bulk of the 2D system. We demonstrate precisely this effect, using a Corbino geometry to defeat edge state transport. Our sample contains two essentially identical two-dimensional electron systems (2DES) in GaAs quantum wells separated by a thin AlGaAs barrier. It is patterned into an annulus with arms protruding from each rim that provide contact to each 2DES separately. A current drag geometry is realized by applying a drive voltage between the outer and inner rim on one 2DES layer while the two rims on the opposite layer are connected together in a closed loop. There is no direct electrical connection between the two layers. At νT = 1 the bulk of the Corbino annulus becomes insulating owing to the quantum Hall gap and net charge transport across the bulk is suppressed. Nevertheless, we find that in the drag geometry appreciable currents do flow in each layer. These currents are almost exactly equal magnitude but, crucially, flow in opposite directions. This phenomenon reflects exciton transport within the νT = 1 condensate, rather than its quasiparticle excitations. We find that quasiparticle transport competes with exciton transport at elevated temperatures, drive levels, and layer separations. This work represents a collaboration with A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer and K.W. West. This work is supported by the NSF under grant DMR-1003080.

  3. Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges

    NASA Astrophysics Data System (ADS)

    Park, J. M.

    2013-10-01

    Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.

  4. Southern Half of Spirit's 'Bonestell' Panorama (Anaglyph)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This stereo, 180-degree panorama shows the southward vista from the location where Spirit is spending its third Martian winter inside Mars' Gusev Crater. The rover's overwintering location is on the northern edge of a low plateau informally called 'Home Plate,' which is about 80 meters or 260 feet in diameter.

    The view combines a stereo pair so that it appears three-dimensional when seen through blue-red glasses.

    Spirit took the first of the images that are combined into this view during the mission's 1,477th Martian day, or sol, (February 28, 2008) two weeks after the rover made its last move to reach the location where it would stop driving for the winter. Solar energy at Gusev Crater is so limited during the Martian winter that Spirit does not generate enough electricity to drive, nor even enough to take many images per day. The last frame for this mosaic was taken on Sol 1599 (July 2, 2008). The rover team plans for Spirit to finish taking images for the northern half of the scene during the Martian spring.

    The northwestern edge of Home Plate is visible in the right foreground. The blockier, more sharply shadowed texture there is layered sandstone whose layering is tilted inward toward the edge of the Home Plate platform. A dark rock on top of Home Plate in that area is a porous volcanic basalt unlike rocks nearby. The northeastern edge of Home Plate is visible in the left foreground. Spirit first climbed onto Home Plate on that region, in early 2006.

    Rover tracks from driving by Spirit are visible on Home plate in the center and right of the image. These were made during Spirit's second exploration on top of the plateau, which began when Spirit climbed onto the southern edge of Home Plate in September, 2007.

    In the center foreground, the turret of tools at the end of Spirit's robotic arm appears in duplicate because the arm was repositioned between the days when the images making up that part of the mosaic were taken.

    On the horizon, the highest point is 'McCool Hill.' This is one of the seven larger hills in the Columbia Hills range. Home Plate is in the inner basin of the range, between McCool Hill to the south and 'Husband Hill' to the north. To the right of McCool Hill, in the center of the image and closer to Home Plate, is a smaller hill capped with a light-toned outcrop. This hill is called 'Von Braun,' and it is a possible destination the rover team has discussed for the next season of driving by Spirit, after the solar energy level increases in the Martian spring. The flat horizon in the right-hand portion of the panorama is the basaltic plain onto which Spirit landed on Jan. 4, 2004.

  5. Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D

    DOE PAGES

    Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...

    2015-01-12

    Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less

  6. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE PAGES

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui; ...

    2018-04-30

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  7. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  8. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.

    2006-04-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.

  9. Spanwise morphing trailing edge on a finite wing

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Inman, Daniel J.

    2015-04-01

    Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge concept locally varies the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the spar box. Utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal compliant mechanisms and inactive sections of elastomeric honeycombs, the SMTE concept eliminates geometric discontinuities associated with shape change, increasing aerodynamic performance. Previous work investigated a representative section of the SMTE concept and investigated the effect of various skin designs on actuation authority. The current work experimentally evaluates the aerodynamic gains for the SMTE concept for a representative finite wing as compared with a conventional, articulated wing. The comparative performance for both wings is evaluated by measuring the drag penalty associated with achieving a design lift coefficient from an off-design angle of attack. To reduce experimental complexity, optimal control configurations are predicted with lifting line theory and experimentally measured control derivatives. Evaluated over a range of off-design flight conditions, this metric captures the comparative capability of both concepts to adapt or "morph" to changes in flight conditions. Even with this simplistic model, the SMTE concept is shown to reduce the drag penalty due to adaptation up to 20% at off-design conditions, justifying the increase in mass and complexity and motivating concepts capable of larger displacement ranges, higher fidelity modelling, and condition-sensing control.

  10. Quality detection system and method of micro-accessory based on microscopic vision

    NASA Astrophysics Data System (ADS)

    Li, Dongjie; Wang, Shiwei; Fu, Yu

    2017-10-01

    Considering that the traditional manual detection of micro-accessory has some problems, such as heavy workload, low efficiency and large artificial error, a kind of quality inspection system of micro-accessory has been designed. Micro-vision technology has been used to inspect quality, which optimizes the structure of the detection system. The stepper motor is used to drive the rotating micro-platform to transfer quarantine device and the microscopic vision system is applied to get graphic information of micro-accessory. The methods of image processing and pattern matching, the variable scale Sobel differential edge detection algorithm and the improved Zernike moments sub-pixel edge detection algorithm are combined in the system in order to achieve a more detailed and accurate edge of the defect detection. The grade at the edge of the complex signal can be achieved accurately by extracting through the proposed system, and then it can distinguish the qualified products and unqualified products with high precision recognition.

  11. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, N.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Yan, N., E-mail: yanning@ipp.ac.cn

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentummore » transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.« less

  12. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma

    NASA Astrophysics Data System (ADS)

    Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul

    2018-03-01

    The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.

  13. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing

    PubMed Central

    Matsubayashi, Yutaka; Coulson-Gilmer, Camilla

    2015-01-01

    The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form “signaling centers” along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing. PMID:26216900

  14. Oscillatory shear rheology measurements and Newtonian modeling of insoluble monolayers

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir H.; Lopez, Juan M.

    2017-04-01

    Circular systems are advantageous for interfacial studies since they do not suffer from end effects, but their hydrodynamics is more complicated because their flows are not unidirectional. Here, we analyze the shear rheology of a harmonically driven knife-edge viscometer through experiments and computations based on the Navier-Stokes equations with a Newtonian interface. The measured distribution of phase lag in the surface velocity relative to the knife-edge speed is found to have a good signal-to-noise ratio and provides robust comparisons to the computations. For monomolecular films of stearic acid, the surface shear viscosity deduced from the model was found to be the same whether the film is driven steady or oscillatory, for an order of magnitude range in driving frequencies and amplitudes. Results show that increasing either the amplitude or forcing frequency steepens the phase lag next to the knife edge. In all cases, the phase lag is linearly proportional to the radial distance from the knife edge and scales with surface shear viscosity to the power -1 /2 .

  15. The Competitive Edge: Expanded Access Drives Vendors.

    ERIC Educational Resources Information Center

    Pepin, Theresa; And Others

    1997-01-01

    This report analyzes data gathered from 29 automated library system vendors who responded to a 1996 survey. The survey also requested their perceptions of Java (an object-oriented programming language) and network computers, and issues and trends to be considered by library administrators. Contact information about the vendors is provided. (Four…

  16. Distributed electromechanical actuation system design for a morphing trailing edge wing

    NASA Astrophysics Data System (ADS)

    Dimino, I.; Diodati, G.; Concilio, A.; Volovick, A.; Zivan, L.

    2016-04-01

    Next-generation flight control actuation technology will be based on "more electric" concepts to ensure benefits in terms of efficiency, weight and maintenance. This paper is concerned with the design of an un-shafted distributed servo-electromechanical actuation system, suited for morphing trailing edge wings of large commercial aircraft. It aims at producing small wing camber variations in the range between -5° and +5° in cruise, to enable aerodynamic efficiency improvements. The deployment kinematics is based on multiple "direct-drive" actuation, each made of light-weight compact lever mechanisms, rigidly connected to compliant ribs and sustained by load-bearing motors. Navier-Stokes computations are performed to estimate the pressure distribution over the interested wing region and the resulting hinge moments. These transfer to the primary structure via the driving mechanism. An electro-mechanical Matlab/Simulink model of the distributed actuation architecture is developed and used as a design tool, to preliminary evaluate the complete system performance. Implementing a multi-shaft strategy, each actuator is sized for the torque acting on the respective adaptive rib, following the effect of both the aerodynamic pressure and the morphing skin stiffness. Elastic trailing edge rotations and power needs are evaluated in operative conditions. Focus is finally given to the key challenges of the proposed concept: targeting quantifiable performance improvements while being compliant to the demanding requirements in terms of reliability and safety.

  17. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE PAGES

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...

    2018-03-14

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  18. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  19. Nonadiabatic electron response in the Hasegawa-Wakatani equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltzfus-Dueck, T.; Scott, B. D.; Krommes, J. A.

    2013-08-15

    Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and potential fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential (φ) into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive nor respond to the parallel current j{sub ∥}. The form of the decomposition clarifies that, at perpendicular scales large relative to the sound radius, the electron adiabatic response controls the nonzonal φ, not the fluctuating density n. Simple energy balance arguments allow onemore » to rigorously bound the ratio of rms nonzonal nonadiabatic fluctuations (b(tilde sign)) relative to adiabatic ones (ã). The role of the vorticity nonlinearity in transferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of self-sustained turbulence in the HWEs. When the normalized parallel resistivity is weak, b(tilde sign) becomes effectively slaved, allowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations. Direct numerical simulation of the 2D HWEs confirms the convergence of the asymptotic formula for b(tilde sign)« less

  20. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui

    2016-07-21

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less

  1. Injection current minimization of InAs/InGaAs quantum dot laser by optimization of its active region and reflectivity of laser cavity edges

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Maximov, M. V.

    2015-11-01

    The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details.

  2. Electrochemistry at Edge of Single Graphene Layer in a Nanopore

    PubMed Central

    Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127

  3. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. Extended MHD modeling of tearing-driven magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, J. P.; Sovinec, C. R.

    2017-05-01

    Discrete relaxation events in reversed-field pinch relevant configurations are investigated numerically with nonlinear extended magnetohydrodynamic (MHD) modeling, including the Hall term in Ohm's law and first-order ion finite Larmor radius effects. Results show variability among relaxation events, where the Hall dynamo effect may help or impede the MHD dynamo effect in relaxing the parallel current density profile. The competitive behavior arises from multi-helicity conditions where the dominant magnetic fluctuation is relatively small. The resulting changes in parallel current density and parallel flow are aligned in the core, consistent with experimental observations. The analysis of simulation results also confirms that the force density from fluctuation-induced Reynolds stress arises subsequent to the drive from the fluctuation-induced Lorentz force density. Transport of the momentum density is found to be dominated by the fluctuation-induced Maxwell stress over most of the cross section with viscous and gyroviscous contributions being large in the edge region. The findings resolve a discrepancy with respect to the relative orientation of current density and flow relaxation, which had not been realized or investigated in King et al. [Phys. Plasmas 19, 055905 (2012)], where only the magnitude of flow relaxation is actually consistent with experimental results.

  5. Reduction of wafer-edge overlay errors using advanced correction models, optimized for minimal metrology requirements

    NASA Astrophysics Data System (ADS)

    Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon

    2016-03-01

    In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.

  6. m=1 diocotron mode damping in the Electron Diffusion Gauge (EDG) experiment

    NASA Astrophysics Data System (ADS)

    Paul, Stephen F.; Morrison, Kyle A.; Davidson, Ronald C.; Jenkins, Thomas G.

    2002-01-01

    The evolution of the amplitude of the m=1 diocotron mode is used to measure the background neutral pressure in the Electron Diffusion Gauge (EDG), a Malmberg-Penning trap. Below 5×10-8 Torr, the dependence on pressure scales as P1/4, and is sensitive to pressure changes as small as ΔP=5×10-11 Torr. Previous studies on the EDG showed that the diocotron mode is more strongly damped at higher neutral pressures. Both the diocotron mode damping rate and the plasma expansion rate depend similarly on experimental parameters, i.e., conditions which favor expansion also favor suppression of the diocotron mode. The sensitivity of the mode evolution is examined as a function of the resistive growth driving conditions, which are controlled by the amount of wall resistance connected to the trap.

  7. Enhanced Component Performance Study: Emergency Diesel Generators 1998–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-11-01

    This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using (1) Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2014 and (2) maintenance unavailability (UA) performance data from Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2014. The objective is to show estimates of current failure probabilities and rates related to EDGs, trend these data on an annual basis, determine if the current data are consistent with the probability distributions currently recommended for use inmore » NRC probabilistic risk assessments, show how the reliability data differ for different EDG manufacturers and for EDGs with different ratings; and summarize the subcomponents, causes, detection methods, and recovery associated with each EDG failure mode. Engineering analyses were performed with respect to time period and failure mode without regard to the actual number of EDGs at each plant. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating. Six trends with varying degrees of statistical significance were identified in the data.« less

  8. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  9. Decoherence of high-energy electrons in weakly disordered quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Nigg, Simon E.; Lunde, Anders Mathias

    2016-07-01

    We investigate theoretically the phase coherence of electron transport in edge states of the integer quantum Hall effect at filling factor ν =2 , in the presence of disorder and inter edge state Coulomb interaction. Within a Fokker-Planck approach, we calculate analytically the visibility of the Aharonov-Bohm oscillations of the current through an electronic Mach-Zehnder interferometer. In agreement with recent experiments, we find that the visibility is independent of the energy of the current-carrying electrons injected high above the Fermi sea. Instead, it is the amount of disorder at the edge that sets the phase space available for inter edge state energy exchange and thereby controls the visibility suppression.

  10. Bootstrap Current for the Edge Pedestal Plasma in a Diverted Tokamak Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, S.; Chang, C. S.; Ku, S.

    The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. Amore » driftkinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al. , Phys. Plasmas 6 , 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity, the collisional edge bootstrap current can be significantly greater than that from the Sauter formula. Rapid toroidal rotation of the magnetic field lines at the high field side of a tight aspect-ratio tokamak is believed to be the cause of the different behavior. A new analytic fitting formula, as a simple modification to the Sauter formula, is obtained to bring the analytic expression to a better agreement with the edge kinetic simulation results« less

  11. Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, S.; Choe, W.; Chang, C. S.

    The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. Amore » drift-kinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al., Phys. Plasmas 6, 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity, the collisional edge bootstrap current can be significantly greater than that from the Sauter formula. Rapid toroidal rotation of the magnetic field lines at the high field side of a tight aspect-ratio tokamak is believed to be the cause of the different behavior. A new analytic fitting formula, as a simple modification to the Sauter formula, is obtained to bring the analytic expression to a better agreement with the edge kinetic simulation results.« less

  12. Mode control using two electrodes on HBT-EP

    NASA Astrophysics Data System (ADS)

    Stewart, I. G.; Brooks, J. W.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.

    2017-10-01

    Understanding the effects of plasma rotation on magnetohydrodynamic (MHD) modes and tokamak plasma stability is important for performance enhancement of current magnetic confinement experiments and to future fusion devices such as ITER. In order to control plasma rotation, two molybdenum electrodes have been installed on HBT-EP toroidally separated by 144 degrees. This allows independent biasing of the two probes both spatially and temporally. When the bias probes are inserted into the edge of the plasma and a voltage is applied, the probes drive radial currents and produce plasma flow from the torque induced by the currents. If the bias probe voltage is sufficiently positive, the MHD mode rotation transitions into a state with a rapid mode rotation frequency (in excess of 25 kHz) in the direction opposite to mode rotation without bias. The transition into this reversed rotation state occurs when the torque exceeds a threshold, which can depend upon the phase of an applied n = 1 error field. We present recent studies of the two-electrode system on mode rotation, mode stability, and the toroidal symmetry of the radial current through the scrape-off-layer (SOL) during MHD activity and applied magnetic perturbations. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  13. EDITORIAL: Special section on recent progress on radio frequency heating and current drive studies in the JET tokamak Special section on recent progress on radio frequency heating and current drive studies in the JET tokamak

    NASA Astrophysics Data System (ADS)

    Ongena, Jef; Mailloux, Joelle; Mayoral, Marie-Line

    2009-04-01

    This special cluster of papers summarizes the work accomplished during the last three years in the framework of the Task Force Heating at JET, whose mission it is to study the optimisation of heating systems for plasma heating and current drive, launching and deposition questions and the physics of plasma rotation. Good progress and new physics insights have been obtained with the three heating systems available at JET: lower hybrid (LH), ion cyclotron resonance heating (ICRH) and neutral beam injection (NBI). Topics covered in the present issue are the use of edge gas puffing to improve the coupling of LH waves at large distances between the plasma separatrix and the LH launcher. Closely linked with this topic are detailed studies of the changes in LH coupling due to modifications in the scrape-off layer during gas puffing and simultaneous application of ICRH. We revisit the fundamental ICRH heating of D plasmas, include new physics results made possible by recently installed new diagnostic capabilities on JET and point out caveats for ITER when NBI is simultaneously applied. Other topics are the study of the anomalous behaviour of fast ions from NBI, and a study of toroidal rotation induced by ICRH, both again with possible implications for ITER. In finalizing this cluster of articles, thanks are due to all colleagues involved in preparing and executing the JET programme under EFDA in recent years. We want to thank the EFDA leadership for the special privilege of appointing us as Leaders or Deputies of Task Force Heating, a wonderful and hardworking group of colleagues. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the Operations team of JET and the colleagues of the Close Support Unit (CSU). Thanks are also due to the Editors, Editorial Board and referees of Plasma Physics and Controlled Fusion together with the publishing staff of IOP Publishing who have supported and contributed substantially to this initiative.

  14. Helicon wave coupling in KSTAR plasmas for off-axis current drive in high electron pressure plasmas

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Wi, H. H.; Kim, H. J.; Kim, J.; Jeong, J. H.; Kwak, J. G.

    2017-04-01

    A helicon wave current drive is proposed as an efficient off-axis current drive in the high electron β plasmas that are expected in fusion reactors. A high frequency helicon wave coupling was analyzed using the surface impedance at a plasma boundary. A slow wave coupling, which may compete with the helicon wave coupling at a frequency of 500 MHz, is estimated to be lower than the fast wave coupling by an order of magnitude in the KSTAR edge plasma density and in practical Faraday shield misalignment with the magnetic pitch. A traveling wave antenna, which is a two port combline antenna, was analyzed using a simplified lumped element model. The results show that the traveling wave antenna provides load resiliency because of its insensitivity to loading resistance, provided that the loading resistance at a radiating element is limited within a practical range. The combline antenna is attractive because it does not require a matching system and exhibits a high selectivity of parallel refractive index. Based on the analysis, a seven element combline antenna was fabricated and installed at an off-mid-plane offset of 30 cm from the mid-plane in KSTAR. The low power RF characteristics measured during several plasma discharges showed no evidence of slow wave coupling. This is consistent with the expectation made through the surface impedance analysis which predicted low slow wave coupling. The wave coupling to the plasma is easily controlled by a radial outer-gap control and gas puffing. No plasma confinement degradation was observed during the radial outer-gap control of up to 3 cm in H-mode discharges. In a ELMy plasmas, only a small reflection peak was observed during a very short portion of the ELM bursting period. If the number of radiating elements is increased for high power operation, then complete load resiliency can be expected. A very large coupling can be problematic for maintaining a parallel refractive index, although this issue can be mitigated by increasing the number of elements.

  15. Initial Edge Stability Observations in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Battaglia, D. J.; Garstka, G. D.; Sontag, A. C.; Unterberg, E. A.

    2007-11-01

    Edge stability is an important consideration for design of fusion experiments, as transient heat loads generated by edge instabilities may damage the first wall. Such instabilities are now believed to include peeling (current driven) and ballooning (pressure driven) components. Peeling instability may be expected for high values of edge j||/B and low edge pressure gradient. This matches the operating space of Pegasus, with typical ˜100 kA/m^2, |B|˜ 0.01 T, and an L-mode edge. A new camera system has observed filamentary structures in the edge of nearly all ohmically-heated discharges. Ideal stability analysis of these discharges with DCON indicates marginal stability to resistive interchange for ψN>= 0.95. Modification of triangularity during startup is observed to delay instability onset. A plasma control system based on that used on DIII-D will allow study of the influence of plasma shaping on mode stability characteristics. An array of magnetic probes capable of insertion into the scrape-off layer and plasma edge is being developed to provide a local constraint on the edge current profile.

  16. Simple Patchy-Based Simulators Used to Explore Pondscape Systematic Dynamics

    PubMed Central

    Fang, Wei-Ta; Chou, Jui-Yu; Lu, Shiau-Yun

    2014-01-01

    Thousands of farm ponds disappeared on the tableland in Taoyuan County, Taiwan since 1920s. The number of farm ponds that have disappeared is 1,895 (37%), 2,667 ponds remain (52%), and only 537 (11%) new ponds were created within a 757 km2 area in Taoyuan, Taiwan between 1926 and 1960. In this study, a geographic information system (GIS) and logistic stepwise regression model were used to detect pond-loss rates and to understand the driving forces behind pondscape changes. The logistic stepwise regression model was used to develop a series of relationships between pondscapes affected by intrinsic driving forces (patch size, perimeter, and patch shape) and external driving forces (distance from the edge of the ponds to the edges of roads, rivers, and canals). The authors concluded that the loss of ponds was caused by pond intrinsic factors, such as pond perimeter; a large perimeter increases the chances of pond loss, but also increases the possibility of creating new ponds. However, a large perimeter is closely associated with circular shapes (lower value of the mean pond-patch fractal dimension [MPFD]), which characterize the majority of newly created ponds. The method used in this study might be helpful to those seeking to protect this unique landscape by enabling the monitoring of patch-loss problems by using simple patchy-based simulators. PMID:24466281

  17. Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field

    NASA Astrophysics Data System (ADS)

    Rosa, P. R. da S.; Mourão, R.; Ziebell, L. F.

    2009-05-01

    This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.

  18. Turbulence, flow and transport: hints from reversed field pinch

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2006-04-01

    The interplay between sheared E × B flows and turbulence has been experimentally investigated in the edge region of the Extrap-T2R reversed field pinch experiment. Electrostatic fluctuations are found to rule the momentum balance equation representing the main driving term for sheared flows which counterbalances anomalous viscous damping. The driving role of electrostatic fluctuations is proved by the spatial structure of the Reynolds stress and by the time behaviour of the mean energy production term which supports the existence of an energy exchange from the small scales of turbulence to the larger scales of the mean flow.

  19. Cutting edge: Contact with secondary lymphoid organs drives postthymic T cell maturation.

    PubMed

    Houston, Evan G; Nechanitzky, Robert; Fink, Pamela J

    2008-10-15

    T cell development, originally thought to be completed in the thymus, has recently been shown to continue for several weeks in the lymphoid periphery. The forces that drive this peripheral maturation are unclear. The use of mice transgenic for GFP driven by the RAG2 promoter has enabled the ready identification and analysis of recent thymic emigrants. Here, we show that recent thymic emigrant maturation is a progressive process and is promoted by T cell exit from the thymus. Further, we show that this maturation occurs within secondary lymphoid organs and does not require extensive lymphocyte recirculation.

  20. 78 FR 19746 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... proposed change would not change the current limiting EDG [emergency diesel generator] failure but would... evaluated? Response: No. The proposed change would not change the current EDG [emergency diesel generator...

  1. Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding

    PubMed Central

    Pratt, Stephen J.P.; Hernández-Ochoa, Erick O.; Lee, Rachel M.; Ory, Eleanor C.; Lyons, James S.; Joca, Humberto C.; Johnson, Ashley; Thompson, Keyata; Bailey, Patrick; Lee, Cornell J.; Mathias, Trevor; Vitolo, Michele I.; Trudeau, Matt; Stains, Joseph P.; Ward, Christopher W.; Schneider, Martin F.; Martin, Stuart S.

    2018-01-01

    Aggressive cellular phenotypes such as uncontrolled proliferation and increased migration capacity engender cellular transformation, malignancy and metastasis. While genetic mutations are undisputed drivers of cancer initiation and progression, it is increasingly accepted that external factors are also playing a major role. Two recently studied modulators of breast cancer are changes in the cellular mechanical microenvironment and alterations in calcium homeostasis. While many studies investigate these factors separately in breast cancer cells, very few do so in combination. This current work sets a foundation to explore mechano-calcium relationships driving malignant progression in breast cancer. Utilizing real-time imaging of an in vitro scratch assay, we were able to resolve mechanically-sensitive calcium signaling in human breast cancer cells. We observed rapid initiation of intracellular calcium elevations within seconds in cells at the immediate wound edge, followed by a time-dependent increase in calcium in cells at distances up to 500μm from the scratch wound. Calcium signaling to neighboring cells away from the wound edge returned to baseline within seconds. Calcium elevations at the wound edge however, persisted for up to 50 minutes. Rigorous quantification showed that extracellular calcium was necessary for persistent calcium elevation at the wound edge, but intercellular signal propagation was dependent on internal calcium stores. In addition, intercellular signaling required extracellular ATP and activation of P2Y2 receptors. Through comparison of scratch-induced signaling from multiple cell lines, we report drastic reductions in response from aggressively tumorigenic and metastatic cells. The real-time scratch assay established here provides quantitative data on the molecular mechanisms that support rapid scratch-induced calcium signaling in breast cancer cells. These mechanisms now provide a clear framework for investigating which short-term calcium signals promote long-term changes in cancer cell biology. PMID:29861849

  2. [Can I drive a car, doctor? Car driving evaluation for people with disability and the importance in rehabilitation].

    PubMed

    García P, Daniela

    2010-02-01

    One of the main objectives in the rehabilitation of people with disability is to give them the possibility of mobilizing independently and a car is a modern and effective tool for achieving this objective. It is essential to make a specific assessment that includes at least the visual, cognitive and motor area before deter-mining whether the individual can drive a car, or also what kind of adaptations may be required. It is also essential to properly know the Traffic Law in force in our country to be able to guide the steps that the patient has to follow to obtain a driver's license. The objective of this review is to study deeply this interesting subject and all the edges that have been mentioned above.

  3. On current drive by Ohkawa mechanism of electron cyclotron wave in large inverse aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng

    2018-03-01

    A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20-32 kA MW-1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.

  4. Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe2

    NASA Astrophysics Data System (ADS)

    Zheng, Husong; Valtierra, Salvador; Ofori-Opoku, Nana; Chen, Chuanhui; Sun, Lifei; Yuan, Shuaishuai; Jiao, Liying; Bevan, Kirk H.; Tao, Chenggang

    2018-03-01

    To ensure the practical application of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe2 surfaces as a model system, for the first time we have observed a shape evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) electrical stressing. The size of islands shows linear growth with a rate of (3.00 +- 0.05) x 10-3 nm/s, when the STM scanning parameters are held fixed at Vs = 1.0 V and I = 1.8 nA. We further quantified how the growth rate is related to the tunneling current magnitude. Our simulations of monolayer island evolution using phase-field modeling are in good agreement with our experimental observations, and point towards preferential edge atom dissociation under STM scanning driving the observed growth. The results could be potentially important for device applications of ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing under device operating conditions.

  5. Equilibrium fitting analysis and propagation of magnetic fluctuations in the Multi-pulsing HIST plasmas

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Hanano, T.; Ito, K.; Ishihara, M.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2011-10-01

    The current drive by Multi-pulsing Coaxial Helicity Injection (M-CHI) has been performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms regarding a helicity transport from the edge to the core region, we have investigated the characteristics of magnetic field fluctuations observed in M- CHI experiments. We have fitted internal magnetic field data to a ST configuration calculated by the equilibrium code with a hollow pressure profile in order to find the sustained configurations. Fluctuation frequency is identified as about 80 kHz and it has been found to propagate from the open flux column region toward the core region. The toroidal mode n=0 is dominant in the high TF coil current operation. Alfven wave generation has been identified by evaluating its velocity as a function of plasma density or magnetic field strength. We will discuss the relationship between the Alfven wave and helicity propagation.

  6. NCMS ESS 2000 Project

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Bellamy, Marvin; DeSantis, Charlie; Hess, John; Pattok, Tracy; Quintero, Andrew; Silver, R.

    1996-01-01

    ESS 2000 has the vision of enhancing the knowledge necessary to implement cost-effective, leading-edge ESS technologies and procedures in order to increase U.S. electronics industry competitiveness. This paper defines EES and discusses the factors driving the project, the objectives of the project, its participants, the three phases of the project, the technologies involved, and project deliverables.

  7. Arp2/3 complex–dependent actin networks constrain myosin II function in driving retrograde actin flow

    PubMed Central

    Yang, Qing; Zhang, Xiao-Feng; Pollard, Thomas D.

    2012-01-01

    The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II–dependent contractility with consequent effects on growth cone motility. PMID:22711700

  8. Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX

    DOE PAGES

    Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...

    2016-07-05

    Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less

  9. Current Drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulconer, D.W

    2004-03-15

    Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less

  10. Forest edges: Effects on vegetation, environmental gradients and local avian communities in the Sierra Juarez, Oaxaca, Mexico

    NASA Astrophysics Data System (ADS)

    Burcsu, Theresa Katherine

    Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in this seasonally dry, open forest, vegetation and bird communities respond less to small openings than they do in wetter, more closed-canopy forests. Management practices and historical land-use interact and interfere with the detectability of edge influence in our study area. These results support hypotheses proposed for open forest types and suggest that patterns in edge influence in wet forest types may not be applicable to dry sites.

  11. Edge and area effects on the occurrence of migrant forest songbirds

    USGS Publications Warehouse

    Parker, T.H.; Stansberry, B.M.; Becker, C.D.; Gipson, P.S.

    2005-01-01

    Concerns about forest fragmentation and its conservation implications have motivated numerous studies that investigate the influence of forest patch area and forest edge on songbird distribution patterns. The generalized effects of forest patch size and forest edge on animal distributions is still debatable because forest patch size and forest edge are often confounded and because of an incomplete synthesis of available data. To fill a portion of this gap, we incorporated all available published data (33 papers) in meta-analyses of forest edge and area effects on site occupancy patterns for 26 Neotropical migrant forest-nesting songbirds in eastern North America. All reported area effects are confounded or potentially confounded by edge effects, and we refer to these as "confounded" studies. The converse, however, is not true and most reported edge effects are independent of patch area. When considering only nonconfounded studies of edge effects, only 1 of 17 species showed significant edge avoidance and 3 had significant affinity for edges. In confounded studies, 12 of 22 species showed significant avoidance of small patches and edges, and 1 had an affinity for small patches and edges. Furthermore, average effect sizes averaged across studies or species tended to be higher for confounded studies than for edge studies. We discuss three possible reasons for differences in results between these two groups of studies. First, studies of edge effects tended to be carried out in landscapes with greater forest cover than studies of confounded effects; among confounded effects studies, as forest cover increased, we observed a nonsignificant trend towards decreasing strength of small patch or edge avoidance effects. Thus, the weaker effects in edge studies may be due to the fact that these studies were conducted in forest-dominated landscapes. Second, we may have detected strong effects only in confounded studies because area effects are much stronger than edge effects on bird occurrence, and area effects drive the results in confounded studies. Third, edge and area effects may interact in such a way that edge effects become more important as forest patch size decreases; thus, both edge and area effects are responsible for results in confounded studies. These three explanations cannot be adequately separated with existing data. Regardless, it is clear that fragmentation of forests into small patches is detrimental to many migrant songbird species. ??2005 Society for Conservation Biology.

  12. Knowledge networks for global public health.

    PubMed

    Natividad, Maria Dulce F; Fiereck, Kirk J; Parker, Richard

    2012-01-01

    The challenges posed by a globalised world have made it imperative for society to search for solutions to emerging issues and to develop new ways of looking at old problems. Current discussions about global public health demand a shift in paradigms and the strategic positioning of public health within broader policy discussions that will enable it to influence political and action agendas. Critical to responding to these challenges is the generation, transmission and dissemination of new knowledge to create value. Recognising the cutting-edge role of knowledge, as a new form of capital that drives innovation and transforms society, the formation of knowledge networks is viewed as a strategy for developing a shared intellectual, conceptual and ethical infrastructure for the field of global public health. These knowledge networks are envisioned as a vehicle for sharing diverse perspectives, encouraging debate and sustaining alternative ways of thinking about and responding to the challenges that confront global public health today and in the future.

  13. Energies of the X- and L-valleys in In{sub 0.53}Ga{sub 0.47}As from electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene-Diniz, Gabriel; Greer, J. C.; Fischetti, M. V.

    2016-02-07

    Several theoretical electronic structure methods are applied to study the relative energies of the minima of the X- and L-conduction-band satellite valleys of In{sub x}Ga{sub 1−x}As with x = 0.53. This III-V semiconductor is a contender as a replacement for silicon in high-performance n-type metal-oxide-semiconductor transistors. The energy of the low-lying valleys relative to the conduction-band edge governs the population of channel carriers as the transistor is brought into inversion, hence determining current drive and switching properties at gate voltages above threshold. The calculations indicate that the position of the L- and X-valley minima are ∼1 eV and ∼1.2 eV, respectively, higher in energymore » with respect to the conduction-band minimum at the Γ-point.« less

  14. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  15. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  16. Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kyungmi; Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr; Department of Materials Science and Engineering, Korea University, Seoul 136-713

    2015-08-07

    We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable formore » the optimization of STT-MRAM.« less

  17. Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X

    DOE PAGES

    Holbe, H.; Pedersen, T. Sunn; Geiger, J.; ...

    2016-01-29

    The edge topology of magnetic fusion devices is decisive for the control of the plasma exhaust. In Wendelstein 7-X, the island divertor concept will be used, for which the edge topology can change significantly as the internal currents in a plasma discharge evolve towards steady-state. Consequently, the device has been optimized to minimize such internal currents, in particular the bootstrap current [1]. Nonetheless, there are predicted pulse scenarios where effects of the remaining internal currents could potentially lead to overload of plasma-facing components. These internal currents are predicted to evolve on long time scales (tens of seconds) so their effectsmore » on the edge topology and the divertor heat loads may not be experimentally accessible in the first years of W7-X operation, where only relatively short pulses are possible. However, we show here that for at least one important long-pulse divertor operation issue, relevant physics experiments can be performed already in short-pulse operation, through judicious adjustment of the edge topology by the use of the existing coil sets. The specific issue studied here is a potential overload of the divertor element edges. This overload might be mitigated by the installation of an extra set of plasma-facing components, so-called scraper elements, as suggested in earlier publications. It is shown here that by a targeted control of edge topology, the effectiveness of such scraper elements can be tested already with uncooled test-scraper elements in short-pulse operation. Furthermore, this will allow an early and well-informed decision on whether long-pulse-capable (actively cooled) scraper elements should be built and installed.« less

  18. NIMROD simulations of HIT-SI plasmas

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Jarboe, Thomas; Nelson, Brian; Kim, Charlson

    2011-10-01

    HIT-SI (Steady Inductive Helicity Injected Torus) is a current drive experiment that uses two semi-toroidal helicity injectors driven at 5-15 kHz to generate steady inductive helicity injection (SIHI). All the plasma-facing walls of the experiment are coated with an insulating material to guarantee an inductive discharge. NIMROD is a 3-D extended MHD code that can only model toroidally-uniform geometries. The helicity injectors of the experiment are simulated as flux and voltage boundary conditions with odd toroidal symmetry. A highly resistive, thin edge-layer approximates the insulating walls. The simulations are initial-value calculations that use a zero β resistive MHD (rMHD) model with uniform density. The Prandtl number (Pr = 10), and Lundquist number (S = 5 - 50) closely match the experimental values. rMHD calculations at S ~ 10 show no growth of an n = 0 mode and only a few kA of toroidal current whereas HIT-SI has demonstrated toroidal currents greater than 50 kA with a current amplification of 3. At higher S (>= 20) the simulations exhibit significant n = 0 magnetic energy growth and a current amplification exceeding unity: Itor/Iinj >= 1 . While HIT-SI has shown evidence for separatrix formation, rMHD calculations indicate an entirely stochastic magnetic structure during sustainment. Results will also presented for Hall MHD, anticipated to play a crucial role in the physics of SIHI.

  19. Electrical motor/generator drive apparatus and method

    DOEpatents

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  20. Psychological distress and visual functioning in relation to vision-related disability in older individuals with cataracts.

    PubMed

    Walker, J G; Anstey, K J; Lord, S R

    2006-05-01

    To determine whether demographic, health status and psychological functioning measures, in addition to impaired visual acuity, are related to vision-related disability. Participants were 105 individuals (mean age=73.7 years) with cataracts requiring surgery and corrected visual acuity in the better eye of 6/24 to 6/36 were recruited from waiting lists at three public out-patient ophthalmology clinics. Visual disability was measured with the Visual Functioning-14 survey. Visual acuity was assessed using better and worse eye logMAR scores and the Melbourne Edge Test (MET) for edge contrast sensitivity. Data relating to demographic information, depression, anxiety and stress, health care and medication use and numbers of co-morbid conditions were obtained. Principal component analysis revealed four meaningful factors that accounted for 75% of the variance in visual disability: recreational activities, reading and fine work, activities of daily living and driving behaviour. Multiple regression analyses determined that visual acuity variables were the only significant predictors of overall vision-related functioning and difficulties with reading and fine work. For the remaining visual disability domains, non-visual factors were also significant predictors. Difficulties with recreational activities were predicted by stress, as well as worse eye visual acuity, and difficulties with activities of daily living were associated with self-reported health status, age and depression as well as MET contrast scores. Driving behaviour was associated with sex (with fewer women driving), depression, anxiety and stress scores, and MET contrast scores. Vision-related disability is common in older individuals with cataracts. In addition to visual acuity, demographic, psychological and health status factors influence the severity of vision-related disability, affecting recreational activities, activities of daily living and driving.

  1. The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea

    NASA Astrophysics Data System (ADS)

    Lentz, S. J.; Churchill, J. H.; Davis, K. A.; Farrar, J. T.; Pineda, J.; Starczak, V.

    2016-02-01

    Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2-10 cm setup of sea level that drives cross-reef currents of 5-20 cm s-1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.

  2. Generation of region 1 current by magnetospheric pressure gradients

    NASA Technical Reports Server (NTRS)

    Yang, Y. S.; Spiro, R. W.; Wolf, R. A.

    1994-01-01

    The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.

  3. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.

    PubMed

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-07-05

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

  4. Flies and humans share a motion estimation strategy that exploits natural scene statistics

    PubMed Central

    Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.

    2014-01-01

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225

  5. Observations of toroidicity-induced Alfvén eigenmodes in a reversed field pinch plasma

    NASA Astrophysics Data System (ADS)

    Regnoli, G.; Bergsâker, H.; Tennfors, E.; Zonca, F.; Martines, E.; Serianni, G.; Spolaore, M.; Vianello, N.; Cecconello, M.; Antoni, V.; Cavazzana, R.; Malmberg, J.-A.

    2005-04-01

    High frequency peaks in the spectra of magnetic field signals have been detected at the edge of Extrap-T2R [P. R. Brunsell, H. Bergsåker, M. Cecconello, J. R. Drake, R. M. Gravestijn, A. Hedqvist, and J.-A. Malmberg, Plasma Phys. Controlled Fusion, 43, 1457 (2001)]. The measured fluctuation is found to be mainly polarized along the toroidal direction, with high toroidal periodicity n and Alfvénic scaling (f∝B/√mini ). Calculations for a reversed field pinch plasma predict the existence of an edge resonant, high frequency, high-n number toroidicity-induced Alfvén eigenmode with the observed frequency scaling. In addition, gas puffing experiments show that edge density fluctuations are responsible for the rapid changes of mode frequency. Finally a coupling with the electron drift turbulence is proposed as drive mechanism for the eigenmode.

  6. Electrostatic properties of graphene edges for electron emission under an external electric field

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Okada, Susumu

    2018-04-01

    Electronic properties of graphene edges under a lateral electric field were theoretically studied in regard to their edge shapes and terminations to provide a theoretical insight into their field emission properties. The work function and potential barrier for the electron emission from the graphene edges are sensitive to their shape and termination. We also found that the hydrogenated armchair edge shows the largest emission current among all edges studied here. The electric field outside the chiral edges is spatially modulated along the edge because of the inhomogeneous charge density at the atomic sites of the edge arising from the bond alternation.

  7. Isotopic effect in experiments on lower hybrid current drive in the FT-2 tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkul, S. I., E-mail: Serguey.lashkul@mail.ioffe.ru; Altukhov, A. B.; Gurchenko, A. D., E-mail: aleksey.gurchenko@mail.ioffe.ru

    To analyze factors influencing the limiting value of the plasma density at which lower hybrid (LH) current drive terminates, the isotopic factor (the difference in the LH resonance densities in hydrogen and deuterium plasmas) was used for the first time in experiments carried out at the FT-2 tokamak. It is experimentally found that the efficiency of LH current drive in deuterium plasma is appreciably higher than that in hydrogen plasma. The significant role of the parametric decay of the LH pumping wave, which hampers the use of the LH range of RF waves for current drive at high plasma densities,more » is confirmed. It is demonstrated that the parameters characterizing LH current drive agree well with the earlier results obtained at large tokamaks.« less

  8. Universal power transistor base drive control unit

    DOEpatents

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  9. Universal power transistor base drive control unit

    DOEpatents

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  10. Southern Half of Spirit's 'Bonestell' Panorama (False Color)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This 180-degree panorama shows the southward vista from the location where Spirit is spending its third Martian winter inside Mars' Gusev Crater. The rover's overwintering location is on the northern edge of a low plateau informally called 'Home Plate,' which is about 80 meters or 260 feet in diameter.

    This view combines 168 different exposures taken with Spirit's panoramic Camera (Pancam) 42 pointings with 4 filters at each pointing. Spirit took the first of these frames during the mission's 1,477th Martian day, or sol, (February 28, 2008) two weeks after the rover made its last move to reach the location where it would stop driving for the winter. Solar energy at Gusev Crater is so limited during the Martian winter that Spirit does not generate enough electricity to drive, nor even enough to take many images per day. The last frame for this mosaic was taken on Sol 1599 (July 2, 2008). The rover team plans for Spirit to finish taking images for the northern half of the scene during the Martian spring.

    The northwestern edge of Home Plate is visible in the right foreground. The blockier, more sharply shadowed texture there is layered sandstone whose layering is tilted inward toward the edge of the Home Plate platform. A dark rock on top of Home Plate in that area is a porous volcanic basalt unlike rocks nearby. The northeastern edge of Home Plate is visible in the left foreground. Spirit first climbed onto Home Plate on that region, in early 2006.

    Rover tracks from driving by Spirit are visible on Home plate in the center and right of the image. These were made during Spirit's second exploration on top of the plateau, which began when Spirit climbed onto the southern edge of Home Plate in September, 2007.

    In the center foreground, the turret of tools at the end of Spirit's robotic arm appears in duplicate because the arm was repositioned between the days when the images making up that part of the mosaic were taken.

    On the horizon, the highest point is 'McCool Hill.' This is one of the seven larger hills in the Columbia Hills range. Home Plate is in the inner basin of the range, between McCool Hill to the south and 'Husband Hill' to the north. To the right of McCool Hill, in the center of the image and closer to Home Plate, is a smaller hill capped with a light-toned outcrop. This hill is called 'Von Braun,' and it is a possible destination the rover team has discussed for the next season of driving by Spirit, after the solar energy level increases in the Martian spring. The flat horizon in the right-hand portion of the panorama is the basaltic plain onto which Spirit landed on Jan. 4, 2004.

    This is a false-color, red-green-blue composite panorama generated from images taken through the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters. The false color enhances visibility of differences among the types of rock and soil material in the image.

  11. Experimental methodology of contact edge roughness on sub-100-nm pattern

    NASA Astrophysics Data System (ADS)

    Lee, Tae Yong; Ihm, Dongchul; Kang, Hyo Chun; Lee, Jun Bum; Lee, Byoung-Ho; Chin, Soo-Bok; Cho, Do-Hyun; Kim, Yang Hyong; Yang, Ho Dong; Yang, Kyoung Mo

    2004-05-01

    The measurement of edge roughness has become a hot issue in the semiconductor industry. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. However, most of the features are limited by the applicable pattern types. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. The edge roughness is more critical in contact process. However the measurement of contact edge roughness (CER) or contact space roughness (CSR) is more complicated than that of LER or LWR. So far, no formal standard measurement algorithm or definition of contact roughness measurement exists. In this article, currently available features are investigated to assess their representability for CER or CSR. Some new ideas to quantify CER and CSR were also suggested with preliminary experimental results.

  12. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being <1km from an edge, our understanding of forest carbon dynamics is largely derived from intact forest systems. In the northeastern USA, we find that over 23% of the current forest area is just 30m from an agricultural or developed edge. Edge effects on the carbon cycle vary in their magnitude by biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  13. Recent progress towards a physics-based understanding of the H-mode transition

    DOE PAGES

    Tynan, G. R.; Cziegler, I.; Diamond, P. H.; ...

    2016-01-22

    Results from recent experiment and numerical simulation point towards a picture of the L-H transition in which edge shear flows interacting with edge turbulence create the conditions needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow drive gets stronger as heating is increased. The L-H transition ensues when the rate of work done by this stress is strong enough to drive the shear flow to large values, which then grows at the expense of the turbulence intensity. Themore » drop in turbulence intensity momentarily reduces the heat flux across the magnetic flux surface, which then allows the edge plasma pressure gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. The results are in general agreement with previously published reduced 0D and 1D predator prey models. An extended predator–prey model including separate ion and electron heat channels yields a non-monotonic power threshold dependence on plasma density provided that the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms to explain other macroscopic transition threshold criteria are identified. A number of open questions and unexplained observations are identified, and must be addressed and resolved in order to build a physics-based model that can yield predictions of the macroscopic conditions needed for accessing H-mode.« less

  14. Supporting drivers in forming correct expectations about transitions between rural road categories.

    PubMed

    Stelling-Konczak, Agnieszka; Aarts, Letty; Duivenvoorden, Kirsten; Goldenbeld, Charles

    2011-01-01

    In order to support drivers in forming the right expectations on the road, road categories are being made recognisable and predictable in the Netherlands. The present study investigated which of the selected road layouts can make rural road categories most recognisable for road users, especially in transitions from one road category to another. A second objective was to study whether explicit information could contribute to a better recognisability of transitions. The experiment was performed with a series of photographs showing sections of two road categories with an intersection in between. The road layout of road categories varied in markings and separation of driving direction (within-subjects factor). Informed and non-informed participants (between-subjects factor) had to indicate their expectations regarding speed limit and access restriction of each road section, before and after a transition. The results show that for transitions between distributor and through roads, the physicality of separation of driving direction is a better distinctive characteristic than the currently used edge marking. The green centre marking on through roads also enhances recognisability, but only with additional information. As far as transitions between distributor and access roads are concerned, the results demonstrate that this type of transitions is better recognised when no markings on access roads are present. Physical separation of driving directions on distributor roads also improves recognisability, although this layout is associated with higher speed limits. Providing explicit information has in general a positive effect on the reconisability of transitions. Implications are discussed in the light of potential safety effects. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, Burak

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.« less

  16. Bootstrap and fast wave current drive for tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less

  17. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  18. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses.

    PubMed

    Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P

    2017-03-01

    Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.

  19. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.; ...

    2018-05-02

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  20. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  1. Consideration of correlativity between litho and etching shape

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka

    2012-03-01

    We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.

  2. Magnetic polarization measurements of the multi-modal plasma response to 3D fields in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Cui, L.; Wang, H.; Sun, Y.; Gu, S.; Li, G.; Nazikian, R.; Paz-Soldan, C.

    2018-07-01

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n  =  2 fields in the same plasma for which the n  =  1 responses are well synchronized. Neither the maximum radial nor the maximum poloidal field response to n  =  2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n  =  1 and n  =  2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.

  3. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    A. Kallenbachthe ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-10-01

    The ASDEX Upgrade (AUG) programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. Since 2015, AUG is equipped with a new pair of 3-strap ICRF antennas, which were designed for a reduction of tungsten release during ICRF operation. As predicted, a factor two reduction on the ICRF-induced W plasma content could be achieved by the reduction of the sheath voltage at the antenna limiters via the compensation of the image currents of the central and side straps in the antenna frame. There are two main operational scenario lines in AUG. Experiments with low collisionality, which comprise current drive, ELM mitigation/suppression and fast ion physics, are mainly done with freshly boronized walls to reduce the tungsten influx at these high edge temperature conditions. Full ELM suppression and non-inductive operation up to a plasma current of {{I}\\text{p}}=0.8 MA could be obtained at low plasma density. Plasma exhaust is studied under conditions of high neutral divertor pressure and separatrix electron density, where a fresh boronization is not required. Substantial progress could be achieved for the understanding of the confinement degradation by strong D puffing and the improvement with nitrogen or carbon seeding. Inward/outward shifts of the electron density profile relative to the temperature profile effect the edge stability via the pressure profile changes and lead to improved/decreased pedestal performance. Seeding and D gas puffing are found to effect the core fueling via changes in a region of high density on the high field side (HFSHD). The integration of all above mentioned operational scenarios will be feasible and naturally obtained in a large device where the edge is more opaque for neutrals and higher plasma temperatures provide a lower collisionality. The combination of exhaust control with pellet fueling has been successfully demonstrated. High divertor enrichment values of nitrogen {{E}\\text{N}}≥slant 10 have been obtained during pellet injection, which is a prerequisite for the simultaneous achievement of good core plasma purity and high divertor radiation levels. Impurity accumulation observed in the all-metal AUG device caused by the strong neoclassical inward transport of tungsten in the pedestal is expected to be relieved by the higher neoclassical temperature screening in larger devices.

  4. Floquet topological phases with symmetry in all dimensions

    NASA Astrophysics Data System (ADS)

    Roy, Rahul; Harper, Fenner

    2017-05-01

    Dynamical systems may host a number of remarkable symmetry-protected phases that are qualitatively different from their static analogs. In this work, we consider the phase space of symmetry-respecting unitary evolutions in detail and identify several distinct classes of evolution that host dynamical order. Using ideas from group cohomology, we construct a set of interacting Floquet drives that generate dynamical symmetry-protected topological order for each nontrivial cohomology class in every dimension, illustrating our construction with explicit two-dimensional examples. We also identify a set of symmetry-protected Floquet drives that lie outside of the group cohomology construction, and a further class of symmetry-respecting topological drives which host chiral edge modes. We use these special drives to define a notion of phase (stable to a class of local perturbations in the bulk) and the concepts of relative and absolute topological order, which can be applied to many different classes of unitary evolutions. These include fully many-body localized unitary evolutions and time crystals.

  5. Evidence-based and occupational perspective of effective interventions for older clients that remediate or support improved driving performance.

    PubMed

    Hunt, Linda A; Arbesman, Marian

    2008-01-01

    To assess the effectiveness of person-related interventions on driving ability in older adults, this literature review was completed as a part of the Evidence-Based Literature Review Project of the American Occupational Therapy Association. Nineteen articles were incorporated into the systematic review and include interventions in the following areas: visual, cognitive, and motor; educational; passengers; and medical. The results provide inconclusive evidence for the use of interventions such as the Useful Field of View training, home exercise programs, and passenger interactions. Conclusive evidence shows that older adults respond positively to programs stressing self-awareness of driving skills and that some medical interventions affect the ability to drive. Despite limitations, the studies reviewed provide useful information that deserves further exploration. Reading the literature provides therapists with knowledge that might improve client care. Learning about cutting-edge interventions and educating peers and students about evidence-based interventions may lead to safer community mobility for older adults.

  6. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Treesearch

    W. Andrew Cox; Frank R. III Thompson; John Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  7. Brief Report: Driving and Young Adults with ASD--Parents' Experiences

    ERIC Educational Resources Information Center

    Cox, Neill Broderick; Reeve, Ronald E.; Cox, Stephany M.; Cox, Daniel J.

    2012-01-01

    A paucity of research exists regarding driving skills and individuals with Autism Spectrum Disorders (ASD). The current study sought to gain a better understanding of driving and ASD by surveying parents/caregivers of adolescents/young adults with ASD who were currently attempting, or had previously attempted, to learn to drive. Respondents…

  8. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K; Weber, F; Dewald, E

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  9. Experimental Research on Air Propellers III

    NASA Technical Reports Server (NTRS)

    Durand, W F; Lesley, E P

    1920-01-01

    Report presents the results of wind tunnel tests of propellers that examined the influence of the following characteristics: (1) nominal pitch ratio 1.3 combined with a certain number of the more common or standard forms and proportions; (2) driving face slightly rounded or convex; (3) change in the location of the maximum thickness ordinate of the blade section; (4) pushing forward the leading edge of the blade, thus giving a rounded convex surface on the leading side of the driving face. (5) a series of values for the constant "angle of attack" in forming propellers with radially increasing pitch. In accordance with these purposes tests were carried out on 28 propellers.

  10. Directional Characteristics of Inner Shelf Internal Tides

    DTIC Science & Technology

    2007-06-01

    Figure 18. YD 202-206 Current vector plot of significant events. Significant events include internal tidal bores, solibores, and solitons . The upper...Events (Bores, Solibores, and Solitons ): Upper column leading-edge cross-shore current velocity and cross-shore wind regression. The small ellipse...Significant Events (Bores, Solibores, and Solitons ): Upper column leading-edge along-shore current velocity and along-shore wind regression. The small

  11. Plasma heating and current drive using intense, pulsed microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less

  12. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    NASA Astrophysics Data System (ADS)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  13. Modelling of minority ion cyclotron current drive during the activated phase of ITER

    NASA Astrophysics Data System (ADS)

    Laxåback, M.; Hellsten, T.

    2005-12-01

    Neoclassical tearing modes, triggered by the long-period sawteeth expected in tokamaks with large non-thermal α-particle populations, may impose a severe β limit on experiments with large fusion yields and on reactors. Sawtooth destabilization by localized current drive could relax the β limit and improve plasma performance. 3He minority ion cyclotron current drive around the sawtooth inversion radius has been planned for ITER. Several ion species, including beam injected D ions and fusion born α particles, are however also resonant in the plasma and may represent a parasitic absorption of RF power. Modelling of minority ion cyclotron current drive in an ITER-FEAT-like plasma is presented, including the effects of ion trapping, finite ion drift orbit widths, wave-induced radial transport and the coupled evolution of wave fields and resonant ion distributions. The parasitic absorption of RF power by the other resonant species is concluded to be relatively small, but the 3He minority current drive is nevertheless negligible due to the strong collisionality of the 3He ions and the drag current by toroidally counter-rotating background ions and co-rotating electrons. H minority current drive is found to be a significantly more effective alternative.

  14. Turbulent current drive mechanisms

    NASA Astrophysics Data System (ADS)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  15. Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.

    2015-12-01

    Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.

  16. Wind Competing Against Settling: A Coherent Model of the GW Virginis Instability Domain

    NASA Astrophysics Data System (ADS)

    Quirion, P.-O.; Fontaine, G.; Brassard, P.

    2012-08-01

    We examine in detail the proposition that GW Vir pulsators owe their existence to a residual stellar wind that competes against the settling of the carbon and oxygen atoms which "fuel" pulsational instabilities via their opacity. With cooling, the fading wind progressively loses its capacity to maintain enough of these opaque atoms in the driving region, leading naturally to a red edge where pulsations disappear. We investigate, in particular, the effects of changing the mass-loss law and the initial envelope composition on the position of the red edge in the log g-T eff diagram. With this approach, we derive a coherent picture of the GW Vir instability domain.

  17. Unzipping and movement of Lomer-type edge dislocations in Ge/GeSi/Si(0 0 1) heterostructures

    NASA Astrophysics Data System (ADS)

    Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Sokolov, L. V.

    2018-02-01

    Edge dislocations in face-centered crystals are formed from two mixed dislocations gliding along intersecting {1 -1 1} planes, forming the so-called Lomer locks. This process, which is called zipping, is energetically beneficial. It is experimentally demonstrated in this paper that a reverse process may occur in Ge/GeSi strained buffer/Si(0 0 1) heterostructures under certain conditions, namely, decoupling of two 60° dislocations that formed the Lomer-type dislocation, i.e., unzipping. It is assumed that the driving force responsible for separation of Lomer dislocations into two 60° dislocations is the strain remaining in the GeSi buffer layer.

  18. Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.

    2017-10-01

    An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.

  19. Edge currents in frustrated Josephson junction ladders

    NASA Astrophysics Data System (ADS)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  20. Microcalorimetry and the transition-edge sensor

    NASA Astrophysics Data System (ADS)

    Lindeman, Mark Anton

    2000-10-01

    Many scientific and industrial applications call for quantum-efficient high-energy-resolution microcalorimeters for the measurement of x rays. The applications driving the development of these detectors involve the measurement of faint sources of x rays in which few photons reach the detector. Interesting astrophysical applications for these microcalorimeters include the measurement of composition and temperatures of stellar atmospheres and diffuse interstellar plasmas. Other applications of microcalorimeter technology include x-ray fluorescence (XRF) measurements of industrial or scientific samples. We are attempting to develop microcalorimeters with energy resolutions of several eV because many sources (such as celestial plasmas) contain combinations of elements producing emission lines spaced only a few eV apart. Our microcalorimeters consist of a metal-film absorber (250mum x 250mum x 3mum of copper) coupled to a superconducting transition-edge-sensor (TES) thermometer. This microcalorimeter demonstrated an energy resolution of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position dependent response. The response of our microcalorimeters depends both on the temperature of the microcalorimeter and on the electrical current conducted through the TES thermometer. We present a microcalorimeter model that extends previous microcalorimeter theory to include additional current dependent effects. The model makes predictions about the effects of various forms of noise. In addition, the model helps us to understand what measurements are useful for characterizing TES microcalorimeters. While the energy resolution we obtained was quite good (twice as good as conventional semiconductor-based x-ray detectors), the obtained resolution was not as good as expected, due to excess noise from fluctuations in the TES thermometer. The energy resolution of future TES microcalorimeters can be improved by redesigning the calorimeters to minimize the noise due to these fluctuations.

  1. Why does substorm-associated auroral surge travel westward?

    NASA Astrophysics Data System (ADS)

    Ebihara, Y.; Tanaka, T.

    2018-01-01

    A substorm is a long-standing unsolved issue in solar-terrestrial physics. One of the big challenges is to explain reasonably the evolution of the morphological structure of the aurora associated with the substorm. The sudden appearance of a bright aurora and an auroral surge traveling westward (westward traveling surge, WTS) are noticeable features of the aurora during the substorm expansion phase. By using a global magnetohydrodynamics (MHD) simulation, we obtained the following results regarding the WTS. When the interplanetary magnetic field turns southward, a persistent dynamo appears in the cusp/mantle region, driving the two-cell magnetospheric convection. Then, the substorm growth phase begins. When magnetic reconnection takes place in the magnetotail, plasma is accelerated earthward in the plasma sheet, and accelerated toward the equatorial plane in the lobe. The second dynamo appears in the near-Earth region, which is closely associated with the generation of the field-aligned current (FAC) on the nightside. When the FAC reaches the ionosphere, the aurora becomes bright, and the onset of the expansion phase begins. In the ionosphere, the conductivity is intensified in the bright aurora due to the precipitation of accelerated electrons. The conductivity gradient gives rise to the overflow of the Hall current, which acts as the third dynamo. The overflow results in the accumulation of space charge, which causes a divergent electric field. The divergent electric field generates a thin, structured upward FAC adjacent to the bright aurora. The opposite process takes place on the opposite side of the bright aurora. In short, the upward FAC increases (appearance of aurora) at the leading edge of the surge, and decreases (disappearance of aurora) at the trailing edge of the surge. By repeating these processes, the surge seems to travel westward.

  2. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  3. Use of edge line markings on rural two-lane highways.

    DOT National Transportation Integrated Search

    2008-01-01

    The objective of this study was to review roadway characteristics and crash data in Kentucky and determine if revisions should be made to current guidelines for the sue of edge lines. Recommendations were made concerning the use of edge lines, center...

  4. Visual function and fitness to drive.

    PubMed

    Kotecha, Aachal; Spratt, Alexander; Viswanathan, Ananth

    2008-01-01

    Driving is recognized to be a visually intensive task and accordingly there is a legal minimum standard of vision required for all motorists. The purpose of this paper is to review the current United Kingdom (UK) visual requirements for driving and discuss the evidence base behind these legal rules. The role of newer, alternative tests of visual function that may be better indicators of driving safety will also be considered. Finally, the implications of ageing on driving ability are discussed. A search of Medline and PubMed databases was performed using the following keywords: driving, vision, visual function, fitness to drive and ageing. In addition, papers from the Department of Transport website and UK Royal College of Ophthalmologists guidelines were studied. Current UK visual standards for driving are based upon historical concepts, but recent advances in technology have brought about more sophisticated methods for assessing the status of the binocular visual field and examining visual attention. These tests appear to be better predictors of driving performance. Further work is required to establish whether these newer tests should be incorporated in the current UK visual standards when examining an individual's fitness to drive.

  5. Magnetosheath-ionspheric plasma interactions in the cusp/cleft. 2: Mesoscale particle simulations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Menietti, J. D.; Lin, C. S.

    1993-01-01

    Ionospheric plasma flowing out from the cusp can be an important source of plasma to the magnetosphere. One source of free energy that can drive this outflow is the injection of magnetosheath plasma into the cusp. Two-dimensional (three velocity) mesoscale particle simulations are used to investigate the particle dynamics in the cusp during southward interplanetary magnetic field. This mesoscale model self-consistently incorporates (1) global influences such as the convection of plasma across the cusp, the action of the mirror force, and the injection of the magnetosheath plasma, and (2) wave-particle interactions which produce the actual coupling between the magnetosheath and ionospheric plasmas. It is shown that, because the thermal speed of the electrons is higher than the bulk motion of the magnetosheath plasma, an upward current is formed on the equatorward edge of the injection region with return currents on either side. However, the poleward return currents are the stronger due to the convection and mirroring of many of the magnetosheath electrons. The electron distribution in this latter region evolves from upward directed streams to single-sided loss cones or possibly electron conics. The ion distribution also shows a variety of distinct features that are produced by spatial and/or temporal effects associated with varying convection patterns and wave-particle interactions. On the equatorward edge the distribution has a downflowing magnetosheath component and an upflowing cold ionospheric component due to continuous convection of ionospheric plasma into the region. In the center of the magnetosheath region, heating from the development of an ion-ion streaming instability causes the suppression of the cold ionospheric component and the formation of downward ionospheric streams. Further poleward there is velocity filtering of ions with low pitch angles, so that the magnetosheath ions develop a ring-beam distribution and the ensuing wave instabilities generate downward ionospheric conics. These downward ionospheric components are eventually turned by the mirror force, leading to the production of upward conics at elevated energies throughout the region.

  6. Amplification of perpendicular and parallel magnetic fields by cosmic ray currents

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2017-08-01

    Cosmic ray (CR) currents through magnetized plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hotspots. Using magnetohydrodynamic simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.

  7. Turbulent current drive mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm’s law, and hence provide an ideal means for driving deviationsmore » from neoclassical predictions.« less

  8. Turbulent current drive mechanisms

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-07-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm’s law, and hence provide an ideal means for driving deviationsmore » from neoclassical predictions.« less

  9. On Track for Success: The Use of Early Warning Indicator and Intervention Systems to Build a Grad Nation

    ERIC Educational Resources Information Center

    Bruce, Mary; Bridgeland, John M.; Fox, Joanna Hornig; Balfanz, Robert

    2011-01-01

    Over the past decade, schools, districts, and states have become increasingly savvy with data collection and analysis to drive student outcomes. The development and use of Early Warning Indicator and Intervention Systems (EWS) are at the cutting edge of the data- driven, outcomes-focused, high-impact education movement. These systems can increase…

  10. Detail of wharf A timber framing, showing piers and pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of wharf A timber framing, showing piers and pier caps or plates stepping down for a sloped launching deck, now built-up for a flat deck, interior of sheet steel bulkhead is visible at wharf edge - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  11. Fabricate-On-Demand Vacuum Insulating Glazings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCamy, James W.

    PPG proposed to design a fabricate-on-demand manufacturing process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulated glazing (VIG) units. To do so, we focused on improving three areas of VIG manufacturing that drive high costs and limit the ability for smaller manufacturers to enter the market: edge sealing, pillar design/placement, and evacuating the VIG.

  12. Simulation of detonation of ammonium nitrate fuel oil mixture confined by aluminum: edge angles for DSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Mark; Quirk, James J; Kiyanda, Charles B

    2010-01-01

    Non-ideal high explosives are typically porous, low-density materials with a low detonation velocity (3--5 km/s) and long detonation reaction zone ({approx} cms). As a result, the interaction of a non-ideal high explosive with an inert confiner can be markedly different than for a conventional high explosive. Issues arise, for example, with light stiff confiners where the confiner can drive the high explosive (HE) through a Prandtl-Meyer fan at the HE/confiner interface rather than the HE driving the confiner. For a non-ideal high explosive confined by a high sound speed inert such that the detonation velocity is lower than the inertmore » sound speed, the flow is subsonic and thus shockless in the confiner. In such cases, the standard detonation shock dynamics methodology, which requires a positive edge-angle be specified at the HE/confiner interface in order that the detonation shape be divergent, cannot be directly utilized. In order to study how detonation shock dynamics can be utilized in such cases, numerical simulations of the detonation of ammonium nitrate-fuel oil (ANFO) confined by aluminum 6061 are conducted.« less

  13. Shape-dependent guidance of active Janus particles by chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Dietrich, S.

    2018-01-01

    Self-phoretic chemically active Janus particles move by inducing—via non-equilibrium chemical reactions occurring on their surfaces—changes in the chemical composition of the solution in which they are immersed. This process leads to gradients in chemical composition along the surface of the particle, as well as along any nearby boundaries, including solid walls. Chemical gradients along a wall can give rise to chemi-osmosis, i.e., the gradients drive surface flows which, in turn, drive flow in the volume of the solution. This bulk flow couples back to the particle, and thus contributes to its self-motility. Since chemi-osmosis strongly depends on the molecular interactions between the diffusing molecular species and the wall, the response flow induced and experienced by a particle encodes information about any chemical patterning of the wall. Here, we extend previous studies on self-phoresis of a sphere near a chemically patterned wall to the case of particles with rod-like, elongated shape. We focus our analysis on the new phenomenology potentially emerging from the coupling—which is inoperative for a spherical shape—of the elongated particle to the strain rate tensor of the chemi-osmotic flow. Via detailed numerical calculations, we show that the dynamics of a rod-like particle exhibits a novel ‘edge-following’ steady state: the particle translates along the edge of a chemical step at a steady distance from the step and with a steady orientation. Moreover, within a certain range of system parameters, the edge-following state co-exists with a ‘docking’ state (the particle stops at the step, oriented perpendicular to the step edge), i.e., a bistable dynamics occurs. These findings are rationalized as a consequence of the competition between the fluid vorticity and the rate of strain by using analytical theory based on the point-particle approximation which captures quasi-quantitatively the dynamics of the system.

  14. Observation of chiral currents at the magnetic domain boundary of a topological insulator

    DOE PAGES

    Wang, Y. H.; Kirtley, J. R.; Katmis, F.; ...

    2015-08-28

    A magnetic domain boundary on the surface of a three-dimensional topological insulator is predicted to host a chiral edge state, but direct demonstration is challenging. Here, we used a scanning superconducting quantum interference device to show that current in a magnetized EuS/Bi 2Se 3 heterostructure flows at the edge when the Fermi level is gate-tuned to the surface band gap. We further induced micron-scale magnetic structures on the heterostructure, and detected a chiral edge current at the magnetic domain boundary. The chirality of the current was determined by magnetization of the surrounding domain and its magnitude by the local chemicalmore » potential rather than the applied current. As a result, such magnetic structures, provide a platform for detecting topological magnetoelectric effects and may enable progress in quantum information processing and spintronics.« less

  15. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  16. On the duration and intensity of cumulative advantage competitions

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Sun, Liyuan; Figueiredo, Daniel R.; Ribeiro, Bruno; Towsley, Don

    2015-11-01

    Network growth can be framed as a competition for edges among nodes in the network. As with various other social and physical systems, skill (fitness) and luck (random chance) act as fundamental forces driving competition dynamics. In the context of networks, cumulative advantage (CA)—the rich-get-richer effect—is seen as a driving principle governing the edge accumulation process. However, competitions coupled with CA exhibit non-trivial behavior and little is formally known about duration and intensity of CA competitions. By isolating two nodes in an ideal CA competition, we provide a mathematical understanding of how CA exacerbates the role of luck in detriment of skill. We show, for instance, that when nodes start with few edges, an early stroke of luck can place the less skilled in the lead for an extremely long period of time, a phenomenon we call ‘struggle of the fittest’. We prove that duration of a simple skill and luck competition model exhibit power-law tails when CA is present, regardless of skill difference, which is in sharp contrast to the exponential tails when fitness is distinct but CA is absent. We also prove that competition intensity is always upper bounded by an exponential tail, irrespective of CA and skills. Thus, CA competitions can be extremely long (infinite mean, depending on fitness ratio) but almost never very intense. The theoretical results are corroborated by extensive numerical simulations. Our findings have important implications to competitions not only among nodes in networks but also in contexts that leverage socio-physical models embodying CA competitions.

  17. Spirit's View Beside 'Home Plate' on Sol 1823 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11971 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11971

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,823rd Martian day, or sol, of Spirit's surface mission (Feb. 17, 2009).

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The center of the view is toward the south-southwest.

    The rover had driven 7 meters (23 feet) eastward earlier on Sol 1823, part of maneuvering to get Spirit into a favorable position for climbing onto the low plateau called 'Home Plate.' However, after two driving attempts with negligible progress during the following three sols, the rover team changed its strategy for getting to destinations south of Home Plate. The team decided to drive Spirit at least partway around Home Plate, instead of ascending the northern edge and taking a shorter route across the top of the plateau.

    Layered rocks forming part of the northern edge of Home Plate can be seen near the center of the image. Rover wheel tracks are visible at the lower edge.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  18. Physics of increased edge electron temperature and density turbulence during ELM-free QH-mode operation on DIII-D

    NASA Astrophysics Data System (ADS)

    Sung, C.; Rhodes, T. L.; Staebler, G. M.; Yan, Z.; McKee, G. R.; Smith, S. P.; Osborne, T. H.; Peebles, W. A.

    2018-05-01

    For the first time, we report increased edge electron temperature and density turbulence levels ( T˜ e and n˜ e) in Edge Localized Mode free Quiescent H-mode (ELM-free QH-mode) plasmas as compared to the ELMing time period. ELMs can severely damage plasma facing components in fusion plasma devices due to their large transient energy transport, making ELM-free operation a highly sought after goal. The QH-mode is a candidate for this goal as it is ELM-free for times limited only by hardware constraints. It is found that the driving gradients decrease during the QH-mode compared to the ELMing phase, however, a significant decrease in the ExB shearing rate is also observed that taken together is consistent with the increased turbulence. These results are significant as the prediction and control of ELM-free H-mode regimes are crucial for the operation of future fusion devices such as ITER. The changes in the linear growth rates calculated by CGYRO [Candy et al., J. Comput. Phys. 324, 73 (2016)] and the measured ExB shearing rate between ELMing and QH-mode phases are qualitatively consistent with these turbulence changes. Comparison with ELMing and 3D fields ELM suppressed H-mode finds a similar increase in T˜ e and n˜ e, however, with distinctly different origins, the increased driving gradients rather than the changes in the ExB shearing rate in 3D fields ELM suppressed the H-mode. However, linear gyrokinetic calculation results are generally consistent with the increased turbulence in both ELM-controlled discharges.

  19. Edge Ohmic Heating Experiment on HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Fan, Shuping; Li, Jian'gang; Meng, Yuedong; Luo, Jiarong; Yin, Fuxian; Zeng, Lei; Ding, Liancheng; Lin, Bili; Zhang, Wei; Han, Yuqing; Tong, Xingde; Luo, Lanchang; Gong, Xianzu; Jiang, Jiaguang; Wu, Mingjun; Yin, Fei

    1994-03-01

    An improved ohmic confinement has been achieved on HT-6M tokamak after application of edge ohmic heating pulse which makes plasma current rapidly ramp up (0.4 ms) in a ramp rate of 12 Ma/s. The improved ohmic confinement phase is characterized by (a) energy and particle confinement time increase, (b) non-symmetric increased density ne, (c) reduced Hα radiation, (d) increased Te and steeper Te, ne profile at the edge. The results from soft x-ray sawteeth inversion radius and βp + li/2 implied the anomalous current penetration.

  20. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Wei, Xuefeng F.; Grill, Warren M.

    2005-12-01

    Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.

  1. Tapping Recent Alumni for the Development of Cutting-Edge, Investigative Teaching Laboratory Experiments

    ERIC Educational Resources Information Center

    Brodl, Mark R.

    2005-01-01

    This project presents a model for the development of an innovative, highly-experimental teaching laboratory course that centers upon collaborative efforts between recent alumni currently enrolled in Ph. D. programs (consultants) and current faculty. Because these consultants are involved in cutting-edge research, their combined talents represent a…

  2. Spatial characterization of the edge barrier in wide superconducting films

    NASA Astrophysics Data System (ADS)

    Sivakov, A. G.; Turutanov, O. G.; Kolinko, A. E.; Pokhila, A. S.

    2018-03-01

    The current-induced destruction of superconductivity is discussed in wide superconducting thin films, whose width is greater than the magnetic field penetration depth, in weak magnetic fields. Particular attention is paid to the role of the boundary potential barrier (the Bin-Livingston barrier) in critical state formation and detection of the edge responsible for this critical state with different mutual orientations of external perpendicular magnetic field and transport current. Critical and resistive states of the film were visualized using the space-resolving low-temperature laser scanning microscopy (LTLSM) method, which enables detection of critical current-determining areas on the film edges. Based on these observations, a simple technique was developed for investigation of the critical state separately at each film edge, and for the estimation of residual magnetic fields in cryostats. The proposed method only requires recording of the current-voltage characteristics of the film in a weak magnetic field, thus circumventing the need for complex LTLSM techniques. Information thus obtained is particularly important for interpretation of studies of superconducting film single-photon light emission detectors.

  3. Sharp Refractory Composite Leading Edges on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Sullivan, Brian J.

    2003-01-01

    On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.

  4. Southern Half of Spirit's 'Bonestell' Panorama

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This 180-degree panorama shows the southward vista from the location where Spirit is spending its third Martian winter inside Mars' Gusev Crater. The rover's overwintering location is on the northern edge of a low plateau informally called 'Home Plate,' which is about 80 meters or 260 feet in diameter.

    This view combines 168 different exposures taken with Spirit's panoramic Camera (Pancam) 42 pointings with 4 filters at each pointing. Spirit took the first of these frames during the mission's 1,477th Martian day, or sol, (February 28, 2008) two weeks after the rover made its last move to reach the location where it would stop driving for the winter. Solar energy at Gusev Crater is so limited during the Martian winter that Spirit does not generate enough electricity to drive, nor even enough to take many images per day. The last frame for this mosaic was taken on Sol 1599 (July 2, 2008). The rover team plans for Spirit to finish taking images for the northern half of the scene during the Martian spring.

    The northwestern edge of Home Plate is visible in the right foreground. The blockier, more sharply shadowed texture there is layered sandstone whose layering is tilted inward toward the edge of the Home Plate platform. A dark rock on top of Home Plate in that area is a porous volcanic basalt unlike rocks nearby. The northeastern edge of Home Plate is visible in the left foreground. Spirit first climbed onto Home Plate on that region, in early 2006.

    Rover tracks from driving by Spirit are visible on Home plate in the center and right of the image. These were made during Spirit's second exploration on top of the plateau, which began when Spirit climbed onto the southern edge of Home Plate in September, 2007.

    In the center foreground, the turret of tools at the end of Spirit's robotic arm appears in duplicate because the arm was repositioned between the days when the images making up that part of the mosaic were taken.

    On the horizon, the highest point is 'McCool Hill.' This is one of the seven larger hills in the Columbia Hills range. Home Plate is in the inner basin of the range, between McCool Hill to the south and 'Husband Hill' to the north. To the right of McCool Hill, in the center of the image and closer to Home Plate, is a smaller hill capped with a light-toned outcrop. This hill is called 'Von Braun,' and it is a possible destination the rover team has discussed for the next season of driving by Spirit, after the solar energy level increases in the Martian spring. The flat horizon in the right-hand portion of the panorama is the basaltic plain onto which Spirit landed on Jan. 4, 2004.

    This is an approximate true-color, red-green-blue composite panorama generated from images taken through the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters. This 'natural color' view is the rover team's best estimate of what the scene would look like if we were there and able to see it with our own eyes.

  5. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  6. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  7. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  8. Numerical analysis on the synergy between electron cyclotron current drive and lower hybrid current drive in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chen, S. Y.; Hong, B. B.; Liu, Y.; Lu, W.; Huang, J.; Tang, C. J.; Ding, X. T.; Zhang, X. J.; Hu, Y. J.

    2012-11-01

    The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small.

  9. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  10. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  11. Wavelength-dependence of double optical gating for attosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Li, Min; Yu, Ji-Zhou; Deng, Yong-Kai; Liu, Yun-Quan

    2014-10-01

    Both polarization gating (PG) and double optical gating (DOG) are productive methods to generate single attosecond (as) pulses. In this paper, considering the ground-state depletion effect, we investigate the wavelength-dependence of the DOG method in order to optimize the generation of single attosecond pulses for the future application. By calculating the ionization probabilities of the leading edge of the pulse at different driving laser wavelengths, we obtain the upper limit of duration for the driving laser pulse for the DOG setup. We find that the upper limit duration increases with the increase of laser wavelength. We further describe the technical method of choosing and calculating the thickness values of optical components for the DOG setup.

  12. Forging Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the front view from the Mars Exploration Rover Opportunity as it drives north towards the eastern edge of the rock outcropping near its landing site at Meridiani Planum, Mars. The movie strings together images taken over the past six martian days, or sols, of its journey, beginning with a 1 meter (3 feet) stroll away from the lander on sol 7. On the 12th sol, Opportunity drove another 3 1/2 meters (11 feet), and then, one sol later, another 1 1/2 meters (5 feet). On its way, the rover twisted and turned in a test of its driving capabilities. This movie is made up of fish-eye images taken by the rover's front hazard-identification camera.

  13. [Objective evaluation of driving fatigue by using variability of pupil diameter under spontaneous pupillary fluctuation conditions].

    PubMed

    Xiong, Xingliang; Zhang, Yan; Chen, Mengmeng; Chen, Longcong

    2013-04-01

    Objective evaluation of driver drowsiness is necessary toward suppression of fatigued driving and prevention of traffic accident. We have developed a new method in which we utilized pupillary diameter variability (PDV) under spontaneous pupillary fluctuation conditions. The method consists of three main steps. Firstly, we use a 90s long infrared video of pupillogram infrared-sensitive CCD camera. Secondly, we employed edge detection algorithm based on curvature characteristics of pupil boundary to extract a set of points of visible pupil boundary, and then we adopted these points to fit a circle to obtain the diameter of the pupil in current frame of video. Finally, the values of PDV in 90s long video is calculated. In an experimental pilot study, the values of PDV of two groups were measured. One group rated themselves as alert (12 men), the other group as sleepy (13 men). The results showed that significant differences could be found between the two groups, and the values were 0.06 +/- 0.005 and 0.141 +/- 0.042, respectively. Taking into account of the knowledge that spontaneous pupillary fluctuation is innervated by autonomic nervous system which activity is known to change in parallel with drowsiness and cannot be influenced by subjective motive of people. From the results of the experiments, we concluded that PDV could be used to evaluate driver fatigue objectively.

  14. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  15. Mode I Failure of Armor Ceramics: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Meredith, Christopher; Leavy, Brian

    2017-06-01

    The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.

  16. Edge fires drive the shape and stability of tropical forests.

    PubMed

    Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M

    2018-06-01

    In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  17. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.

    PubMed

    Neilson, Matthew P; Mackenzie, John A; Webb, Steven D; Insall, Robert H

    2010-11-01

    In this paper we present a computational tool that enables the simulation of mathematical models of cell migration and chemotaxis on an evolving cell membrane. Recent models require the numerical solution of systems of reaction-diffusion equations on the evolving cell membrane and then the solution state is used to drive the evolution of the cell edge. Previous work involved moving the cell edge using a level set method (LSM). However, the LSM is computationally very expensive, which severely limits the practical usefulness of the algorithm. To address this issue, we have employed the parameterised finite element method (PFEM) as an alternative method for evolving a cell boundary. We show that the PFEM is far more efficient and robust than the LSM. We therefore suggest that the PFEM potentially has an essential role to play in computational modelling efforts towards the understanding of many of the complex issues related to chemotaxis.

  18. Linear instability regimes in L-mode edges using reduced MHD models in BOUT + +

    NASA Astrophysics Data System (ADS)

    Bass, Eric; Holland, Chris; Cohen, Bruce; Umansky, Maxim

    2016-10-01

    We compare linear instabilities in the edge of two DIII-D L-mode discharges using reduced two-fluid MHD models implemented in BOUT + +. Discharge 119919, a case used in a previous BOUT + + validation study, has a cold edge and is dominated by resistive ballooning modes (RBMs). Hotter discharge 128913, an L-mode shortfall benchmark case, is drift-wave (DW) dominant. The model captures essential drift wave physics through the electron pressure parallel gradient drive term in the A| | evolution. At relevant toroidal mode numbers (50-200), the leading DWs in 128913 are flutelike with high kr and require about an order of magnitude greater radial resolution than the leading RBMs in 119919. We quantify when such high kr modes must be resolved in practice. To aid eigenfunction confirmation, and to identify potential subdominant DWs, a companion eigenvalue solver for the BOUT + + models is under development. Prepared by UCSD under Contract Number DE-FG02-06ER54871.

  19. Vibratory tactile display for textures

    NASA Technical Reports Server (NTRS)

    Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi

    1994-01-01

    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.

  20. Universal ripper miner

    DOEpatents

    Morrell, Roger J.; Larson, David A.

    1991-01-01

    A universal ripper miner used to cut, collect and transfer material from an underground mine working face includes a cutter head that is vertically movable in an arcuate cutting cycle by means of drive members, such as hydraulically actuated pistons. The cutter head may support a circular cutter bit having a circular cutting edge that may be indexed to incrementally expose a fresh cutting edge. An automatic indexing system is disclosed wherein indexing occurs by means of a worm gear and indexing lever mechanism. The invention also contemplates a bi-directional bit holder enabling cutting to occur in both the upstroke and the downstroke cutting cycle. Another feature of the invention discloses multiple bits arranged in an in-line, radially staggered pattern, or a side-by-side pattern to increase the mining capacity in each cutting cycle. An on-board resharpening system is also disclosed for resharpening the cutting edge at the end of cutting stroke position. The aforementioned improvement features may be used either singly, or in any proposed combination with each other.

  1. Reef structure drives parrotfish species composition on shelf edge reefs in La Parguera, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Tzadik, Orian E.; Appeldoorn, Richard S.

    2013-02-01

    Shelf edge reefs that exist in coral reef ecosystems provide essential habitats for a large variety of fish and other marine organisms. Marine herbivores act as differential algal grazers that advocate coral reef colonization. In the Caribbean basin parrotfishes make up a large contingency of such herbivores and act as important ecological ichthyofauna. By investigating parrotfish relationship with habitat, this study aims to aid in future predictive mapping techniques that will outline parrotfish distributions via benthic quantification. Parrotfish communities were evaluated on the shelf edge reef off of La Parguera, Puerto Rico. Parrotfish abundances were found to positively correlate with high values of overall reef structure. High values of coral cover and of rugosity were strong indicators of most parrotfish species. The lone exception, Scarus taeniopterus, negatively correlated with these factors and positively correlated with algal cover. Indications exist that Scarus taeniopterus and Scarus iseri are sympatric species and can be found in abundance at opposite locations.

  2. ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex.

    PubMed

    Mendoza, Michelle C; Er, E Emrah; Zhang, Wenjuan; Ballif, Bryan A; Elliott, Hunter L; Danuser, Gaudenz; Blenis, John

    2011-03-18

    Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal-regulated kinase-mitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate that ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 regulatory complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show that ERK colocalizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. ERK-MAPK Drives Lamellipodia Protrusion by Activating the WAVE2 Regulatory Complex

    PubMed Central

    Mendoza, Michelle C.; Emrah, E.; Zhang, Wenjuan; Ballif, Bryan A.; Elliott, Hunter L.; Danuser, Gaudenz; Blenis, John

    2011-01-01

    Summary Cell movement begins with a leading edge protrusion, which is stabilized by nascent adhesions and retracted by mature adhesions. The ERK-MAPK (extracellular signal regulated kinasemitogen-activated protein kinase) localizes to protrusions and adhesions, but how it regulates motility is not understood. We demonstrate ERK controls protrusion initiation and protrusion speed. Lamellipodial protrusions are generated via the WRC (WAVE2 Regulatory Complex), which activates the Arp2/3 actin nucleator for actin assembly. The WRC must be phosphorylated to be activated, but the sites and kinases that regulate its intermolecular changes and membrane recruitment are unknown. We show ERK co-localizes with the WRC at lamellipodial leading edges and directly phosphorylates two WRC components: WAVE2 and Abi1. The phosphorylations are required for functional WRC interaction with Arp2/3 and actin during cell protrusion. Thus, ERK coordinates adhesion disassembly with WRC activation and actin polymerization to promote productive leading edge advancement during cell migration. PMID:21419341

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant,more » at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole radial plasma cross-section. The actual EBW experiment will cost several million dollars, and remains in the proposal stage. The HHFW current drive system has been experimentally implemented on NSTX, and successfully drives substantial current. The understanding of the experiment is to be accomplished in terms of general concepts of rf current drive, and also detailed modeling of the experiment which can discern the various competing processes which necessarily occur simultaneously in the experiment. An early discovery of the CompX codes, GENRAY and CQL3D, was that there could be significant interference between the neutral beam injection fast ions in the machine (injected for plasma heating) and the HHFW energy. Under many NSTX experimental conditions, power which could go to the fast ions would then be unavailable for current drive by the desired HHFW interaction with electrons. This result has been born out by experiments; the modeling helps in understanding difficulties with HHFW current drive, and has enabled adjustment of the experiment to avoid interaction with neutral beam injected fast ions thereby achieving stronger HHFW current drive. The detailed physics modeling of the various competing processes is almost always required in fusion energy plasma physics, to ensure a reasonably accurate and certain interpretation of the experiment, enabling the confident design of future, more advanced experiments and ultimately a commercial fusion reactor. More recent work entails detailed investigation of the interaction of the HHFW radiation for fast ions, accounting for the particularly large radius orbits in NSTX, and correlations between multiple HHFW-ion interactions. The spherical aspect of the NSTX experiment emphasized particular physics such as the large orbits which are present to some degree in all tokamaks, but gives clearer clues on the resulting physics phenomena since competing physics effects are reduced.« less

  5. Enabling Colloidal Synthesis of Edge-Oriented MoS2 with Expanded Interlayer Spacing for Enhanced HER Catalysis.

    PubMed

    Sun, Yugang; Alimohammadi, Farbod; Zhang, Dongtang; Guo, Guangsheng

    2017-03-08

    By selectively promoting heterogeneous nucleation/growth of MoS 2 on graphene monolayer sheets, edge-oriented (EO) MoS 2 nanosheets with expanded interlayer spacing (∼9.4 Å) supported on reduced graphene oxide (rGO) sheets were successfully synthesized through colloidal chemistry, showing the promise in low-cost and large-scale production. The number and edge length of MoS 2 nanosheets per area of graphene sheets were tuned by controlling the reaction time in the microwave-assisted solvothermal reduction of ammonium tetrathiomolybdate [(NH 4 ) 2 MoS 4 ] in dimethylformamide. The edge-oriented and interlayer-expanded (EO&IE) MoS 2 /rGO exhibited significantly improved catalytic activity toward hydrogen evolution reaction (HER) in terms of larger current density, lower Tafel slope, and lower charge transfer resistance compared to the corresponding interlayer-expanded MoS 2 sheets without edge-oriented geometry, highlighting the importance of synergistic effect between edge-oriented geometry and interlayer expansion on determining HER activity of MoS 2 nanosheets. Quantitative analysis clearly shows the linear dependence of current density on the edge length of MoS 2 nanosheets.

  6. Collisionality and temperature dependence of the edge main-ion co-current rotation profile feature on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, Shaun; Grierson, Brian; Ashourvan, Arash; Battaglia, Devon; Chrystal, Colin; Burrell, Keith; Groebner, Richard; Degrassie, John; Stagner, Luke; Stoltzfus-Dueck, Timothy; Pablant, Novimir

    2017-10-01

    A new edge main-ion (D+) CER system and upgraded edge impurity system are revealing clear differences between the main-ion and dominant impurity (C6+) toroidal rotation from the pedestal top to the scrape off layer on DIII-D with implications for intrinsic rotation studies. A peaked co-current edge toroidal rotation is observed for the main ion species near the outboard midplane separatrix with values up to 140 km/s for low collisionality QH modes. In lower power (PNBI = 0.8MW) H-modes the edge rotation is still present but reduced to 50km/s. D+ and C6+ toroidal rotation differences are presented for a variety of scenarios covering a significant range of edge collisionality and Ti. Observations are compared with predictions from several models including collisionless ion orbit loss calculations and more complete modeling using the XGC0 code, which also predicts 140km/s edge rotation for low collisionality QH mode cases. Work supported by the U.S. DOE under DE-AC02-09CH11466, No. DE-FC02-04ER54698, and DE-FC02-95ER54309.

  7. Apparatus and method for explosive bonding to edge of flyer plate

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Kushnick, Anne C. (Inventor)

    1991-01-01

    The invention is an apparatus and a process for the explosive joining of a flyer plate and a base plate. The apparatus consists of a flyer plate positioned over a base plate. The flyer plate has a notch containing a filler material in intimate contact with the flyer plate. An adhesive means holds a ribbon explosive partially overlapping the notch in the flyer plate. A detonating means initiates the ribbon explosive that drives the flyer plate to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and effacing bonding, resulting in electron sharing linkups between the plates. An unbonded tab fractures at a base of the notch leaving a bond to an edge of the attached flyer plate.

  8. Improved Confinement by Edge Multi-pulse Turbulent Heating on HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Jian-shan; Luo, Jia-rong; Li, Jian-gang; Pan, Yuan; Wang, Mao-quan; Liu, Bao-hua; Wan, Yuan-xi; Li, Qiang; Wu, Xin-chao; Liang, Yun-feng; Xu, Yu-hong; Yu, Chang-xuan

    1997-10-01

    In the recent experiment on HT-6M tokamak, an improved ohmic confinement phase has been observed after application of the edge multi-pulse turbulent heating, and variance of plasma current ΔIp/Ip is about 14-20%. The improved edge plasma confinement phase is characterized by (a) increased average electron density bar Ne and electron temperature Te; (b) reduced Hα radiation from the edge; (c) steeper density and temperature profiles at the edge; (d) a more negative radial electric field over a region of ~ 5 mm deep inside the limiter; (e) a deeper electrostatic potential well at the edge; (f) reduced magnetic fluctuations at the edge.

  9. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing regeneration probability at the trailing edge underscores the Schlaepfer et al. Future regeneration potential of big sagebrush potential futility of efforts to preserve and/or restore big sagebrush in these areas. Conversely, increasing regeneration probability at the leading edge suggest a growing potential for conflicts in management goals between maintaining existing grasslands by preventing sagebrush expansion versus accepting a shift in plant community composition to sagebrush dominance.

  10. New Record Five-Wheel Drive, Spirit's Sol 1856

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest.

    The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007).

    The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south.

    This view is presented as a cylindrical projection with geometric seam correction.

  11. ManTech Implementing a Strategy to Deliver Weapon Systems Affordability

    DTIC Science & Technology

    2010-11-01

    Tile 2007 – Translational Friction Stir Welding 2006 – Uncooled Focal Plane Array Producibility 2006 – Engine Rotor Life Extension 2005...compelling ideas will continue to help drive our Department’s innovative engine and ensure our Nation maintains its competitive edge on the...Sheets Composite Vertical Stabilizer Apache AH-64 NAVY The Challenge: Butt welding exterior ship panels produces a weld protrusion that exceeds the

  12. Perspectives on U.S. Competitiveness in Science and Technology. Conference Proceedings (Washington, DC, November 8, 2006)

    ERIC Educational Resources Information Center

    Galama, Titus, Ed.; Hosek, James, Ed.

    2007-01-01

    Concern has grown that the United States is losing its competitive edge in science and technology (S&T). The factors driving this concern include globalization, the rise of science centers in developing countries such as China and India, the increasing number of foreign-born Ph.D. students in the United States, and claims of a shortage of…

  13. Opportunity Egress Aid Contacts Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the navigation camera on the Mars Exploration Rover Opportunity shows the rover's egress aid touching the martian soil at Meridiani Planum, Mars. The image was taken after the rear lander petal hyperextended in a manuever to tilt the lander forward. The maneuver pushed the front edge lower, placing the tips of the egress aids in the soil. The rover will drive straight ahead to exit the lander.

  14. Low edge safety factor operation and passive disruption avoidance in current carrying plasmas by the addition of stellarator rotational transform

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )<2 ) is routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) < 2. When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) < 2, external n = 1 kink mode activity does not appear to play a significant role in the disruption phenomenology observed.

  15. Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2006-01-01

    Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles. . Heat-pipe leading edge development. Design validation heat pipe testing confirmed design. Three heat pipes embedded and tested in C/C. Single J-tube heat pipe fabricated and testing initiated. HPCLE work is currently underway at several locations.

  16. The FAK–Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin

    PubMed Central

    Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.

    2016-01-01

    Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895

  17. UHTC Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2011-01-01

    For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.

  18. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  19. Impedance of an intense plasma-cathode electron source for tokamak startup

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.

    2016-05-01

    An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.

  20. General analytical solutions for DC/AC circuit-network analysis

    NASA Astrophysics Data System (ADS)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2017-06-01

    In this work, we present novel general analytical solutions for the currents that are developed in the edges of network-like circuits when some nodes of the network act as sources/sinks of DC or AC current. We assume that Ohm's law is valid at every edge and that charge at every node is conserved (with the exception of the source/sink nodes). The resistive, capacitive, and/or inductive properties of the lines in the circuit define a complex network structure with given impedances for each edge. Our solution for the currents at each edge is derived in terms of the eigenvalues and eigenvectors of the Laplacian matrix of the network defined from the impedances. This derivation also allows us to compute the equivalent impedance between any two nodes of the circuit and relate it to currents in a closed circuit which has a single voltage generator instead of many input/output source/sink nodes. This simplifies the treatment that could be done via Thévenin's theorem. Contrary to solving Kirchhoff's equations, our derivation allows to easily calculate the redistribution of currents that occurs when the location of sources and sinks changes within the network. Finally, we show that our solutions are identical to the ones found from Circuit Theory nodal analysis.

  1. Bifurcation of quiescent H-mode to a wide pedestal regime in DIII-D and advances in the understanding of edge harmonic oscillations

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; Barada, K.; Ferraro, N. M.; Garofalo, A. M.; Groebner, R. J.; McKee, G. R.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; The DIII-D Team

    2017-08-01

    New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E  ×  B shear required for the EHO decreases linearly with pedestal collisionality ν \\text{e}\\ast , which is favorable for operating QH-mode in machines with low collisionality and low rotation such as ITER. In addition, the QH-mode regime in DIII-D has recently been found to bifurcate into a new ‘wide-pedestal’ state at low torque in double-null shaped plasmas, characterized by increased pedestal height, width and thermal energy confinement (Burrell 2016 Phys. Plasmas 23 056103, Chen 2017 Nucl. Fusion 57 022007). This potentially provides an alternate path for achieving high performance ELM-stable operation at low torque, in addition to the low-torque QH-mode sustained with applied 3D fields. Multi-branch low-k and intermediate-k turbulences are observed in the ‘wide-pedestal’. New experiments support the hypothesis that the decreased edge E  ×  B shear enables destabilization of broadband turbulence, which relaxes edge pressure gradients, improves peeling-ballooning stability and allows a wider and thus higher pedestal. The ability to accurately predict the critical E  ×  B shear for EHO and maintain high performance QH-mode at low torque is an essential requirement for projecting QH-mode operation to ITER and future machines.

  2. Analysis of current-driven oscillatory dynamics of single-layer homoepitaxial islands on crystalline conducting substrates

    NASA Astrophysics Data System (ADS)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    2018-03-01

    We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.

  3. Magnetic Diagnostics Suite Upgrade on LTX- β

    NASA Astrophysics Data System (ADS)

    Hughes, P. E.; Majeski, R.; Kaita, R.; Kozub, T.; Hansen, C.; Smalley, G.; Boyle, D. P.

    2017-10-01

    LTX- β will be exploring a new regime of flat temperature-profile tokamak plasmas first demonstrated in LTX [D.P. Boyle et al. PRL July 2017]. The incorporation of neutral beam core-fueling and heating in LTX- β is expected to increase plasma beta and drive increased MHD activity. An upgrade of the magnetic diagnostics is underway, including an expansion of the reentrant 3-axis poloidal Mirnov array, as well as the addition of a toroidal array of poloidal Mirnov sensors and a set of 2-axis Mirnov sensors measuring fields from shell eddy currents. The poloidal and toroidal arrays will facilitate the study of MHD mode activity and other non-axisymmetric perturbations, while the new shell eddy sensors and improvements to existing axisymmetric measurements will support enhanced equilibrium reconstructions using the PSI-Tri equilibrium code [C. Hansen et al. PoP Apr. 2017] to better characterize these novel hot-edge discharges. This work is supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  4. Growth of carbon nanofibers on tipless cantilevers: process development and applications in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao; Kalinin, Sergei; Yang, Xiaojing; Lowndes, Douglas

    2005-03-01

    Carbon nanofibers (CNFs) are grown on tipless cantilevers as probe tips for scanning probe microscopy. A catalyst dot pattern is formed on the surface of the tipless cantilever using electron beam lithography and CNF growth is performed in a direct-current plasma enhanced chemical vapor deposition reactor. Because the CNF is aligned with the electric field near the edge of the cantilever during growth, it is tilted with respect to the cantilever surface, which compensates partially for the probe tilt introduced when used in scanning probe microscopy. CNFs with different shapes and tip radii can be produced by variation of experimental conditions. The tip geometries of the CNF probes are defined by their catalyst particles, whose magnetic nature also imparts a capability for imaging magnetic samples. We have demonstrated their use in both atomic force and magnetic force surface imaging. These probe tips may provide information on magnetic phenomena at the nanometer scale in connection with the drive for ever-increasing storage density of magnetic hard disks.

  5. Polymer therapeutics in surgery: the next frontier

    PubMed Central

    Conlan, R. Steven; Whitaker, Iain S.

    2016-01-01

    Abstract Polymer therapeutics is a successful branch of nanomedicine, which is now established in several facets of everyday practice. However, to our knowledge, no literature regarding the application of the underpinning principles, general safety, and potential of this versatile class to the perioperative patient has been published. This study provides an overview of polymer therapeutics applied to clinical surgery, including the evolution of this demand‐oriented scientific field, cutting‐edge concepts, its implications, and limitations, illustrated by products already in clinical use and promising ones in development. In particular, the effect of design of polymer therapeutics on biophysical and biochemical properties, the potential for targeted delivery, smart release, and safety are addressed. Emphasis is made on principles, giving examples in salient areas of demand in current surgical practice. Exposure of the practising surgeon to this versatile class is crucial to evaluate and maximise the benefits that this established field presents and to attract a new generation of clinician–scientists with the necessary knowledge mix to drive highly successful innovation. PMID:27588210

  6. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  7. Sustainment Study of Flipped Spherical Torus Plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Takamiya, T.; Nagata, M.; Kawami, K.; Hasegawa, H.; Fukumoto, N.; Uyama, T.; Masamune, S.; Iida, M.; Katsurai, M.

    2003-10-01

    We have discovered that helicity-driven ST plasmas relax toward the flipped state by decreasing the external toroidal field and reversing its sign in time [1]. From the viewpoint of coaxial helicity injection (CHI) current drive, it is conceivable that the flipped ST (F-ST), which consists of only closed flux surfaces, compares favorably with the normal ST. We have investigated the sustainment mechanism of the F-ST plasma. The helicity-driven relaxed theory shows that there exist the mixed states of ST and F-ST in the flux conserver. Helicity is transferred to F-ST through the ST with coupling with gun electrodes. It has been found that magnetic reconnection between the toroidal magnetic field plays important role in the sustainment of the F-ST. The magnetic field in the outer edge region shows regular oscillations which have a large amplitude of the n=1 mode. The core region of the F-ST seems to be relatively stable. [1] M. Nagata, et al., Phys. Rev. Lett. 90, 225001 (2003)

  8. Theory of superconductivity in a three-orbital model of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.

    2013-10-01

    In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.

  9. Coupling of RF antennas to large volume helicon plasma

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang

    2018-04-01

    Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  10. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  11. Experimental determination of the impact of polysilicon LER on sub-100-nm transistor performance

    NASA Astrophysics Data System (ADS)

    Patterson, Kyle; Sturtevant, John L.; Alvis, John R.; Benavides, Nancy; Bonser, Douglas; Cave, Nigel; Nelson-Thomas, Carla; Taylor, William D.; Turnquest, Karen L.

    2001-08-01

    Photoresist line edge roughness (LER) has long been feared as a potential limitation to the application of various patterning technologies to actual devices. While this concern seems reasonable, experimental verification has proved elusive and thus LER specifications are typically without solid parametric rationale. We report here the transistor device performance impact of deliberate variations of polysilicon gate LER. LER magnitude was attenuated by more than a factor of 5 by altering the photoresist type and thickness, substrate reflectivity, masking approach, and etch process. The polysilicon gate LER for nominally 70 - 150 nm devices was quantified using digital image processing of SEM images, and compared to gate leakage and drive current for variable length and width transistors. With such comparisons, realistic LER specifications can be made for a given transistor. It was found that subtle cosmetic LER differences are often not discernable electrically, thus providing hope that LER will not limit transistor performance as the industry migrates to sub-100 nm patterning.

  12. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  13. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited).

    PubMed

    Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X

    2014-11-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  14. Microstability Properties of the Local Minimum | B | Regime in Pegasus

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rhodes, A. T.

    2017-10-01

    A local minimum | B | region, or ``magnetic well,'' was recently observed in the low-aspect-ratio Pegasus device in high- β scenarios with strong edge current peaking. The ∇B reversal within the magnetic well alters particle drifts, orbits, fast ion losses, and instability drives. Here, we report on the microstability properties of the magnetic well region with calculations from the GENE gyrokinetic code. In particular, we explore the dependence on magnetic well depth and the role of electromagnetic effects. Preliminary results from local electromagnetic calculations indicate unstable electron modes exist in the magnetic well region. Connections to NSTX-U and MAST-U operational scenarios are also discussed. Finally, probe measurements of electrostatic and magnetic fluctuations in the Pegasus magnetic well region are presented in Ref. 3. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-SC0001288 and DE-FG02-96ER54375.

  15. Double-gap Alfvén eigenmodes: revisiting eigenmode interaction with the alfvén continuum.

    PubMed

    Gorelenkov, N N

    2005-12-31

    A new type of global shear Alfvén eigenmode is found in tokamak plasmas where the mode localization is in the region intersecting the Alfvén continuum. The eigenmode is formed by the coupling of two solutions from two adjacent gaps (akin to potential wells) in the shear Alfvén continuum. For tokamak plasmas with reversed magnetic shear, it is shown that the toroidicity-induced solution tunnels through the continuum to match the ellipticity-induced Alfvén eigenmode so that the resulting solution is continuous at the point of resonance with the continuum. The existence of these double-gap Alfvén eigenmodes allows for potentially new ways of coupling edge fields to the plasma core in conditions where the core region is conventionally considered inaccessible. Implications include new approaches to heating and current drive in fusion plasmas as well as its possible use as a core diagnostic in burning plasmas.

  16. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  17. Bright Soil Churned by Spirit's Sol 1861 Drive

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit drove 22.7 meters (74 feet) toward the southwest on the 1,861st Martian day, or sol, of Spirit's mission on Mars (March 28, 2009). After the drive, the rover took this image with its front hazard-avoidance camera, looking back at the tracks from the drive.

    As usual since losing the use of its right-front wheel in 2006, Spirit drove backwards. The immobile right-front wheel churned up a long stripe of bright soil during this drive. Where Spirit has found such bright soil in the past, subsequent analysis of the composition found concentrations of sulfur or silica that testified to past action of water at the site. When members of the rover team saw the large quantity of bright soil exposed by the Sol 1861 drive, they quickly laid plans to investigate the composition with Spirit's alpha particle X-ray spectrometer.

    The Sol 1861 drive took the rover past the northwest corner of the low plateau called 'Home Plate,' making progress on a route around the western side of Home Plate. The edge of Home Plate forms the horizon on the right side of this image. Husband Hill is on the horizon on the left side. For scale, the parallel rover wheel tracks are about 1 meter (40 inches) apart. The rover's hazard-avoidance cameras take 'fisheye' wide-angle images.

  18. Base drive circuit for a four-terminal power Darlington

    DOEpatents

    Lee, Fred C.; Carter, Roy A.

    1983-01-01

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  19. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  20. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weiman; Tang, Jie; Wang, Yishan

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. Theremore » is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.« less

  1. Twenty-Four-Month-Olds' Perception of Word-Medial Onsets and Codas

    ERIC Educational Resources Information Center

    Wang, Yuanyuan; Seidl, Amanda

    2016-01-01

    Recent work has shown that children have detailed phonological representations of consonants at both word-initial and word-final edges. Nonetheless, it remains unclear whether onsets and codas are equally represented by young learners since word edges are isomorphic with syllable edges in this work. The current study sought to explore toddler's…

  2. Plasma Confinement in the UCLA Electric Tokamak.

    NASA Astrophysics Data System (ADS)

    Taylor, Robert J.

    2001-10-01

    The main goal of the newly constructed large Electric Tokamak (R = 5 m, a = 1 m, BT < 0.25 T) is to access an omnigeneous, unity beta(S.C. Cowley, P.K. Kaw, R.S. Kelly, R.M. Kulsrud, Phys. fluids B 3 (1991) 2066.) plasma regime. The design goal was to achieve good confinement at low magnetic fields, consistent with the high beta goal. To keep the program cost down, we adopted the use of ICRF as the primary heating source. Consequently, antenna surfaces covering 1/2 of the surface of the tokamak has been prepared for heating and current drive. Very clean hydrogenic plasmas have been achieved with loop voltage below 0.7 volt and densities 3 times above the Murakami limit, n(0) > 8 x 10^12 cm-3 when there is no MHD activity. The electron temperature, derived from the plasma conductivity is > 250 eV with a central electron energy confinement time > 350 msec in ohmic conditions. The sawteeth period is 50 msec. Edge plasma rotation is induced by plasma biasing via electron injection in an analogous manner to that seen in CCT(R.J. Taylor, M.L. Brown, B.D. Fried, H. Grote, J.R. Liberati, G.J. Morales, P. Pribyl, D. Darrow, and M. Ono. Phys. Rev Lett. 63 2365 1989.) and the neoclassical bifurcation is close to that described by Shaing et al(K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63 2369 (1989).). In the ohmic phase the confinement tends to be MHD limited. The ICRF heating eliminates the MHD disturbances. Under second harmonic heating conditions, we observe an internal confinement peaking characterized by doubling of the core density and a corresponding increase in the central electron temperature. Charge exchange data, Doppler data in visible H-alpha light, and EC radiation all indicate that ICRF heating works much better than expected. The major effort is focused on increasing the power input and controlling the resulting equilibrium. This task appears to be easy since our current pulses are approaching the 3 second mark without RF heating or current drive. Our initial experience with current profile control, needed for high beta plasma equilibrium, will be also discussed.

  3. Thin CVD-diamond RF Pill-Box vacuum windows for LHCD systems

    NASA Astrophysics Data System (ADS)

    Ravera, G. L.; Ceccuzzi, S.; Cardinali, A.; Cesario, R.; Mirizzi, F.; Schettini, G.; Tuccillo, A. A.

    2014-02-01

    The preliminary assessment of a Lower Hybrid Current Drive (LHCD) system for the DEMOnstration power plant (DEMO) is mainly focused on the R&D needs of the less conventional RF components of the Main Transmission Line (MTL) and of the launcher. 500 kW, CW klystrons will be used to deliver the RF power to independent Passive Active Multijunction (PAM) launcher modules at 5 GHz. This paper describes the criteria followed to investigate the optimum solution for the RF window used as vacuum barrier between the MTL and the launcher, an open issue in the LHCD system for ITER too. The best candidate, capable of withstanding a power level of, or above, 0.5 MW in CW operation and to satisfy the electrical and thermonuclear requirements, is a Pill-Box assembly, based on a thin single disk of CVD-diamond as dielectric, water cooled at the edge. A thickness of 3 mm, much shorter than half a wavelength of the TE°11 mode in the dielectric as in the conventional window (unfeasible and too expensive with CVD-diamond at these frequencies), is sufficient to limit the exerted stress at the edge under the fracture stress for a maximum pressure applied of 0.9 MPa. In this paper the simulation results of conventional and thin CVD-diamond vacuum windows are presented comparing S-parameters, losses and electric fields in both matching condition and with VSWR = 2, using WR284 and WR229 as input/output rectangular waveguide.

  4. Progress in understanding the enhanced pedestal H-mode in NSTX

    DOE PAGES

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; ...

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from themore » plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.« less

  5. Study and optimization of lower hybrid wave coupling in advanced scenario plasmas in JET

    NASA Astrophysics Data System (ADS)

    Pericoli Ridolfini, V.; Ekedahl, A.; Erents, S. K.; Mailloux, J.; Podda, S.; Sarazin, Y.; Tuccillo, A. A.; Workprogramme contributors, EFDA-JET

    2004-02-01

    Active current drive with lower hybrid (LH) waves in the advanced scenario plasmas at JET-EFDA was successful after a systematic study of the coupling problems that derive from the H-mode features of the edge plasma, namely very low density and ELM activity. The LH coupling has been improved compared to the past, by making the edge plasma in front of the LH launcher denser and more uniform. Injecting deuterated methane (CD4) from a nearby gas pipe increases the density in front of the LH launcher at least by a factor of 1.5, above the cut-off value for the LH frequency. A better matching of the plasma shape to that of the LH antenna makes the plasma ahead of the LH launcher more regular along the poloidal angle. These two techniques together have permitted a balanced supply of the three LH grills, with an average reflection below 4%, as in the previous L-mode operation. CD4 does not affect the performances nor does it contaminate the main plasma up to the maximum flow rate so far used, \\Phi_{CD_4}>10^{22}el\\,s^{-1} and now it is routinely applied in JET (up to 4 MW have been injected for longer than 8 s) with very encouraging results for LHCD. Even though CD4 is not suitable for ITER for tritium retention, the possibility of controlling locally and safely the scrape-off plasma density has been demonstrated.

  6. Orbital Magnetization of Quantum Spin Hall Insulator Nanoparticles.

    PubMed

    Potasz, P; Fernández-Rossier, J

    2015-09-09

    Both spin and orbital degrees of freedom contribute to the magnetic moment of isolated atoms. However, when inserted in crystals, atomic orbital moments are quenched because of the lack of rotational symmetry that protects them when isolated. Thus, the dominant contribution to the magnetization of magnetic materials comes from electronic spin. Here we show that nanoislands of quantum spin Hall insulators can host robust orbital edge magnetism whenever their highest occupied Kramers doublet is singly occupied, upgrading the spin edge current into a charge current. The resulting orbital magnetization scales linearly with size, outweighing the spin contribution for islands of a few nm in size. This linear scaling is specific of the Dirac edge states and very different from Schrodinger electrons in quantum rings. By modeling Bi(111) flakes, whose edge states have been recently observed, we show that orbital magnetization is robust with respect to disorder, thermal agitation, shape of the island, and crystallographic direction of the edges, reflecting its topological protection.

  7. Experimental study of contact edge roughness on sub-100 nm various circular shapes

    NASA Astrophysics Data System (ADS)

    Lee, Tae Y.; Ihm, Dongchul; Kang, Hyo C.; Lee, Jum B.; Lee, Byoung H.; Chin, Soo B.; Cho, Do H.; Song, Chang L.

    2005-05-01

    The measurement of edge roughness has become a hot issue in the semiconductor industry. Especially the contact roughness is being more critical as design rule shrinks. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. However the features currently available in commercial CD-SEM cannot provide a proper solution in monitoring the contact roughness. We had introduced a new parameter R, measurement algorithm and definition of contact edge roughness to quantify CER and CSR in previous paper. The parameter, R could provide an alternative solution to monitor contact or island pattern roughness. In this paper, we investigated to assess optimum number of CD measurement (1-D) and fitting method for CER or CSR. The study was based on a circular contact shape. Some new ideas to quantify CER or CSR were also suggested with preliminary experimental results.

  8. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu

    2017-10-01

    An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  9. New Technique of AC drive in Tokamak using Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Matteucci, Jackson; Zolfaghari, Ali

    2013-10-01

    This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.

  10. Forging Ahead (linearized)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the front view from the Mars Exploration Rover Opportunity as it drives north towards the eastern edge of the rock outcropping near its landing site at Meridiani Planum, Mars. The movie strings together images taken over the past six martian days, or sols, of its journey, beginning with a 1 meter (3 feet) stroll away from the lander on sol 7. On the 12th sol, Opportunity drove another 3 1/2 meters (11 feet), and then, one sol later, another 1 1/2 meters (5 feet). On its way, the rover twisted and turned in a test of its driving capabilities. This movie is made up of images taken by the rover's front hazard-identification camera, which were corrected for fish-eye distortion.

  11. Wisconsin High Schools Learn from New PISA Test: International Comparison Drives Efforts to Improve

    ERIC Educational Resources Information Center

    Borsuk, Alan J.

    2015-01-01

    This article explores Kettle Moraine High School's experience of participating in the PISA-based test, known in the U.S. as the OECD Test for Schools. The high school is located on the western edge of Milwaukee. Starting with a trial run in 2012 that involved more than 100 U.S. schools, the OECD Test for Schools has been offered to individual…

  12. Micron R&D: Global Scope and Nano-Scale in N-Dimensions

    NASA Astrophysics Data System (ADS)

    Durcan, Mark

    2006-03-01

    The Globalization of world markets and the globally dispersed manufacturing that supports them, drives complexity in managing today's leading edge R&D organizations beyond that historically experienced. The dimensions involve not only location, but time, economics, government relations, complex supply and customer chains, and Intellectual Property strategy. Each must be contemplated and optimized in light of the nature of worldwide 24 hour a day competition.

  13. Pulse-Width-Modulating Driver for Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  14. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces

    NASA Astrophysics Data System (ADS)

    Hossain, Md I.; Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-07-01

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.

  15. H-Mode Behavior Induced by Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, J. S.; Luo, J. R.; Xu, Y. H.; Zhao, J. Y.; Zhang, X. M.; Li, J. G.; Zhang, X. M.; Gao, X.; Li, Y. D.; Jie, Y. X.; Wu, Z. W.; Hu, L. Q.; Liu, S. X.; Zhang, X. D.; Bao, Y.; Yang, K.; Wang, G. X.; Chen, L.; Shi, Y. J.; Qin, P. J.; Gu, X. M.; Cui, N. Z.; Fan, H. Y.; Chen, Y. F.; Xia, C. Y.; Ruan, H. L.; Tong, X. D.; Phillips, P. E.

    2001-10-01

    An improved Ohmic confinement phase (similar to H-mode) has been observed during Modulating Toroidal Current on the Hefei Tokamak-6M (HT-6M) and Hefei super-conducting Tokamak-7 (HT-7). This improved plasma confinement phase is characterized by: (a) an increase in ne and T_e(0); (b) reduced H_α radiation from the edge; (c) steeper density and temperature profiles at the edge; (d) a more negative radial electric field inside the limiter; (e) a deeper electrostatic potential well at the edge; (f) reduced magnetic fluctuations at the edge; (g) MHD suppressing; (h) and by an increase in global energy confinement time, τ _e, by 27%-45%. The well-like structure of the radial electric field E_r, appears at an L-H like transition.

  16. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces.

    PubMed

    Hossain, Md I; Maksud, M; Palapati, N K R; Subramanian, A; Atulasimha, J; Bandyopadhyay, S

    2016-07-29

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.

  17. Power-control switch

    NASA Technical Reports Server (NTRS)

    Kessler, L. L.

    1976-01-01

    Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.

  18. Using AORSA to simulate helicon waves in DIII-D

    NASA Astrophysics Data System (ADS)

    Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.

    2015-12-01

    Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.

  19. Static friction boost in edge-driven incommensurate contacts

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Guerra, Roberto; Ouyang, Wengen; Urbakh, Michael; Vanossi, Andrea

    2018-04-01

    We present a numerical investigation of the size scaling of static friction in incommensurate two-dimensional contacts performed for different lateral loading configurations. Results of model simulations show that both the absolute value of the force Fs and the scaling exponent γ strongly depend on the loading configuration adopted to drive the slider along the substrate. Under edge loading, a sharp increase of static friction is observed above a critical size corresponding to the appearance of a localized commensurate dislocation. Noticeably, the existence of sublinear scaling, which is a fingerprint of superlubricity, does not conflict with the possibility to observe shear-induced localized commensurate regions at the contact interface. Atomistic simulations of gold islands sliding over graphite corroborate these findings, suggesting that similar elasticity effects should be at play in real frictional contacts.

  20. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  1. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  2. Lower hybrid current drive experiments in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Jiang, Tongwen; Liu, Yuexiu; Guo, Wenkang; Zhang, Xuelei; Luo, Jiarong

    1987-07-01

    Lower hybrid current drive (LHCD) experiments with a multijunction grill have been performed in the HT-6M tokamak. When the RF power pulse with 15ms risetime is injected into the plasma, the toroidal current amplitude is raised, but the temporal variation of the loop voltage does not have measurable change. The efficiency of current drive is Irf/Prf=0.57kA/kW at bar ne=3 × 1012cm-3 and Bt=8KG. It seems that the multijunction grill has the same efficiency as the ordinary grill on the LHCD experiments.

  3. Analytical approaches to optimizing system "Semiconductor converter-electric drive complex"

    NASA Astrophysics Data System (ADS)

    Kormilicin, N. V.; Zhuravlev, A. M.; Khayatov, E. S.

    2018-03-01

    In the electric drives of the machine-building industry, the problem of optimizing the drive in terms of mass-size indicators is acute. The article offers analytical methods that ensure the minimization of the mass of a multiphase semiconductor converter. In multiphase electric drives, the form of the phase current at which the best possible use of the "semiconductor converter-electric drive complex" for active materials is different from the sinusoidal form. It is shown that under certain restrictions on the phase current form, it is possible to obtain an analytical solution. In particular, if one assumes the shape of the phase current to be rectangular, the optimal shape of the control actions will depend on the width of the interpolar gap. In the general case, the proposed algorithm can be used to solve the problem under consideration by numerical methods.

  4. The Edge States of the BF System and the London Equations

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; Teotonio-Sobrinho, P.

    It is known that the 3D Chern-Simons interaction describes the scaling limit of a quantum Hall system and predicts edge currents in a sample with boundary, the currents generating a chiral U(1) Kac-Moody algebra. It is no doubt also recognized that, in a somewhat similar way, the 4D BF interaction (with B a two-form, dB the dual *j of the electromagnetic current, and F the electromagnetic field form) describes the scaling limit of a superconductor. We show in this paper that there are edge excitations in this model as well for manifolds with boundaries. They are the modes of a scalar field with invariance under the group of diffeomorphisms (diffeos) of the bounding spatial two-manifold. Not all diffeos of this group seem implementable by operators in quantum theory, the implementable group being a subgroup of volume-preserving diffeos. The BF system in this manner can lead to the w1+∞ algebra and its variants. Lagrangians for fields on the bounding manifold which account for the edge observables on quantization are also presented. They are the analogs of the (1+1)-dimensional massless scalar field Lagrangian describing the edge modes of an Abelian Chern-Simons theory with a disk as the spatial manifold. We argue that the addition of “Maxwell” terms constructed from F∧*F and dB∧*dB does not affect the edge states, and that the augmented Lagrangian has an infinite number of conserved charges—the aforementioned scalar field modes—localized at the edges. This Lagrangian is known to describe London equations and a massive vector field. A (3+1)-dimensional generalization of the Hall effect involving vortices coupled to B is also proposed.

  5. Complex space monofilar approximation of diffraction currents on a conducting half plane

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.

  6. Development of core ion temperature gradients and edge sheared flows in a helicon plasma device investigated by laser induced fluorescence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, S. C.; Tynan, G. R.; Center for Energy Research, University of California at San Diego, San Diego, California 92093

    2016-08-15

    We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at themore » edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.« less

  7. Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation

    NASA Astrophysics Data System (ADS)

    Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.

    2015-10-01

    A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.

  8. Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q; Belli, E; Bodi, K

    We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependencemore » of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.« less

  9. High-Frequency Switching Transients and Power Loss Estimation in Electric Drive Systems that Utilize Wide-Bandgap Semiconductors

    NASA Astrophysics Data System (ADS)

    Fulani, Olatunji T.

    Development of electric drive systems for transportation and industrial applications is rapidly seeing the use of wide-bandgap (WBG) based power semiconductor devices. These devices, such as SiC MOSFETs, enable high switching frequencies and are becoming the preferred choice in inverters because of their lower switching losses and higher allowable operating temperatures. Due to the much shorter turn-on and turn-off times and correspondingly larger output voltage edge rates, traditional models and methods previously used to estimate inverter and motor power losses, based upon a triangular power loss waveform, are no longer justifiable from a physical perspective. In this thesis, more appropriate models and a power loss calculation approach are described with the goal of more accurately estimating the power losses in WBG-based electric drive systems. Sine-triangle modulation with third harmonic injection is used to control the switching of the inverter. The motor and inverter models are implemented using Simulink and computer studies are shown illustrating the application of the new approach.

  10. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1991-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  11. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  12. Morphodynamic Model of Submarine Canyon Incision by Sandblasting

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Izumi, N.; Cartigny, M.; Li, T.; Wang, G.

    2017-12-01

    Submarine canyons are carved by turbidity currents under the deep sea. As opposed to subaerial canyons, the relevant processes are not easy to observe directly. Turbidity currents are bottom-hugging sediment gravity flows of that can incise or deposit on the seafloor to create submarine canyons or fans. The triggers of turbidity currents can be storms, edge waves, internal waves, canyon wall sapping, delta failure, breaching and hyperpycnal flows. The formation and evolution mechanisms of submarine canyons are similar to those of subaerial canyons, but have substantial differences. For example, sandblasting, rather than wear due to colliding gravel clasts is more likely to be the mechanism of bedrock incision. Submarine canyons incise downward, and often develop meander bends and levees within the canyon, so defining "fairways". Here we propose a simple model for canyon incision. The starting point of our model is the Macro Roughness Saltation Abrasion Alluviation model of Zhang et al. [2015], designed for bedrock incision by gravel clasts in mixed bedrock-alluvial rivers. We adapt this formulation to consider sandblasting as a means of wear. We use a layer-averaged model for turbidity current dynamics. The current contains a mixture of mud, which helps drive the flow but which does not cause incision, and sand, which is the agent of incision. We show that the model can successfully model channel downcutting, and indeed illustrate the early formation of net incisional cyclic steps, i.e. upstream-migrating undulations on the bed associated with transcritical (in the Froude sense) flow. These steps can be expected to abet the process of incision.

  13. Dynamic ELM and divertor control using resonant toroidal multi-mode magnetic fields in DIII-D and EAST

    NASA Astrophysics Data System (ADS)

    Sun, Youwen

    2017-10-01

    A rotating n = 2 Resonant Magnetic Perturbation (RMP) field combined with a stationary n = 3 RMP field has validated predictions that access to ELM suppression can be improved, while divertor heat and particle flux can also be dynamically controlled in DIII-D. Recent observations in the EAST tokamak indicate that edge magnetic topology changes, due to nonlinear plasma response to magnetic perturbations, play a critical role in accessing ELM suppression. MARS-F code MHD simulations, which include the plasma response to the RMP, indicate the nonlinear transition to ELM suppression is optimized by configuring the RMP coils to drive maximal edge stochasticity. Consequently, mixed toroidal multi-mode RMP fields, which produce more densely packed islands over a range of additional rational surfaces, improve access to ELM suppression, and further spread heat loading on the divertor. Beneficial effects of this multi-harmonic spectrum on ELM suppression have been validated in DIII-D. Here, the threshold current required for ELM suppression with a mixed n spectrum, where part of the n = 3 RMP field is replaced by an n = 2 field, is smaller than the case with pure n = 3 field. An important further benefit of this multi-mode approach is that significant changes of 3D particle flux footprint profiles on the divertor are found in the experiment during the application of a rotating n = 2 RMP field superimposed on a static n = 3 RMP field. This result was predicted by modeling studies of the edge magnetic field structure using the TOP2D code which takes into account plasma response from MARS-F code. These results expand physics understanding and potential effectiveness of the technique for reliably controlling ELMs and divertor power/particle loading distributions in future burning plasma devices such as ITER. Work supported by USDOE under DE-FC02-04ER54698 and NNSF of China under 11475224.

  14. The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers' behavioral adaptations.

    PubMed

    Mecheri, Sami; Rosey, Florence; Lobjois, Régis

    2017-07-01

    Previous research has shown that lane-width reduction makes drivers operate vehicles closer to the center of the road whereas hard-shoulder widening induces a position farther away from the road's center. The goal of the present driving-simulator study was twofold. First, it was aimed at further investigating the respective effects of lane and shoulder width on in-lane positioning strategies, by examining vehicle distance from the center of the lane. The second aim was to assess the impact on safety of three possible cross-sectional reallocations of the width of the road (i.e., three lane-width reductions with concomitant shoulder widening at a fixed cross-sectional width) as compared to a control road. The results confirmed that lane-width reduction made participants drive closer to the road's center. However, in-lane position was affected differently by lane narrowing, depending on the traffic situation. In the absence of oncoming traffic, lane narrowing gave rise to significant shifts in the car's distance from the lane's center toward the edge line, whereas this distance remained similar across lane widths during traffic periods. When the shoulders were at least 0.50m wide, participants drove farther away from both the road center and the lane center. Road reallocation operations resulted in vehicles positioned farther away from the edge of the road and less swerving behavior, without generating higher driving speeds. Finally, it is argued that road-space reallocation may serve as a good low-cost tool for providing a recovery area for steering errors, without impairing drivers' behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-01

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  16. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction.

    PubMed

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-13

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  17. Driving reduction and cessation : transitioning to not driving.

    DOT National Transportation Integrated Search

    2009-09-01

    This project examined the process of driving reduction and cessation from the perspective of older adults (current and former drivers) and adult children. The objectives were to identify common markers of the process of driving cessation and to gain ...

  18. Patient selection, echocardiographic screening and treatment strategies for interventional tricuspid repair using the edge-to-edge repair technique.

    PubMed

    Hausleiter, Jörg; Braun, Daniel; Orban, Mathias; Latib, Azeem; Lurz, Philipp; Boekstegers, Peter; von Bardeleben, Ralph Stephan; Kowalski, Marek; Hahn, Rebecca T; Maisano, Francesco; Hagl, Christian; Massberg, Steffen; Nabauer, Michael

    2018-04-24

    Severe tricuspid regurgitation (TR) has long been neglected despite its well known association with mortality. While surgical mortality rates remain high in isolated tricuspid valve surgery, interventional TR repair is rapidly evolving as an alternative to cardiac surgery in selected patients at high surgical risk. Currently, interventional edge-to-edge repair is the most frequently applied technique for TR repair even though the device has not been developed for this particular indication. Due to the inherent differences in tricuspid and mitral valve anatomy and pathology, percutaneous repair of the tricuspid valve is challenging due to a variety of factors including the complexity and variability of tricuspid valve anatomy, echocardiographic visibility of the valve leaflets, and device steering to the tricuspid valve. Furthermore, it remains to be clarified which patients are suitable for a percutaneous tricuspid repair and which features predict a successful procedure. On the basis of the available experience, we describe criteria for patient selection including morphological valve features, a standardized process for echocardiographic screening, and a strategy for clip placement. These criteria will help to achieve standardization of valve assessment and the procedural approach, and to further develop interventional tricuspid valve repair using either currently available devices or dedicated tricuspid edge-to-edge repair devices in the future. In summary, this manuscript will provide guidance for patient selection and echocardiographic screening when considering edge-to-edge repair for severe TR.

  19. Transition-edge sensor imaging arrays for astrophysics applications

    NASA Astrophysics Data System (ADS)

    Burney, Jennifer Anne

    Many interesting objects in our universe currently elude observation in the optical band: they are too faint or they vary rapidly and thus any structure in their radiation is lost over the period of an exposure. Conventional photon detectors cannot simultaneously provide energy resolution and time-stamping of individual photons at fast rates. Superconducting detectors have recently made the possibility of simultaneous photon counting, imaging, and energy resolution a reality. Our research group has pioneered the use of one such detector, the Transition-Edge Sensor (TES). TES physics is simple and elegant. A thin superconducting film, biased at its critical temperature, can act as a particle detector: an incident particle deposits energy and drives the film into its superconducting-normal transition. By inductively coupling the detector to a SQUID amplifier circuit, this resistance change can be read out as a current pulse, and its energy deduced by integrating over the pulse. TESs can be used to accurately time-stamp (to 0.1 [mu]s) and energy-resolve (0.15 eV at 1.6 eV) near-IR/visible/near-UV photons at rates of 30~kHz. The first astronomical observations using fiber-coupled detectors were made at the Stanford Student Observatory 0.6~m telescope in 1999. Further observations of the Crab Pulsar from the 107" telescope at the University of Texas McDonald Observatory showed rapid phase variations over the near-IR/visible/near-UV band. These preliminary observations provided a glimpse into a new realm of observations of pulsars, binary systems, and accreting black holes promised by TES arrays. This thesis describes the development, characterization, and preliminary use of the first camera system based on Transition-Edge Sensors. While single-device operation is relatively well-understood, the operation of a full imaging array poses significant challenges. This thesis addresses all aspects related to the creation and characterization of this cryogenic imaging instrument. I discuss experiments probing a host of cryostat constraints and design innovations to surmount them; simulations and experiments to characterize and filter infrared radiation; theoretical and experimental exploration of detector and array noise, cross-talk, and position-dependence; challenges of low-temperature a nd readout electronics; acquisition and analysis of data; and first light.

  20. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  1. The Double Edge Technique for Doppler lidar wind measurement

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Gentry, Bruce M.; Li, S. Xingfu; Flesia, Cristina; Chen, Huailin; Mathur, S.

    1998-01-01

    The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result, the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We will discuss the methodology of the technique in detail, present a broad range of simulation results, and provide preprints of a journal article currently in press.

  2. Tool holder for preparation and inspection of a radiused edge cutting tool

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool holding fixture is provided for removably holding a radiused edge cutting tool in a tool edge lapping apparatus. The fixture allows the operator to preset the lapping radius and angle before the tool holder is placed in the fixture and the holder may be removed from the lapping apparatus to inspect the tool and simply replaced in the fixture to continue lapping in accordance with a precise alignment without realignment of the tool relative to the lap. The tool holder includes a pair of self aligning bearings in the form of precision formed steel balls connected together by a rigid shaft. The tool is held by an arm extending from the shaft and the balls set in fixed position bearing cups and the holder is oscillated back and forth about a fixed axis of rotation to lap the tool radius by means of a reversibly driven belt-pulley arrangement coupled to the shaft between the bearings. To temporarily remove the holder, the drive belt is slipped over the rearward end of the holder and the holder is lifted out of the bearing cups.

  3. Far infrared edge photoresponse and persistent edge transport in an inverted InAs/GaSb heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, G. C.; Olson, B. V.; Hawkins, S. D.

    2016-01-04

    Direct current (DC) transport and far infrared photoresponse were studied an InAs/GaSb double quantum well with an inverted band structure. The DC transport depends systematically upon the DC bias configuration and operating temperature. Surprisingly, it reveals robust edge conduction despite prevalent bulk transport in our device of macroscopic size. Under 180 GHz far infrared illumination at oblique incidence, we measured a strong photovoltaic response. We conclude that quantum spin Hall edge transport produces the observed transverse photovoltages. Overall, our experimental results support a hypothesis that the photoresponse arises from direct coupling of the incident radiation field to edge states.

  4. Mitigating pavement edge drop off.

    DOT National Transportation Integrated Search

    2015-12-01

    The objective of this research was to investigate and document practices currently being used by the : Nebraska Department of Roads (NDOR) districts and other State DOTs to mitigate pavement edge : drop off. The NDOR has developed (or borrowed) and i...

  5. Alcohol and Traffic Safety.

    ERIC Educational Resources Information Center

    Dickman, Frances Baker, Ed.

    1988-01-01

    Seven papers discuss current issues and applied social research concerning alcohol traffic safety. Prevention, policy input, methodology, planning strategies, anti-drinking/driving programs, social-programmatic orientations of Mothers Against Drunk Driving, Kansas Driving Under the Influence Law, New Jersey Driving While Impaired Programs,…

  6. Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges.

    PubMed

    Bellunato, Amedeo; Vrbica, Sasha D; Sabater, Carlos; de Vos, Erik W; Fermin, Remko; Kanneworff, Kirsten N; Galli, Federica; van Ruitenbeek, Jan M; Schneider, Grégory F

    2018-04-11

    The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene.

  7. Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges

    PubMed Central

    2018-01-01

    The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene. PMID:29513997

  8. National Program for Inspection of Non-Federal Dams. Singletary Pond Dam (MA 00144), Blackstone River Basin, Millbury, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1979-02-01

    to a gra- vel access drive. There are two wood-framed gate structures at the crest of the dam. The intake gate house is on the upstream edge of the...Reservoirs. Nov,. 19 *ILI Inspected by L..Q..: aden . .. Date JuI7~ 3.7,12bDamn No.-3- 1.6 Town ...... LLuy... . ... : ......... Location. , ) j ~.. 3lier

  9. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  10. Global Radius of Curvature Estimation and Control System for Segmented Mirrors

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M. (Inventor)

    2006-01-01

    An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.

  11. Driving with indirect viewing sensors: understanding the visual perception issues

    NASA Astrophysics Data System (ADS)

    O'Kane, Barbara L.

    1996-05-01

    Visual perception is one of the most important elements of driving in that it enables the driver to understand and react appropriately to the situation along the path of the vehicle. The visual perception of the driver is enabled to the greatest extent while driving during the day. Noticeable decrements in visual acuity, range of vision, depth of field and color perception occur at night and under certain weather conditions. Indirect viewing sensors, utilizing various technologies and spectral bands, may assist the driver's normal mode of driving. Critical applications in the military as well as other official activities may require driving at night without headlights. In these latter cases, it is critical that the device, being the only source of scene information, provide the required scene cues needed for driving on, and often-times, off road. One can speculate about the scene information that a driver needs, such as road edges, terrain orientation, people and object detection in or near the path of the vehicle, and so on. But the perceptual qualities of the scene that give rise to these perceptions are little known and thus not quantified for evaluation of indirect viewing devices. This paper discusses driving with headlights and compares the scene content with that provided by a thermal system in the 8 - 12 micrometers micron spectral band, which may be used for driving at some time. The benefits and advantages of each are discussed as well as their limitations in providing information useful for the driver who must make rapid and critical decisions based upon the scene content available. General recommendations are made for potential avenues of development to overcome some of these limitations.

  12. Dynamo-driven plasmoid formation from a current-sheet instability

    DOE PAGES

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less

  13. Link Prediction in Evolving Networks Based on Popularity of Nodes.

    PubMed

    Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian

    2017-08-02

    Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.

  14. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE PAGES

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  15. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert; Chang, C. S.

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  16. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  17. Reduced ion bootstrap current drive on NTM instability

    NASA Astrophysics Data System (ADS)

    Qu, Hongpeng; Wang, Feng; Wang, Aike; Peng, Xiaodong; Li, Jiquan

    2018-05-01

    The loss of bootstrap current inside magnetic island plays a dominant role in driving the neoclassical tearing mode (NTM) instability in tokamak plasmas. In this work, we investigate the finite-banana-width (FBW) effect on the profile of ion bootstrap current in the island vicinity via an analytical approach. The results show that even if the pressure gradient vanishes inside the island, the ion bootstrap current can partly survive due to the FBW effect. The efficiency of the FBW effect is higher when the island width becomes smaller. Nevertheless, even when the island width is comparable to the ion FBW, the unperturbed ion bootstrap current inside the island cannot be largely recovered by the FBW effect, and thus the current loss still exists. This suggests that FBW effect alone cannot dramatically reduce the ion bootstrap current drive on NTMs.

  18. Alpha-ray detection with a MgB 2 transition edge sensor

    NASA Astrophysics Data System (ADS)

    Okayasu, S.; Katagiri, M.; Hojou, K.; Morii, Y.; Miki, S.; Shimakage, H.; Wang, Z.; Ishida, T.

    2008-09-01

    We have been investigating for neutron detection with the MgB 2 transition edge sensor (TES). For the purpose, we have been developing a low noise measurement system for the detection. To confirm the performance of the detecting sensor, alpha ray detection from an americium-241 ( 241Am) alpha-ray source was achieved. A short microfabricated sample with 10 μm length and 1 μm width is used to improve the S/N ratio. The detection is achieved under a constant current condition in the range between 1 and 6 μA bias current, and the resistivity changes at the sample due to the alpha ray irradiation is detected just on the transition edge.

  19. Fuel magnetization without external field coils (AutoMag)

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)

    1999-01-01

    A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.

  1. Topological phase transition and evolution of edge states in In-rich InGaN/GaN quantum wells under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Łepkowski, S. P.; Bardyszewski, W.

    2017-02-01

    Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.

  2. Topological phase transition and evolution of edge states in In-rich InGaN/GaN quantum wells under hydrostatic pressure.

    PubMed

    Łepkowski, S P; Bardyszewski, W

    2017-02-08

    Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.

  3. Shifts on reproductive phenology of tropical cerrado savanna trees and climate changes

    NASA Astrophysics Data System (ADS)

    Morellato, Patricia

    2010-05-01

    Phenology is the study of cyclic biological events and its relationship to abiotic factors. Timing of flowering, fruiting and leafing is highly correlated to environmental factors such as temperature, precipitation, irradiance and isolation. Accordingly, any change in these factors may have a direct effect on the initiation, intensity and duration of different phenophases. Tropical phenology has not contributed much for climatic change research since historical data sets are scarce and the absence of sharp seasons and distinct factors driving phenology makes difficult the detection of changes over time. One way to have insights on climate driven phenology shifts on tropical plants is through the comparison of plant phenology under different environmental conditions. Fragmentation of natural landscape has exposed plants to edge effects - the interaction between two adjacent ecosystems, when the two are separated by an abrupt transition - the edge, including both abiotic and biological changes on environmental conditions that likely affect plant phenology. The microclimatic conditions along edges have important direct biological effects on the reproductive phenology and fitness of plant species. One can expected that the abiotic edge effects on plant phenology may be similar to some extent to certain effects induced by climate change on plant phenology since both involve shifts on environmental conditions. Due to the threatened status and rich biodiversity of Brazilian Neotropical savanna, or the Brazilian Cerrado, the present study aimed to understand edge effects on cerrado savanna species. We compared micro environmental factors and phenology of several species on the edge and in the interior of cerrado savanna. Our first results indicated that shifts on the micro environmental condition may have driven changes in time, duration and intensity of species phenology and may give us insights on savanna responses to climate changes.

  4. Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa

    2012-04-01

    The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.

  5. Properties of the electrostatically driven helical plasma state

    NASA Astrophysics Data System (ADS)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal

    2018-02-01

    A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r

  6. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  7. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Almagri, Abdulgader; Chapman, Brett; Dubois, Ami; Goetz, John; McCollam, Karsten

    2015-11-01

    The RFP plasma is inaccessible to ECRH, requiring the electron Bernstein wave (EBW) for edge localized heating and current drive. MST is capable of generating RFPs or overdense tokamaks with Bt(0) ~ 0.08-0.14T in which a 5.55 GHz RF source (450kW, 2ms pulse) can heat at fundamental and harmonic EC resonances. The design of a suitable antenna is challenging in the RFP due to a magnetic field geometry that requires a low-field-side launch. The small vacuum gap between the close-fitting conducting shell and plasma leads to substantial antenna-plasma interaction. A minimized port hole size is required to limit error fields. Even so the port hole induced magnetic field perturbation in the antenna near-field that affects the mode conversion process and introduces EC resonances. A 5cm diameter cylindrical antenna centered in 5cm and 11cm diameter portholes is used. A multi-chord time-resolved x-ray detector and GENRAY ray tracing verifies EBW heating at higher harmonics in an MST tokamak with 10-40keV detected x-ray energies. Evidence of RF-induced emission from absorption at higher harmonics (4th / 5th) in low current RFP discharges has been observed. Simultaneous reflected power changes correspond to termination of x-ray emission indicating power limits. Work supported by USDOE.

  8. Overview of recent HL-2A experiments

    NASA Astrophysics Data System (ADS)

    Duan, X. R.; Liu, Yi; Xu, M.; Yan, L. W.; Xu, Y.; Song, X. M.; Dong, J. Q.; Ding, X. T.; Chen, L. Y.; Lu, B.; Liu, D. Q.; Rao, J.; Xuan, W. M.; Yang, Q. W.; Zheng, G. Y.; Zou, X. L.; Liu, Y. Q.; Zhong, W. L.; Zhao, K. J.; Ji, X. Q.; Mao, W. C.; Wang, Q. M.; Li, Q.; Cao, J. Y.; Cao, Z.; Lei, G. J.; Zhang, J. H.; Li, X. D.; Bai, X. Y.; Cheng, J.; Chen, W.; Cui, Z. Y.; Delpech, L.; Diamond, P. H.; Dong, Y. B.; Ekedahl, A.; Hoang, T.; Huang, Y.; Ida, K.; Itoh, K.; Itoh, S.-I.; Isobe, M.; Inagaki, S.; Mazon, D.; Morita, S.; Peysson, Y.; Shi, Z. B.; Wang, X. G.; Xiao, G. L.; Yu, D. L.; Yu, L. M.; Zhang, Y. P.; Zhou, Y.; Cui, C. H.; Feng, B. B.; Huang, M.; Li, Y. G.; Li, B.; Li, G. S.; Li, H. J.; Li, Qing; Peng, J. F.; Wang, Y. Q.; Yuan, B. S.; Liu, Yong; HL-2A Team

    2017-10-01

    Since the last Fusion Energy Conference, significant progress has been made in the following areas. The first high coupling efficiency low-hybrid current drive (LHCD) with a passive-active multi-junction (PAM) antenna was successfully demonstrated in the H-mode on the HL-2A tokamak. Double critical impurity gradients of electromagnetic turbulence were observed in H-mode plasmas. Various ELM mitigation techniques have been investigated, including supersonic molecular beam injection (SMBI), impurity seeding, resonant magnetic perturbation (RMP) and low-hybrid wave (LHW). The ion internal transport barrier was observed in neutral beam injection (NBI) heated plasmas. Neoclassical tearing modes (NTMs) driven by the transient perturbation of local electron temperature during non-local thermal transport events have been observed, and a new type of non-local transport triggered by the ion fishbone was found. A long-lasting runaway electron plateau was achieved after argon injection and the runaway current was successfully suppressed by SMBI. It was found that low-n Alfvénic ion temperature gradient (AITG) modes can be destabilized in ohmic plasmas, even with weak magnetic shear and low-pressure gradients. For the first time, the synchronization of geodesic acoustic mode (GAM) and magnetic fluctuations was observed in edge plasmas, revealing frequency entrainment and phase lock. The spatiotemporal features of zonal flows were also studied using multi-channel correlation Doppler reflectometers.

  9. Using AORSA to simulate helicon waves in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.

    2015-12-10

    Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored,more » it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less

  10. Using AORSA to simulate helicon waves in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Cornwall H; Jaeger, E. F.; Bertelli, Nicola

    2015-01-01

    Recent efforts have shown that helicon waves (fast waves at >20 omega(ci)) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, itmore » will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less

  11. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  12. Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.

  13. An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William

    The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous workmore » that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.« less

  14. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    NASA Astrophysics Data System (ADS)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  15. Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes

    NASA Astrophysics Data System (ADS)

    Gorantla, Pranay; Sensarma, Rajdeep

    2018-05-01

    Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.

  16. A pneumatic cylinder driving polyhedron mobile mechanism

    NASA Astrophysics Data System (ADS)

    Ding, Wan; Kim, Sung-Chan; Yao, Yan-An

    2012-03-01

    A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.

  17. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    NASA Astrophysics Data System (ADS)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  18. ELM-free and inter-ELM divertor heat flux broadening induced by edge harmonics oscillation in NSTX

    DOE PAGES

    Gan, K. F.; Ahn, J. -W.; Gray, T. K.; ...

    2017-10-26

    A new n =1 dominated edge harmonic oscillation (EHO) has been found in NSTX. The new EHO, rotating toroidally in the counter-current direction and the opposite direction of the neutral beam, was observed during certain inter-ELM and ELM-free periods of H-mode operation. This EHO is associated with a significant broadening of the integral heat flux width (more » $${{\\lambda}_{\\operatorname{int}}}$$ ) by up to 150%, and a decrease in the divertor peak heat flux by >60%. An EHO induced filament was also observed by the gas puff imaging diagnostic. The toroidal rotating filaments could change the edge magnetic topology resulting in toroidal rotating strike point splitting and heat flux broadening. Finally, experimental result of the counter current rotation of strike points splitting is consistent with the counter-current EHO.« less

  19. Optic disc detection using ant colony optimization

    NASA Astrophysics Data System (ADS)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  20. Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals

    NASA Astrophysics Data System (ADS)

    Baum, Yuval; Refael, Gil

    2018-03-01

    When a d -dimensional quantum system is subjected to a periodic drive, it may be treated as a (d +1 )-dimensional system, where the extra dimension is a synthetic one. This approach, however, affords only a limited level of control of the effective potential along the synthetic direction. In this work, we introduce a new mean for controlling the Floquet synthetic dimension. We show that arbitrary potentials, as well as edges in the synthetic dimension, could be introduced using a memory component in the system's dynamics. We demonstrate this principle by exploring topological edge states propagating normal to synthetic dimensions. Such systems may act as an optical isolator which allows the transmission of light in a directional way. Also, we suggest an experimental realization of the memory effect in spins coupled to nanofabricated Weyl semimetal surface states.

Top