Sample records for edge detection segmentation

  1. Fpga based hardware synthesis for automatic segmentation of retinal blood vessels in diabetic retinopathy images.

    PubMed

    Sivakamasundari, J; Kavitha, G; Sujatha, C M; Ramakrishnan, S

    2014-01-01

    Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Real-Time mass screening system for DR is vital for timely diagnosis and periodic screening to prevent the patient from severe visual loss. Human retinal fundus images are widely used for an automated segmentation of blood vessel and diagnosis of various blood vessel disorders. In this work, an attempt has been made to perform hardware synthesis of Kirsch template based edge detection for segmentation of blood vessels. This method is implemented using LabVIEW software and is synthesized in field programmable gate array board to yield results in real-time application. The segmentation of blood vessels using Kirsch based edge detection is compared with other edge detection methods such as Sobel, Prewitt and Canny. The texture features such as energy, entropy, contrast, mean, homogeneity and structural feature namely ratio of vessel to vessel free area are obtained from the segmented images. The performance of segmentation is analysed in terms of sensitivity, specificity and accuracy. It is observed from the results that the Kirsch based edge detection technique segmented the edges of blood vessels better than other edge detection techniques. The ratio of vessel to vessel free area classified the normal and DR affected retinal images more significantly than other texture based features. FPGA based hardware synthesis of Kirsch edge detection method is able to differentiate normal and diseased images with high specificity (93%). This automated segmentation of retinal blood vessels system could be used in computer-assisted diagnosis for diabetic retinopathy screening in real-time application.

  2. Automatic comic page image understanding based on edge segment analysis

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  3. Iris segmentation using an edge detector based on fuzzy sets theory and cellular learning automata.

    PubMed

    Ghanizadeh, Afshin; Abarghouei, Amir Atapour; Sinaie, Saman; Saad, Puteh; Shamsuddin, Siti Mariyam

    2011-07-01

    Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.

  4. Range image segmentation using Zernike moment-based generalized edge detector

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Mehrotra, R.

    1992-01-01

    The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.

  5. Automatic airline baggage counting using 3D image segmentation

    NASA Astrophysics Data System (ADS)

    Yin, Deyu; Gao, Qingji; Luo, Qijun

    2017-06-01

    The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.

  6. Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis

    NASA Astrophysics Data System (ADS)

    Che, E.; Olsen, M. J.

    2017-09-01

    Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.

  7. An Iris Segmentation Algorithm based on Edge Orientation for Off-angle Iris Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J

    Iris recognition is known as one of the most accurate and reliable biometrics. However, the accuracy of iris recognition systems depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. In this paper, we present a segmentation algorithm for off-angle iris images that uses edge detection, edge elimination, edge classification, and ellipse fitting techniques. In our approach, we first detect all candidate edges in the iris image by using the canny edge detector; this collection contains edges from the iris and pupil boundaries as well as eyelash, eyelids, iris texturemore » etc. Edge orientation is used to eliminate the edges that cannot be part of the iris or pupil. Then, we classify the remaining edge points into two sets as pupil edges and iris edges. Finally, we randomly generate subsets of iris and pupil edge points, fit ellipses for each subset, select ellipses with similar parameters, and average to form the resultant ellipses. Based on the results from real experiments, the proposed method shows effectiveness in segmentation for off-angle iris images.« less

  8. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

  9. Analysis and Verification of HET 1 m Mirror Deflections Due to Edge Sensor Loading

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ninety-one 1 m mirror segments which comprise the McDonald Observatory Hobby Eberly Telescope (HET) primary mirror have been observed to drift out of alignment in an unpredictable manner in response to time variant temperature deviations. A Segment Alignment Maintenance System (SAMS) is being developed to detect and correct this segment-to-segment drift using sensors mounted at the edges of the mirror segments. However, the segments were not originally designed to carry the weight of edge sensors. Thus, analyses and tests were conducted as part of the SAMS design to estimate the magnitude and shape of the edge sensor induced deformations as well as the resultant optical performance. Interferometric testing of a 26 m radius of curvature HET mirror segment was performed at the Marshall Space Flight Center using several load conditions to verify the finite element analyses.

  10. Axial segmentation of lungs CT scan images using canny method and morphological operation

    NASA Astrophysics Data System (ADS)

    Noviana, Rina; Febriani, Rasal, Isram; Lubis, Eva Utari Cintamurni

    2017-08-01

    Segmentation is a very important topic in digital image process. It is found simply in varied fields of image analysis, particularly within the medical imaging field. Axial segmentation of lungs CT scan is beneficial in designation of abnormalities and surgery planning. It will do to ascertain every section within the lungs. The results of the segmentation are accustomed discover the presence of nodules. The method which utilized in this analysis are image cropping, image binarization, Canny edge detection and morphological operation. Image cropping is done so as to separate the lungs areas, that is the region of interest. Binarization method generates a binary image that has 2 values with grey level, that is black and white (ROI), from another space of lungs CT scan image. Canny method used for the edge detection. Morphological operation is applied to smoothing the lungs edge. The segmentation methodology shows an honest result. It obtains an awfully smooth edge. Moreover, the image background can also be removed in order to get the main focus, the lungs.

  11. Segmentation of blurred objects using wavelet transform: application to x-ray images

    NASA Astrophysics Data System (ADS)

    Barat, Cecile S.; Ducottet, Christophe; Bilgot, Anne; Desbat, Laurent

    2004-02-01

    First, we present a wavelet-based algorithm for edge detection and characterization, which is an adaptation of Mallat and Hwang"s method. This algorithm relies on a modelization of contours as smoothed singularities of three particular types (transitions, peaks and lines). On the one hand, it allows to detect and locate edges at an adapted scale. On the other hand, it is able to identify the type of each detected edge point and to measure its amplitude and smoothing size. The latter parameters represent respectively the contrast and the smoothness level of the edge point. Second, we explain that this method has been integrated in a 3D bone surface reconstruction algorithm designed for computer-assisted and minimal invasive orthopaedic surgery. In order to decrease the dose to the patient and to obtain rapidly a 3D image, we propose to identify a bone shape from few X-ray projections by using statistical shape models registered to segmented X-ray projections. We apply this approach to pedicle screw insertion (scoliosis, fractures...) where ten to forty percent of the screws are known to be misplaced. In this context, the proposed edge detection algorithm allows to overcome the major problem of vertebrae segmentation in the X-ray images.

  12. Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface.

    PubMed

    Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2012-08-27

    Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.

  13. The ship edge feature detection based on high and low threshold for remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  14. Automated macromolecular crystal detection system and method

    DOEpatents

    Christian, Allen T [Tracy, CA; Segelke, Brent [San Ramon, CA; Rupp, Bernard [Livermore, CA; Toppani, Dominique [Fontainebleau, FR

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  15. Classification with an edge: Improving semantic image segmentation with boundary detection

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Schindler, K.; Wegner, J. D.; Galliani, S.; Datcu, M.; Stilla, U.

    2018-01-01

    We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the SEGNET encoder-decoder architecture. Second, we also include boundary detection in FCN-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.

  16. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  17. A novel line segment detection algorithm based on graph search

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  18. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  19. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  20. Multi-scales region segmentation for ROI separation in digital mammograms

    NASA Astrophysics Data System (ADS)

    Zhang, Dapeng; Zhang, Di; Li, Yue; Wang, Wei

    2017-02-01

    Mammography is currently the most effective imaging modality used by radiologists for the screening of breast cancer. Segmentation is one of the key steps in the process of developing anatomical models for calculation of safe medical dose of radiation. This paper explores the potential of the statistical region merging segmentation technique for Breast segmentation in digital mammograms. First, the mammograms are pre-processing for regions enhancement, then the enhanced images are segmented using SRM with multi scales, finally these segmentations are combined for region of interest (ROI) separation and edge detection. The proposed algorithm uses multi-scales region segmentation in order to: separate breast region from background region, region edge detection and ROIs separation. The experiments are performed using a data set of mammograms from different patients, demonstrating the validity of the proposed criterion. Results show that, the statistical region merging segmentation algorithm actually can work on the segmentation of medical image and more accurate than another methods. And the outcome shows that the technique has a great potential to become a method of choice for segmentation of mammograms.

  1. Applications of 3D-EDGE Detection for ALS Point Cloud

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    Edge detection has been one of the major issues in the field of remote sensing and photogrammetry. With the fast development of sensor technology of laser scanning system, dense point clouds have become increasingly common. Precious 3D-edges are able to be detected from these point clouds and a great deal of edge or feature line extraction methods have been proposed. Among these methods, an easy-to-use 3D-edge detection method, AGPN (Analyzing Geometric Properties of Neighborhoods), has been proposed. The AGPN method detects edges based on the analysis of geometric properties of a query point's neighbourhood. The AGPN method detects two kinds of 3D-edges, including boundary elements and fold edges, and it has many applications. This paper presents three applications of AGPN, i.e., 3D line segment extraction, ground points filtering, and ground breakline extraction. Experiments show that the utilization of AGPN method gives a straightforward solution to these applications.

  2. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    PubMed Central

    Yang, Jing; Gao, Qian; Zhou, Sheng

    2017-01-01

    Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology. PMID:29065594

  3. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing.

    PubMed

    Sarrafzadeh, Omid; Dehnavi, Alireza Mehri

    2015-01-01

    Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection.

  4. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing

    PubMed Central

    Sarrafzadeh, Omid; Dehnavi, Alireza Mehri

    2015-01-01

    Background: Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. Materials and Methods: The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. Results: The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. Conclusions: In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection. PMID:26605213

  5. [An object-oriented remote sensing image segmentation approach based on edge detection].

    PubMed

    Tan, Yu-Min; Huai, Jian-Zhu; Tang, Zhong-Shi

    2010-06-01

    Satellite sensor technology endorsed better discrimination of various landscape objects. Image segmentation approaches to extracting conceptual objects and patterns hence have been explored and a wide variety of such algorithms abound. To this end, in order to effectively utilize edge and topological information in high resolution remote sensing imagery, an object-oriented algorithm combining edge detection and region merging is proposed. Susan edge filter is firstly applied to the panchromatic band of Quickbird imagery with spatial resolution of 0.61 m to obtain the edge map. Thanks to the resulting edge map, a two-phrase region-based segmentation method operates on the fusion image from panchromatic and multispectral Quickbird images to get the final partition result. In the first phase, a quad tree grid consisting of squares with sides parallel to the image left and top borders agglomerates the square subsets recursively where the uniform measure is satisfied to derive image object primitives. Before the merger of the second phrase, the contextual and spatial information, (e. g., neighbor relationship, boundary coding) of the resulting squares are retrieved efficiently by means of the quad tree structure. Then a region merging operation is performed with those primitives, during which the criterion for region merging integrates edge map and region-based features. This approach has been tested on the QuickBird images of some site in Sanxia area and the result is compared with those of ENVI Zoom Definiens. In addition, quantitative evaluation of the quality of segmentation results is also presented. Experiment results demonstrate stable convergence and efficiency.

  6. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  7. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  8. 3CCD image segmentation and edge detection based on MATLAB

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-09-01

    This research aimed to identify weeds from crops in early stage in the field operation by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ifred) which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. By the application of image-processing toolkit on MATLAB, the different areas in the image can be segmented clearly. As edge detection technique is the first and very important step in image processing, The different result of different processing method was compared. Especially, by using the wavelet packet transform toolkit on MATLAB, An image was preprocessed and then the edge was extracted, and getting more clearly cut image of edge. The segmentation methods include operations as erosion, dilation and other algorithms to preprocess the images. It is of great importance to segment different areas in digital images in field real time, so as to be applied in precision farming, to saving energy and herbicide and many other materials. At present time Large scale software as MATLAB on PC was used, but the computation can be reduced and integrated into a small embed system, which means that the application of this technique in agricultural engineering is feasible and of great economical value.

  9. Segmentation Approach Towards Phase-Contrast Microscopic Images of Activated Sludge to Monitor the Wastewater Treatment.

    PubMed

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun

    2017-12-01

    Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.

  10. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.

    PubMed

    Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong

    2015-07-01

    To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.

  11. Text, photo, and line extraction in scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2012-07-01

    We propose a page layout analysis algorithm to classify a scanned document into different regions such as text, photo, or strong lines. The proposed scheme consists of five modules. The first module performs several image preprocessing techniques such as image scaling, filtering, color space conversion, and gamma correction to enhance the scanned image quality and reduce the computation time in later stages. Text detection is applied in the second module wherein wavelet transform and run-length encoding are employed to generate and validate text regions, respectively. The third module uses a Markov random field based block-wise segmentation that employs a basis vector projection technique with maximum a posteriori probability optimization to detect photo regions. In the fourth module, methods for edge detection, edge linking, line-segment fitting, and Hough transform are utilized to detect strong edges and lines. In the last module, the resultant text, photo, and edge maps are combined to generate a page layout map using K-Means clustering. The proposed algorithm has been tested on several hundred documents that contain simple and complex page layout structures and contents such as articles, magazines, business cards, dictionaries, and newsletters, and compared against state-of-the-art page-segmentation techniques with benchmark performance. The results indicate that our methodology achieves an average of ˜89% classification accuracy in text, photo, and background regions.

  12. Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms

    PubMed Central

    Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed

    2011-01-01

    We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734

  13. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  14. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.

    PubMed

    Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Marin, Diego

    2010-11-01

    Optic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation. It requires a pixel located within the OD as initial information. For this purpose, a location methodology based on a voting-type algorithm is also proposed. The algorithms were evaluated on the 1200 images of the publicly available MESSIDOR database. The location procedure succeeded in 99% of cases, taking an average computational time of 1.67 s. with a standard deviation of 0.14 s. On the other hand, the segmentation algorithm rendered an average common area overlapping between automated segmentations and true OD regions of 86%. The average computational time was 5.69 s with a standard deviation of 0.54 s. Moreover, a discussion on advantages and disadvantages of the models more generally used for OD segmentation is also presented in this paper.

  15. Segmentation of Brain Lesions in MRI and CT Scan Images: A Hybrid Approach Using k-Means Clustering and Image Morphology

    NASA Astrophysics Data System (ADS)

    Agrawal, Ritu; Sharma, Manisha; Singh, Bikesh Kumar

    2018-04-01

    Manual segmentation and analysis of lesions in medical images is time consuming and subjected to human errors. Automated segmentation has thus gained significant attention in recent years. This article presents a hybrid approach for brain lesion segmentation in different imaging modalities by combining median filter, k means clustering, Sobel edge detection and morphological operations. Median filter is an essential pre-processing step and is used to remove impulsive noise from the acquired brain images followed by k-means segmentation, Sobel edge detection and morphological processing. The performance of proposed automated system is tested on standard datasets using performance measures such as segmentation accuracy and execution time. The proposed method achieves a high accuracy of 94% when compared with manual delineation performed by an expert radiologist. Furthermore, the statistical significance test between lesion segmented using automated approach and that by expert delineation using ANOVA and correlation coefficient achieved high significance values of 0.986 and 1 respectively. The experimental results obtained are discussed in lieu of some recently reported studies.

  16. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  17. Real-time biscuit tile image segmentation method based on edge detection.

    PubMed

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Semantic Image Segmentation with Contextual Hierarchical Models.

    PubMed

    Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-05-01

    Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).

  19. Improvement and implementation for Canny edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  20. Using gradient-based ray and candidate shadow maps for environmental illumination distribution estimation

    NASA Astrophysics Data System (ADS)

    Eem, Changkyoung; Kim, Iksu; Hong, Hyunki

    2015-07-01

    A method to estimate the environmental illumination distribution of a scene with gradient-based ray and candidate shadow maps is presented. In the shadow segmentation stage, we apply a Canny edge detector to the shadowed image by using a three-dimensional (3-D) augmented reality (AR) marker of a known size and shape. Then the hierarchical tree of the connected edge components representing the topological relation is constructed, and the connected components are merged, taking their hierarchical structures into consideration. A gradient-based ray that is perpendicular to the gradient of the edge pixel in the shadow image can be used to extract the shadow regions. In the light source detection stage, shadow regions with both a 3-D AR marker and the light sources are partitioned into candidate shadow maps. A simple logic operation between each candidate shadow map and the segmented shadow is used to efficiently compute the area ratio between them. The proposed method successively extracts the main light sources according to their relative contributions on the segmented shadows. The proposed method can reduce unwanted effects due to the sampling positions in the shadow region and the threshold values in the shadow edge detection.

  1. Hair segmentation using adaptive threshold from edge and branch length measures.

    PubMed

    Lee, Ian; Du, Xian; Anthony, Brian

    2017-10-01

    Non-invasive imaging techniques allow the monitoring of skin structure and diagnosis of skin diseases in clinical applications. However, hair in skin images hampers the imaging and classification of the skin structure of interest. Although many hair segmentation methods have been proposed for digital hair removal, a major challenge in hair segmentation remains in detecting hairs that are thin, overlapping, of similar contrast or color to underlying skin, or overlaid on highly-textured skin structure. To solve the problem, we present an automatic hair segmentation method that uses edge density (ED) and mean branch length (MBL) to measure hair. First, hair is detected by the integration of top-hat transform and modified second-order Gaussian filter. Second, we employ a robust adaptive threshold of ED and MBL to generate a hair mask. Third, the hair mask is refined by k-NN classification of hair and skin pixels. The proposed algorithm was tested using two datasets of healthy skin images and lesion images respectively. These datasets were taken from different imaging platforms in various illumination levels and varying skin colors. We compared the hair detection and segmentation results from our algorithm and six other hair segmentation methods of state of the art. Our method exhibits high value of sensitivity: 75% and specificity: 95%, which indicates significantly higher accuracy and better balance between true positive and false positive detection than the other methods. Published by Elsevier Ltd.

  2. Dynamic programming in parallel boundary detection with application to ultrasound intima-media segmentation.

    PubMed

    Zhou, Yuan; Cheng, Xinyao; Xu, Xiangyang; Song, Enmin

    2013-12-01

    Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thickness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we improve the implementation of two dynamic programming (DP) based approaches to parallel boundary detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP). Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve position to a 4-D parameter space representing two line segments in a local image segment, is proposed to solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from multiplication of the responses of two edge detectors with different scales and a coupled snake model that simultaneously deforms the two contours for maintaining parallelism. The experimental results on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Breast mass segmentation in mammography using plane fitting and dynamic programming.

    PubMed

    Song, Enmin; Jiang, Luan; Jin, Renchao; Zhang, Lin; Yuan, Yuan; Li, Qiang

    2009-07-01

    Segmentation is an important and challenging task in a computer-aided diagnosis (CAD) system. Accurate segmentation could improve the accuracy in lesion detection and characterization. The objective of this study is to develop and test a new segmentation method that aims at improving the performance level of breast mass segmentation in mammography, which could be used to provide accurate features for classification. This automated segmentation method consists of two main steps and combines the edge gradient, the pixel intensity, as well as the shape characteristics of the lesions to achieve good segmentation results. First, a plane fitting method was applied to a background-trend corrected region-of-interest (ROI) of a mass to obtain the edge candidate points. Second, dynamic programming technique was used to find the "optimal" contour of the mass from the edge candidate points. Area-based similarity measures based on the radiologist's manually marked annotation and the segmented region were employed as criteria to evaluate the performance level of the segmentation method. With the evaluation criteria, the new method was compared with 1) the dynamic programming method developed by Timp and Karssemeijer, and 2) the normalized cut segmentation method, based on 337 ROIs extracted from a publicly available image database. The experimental results indicate that our segmentation method can achieve a higher performance level than the other two methods, and the improvements in segmentation performance level were statistically significant. For instance, the mean overlap percentage for the new algorithm was 0.71, whereas those for Timp's dynamic programming method and the normalized cut segmentation method were 0.63 (P < .001) and 0.61 (P < .001), respectively. We developed a new segmentation method by use of plane fitting and dynamic programming, which achieved a relatively high performance level. The new segmentation method would be useful for improving the accuracy of computerized detection and classification of breast cancer in mammography.

  4. Real-time 3D reconstruction of road curvature in far look-ahead distance from analysis of image sequences

    NASA Astrophysics Data System (ADS)

    Behringer, Reinhold

    1995-12-01

    A system for visual road recognition in far look-ahead distance, implemented in the autonomous road vehicle VaMP (a passenger car), is described. Visual cues of a road in a video image are the bright lane markings and the edges formed at the road borders. In a distance of more than 100 m, the most relevant road cue is the homogeneous road area, limited by the two border edges. These cues can be detected by the image processing module KRONOS applying edge detection techniques and areal 2D segmentation based on resolution triangles (analogous to a resolution pyramid). An estimation process performs an update of a state vector, which describes spatial road shape and vehicle orientation relative to the road. This state vector is estimated every 40 ms by exploiting knowledge about the vehicle movement (spatio-temporal model of vehicle dynamics) and the road design rules (clothoidal segments). Kalman filter techniques are applied to obtain an optimal estimate of the state vector by evaluating the measurements of the road border positions in the image sequence taken by a set of CCD cameras. The road consists of segments with piecewise constant curvature parameters. The borders between these segments can be detected by applying methods which have been developed for detection of discontinuities during time-discrete measurements. The road recognition system has been tested in autonomous rides with VaMP on public Autobahnen in real traffic at speeds up to 130 km/h.

  5. Slot angle detecting method for fiber fixed chip

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao

    2018-04-01

    The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.

  6. Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values.

    PubMed

    Baca, A

    1996-04-01

    A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.

  7. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    NASA Astrophysics Data System (ADS)

    Rogowska, Jadwiga; Brezinski, Mark E.

    2002-02-01

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  8. A novel approach to segmentation and measurement of medical image using level set methods.

    PubMed

    Chen, Yao-Tien

    2017-06-01

    The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  10. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images

    PubMed Central

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells. PMID:26066315

  11. Iris Segmentation and Normalization Algorithm Based on Zigzag Collarette

    NASA Astrophysics Data System (ADS)

    Rizky Faundra, M.; Ratna Sulistyaningrum, Dwi

    2017-01-01

    In this paper, we proposed iris segmentation and normalization algorithm based on the zigzag collarette. First of all, iris images are processed by using Canny Edge Detection to detect pupil edge, then finding the center and the radius of the pupil with the Hough Transform Circle. Next, isolate important part in iris based zigzag collarette area. Finally, Daugman Rubber Sheet Model applied to get the fixed dimensions or normalization iris by transforming cartesian into polar format and thresholding technique to remove eyelid and eyelash. This experiment will be conducted with a grayscale eye image data taken from a database of iris-Chinese Academy of Sciences Institute of Automation (CASIA). Data iris taken is the data reliable and widely used to study the iris biometrics. The result show that specific threshold level is 0.3 have better accuracy than other, so the present algorithm can be used to segmentation and normalization zigzag collarette with accuracy is 98.88%

  12. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  13. Wear Detection of Drill Bit by Image-based Technique

    NASA Astrophysics Data System (ADS)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  14. SU-E-J-168: Automated Pancreas Segmentation Based On Dynamic MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, S; Rapacchi, S; Hu, P

    2014-06-01

    Purpose: MRI guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment 2D upper abdominal dynamic MRI is developed for this purpose. Methods: 2D coronal dynamic MR images of 2 healthy volunteers were acquired with a frame rate of 5 f/second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centers of the ROIs were annotated. These center locations were propagatedmore » to the next dynamic MRI frame. 4-neighborhood region transfer growth was performed from these initial seeds for rough segmentation. To improve the results, gradient, edge and shape constraints were applied to the ROIs before final refinement using morphological operations. Results from hGReS and 3 other automated segmentation methods using edge detection, region growth and level set were compared to manual contouring. Results: For the first patient, hGReS resulted in the organ segmentation accuracy as measure by the Dices index (0.77) for the pancreas. The accuracy was slightly superior to the level set method (0.72), and both are significantly more accurate than the edge detection (0.53) and region growth methods (0.42). For the second healthy volunteer, hGReS reliably segmented the pancreatic region, achieving a Dices index of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively, comparing to manual segmentation. Motion trajectories derived from the hGReS, level set and manual segmentation methods showed high correlation to respiratory motion calculated using a lung blood vessel as the reference while the other two methods showed substantial motion tracking errors. hGReS was 10 times faster than level set. Conclusion: We have shown the feasibility of automated segmentation of the pancreas anatomy based on dynamic MRI.« less

  15. A new method of inshore ship detection in high-resolution optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Hu, Qifeng; Du, Yaling; Jiang, Yunqiu; Ming, Delie

    2015-10-01

    Ship as an important military target and water transportation, of which the detection has great significance. In the military field, the automatic detection of ships can be used to monitor ship dynamic in the harbor and maritime of enemy, and then analyze the enemy naval power. In civilian field, the automatic detection of ships can be used in monitoring transportation of harbor and illegal behaviors such as illegal fishing, smuggling and pirates, etc. In recent years, research of ship detection is mainly concentrated in three categories: forward-looking infrared images, downward-looking SAR image, and optical remote sensing images with sea background. Little research has been done into ship detection of optical remote sensing images with harbor background, as the gray-scale and texture features of ships are similar to the coast in high-resolution optical remote sensing images. In this paper, we put forward an effective harbor ship target detection method. First of all, in order to overcome the shortage of the traditional difference method in obtaining histogram valley as the segmentation threshold, we propose an iterative histogram valley segmentation method which separates the harbor and ships from the water quite well. Secondly, as landing ships in optical remote sensing images usually lead to discontinuous harbor edges, we use Hough Transform method to extract harbor edges. First, lines are detected by Hough Transform. Then, lines that have similar slope are connected into a new line, thus we access continuous harbor edges. Secondary segmentation on the result of the land-and-sea separation, we eventually get the ships. At last, we calculate the aspect ratio of the ROIs, thereby remove those targets which are not ship. The experiment results show that our method has good robustness and can tolerate a certain degree of noise and occlusion.

  16. Automated retinal layer segmentation and characterization

    NASA Astrophysics Data System (ADS)

    Luisi, Jonathan; Briley, David; Boretsky, Adam; Motamedi, Massoud

    2014-05-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.

  17. Bio-Inspired Sensing and Display of Polarization Imagery

    DTIC Science & Technology

    2005-07-17

    and weighting coefficients in this example. Panel 4D clearly shows a better visibility, feature extraction , and lesser effect from the background...of linear polarization. Panel E represents the segmentation of the degree of linear polarization, and then Panel F shows the extracted segment with...polarization, and Panel F shows the segment extraction with the finger print selected. Panel G illustrates the application of Canny edge detection to

  18. Mathematical models used in segmentation and fractal methods of 2-D ultrasound images

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin

    2012-11-01

    Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.

  19. Comparison of edge detection techniques for M7 subtype Leukemic cell in terms of noise filters and threshold value

    NASA Astrophysics Data System (ADS)

    Salam, Afifah Salmi Abdul; Isa, Mohd. Nazrin Md.; Ahmad, Muhammad Imran; Che Ismail, Rizalafande

    2017-11-01

    This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection). Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML) is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.

  20. A hybrid algorithm for the segmentation of books in libraries

    NASA Astrophysics Data System (ADS)

    Hu, Zilong; Tang, Jinshan; Lei, Liang

    2016-05-01

    This paper proposes an algorithm for book segmentation based on bookshelves images. The algorithm can be separated into three parts. The first part is pre-processing, aiming at eliminating or decreasing the effect of image noise and illumination conditions. The second part is near-horizontal line detection based on Canny edge detector, and separating a bookshelves image into multiple sub-images so that each sub-image contains an individual shelf. The last part is book segmentation. In each shelf image, near-vertical line is detected, and obtained lines are used for book segmentation. The proposed algorithm was tested with the bookshelf images taken from OPIE library in MTU, and the experimental results demonstrate good performance.

  1. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    PubMed

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  2. Development of a fully automatic scheme for detection of masses in whole breast ultrasound images.

    PubMed

    Ikedo, Yuji; Fukuoka, Daisuke; Hara, Takeshi; Fujita, Hiroshi; Takada, Etsuo; Endo, Tokiko; Morita, Takako

    2007-11-01

    Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional hand-held probe is operator dependent and thus it is possible that some areas of the breast may not be scanned. To overcome such problems, a mechanical whole breast ultrasound (US) scanner has been proposed and developed for screening purposes. However, another issue is that radiologists might tire while interpreting all images in a large-volume screening; this increases the likelihood that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic scheme for the detection of masses in whole breast US images in order to assist the interpretations of radiologists and potentially improve the screening accuracy. The authors database comprised 109 whole breast US imagoes, which include 36 masses (16 malignant masses, 5 fibroadenomas, and 15 cysts). A whole breast US image with 84 slice images (interval between two slice images: 2 mm) was obtained by the ASU-1004 US scanner (ALOKA Co., Ltd., Japan). The feature based on the edge directions in each slice and a method for subtracting between the slice images were used for the detection of masses in the authors proposed scheme. The Canny edge detector was applied to detect edges in US images; these edges were classified as near-vertical edges or near-horizontal edges using a morphological method. The positions of mass candidates were located using the near-vertical edges as a cue. Then, the located positions were segmented by the watershed algorithm and mass candidate regions were detected using the segmented regions and the low-density regions extracted by the slice subtraction method. For the removal of false positives (FPs), rule-based schemes and a quadratic discriminant analysis were applied for the distribution between masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was 80.6% (29/36) with 3.8 FPs per whole breast image. The authors scheme for a computer-aided detection may be useful in improving the screening performance and efficiency.

  3. Towards predictive diagnosis and management of rotator cuff disease: using curvelet transform for edge detection and segmentation of tissue

    NASA Astrophysics Data System (ADS)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2016-04-01

    Degradation and injury of the rotator cuff is one of the most common diseases of the shoulder among the general population. In orthopedic injuries, rotator cuff disease is only second to back pain in terms of overall reduced quality of life for patients. Clinically, this disease is managed via pain and activity assessment and diagnostic imaging using ultrasound and MRI. Ultrasound has been shown to have good accuracy for identification and measurement of rotator cuff tears. In our previous work, we have developed novel, real-time techniques to biomechanically assess the condition of the rotator cuff based on Musculoskeletal Ultrasound. Of the rotator cuff tissues, supraspinatus is the first that sees degradation and is the most commonly affected. In our work, one of the challenges lies in effectively segmenting and characterizing the supraspinatus. We are exploring the possibility of using curvelet transform for improving techniques to segment tissue in ultrasound. Curvelets have been shown to give optimal multi-scale representation of edges in images. They are designed to represent edges and singularities along curves in images which makes them an attractive proposition for use in ultrasound segmentation. In this work, we present a novel approach to the possibility of using curvelet transforms for automatic edge and feature extraction for the supraspinatus.

  4. A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells

    PubMed Central

    Huang, Lawrence; Helmke, Brian P.

    2011-01-01

    Spatial asymmetry of actin edge ruffling contributes to the process of cell polarization and directional migration, but mechanisms by which external cues control actin polymerization near cell edges remain unclear. We designed a quantitative image analysis strategy to measure the spatiotemporal distribution of actin edge ruffling. Time-lapse images of endothelial cells (ECs) expressing mRFP-actin were segmented using an active contour method. In intensity line profiles oriented normal to the cell edge, peak detection identified the angular distribution of polymerized actin within 1 µm of the cell edge, which was localized to lamellipodia and edge ruffles. Edge features associated with filopodia and peripheral stress fibers were removed. Circular statistical analysis enabled detection of cell polarity, indicated by a unimodal distribution of edge ruffles. To demonstrate the approach, we detected a rapid, nondirectional increase in edge ruffling in serum-stimulated ECs and a change in constitutive ruffling orientation in quiescent, nonpolarized ECs. Error analysis using simulated test images demonstrate robustness of the method to variations in image noise levels, edge ruffle arc length, and edge intensity gradient. These quantitative measurements of edge ruffling dynamics enable investigation at the cellular length scale of the underlying molecular mechanisms regulating actin assembly and cell polarization. PMID:21643526

  5. Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shih, Hsueh-Fu; Ho, Te-Wei; Hsu, Jui-Tse; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming

    2017-02-01

    Postsurgical wound care has a great impact on patients' prognosis. It often takes few days, even few weeks, for the wound to stabilize, which incurs a great cost of health care and nursing resources. To assess the wound condition and diagnosis, it is important to segment out the wound region for further analysis. However, the scenario of this strategy often consists of complicated background and noise. In this study, we propose a wound segmentation algorithm based on Canny edge detector and genetic algorithm with an unsupervised evaluation function. The results were evaluated by the 112 clinical images, and 94.3% of images were correctly segmented. The judgment was based on the evaluation of experimented medical doctors. This capability to extract complete wound regions, makes it possible to conduct further image analysis such as intelligent recovery evaluation and automatic infection requirements.

  6. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  7. Echogenicity based approach to detect, segment and track the common carotid artery in 2D ultrasound images.

    PubMed

    Narayan, Nikhil S; Marziliano, Pina

    2015-08-01

    Automatic detection and segmentation of the common carotid artery in transverse ultrasound (US) images of the thyroid gland play a vital role in the success of US guided intervention procedures. We propose in this paper a novel method to accurately detect, segment and track the carotid in 2D and 2D+t US images of the thyroid gland using concepts based on tissue echogenicity and ultrasound image formation. We first segment the hypoechoic anatomical regions of interest using local phase and energy in the input image. We then make use of a Hessian based blob like analysis to detect the carotid within the segmented hypoechoic regions. The carotid artery is segmented by making use of least squares ellipse fit for the edge points around the detected carotid candidate. Experiments performed on a multivendor dataset of 41 images show that the proposed algorithm can segment the carotid artery with high sensitivity (99.6 ±m 0.2%) and specificity (92.9 ±m 0.1%). Further experiments on a public database containing 971 images of the carotid artery showed that the proposed algorithm can achieve a detection accuracy of 95.2% with a 2% increase in performance when compared to the state-of-the-art method.

  8. An Improved Unsupervised Image Segmentation Evaluation Approach Based on - and Over-Segmentation Aware

    NASA Astrophysics Data System (ADS)

    Su, Tengfei

    2018-04-01

    In this paper, an unsupervised evaluation scheme for remote sensing image segmentation is developed. Based on a method called under- and over-segmentation aware (UOA), the new approach is improved by overcoming the defect in the part of estimating over-segmentation error. Two cases of such error-prone defect are listed, and edge strength is employed to devise a solution to this issue. Two subsets of high resolution remote sensing images were used to test the proposed algorithm, and the experimental results indicate its superior performance, which is attributed to its improved OSE detection model.

  9. Colour application on mammography image segmentation

    NASA Astrophysics Data System (ADS)

    Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.

    2017-09-01

    The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).

  10. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  11. Application of Morphological Segmentation to Leaking Defect Detection in Sewer Pipelines

    PubMed Central

    Su, Tung-Ching; Yang, Ming-Der

    2014-01-01

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically idengified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247

  12. Constraint-based stereo matching

    NASA Technical Reports Server (NTRS)

    Kuan, D. T.

    1987-01-01

    The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.

  13. A Robust and Fast Method for Sidescan Sonar Image Segmentation Using Nonlocal Despeckling and Active Contour Model.

    PubMed

    Huo, Guanying; Yang, Simon X; Li, Qingwu; Zhou, Yan

    2017-04-01

    Sidescan sonar image segmentation is a very important issue in underwater object detection and recognition. In this paper, a robust and fast method for sidescan sonar image segmentation is proposed, which deals with both speckle noise and intensity inhomogeneity that may cause considerable difficulties in image segmentation. The proposed method integrates the nonlocal means-based speckle filtering (NLMSF), coarse segmentation using k -means clustering, and fine segmentation using an improved region-scalable fitting (RSF) model. The NLMSF is used before the segmentation to effectively remove speckle noise while preserving meaningful details such as edges and fine features, which can make the segmentation easier and more accurate. After despeckling, a coarse segmentation is obtained by using k -means clustering, which can reduce the number of iterations. In the fine segmentation, to better deal with possible intensity inhomogeneity, an edge-driven constraint is combined with the RSF model, which can not only accelerate the convergence speed but also avoid trapping into local minima. The proposed method has been successfully applied to both noisy and inhomogeneous sonar images. Experimental and comparative results on real and synthetic sonar images demonstrate that the proposed method is robust against noise and intensity inhomogeneity, and is also fast and accurate.

  14. Image segmentation on adaptive edge-preserving smoothing

    NASA Astrophysics Data System (ADS)

    He, Kun; Wang, Dan; Zheng, Xiuqing

    2016-09-01

    Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.

  15. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges.

    PubMed

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-06-01

    In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors' method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors' model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors' method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate.

  16. Strain gauge ambiguity sensor for segmented mirror active optical system

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.; Howe, T. L. (Inventor)

    1974-01-01

    A system is described to measure alignment between interfacing edges of mirror segments positioned to form a segmented mirror surface. It serves as a gauge having a bending beam with four piezoresistive elements coupled across the interfaces of the edges of adjacent mirror segments. The bending beam has a first position corresponding to alignment of the edges of adjacent mirror segments, and it is bendable from the first position in a direction and to a degree dependent upon the relative misalignment between the edges of adjacent mirror segments to correspondingly vary the resistance of the strain guage. A source of power and an amplifier are connected in circuit with the strain gauge whereby the output of the amplifier varies according to the misalignment of the edges of adjacent mirror segments.

  17. A summary of image segmentation techniques

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    Machine vision systems are often considered to be composed of two subsystems: low-level vision and high-level vision. Low level vision consists primarily of image processing operations performed on the input image to produce another image with more favorable characteristics. These operations may yield images with reduced noise or cause certain features of the image to be emphasized (such as edges). High-level vision includes object recognition and, at the highest level, scene interpretation. The bridge between these two subsystems is the segmentation system. Through segmentation, the enhanced input image is mapped into a description involving regions with common features which can be used by the higher level vision tasks. There is no theory on image segmentation. Instead, image segmentation techniques are basically ad hoc and differ mostly in the way they emphasize one or more of the desired properties of an ideal segmenter and in the way they balance and compromise one desired property against another. These techniques can be categorized in a number of different groups including local vs. global, parallel vs. sequential, contextual vs. noncontextual, interactive vs. automatic. In this paper, we categorize the schemes into three main groups: pixel-based, edge-based, and region-based. Pixel-based segmentation schemes classify pixels based solely on their gray levels. Edge-based schemes first detect local discontinuities (edges) and then use that information to separate the image into regions. Finally, region-based schemes start with a seed pixel (or group of pixels) and then grow or split the seed until the original image is composed of only homogeneous regions. Because there are a number of survey papers available, we will not discuss all segmentation schemes. Rather than a survey, we take the approach of a detailed overview. We focus only on the more common approaches in order to give the reader a flavor for the variety of techniques available yet present enough details to facilitate implementation and experimentation.

  18. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  19. Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model.

    PubMed

    Tan, Tao; Gubern-Mérida, Albert; Borelli, Cristina; Manniesing, Rashindra; van Zelst, Jan; Wang, Lei; Zhang, Wei; Platel, Bram; Mann, Ritse M; Karssemeijer, Nico

    2016-07-01

    Automated 3D breast ultrasound (ABUS) has been proposed as a complementary screening modality to mammography for early detection of breast cancers. To facilitate the interpretation of ABUS images, automated diagnosis and detection techniques are being developed, in which malignant lesion segmentation plays an important role. However, automated segmentation of cancer in ABUS is challenging since lesion edges might not be well defined. In this study, the authors aim at developing an automated segmentation method for malignant lesions in ABUS that is robust to ill-defined cancer edges and posterior shadowing. A segmentation method using depth-guided dynamic programming based on spiral scanning is proposed. The method automatically adjusts aggressiveness of the segmentation according to the position of the voxels relative to the lesion center. Segmentation is more aggressive in the upper part of the lesion (close to the transducer) than at the bottom (far away from the transducer), where posterior shadowing is usually visible. The authors used Dice similarity coefficient (Dice) for evaluation. The proposed method is compared to existing state of the art approaches such as graph cut, level set, and smart opening and an existing dynamic programming method without depth dependence. In a dataset of 78 cancers, our proposed segmentation method achieved a mean Dice of 0.73 ± 0.14. The method outperforms an existing dynamic programming method (0.70 ± 0.16) on this task (p = 0.03) and it is also significantly (p < 0.001) better than graph cut (0.66 ± 0.18), level set based approach (0.63 ± 0.20) and smart opening (0.65 ± 0.12). The proposed depth-guided dynamic programming method achieves accurate breast malignant lesion segmentation results in automated breast ultrasound.

  20. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  1. Geometric shapes inversion method of space targets by ISAR image segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  2. Color edges extraction using statistical features and automatic threshold technique: application to the breast cancer cells.

    PubMed

    Ben Chaabane, Salim; Fnaiech, Farhat

    2014-01-23

    Color image segmentation has been so far applied in many areas; hence, recently many different techniques have been developed and proposed. In the medical imaging area, the image segmentation may be helpful to provide assistance to doctor in order to follow-up the disease of a certain patient from the breast cancer processed images. The main objective of this work is to rebuild and also to enhance each cell from the three component images provided by an input image. Indeed, from an initial segmentation obtained using the statistical features and histogram threshold techniques, the resulting segmentation may represent accurately the non complete and pasted cells and enhance them. This allows real help to doctors, and consequently, these cells become clear and easy to be counted. A novel method for color edges extraction based on statistical features and automatic threshold is presented. The traditional edge detector, based on the first and the second order neighborhood, describing the relationship between the current pixel and its neighbors, is extended to the statistical domain. Hence, color edges in an image are obtained by combining the statistical features and the automatic threshold techniques. Finally, on the obtained color edges with specific primitive color, a combination rule is used to integrate the edge results over the three color components. Breast cancer cell images were used to evaluate the performance of the proposed method both quantitatively and qualitatively. Hence, a visual and a numerical assessment based on the probability of correct classification (PC), the false classification (Pf), and the classification accuracy (Sens(%)) are presented and compared with existing techniques. The proposed method shows its superiority in the detection of points which really belong to the cells, and also the facility of counting the number of the processed cells. Computer simulations highlight that the proposed method substantially enhances the segmented image with smaller error rates better than other existing algorithms under the same settings (patterns and parameters). Moreover, it provides high classification accuracy, reaching the rate of 97.94%. Additionally, the segmentation method may be extended to other medical imaging types having similar properties.

  3. Fine alignment of a large segmented mirror

    NASA Technical Reports Server (NTRS)

    Dey, Thomas William (Inventor)

    2010-01-01

    A system for aligning a segmented mirror includes a source of radiation directed along a first axis to the segmented mirror and a beamsplitter removably inserted along the first axis for redirecting radiation from the first axis to a second axis, substantially perpendicular to the first axis. An imaging array is positioned along the second axis for imaging the redirected radiation, and a knife-edge configured for cutting the redirected radiation is serially positioned to occlude and not occlude the redirected radiation, effectively providing a variable radiation pattern detected by the imaging array for aligning the segmented mirror.

  4. Global Radius of Curvature Estimation and Control System for Segmented Mirrors

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M. (Inventor)

    2006-01-01

    An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.

  5. Joint detection of anatomical points on surface meshes and color images for visual registration of 3D dental models

    NASA Astrophysics Data System (ADS)

    Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves

    2015-04-01

    Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.

  6. Segmentation and classification of brain images using firefly and hybrid kernel-based support vector machine

    NASA Astrophysics Data System (ADS)

    Selva Bhuvaneswari, K.; Geetha, P.

    2017-05-01

    Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.

  7. Automatic segmentation of multimodal brain tumor images based on classification of super-voxels.

    PubMed

    Kadkhodaei, M; Samavi, S; Karimi, N; Mohaghegh, H; Soroushmehr, S M R; Ward, K; All, A; Najarian, K

    2016-08-01

    Despite the rapid growth in brain tumor segmentation approaches, there are still many challenges in this field. Automatic segmentation of brain images has a critical role in decreasing the burden of manual labeling and increasing robustness of brain tumor diagnosis. We consider segmentation of glioma tumors, which have a wide variation in size, shape and appearance properties. In this paper images are enhanced and normalized to same scale in a preprocessing step. The enhanced images are then segmented based on their intensities using 3D super-voxels. Usually in images a tumor region can be regarded as a salient object. Inspired by this observation, we propose a new feature which uses a saliency detection algorithm. An edge-aware filtering technique is employed to align edges of the original image to the saliency map which enhances the boundaries of the tumor. Then, for classification of tumors in brain images, a set of robust texture features are extracted from super-voxels. Experimental results indicate that our proposed method outperforms a comparable state-of-the-art algorithm in term of dice score.

  8. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using Deep Convolutional Neural Networks.

    PubMed

    López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A

    2018-05-01

    Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Manhole Cover Detection Using Vehicle-Based Multi-Sensor Data

    NASA Astrophysics Data System (ADS)

    Ji, S.; Shi, Y.; Shi, Z.

    2012-07-01

    A new method combined wit multi-view matching and feature extraction technique is developed to detect manhole covers on the streets using close-range images combined with GPS/IMU and LINDAR data. The covers are an important target on the road traffic as same as transport signs, traffic lights and zebra crossing but with more unified shapes. However, the different shoot angle and distance, ground material, complex street scene especially its shadow, and cars in the road have a great impact on the cover detection rate. The paper introduces a new method in edge detection and feature extraction in order to overcome these difficulties and greatly improve the detection rate. The LIDAR data are used to do scene segmentation and the street scene and cars are excluded from the roads. And edge detection method base on canny which sensitive to arcs and ellipses is applied on the segmented road scene and the interesting areas contain arcs are extracted and fitted to ellipse. The ellipse are then resampled for invariance to shooting angle and distance and then are matched to adjacent images for further checking if covers and . More than 1000 images with different scenes are used in our tests and the detection rate is analyzed. The results verified our method have its advantages in correct covers detection in the complex street scene.

  10. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    PubMed Central

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  11. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  12. Cest Analysis: Automated Change Detection from Very-High Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Ehlers, M.; Klonus, S.; Jarmer, T.; Sofina, N.; Michel, U.; Reinartz, P.; Sirmacek, B.

    2012-08-01

    A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment) with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.

  13. Superpixel edges for boundary detection

    DOEpatents

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  14. Algorithm research on infrared imaging target extraction based on GAC model

    NASA Astrophysics Data System (ADS)

    Li, Yingchun; Fan, Youchen; Wang, Yanqing

    2016-10-01

    Good target detection and tracking technique is significantly meaningful to increase infrared target detection distance and enhance resolution capacity. For the target detection problem about infrared imagining, firstly, the basic principles of level set method and GAC model are is analyzed in great detail. Secondly, "convergent force" is added according to the defect that GAC model is stagnant outside the deep concave region and cannot reach deep concave edge to build the promoted GAC model. Lastly, the self-adaptive detection method in combination of Sobel operation and GAC model is put forward by combining the advantages that subject position of the target could be detected with Sobel operator and the continuous edge of the target could be obtained through GAC model. In order to verify the effectiveness of the model, the two groups of experiments are carried out by selecting the images under different noise effects. Besides, the comparative analysis is conducted with LBF and LIF models. The experimental result shows that target could be better locked through LIF and LBF algorithms for the slight noise effect. The accuracy of segmentation is above 0.8. However, as for the strong noise effect, the target and noise couldn't be distinguished under the strong interference of GAC, LIF and LBF algorithms, thus lots of non-target parts are extracted during iterative process. The accuracy of segmentation is below 0.8. The accurate target position is extracted through the algorithm proposed in this paper. Besides, the accuracy of segmentation is above 0.8.

  15. Knowledge-based segmentation and feature analysis of hand and wrist radiographs

    NASA Astrophysics Data System (ADS)

    Efford, Nicholas D.

    1993-07-01

    The segmentation of hand and wrist radiographs for applications such as skeletal maturity assessment is best achieved by model-driven approaches incorporating anatomical knowledge. The reasons for this are discussed, and a particular frame-based or 'blackboard' strategy for the simultaneous segmentation of the hand and estimation of bone age via the TW2 method is described. The new approach is structured for optimum robustness and computational efficiency: features of interest are detected and analyzes in order of their size and prominence in the image, the largest and most distinctive being dealt with first, and the evidence generated by feature analysis is used to update a model of hand anatomy and hence guide later stages of the segmentation. Closed bone boundaries are formed by a hybrid technique combining knowledge-based, one-dimensional edge detection with model-assisted heuristic tree searching.

  16. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges

    PubMed Central

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-01-01

    Purpose: In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Methods: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors’ method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. Results: The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors’ model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors’ method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. Conclusions: As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate. PMID:27277056

  17. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  18. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  19. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  20. Binary Programming Models of Spatial Pattern Recognition: Applications in Remote Sensing Image Analysis

    DTIC Science & Technology

    1991-12-01

    9 2.6.1 Multi-Shape Detection. .. .. .. .. .. .. ...... 9 Page 2.6.2 Line Segment Extraction and Re-Combination.. 9 2.6.3 Planimetric Feature... Extraction ............... 10 2.6.4 Line Segment Extraction From Statistical Texture Analysis .............................. 11 2.6.5 Edge Following as Graph...image after image, could benefit clue to the fact that major spatial characteristics of subregions could be extracted , and minor spatial changes could be

  1. Prototyping the E-ELT M1 local control system communication infrastructure

    NASA Astrophysics Data System (ADS)

    Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.

    2016-08-01

    The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.

  2. LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    This paper takes the method of Shepard’s to deal with the original LIDAR point clouds data, and generate regular grid data DSM, filters the ground point cloud and non ground point cloud through double least square method, and obtains the rules of DSM. By using region growing method for the segmentation of DSM rules, the removal of non building point cloud, obtaining the building point cloud information. Uses the Canny operator to extract the image segmentation is needed after the edges of the building, uses Hough transform line detection to extract the edges of buildings rules of operation based on the smooth and uniform. At last, uses E3De3 software to establish the 3D model of buildings.

  3. Edge detection of optical subaperture image based on improved differential box-counting method

    NASA Astrophysics Data System (ADS)

    Li, Yi; Hui, Mei; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-01-01

    Optical synthetic aperture imaging technology is an effective approach to improve imaging resolution. Compared with monolithic mirror system, the image of optical synthetic aperture system is often more complex at the edge, and as a result of the existence of gap between segments, which makes stitching becomes a difficult problem. So it is necessary to extract the edge of subaperture image for achieving effective stitching. Fractal dimension as a measure feature can describe image surface texture characteristics, which provides a new approach for edge detection. In our research, an improved differential box-counting method is used to calculate fractal dimension of image, then the obtained fractal dimension is mapped to grayscale image to detect edges. Compared with original differential box-counting method, this method has two improvements as follows: by modifying the box-counting mechanism, a box with a fixed height is replaced by a box with adaptive height, which solves the problem of over-counting the number of boxes covering image intensity surface; an image reconstruction method based on super-resolution convolutional neural network is used to enlarge small size image, which can solve the problem that fractal dimension can't be calculated accurately under the small size image, and this method may well maintain scale invariability of fractal dimension. The experimental results show that the proposed algorithm can effectively eliminate noise and has a lower false detection rate compared with the traditional edge detection algorithms. In addition, this algorithm can maintain the integrity and continuity of image edge in the case of retaining important edge information.

  4. Edge detection for optical synthetic aperture based on deep neural network

    NASA Astrophysics Data System (ADS)

    Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin

    2017-09-01

    Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.

  5. A cascade method for TFT-LCD defect detection

    NASA Astrophysics Data System (ADS)

    Yi, Songsong; Wu, Xiaojun; Yu, Zhiyang; Mo, Zhuoya

    2017-07-01

    In this paper, we propose a novel cascade detection algorithm which focuses on point and line defects on TFT-LCD. At the first step of the algorithm, we use the gray level difference of su-bimage to segment the abnormal area. The second step is based on phase only transform (POT) which corresponds to the Discrete Fourier Transform (DFT), normalized by the magnitude. It can remove regularities like texture and noise. After that, we improve the method of setting regions of interest (ROI) with the method of edge segmentation and polar transformation. The algorithm has outstanding performance in both computation speed and accuracy. It can solve most of the defect detections including dark point, light point, dark line, etc.

  6. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

    PubMed Central

    Huang, Kuo-Yi; Ye, Yu-Ting

    2015-01-01

    In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%. PMID:26131678

  7. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.

    PubMed

    Huang, Kuo-Yi; Ye, Yu-Ting

    2015-06-29

    In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.

  8. A novel cloning template designing method by using an artificial bee colony algorithm for edge detection of CNN based imaging sensors.

    PubMed

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.

  9. A Novel Cloning Template Designing Method by Using an Artificial Bee Colony Algorithm for Edge Detection of CNN Based Imaging Sensors

    PubMed Central

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903

  10. Segmentation for the enhancement of microcalcifications in digital mammograms.

    PubMed

    Milosevic, Marina; Jankovic, Dragan; Peulic, Aleksandar

    2014-01-01

    Microcalcification clusters appear as groups of small, bright particles with arbitrary shapes on mammographic images. They are the earliest sign of breast carcinomas and their detection is the key for improving breast cancer prognosis. But due to the low contrast of microcalcifications and same properties as noise, it is difficult to detect microcalcification. This work is devoted to developing a system for the detection of microcalcification in digital mammograms. After removing noise from mammogram using the Discrete Wavelet Transformation (DWT), we first selected the region of interest (ROI) in order to demarcate the breast region on a mammogram. Segmenting region of interest represents one of the most important stages of mammogram processing procedure. The proposed segmentation method is based on a filtering using the Sobel filter. This process will identify the significant pixels, that belong to edges of microcalcifications. Microcalcifications were detected by increasing the contrast of the images obtained by applying Sobel operator. In order to confirm the effectiveness of this microcalcification segmentation method, the Support Vector Machine (SVM) and k-Nearest Neighborhood (k-NN) algorithm are employed for the classification task using cross-validation technique.

  11. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  12. Brain's tumor image processing using shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  13. Layered motion segmentation and depth ordering by tracking edges.

    PubMed

    Smith, Paul; Drummond, Tom; Cipolla, Roberto

    2004-04-01

    This paper presents a new Bayesian framework for motion segmentation--dividing a frame from an image sequence into layers representing different moving objects--by tracking edges between frames. Edges are found using the Canny edge detector, and the Expectation-Maximization algorithm is then used to fit motion models to these edges and also to calculate the probabilities of the edges obeying each motion model. The edges are also used to segment the image into regions of similar color. The most likely labeling for these regions is then calculated by using the edge probabilities, in association with a Markov Random Field-style prior. The identification of the relative depth ordering of the different motion layers is also determined, as an integral part of the process. An efficient implementation of this framework is presented for segmenting two motions (foreground and background) using two frames. It is then demonstrated how, by tracking the edges into further frames, the probabilities may be accumulated to provide an even more accurate and robust estimate, and segment an entire sequence. Further extensions are then presented to address the segmentation of more than two motions. Here, a hierarchical method of initializing the Expectation-Maximization algorithm is described, and it is demonstrated that the Minimum Description Length principle may be used to automatically select the best number of motion layers. The results from over 30 sequences (demonstrating both two and three motions) are presented and discussed.

  14. Intelligent detectors modelled from the cat's eye

    NASA Astrophysics Data System (ADS)

    Lindblad, Th.; Becanovic, V.; Lindsey, C. S.; Szekely, G.

    1997-02-01

    Biologically inspired image/signal processing, in particular neural networks like the Pulse-Coupled Neural Network (PCNN), are revisited. Their use with high granularity high-energy physics detectors, as well as optical sensing devices, for filtering, de-noising, segmentation, object isolation and edge detection is discussed.

  15. Diffusion tensor driven contour closing for cell microinjection targeting.

    PubMed

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  16. Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images.

    PubMed

    Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi

    2018-04-24

    Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.

  17. Optic disc detection using ant colony optimization

    NASA Astrophysics Data System (ADS)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  18. Salient man-made structure detection in infrared images

    NASA Astrophysics Data System (ADS)

    Li, Dong-jie; Zhou, Fu-gen; Jin, Ting

    2013-09-01

    Target detection, segmentation and recognition is a hot research topic in the field of image processing and pattern recognition nowadays, among which salient area or object detection is one of core technologies of precision guided weapon. Many theories have been raised in this paper; we detect salient objects in a series of input infrared images by using the classical feature integration theory and Itti's visual attention system. In order to find the salient object in an image accurately, we present a new method to solve the edge blur problem by calculating and using the edge mask. We also greatly improve the computing speed by improving the center-surround differences method. Unlike the traditional algorithm, we calculate the center-surround differences through rows and columns separately. Experimental results show that our method is effective in detecting salient object accurately and rapidly.

  19. Detection of exudates in fundus images using a Markovian segmentation model.

    PubMed

    Harangi, Balazs; Hajdu, Andras

    2014-01-01

    Diabetic retinopathy (DR) is one of the most common causing of vision loss in developed countries. In early stage of DR, some signs like exudates appear in the retinal images. An automatic screening system must be capable to detect these signs properly so that the treatment of the patients may begin in time. The appearance of exudates shows a rich variety regarding their shape and size making automatic detection more challenging. We propose a way for the automatic segmentation of exudates consisting of a candidate extraction step followed by exact contour detection and region-wise classification. More specifically, we extract possible exudate candidates using grayscale morphology and their proper shape is determined by a Markovian segmentation model considering edge information. Finally, we label the candidates as true or false ones by an optimally adjusted SVM classifier. For testing purposes, we considered the publicly available database DiaretDB1, where the proposed method outperformed several state-of-the-art exudate detectors.

  20. Analysis and correction for measurement error of edge sensors caused by deformation of guide flexure applied in the Thirty Meter Telescope SSA.

    PubMed

    Cao, Haifeng; Zhang, Jingxu; Yang, Fei; An, Qichang; Zhao, Hongchao; Guo, Peng

    2018-05-01

    The Thirty Meter Telescope (TMT) project will design and build a 30-m-diameter telescope for research in astronomy in visible and infrared wavelengths. The primary mirror of TMT is made up of 492 hexagonal mirror segments under active control. The highly segmented primary mirror will utilize edge sensors to align and stabilize the relative piston, tip, and tilt degrees of segments. The support system assembly (SSA) of the segmented mirror utilizes a guide flexure to decouple the axial support and lateral support, while its deformation will cause measurement error of the edge sensor. We have analyzed the theoretical relationship between the segment movement and the measurement value of the edge sensor. Further, we have proposed an error correction method with a matrix. The correction process and the simulation results of the edge sensor will be described in this paper.

  1. Leaf seal for gas turbine stator shrouds and a nozzle band

    DOEpatents

    Burdgick, Steven Sebastian; Sexton, Brendan Francis

    2002-01-01

    A leaf seal assembly is secured to the trailing edge of a shroud segment for sealing between the shroud segment and the leading edge side wall of a nozzle outer band. The leaf seal includes a circumferentially elongated seal plate biased by a pair of spring clips disposed in a groove along the trailing edge of the shroud segment to maintain the seal plate in engagement with the flange on the leading edge side wall of the nozzle outer band. The leaf seal plate and spring clips receive pins tack-welded to the shroud segment to secure the leaf seal assembly in place.

  2. Automated and simultaneous fovea center localization and macula segmentation using the new dynamic identification and classification of edges model.

    PubMed

    Onal, Sinan; Chen, Xin; Satamraju, Veeresh; Balasooriya, Maduka; Dabil-Karacal, Humeyra

    2016-07-01

    Detecting the position of retinal structures, including the fovea center and macula, in retinal images plays a key role in diagnosing eye diseases such as optic nerve hypoplasia, amblyopia, diabetic retinopathy, and macular edema. However, current detection methods are unreliable for infants or certain ethnic populations. Thus, a methodology is proposed here that may be useful for infants and across ethnicities that automatically localizes the fovea center and segments the macula on digital fundus images. First, dark structures and bright artifacts are removed from the input image using preprocessing operations, and the resulting image is transformed to polar space. Second, the fovea center is identified, and the macula region is segmented using the proposed dynamic identification and classification of edges (DICE) model. The performance of the method was evaluated using 1200 fundus images obtained from the relatively large, diverse, and publicly available Messidor database. In 96.1% of these 1200 cases, the distance between the fovea center identified manually by ophthalmologists and automatically using the proposed method remained within 0 to 8 pixels. The dice similarity index comparing the manually obtained results with those of the model for macula segmentation was 96.12% for these 1200 cases. Thus, the proposed method displayed a high degree of accuracy. The methodology using the DICE model is unique and advantageous over previously reported methods because it simultaneously determines the fovea center and segments the macula region without using any structural information, such as optic disc or blood vessel location, and it may prove useful for all populations, including infants.

  3. Robotic Vision-Based Localization in an Urban Environment

    NASA Technical Reports Server (NTRS)

    Mchenry, Michael; Cheng, Yang; Matthies

    2007-01-01

    A system of electronic hardware and software, now undergoing development, automatically estimates the location of a robotic land vehicle in an urban environment using a somewhat imprecise map, which has been generated in advance from aerial imagery. This system does not utilize the Global Positioning System and does not include any odometry, inertial measurement units, or any other sensors except a stereoscopic pair of black-and-white digital video cameras mounted on the vehicle. Of course, the system also includes a computer running software that processes the video image data. The software consists mostly of three components corresponding to the three major image-data-processing functions: Visual Odometry This component automatically tracks point features in the imagery and computes the relative motion of the cameras between sequential image frames. This component incorporates a modified version of a visual-odometry algorithm originally published in 1989. The algorithm selects point features, performs multiresolution area-correlation computations to match the features in stereoscopic images, tracks the features through the sequence of images, and uses the tracking results to estimate the six-degree-of-freedom motion of the camera between consecutive stereoscopic pairs of images (see figure). Urban Feature Detection and Ranging Using the same data as those processed by the visual-odometry component, this component strives to determine the three-dimensional (3D) coordinates of vertical and horizontal lines that are likely to be parts of, or close to, the exterior surfaces of buildings. The basic sequence of processes performed by this component is the following: 1. An edge-detection algorithm is applied, yielding a set of linked lists of edge pixels, a horizontal-gradient image, and a vertical-gradient image. 2. Straight-line segments of edges are extracted from the linked lists generated in step 1. Any straight-line segments longer than an arbitrary threshold (e.g., 30 pixels) are assumed to belong to buildings or other artificial objects. 3. A gradient-filter algorithm is used to test straight-line segments longer than the threshold to determine whether they represent edges of natural or artificial objects. In somewhat oversimplified terms, the test is based on the assumption that the gradient of image intensity varies little along a segment that represents the edge of an artificial object.

  4. Active edge control in the precessions polishing process for manufacturing large mirror segments

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Zhang, Wei; Walker, David; Yu, Gouyo

    2014-09-01

    The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The `Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under `Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the `Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.

  5. A fourth order PDE based fuzzy c- means approach for segmentation of microscopic biopsy images in presence of Poisson noise for cancer detection.

    PubMed

    Kumar, Rajesh; Srivastava, Subodh; Srivastava, Rajeev

    2017-07-01

    For cancer detection from microscopic biopsy images, image segmentation step used for segmentation of cells and nuclei play an important role. Accuracy of segmentation approach dominate the final results. Also the microscopic biopsy images have intrinsic Poisson noise and if it is present in the image the segmentation results may not be accurate. The objective is to propose an efficient fuzzy c-means based segmentation approach which can also handle the noise present in the image during the segmentation process itself i.e. noise removal and segmentation is combined in one step. To address the above issues, in this paper a fourth order partial differential equation (FPDE) based nonlinear filter adapted to Poisson noise with fuzzy c-means segmentation method is proposed. This approach is capable of effectively handling the segmentation problem of blocky artifacts while achieving good tradeoff between Poisson noise removals and edge preservation of the microscopic biopsy images during segmentation process for cancer detection from cells. The proposed approach is tested on breast cancer microscopic biopsy data set with region of interest (ROI) segmented ground truth images. The microscopic biopsy data set contains 31 benign and 27 malignant images of size 896 × 768. The region of interest selected ground truth of all 58 images are also available for this data set. Finally, the result obtained from proposed approach is compared with the results of popular segmentation algorithms; fuzzy c-means, color k-means, texture based segmentation, and total variation fuzzy c-means approaches. The experimental results shows that proposed approach is providing better results in terms of various performance measures such as Jaccard coefficient, dice index, Tanimoto coefficient, area under curve, accuracy, true positive rate, true negative rate, false positive rate, false negative rate, random index, global consistency error, and variance of information as compared to other segmentation approaches used for cancer detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Medical image segmentation based on the minimum variation snake model].

    PubMed

    Zhou, Changxiong; Yu, Shenglin

    2007-02-01

    It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.

  7. Operator-coached machine vision for space telerobotics

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Wilcox, Brian; Litwin, Todd; Gennery, Donald B.

    1991-01-01

    A prototype system for interactive object modeling has been developed and tested. The goal of this effort has been to create a system which would demonstrate the feasibility of high interactive operator-coached machine vision in a realistic task environment, and to provide a testbed for experimentation with various modes of operator interaction. The purpose for such a system is to use human perception where machine vision is difficult, i.e., to segment the scene into objects and to designate their features, and to use machine vision to overcome limitations of human perception, i.e., for accurate measurement of object geometry. The system captures and displays video images from a number of cameras, allows the operator to designate a polyhedral object one edge at a time by moving a 3-D cursor within these images, performs a least-squares fit of the designated edges to edge data detected with a modified Sobel operator, and combines the edges thus detected to form a wire-frame object model that matches the Sobel data.

  8. System Estimates Radius of Curvature of a Segmented Mirror

    NASA Technical Reports Server (NTRS)

    Rakoczy, John

    2008-01-01

    A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.

  9. On the Connection Between Flap Side-Edge Noise and Tip Vortex Dynamics

    NASA Technical Reports Server (NTRS)

    Casalino, D.; Hazir, A.; Fares, E.; Duda, B.; Khorrami, M. R.

    2015-01-01

    The goal of the present work is to investigate how the dynamics of the vortical flow about the flap side edge of an aircraft determine the acoustic radiation. A validated lattice- Boltzmann CFD solution of the unsteady flow about a detailed business jet configuration in approach conditions is used for the present analysis. Evidence of the connection between the noise generated by several segments of the inboard flap tip and the aerodynamic forces acting on the same segments is given, proving that the noise generation mechanism has a spatially coherent and acoustically compact character on the scale of the flap chord, and that the edge-scattering effects are of secondary importance. Subsequently, evidence of the connection between the kinematics of the tip vortex system and the aerodynamic force is provided. The kinematics of the dual vortex system are investigated via a core detection technique. Emphasis is placed on the mutual induction effects between the two main vortices rolling up from the pressure and suction sides of the flap edge. A simple heuristic formula that relates the far-field noise spectrum and the cross-spectrum of the unsteady vortical positions is developed.

  10. Segmentation via fusion of edge and needle map

    NASA Astrophysics Data System (ADS)

    Ahn, Hong-Young; Tou, Julius T.

    1991-03-01

    This paper presents an integrated image segmentation method using edge and needle map which compensates deficiencies of using either edge-based approach or region-based approach. Segmentation of an image is the first and most difficult step toward symbolic transformation of a raw image, which is essential in image understanding. In industrial applications, the task is further complicated by the ubiquitous presence of specularity in most industrial parts. Three images taken from three different illumination directions were used to separate specular and Lambertian components in the images. Needle map is generated from Lambertian component images using photometric stereo technique. In one channel, edges are extracted and linked from the averaged Lambertian images providing one source of segmentation. The other channel, Gaussian curvature and mean curvature values are estimated at each pixel from least square local surface fit of needle map. Labeled surface type image is then generated using the signs of Gaussian and mean curvatures, where one of ten surface types is assigned to each pixel. Connected regions of identical surface type pixels provide the first level grouping, a rough initial segmentation. Edge information and initial segmentation of surface type are fed to an integration module which interprets the edges and regions in a consistent way. During interpretation regions are merged or split, edges are discarded or generated depending upon global surface fit error and consistency with neighboring regions. The output of integrated segmentation is an explicit description of surface type and contours of each region which facilitates recognition, localization and attitude determination of objects in the image.

  11. A graph signal filtering-based approach for detection of different edge types on airborne lidar data

    NASA Astrophysics Data System (ADS)

    Bayram, Eda; Vural, Elif; Alatan, Aydin

    2017-10-01

    Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.

  12. Segmentation of liver region with tumorous tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji

    2007-03-01

    Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.

  13. Glue detection based on teaching points constraint and tracking model of pixel convolution

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen

    2018-01-01

    On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.

  14. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Fatemi, A; Sahgal, A

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less

  15. Segmentation of brain volume based on 3D region growing by integrating intensity and edge for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Tsagaan, Baigalmaa; Abe, Keiichi; Goto, Masahiro; Yamamoto, Seiji; Terakawa, Susumu

    2006-03-01

    This paper presents a segmentation method of brain tissues from MR images, invented for our image-guided neurosurgery system under development. Our goal is to segment brain tissues for creating biomechanical model. The proposed segmentation method is based on 3-D region growing and outperforms conventional approaches by stepwise usage of intensity similarities between voxels in conjunction with edge information. Since the intensity and the edge information are complementary to each other in the region-based segmentation, we use them twice by performing a coarse-to-fine extraction. First, the edge information in an appropriate neighborhood of the voxel being considered is examined to constrain the region growing. The expanded region of the first extraction result is then used as the domain for the next processing. The intensity and the edge information of the current voxel only are utilized in the final extraction. Before segmentation, the intensity parameters of the brain tissues as well as partial volume effect are estimated by using expectation-maximization (EM) algorithm in order to provide an accurate data interpretation into the extraction. We tested the proposed method on T1-weighted MR images of brain and evaluated the segmentation effectiveness comparing the results with ground truths. Also, the generated meshes from the segmented brain volume by using mesh generating software are shown in this paper.

  16. An Efficient Pipeline for Abdomen Segmentation in CT Images.

    PubMed

    Koyuncu, Hasan; Ceylan, Rahime; Sivri, Mesut; Erdogan, Hasan

    2018-04-01

    Computed tomography (CT) scans usually include some disadvantages due to the nature of the imaging procedure, and these handicaps prevent accurate abdomen segmentation. Discontinuous abdomen edges, bed section of CT, patient information, closeness between the edges of the abdomen and CT, poor contrast, and a narrow histogram can be regarded as the most important handicaps that occur in abdominal CT scans. Currently, one or more handicaps can arise and prevent technicians obtaining abdomen images through simple segmentation techniques. In other words, CT scans can include the bed section of CT, a patient's diagnostic information, low-quality abdomen edges, low-level contrast, and narrow histogram, all in one scan. These phenomena constitute a challenge, and an efficient pipeline that is unaffected by handicaps is required. In addition, analysis such as segmentation, feature selection, and classification has meaning for a real-time diagnosis system in cases where the abdomen section is directly used with a specific size. A statistical pipeline is designed in this study that is unaffected by the handicaps mentioned above. Intensity-based approaches, morphological processes, and histogram-based procedures are utilized to design an efficient structure. Performance evaluation is realized in experiments on 58 CT images (16 training, 16 test, and 26 validation) that include the abdomen and one or more disadvantage(s). The first part of the data (16 training images) is used to detect the pipeline's optimum parameters, while the second and third parts are utilized to evaluate and to confirm the segmentation performance. The segmentation results are presented as the means of six performance metrics. Thus, the proposed method achieves remarkable average rates for training/test/validation of 98.95/99.36/99.57% (jaccard), 99.47/99.67/99.79% (dice), 100/99.91/99.91% (sensitivity), 98.47/99.23/99.85% (specificity), 99.38/99.63/99.87% (classification accuracy), and 98.98/99.45/99.66% (precision). In summary, a statistical pipeline performing the task of abdomen segmentation is achieved that is not affected by the disadvantages, and the most detailed abdomen segmentation study is performed for the use before organ and tumor segmentation, feature extraction, and classification.

  17. Computer assisted diagnostic system in tumor radiography.

    PubMed

    Faisal, Ahmed; Parveen, Sharmin; Badsha, Shahriar; Sarwar, Hasan; Reza, Ahmed Wasif

    2013-06-01

    An improved and efficient method is presented in this paper to achieve a better trade-off between noise removal and edge preservation, thereby detecting the tumor region of MRI brain images automatically. Compass operator has been used in the fourth order Partial Differential Equation (PDE) based denoising technique to preserve the anatomically significant information at the edges. A new morphological technique is also introduced for stripping skull region from the brain images, which consequently leading to the process of detecting tumor accurately. Finally, automatic seeded region growing segmentation based on an improved single seed point selection algorithm is applied to detect the tumor. The method is tested on publicly available MRI brain images and it gives an average PSNR (Peak Signal to Noise Ratio) of 36.49. The obtained results also show detection accuracy of 99.46%, which is a significant improvement than that of the existing results.

  18. Leaf seal for inner and outer casings of a turbine

    DOEpatents

    Schroder, Mark Stewart; Leach, David

    2002-01-01

    A plurality of arcuate, circumferentially extending leaf seal segments form an annular seal spanning between annular sealing surfaces of inner and outer casings of a turbine. The ends of the adjoining seal segments have circumferential gaps to enable circumferential expansion and contraction of the segments. The end of a first segment includes a tab projecting into a recess of a second end of a second segment. Edges of the tab seal against the sealing surfaces of the inner and outer casings have a narrow clearance with opposed edges of the recess. An overlying cover plate spans the joint. Leakage flow is maintained at a minimum because of the reduced gap between the radially spaced edges of the tab and recess, while the seal segments retain the capacity to expand and contract circumferentially.

  19. Color segmentation in the HSI color space using the K-means algorithm

    NASA Astrophysics Data System (ADS)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue component plays in the segmentation of color images.

  20. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  1. Biologically based machine vision: signal analysis of monopolar cells in the visual system of Musca domestica.

    PubMed

    Newton, Jenny; Barrett, Steven F; Wilcox, Michael J; Popp, Stephanie

    2002-01-01

    Machine vision for navigational purposes is a rapidly growing field. Many abilities such as object recognition and target tracking rely on vision. Autonomous vehicles must be able to navigate in dynamic enviroments and simultaneously locate a target position. Traditional machine vision often fails to react in real time because of large computational requirements whereas the fly achieves complex orientation and navigation with a relatively small and simple brain. Understanding how the fly extracts visual information and how neurons encode and process information could lead us to a new approach for machine vision applications. Photoreceptors in the Musca domestica eye that share the same spatial information converge into a structure called the cartridge. The cartridge consists of the photoreceptor axon terminals and monopolar cells L1, L2, and L4. It is thought that L1 and L2 cells encode edge related information relative to a single cartridge. These cells are thought to be equivalent to vertebrate bipolar cells, producing contrast enhancement and reduction of information sent to L4. Monopolar cell L4 is thought to perform image segmentation on the information input from L1 and L2 and also enhance edge detection. A mesh of interconnected L4's would correlate the output from L1 and L2 cells of adjacent cartridges and provide a parallel network for segmenting an object's edges. The focus of this research is to excite photoreceptors of the common housefly, Musca domestica, with different visual patterns. The electrical response of monopolar cells L1, L2, and L4 will be recorded using intracellular recording techniques. Signal analysis will determine the neurocircuitry to detect and segment images.

  2. A multi-directional and multi-scale roughness filter to detect lineament segments on digital elevation models - analyzing spatial objects in R

    NASA Astrophysics Data System (ADS)

    Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke

    2016-04-01

    Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.

  3. Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder.

    PubMed

    Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang

    2016-10-21

    During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as "frame difference" and "optical flow", may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a "multi-block temporal-analyzing LBP (Local Binary Pattern)" algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder.

  4. Curvature-Based Environment Description for Robot Navigation Using Laser Range Sensors

    PubMed Central

    Vázquez-Martín, Ricardo; Núñez, Pedro; Bandera, Antonio; Sandoval, Francisco

    2009-01-01

    This work proposes a new feature detection and description approach for mobile robot navigation using 2D laser range sensors. The whole process consists of two main modules: a sensor data segmentation module and a feature detection and characterization module. The segmentation module is divided in two consecutive stages: First, the segmentation stage divides the laser scan into clusters of consecutive range readings using a distance-based criterion. Then, the second stage estimates the curvature function associated to each cluster and uses it to split it into a set of straight-line and curve segments. The curvature is calculated using a triangle-area representation where, contrary to previous approaches, the triangle side lengths at each range reading are adapted to the local variations of the laser scan, removing noise without missing relevant points. This representation remains unchanged in translation or rotation, and it is also robust against noise. Thus, it is able to provide the same segmentation results although the scene will be perceived from different viewpoints. Therefore, segmentation results are used to characterize the environment using line and curve segments, real and virtual corners and edges. Real scan data collected from different environments by using different platforms are used in the experiments in order to evaluate the proposed environment description algorithm. PMID:22461732

  5. Hippocampus segmentation using locally weighted prior based level set

    NASA Astrophysics Data System (ADS)

    Achuthan, Anusha; Rajeswari, Mandava

    2015-12-01

    Segmentation of hippocampus in the brain is one of a major challenge in medical image segmentation due to its' imaging characteristics, with almost similar intensity between another adjacent gray matter structure, such as amygdala. The intensity similarity has causes the hippocampus to have weak or fuzzy boundaries. With this main challenge being demonstrated by hippocampus, a segmentation method that relies on image information alone may not produce accurate segmentation results. Therefore, it is needed an assimilation of prior information such as shape and spatial information into existing segmentation method to produce the expected segmentation. Previous studies has widely integrated prior information into segmentation methods. However, the prior information has been utilized through a global manner integration, and this does not reflect the real scenario during clinical delineation. Therefore, in this paper, a locally integrated prior information into a level set model is presented. This work utilizes a mean shape model to provide automatic initialization for level set evolution, and has been integrated as prior information into the level set model. The local integration of edge based information and prior information has been implemented through an edge weighting map that decides at voxel level which information need to be observed during a level set evolution. The edge weighting map shows which corresponding voxels having sufficient edge information. Experiments shows that the proposed integration of prior information locally into a conventional edge-based level set model, known as geodesic active contour has shown improvement of 9% in averaged Dice coefficient.

  6. Natural history of optical coherence tomography-detected non-flow-limiting edge dissections following drug-eluting stent implantation.

    PubMed

    Radu, Maria D; Räber, Lorenz; Heo, Jungho; Gogas, Bill D; Jørgensen, Erik; Kelbæk, Henning; Muramatsu, Takashi; Farooq, Vasim; Helqvist, Steffen; Garcia-Garcia, Hector M; Windecker, Stephan; Saunamäki, Kari; Serruys, Patrick W

    2014-01-22

    Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections--particularly non-flow-limiting--compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. OCT-detected edge dissections which are angiographically silent in the majority of cases are not associated with acute stent thrombosis or restenosis up to one-year follow-up.

  7. Material condition assessment with eddy current sensors

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Sheiretov, Yanko K. (Inventor); Schlicker, Darrell E. (Inventor); Lyons, Robert J. (Inventor); Windoloski, Mark D. (Inventor); Craven, Christopher A. (Inventor); Tsukernik, Vladimir B. (Inventor); Grundy, David C. (Inventor)

    2010-01-01

    Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.

  8. A coloured oil level indicator detection method based on simple linear iterative clustering

    NASA Astrophysics Data System (ADS)

    Liu, Tianli; Li, Dongsong; Jiao, Zhiming; Liang, Tao; Zhou, Hao; Yang, Guoqing

    2017-12-01

    A detection method of coloured oil level indicator is put forward. The method is applied to inspection robot in substation, which realized the automatic inspection and recognition of oil level indicator. Firstly, the detected image of the oil level indicator is collected, and the detected image is clustered and segmented to obtain the label matrix of the image. Secondly, the detection image is processed by colour space transformation, and the feature matrix of the image is obtained. Finally, the label matrix and feature matrix are used to locate and segment the detected image, and the upper edge of the recognized region is obtained. If the upper limb line exceeds the preset oil level threshold, the alarm will alert the station staff. Through the above-mentioned image processing, the inspection robot can independently recognize the oil level of the oil level indicator, and instead of manual inspection. It embodies the automatic and intelligent level of unattended operation.

  9. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.

    PubMed

    Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd

    2016-05-01

    Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Structure from Motion

    DTIC Science & Technology

    1988-11-17

    NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if ntcestary and identify by block number) FIELD GROUP SUB-GROUP ,-.:image...ambiguity in the recognition of partially occluded objects. V 1 , t : ., , ’ -, L: \\ : _ 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT...constraints involved in the problem. More information can be found in [ 1 ]. Motion-based segmentation. Edge detection algorithms based on visual motion

  11. Elastic models: a comparative study applied to retinal images.

    PubMed

    Karali, E; Lambropoulou, S; Koutsouris, D

    2011-01-01

    In this work various methods of parametric elastic models are compared, namely the classical snake, the gradient vector field snake (GVF snake) and the topology-adaptive snake (t-snake), as well as the method of self-affine mapping system as an alternative to elastic models. We also give a brief overview of the methods used. The self-affine mapping system is implemented using an adapting scheme and minimum distance as optimization criterion, which is more suitable for weak edges detection. All methods are applied to glaucomatic retinal images with the purpose of segmenting the optical disk. The methods are compared in terms of segmentation accuracy and speed, as these are derived from cross-correlation coefficients between real and algorithm extracted contours and segmentation time, respectively. As a result, the method of self-affine mapping system presents adequate segmentation time and segmentation accuracy, and significant independence from initialization.

  12. The Edge Factor in Early Word Segmentation: Utterance-Level Prosody Enables Word Form Extraction by 6-Month-Olds

    PubMed Central

    Johnson, Elizabeth K.; Seidl, Amanda; Tyler, Michael D.

    2014-01-01

    Past research has shown that English learners begin segmenting words from speech by 7.5 months of age. However, more recent research has begun to show that, in some situations, infants may exhibit rudimentary segmentation capabilities at an earlier age. Here, we report on four perceptual experiments and a corpus analysis further investigating the initial emergence of segmentation capabilities. In Experiments 1 and 2, 6-month-olds were familiarized with passages containing target words located either utterance medially or at utterance edges. Only those infants familiarized with passages containing target words aligned with utterance edges exhibited evidence of segmentation. In Experiments 3 and 4, 6-month-olds recognized familiarized words when they were presented in a new acoustically distinct voice (male rather than female), but not when they were presented in a phonologically altered manner (missing the initial segment). Finally, we report corpus analyses examining how often different word types occur at utterance boundaries in different registers. Our findings suggest that edge-aligned words likely play a key role in infants’ early segmentation attempts, and also converge with recent reports suggesting that 6-month-olds’ have already started building a rudimentary lexicon. PMID:24421892

  13. GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram.

    PubMed

    Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin

    2013-07-01

    Due to its intrinsic nature which allows to easily handle complex shapes and topological changes, the level set method (LSM) has been widely used in image segmentation. Nevertheless, LSM is computationally expensive, which limits its applications in real-time systems. For this purpose, we propose a new level set algorithm, which uses simultaneously edge, region, and 2D histogram information in order to efficiently segment objects of interest in a given scene. The computational complexity of the proposed LSM is greatly reduced by using the highly parallelizable lattice Boltzmann method (LBM) with a body force to solve the level set equation (LSE). The body force is the link with image data and is defined from the proposed LSE. The proposed LSM is then implemented using an NVIDIA graphics processing units to fully take advantage of the LBM local nature. The new algorithm is effective, robust against noise, independent to the initial contour, fast, and highly parallelizable. The edge and region information enable to detect objects with and without edges, and the 2D histogram information enable the effectiveness of the method in a noisy environment. Experimental results on synthetic and real images demonstrate subjectively and objectively the performance of the proposed method.

  14. Vertebra identification using template matching modelmp and K-means clustering.

    PubMed

    Larhmam, Mohamed Amine; Benjelloun, Mohammed; Mahmoudi, Saïd

    2014-03-01

    Accurate vertebra detection and segmentation are essential steps for automating the diagnosis of spinal disorders. This study is dedicated to vertebra alignment measurement, the first step in a computer-aided diagnosis tool for cervical spine trauma. Automated vertebral segment alignment determination is a challenging task due to low contrast imaging and noise. A software tool for segmenting vertebrae and detecting subluxations has clinical significance. A robust method was developed and tested for cervical vertebra identification and segmentation that extracts parameters used for vertebra alignment measurement. Our contribution involves a novel combination of a template matching method and an unsupervised clustering algorithm. In this method, we build a geometric vertebra mean model. To achieve vertebra detection, manual selection of the region of interest is performed initially on the input image. Subsequent preprocessing is done to enhance image contrast and detect edges. Candidate vertebra localization is then carried out by using a modified generalized Hough transform (GHT). Next, an adapted cost function is used to compute local voted centers and filter boundary data. Thereafter, a K-means clustering algorithm is applied to obtain clusters distribution corresponding to the targeted vertebrae. These clusters are combined with the vote parameters to detect vertebra centers. Rigid segmentation is then carried out by using GHT parameters. Finally, cervical spine curves are extracted to measure vertebra alignment. The proposed approach was successfully applied to a set of 66 high-resolution X-ray images. Robust detection was achieved in 97.5 % of the 330 tested cervical vertebrae. An automated vertebral identification method was developed and demonstrated to be robust to noise and occlusion. This work presents a first step toward an automated computer-aided diagnosis system for cervical spine trauma detection.

  15. Evaluation of an improved technique for lumen path definition and lumen segmentation of atherosclerotic vessels in CT angiography.

    PubMed

    van Velsen, Evert F S; Niessen, Wiro J; de Weert, Thomas T; de Monyé, Cécile; van der Lugt, Aad; Meijering, Erik; Stokking, Rik

    2007-07-01

    Vessel image analysis is crucial when considering therapeutical options for (cardio-) vascular diseases. Our method, VAMPIRE (Vascular Analysis using Multiscale Paths Inferred from Ridges and Edges), involves two parts: a user defines a start- and endpoint upon which a lumen path is automatically defined, and which is used for initialization; the automatic segmentation of the vessel lumen on computed tomographic angiography (CTA) images. Both parts are based on the detection of vessel-like structures by analyzing intensity, edge, and ridge information. A multi-observer evaluation study was performed to compare VAMPIRE with a conventional method on the CTA data of 15 patients with carotid artery stenosis. In addition to the start- and endpoint, the two radiologists required on average 2.5 (SD: 1.9) additional points to define a lumen path when using the conventional method, and 0.1 (SD: 0.3) when using VAMPIRE. The segmentation results were quantitatively evaluated using Similarity Indices, which were slightly lower between VAMPIRE and the two radiologists (respectively 0.90 and 0.88) compared with the Similarity Index between the radiologists (0.92). The evaluation shows that the improved definition of a lumen path requires minimal user interaction, and that using this path as initialization leads to good automatic lumen segmentation results.

  16. 47 CFR 95.857 - Emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... frequency as close to the edge of the authorized frequency segment as the transmitter is designed to be... power shall be 100 Hz for measuring emissions up to and including 250 kHz from the edge of the authorized frequency segment, and 10 kHz for measuring emissions more than 250 kHz from the edge of the...

  17. Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate.

    PubMed

    Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan

    2009-01-01

    We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.

  18. Refinement of ground reference data with segmented image data

    NASA Technical Reports Server (NTRS)

    Robinson, Jon W.; Tilton, James C.

    1991-01-01

    One of the ways to determine ground reference data (GRD) for satellite remote sensing data is to photo-interpret low altitude aerial photographs and then digitize the cover types on a digitized tablet and register them to 7.5 minute U.S.G.S. maps (that were themselves digitized). The resulting GRD can be registered to the satellite image or, vice versa. Unfortunately, there are many opportunities for error when using digitizing tablet and the resolution of the edges for the GRD depends on the spacing of the points selected on the digitizing tablet. One of the consequences of this is that when overlaid on the image, errors and missed detail in the GRD become evident. An approach is discussed for correcting these errors and adding detail to the GRD through the use of a highly interactive, visually oriented process. This process involves the use of overlaid visual displays of the satellite image data, the GRD, and a segmentation of the satellite image data. Several prototype programs were implemented which provide means of taking a segmented image and using the edges from the reference data to mask out these segment edges that are beyond a certain distance from the reference data edges. Then using the reference data edges as a guide, those segment edges that remain and that are judged not to be image versions of the reference edges are manually marked and removed. The prototype programs that were developed and the algorithmic refinements that facilitate execution of this task are described.

  19. Infant Word Segmentation Revisited: Edge Alignment Facilitates Target Extraction

    ERIC Educational Resources Information Center

    Seidl, Amanda; Johnson, Elizabeth K.

    2006-01-01

    In a landmark study, Jusczyk and Aslin (1995 ) demonstrated that English-learning infants are able to segment words from continuous speech at 7.5 months of age. In the current study, we explored the possibility that infants segment words from the edges of utterances more readily than the middle of utterances. The same procedure was used as in…

  20. Segmentation and clustering as complementary sources of information

    NASA Astrophysics Data System (ADS)

    Dale, Michael B.; Allison, Lloyd; Dale, Patricia E. R.

    2007-03-01

    This paper examines the effects of using a segmentation method to identify change-points or edges in vegetation. It identifies coherence (spatial or temporal) in place of unconstrained clustering. The segmentation method involves change-point detection along a sequence of observations so that each cluster formed is composed of adjacent samples; this is a form of constrained clustering. The protocol identifies one or more models, one for each section identified, and the quality of each is assessed using a minimum message length criterion, which provides a rational basis for selecting an appropriate model. Although the segmentation is less efficient than clustering, it does provide other information because it incorporates textural similarity as well as homogeneity. In addition it can be useful in determining various scales of variation that may apply to the data, providing a general method of small-scale pattern analysis.

  1. X-ray tomography using the full complex index of refraction.

    PubMed

    Nielsen, M S; Lauridsen, T; Thomsen, M; Jensen, T H; Bech, M; Christensen, L B; Olsen, E V; Hviid, M; Feidenhans'l, R; Pfeiffer, F

    2012-10-07

    We report on x-ray tomography using the full complex index of refraction recorded with a grating-based x-ray phase-contrast setup. Combining simultaneous absorption and phase-contrast information, the distribution of the full complex index of refraction is determined and depicted in a bivariate graph. A simple multivariable threshold segmentation can be applied offering higher accuracy than with a single-variable threshold segmentation as well as new possibilities for the partial volume analysis and edge detection. It is particularly beneficial for low-contrast systems. In this paper, this concept is demonstrated by experimental results.

  2. Exploratory study of the effects of wing-leading-edge modifications on the stall/spin behavior of a light general aviation airplane

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Configurations with full-span and segmented leading-edge flaps and full-span and segmented leading-edge droop were tested. Studies were conducted with wind-tunnel models, with an outdoor radio-controlled model, and with a full-scale airplane. Results show that wing-leading-edge modifications can produce large effects on stall/spin characteristics, particularly on spin resistance. One outboard wing-leading-edge modification tested significantly improved lateral stability at stall, spin resistance, and developed spin characteristics.

  3. A threshold selection method based on edge preserving

    NASA Astrophysics Data System (ADS)

    Lou, Liantang; Dan, Wei; Chen, Jiaqi

    2015-12-01

    A method of automatic threshold selection for image segmentation is presented. An optimal threshold is selected in order to preserve edge of image perfectly in image segmentation. The shortcoming of Otsu's method based on gray-level histograms is analyzed. The edge energy function of bivariate continuous function is expressed as the line integral while the edge energy function of image is simulated by discretizing the integral. An optimal threshold method by maximizing the edge energy function is given. Several experimental results are also presented to compare with the Otsu's method.

  4. Multi person detection and tracking based on hierarchical level-set method

    NASA Astrophysics Data System (ADS)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  5. Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder

    PubMed Central

    Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang

    2016-01-01

    During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as “frame difference” and “optical flow”, may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a “multi-block temporal-analyzing LBP (Local Binary Pattern)” algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder. PMID:27775671

  6. Automatic segmentation of equine larynx for diagnosis of laryngeal hemiplegia

    NASA Astrophysics Data System (ADS)

    Salehin, Md. Musfequs; Zheng, Lihong; Gao, Junbin

    2013-10-01

    This paper presents an automatic segmentation method for delineation of the clinically significant contours of the equine larynx from an endoscopic image. These contours are used to diagnose the most common disease of horse larynx laryngeal hemiplegia. In this study, hierarchal structured contour map is obtained by the state-of-the-art segmentation algorithm, gPb-OWT-UCM. The conic-shaped outer boundary of equine larynx is extracted based on Pascal's theorem. Lastly, Hough Transformation method is applied to detect lines related to the edges of vocal folds. The experimental results show that the proposed approach has better performance in extracting the targeted contours of equine larynx than the results of using only the gPb-OWT-UCM method.

  7. Automatic Modelling of Rubble Mound Breakwaters from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Díaz-Vilariño, L.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P.

    2015-08-01

    Rubble mound breakwaters maintenance is critical to the protection of beaches and ports. LiDAR systems provide accurate point clouds from the emerged part of the structure that can be modelled to make it more useful and easy to handle. This work introduces a methodology for the automatic modelling of breakwaters with armour units of cube shape. The algorithm is divided in three main steps: normal vector computation, plane segmentation, and cube reconstruction. Plane segmentation uses the normal orientation of the points and the edge length of the cube. Cube reconstruction uses the intersection of three perpendicular planes and the edge length. Three point clouds cropped from the main point cloud of the structure are used for the tests. The number of cubes detected is around 56 % for two of the point clouds and 32 % for the third one over the total physical cubes. Accuracy assessment is done by comparison with manually drawn cubes calculating the differences between the vertexes. It ranges between 6.4 cm and 15 cm. Computing time ranges between 578.5 s and 8018.2 s. The computing time increases with the number of cubes and the requirements of collision detection.

  8. Accurate detection of blood vessels improves the detection of exudates in color fundus images.

    PubMed

    Youssef, Doaa; Solouma, Nahed H

    2012-12-01

    Exudates are one of the earliest and most prevalent symptoms of diseases leading to blindness such as diabetic retinopathy and macular degeneration. Certain areas of the retina with such conditions are to be photocoagulated by laser to stop the disease progress and prevent blindness. Outlining these areas is dependent on outlining the lesions and the anatomic structures of the retina. In this paper, we provide a new method for the detection of blood vessels that improves the detection of exudates in fundus photographs. The method starts with an edge detection algorithm which results in a over segmented image. Then the new feature-based algorithm can be used to accurately detect the blood vessels. This algorithm considers the characteristics of a retinal blood vessel such as its width range, intensities and orientations for the purpose of selective segmentation. Because of its bulb shape and its color similarity with exudates, the optic disc can be detected using the common Hough transform technique. The extracted blood vessel tree and optic disc could be subtracted from the over segmented image to get an initial estimate of exudates. The final estimation of exudates can then be obtained by morphological reconstruction based on the appearance of exudates. This method is shown to be promising since it increases the sensitivity and specificity of exudates detection to 80% and 100% respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Stork, Alexander; Peterfy, Charles G.; Genant, Harry K.

    2000-06-01

    A technique for segmentation of articular cartilage from 3D MRI scans of the knee has been developed. It overcomes the limitations of the conventionally used region growing techniques, which are prone to inter- and intra-observer variability, and which can require much manual intervention. We describe a hybrid segmentation method combining expert knowledge with directionally oriented Canny filters, cost functions and cubic splines. After manual initialization, the technique utilized 3 cost functions which aided automated detection of cartilage and its boundaries. Using the sign of the edge strength, and the local direction of the boundary, this technique is more reliable than conventional 'snakes,' and the user had little control over smoothness of boundaries. This means that the automatically detected boundary can conform to the true shape of the real boundary, also allowing reliable detection of subtle local lesions on the normally smooth cartilage surface. Manual corrections, with possible re-optimization were sometimes needed. When compared to the conventionally used region growing techniques, this newly described technique measured local cartilage volume with 3 times better reproducibility, and involved two thirds less human interaction. Combined with the use of 3D image registration, the new technique should also permit unbiased segmentation of followup scans by automated initialization from a baseline segmentation of an earlier scan of the same patient.

  10. A new region-edge based level set model with applications to image segmentation

    NASA Astrophysics Data System (ADS)

    Zhi, Xuhao; Shen, Hong-Bin

    2018-04-01

    Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.

  11. Location of the internal carotid artery and ophthalmic artery segments for non-invasive intracranial pressure measurement by multi-depth TCD.

    PubMed

    Hamarat, Yasin; Deimantavicius, Mantas; Kalvaitis, Evaldas; Siaudvytyte, Lina; Januleviciene, Ingrida; Zakelis, Rolandas; Bartusis, Laimonas

    2017-12-01

    The aim of the present study was to locate the ophthalmic artery by using the edge of the internal carotid artery (ICA) as the reference depth to perform a reliable non-invasive intracranial pressure measurement via a multi-depth transcranial Doppler device and to then determine the positions and angles of an ultrasonic transducer (UT) on the closed eyelid in the case of located segments. High tension glaucoma (HTG) patients and healthy volunteers (HVs) undergoing non-invasive intracranial pressure measurement were selected for this prospective study. The depth of the edge of the ICA was identified, followed by a selection of the depths of the IOA and EOA segments. The positions and angles of the UT on the closed eyelid were measured. The mean depth of the identified ICA edge for HTG patients was 64.3 mm and was 63.0 mm for HVs (p = 0.21). The mean depth of the selected IOA segment for HTG patients was 59.2 mm and 59.3 mm for HVs (p = 0.91). The mean depth of the selected EOA segment for HTG patients was 48.5 mm and 49.8 mm for HVs (p = 0.14). The difference in the located depths of the segments between groups was not statistically significant. The results showed a significant difference in the measured UT angles in the case of the identified edge of the ICA and selected ophthalmic artery segments (p = 0.0002). We demonstrated that locating the IOA and EOA segments can be achieved using the edge of the ICA as a reference point. OA: ophthalmic artery; IOA: intracranial segments of the ophthalmic artery; EOA: extracranial segments of the ophthalmic artery; ICA: internal carotid artery; UT: ultrasonic transducer; HTG: high tension glaucoma; SD: standard deviation; ICP: intracranial pressure; TCD: transcranial Doppler.

  12. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Wei, Xuefeng F.; Grill, Warren M.

    2005-12-01

    Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.

  13. Fast algorithm for probabilistic bone edge detection (FAPBED)

    NASA Astrophysics Data System (ADS)

    Scepanovic, Danilo; Kirshtein, Joshua; Jain, Ameet K.; Taylor, Russell H.

    2005-04-01

    The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). FAPBED is designed to process CT volumes for registration to tracked US data. Tracked US is advantageous because it is real time, noninvasive, and non-ionizing, but it is also known to have inherent inaccuracies which create the need to develop a framework that is robust to various uncertainties, and can be useful in US-CT registration. Furthermore, conventional registration methods depend on accurate and absolute segmentation. Our proposed probabilistic framework addresses the segmentation-registration duality, wherein exact segmentation is not a prerequisite to achieve accurate registration. In this paper, we develop a method for fast and automatic probabilistic bone surface (edge) detection in CT images. Various features that influence the likelihood of the surface at each spatial coordinate are combined using a simple probabilistic framework, which strikes a fair balance between a high-level understanding of features in an image and the low-level number crunching of standard image processing techniques. The algorithm evaluates different features for detecting the probability of a bone surface at each voxel, and compounds the results of these methods to yield a final, low-noise, probability map of bone surfaces in the volume. Such a probability map can then be used in conjunction with a similar map from tracked intra-operative US to achieve accurate registration. Eight sample pelvic CT scans were used to extract feature parameters and validate the final probability maps. An un-optimized fully automatic Matlab code runs in five minutes per CT volume on average, and was validated by comparison against hand-segmented gold standards. The mean probability assigned to nonzero surface points was 0.8, while nonzero non-surface points had a mean value of 0.38 indicating clear identification of surface points on average. The segmentation was also sufficiently crisp, with a full width at half maximum (FWHM) value of 1.51 voxels.

  14. A multiscale Markov random field model in wavelet domain for image segmentation

    NASA Astrophysics Data System (ADS)

    Dai, Peng; Cheng, Yu; Wang, Shengchun; Du, Xinyu; Wu, Dan

    2017-07-01

    The human vision system has abilities for feature detection, learning and selective attention with some properties of hierarchy and bidirectional connection in the form of neural population. In this paper, a multiscale Markov random field model in the wavelet domain is proposed by mimicking some image processing functions of vision system. For an input scene, our model provides its sparse representations using wavelet transforms and extracts its topological organization using MRF. In addition, the hierarchy property of vision system is simulated using a pyramid framework in our model. There are two information flows in our model, i.e., a bottom-up procedure to extract input features and a top-down procedure to provide feedback controls. The two procedures are controlled simply by two pyramidal parameters, and some Gestalt laws are also integrated implicitly. Equipped with such biological inspired properties, our model can be used to accomplish different image segmentation tasks, such as edge detection and region segmentation.

  15. Segmented-spectrum detection mechanism for medical x-ray in CdTe

    NASA Astrophysics Data System (ADS)

    Shi, Zaifeng; Meng, Qingzhen; Cao, Qingjie; Yao, Suying

    2016-01-01

    This paper presents a segmented X-ray spectrum detection method based on a layered X-ray detector in Cadmium Telluride (CdTe) substrate. We describe the three-dimensional structure of proposed detector pixel and investigate the matched spectrum-resolving method. Polychromatic X-ray beam enter the CdTe substrate edge on and will be absorbed completely in different thickness varying with photon energy. Discrete potential wells are formed under external controlling voltage to collect the photo-electrons generated in different layers, and segmented X-ray spectrum can be deduced from the quantity of photo-electrons. In this work, we verify the feasibility of the segmented-spectrum detection mechanism by simulating the absorption of monochromatic X-ray in a CdTe substrate. Experiments in simulation show that the number of photo-electrons grow exponentially with the increase of incident thickness, and photons with different energy will be absorbed in various thickness. The charges generated in different layers are collected into adjacent potential wells, and collection efficiency is estimated to be about 87% for different incident intensity under the 40000V/cm electric field. Errors caused by charge sharing between neighboring layers are also analyzed, and it can be considered negligible by setting appropriate size of electrodes.

  16. Facet Joint Osteoarthritis Affects Spinal Segmental Motion in Degenerative Spondylolisthesis.

    PubMed

    Kitanaka, Shigeyuki; Takatori, Ryota; Arai, Yuji; Nagae, Masateru; Tonomura, Hitoshi; Mikami, Yasuo; Inoue, Nozomu; Ogura, Taku; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2018-06-15

    This is a retrospective clinical case series (case-control study). To clarify the influence of facet joint osteoarthritis (FJOA) on the pathology of degenerative spondylolisthesis (DS) using in vivo 3-dimensional image analysis. There are no radical treatments to prevent progression of DS in patients with lumbar spinal canal stenosis associated with DS. Therefore, an effective treatment method based on the pathology of DS should be developed. In total, 50 patients with lumbar spinal canal stenosis involving L4/5 who underwent dynamic computed tomography were divided into 2 groups: with DS [spondylolisthesis (Sp) group; 12 male, 14 female; mean age, 74 y]; and without DS (non-Sp group; 15 male, 9 female; mean age, 70 y). Degeneration of the intervertebral disk and FJOA at L4/5 were evaluated using magnetic resonance imaging. Disk and intervertebral foramen heights, the distance between the craniocaudal edges of the facet joint, and the interspinous distance were measured on dynamic computed tomographic images. Also, in vivo 3-dimensional segmental motion was evaluated using the volume merge method. There were no significant differences in degenerative findings for the intervertebral disk; however, progressive FJOA was detected in the Sp group. Dynamic changes in the distance between the craniocaudal edges of the facet joints were significantly larger in the Sp group. In this study, progressive FJOA and larger segmental motion in the distance between the craniocaudal edges of the facet joints were found in the Sp group. We clarified for the first time that DS involves ligament laxity due to FJOA that affects spinal segmental motion in vivo. We consider that a treatment method based on FJOA would be useful for treating patients with DS. Level IV.

  17. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  18. Mt Pamola, the Electromagnetic Field, EMF, Thunderbird, Mothman and Environmental Monitoring Signals Via the Southern Constellation Phoenix As Detectable In Potato Cave, Acton, MA.

    NASA Astrophysics Data System (ADS)

    Pecora, Andrea S.; Pawa Matagamon, Sagamo

    2004-03-01

    Just below the peak of Mt Pamola in ME, at the juncture with the Knife Edge, downwardly arcing segments of Earths EMF, are manifested by a faint lotus-blossom-blue, neon-like glow at 3 pm some sunny afternoons. Similarly hued glows, and horizontal but variable-arced segmented trajectories, are somewhat periodically detectable under certain conditions in chambers at Acton, MA. These phenomena curiously have the filled-in profile that precisely matches the outline of the southern constellation Phoenix, which is never visible above the nighttime horizon locally. The stick-figure representation of the constellation Canis Major can also be detected in a chamber at Americas Stonehenge, two hours before it has arisen, at certain times. The sequence of phenomena visible at Acton correctly correlates with eclipses and other alignments of our solar system. Phoenix, a.k.a. Thunderbird and Mothman, is detectable elsewhere in MA.

  19. Optical extensometer

    DOEpatents

    Walker, Ray A.; Reich, Fred R.; Russell, James T.

    1978-01-01

    An optical extensometer is described using sequentially pulsed light beams for measuring the dimensions of objects by detecting two opposite edges of the object without contacting the object. The light beams may be of different distinguishable light characteristics, such as polarization or wave length, and are time modulated in an alternating manner at a reference frequency. The light characteristics are of substantially the same total light energy and are distributed symmetrically. In the preferred embodiment two light beam segments of one characteristic are on opposite sides of a middle segment of another characteristic. As a result, when the beam segments are scanned sequentially across two opposite edges of the object, they produce a readout signal at the output of a photoelectric detector that is compared with the reference signal by a phase comparator to produce a measurement signal with a binary level transition when the light beams cross an edge. The light beams may be of different cross sectional geometries, including two superimposed and concentric circular beam cross sections of different diameter, or two rectangular cross sections which intersect with each other substantially perpendicular so only their central portions are superimposed. Alternately, a row of three light beams can be used including two outer beams on opposite sides and separate from a middle beam. The three beams may all be of the same light characteristic. However it is preferable that the middle beam be of a different characteristic but of the same total energy as the two outer beams.

  20. A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation

    PubMed Central

    Zhang, Rui; Zhu, Shiping; Zhou, Qin

    2016-01-01

    Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660

  1. Comparison of segmentation algorithms for fluorescence microscopy images of cells.

    PubMed

    Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L

    2011-07-01

    The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.

  2. Extraction of edge-based and region-based features for object recognition

    NASA Astrophysics Data System (ADS)

    Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima

    1993-08-01

    One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.

  3. Extensions of algebraic image operators: An approach to model-based vision

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morelli, Michael V.

    1990-01-01

    Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.

  4. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction. One source of light for shading does show all morphologic features needed for description. Additionally, more details such as fault lines, overlaps and characteristic edges of complex shell structures are clearly detected by simply changing the illumination on the shaded digital surface model. In a further study, the potential of edge detection of the individual shells will be analyzed based on statistical analysis by keeping track of the local accumulative shading gradient. The results are compared to manually identified edges. In a following study phase, the detected edges will be improved by graph cut segmentation. We assume that this technique can lead to automatically extracted teaching set for object segmentation on a complex environment. The project is supported by the Austrian Science Fund (FWF P 25883-N29).

  5. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.

    PubMed

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-06-08

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  6. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection

    PubMed Central

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-01-01

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image. PMID:28594383

  7. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  8. Robotic vision. [process control applications

    NASA Technical Reports Server (NTRS)

    Williams, D. S.; Wilf, J. M.; Cunningham, R. T.; Eskenazi, R.

    1979-01-01

    Robotic vision, involving the use of a vision system to control a process, is discussed. Design and selection of active sensors employing radiation of radio waves, sound waves, and laser light, respectively, to light up unobservable features in the scene are considered, as are design and selection of passive sensors, which rely on external sources of illumination. The segmentation technique by which an image is separated into different collections of contiguous picture elements having such common characteristics as color, brightness, or texture is examined, with emphasis on the edge detection technique. The IMFEX (image feature extractor) system performing edge detection and thresholding at 30 frames/sec television frame rates is described. The template matching and discrimination approach to recognize objects are noted. Applications of robotic vision in industry for tasks too monotonous or too dangerous for the workers are mentioned.

  9. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

    PubMed

    Vasas, Vera; Hanley, Daniel; Kevan, Peter G; Chittka, Lars

    2017-04-01

    Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

  10. An approach to analyze the breast tissues in infrared images using nonlinear adaptive level sets and Riesz transform features.

    PubMed

    Prabha, S; Suganthi, S S; Sujatha, C M

    2015-01-01

    Breast thermography is a potential imaging method for the early detection of breast cancer. The pathological conditions can be determined by measuring temperature variations in the abnormal breast regions. Accurate delineation of breast tissues is reported as a challenging task due to inherent limitations of infrared images such as low contrast, low signal to noise ratio and absence of clear edges. Segmentation technique is attempted to delineate the breast tissues by detecting proper lower breast boundaries and inframammary folds. Characteristic features are extracted to analyze the asymmetrical thermal variations in normal and abnormal breast tissues. An automated analysis of thermal variations of breast tissues is attempted using nonlinear adaptive level sets and Riesz transform. Breast thermal images are initially subjected to Stein's unbiased risk estimate based orthonormal wavelet denoising. These denoised images are enhanced using contrast-limited adaptive histogram equalization method. The breast tissues are then segmented using non-linear adaptive level set method. The phase map of enhanced image is integrated into the level set framework for final boundary estimation. The segmented results are validated against the corresponding ground truth images using overlap and regional similarity metrics. The segmented images are further processed with Riesz transform and structural texture features are derived from the transformed coefficients to analyze pathological conditions of breast tissues. Results show that the estimated average signal to noise ratio of denoised images and average sharpness of enhanced images are improved by 38% and 6% respectively. The interscale consideration adopted in the denoising algorithm is able to improve signal to noise ratio by preserving edges. The proposed segmentation framework could delineate the breast tissues with high degree of correlation (97%) between the segmented and ground truth areas. Also, the average segmentation accuracy and sensitivity are found to be 98%. Similarly, the maximum regional overlap between segmented and ground truth images obtained using volume similarity measure is observed to be 99%. Directionality as a feature, showed a considerable difference between normal and abnormal tissues which is found to be 11%. The proposed framework for breast thermal image analysis that is aided with necessary preprocessing is found to be useful in assisting the early diagnosis of breast abnormalities.

  11. Deep convolutional networks for automated detection of posterior-element fractures on spine CT

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Wang, Yinong; Yao, Jianhua; Lu, Le; Burns, Joseph E.; Summers, Ronald M.

    2016-03-01

    Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of `positive', i.e. fractured posterior-elements and `negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.

  12. Rapid Maturation of Edge Sensor Technology and Potential Application in Large Space Telescopes with Segmented Primary Mirrors

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    This paper explores the history and results of the last two year's efforts to transition inductive edge sensor technology from Technology Readiness Level 2 to Technology Readiness Level 6. Both technical and programmatic challenges were overcome in the design, fabrication, test, and installation of over a thousand sensors making up the Segment Alignment Maintenance System (SAMs) for the 91 segment, 9.2-meter. Hobby Eberly Telescope (HET). The integration of these sensors with the control system will be discussed along with serendipitous leverage they provided for both initialization alignment and operational maintenance. The experience gained important insights into the fundamental motion mechanics of large segmented mirrors, the relative importance of the variance sources of misalignment errors, the efficient conduct of a program to mature the technology to the higher levels. Unanticipated factors required the team to develop new implementation strategies for the edge sensor information which enabled major segmented mirror controller design simplifications. The resulting increase in the science efficiency of HET will be shown. Finally, the on-going effort to complete the maturation of inductive edge sensor by delivering space qualified versions for future IR (infrared radiation) space telescopes.

  13. Biologically inspired EM image alignment and neural reconstruction.

    PubMed

    Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas

    2011-08-15

    Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.

  14. System and process for detecting and monitoring surface defects

    NASA Technical Reports Server (NTRS)

    Mueller, Mark K. (Inventor)

    1994-01-01

    A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.

  15. Enhancement of optic cup detection through an improved vessel kink detection framework

    NASA Astrophysics Data System (ADS)

    Wong, Damon W. K.; Liu, Jiang; Tan, Ngan Meng; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Glaucoma is a leading cause of blindness. The presence and extent of progression of glaucoma can be determined if the optic cup can be accurately segmented from retinal images. In this paper, we present a framework which improves the detection of the optic cup. First, a region of interest is obtained from the retinal fundus image, and a pallor-based preliminary cup contour estimate is determined. Patches are then extracted from the ROI along this contour. To improve the usability of the patches, adaptive methods are introduced to ensure the patches are within the optic disc and to minimize redundant information. The patches are then analyzed for vessels by an edge transform which generates pixel segments of likely vessel candidates. Wavelet, color and gradient information are used as input features for a SVM model to classify the candidates as vessel or non-vessel. Subsequently, a rigourous non-parametric method is adopted in which a bi-stage multi-resolution approach is used to probe and localize the location of kinks along the vessels. Finally, contenxtual information is used to fuse pallor and kink information to obtain an enhanced optic cup segmentation. Using a batch of 21 images obtained from the Singapore Eye Research Institute, the new method results in a 12.64% reduction in the average overlap error against a pallor only cup, indicating viable improvements in the segmentation and supporting the use of kinks for optic cup detection.

  16. The method for detecting small lesions in medical image based on sliding window

    NASA Astrophysics Data System (ADS)

    Han, Guilai; Jiao, Yuan

    2016-10-01

    At present, the research on computer-aided diagnosis includes the sample image segmentation, extracting visual features, generating the classification model by learning, and according to the model generated to classify and judge the inspected images. However, this method has a large scale of calculation and speed is slow. And because medical images are usually low contrast, when the traditional image segmentation method is applied to the medical image, there is a complete failure. As soon as possible to find the region of interest, improve detection speed, this topic attempts to introduce the current popular visual attention model into small lesions detection. However, Itti model is mainly for natural images. But the effect is not ideal when it is used to medical images which usually are gray images. Especially in the early stages of some cancers, the focus of a disease in the whole image is not the most significant region and sometimes is very difficult to be found. But these lesions are prominent in the local areas. This paper proposes a visual attention mechanism based on sliding window, and use sliding window to calculate the significance of a local area. Combined with the characteristics of the lesion, select the features of gray, entropy, corner and edge to generate a saliency map. Then the significant region is segmented and distinguished. This method reduces the difficulty of image segmentation, and improves the detection accuracy of small lesions, and it has great significance to early discovery, early diagnosis and treatment of cancers.

  17. Hierarchical image feature extraction by an irregular pyramid of polygonal partitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N

    2008-01-01

    We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less

  18. An interactive method based on the live wire for segmentation of the breast in mammography images.

    PubMed

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  19. A sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Jing; Xie, Weixin; Pei, Jihong

    2018-03-01

    Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.

  20. Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images

    NASA Astrophysics Data System (ADS)

    Michetti, Jérôme; Basarab, Adrian; Diemer, Franck; Kouame, Denis

    2018-01-01

    Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret’s diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.

  1. LEDs as light source: examining quality of acquired images

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Funtanilla, Jeng; Hernandez, Jose

    2004-05-01

    Recent advances in technology have made light emitting diodes (LEDs) viable in a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. This paper presents the results of comparing images taken by a videoscope using two different light sources. One of the sources is the internal metal halide lamp and the other is a LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. The paper will present the results and discuss the usefulness and shortcomings of various comparison methods.

  2. Surface Hold Advisor Using Critical Sections

    NASA Technical Reports Server (NTRS)

    Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)

    2013-01-01

    The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.

  3. A new fractional order derivative based active contour model for colon wall segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong

    2018-02-01

    Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.

  4. Unsupervised motion-based object segmentation refined by color

    NASA Astrophysics Data System (ADS)

    Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris

    2003-06-01

    For various applications, such as data compression, structure from motion, medical imaging and video enhancement, there is a need for an algorithm that divides video sequences into independently moving objects. Because our focus is on video enhancement and structure from motion for consumer electronics, we strive for a low complexity solution. For still images, several approaches exist based on colour, but these lack in both speed and segmentation quality. For instance, colour-based watershed algorithms produce a so-called oversegmentation with many segments covering each single physical object. Other colour segmentation approaches exist which somehow limit the number of segments to reduce this oversegmentation problem. However, this often results in inaccurate edges or even missed objects. Most likely, colour is an inherently insufficient cue for real world object segmentation, because real world objects can display complex combinations of colours. For video sequences, however, an additional cue is available, namely the motion of objects. When different objects in a scene have different motion, the motion cue alone is often enough to reliably distinguish objects from one another and the background. However, because of the lack of sufficient resolution of efficient motion estimators, like the 3DRS block matcher, the resulting segmentation is not at pixel resolution, but at block resolution. Existing pixel resolution motion estimators are more sensitive to noise, suffer more from aperture problems or have less correspondence to the true motion of objects when compared to block-based approaches or are too computationally expensive. From its tendency to oversegmentation it is apparent that colour segmentation is particularly effective near edges of homogeneously coloured areas. On the other hand, block-based true motion estimation is particularly effective in heterogeneous areas, because heterogeneous areas improve the chance a block is unique and thus decrease the chance of the wrong position producing a good match. Consequently, a number of methods exist which combine motion and colour segmentation. These methods use colour segmentation as a base for the motion segmentation and estimation or perform an independent colour segmentation in parallel which is in some way combined with the motion segmentation. The presented method uses both techniques to complement each other by first segmenting on motion cues and then refining the segmentation with colour. To our knowledge few methods exist which adopt this approach. One example is te{meshrefine}. This method uses an irregular mesh, which hinders its efficient implementation in consumer electronics devices. Furthermore, the method produces a foreground/background segmentation, while our applications call for the segmentation of multiple objects. NEW METHOD As mentioned above we start with motion segmentation and refine the edges of this segmentation with a pixel resolution colour segmentation method afterwards. There are several reasons for this approach: + Motion segmentation does not produce the oversegmentation which colour segmentation methods normally produce, because objects are more likely to have colour discontinuities than motion discontinuities. In this way, the colour segmentation only has to be done at the edges of segments, confining the colour segmentation to a smaller part of the image. In such a part, it is more likely that the colour of an object is homogeneous. + This approach restricts the computationally expensive pixel resolution colour segmentation to a subset of the image. Together with the very efficient 3DRS motion estimation algorithm, this helps to reduce the computational complexity. + The motion cue alone is often enough to reliably distinguish objects from one another and the background. To obtain the motion vector fields, a variant of the 3DRS block-based motion estimator which analyses three frames of input was used. The 3DRS motion estimator is known for its ability to estimate motion vectors which closely resemble the true motion. BLOCK-BASED MOTION SEGMENTATION As mentioned above we start with a block-resolution segmentation based on motion vectors. The presented method is inspired by the well-known K-means segmentation method te{K-means}. Several other methods (e.g. te{kmeansc}) adapt K-means for connectedness by adding a weighted shape-error. This adds the additional difficulty of finding the correct weights for the shape-parameters. Also, these methods often bias one particular pre-defined shape. The presented method, which we call K-regions, encourages connectedness because only blocks at the edges of segments may be assigned to another segment. This constrains the segmentation method to such a degree that it allows the method to use least squares for the robust fitting of affine motion models for each segment. Contrary to te{parmkm}, the segmentation step still operates on vectors instead of model parameters. To make sure the segmentation is temporally consistent, the segmentation of the previous frame will be used as initialisation for every new frame. We also present a scheme which makes the algorithm independent of the initially chosen amount of segments. COLOUR-BASED INTRA-BLOCK SEGMENTATION The block resolution motion-based segmentation forms the starting point for the pixel resolution segmentation. The pixel resolution segmentation is obtained from the block resolution segmentation by reclassifying pixels only at the edges of clusters. We assume that an edge between two objects can be found in either one of two neighbouring blocks that belong to different clusters. This assumption allows us to do the pixel resolution segmentation on each pair of such neighbouring blocks separately. Because of the local nature of the segmentation, it largely avoids problems with heterogeneously coloured areas. Because no new segments are introduced in this step, it also does not suffer from oversegmentation problems. The presented method has no problems with bifurcations. For the pixel resolution segmentation itself we reclassify pixels such that we optimize an error norm which favour similarly coloured regions and straight edges. SEGMENTATION MEASURE To assist in the evaluation of the proposed algorithm we developed a quality metric. Because the problem does not have an exact specification, we decided to define a ground truth output which we find desirable for a given input. We define the measure for the segmentation quality as being how different the segmentation is from the ground truth. Our measure enables us to evaluate oversegmentation and undersegmentation seperately. Also, it allows us to evaluate which parts of a frame suffer from oversegmentation or undersegmentation. The proposed algorithm has been tested on several typical sequences. CONCLUSIONS In this abstract we presented a new video segmentation method which performs well in the segmentation of multiple independently moving foreground objects from each other and the background. It combines the strong points of both colour and motion segmentation in the way we expected. One of the weak points is that the segmentation method suffers from undersegmentation when adjacent objects display similar motion. In sequences with detailed backgrounds the segmentation will sometimes display noisy edges. Apart from these results, we think that some of the techniques, and in particular the K-regions technique, may be useful for other two-dimensional data segmentation problems.

  5. Segmenting breast cancerous regions in thermal images using fuzzy active contours

    PubMed Central

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710 ± 0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically. PMID:28096784

  6. A robust pointer segmentation in biomedical images toward building a visual ontology for biomedical article retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.

  7. Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1975-01-01

    The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.

  8. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  9. Stereo matching using census cost over cross window and segmentation-based disparity refinement

    NASA Astrophysics Data System (ADS)

    Li, Qingwu; Ni, Jinyan; Ma, Yunpeng; Xu, Jinxin

    2018-03-01

    Stereo matching is a vital requirement for many applications, such as three-dimensional (3-D) reconstruction, robot navigation, object detection, and industrial measurement. To improve the practicability of stereo matching, a method using census cost over cross window and segmentation-based disparity refinement is proposed. First, a cross window is obtained using distance difference and intensity similarity in binocular images. Census cost over the cross window and color cost are combined as the matching cost, which is aggregated by the guided filter. Then, winner-takes-all strategy is used to calculate the initial disparities. Second, a graph-based segmentation method is combined with color and edge information to achieve moderate under-segmentation. The segmented regions are classified into reliable regions and unreliable regions by consistency checking. Finally, the two regions are optimized by plane fitting and propagation, respectively, to match the ambiguous pixels. The experimental results are on Middlebury Stereo Datasets, which show that the proposed method has good performance in occluded and discontinuous regions, and it obtains smoother disparity maps with a lower average matching error rate compared with other algorithms.

  10. Automatic liver segmentation on Computed Tomography using random walkers for treatment planning

    PubMed Central

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91. PMID:28096782

  11. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.

    PubMed

    Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki

    2014-03-01

    Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.

  12. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  13. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  14. An FPGA-Based Rapid Wheezing Detection System

    PubMed Central

    Lin, Bor-Shing; Yen, Tian-Shiue

    2014-01-01

    Wheezing is often treated as a crucial indicator in the diagnosis of obstructive pulmonary diseases. A rapid wheezing detection system may help physicians to monitor patients over the long-term. In this study, a portable wheezing detection system based on a field-programmable gate array (FPGA) is proposed. This system accelerates wheezing detection, and can be used as either a single-process system, or as an integrated part of another biomedical signal detection system. The system segments sound signals into 2-second units. A short-time Fourier transform was used to determine the relationship between the time and frequency components of wheezing sound data. A spectrogram was processed using 2D bilateral filtering, edge detection, multithreshold image segmentation, morphological image processing, and image labeling, to extract wheezing features according to computerized respiratory sound analysis (CORSA) standards. These features were then used to train the support vector machine (SVM) and build the classification models. The trained model was used to analyze sound data to detect wheezing. The system runs on a Xilinx Virtex-6 FPGA ML605 platform. The experimental results revealed that the system offered excellent wheezing recognition performance (0.912). The detection process can be used with a clock frequency of 51.97 MHz, and is able to perform rapid wheezing classification. PMID:24481034

  15. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images

    NASA Astrophysics Data System (ADS)

    Wong, D. W. K.; Liu, J.; Lim, J. H.; Li, H.; Wong, T. Y.

    2009-02-01

    The accurate localization of the optic cup in retinal images is important to assess the cup to disc ratio (CDR) for glaucoma screening and management. Glaucoma is physiologically assessed by the increased excavation of the optic cup within the optic nerve head, also known as the optic disc. The CDR is thus an important indicator of risk and severity of glaucoma. In this paper, we propose a method of determining the cup boundary using non-stereographic retinal images by the automatic detection of a morphological feature within the optic disc known as kinks. Kinks are defined as the bendings of small vessels as they traverse from the disc to the cup, providing physiological validation for the cup boundary. To detect kinks, localized patches are first generated from a preliminary cup boundary obtained via level set. Features obtained using edge detection and wavelet transform are combined using a statistical approach rule to identify likely vessel edges. The kinks are then obtained automatically by analyzing the detected vessel edges for angular changes, and these kinks are subsequently used to obtain the cup boundary. A set of retinal images from the Singapore Eye Research Institute was obtained to assess the performance of the method, with each image being clinically graded for the CDR. From experiments, when kinks were used, the error on the CDR was reduced to less than 0.1 CDR units relative to the clinical CDR, which is within the intra-observer variability of 0.2 CDR units.

  16. Edge-Assignment and Figure-Ground Segmentation in Short-Term Visual Matching.

    ERIC Educational Resources Information Center

    Driver, Jon; Baylis, Gordon

    1996-01-01

    Eight experiments involving 99 college students examined the role of edge-assignment in a contour matching task. Edge-matching performance was not based solely on a raw description of the edges themselves. Results suggest a pervasive tendency within the visual system to go beyond the edges toward figural shapes. (SLD)

  17. User-guided segmentation for volumetric retinal optical coherence tomography images

    PubMed Central

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  18. User-guided segmentation for volumetric retinal optical coherence tomography images.

    PubMed

    Yin, Xin; Chao, Jennifer R; Wang, Ruikang K

    2014-08-01

    Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.

  19. Joint level-set and spatio-temporal motion detection for cell segmentation.

    PubMed

    Boukari, Fatima; Makrogiannis, Sokratis

    2016-08-10

    Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 % compared to the nonlinear spatio-temporal diffusion method. Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets, our proposed method produced promising segmentation results. These results indicate the efficiency and robustness of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent quantification tasks.

  20. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  1. An improved method for pancreas segmentation using SLIC and interactive region merging

    NASA Astrophysics Data System (ADS)

    Zhang, Liyuan; Yang, Huamin; Shi, Weili; Miao, Yu; Li, Qingliang; He, Fei; He, Wei; Li, Yanfang; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Considering the weak edges in pancreas segmentation, this paper proposes a new solution which integrates more features of CT images by combining SLIC superpixels and interactive region merging. In the proposed method, Mahalanobis distance is first utilized in SLIC method to generate better superpixel images. By extracting five texture features and one gray feature, the similarity measure between two superpixels becomes more reliable in interactive region merging. Furthermore, object edge blocks are accurately addressed by re-segmentation merging process. Applying the proposed method to four cases of abdominal CT images, we segment pancreatic tissues to verify the feasibility and effectiveness. The experimental results show that the proposed method can make segmentation accuracy increase to 92% on average. This study will boost the application process of pancreas segmentation for computer-aided diagnosis system.

  2. A geometric level set model for ultrasounds analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarti, A.; Malladi, R.

    We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.

  3. A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms

    PubMed Central

    Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430

  4. A novel content-based active contour model for brain tumor segmentation.

    PubMed

    Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal

    2012-06-01

    Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. From voxel to curvature

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ayache, Nicholas; Sander, Peter T.

    1991-09-01

    Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.

  6. Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex

    2012-01-01

    A document discusses an electro-optic sensor that consists of a collimator, attached to one segment, and a quad diode, attached to an adjacent segment. Relative segment-segment motion causes the beam from the collimator to move across the quad diode, thus generating a measureable electric signal. This sensor type, which is relatively inexpensive, can be configured as an edge sensor, or as a remote segment-segment motion sensor.

  7. Locating and decoding barcodes in fuzzy images captured by smart phones

    NASA Astrophysics Data System (ADS)

    Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.

  8. Semiautomatic Segmentation of Glioma on Mobile Devices.

    PubMed

    Wu, Ya-Ping; Lin, Yu-Song; Wu, Wei-Guo; Yang, Cong; Gu, Jian-Qin; Bai, Yan; Wang, Mei-Yun

    2017-01-01

    Brain tumor segmentation is the first and the most critical step in clinical applications of radiomics. However, segmenting brain images by radiologists is labor intense and prone to inter- and intraobserver variability. Stable and reproducible brain image segmentation algorithms are thus important for successful tumor detection in radiomics. In this paper, we propose a supervised brain image segmentation method, especially for magnetic resonance (MR) brain images with glioma. This paper uses hard edge multiplicative intrinsic component optimization to preprocess glioma medical image on the server side, and then, the doctors could supervise the segmentation process on mobile devices in their convenient time. Since the preprocessed images have the same brightness for the same tissue voxels, they have small data size (typically 1/10 of the original image size) and simple structure of 4 types of intensity value. This observation thus allows follow-up steps to be processed on mobile devices with low bandwidth and limited computing performance. Experiments conducted on 1935 brain slices from 129 patients show that more than 30% of the sample can reach 90% similarity; over 60% of the samples can reach 85% similarity, and more than 80% of the sample could reach 75% similarity. The comparisons with other segmentation methods also demonstrate both efficiency and stability of the proposed approach.

  9. Primary Mirror Figure Maintenance of the Hobby-Eberly Telescope using the Segment Alignment Maintenance System

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Hall, Drew; Howard, Ricky; Ly, William; Weir, John; Montgomery, Edward; Brantley, Lott W. (Technical Monitor)

    2002-01-01

    The Segment Alignment Maintenance System (SAMs) was installed on McDonald Observatory's Hobby-Eberly Telescope (HET) in August 2001. The SAMs became fully operational in October 2001. The SAMs uses a system of 480 inductive edge sensors to correct misalignments of the HET's 91 primary mirror segments when the segments are perturbed from their aligned reference positions. A special observer estimated and corrects for the global radius of curvature (GroC) mode, a mode unobservable by the edge sensors. The SAMs edge sensor system and (GroC) estimator are able to maintain HET's primary figure for much longer durations than previously had been observed. Telescope image quality has improved, and the amount of overhead time required from primary mirror alignment has been reduced. This paper gives a functional description of the SAMs control system and presents performance verification data. This paper also describes how the SAMs has improved the operational efficiency of the HET.

  10. Outer Retinal Changes Including the Ellipsoid Zone Band in Usher Syndrome 1B due to MYO7A Mutations.

    PubMed

    Sumaroka, Alexander; Matsui, Rodrigo; Cideciyan, Artur V; McGuigan, David B; Sheplock, Rebecca; Schwartz, Sharon B; Jacobson, Samuel G

    2016-07-01

    To study transition zones from normal to abnormal retina in Usher syndrome IB (USH1B) caused by myosin 7A (MYO7A) mutations. Optical coherence tomography (OCT) scattering layers in outer retina were segmented in patients (n = 16, ages 2-42; eight patients had serial data, average interval 4.5 years) to quantify outer nuclear layer (ONL) and outer segments (OS) as well as the locus of EZ (ellipsoid zone) edge and its extent from the fovea. Static perimetry was measured under dark-adapted (DA) and light-adapted (LA) conditions. Ellipsoid zone edge in USH1B-MYO7A could be located up to 23° from the fovea. Ellipsoid zone extent constricted at a rate of 0.51°/year with slower rates at smaller eccentricities. A well-defined EZ line could be associated with normal or abnormal ONL and/or OS thickness; detectable ONL extended well beyond EZ edge. At the EZ edge, the local slope of LA sensitivity loss was 2.6 (±1.7) dB/deg for central transition zones. At greater eccentricities, the local slope of cone sensitivity loss was shallower (1.1 ± 0.4 dB/deg for LA) than that of rod sensitivity loss (2.8 ± 1.2 dB/deg for DA). In USH1B-MYO7A, constriction rate of EZ extent depends on the initial eccentricity of the transition. Ellipsoid zone edges in the macula correspond to large local changes in cone vision, but extramacular EZ edges show more pronounced losses on rod-based vision tests. It is advisable to use not only the EZ line but also other structural and functional parameters for estimating natural history of disease and possible therapeutic effects in future clinical trials of USH1B-MYO7A.

  11. Edge-assignment and figure-ground segmentation in short-term visual matching.

    PubMed

    Driver, J; Baylis, G C

    1996-12-01

    Eight experiments examined the role of edge-assignment in a contour matching task. Subjects judged whether the jagged vertical edge of a probe shape matched the jagged edge that divided two adjoining shapes in an immediately preceding figure-ground display. Segmentation factors biased assignment of this dividing edge toward a figural shape on just one of its sides. Subjects were faster and more accurate at matching when the probe edge had a corresponding assignment. The rapid emergence of this effect provides an on-line analog of the long-term memory advantage for figures over grounds which Rubin (1915/1958) reported. The present on-line advantage was found when figures were defined by relative contrast and size, or by symmetry, and could not be explained solely by the automatic drawing of attention toward the location of the figural region. However, deliberate attention to one region of an otherwise ambiguous figure-ground display did produce the advantage. We propose that one-sided assignment of dividing edges may be obligatory in vision.

  12. Autonomous rock detection on mars through region contrast

    NASA Astrophysics Data System (ADS)

    Xiao, Xueming; Cui, Hutao; Yao, Meibao; Tian, Yang

    2017-08-01

    In this paper, we present a new autonomous rock detection approach through region contrast. Unlike current state-of-art pixel-level rock segmenting methods, new method deals with this issue in region level, which will significantly reduce the computational cost. Image is firstly splitted into homogeneous regions based on intensity information and spatial layout. Considering the high-water memory constraints of onboard flight processor, only low-level features, average intensity and variation of superpixel, are measured. Region contrast is derived as the integration of intensity contrast and smoothness measurement. Rocks are then segmented from the resulting contrast map by an adaptive threshold. Since the merely intensity-based method may cause false detection in background areas with different illuminations from surroundings, a more reliable method is further proposed by introducing spatial factor and background similarity to the region contrast. Spatial factor demonstrates the locality of contrast, while background similarity calculates the probability of each subregion belonging to background. Our method is efficient in dealing with large images and only few parameters are needed. Preliminary experimental results show that our algorithm outperforms edge-based methods in various grayscale rover images.

  13. Face detection in color images using skin color, Laplacian of Gaussian, and Euler number

    NASA Astrophysics Data System (ADS)

    Saligrama Sundara Raman, Shylaja; Kannanedhi Narasimha Sastry, Balasubramanya Murthy; Subramanyam, Natarajan; Senkutuvan, Ramya; Srikanth, Radhika; John, Nikita; Rao, Prateek

    2010-02-01

    In this a paper, a feature based approach to face detection has been proposed using an ensemble of algorithms. The method uses chrominance values and edge features to classify the image as skin and nonskin regions. The edge detector used for this purpose is Laplacian of Gaussian (LoG) which is found to be appropriate when images having multiple faces with noise in them. Eight connectivity analysis of these regions will segregate them as probable face or nonface. The procedure is made more robust by identifying local features within these skin regions which include number of holes, percentage of skin and the golden ratio. The method proposed has been tested on color face images of various races obtained from different sources and its performance is found to be encouraging as the color segmentation cleans up almost all the complex facial features. The result obtained has a calculated accuracy of 86.5% on a test set of 230 images.

  14. An unsupervised video foreground co-localization and segmentation process by incorporating motion cues and frame features

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    Video foreground segmentation is one of the key problems in video processing. In this paper, we proposed a novel and fully unsupervised approach for foreground object co-localization and segmentation of unconstrained videos. We firstly compute both the actual edges and motion boundaries of the video frames, and then align them by their HOG feature maps. Then, by filling the occlusions generated by the aligned edges, we obtained more precise masks about the foreground object. Such motion-based masks could be derived as the motion-based likelihood. Moreover, the color-base likelihood is adopted for the segmentation process. Experimental Results show that our approach outperforms most of the State-of-the-art algorithms.

  15. Reconstruction of incomplete cell paths through a 3D-2D level set segmentation

    NASA Astrophysics Data System (ADS)

    Hariri, Maia; Wan, Justin W. L.

    2012-02-01

    Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths. In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps, eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.

  16. Approach for scene reconstruction from the analysis of a triplet of still images

    NASA Astrophysics Data System (ADS)

    Lechat, Patrick; Le Mestre, Gwenaelle; Pele, Danielle

    1997-03-01

    Three-dimensional modeling of a scene from the automatic analysis of 2D image sequences is a big challenge for future interactive audiovisual services based on 3D content manipulation such as virtual vests, 3D teleconferencing and interactive television. We propose a scheme that computes 3D objects models from stereo analysis of image triplets shot by calibrated cameras. After matching the different views with a correlation based algorithm, a depth map referring to a given view is built by using a fusion criterion taking into account depth coherency, visibility constraints and correlation scores. Because luminance segmentation helps to compute accurate object borders and to detect and improve the unreliable depth values, a two steps segmentation algorithm using both depth map and graylevel image is applied to extract the objects masks. First an edge detection segments the luminance image in regions and a multimodal thresholding method selects depth classes from the depth map. Then the regions are merged and labelled with the different depth classes numbers by using a coherence test on depth values according to the rate of reliable and dominant depth values and the size of the regions. The structures of the segmented objects are obtained with a constrained Delaunay triangulation followed by a refining stage. Finally, texture mapping is performed using open inventor or VRML1.0 tools.

  17. Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.

    PubMed

    Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T

    2013-01-01

    Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.

  18. A Regions of Confidence Based Approach to Enhance Segmentation with Shape Priors.

    PubMed

    Appia, Vikram V; Ganapathy, Balaji; Abufadel, Amer; Yezzi, Anthony; Faber, Tracy

    2010-01-18

    We propose an improved region based segmentation model with shape priors that uses labels of confidence/interest to exclude the influence of certain regions in the image that may not provide useful information for segmentation. These could be regions in the image which are expected to have weak, missing or corrupt edges or they could be regions in the image which the user is not interested in segmenting, but are part of the object being segmented. In the training datasets, along with the manual segmentations we also generate an auxiliary map indicating these regions of low confidence/interest. Since, all the training images are acquired under similar conditions, we can train our algorithm to estimate these regions as well. Based on this training we will generate a map which indicates the regions in the image that are likely to contain no useful information for segmentation. We then use a parametric model to represent the segmenting curve as a combination of shape priors obtained by representing the training data as a collection of signed distance functions. We evolve an objective energy functional to evolve the global parameters that are used to represent the curve. We vary the influence each pixel has on the evolution of these parameters based on the confidence/interest label. When we use these labels to indicate the regions with low confidence; the regions containing accurate edges will have a dominant role in the evolution of the curve and the segmentation in the low confidence regions will be approximated based on the training data. Since our model evolves global parameters, it improves the segmentation even in the regions with accurate edges. This is because we eliminate the influence of the low confidence regions which may mislead the final segmentation. Similarly when we use the labels to indicate the regions which are not of importance, we will get a better segmentation of the object in the regions we are interested in.

  19. Improved Edge Performance in MRF

    NASA Technical Reports Server (NTRS)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc

    2004-01-01

    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  20. Biomechanical considerations for distraction of the monobloc, Le Fort III, and Le Fort I segments.

    PubMed

    Figueroa, Alvaro A; Polley, John W; Figueroa, Aaron D

    2010-09-01

    Distraction osteogenesis is effective for correction of severe maxillary and midface hypoplasia. The vectors controlling the segment to be moved must be planned. This requires knowledge of the physical characteristics of the osteotomized bone segment, including the location of the center of mass (free body) and the center of resistance (restrained body). The purpose of this study was to determine the center of mass of the osteotomized monobloc, Le Fort III, and Le Fort I bone segments. A dry human skull was used to sequentially isolate three bone segments: monobloc, Le Fort III, and Le Fort I. Each segment was suspended from three different points, and digital photographs were obtained from each suspension. The photographs were digitally superimposed. The center of mass was determined by calculating the intersection of the suspension lines. The center of mass for the monobloc segment was located at a point 43.5 percent of the total height from the occlusal plane to the superior edge of the frontal bone supraorbital osteotomy. For the Le Fort III, it was located 38 percent of the total height from the occlusal plane to the superior edge of the osteotomized base of the nasal bones. For the Le Fort I, it was 53 percent of the total height from the occlusal plane to the superior edge of the osteotomized maxillary bone. Knowledge of the location of the center of mass in the monobloc, Le Fort III, and Le Fort I segments provides a starting point for the clinician when planning vectors for advancement with distraction.

  1. Synthetic Minority Oversampling Technique and Fractal Dimension for Identifying Multiple Sclerosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Dong; Zhang, Yin; Phillips, Preetha; Dong, Zhengchao; Wang, Shuihua

    Multiple sclerosis (MS) is a severe brain disease. Early detection can provide timely treatment. Fractal dimension can provide statistical index of pattern changes with scale at a given brain image. In this study, our team used susceptibility weighted imaging technique to obtain 676 MS slices and 880 healthy slices. We used synthetic minority oversampling technique to process the unbalanced dataset. Then, we used Canny edge detector to extract distinguishing edges. The Minkowski-Bouligand dimension was a fractal dimension estimation method and used to extract features from edges. Single hidden layer neural network was used as the classifier. Finally, we proposed a three-segment representation biogeography-based optimization to train the classifier. Our method achieved a sensitivity of 97.78±1.29%, a specificity of 97.82±1.60% and an accuracy of 97.80±1.40%. The proposed method is superior to seven state-of-the-art methods in terms of sensitivity and accuracy.

  2. Image wavelet decomposition and applications

    NASA Technical Reports Server (NTRS)

    Treil, N.; Mallat, S.; Bajcsy, R.

    1989-01-01

    The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.

  3. Segmentation and Quantitative Analysis of Apoptosis of Chinese Hamster Ovary Cells from Fluorescence Microscopy Images.

    PubMed

    Du, Yuncheng; Budman, Hector M; Duever, Thomas A

    2017-06-01

    Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.

  4. Model-Based Wavefront Control for CCAT

    NASA Technical Reports Server (NTRS)

    Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David

    2011-01-01

    The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.

  5. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  6. MO-F-CAMPUS-J-04: Tissue Segmentation-Based MR Electron Density Mapping Method for MR-Only Radiation Treatment Planning of Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Lee, Y; Ruschin, M

    2015-06-15

    Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution.more » Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of tissues and similarity of electron density assignment. This method can allow MR-only treatment planning.« less

  7. Wavelet Fusion for Concealed Object Detection Using Passive Millimeter Wave Sequence Images

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Pang, L.; Liu, H.; Xu, X.

    2018-04-01

    PMMW imaging system can create interpretable imagery on the objects concealed under clothing, which gives the great advantage to the security check system. Paper addresses wavelet fusion to detect concealed objects using passive millimeter wave (PMMW) sequence images. According to PMMW real-time imager acquired image characteristics and storage methods firstly, using the sum of squared difference (SSD) as the image-related parameters to screen the sequence images. Secondly, the selected images are optimized using wavelet fusion algorithm. Finally, the concealed objects are detected by mean filter, threshold segmentation and edge detection. The experimental results show that this method improves the detection effect of concealed objects by selecting the most relevant images from PMMW sequence images and using wavelet fusion to enhance the information of the concealed objects. The method can be effectively applied to human body concealed object detection in millimeter wave video.

  8. [Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm].

    PubMed

    Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian

    2017-06-01

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

  9. Model-based vision system for automatic recognition of structures in dental radiographs

    NASA Astrophysics Data System (ADS)

    Acharya, Raj S.; Samarabandu, Jagath K.; Hausmann, E.; Allen, K. A.

    1991-07-01

    X-ray diagnosis of destructive periodontal disease requires assessing serial radiographs by an expert to determine the change in the distance between cemento-enamel junction (CEJ) and the bone crest. To achieve this without the subjectivity of a human expert, a knowledge based system is proposed to automatically locate the two landmarks which are the CEJ and the level of alveolar crest at its junction with the periodontal ligament space. This work is a part of an ongoing project to automatically measure the distance between CEJ and the bone crest along a line parallel to the axis of the tooth. The approach presented in this paper is based on identifying a prominent feature such as the tooth boundary using local edge detection and edge thresholding to establish a reference and then using model knowledge to process sub-regions in locating the landmarks. Segmentation techniques invoked around these regions consists of a neural-network like hierarchical refinement scheme together with local gradient extraction, multilevel thresholding and ridge tracking. Recognition accuracy is further improved by first locating the easily identifiable parts of the bone surface and the interface between the enamel and the dentine and then extending these boundaries towards the periodontal ligament space and the tooth boundary respectively. The system is realized as a collection of tools (or knowledge sources) for pre-processing, segmentation, primary and secondary feature detection and a control structure based on the blackboard model to coordinate the activities of these tools.

  10. Incorporating Edge Information into Best Merge Region-Growing Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Pasolli, Edoardo

    2014-01-01

    We have previously developed a best merge region-growing approach that integrates nonadjacent region object aggregation with the neighboring region merge process usually employed in region growing segmentation approaches. This approach has been named HSeg, because it provides a hierarchical set of image segmentation results. Up to this point, HSeg considered only global region feature information in the region growing decision process. We present here three new versions of HSeg that include local edge information into the region growing decision process at different levels of rigor. We then compare the effectiveness and processing times of these new versions HSeg with each other and with the original version of HSeg.

  11. Design Models for Shaping of a Tooth Profile of External Fine-Module Ratchet Teeth

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2016-04-01

    Simulation of the shaping for the fine-module external ratchet teeth at which the contacting surfaces are formed by the straight segments is considered in this paper. The design schemes for shaping of the proposed ratchet teeth by a shaper cutter and a rack are obtained. It is defined that the maximum length of the straight segment of the front edge ratchet teeth will be formed at shaping by a rack cutter. The effect of a module, a gradient angle and a radius of blank circles on the length of the straight segment of the front edge ratchet teeth is investigated.

  12. Contextual influences in texture-segmentation: distinct effects from elements along the edge and in the texture-region.

    PubMed

    Robol, Valentina; Grassi, Massimo; Casco, Clara

    2013-08-09

    Both neurophysiological and psychophysical evidence suggest a strong influence of context on texture-segmentation. Here we extend and further analyse this issue, with a particular focus on the underlying mechanism. Specifically, we use a texture-edge discrimination task and separately investigate the effect of elements far from and along the edge. Consistent with previous studies, we report both an iso-near contextual effect - whereby performance is better if elements along the edge are iso-oriented compared to ortho-oriented to the edge - as well as an ortho-far effect - whereby discrimination is higher when elements far from the edge are orthogonal to the edge. We found that backward mask, which is known to interrupt re-entrant processing from extrastriate areas, only interferes with the iso-near effect whereas perturbing orientation, position or contrast polarity of elements far from the edge only abolishes the ortho-far effect. This suggests that feedback processes may be involved in the iso-near effect. Instead, the ortho-far effect may be accounted for by recurrent interactions among 1st order filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A new Hessian - based approach for segmentation of CT porous media images

    NASA Astrophysics Data System (ADS)

    Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Kirill, Gerke

    2017-04-01

    Hessian matrix based methods are widely used in image analysis for features detection, e.g., detection of blobs, corners and edges. Hessian matrix of the imageis the matrix of 2nd order derivate around selected voxel. Most significant features give highest values of Hessian transform and lowest values are located at smoother parts of the image. Majority of conventional segmentation techniques can segment out cracks, fractures and other inhomogeneities in soils and rocks only if the rest of the image is significantly "oversigmented". To avoid this disadvantage, we propose to enhance greyscale values of voxels belonging to such specific inhomogeneities on X-ray microtomography scans. We have developed and implemented in code a two-step approach to attack the aforementioned problem. During the first step we apply a filter that enhances the image and makes outstanding features more sharply defined. During the second step we apply Hessian filter based segmentation. The values of voxels on the image to be segmented are calculated in conjunction with the values of other voxels within prescribed region. Contribution from each voxel within such region is computed by weighting according to the local Hessian matrix value. We call this approach as Hessian windowed segmentation. Hessian windowed segmentation has been tested on different porous media X-ray microtomography images, including soil, sandstones, carbonates and shales. We also compared this new method against others widely used methods such as kriging, Markov random field, converging active contours and region grow. We show that our approach is more accurate in regions containing special features such as small cracks, fractures, elongated inhomogeneities and other features with low contrast related to the background solid phase. Moreover, Hessian windowed segmentation outperforms some of these methods in computational efficiency. We further test our segmentation technique by computing permeability of segmented images and comparing them against laboratory based measurements. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).

  14. Airfoil

    DOEpatents

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  15. Computer-aided liver volumetry: performance of a fully-automated, prototype post-processing solution for whole-organ and lobar segmentation based on MDCT imaging.

    PubMed

    Fananapazir, Ghaneh; Bashir, Mustafa R; Marin, Daniele; Boll, Daniel T

    2015-06-01

    To evaluate the performance of a prototype, fully-automated post-processing solution for whole-liver and lobar segmentation based on MDCT datasets. A polymer liver phantom was used to assess accuracy of post-processing applications comparing phantom volumes determined via Archimedes' principle with MDCT segmented datasets. For the IRB-approved, HIPAA-compliant study, 25 patients were enrolled. Volumetry performance compared the manual approach with the automated prototype, assessing intraobserver variability, and interclass correlation for whole-organ and lobar segmentation using ANOVA comparison. Fidelity of segmentation was evaluated qualitatively. Phantom volume was 1581.0 ± 44.7 mL, manually segmented datasets estimated 1628.0 ± 47.8 mL, representing a mean overestimation of 3.0%, automatically segmented datasets estimated 1601.9 ± 0 mL, representing a mean overestimation of 1.3%. Whole-liver and segmental volumetry demonstrated no significant intraobserver variability for neither manual nor automated measurements. For whole-liver volumetry, automated measurement repetitions resulted in identical values; reproducible whole-organ volumetry was also achieved with manual segmentation, p(ANOVA) 0.98. For lobar volumetry, automated segmentation improved reproducibility over manual approach, without significant measurement differences for either methodology, p(ANOVA) 0.95-0.99. Whole-organ and lobar segmentation results from manual and automated segmentation showed no significant differences, p(ANOVA) 0.96-1.00. Assessment of segmentation fidelity found that segments I-IV/VI showed greater segmentation inaccuracies compared to the remaining right hepatic lobe segments. Automated whole-liver segmentation showed non-inferiority of fully-automated whole-liver segmentation compared to manual approaches with improved reproducibility and post-processing duration; automated dual-seed lobar segmentation showed slight tendencies for underestimating the right hepatic lobe volume and greater variability in edge detection for the left hepatic lobe compared to manual segmentation.

  16. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    NASA Astrophysics Data System (ADS)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  17. A Novel Segmentation Approach Combining Region- and Edge-Based Information for Ultrasound Images

    PubMed Central

    Luo, Yaozhong; Liu, Longzhong; Li, Xuelong

    2017-01-01

    Ultrasound imaging has become one of the most popular medical imaging modalities with numerous diagnostic applications. However, ultrasound (US) image segmentation, which is the essential process for further analysis, is a challenging task due to the poor image quality. In this paper, we propose a new segmentation scheme to combine both region- and edge-based information into the robust graph-based (RGB) segmentation method. The only interaction required is to select two diagonal points to determine a region of interest (ROI) on the original image. The ROI image is smoothed by a bilateral filter and then contrast-enhanced by histogram equalization. Then, the enhanced image is filtered by pyramid mean shift to improve homogeneity. With the optimization of particle swarm optimization (PSO) algorithm, the RGB segmentation method is performed to segment the filtered image. The segmentation results of our method have been compared with the corresponding results obtained by three existing approaches, and four metrics have been used to measure the segmentation performance. The experimental results show that the method achieves the best overall performance and gets the lowest ARE (10.77%), the second highest TPVF (85.34%), and the second lowest FPVF (4.48%). PMID:28536703

  18. Motion camera based on a custom vision sensor and an FPGA architecture

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel

    1998-09-01

    A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.

  19. Analysis of the Growth Process of Neural Cells in Culture Environment Using Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid

    Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.

  20. Laser Truss Sensor for Segmented Telescope Phasing

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.

  1. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.

    PubMed

    Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A

    2017-11-28

    We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.

  2. Automated detection and classification of major retinal vessels for determination of diameter ratio of arteries and veins

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Hatanaka, Yuji; Iwase, Tatsuhiko; Hara, Takeshi; Fujita, Hiroshi

    2010-03-01

    Abnormalities of retinal vasculatures can indicate health conditions in the body, such as the high blood pressure and diabetes. Providing automatically determined width ratio of arteries and veins (A/V ratio) on retinal fundus images may help physicians in the diagnosis of hypertensive retinopathy, which may cause blindness. The purpose of this study was to detect major retinal vessels and classify them into arteries and veins for the determination of A/V ratio. Images used in this study were obtained from DRIVE database, which consists of 20 cases each for training and testing vessel detection algorithms. Starting with the reference standard of vasculature segmentation provided in the database, major arteries and veins each in the upper and lower temporal regions were manually selected for establishing the gold standard. We applied the black top-hat transformation and double-ring filter to detect retinal blood vessels. From the extracted vessels, large vessels extending from the optic disc to temporal regions were selected as target vessels for calculation of A/V ratio. Image features were extracted from the vessel segments from quarter-disc to one disc diameter from the edge of optic discs. The target segments in the training cases were classified into arteries and veins by using the linear discriminant analysis, and the selected parameters were applied to those in the test cases. Out of 40 pairs, 30 pairs (75%) of arteries and veins in the 20 test cases were correctly classified. The result can be used for the automated calculation of A/V ratio.

  3. Global Radius of Curvature Estimation and Control for the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Hall, Drew; Howard, Ricky; Ly, William; Weir, John; Montgomery, Edward; Brantley, Lott W. (Technical Monitor)

    2002-01-01

    A system, which estimates the global radius of curvature (GroC) and corrects for changes in GroC on a segmented primary mirror has been developed for and verified on McDonald Observatory's Hobby Eberly Telescope (HET). The GroC estimation and control system utilizes HET's primary mirror control (PMC) system and the Segment Alignment Maintenance System (SAMS), an inductive edge sensor system. A special set of boundary conditions is applied to the derivation of the optimal edge match control. The special boundary conditions allow the further derivation of an observer, which enables estimation and control of the Groc mode to within HET's specification. The magnitude of the GroC mode can then be controlled despite the inability of the SAMS edge sensor system, by itself, to observe or control the GroC mode. The observer can be extended to any segmented mirror telescope. It will be shown that the observer improves with accuracy as the number of segments increases. This paper presents the mathematical theory of the observer. Simulation results will demonstrate the inherent accuracy and robustness of the system. Performance verification data from the HET will be presented.

  4. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    NASA Astrophysics Data System (ADS)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  5. Automated segmentation of murine lung tumors in x-ray micro-CT images

    NASA Astrophysics Data System (ADS)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  6. Improved scatterer property estimates from ultrasound backscatter for small gate lengths using a gate-edge correction factor

    NASA Astrophysics Data System (ADS)

    Oelze, Michael L.; O'Brien, William D.

    2004-11-01

    Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .

  7. Left ventricle segmentation via two-layer level sets with circular shape constraint.

    PubMed

    Yang, Cong; Wu, Weiguo; Su, Yuanqi; Zhang, Shaoxiang

    2017-05-01

    This paper proposes a circular shape constraint and a novel two-layer level set method for the segmentation of the left ventricle (LV) from short-axis magnetic resonance images without training any shape models. Since the shape of LV throughout the apex-base axis is close to a ring shape, we propose a circle fitting term in the level set framework to detect the endocardium. The circle fitting term imposes a penalty on the evolving contour from its fitting circle, and thereby handles quite well with issues in LV segmentation, especially the presence of outflow track in basal slices and the intensity overlap between TPM and the myocardium. To extract the whole myocardium, the circle fitting term is incorporated into two-layer level set method. The endocardium and epicardium are respectively represented by two specified level contours of the level set function, which are evolved by an edge-based and a region-based active contour model. The proposed method has been quantitatively validated on the public data set from MICCAI 2009 challenge on the LV segmentation. Experimental results and comparisons with state-of-the-art demonstrate the accuracy and robustness of our method. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The correlation study of parallel feature extractor and noise reduction approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria

    2015-05-15

    This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation,more » image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE.« less

  9. Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector

    PubMed Central

    Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar

    2014-01-01

    Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798

  10. Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks.

    PubMed

    Liu, Xiaoming; Guo, Shuxu; Yang, Bingtao; Ma, Shuzhi; Zhang, Huimao; Li, Jing; Sun, Changjian; Jin, Lanyi; Li, Xueyan; Yang, Qi; Fu, Yu

    2018-04-20

    Accurate segmentation of specific organ from computed tomography (CT) scans is a basic and crucial task for accurate diagnosis and treatment. To avoid time-consuming manual optimization and to help physicians distinguish diseases, an automatic organ segmentation framework is presented. The framework utilized convolution neural networks (CNN) to classify pixels. To reduce the redundant inputs, the simple linear iterative clustering (SLIC) of super-pixels and the support vector machine (SVM) classifier are introduced. To establish the perfect boundary of organs in one-pixel-level, the pixels need to be classified step-by-step. First, the SLIC is used to cut an image into grids and extract respective digital signatures. Next, the signature is classified by the SVM, and the rough edges are acquired. Finally, a precise boundary is obtained by the CNN, which is based on patches around each pixel-point. The framework is applied to abdominal CT scans of livers and high-resolution computed tomography (HRCT) scans of lungs. The experimental CT scans are derived from two public datasets (Sliver 07 and a Chinese local dataset). Experimental results show that the proposed method can precisely and efficiently detect the organs. This method consumes 38 s/slice for liver segmentation. The Dice coefficient of the liver segmentation results reaches to 97.43%. For lung segmentation, the Dice coefficient is 97.93%. This finding demonstrates that the proposed framework is a favorable method for lung segmentation of HRCT scans.

  11. Localization of the transverse processes in ultrasound for spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Kamali, Shahrokh; Ungi, Tamas; Lasso, Andras; Yan, Christina; Lougheed, Matthew; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks such as transverse processes, but as bones have reduced visibility in ultrasound imaging, skeletal landmarks are typically segmented manually, which is an exceedingly laborious and long process. We propose an automatic algorithm to segment and localize the surface of bony areas in the transverse process for scoliosis in ultrasound. METHODS: The algorithm uses cascade of filters to remove low intensity pixels, smooth the image and detect bony edges. By applying first differentiation, candidate bony areas are classified. The average intensity under each area has a correlation with the possibility of a shadow, and areas with strong shadow are kept for bone segmentation. The segmented images are used to reconstruct a 3-D volume to represent the whole spinal structure around the transverse processes. RESULTS: A comparison between the manual ground truth segmentation and the automatic algorithm in 50 images showed 0.17 mm average difference. The time to process all 1,938 images was about 37 Sec. (0.0191 Sec. / Image), including reading the original sequence file. CONCLUSION: Initial experiments showed the algorithm to be sufficiently accurate and fast for segmentation transverse processes in ultrasound for spinal curvature measurement. An extensive evaluation of the method is currently underway on images from a larger patient cohort and using multiple observers in producing ground truth segmentation.

  12. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks.

    PubMed

    Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L

    2015-02-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Possible Role for End-Stopped V1 Neurons in the Perception of Motion: A Computational Model

    PubMed Central

    Zarei Eskikand, Parvin; Kameneva, Tatiana; Ibbotson, Michael R.; Burkitt, Anthony N.; Grayden, David B.

    2016-01-01

    We present a model of the early stages of processing in the visual cortex, in particular V1 and MT, to investigate the potential role of end-stopped V1 neurons in solving the aperture problem. A hierarchical network is used in which the incoming motion signals provided by complex V1 neurons and end-stopped V1 neurons proceed to MT neurons at the next stage. MT neurons are categorized into two types based on their function: integration and segmentation. The role of integration neurons is to propagate unambiguous motion signals arriving from those V1 neurons that emphasize object terminators (e.g. corners). Segmentation neurons detect the discontinuities in the input stimulus to control the activity of integration neurons. Although the activity of the complex V1 neurons at the terminators of the object accurately represents the direction of the motion, their level of activity is less than the activity of the neurons along the edges. Therefore, a model incorporating end-stopped neurons is essential to suppress ambiguous motion signals along the edges of the stimulus. It is shown that the unambiguous motion signals at terminators propagate over the rest of the object to achieve an accurate representation of motion. PMID:27741307

  14. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  15. METHOD AND MEANS FOR RECOGNIZING COMPLEX PATTERNS

    DOEpatents

    Hough, P.V.C.

    1962-12-18

    This patent relates to a method and means for recognizing a complex pattern in a picture. The picture is divided into framelets, each framelet being sized so that any segment of the complex pattern therewithin is essentially a straight line. Each framelet is scanned to produce an electrical pulse for each point scanned on the segment therewithin. Each of the electrical pulses of each segment is then transformed into a separate strnight line to form a plane transform in a pictorial display. Each line in the plane transform of a segment is positioned laterally so that a point on the line midway between the top and the bottom of the pictorial display occurs at a distance from the left edge of the pictorial display equal to the distance of the generating point in the segment from the left edge of the framelet. Each line in the plane transform of a segment is inclined in the pictorial display at an angle to the vertical whose tangent is proportional to the vertical displacement of the generating point in the segment from the center of the framelet. The coordinate position of the point of intersection of the lines in the pictorial display for each segment is determined and recorded. The sum total of said recorded coordinate positions being representative of the complex pattern. (AEC)

  16. Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm

    NASA Astrophysics Data System (ADS)

    Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen

    2011-08-01

    Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.

  17. Localization and recognition of traffic signs for automated vehicle control systems

    NASA Astrophysics Data System (ADS)

    Zadeh, Mahmoud M.; Kasvand, T.; Suen, Ching Y.

    1998-01-01

    We present a computer vision system for detection and recognition of traffic signs. Such systems are required to assist drivers and for guidance and control of autonomous vehicles on roads and city streets. For experiments we use sequences of digitized photographs and off-line analysis. The system contains four stages. First, region segmentation based on color pixel classification called SRSM. SRSM limits the search to regions of interest in the scene. Second, we use edge tracing to find parts of outer edges of signs which are circular or straight, corresponding to the geometrical shapes of traffic signs. The third step is geometrical analysis of the outer edge and preliminary recognition of each candidate region, which may be a potential traffic sign. The final step in recognition uses color combinations within each region and model matching. This system maybe used for recognition of other types of objects, provided that the geometrical shape and color content remain reasonably constant. The method is reliable, easy to implement, and fast, This differs form the road signs recognition method in the PROMETEUS. The overall structure of the approach is sketched.

  18. Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images.

    PubMed

    Nillesen, Maartje M; Lopata, Richard G P; Gerrits, Inge H; Kapusta, Livia; Thijssen, Johan M; de Korte, Chris L

    2008-04-01

    The objective of this study was to investigate the use of speckle statistics as a preprocessing step for segmentation of the myocardium in echocardiographic images. Three-dimensional (3D) and biplane image sequences of the left ventricle of two healthy children and one dog (beagle) were acquired. Pixel-based speckle statistics of manually segmented blood and myocardial regions were investigated by fitting various probability density functions (pdf). The statistics of heart muscle and blood could both be optimally modeled by a K-pdf or Gamma-pdf (Kolmogorov-Smirnov goodness-of-fit test). Scale and shape parameters of both distributions could differentiate between blood and myocardium. Local estimation of these parameters was used to obtain parametric images, where window size was related to speckle size (5 x 2 speckles). Moment-based and maximum-likelihood estimators were used. Scale parameters were still able to differentiate blood from myocardium; however, smoothing of edges of anatomical structures occurred. Estimation of the shape parameter required a larger window size, leading to unacceptable blurring. Using these parameters as an input for segmentation resulted in unreliable segmentation. Adaptive mean squares filtering was then introduced using the moment-based scale parameter (sigma(2)/mu) of the Gamma-pdf to automatically steer the two-dimensional (2D) local filtering process. This method adequately preserved sharpness of the edges. In conclusion, a trade-off between preservation of sharpness of edges and goodness-of-fit when estimating local shape and scale parameters is evident for parametric images. For this reason, adaptive filtering outperforms parametric imaging for the segmentation of echocardiographic images.

  19. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurugol, Sila, E-mail: sila.kurugol@childrens.harvard.edu; Come, Carolyn E.; Diaz, Alejandro A.

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearbymore » edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers.« less

  20. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions.

    PubMed

    Kurugol, Sila; Come, Carolyn E; Diaz, Alejandro A; Ross, James C; Kinney, Greg L; Black-Shinn, Jennifer L; Hokanson, John E; Budoff, Matthew J; Washko, George R; San Jose Estepar, Raul

    2015-09-01

    The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers.

  1. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    PubMed Central

    Kurugol, Sila; Come, Carolyn E.; Diaz, Alejandro A.; Ross, James C.; Kinney, Greg L.; Black-Shinn, Jennifer L.; Hokanson, John E.; Budoff, Matthew J.; Washko, George R.; San Jose Estepar, Raul

    2015-01-01

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular disease and its clinical impact in smokers. PMID:26328995

  2. Active Segmentation.

    PubMed

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.

  3. A Good Image Model Eases Restoration

    DTIC Science & Technology

    2002-02-06

    edges for image understanding and visual communication . Edges are indeed an intrinsic feature for images since they define, segment, and correlate...as possible for the purpose of efficient neuronal data compression and visual communication [Don00]. Such representation is achieved by having the

  4. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  5. Measurement of pelvic osteolytic lesions in follow-up studies after total hip arthroplasty

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose G.; Totterman, Saara; O'Keefe, Regis; Looney, R. John

    2006-03-01

    Previous studies have demonstrated the plausibility of using volumetric computerized tomography to provide an accurate representation and measurement of volume for pelvic osteolytic lesions following total hip joint replacement. These studies have been performed manually (or computed-assisted) by expert radiologists with the disadvantage of poor reproducibility of the experiment. The purpose of this work is to minimize the effect of user interaction in these experiments by introducing Laplacian level set methods in the volume segmentation process and using temporal articulated registration in order to follow the evolution of a lesion over time. Laplacian level set methods reduce the inter and intra-observer variability by attaching the segmented contour to edges defined in the image while keeping smoothness. The registration process allows the information of the lesion from the first visit to be used in the segmentation process of the current visit. This work compares the automated results on 7 volunteers versus the volume measured manually. Results have shown that the proposed technique is able to track osteolytic lesions and detect changes in volume over time. Intra-reader and inter-observer variabilities were reduced.

  6. A Fast Superpixel Segmentation Algorithm for PolSAR Images Based on Edge Refinement and Revised Wishart Distance

    PubMed Central

    Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng

    2016-01-01

    The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385

  7. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.

  8. Vision sensing techniques in aeronautics and astronautics

    NASA Technical Reports Server (NTRS)

    Hall, E. L.

    1988-01-01

    The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.

  9. Fuzzy geometry, entropy, and image information

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.

    1991-01-01

    Presented here are various uncertainty measures arising from grayness ambiguity and spatial ambiguity in an image, and their possible applications as image information measures. Definitions are given of an image in the light of fuzzy set theory, and of information measures and tools relevant for processing/analysis e.g., fuzzy geometrical properties, correlation, bound functions and entropy measures. Also given is a formulation of algorithms along with management of uncertainties for segmentation and object extraction, and edge detection. The output obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of membership function are also described.

  10. Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Gao, Simon S.; Liu, Li; Bailey, Steven T.; Flaxel, Christina J.; Huang, David; Li, Dengwang; Jia, Yali

    2016-07-01

    Quantification of choroidal neovascularization (CNV) as visualized by optical coherence tomography angiography (OCTA) may have importance clinically when diagnosing or tracking disease. Here, we present an automated algorithm to quantify the vessel skeleton of CNV as vessel length. Initial segmentation of the CNV on en face angiograms was achieved using saliency-based detection and thresholding. A level set method was then used to refine vessel edges. Finally, a skeleton algorithm was applied to identify vessel centerlines. The algorithm was tested on nine OCTA scans from participants with CNV and comparisons of the algorithm's output to manual delineation showed good agreement.

  11. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms

    PubMed Central

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831

  12. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.

    PubMed

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.

  13. Effects of discontinuous drooped wing leading-edge modifications on the spinning characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.; Stough, H. P., III; Patton, J. M., Jr.

    1980-01-01

    Wind tunnel and flight tests were conducted to determine the effects of several discontinuous drooped wing leading-edge configurations on the spinning characteristics of a light, single-engine, low-wing research airplane. Particular emphasis was placed on the identification of modifications which would improve the spinning characteristics. The spanwise length of a discontinuous outboard droop was varied and several additional inboard segments were added to determine the influence of such leading-edge configurations on the spin behavior. Results of the study indicated that the use of only the discontinuous outboard droop, over a specific spanwise area, was most effective towards improving spin and spin recovery characteristics, whereas the segmented configurations having both inboard and outboard droop exhibited a tendency to enter a flat spin.

  14. Design of a Borescope for Extravehicular Non-Destructive Applications

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic

    2003-01-01

    Anomalies such as corrosion, structural damage, misalignment, cracking, stress fiactures, pitting, or wear can be detected and monitored by the aid of a borescope. A borescope requires a source of light for proper operation. Today s current lighting technology market consists of incandescent lamps, fluorescent lamps and other types of electric arc and electric discharge vapor lamp. Recent advances in LED technology have made LEDs viable for a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. LEDs promise significant reduction in power consumption compared to other sources of light. This project focused on comparing images taken by the Olympus IPLEX, using two different light sources. One of the sources is the 50-W internal metal halide lamp and the other is a 1 W LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation [l]. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. Analysis using pattern recognition using Eigenfaces and Gaussian Pyramid in face recognition may be more useful.

  15. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  16. Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method

    NASA Astrophysics Data System (ADS)

    Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin

    2017-12-01

    Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.

  17. Segmentation of prostate biopsy needles in transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Krefting, Dagmar; Haupt, Barbara; Tolxdorff, Thomas; Kempkensteffen, Carsten; Miller, Kurt

    2007-03-01

    Prostate cancer is the most common cancer in men. Tissue extraction at different locations (biopsy) is the gold-standard for diagnosis of prostate cancer. These biopsies are commonly guided by transrectal ultrasound imaging (TRUS). Exact location of the extracted tissue within the gland is desired for more specific diagnosis and provides better therapy planning. While the orientation and the position of the needle within clinical TRUS image are limited, the appearing length and visibility of the needle varies strongly. Marker lines are present and tissue inhomogeneities and deflection artefacts may appear. Simple intensity, gradient oder edge-detecting based segmentation methods fail. Therefore a multivariate statistical classificator is implemented. The independent feature model is built by supervised learning using a set of manually segmented needles. The feature space is spanned by common binary object features as size and eccentricity as well as imaging-system dependent features like distance and orientation relative to the marker line. The object extraction is done by multi-step binarization of the region of interest. The ROI is automatically determined at the beginning of the segmentation and marker lines are removed from the images. The segmentation itself is realized by scale-invariant classification using maximum likelihood estimation and Mahalanobis distance as discriminator. The technique presented here could be successfully applied in 94% of 1835 TRUS images from 30 tissue extractions. It provides a robust method for biopsy needle localization in clinical prostate biopsy TRUS images.

  18. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    PubMed

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  19. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    PubMed Central

    Yang, Wei

    2018-01-01

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality. PMID:29671792

  20. Segmentation of radiographic images under topological constraints: application to the femur.

    PubMed

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  1. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    PubMed

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.

  2. Computer aided detection system for lung cancer using computer tomography scans

    NASA Astrophysics Data System (ADS)

    Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.

    2018-04-01

    Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.

  3. Curved cap corrugated sheet

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)

    1984-01-01

    The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.

  4. Edge detection and localization with edge pattern analysis and inflection characterization

    NASA Astrophysics Data System (ADS)

    Jiang, Bo

    2012-05-01

    In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge detection method improvements are effective in enhancing the accuracy of edge detection and localization.

  5. Intelligent model-based OPC

    NASA Astrophysics Data System (ADS)

    Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Chih, M. H.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.

    2006-03-01

    Optical proximity correction is the technique of pre-distorting mask layouts so that the printed patterns are as close to the desired shapes as possible. For model-based optical proximity correction, a lithographic model to predict the edge position (contour) of patterns on the wafer after lithographic processing is needed. Generally, segmentation of edges is performed prior to the correction. Pattern edges are dissected into several small segments with corresponding target points. During the correction, the edges are moved back and forth from the initial drawn position, assisted by the lithographic model, to finally settle on the proper positions. When the correction converges, the intensity predicted by the model in every target points hits the model-specific threshold value. Several iterations are required to achieve the convergence and the computation time increases with the increase of the required iterations. An artificial neural network is an information-processing paradigm inspired by biological nervous systems, such as how the brain processes information. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. A neural network can be a powerful data-modeling tool that is able to capture and represent complex input/output relationships. The network can accurately predict the behavior of a system via the learning procedure. A radial basis function network, a variant of artificial neural network, is an efficient function approximator. In this paper, a radial basis function network was used to build a mapping from the segment characteristics to the edge shift from the drawn position. This network can provide a good initial guess for each segment that OPC has carried out. The good initial guess reduces the required iterations. Consequently, cycle time can be shortened effectively. The optimization of the radial basis function network for this system was practiced by genetic algorithm, which is an artificially intelligent optimization method with a high probability to obtain global optimization. From preliminary results, the required iterations were reduced from 5 to 2 for a simple dumbbell-shape layout.

  6. Retina vascular network recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-09-01

    The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.

  7. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm(3) crystals.

    PubMed

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  8. Line grouping using perceptual saliency and structure prediction for car detection in traffic scenes

    NASA Astrophysics Data System (ADS)

    Denasi, Sandra; Quaglia, Giorgio

    1993-08-01

    Autonomous and guide assisted vehicles make a heavy use of computer vision techniques to perceive the environment where they move. In this context, the European PROMETHEUS program is carrying on activities in order to develop autonomous vehicle monitoring that assists people to achieve safer driving. Car detection is one of the topics that are faced by the program. Our contribution proposes the development of this task in two stages: the localization of areas of interest and the formulation of object hypotheses. In particular, the present paper proposes a new approach that builds structural descriptions of objects from edge segmentations by using geometrical organization. This approach has been applied to the detection of cars in traffic scenes. We have analyzed images taken from a moving vehicle in order to formulate obstacle hypotheses: preliminary results confirm the efficiency of the method.

  9. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.

  10. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond

    PubMed Central

    Arjmandi-Tash, Hadi; Belyaeva, Liubov A.

    2016-01-01

    Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may – one day – sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds – and because 2D materials are atomically thin – the information provided by the edge might be used to identify different segments – ideally single nucleotides – in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential. PMID:26612268

  11. Biological object recognition in μ-radiography images

    NASA Astrophysics Data System (ADS)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  12. Optimization of optical proximity correction to reduce mask write time using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Dick, Gregory J.; Cao, Liang; Asthana, Abhishek; Cheng, Jing; Power, David N.

    2018-03-01

    The ever increasing pattern densities and design complexities make the tuning of optical proximity correction (OPC) recipes very challenging. One known method for tuning is genetic algorithm (GA). Previously GA has been demonstrated to fine tune OPC recipes in order to achieve better results for possible 1D and 2D geometric concerns like bridging and pinching. This method, however, did not take into account the impact of excess segmentation on downstream operations like fracturing and mask writing. This paper introduces a general methodology to significantly reduce the number of excess edges in the OPC output, thus reducing the number of flashes generated at fracture and subsequently the write time at mask build. GA is used to reduce the degree of unwarranted segmentation while ensuring good OPC quality. An Objective Function (OF) is utilized to ensure quality convergence and process-variation (PV) plus an additional weighed factor to reduce clustered edge count. The technique is applied to 14nm metal layer OPC recipes in order to identify excess segmentation and to produce a modified recipe that significantly reduces these segments. OPC output file sizes is shown to be reduced by 15% or more and overall edge count is shown to be reduced by 10% or more. At the same time overall quality of the OPC recipe is shown to be maintained via OPC Verification (OPCV) results.

  13. Study on field weed recognition in real time

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-02-01

    This research aimed to identify weeds from crops in early stage in the field by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ir red), which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. In this research, MS3100 3CCD camera is used to get images of 6 kinds of weeds and crops. Part of these images contained more than 2 kinds of plants. The leaves' shapes, sizes and colors may be very similar or differs from each other greatly. Some are sword-shaped and some (are) round. Some are large as palm and some small as peanut. Some are little brown while other is blue or green. Different combinations are taken into consideration. By the application of image-processing toolkit in MATLAB, the different areas in the image can be segmented clearly. The texture of the images was also analyzed. The processing methods include operations, such as edge detection, erosion, dilation and other algorithms to process the edge vectors and textures. It is of great importance to segment, in real time, the different areas in digital images in field. When the technique is applied in precision farming, many energies and herbicides and many other materials can be saved. At present time large scale softwares as MATLAB on PC are also used, but the computation can be reduced and integrated into a small embedded system. The research results have shown that the application of this technique in agricultural engineering is feasible and of great economical value.

  14. Consistency of Border-Ownership Cells across Artificial Stimuli, Natural Stimuli, and Stimuli with Ambiguous Contours.

    PubMed

    Hesse, Janis K; Tsao, Doris Y

    2016-11-02

    Segmentation and recognition of objects in a visual scene are two problems that are hard to solve separately from each other. When segmenting an ambiguous scene, it is helpful to already know the present objects and their shapes. However, for recognizing an object in clutter, one would like to consider its isolated segment alone to avoid confounds from features of other objects. Border-ownership cells (Zhou et al., 2000) appear to play an important role in segmentation, as they signal the side-of-figure of artificial stimuli. The present work explores the role of border-ownership cells in dorsal macaque visual areas V2 and V3 in the segmentation of natural object stimuli and locally ambiguous stimuli. We report two major results. First, compared with previous estimates, we found a smaller percentage of cells that were consistent across artificial stimuli used previously. Second, we found that the average response of those neurons that did respond consistently to the side-of-figure of artificial stimuli also consistently signaled, as a population, the side-of-figure for borders of single faces, occluding faces and, with higher latencies, even stimuli with illusory contours, such as Mooney faces and natural faces completely missing local edge information. In contrast, the local edge or the outlines of the face alone could not always evoke a significant border-ownership signal. Our results underscore that border ownership is coded by a population of cells, and indicate that these cells integrate a variety of cues, including low-level features and global object context, to compute the segmentation of the scene. To distinguish different objects in a natural scene, the brain must segment the image into regions corresponding to objects. The so-called "border-ownership" cells appear to be dedicated to this task, as they signal for a given edge on which side the object is that owns it. Here, we report that individual border-ownership cells are unreliable when tested across a battery of artificial stimuli used previously but can signal border-ownership consistently as a population. We show that these border-ownership population signals are also suited for signaling border-ownership for natural objects and at longer latency, even for stimuli without local edge information. Our results suggest that border-ownership cells integrate both local, low-level and global, high-level cues to segment the scene. Copyright © 2016 the authors 0270-6474/16/3611338-12$15.00/0.

  15. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    NASA Astrophysics Data System (ADS)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  16. Computer aided solution for segmenting the neuron line in hippocampal microscope images

    NASA Astrophysics Data System (ADS)

    Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham

    2017-05-01

    The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.

  17. Left ventricular endocardial surface detection based on real-time 3D echocardiographic data

    NASA Technical Reports Server (NTRS)

    Corsi, C.; Borsari, M.; Consegnati, F.; Sarti, A.; Lamberti, C.; Travaglini, A.; Shiota, T.; Thomas, J. D.

    2001-01-01

    OBJECTIVE: A new computerized semi-automatic method for left ventricular (LV) chamber segmentation is presented. METHODS: The LV is imaged by real-time three-dimensional echocardiography (RT3DE). The surface detection model, based on level set techniques, is applied to RT3DE data for image analysis. The modified level set partial differential equation we use is solved by applying numerical methods for conservation laws. The initial conditions are manually established on some slices of the entire volume. The solution obtained for each slice is a contour line corresponding with the boundary between LV cavity and LV endocardium. RESULTS: The mathematical model has been applied to sequences of frames of human hearts (volume range: 34-109 ml) imaged by 2D and reconstructed off-line and RT3DE data. Volume estimation obtained by this new semi-automatic method shows an excellent correlation with those obtained by manual tracing (r = 0.992). Dynamic change of LV volume during the cardiac cycle is also obtained. CONCLUSION: The volume estimation method is accurate; edge based segmentation, image completion and volume reconstruction can be accomplished. The visualization technique also allows to navigate into the reconstructed volume and to display any section of the volume.

  18. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y; Olsen, J.; Parikh, P.

    2014-06-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE),more » along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information, different filtering methods and their influences on the segmentation results. Parag Parikh receives research grant from ViewRay. Sasa Mutic has consulting and research agreements with ViewRay. Yanle Hu receives travel reimbursement from ViewRay. Iwan Kawrakow and James Dempsey are ViewRay employees.« less

  19. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  20. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Objective of this work is to define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. (1) Large-Aperture, Low Areal Density, High Stiffness Mirrors: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates. (2) Support System:Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error:A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging. (4) Segment Edges:Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture. (5) Segment-to-Segment Gap Phasing:Segment phasing is critical for producing a high-quality temporally stable PSF. (6) Integrated Model Validation:On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models. We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.

  1. Power spectrum weighted edge analysis for straight edge detection in images

    NASA Astrophysics Data System (ADS)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  2. Plane representations of graphs and visibility between parallel segments

    NASA Astrophysics Data System (ADS)

    Tamassia, R.; Tollis, I. G.

    1985-04-01

    Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. This paper studies visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be a planar. The authors consider three types of visibility representations, and give complete characterizations of the classes of graphs that admit them. Furthermore, they present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.

  3. Prostate contouring in MRI guided biopsy.

    PubMed

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2009-03-27

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice.

  4. Prostate contouring in MRI guided biopsy

    PubMed Central

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2010-01-01

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083

  5. TU-CD-BRA-12: Coupling PET Image Restoration and Segmentation Using Variational Method with Multiple Regularizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L; Tan, S; Lu, W

    Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was usedmore » on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant No.61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less

  6. Practical Study for the Properties of Hueckel Edge Detection Operator

    NASA Astrophysics Data System (ADS)

    Jabbar, Hameed M. Abdul; Hatem, Amal J.; Ameer, Inbethaq M. A. Abdul

    2018-05-01

    The first practical study for the Hueckel edge detection operator was presented in this research, where it is tested on standard step edge set images. A number of criteria were adopted to evaluate its practical performance, which is the accuracy in detecting the edges direction, the error in the edges location (dislocation), edges width, the calculated edge goodness criterion and the consumed execution time. These criteria were studied with the edge direction and the used disk radius of the Hueckel edge detection operator. Important notes were recorded for the performance of this operator depending on the direction of the edge and/or with the radius of the used disk. There is a variation in the performance of the operator in terms of precision in detecting of the edges direction and position. A discussion was presented for the all criteria adopted in the research.

  7. Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.

    PubMed

    Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco

    2018-04-01

    In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully automatic vessel wall quantification was developed and validated on healthy volunteers as well as patients with increased vessel wall thickness. This method holds promise for helping in efficient image interpretation for large-scale cohort studies. 4 J. Magn. Reson. Imaging 2017;45:215-228. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Fast localization of optic disc and fovea in retinal images for eye disease screening

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.

    2011-03-01

    Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.

  10. Research on improved edge extraction algorithm of rectangular piece

    NASA Astrophysics Data System (ADS)

    He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu

    Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.

  11. Analysis of x-ray hand images for bone age assessment

    NASA Astrophysics Data System (ADS)

    Serrat, Joan; Vitria, Jordi M.; Villanueva, Juan J.

    1990-09-01

    In this paper we describe a model-based system for the assessment of skeletal maturity on hand radiographs by the TW2 method. The problem consists in classiflying a set of bones appearing in an image in one of several stages described in an atlas. A first approach consisting in pre-processing segmentation and classification independent phases is also presented. However it is only well suited for well contrasted low noise images without superimposed bones were the edge detection by zero crossing of second directional derivatives is able to extract all bone contours maybe with little gaps and few false edges on the background. Hence the use of all available knowledge about the problem domain is needed to build a rather general system. We have designed a rule-based system for narrow down the rank of possible stages for each bone and guide the analysis process. It calls procedures written in conventional languages for matching stage models against the image and getting features needed in the classification process.

  12. Quantification of Peripapillary Sparing and Macular Involvement in Stargardt Disease (STGD1)

    PubMed Central

    Rhee, David W.; Smith, R. Theodore; Tsang, Stephen H.; Allikmets, Rando; Chang, Stanley; Lazow, Margot A.; Hood, Donald C.; Greenstein, Vivienne C.

    2011-01-01

    Purpose. To quantify and compare structure and function across the macula and peripapillary area in Stargardt disease (STGD1). Methods. Twenty-seven patients (27 eyes) and 12 age-similar controls (12 eyes) were studied. Patients were classified on the basis of full-field electroretinogram (ERG) results. Fundus autofluorescence (FAF) and spectral domain-optical coherence tomography (SD-OCT) horizontal line scans were obtained through the fovea and peripapillary area. The thicknesses of the outer nuclear layer plus outer plexiform layer (ONL+), outer segment (OS), and retinal pigment epithelium (RPE) were measured through the fovea, and peripapillary areas from 1° to 4° temporal to the optic disc edge using a computer-aided, manual segmentation technique. Visual sensitivities in the central 10° were assessed using microperimetry and related to retinal layer thicknesses. Results. Compared to the central macula, the differences between controls and patients in ONL+, OS, and RPE layer thicknesses were less in the nasal and temporal macula. Relative sparing of the ONL+ and/or OS layers was detected in the nasal (i.e., peripapillary) macula in 8 of 13 patients with extramacular disease on FAF; relative functional sparing was also detected in this subgroup. All 14 patients with disease confined to the central macula, as detected on FAF, showed ONL+ and OS layer thinning in regions of normal RPE thickness. Conclusions. Relative peripapillary sparing was detected in STGD1 patients with extramacular disease on FAF. Photoreceptor thinning may precede RPE degeneration in STGD1. PMID:21873672

  13. Edge detection based on computational ghost imaging with structured illuminations

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  14. Drum tie-down apparatus

    DOEpatents

    Morse, H.E.

    A drum tie-down apparatus for securing drum-like containers in an upright position to a floor or platform of a transportation vehicle having spaced apart cargo tie-down points. The apparatus comprises a pair of cylindrical, hollow tube segments horizontally oriented and engageable with a drum lid adjacent opposite rim edges, flexible strap segments for connecting upper and lower central portions of the tube segments together across the drum lid and a pair of elongated flexible tie-down segments, one extending horizontally through each of the tube segments, the ends thereof being attached to said spaced apart tie-down points such that end portions of the pair of tie-down segments extend downwardly and radially outwardly from the tube segments to the tie-down points.

  15. Drum tie-down apparatus

    DOEpatents

    Morse, Harvey E.

    1984-01-01

    A drum tie-down apparatus for securing drum-like containers in an upright position to a floor or platform of a transportation vehicle having spaced apart cargo tie-down points. The apparatus comprises a pair of cylindrical, hollow tube segments horizontally oriented and engageable with a drum lid adjacent opposite rim edges, flexible strap segments for connecting upper and lower central portions of the tube segments together across the drum lid and a pair of elongated flexible tie-down segments, one extending horizontally through each of the tube segments, the ends thereof being attached to said spaced apart tie-down points such that end portions of the pair of tie-down segments extend downwardly and radially outwardly from the tube segments to the tie-down points.

  16. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    PubMed

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

  17. An effective hair detection algorithm for dermoscopic melanoma images of skin lesions

    NASA Astrophysics Data System (ADS)

    Chakraborti, Damayanti; Kaur, Ravneet; Umbaugh, Scott; LeAnder, Robert

    2016-09-01

    Dermoscopic images are obtained using the method of skin surface microscopy. Pigmented skin lesions are evaluated in terms of texture features such as color and structure. Artifacts, such as hairs, bubbles, black frames, ruler-marks, etc., create obstacles that prevent accurate detection of skin lesions by both clinicians and computer-aided diagnosis. In this article, we propose a new algorithm for the automated detection of hairs, using an adaptive, Canny edge-detection method, followed by morphological filtering and an arithmetic addition operation. The algorithm was applied to 50 dermoscopic melanoma images. In order to ascertain this method's relative detection accuracy, it was compared to the Razmjooy hair-detection method [1], using segmentation error (SE), true detection rate (TDR) and false positioning rate (FPR). The new method produced 6.57% SE, 96.28% TDR and 3.47% FPR, compared to 15.751% SE, 86.29% TDR and 11.74% FPR produced by the Razmjooy method [1]. Because of the 7.27-9.99% improvement in those parameters, we conclude that the new algorithm produces much better results for detecting thick, thin, dark and light hairs. The new method proposed here, shows an appreciable difference in the rate of detecting bubbles, as well.

  18. Anthropometric Relationships of Body and Body Segment Moments of Inertia

    DTIC Science & Technology

    1980-12-01

    platform balanced on a knife edge ( Borelli , 1679). While weight, volume, center of mass and moments of inertia of the whole body can be measured in a...Segments, Paper No. 720964, SAE Transactions, Vol. 81, Sect. 4, pp. 2818-2833. Borelli , J. A., 1679, De Motu Animalium. Lugduni Batavorum. Braune, W

  19. How Transitional Probabilities and the Edge Effect Contribute to Listeners' Phonological Bootstrapping Success

    ERIC Educational Resources Information Center

    Sohail, Juwairia; Johnson, Elizabeth K.

    2016-01-01

    Much of what we know about the development of listeners' word segmentation strategies originates from the artificial language-learning literature. However, many artificial speech streams designed to study word segmentation lack a salient cue found in all natural languages: utterance boundaries. In this study, participants listened to a…

  20. Blade platform seal for ceramic/metal rotor assembly

    DOEpatents

    Wertz, John L.

    1982-01-01

    A combination ceramic and metal turbine rotor for use in high temperature gas turbine engines includes a metal rotor disc having a rim with a plurality of circumferentially spaced blade root retention slots therein to receive a plurality of ceramic blades, each including side platform segments thereon and a dovetail configured root slidably received in one of the slots. Adjacent ones of the platform segments including edge portions thereon closely spaced when the blades are assembled to form expansion gaps in an annular flow surface for gas passage through the blades and wherein the assembly further includes a plurality of unitary seal members on the rotor connected to its rim and each including a plurality of spaced, axially extending, flexible fingers that underlie and conform to the edge portions of the platform segments and which are operative at turbine operating temperatures and speeds to distribute loading on the platform segments as the fingers are seated against the underside of the blade platforms to seal the gaps without undesirably stressing thin web ceramic sections of the platform.

  1. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  2. A vision-based approach for tramway rail extraction

    NASA Astrophysics Data System (ADS)

    Zwemer, Matthijs H.; van de Wouw, Dennis W. J. M.; Jaspers, Egbert; Zinger, Sveta; de With, Peter H. N.

    2015-03-01

    The growing traffic density in cities fuels the desire for collision assessment systems on public transportation. For this application, video analysis is broadly accepted as a cornerstone. For trams, the localization of tramway tracks is an essential ingredient of such a system, in order to estimate a safety margin for crossing traffic participants. Tramway-track detection is a challenging task due to the urban environment with clutter, sharp curves and occlusions of the track. In this paper, we present a novel and generic system to detect the tramway track in advance of the tram position. The system incorporates an inverse perspective mapping and a-priori geometry knowledge of the rails to find possible track segments. The contribution of this paper involves the creation of a new track reconstruction algorithm which is based on graph theory. To this end, we define track segments as vertices in a graph, in which edges represent feasible connections. This graph is then converted to a max-cost arborescence graph, and the best path is selected according to its location and additional temporal information based on a maximum a-posteriori estimate. The proposed system clearly outperforms a railway-track detector. Furthermore, the system performance is validated on 3,600 manually annotated frames. The obtained results are promising, where straight tracks are found in more than 90% of the images and complete curves are still detected in 35% of the cases.

  3. Retinal vessel enhancement based on the Gaussian function and image fusion

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Obreja, Cristian Dragoş

    2017-01-01

    The Gaussian function is essential in the construction of the Frangi and COSFIRE (combination of shifted filter responses) filters. The connection of the broken vessels and an accurate extraction of the vascular structure is the main goal of this study. Thus, the outcome of the Frangi and COSFIRE edge detection algorithms are fused using the Dempster-Shafer algorithm with the aim to improve detection and to enhance the retinal vascular structure. For objective results, the average diameters of the retinal vessels provided by Frangi, COSFIRE and Dempster-Shafer fusion algorithms are measured. These experimental values are compared to the ground truth values provided by manually segmented retinal images. We prove the superiority of the fusion algorithm in terms of image quality by using the figure of merit objective metric that correlates the effects of all post-processing techniques.

  4. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this identification. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of pan sharpened multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries that is important for extraction of troughs. We then categorize the segmented regions via shape based classification. Because segmentation accuracy is the main factor impacting the quality of the shape-based classification, for segmentation accuracy assessment we created reference image using WorldView-2 satellite image of ice-wedge polygonal tundra. Reference image contained manually labelled image regions which cover components of drainage networks, such as troughs, ponds, rivers and lakes. The evaluation has shown that the approach provides a good accuracy of segmentation and reasonable classification results. The overall accuracy of the segmentation is approximately 95%, the segmentation user's and producer's accuracies are approximately 92% and 97% respectively.

  5. Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface

    NASA Astrophysics Data System (ADS)

    Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin

    2018-05-01

    In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.

  6. Cutting assembly including expanding wall segments of auger

    DOEpatents

    Treuhaft, Martin B.; Oser, Michael S.

    1983-01-01

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  7. Contact-free determination of human body segment parameters by means of videometric image processing of an anthropomorphic body model

    NASA Astrophysics Data System (ADS)

    Hatze, Herbert; Baca, Arnold

    1993-01-01

    The development of noninvasive techniques for the determination of biomechanical body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers, etc.) receives increasing attention from the medical sciences (e,.g., orthopaedic gait analysis), bioengineering, sport biomechanics, and the various space programs. In the present paper, a novel method is presented for determining body segment parameters rapidly and accurately. It is based on the video-image processing of four different body configurations and a finite mass-element human body model. The four video images of the subject in question are recorded against a black background, thus permitting the application of shape recognition procedures incorporating edge detection and calibration algorithms. In this way, a total of 181 object space dimensions of the subject's body segments can be reconstructed and used as anthropometric input data for the mathematical finite mass- element body model. The latter comprises 17 segments (abdomino-thoracic, head-neck, shoulders, upper arms, forearms, hands, abdomino-pelvic, thighs, lower legs, feet) and enables the user to compute all the required segment parameters for each of the 17 segments by means of the associated computer program. The hardware requirements are an IBM- compatible PC (1 MB memory) operating under MS-DOS or PC-DOS (Version 3.1 onwards) and incorporating a VGA-board with a feature connector for connecting it to a super video windows framegrabber board for which there must be available a 16-bit large slot. In addition, a VGA-monitor (50 - 70 Hz, horizontal scan rate at least 31.5 kHz), a common video camera and recorder, and a simple rectangular calibration frame are required. The advantage of the new method lies in its ease of application, its comparatively high accuracy, and in the rapid availability of the body segment parameters, which is particularly useful in clinical practice. An example of its practical application illustrates the technique.

  8. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  9. Image analysis by integration of disparate information

    NASA Technical Reports Server (NTRS)

    Lemoigne, Jacqueline

    1993-01-01

    Image analysis often starts with some preliminary segmentation which provides a representation of the scene needed for further interpretation. Segmentation can be performed in several ways, which are categorized as pixel based, edge-based, and region-based. Each of these approaches are affected differently by various factors, and the final result may be improved by integrating several or all of these methods, thus taking advantage of their complementary nature. In this paper, we propose an approach that integrates pixel-based and edge-based results by utilizing an iterative relaxation technique. This approach has been implemented on a massively parallel computer and tested on some remotely sensed imagery from the Landsat-Thematic Mapper (TM) sensor.

  10. Optimal Shape of a Gamma-ray Collimator: single vs double knife edge

    NASA Astrophysics Data System (ADS)

    Metz, Albert; Hogenbirk, Alfred

    2017-09-01

    Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.

  11. Optimal frequency domain textural edge detection filter

    NASA Technical Reports Server (NTRS)

    Townsend, J. K.; Shanmugan, K. S.; Frost, V. S.

    1985-01-01

    An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the given model and filter bandwidth, the filter maximizes the amount of output image energy placed within a specified resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edge detection via the complex low-pass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of the prolate spheroidal wave functions translated in frequency. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and nonideal textures. In addition, the filter can be adjusted to detect textural edges in noisy images at the expense of edge resolution.

  12. A threshold-based fixed predictor for JPEG-LS image compression

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.

  13. Intra-retinal segmentation of optical coherence tomography images using active contours with a dynamic programming initialization and an adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Gholami, Peyman; Roy, Priyanka; Kuppuswamy Parthasarathy, Mohana; Ommani, Abbas; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Retinal layer shape and thickness are one of the main indicators in the diagnosis of ocular diseases. We present an active contour approach to localize intra-retinal boundaries of eight retinal layers from OCT images. The initial locations of the active contour curves are determined using a Viterbi dynamic programming method. The main energy function is a Chan-Vese active contour model without edges. A boundary term is added to the energy function using an adaptive weighting method to help curves converge to the retinal layer edges more precisely, after evolving of curves towards boundaries, in final iterations. A wavelet-based denoising method is used to remove speckle from OCT images while preserving important details and edges. The performance of the proposed method was tested on a set of healthy and diseased eye SD-OCT images. The experimental results, compared between the proposed method and the manual segmentation, which was determined by an optometrist, indicate that our method has obtained an average of 95.29%, 92.78%, 95.86%, 87.93%, 82.67%, and 90.25% respectively, for accuracy, sensitivity, specificity, precision, Jaccard Index, and Dice Similarity Coefficient over all segmented layers. These results justify the robustness of the proposed method in determining the location of different retinal layers.

  14. Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs

    NASA Astrophysics Data System (ADS)

    De Vylder, Jonas; Philips, Wilfried

    2011-02-01

    This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.

  15. A translational registration system for LANDSAT image segments

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Erthal, G. J.; Velasco, F. R. D.; Mascarenhas, N. D. D.

    1983-01-01

    The use of satellite images obtained from various dates is essential for crop forecast systems. In order to make possible a multitemporal analysis, it is necessary that images belonging to each acquisition have pixel-wise correspondence. A system developed to obtain, register and record image segments from LANDSAT images in computer compatible tapes is described. The translational registration of the segments is performed by correlating image edges in different acquisitions. The system was constructed for the Burroughs B6800 computer in ALGOL language.

  16. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    PubMed

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  17. Efficient method of image edge detection based on FSVM

    NASA Astrophysics Data System (ADS)

    Cai, Aiping; Xiong, Xiaomei

    2013-07-01

    For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.

  18. Iris recognition using image moments and k-means algorithm.

    PubMed

    Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed

    2014-01-01

    This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.

  19. Iris Recognition Using Image Moments and k-Means Algorithm

    PubMed Central

    Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed

    2014-01-01

    This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%. PMID:24977221

  20. Lake Chapala change detection using time series

    NASA Astrophysics Data System (ADS)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  1. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.

  2. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.

    PubMed

    Fabijańska, Anna

    2018-04-18

    Diagnostic information regarding the health status of the corneal endothelium may be obtained by analyzing the size and the shape of the endothelial cells in specular microscopy images. Prior to the analysis, the endothelial cells need to be extracted from the image. Up to today, this has been performed manually or semi-automatically. Several approaches to automatic segmentation of endothelial cells exist; however, none of them is perfect. Therefore this paper proposes to perform cell segmentation using a U-Net-based convolutional neural network. Particularly, the network is trained to discriminate pixels located at the borders between cells. The edge probability map outputted by the network is next binarized and skeletonized in order to obtain one-pixel wide edges. The proposed solution was tested on a dataset consisting of 30 corneal endothelial images presenting cells of different sizes, achieving an AUROC level of 0.92. The resulting DICE is on average equal to 0.86, which is a good result, regarding the thickness of the compared edges. The corresponding mean absolute percentage error of cell number is at the level of 4.5% which confirms the high accuracy of the proposed approach. The resulting cell edges are well aligned to the ground truths and require a limited number of manual corrections. This also results in accurate values of the cell morphometric parameters. The corresponding errors range from 5.2% for endothelial cell density, through 6.2% for cell hexagonality to 11.93% for the coefficient of variation of the cell size. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Text extraction via an edge-bounded averaging and a parametric character model

    NASA Astrophysics Data System (ADS)

    Fan, Jian

    2003-01-01

    We present a deterministic text extraction algorithm that relies on three basic assumptions: color/luminance uniformity of the interior region, closed boundaries of sharp edges and the consistency of local contrast. The algorithm is basically independent of the character alphabet, text layout, font size and orientation. The heart of this algorithm is an edge-bounded averaging for the classification of smooth regions that enhances robustness against noise without sacrificing boundary accuracy. We have also developed a verification process to clean up the residue of incoherent segmentation. Our framework provides a symmetric treatment for both regular and inverse text. We have proposed three heuristics for identifying the type of text from a cluster consisting of two types of pixel aggregates. Finally, we have demonstrated the advantages of the proposed algorithm over adaptive thresholding and block-based clustering methods in terms of boundary accuracy, segmentation coherency, and capability to identify inverse text and separate characters from background patches.

  4. Computerized tongue image segmentation via the double geo-vector flow

    PubMed Central

    2014-01-01

    Background Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Methods Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. Results The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. Conclusions By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation. PMID:24507094

  5. Computerized tongue image segmentation via the double geo-vector flow.

    PubMed

    Shi, Miao-Jing; Li, Guo-Zheng; Li, Fu-Feng; Xu, Chao

    2014-02-08

    Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation.

  6. Overview and Summary of Advanced UVOIR Mirror Technology Development (AMTD) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: center dotLarge-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented telescopes require larger and stiffer mirrors. center dotSupport System: Large-aperture mirrors require large support systems to ensure that they survive launch, deploy on orbit, and maintain a stable, undistorted shape. center dotMid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. center dotSegment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. center dotSegment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. center dotIntegrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. Because we cannot predict the future, AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements

  7. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles; hide

    2013-01-01

    ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is the start of a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: (1) Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented primary mirrors require larger, thicker, and stiffer substrates. (2) Support System: Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. (4) Segment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. (5) Segment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. (6) Integrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  8. Analysis of TMT primary mirror control-structure interaction

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Thompson, Peter M.; Sirota, Mark J.

    2008-07-01

    The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.

  9. Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain

    PubMed Central

    Gross, Joachim; Hoogenboom, Nienke; Thut, Gregor; Schyns, Philippe; Panzeri, Stefano; Belin, Pascal; Garrod, Simon

    2013-01-01

    Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex) attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations. PMID:24391472

  10. Salient object detection: manifold-based similarity adaptation approach

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Ren, Yongfeng; Yan, Yunyang; Gao, Shangbing

    2014-11-01

    A saliency detection algorithm based on manifold-based similarity adaptation is proposed. The proposed algorithm is divided into three steps. First, we segment an input image into superpixels, which are represented as the nodes in a graph. Second, a new similarity measurement is used in the proposed algorithm. The weight matrix of the graph, which indicates the similarities between the nodes, uses a similarity-based method. It also captures the manifold structure of the image patches, in which the graph edges are determined in a data adaptive manner in terms of both similarity and manifold structure. Then, we use local reconstruction method as a diffusion method to obtain the saliency maps. The objective function in the proposed method is based on local reconstruction, with which estimated weights capture the manifold structure. Experiments on four bench-mark databases demonstrate the accuracy and robustness of the proposed method.

  11. Automatic draft reading based on image processing

    NASA Astrophysics Data System (ADS)

    Tsujii, Takahiro; Yoshida, Hiromi; Iiguni, Youji

    2016-10-01

    In marine transportation, a draft survey is a means to determine the quantity of bulk cargo. Automatic draft reading based on computer image processing has been proposed. However, the conventional draft mark segmentation may fail when the video sequence has many other regions than draft marks and a hull, and the estimated waterline is inherently higher than the true one. To solve these problems, we propose an automatic draft reading method that uses morphological operations to detect draft marks and estimate the waterline for every frame with Canny edge detection and a robust estimation. Moreover, we emulate surveyors' draft reading process for getting the understanding of a shipper and a receiver. In an experiment in a towing tank, the draft reading error of the proposed method was <1 cm, showing the advantage of the proposed method. It is also shown that accurate draft reading has been achieved in a real-world scene.

  12. Robust estimation of mammographic breast density: a patient-based approach

    NASA Astrophysics Data System (ADS)

    Heese, Harald S.; Erhard, Klaus; Gooßen, Andre; Bulow, Thomas

    2012-02-01

    Breast density has become an established risk indicator for developing breast cancer. Current clinical practice reflects this by grading mammograms patient-wise as entirely fat, scattered fibroglandular, heterogeneously dense, or extremely dense based on visual perception. Existing (semi-) automated methods work on a per-image basis and mimic clinical practice by calculating an area fraction of fibroglandular tissue (mammographic percent density). We suggest a method that follows clinical practice more strictly by segmenting the fibroglandular tissue portion directly from the joint data of all four available mammographic views (cranio-caudal and medio-lateral oblique, left and right), and by subsequently calculating a consistently patient-based mammographic percent density estimate. In particular, each mammographic view is first processed separately to determine a region of interest (ROI) for segmentation into fibroglandular and adipose tissue. ROI determination includes breast outline detection via edge-based methods, peripheral tissue suppression via geometric breast height modeling, and - for medio-lateral oblique views only - pectoral muscle outline detection based on optimizing a three-parameter analytic curve with respect to local appearance. Intensity harmonization based on separately acquired calibration data is performed with respect to compression height and tube voltage to facilitate joint segmentation of available mammographic views. A Gaussian mixture model (GMM) on the joint histogram data with a posteriori calibration guided plausibility correction is finally employed for tissue separation. The proposed method was tested on patient data from 82 subjects. Results show excellent correlation (r = 0.86) to radiologist's grading with deviations ranging between -28%, (q = 0.025) and +16%, (q = 0.975).

  13. A feature-preserving hair removal algorithm for dermoscopy images.

    PubMed

    Abbas, Qaisar; Garcia, Irene Fondón; Emre Celebi, M; Ahmad, Waqar

    2013-02-01

    Accurate segmentation and repair of hair-occluded information from dermoscopy images are challenging tasks for computer-aided detection (CAD) of melanoma. Currently, many hair-restoration algorithms have been developed, but most of these fail to identify hairs accurately and their removal technique is slow and disturbs the lesion's pattern. In this article, a novel hair-restoration algorithm is presented, which has a capability to preserve the skin lesion features such as color and texture and able to segment both dark and light hairs. Our algorithm is based on three major steps: the rough hairs are segmented using a matched filtering with first derivative of gaussian (MF-FDOG) with thresholding that generate strong responses for both dark and light hairs, refinement of hairs by morphological edge-based techniques, which are repaired through a fast marching inpainting method. Diagnostic accuracy (DA) and texture-quality measure (TQM) metrics are utilized based on dermatologist-drawn manual hair masks that were used as a ground truth to evaluate the performance of the system. The hair-restoration algorithm is tested on 100 dermoscopy images. The comparisons have been done among (i) linear interpolation, inpainting by (ii) non-linear partial differential equation (PDE), and (iii) exemplar-based repairing techniques. Among different hair detection and removal techniques, our proposed algorithm obtained the highest value of DA: 93.3% and TQM: 90%. The experimental results indicate that the proposed algorithm is highly accurate, robust and able to restore hair pixels without damaging the lesion texture. This method is fully automatic and can be easily integrated into a CAD system. © 2011 John Wiley & Sons A/S.

  14. At the edge of intonation: the interplay of utterance-final F0 movements and voiceless fricative sounds.

    PubMed

    Niebuhr, Oliver

    2012-01-01

    The paper is concerned with the 'edge of intonation' in a twofold sense. It focuses on utterance-final F0 movements and crosses the traditional segment-prosody divide by investigating the interplay of F0 and voiceless fricatives in speech production. An experiment was performed for German with four types of voiceless fricatives: /f/, /s/, /ʃ/ and /x/. They were elicited with scripted dialogues in the contexts of terminal falling statement and high rising question intonations. Acoustic analyses show that fricatives concluding the high rising question intonations had higher mean centres of gravity (CoGs), larger CoG ranges and higher noise energy levels than fricatives concluding the terminal falling statement intonations. The different spectral-energy patterns are suitable to induce percepts of a high 'aperiodic pitch' at the end of the questions and of a low 'aperiodic pitch' at the end of the statements. The results are discussed with regard to the possible existence of 'segmental intonation' and its implication for F0 truncation and the segment-prosody dichotomy, in which segments are the alleged troublemakers for the production and perception of intonation. Copyright © 2012 S. Karger AG, Basel.

  15. Semi-automatic 3D lung nodule segmentation in CT using dynamic programming

    NASA Astrophysics Data System (ADS)

    Sargent, Dustin; Park, Sun Young

    2017-02-01

    We present a method for semi-automatic segmentation of lung nodules in chest CT that can be extended to general lesion segmentation in multiple modalities. Most semi-automatic algorithms for lesion segmentation or similar tasks use region-growing or edge-based contour finding methods such as level-set. However, lung nodules and other lesions are often connected to surrounding tissues, which makes these algorithms prone to growing the nodule boundary into the surrounding tissue. To solve this problem, we apply a 3D extension of the 2D edge linking method with dynamic programming to find a closed surface in a spherical representation of the nodule ROI. The algorithm requires a user to draw a maximal diameter across the nodule in the slice in which the nodule cross section is the largest. We report the lesion volume estimation accuracy of our algorithm on the FDA lung phantom dataset, and the RECIST diameter estimation accuracy on the lung nodule dataset from the SPIE 2016 lung nodule classification challenge. The phantom results in particular demonstrate that our algorithm has the potential to mitigate the disparity in measurements performed by different radiologists on the same lesions, which could improve the accuracy of disease progression tracking.

  16. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  17. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    PubMed

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  18. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue.

    PubMed

    Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C

    2017-06-01

    The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering, segmentation and validation, to extract this information challenging. We developed a salient edge-enhancing model of anisotropic diffusion for image filtering, based on higher order statistics. We split the intrinsic 3-phase segmentation problem into two 2-phase segmentation problems, each of which we solved with a dedicated model, active contour weighted by prior extreme. We applied the novel proposed algorithms to THG images of structurally normal ex-vivo human brain tissue, revealing key tissue components-brain cells, microvessels and neuropil, enabling statistical characterization of these components. Comprehensive comparison to manually delineated ground truth validated the proposed algorithms. Quantitative comparison to second harmonic generation/auto-fluorescence images, acquired simultaneously from the same tissue area, confirmed the correctness of the main THG features detected. The software and test datasets are available from the authors. z.zhang@vu.nl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform

    PubMed Central

    Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711

  20. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification.

    PubMed

    Kemeny, Steven Frank; Clyne, Alisa Morss

    2011-04-01

    Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

  1. Which type of placenta previa requires blood transfusion more frequently? A new concept of indiscernible edge total previa.

    PubMed

    Baba, Yosuke; Takahashi, Hironori; Ohkuchi, Akihide; Usui, Rie; Matsubara, Shigeki

    2016-11-01

    During cesarean section (CS) for placenta previa (PP), the size/area/portion of the lower uterine segment occupied by the placenta may affect the bleeding amount and the subsequent need for a blood transfusion (BT). We propose a new concept, indiscernible edge total PP (IEPP), when vaginal ultrasound does not discern the lower placental edge because the placenta covers the visible lower segment. We characterized IEPP, focusing on its allogeneic BT requirement. We classified PP (n = 307) into four types: marginal, partial, discernible edge total PP (DEPP) and IEPP: internal ostium (os)-placental edge distance measurable or unmeasurable on vaginal ultrasound in DEPP or IEPP, respectively. We determined the clinical characteristics according to the four types; the relationship between the intraoperative blood loss and os-edge distance in DEPP; and risk factors for allogeneic BT. The following were significantly higher/larger in cases of IEPP: previous CS; anterior placentation; lacunae; elective cesarean hysterectomy; intraoperative blood loss; autologous BT; allogeneic BT; intensive care unit admission; and an abnormally invasive placenta (AIP). In DEPP, the os-edge distance was weakly correlated with the bleeding amount (r = 0.214). Multivariate logistic regression analysis showed that previous CS, lacunae, AIP and IEPP were independent risk factors for allogeneic BT (odds ratios 3.8, 3.1, 13.8 and 4.6, respectively). After excluding patients undergoing hemostatic procedures during CS, IEPP remained the only independent risk factor for allogeneic BT (odds ratio 5.2). The new concept of IEPP may be useful for predicting BT in CS for patients with PP. © 2016 Japan Society of Obstetrics and Gynecology.

  2. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    PubMed

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.

  3. New algorithm for detecting smaller retinal blood vessels in fundus images

    NASA Astrophysics Data System (ADS)

    LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.

    2010-03-01

    About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.

  4. Information theoretic analysis of canny edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  5. Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis.

    PubMed

    Koppaka, Sisir; Shklyar, Irina; Rutkove, Seward B; Darras, Basil T; Anthony, Brian W; Zaidman, Craig M; Wu, Jim S

    2016-09-01

    The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.

  6. MRI brain tumor segmentation based on improved fuzzy c-means method

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Xiao, Wei; Pan, Chao; Liu, Jianguo

    2009-10-01

    This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.

  7. [Tumor segmentation of brain MRI with adaptive bandwidth mean shift].

    PubMed

    Hou, Xiaowen; Liu, Qi

    2014-10-01

    In order to get the adaptive bandwidth of mean shift to make the tumor segmentation of brain magnetic resonance imaging (MRI) to be more accurate, we in this paper present an advanced mean shift method. Firstly, we made use of the space characteristics of brain image to eliminate the impact on segmentation of skull; and then, based on the characteristics of spatial agglomeration of different tissues of brain (includes tumor), we applied edge points to get the optimal initial mean value and the respectively adaptive bandwidth, in order to improve the accuracy of tumor segmentation. The results of experiment showed that, contrast to the fixed bandwidth mean shift method, the method in this paper could segment the tumor more accurately.

  8. BP fusion model for the detection of oil spills on the sea by remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; An, Jubai; Zhang, Hande; Lin, Bin

    2003-06-01

    Oil spills are very serious marine pollution in many countries. In order to detect and identify the oil-spilled on the sea by remote sensor, scientists have to conduct a research work on the remote sensing image. As to the detection of oil spills on the sea, edge detection is an important technology in image processing. There are many algorithms of edge detection developed for image processing. These edge detection algorithms always have their own advantages and disadvantages in the image processing. Based on the primary requirements of edge detection of the oil spills" image on the sea, computation time and detection accuracy, we developed a fusion model. The model employed a BP neural net to fuse the detection results of simple operators. The reason we selected BP neural net as the fusion technology is that the relation between simple operators" result of edge gray level and the image"s true edge gray level is nonlinear, while BP neural net is good at solving the nonlinear identification problem. Therefore in this paper we trained a BP neural net by some oil spill images, then applied the BP fusion model on the edge detection of other oil spill images and obtained a good result. In this paper the detection result of some gradient operators and Laplacian operator are also compared with the result of BP fusion model to analysis the fusion effect. At last the paper pointed out that the fusion model has higher accuracy and higher speed in the processing oil spill image"s edge detection.

  9. Image Processing for Planetary Limb/Terminator Extraction

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, S.; Zhu, D. Q.; Chu, C. -C.

    1995-01-01

    A novel image segmentation technique for extracting limb and terminator of planetary bodies is proposed. Conventional edge- based histogramming approaches are used to trace object boundaries. The limb and terminator bifurcation is achieved by locating the harmonized segment in the two equations representing the 2-D parameterized boundary curve. Real planetary images from Voyager 1 and 2 served as representative test cases to verify the proposed methodology.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dengwang; Wang, Jie; Kapp, Daniel S.

    Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data weremore » segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is supported by NIH/NIBIB (1R01-EB016777), National Natural Science Foundation of China (No.61471226 and No.61201441), Research funding from Shandong Province (No.BS2012DX038 and No.J12LN23), and Research funding from Jinan City (No.201401221 and No.20120109)« less

  11. Detection and labeling ribs on expiration chest radiographs

    NASA Astrophysics Data System (ADS)

    Park, Mira; Jin, Jesse S.; Wilson, Laurence S.

    2003-06-01

    Typically, inspiration is preferred when xraying the lungs. The x-ray technologist will ask a patient to be still and to take a deep breath and to hold it. This not only reduces the possibility of a blurred image but also enhances the quality of the image since air-filled lungs are easier to see on x-ray film. However, inspiration causes low density in the inner part of lung field. That means that ribs in the inner part of lung field have lower density than the other parts nearer to the border of the lung field. That is why edge detection algorithms often fail to detect ribs. Therefore to make rib edges clear we try to produce an expiration lung field using a 'hemi-elliptical cavity.' Based on the expiration lung field, we extract the rib edges using canny edge detector and a new connectivity method, called '4 way with 10-neighbors connectivity' to detect clavicle and rib edge candidates. Once the edge candidates are formed, our system selects the best candidates using knowledge-based constraints such as a gradient, length and location. The edges can be paired and labeled as superior rib edge and inferior rib edge. Then the system uses the clavicle, which is obtained in a same method for the rib edge detection, as a landmark to label all detected ribs.

  12. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

    2000-07-01

    A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

  13. A non-reference evaluation method for edge detection of wear particles in ferrograph images

    NASA Astrophysics Data System (ADS)

    Wang, Jingqiu; Bi, Ju; Wang, Lianjun; Wang, Xiaolei

    2018-02-01

    Edges are one of the most important features of wear particles in a ferrograph image and are widely used to extract parameters, recognize types of wear particles, and assist in the identification of the wear mode and severity. Edge detection is a critical step in ferrograph image processing and analysis. Till date, there has been no single algorithm that guarantees the production of good quality edges in ferrograph images for a variety of applications. Therefore, it is desirable to have a reliable evaluation method for measuring the performance of various edge detection algorithms and for aiding in the selection of the optimal parameter and algorithm for ferrographic applications. In this paper, a new non-reference method for the objective evaluation of wear particle edge detection is proposed. In this method, a comprehensive index of edge evaluation is composed of three components, i.e., the reconstruction based similarity sub-index between the original image and the reconstructed image, the confidence degree sub-index used to show the true or false degree of the edge pixels, and the edge form sub-index that is used to determine the direction consistency and width uniformity of the edges. Two experiments are performed to illustrate the validity of the proposed method. First, this method is used to select the best parameters for an edge detection algorithm, and it is then used to compare the results obtained using various edge detection algorithms and determine the best algorithm. Experimental results of various real ferrograph images verify the effectiveness of the proposed method.

  14. 3D surface voxel tracing corrector for accurate bone segmentation.

    PubMed

    Guo, Haoyan; Song, Sicong; Wang, Jinke; Guo, Maozu; Cheng, Yuanzhi; Wang, Yadong; Tamura, Shinichi

    2018-06-18

    For extremely close bones, their boundaries are weak and diffused due to strong interaction between adjacent surfaces. These factors prevent the accurate segmentation of bone structure. To alleviate these difficulties, we propose an automatic method for accurate bone segmentation. The method is based on a consideration of the 3D surface normal direction, which is used to detect the bone boundary in 3D CT images. Our segmentation method is divided into three main stages. Firstly, we consider a surface tracing corrector combined with Gaussian standard deviation [Formula: see text] to improve the estimation of normal direction. Secondly, we determine an optimal value of [Formula: see text] for each surface point during this normal direction correction. Thirdly, we construct the 1D signal and refining the rough boundary along the corrected normal direction. The value of [Formula: see text] is used in the first directional derivative of the Gaussian to refine the location of the edge point along accurate normal direction. Because the normal direction is corrected and the value of [Formula: see text] is optimized, our method is robust to noise images and narrow joint space caused by joint degeneration. We applied our method to 15 wrists and 50 hip joints for evaluation. In the wrist segmentation, Dice overlap coefficient (DOC) of [Formula: see text]% was obtained by our method. In the hip segmentation, fivefold cross-validations were performed for two state-of-the-art methods. Forty hip joints were used for training in two state-of-the-art methods, 10 hip joints were used for testing and performing comparisons. The DOCs of [Formula: see text], [Formula: see text]%, and [Formula: see text]% were achieved by our method for the pelvis, the left femoral head and the right femoral head, respectively. Our method was shown to improve segmentation accuracy for several specific challenging cases. The results demonstrate that our approach achieved a superior accuracy over two state-of-the-art methods.

  15. Fast and robust brain tumor segmentation using level set method with multiple image information.

    PubMed

    Lok, Ka Hei; Shi, Lin; Zhu, Xianlun; Wang, Defeng

    2017-01-01

    Brain tumor segmentation is a challenging task for its variation in intensity. The phenomenon is caused by the inhomogeneous content of tumor tissue and the choice of imaging modality. In 2010 Zhang developed the Selective Binary Gaussian Filtering Regularizing Level Set (SBGFRLS) model that combined the merits of edge-based and region-based segmentation. To improve the SBGFRLS method by modifying the singed pressure force (SPF) term with multiple image information and demonstrate effectiveness of proposed method on clinical images. In original SBGFRLS model, the contour evolution direction mainly depends on the SPF. By introducing a directional term in SPF, the metric could control the evolution direction. The SPF is altered by statistic values enclosed by the contour. This concept can be extended to jointly incorporate multiple image information. The new SPF term is expected to bring a solution for blur edge problem in brain tumor segmentation. The proposed method is validated with clinical images including pre- and post-contrast magnetic resonance images. The accuracy and robustness is compared with sensitivity, specificity, DICE similarity coefficient and Jaccard similarity index. Experimental results show improvement, in particular the increase of sensitivity at the same specificity, in segmenting all types of tumors except for the diffused tumor. The novel brain tumor segmentation method is clinical-oriented with fast, robust and accurate implementation and a minimal user interaction. The method effectively segmented homogeneously enhanced, non-enhanced, heterogeneously-enhanced, and ring-enhanced tumor under MR imaging. Though the method is limited by identifying edema and diffuse tumor, several possible solutions are suggested to turn the curve evolution into a fully functional clinical diagnosis tool.

  16. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.

    2011-12-15

    Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of themore » higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.« less

  17. Line drawing extraction from gray level images by feature integration

    NASA Astrophysics Data System (ADS)

    Yoo, Hoi J.; Crevier, Daniel; Lepage, Richard; Myler, Harley R.

    1994-10-01

    We describe procedures that extract line drawings from digitized gray level images, without use of domain knowledge, by modeling preattentive and perceptual organization functions of the human visual system. First, edge points are identified by standard low-level processing, based on the Canny edge operator. Edge points are then linked into single-pixel thick straight- line segments and circular arcs: this operation serves to both filter out isolated and highly irregular segments, and to lump the remaining points into a smaller number of structures for manipulation by later stages of processing. The next stages consist in linking the segments into a set of closed boundaries, which is the system's definition of a line drawing. According to the principles of Gestalt psychology, closure allows us to organize the world by filling in the gaps in a visual stimulation so as to perceive whole objects instead of disjoint parts. To achieve such closure, the system selects particular features or combinations of features by methods akin to those of preattentive processing in humans: features include gaps, pairs of straight or curved parallel lines, L- and T-junctions, pairs of symmetrical lines, and the orientation and length of single lines. These preattentive features are grouped into higher-level structures according to the principles of proximity, similarity, closure, symmetry, and feature conjunction. Achieving closure may require supplying missing segments linking contour concavities. Choices are made between competing structures on the basis of their overall compliance with the principles of closure and symmetry. Results include clean line drawings of curvilinear manufactured objects. The procedures described are part of a system called VITREO (viewpoint-independent 3-D recognition and extraction of objects).

  18. Electric potential structures of auroral acceleration region border from multi-spacecraft Cluster data

    NASA Astrophysics Data System (ADS)

    Sadeghi, S.; Emami, M. R.

    2018-04-01

    This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.

  19. Automatic Extraction of Road Markings from Mobile Laser-Point Cloud Using Intensity Data

    NASA Astrophysics Data System (ADS)

    Yao, L.; Chen, Q.; Qin, C.; Wu, H.; Zhang, S.

    2018-04-01

    With the development of intelligent transportation, road's high precision information data has been widely applied in many fields. This paper proposes a concise and practical way to extract road marking information from point cloud data collected by mobile mapping system (MMS). The method contains three steps. Firstly, road surface is segmented through edge detection from scan lines. Then the intensity image is generated by inverse distance weighted (IDW) interpolation and the road marking is extracted by using adaptive threshold segmentation based on integral image without intensity calibration. Moreover, the noise is reduced by removing a small number of plaque pixels from binary image. Finally, point cloud mapped from binary image is clustered into marking objects according to Euclidean distance, and using a series of algorithms including template matching and feature attribute filtering for the classification of linear markings, arrow markings and guidelines. Through processing the point cloud data collected by RIEGL VUX-1 in case area, the results show that the F-score of marking extraction is 0.83, and the average classification rate is 0.9.

  20. System and method for automated object detection in an image

    DOEpatents

    Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.

    2015-10-06

    A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.

  1. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images.

    PubMed

    Marin, Diego; Gegundez-Arias, Manuel E; Suero, Angel; Bravo, Jose M

    2015-02-01

    Development of automatic retinal disease diagnosis systems based on retinal image computer analysis can provide remarkably quicker screening programs for early detection. Such systems are mainly focused on the detection of the earliest ophthalmic signs of illness and require previous identification of fundal landmark features such as optic disc (OD), fovea or blood vessels. A methodology for accurate center-position location and OD retinal region segmentation on digital fundus images is presented in this paper. The methodology performs a set of iterative opening-closing morphological operations on the original retinography intensity channel to produce a bright region-enhanced image. Taking blood vessel confluence at the OD into account, a 2-step automatic thresholding procedure is then applied to obtain a reduced region of interest, where the center and the OD pixel region are finally obtained by performing the circular Hough transform on a set of OD boundary candidates generated through the application of the Prewitt edge detector. The methodology was evaluated on 1200 and 1748 fundus images from the publicly available MESSIDOR and MESSIDOR-2 databases, acquired from diabetic patients and thus being clinical cases of interest within the framework of automated diagnosis of retinal diseases associated to diabetes mellitus. This methodology proved highly accurate in OD-center location: average Euclidean distance between the methodology-provided and actual OD-center position was 6.08, 9.22 and 9.72 pixels for retinas of 910, 1380 and 1455 pixels in size, respectively. On the other hand, OD segmentation evaluation was performed in terms of Jaccard and Dice coefficients, as well as the mean average distance between estimated and actual OD boundaries. Comparison with the results reported by other reviewed OD segmentation methodologies shows our proposal renders better overall performance. Its effectiveness and robustness make this proposed automated OD location and segmentation method a suitable tool to be integrated into a complete prescreening system for early diagnosis of retinal diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The crack detection algorithm of pavement image based on edge information

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Geng, Mingyue

    2018-05-01

    As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.

  3. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih

    2017-08-01

    In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

  4. 75 FR 61337 - Airworthiness Directives; The Boeing Company Model 747-100, 747-100B, 747-100B SUD, 747-200B, 747...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... inner chord angle of the forward edge frame of the number 5 main entry door cutouts, and repair, if necessary. This new AD requires expanding the inspection areas to include the frame segment between... reports of cracks that have been found in the strap and inner chord of the forward edge frame of the...

  5. Advanced Turbine Engine Seal Test

    DTIC Science & Technology

    1976-07-01

    Transpiration- Cooled Shroud Segments. 67. ATEST Shroud Rub Pin Heights and Mid-Chord Runout . 68. Locations of Nine-Point Runout Check on Shroud Surface...69. ATEST Shroud Leading Edge Runout . 70. ATEST Shroud Trailing Edge Runout . 71. ATEST Shroud Support Posttest Runout . 72. ATEST Shroud Flow Zones...at General Electric on many prior engines with good success. It Involves the use of a grinding wheel in conjunction with a cutting fluid which is

  6. Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1992-01-01

    Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.

  7. Complete Scene Recovery and Terrain Classification in Textured Terrain Meshes

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh. PMID:23112653

  8. Pulse-coupled neural network implementation in FPGA

    NASA Astrophysics Data System (ADS)

    Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael

    1998-03-01

    Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.

  9. Cytoplasm enhancement operator of peripheral blood smear images that are instable-stained and overexposed

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Wang, Guoyou; Liu, Jianguo

    2015-12-01

    Nucleus and cytoplasm are both essential for white blood cell recognition but the edges of cytoplasm are too blurry to be detected because of instable staining and overexposure. This paper aims at proposing a cytoplasm enhancement operator (CEO) to achieve accurate convergence of the active contour model. The CEO contains two parts. First, a nonlinear over-exposure enhancer map is yielded to correct over-exposure, which suppresses background noise while preserving details and improving contrast. Second, the over-exposed regions of cytoplasm in particular is further enhanced by a tri- modal histogram specification based on the scale-space filtering. The experimental results show that the proposed CEO and its corresponding GVF snake is superior to other unsupervised segmentation approaches.

  10. Segmentation of facial bone surfaces by patch growing from cone beam CT volumes

    PubMed Central

    Lilja, Mikko; Kalke, Martti

    2016-01-01

    Objectives: The motivation behind this work was to design an automatic algorithm capable of segmenting the exterior of the dental and facial bones including the mandible, teeth, maxilla and zygomatic bone with an open surface (a surface with a boundary) from CBCT images for the anatomy-based reconstruction of radiographs. Such an algorithm would provide speed, consistency and improved image quality for clinical workflows, for example, in planning of implants. Methods: We used CBCT images from two studies: first to develop (n = 19) and then to test (n = 30) a segmentation pipeline. The pipeline operates by parameterizing the topology and shape of the target, searching for potential points on the facial bone–soft tissue edge, reconstructing a triangular mesh by growing patches on from the edge points with good contrast and regularizing the result with a surface polynomial. This process is repeated for convergence. Results: The output of the algorithm was benchmarked against a hand-drawn reference and reached a 0.50 ± 1.0-mm average and 1.1-mm root mean squares error in Euclidean distance from the reference to our automatically segmented surface. These results were achieved with images affected by inhomogeneity, noise and metal artefacts that are typical for dental CBCT. Conclusions: Previously, this level of accuracy and precision in dental CBCT has been reported in segmenting only the mandible, a much easier target. The segmentation results were consistent throughout the data set and the pipeline was found fast enough (<1-min average computation time) to be considered for clinical use. PMID:27482878

  11. Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography.

    PubMed

    Ahlers, C; Simader, C; Geitzenauer, W; Stock, G; Stetson, P; Dastmalchi, S; Schmidt-Erfurth, U

    2008-02-01

    A limited number of scans compromise conventional optical coherence tomography (OCT) to track chorioretinal disease in its full extension. Failures in edge-detection algorithms falsify the results of retinal mapping even further. High-definition-OCT (HD-OCT) is based on raster scanning and was used to visualise the localisation and volume of intra- and sub-pigment-epithelial (RPE) changes in fibrovascular pigment epithelial detachments (fPED). Two different scanning patterns were evaluated. 22 eyes with fPED were imaged using a frequency-domain, high-speed prototype of the Cirrus HD-OCT. The axial resolution was 6 mum, and the scanning speed was 25 kA scans/s. Two different scanning patterns covering an area of 6 x 6 mm in the macular retina were compared. Three-dimensional topographic reconstructions and volume calculations were performed using MATLAB-based automatic segmentation software. Detailed information about layer-specific distribution of fluid accumulation and volumetric measurements can be obtained for retinal- and sub-RPE volumes. Both raster scans show a high correlation (p<0.01; R2>0.89) of measured values, that is PED volume/area, retinal volume and mean retinal thickness. Quality control of the automatic segmentation revealed reasonable results in over 90% of the examinations. Automatic segmentation allows for detailed quantitative and topographic analysis of the RPE and the overlying retina. In fPED, the 128 x 512 scanning-pattern shows mild advantages when compared with the 256 x 256 scan. Together with the ability for automatic segmentation, HD-OCT clearly improves the clinical monitoring of chorioretinal disease by adding relevant new parameters. HD-OCT is likely capable of enhancing the understanding of pathophysiology and benefits of treatment for current anti-CNV strategies in future.

  12. Biomedical image segmentation using geometric deformable models and metaheuristics.

    PubMed

    Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio

    2015-07-01

    This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    PubMed

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  14. Femtosecond laser-assisted cataract surgery in Alport syndrome with anterior lenticonus.

    PubMed

    Ecsedy, Mónika; Súndor, Gúbor L; Takúcs, Úgnes I; Krúnitz, Kinga; Kiss, Zoltún; Kolev, Krasimir; Nagy, Zoltún Z

    2015-01-01

    To report the surgical treatment of 3 eyes of 2 patients with bilateral anterior lenticonus due to Alport syndrome using femtosecond laser-assisted cataract surgery (FLACS). Two patients with Alport syndrome presented to our department due to anterior lenticonus in both eyes. We performed FLACS with posterior chamber lens implantation in both eyes of one patient and in one eye of the other patient. Anterior segment morphologic changes were visualized with a Scheimpflug camera, and anterior segment optical coherence tomography preoperatively and 3 months after surgery. Ultrastructure of the cut capsule edges was observed with scanning electron microscopy and compared to the edge of femtosecond laser capsulotomy performed on an otherwise healthy patient with cataract (control). The intraocular lens (IOL) postoperative positioning parameters met the international requirements of aspherical and wavefront customized IOLs (tilt <10 degree, decentration <800 µm). Scanning electron microscopy revealed the same characteristics of the cut capsule edges in the Alport and in the control eyes. Femtosecond laser cataract surgery can be a safe and successful method for optical rehabilitation of anterior lenticonus in patients with Alport syndrome.

  15. A fast method to emulate an iterative POCS image reconstruction algorithm.

    PubMed

    Zeng, Gengsheng L

    2017-10-01

    Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.

  16. Development of a shape memory alloy actuated biomimetic vehicle

    NASA Astrophysics Data System (ADS)

    Garner, L. J.; Wilson, L. N.; Lagoudas, D. C.; Rediniotis, O. K.

    2000-10-01

    The development of a biomimetic active hydrofoil that utilizes shape memory alloy (SMA) actuator technology is presented. This work is the first stage prototype of a vehicle that will consist of many actuated body segments. The current work describes the design, modeling and testing of a single-segment demonstration SMA actuated hydrofoil. The SMA actuation elements are two sets of thin wires on either side of an elastomeric component that joins together the leading and trailing edges of the hydrofoil. Controlled heating and cooling of the two wire sets generates bi-directional bending of the elastomer, which in turn deflects the trailing edge of the hydrofoil. In this paper the design of the hydrofoil and the experimental tests preformed thereon are explained. A detailed account of SMA actuator preparation (training) and material characterization is given. Finite-element method (FEM) modeling of hydrofoil response to electrical heating of the SMA actuators is carried out using a thermomechanical constitutive model for the SMA with input from the material characterization. The modeling predictions are finally compared with experimental measurements of the trailing edge deflection and the SMA actuator temperature.

  17. Denoising and segmentation of retinal layers in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Dash, Puspita; Sigappi, A. N.

    2018-04-01

    Optical Coherence Tomography (OCT) is an imaging technique used to localize the intra-retinal boundaries for the diagnostics of macular diseases. Due to speckle noise, low image contrast and accurate segmentation of individual retinal layers is difficult. Due to this, a method for retinal layer segmentation from OCT images is presented. This paper proposes a pre-processing filtering approach for denoising and segmentation methods for segmenting retinal layers OCT images using graph based segmentation technique. These techniques are used for segmentation of retinal layers for normal as well as patients with Diabetic Macular Edema. The algorithm based on gradient information and shortest path search is applied to optimize the edge selection. In this paper the four main layers of the retina are segmented namely Internal limiting membrane (ILM), Retinal pigment epithelium (RPE), Inner nuclear layer (INL) and Outer nuclear layer (ONL). The proposed method is applied on a database of OCT images of both ten normal and twenty DME affected patients and the results are found to be promising.

  18. Image edge detection based tool condition monitoring with morphological component analysis.

    PubMed

    Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng

    2017-07-01

    The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Automatic segmentation of relevant structures in DCE MR mammograms

    NASA Astrophysics Data System (ADS)

    Koenig, Matthias; Laue, Hendrik; Boehler, Tobias; Peitgen, Heinz-Otto

    2007-03-01

    The automatic segmentation of relevant structures such as skin edge, chest wall, or nipple in dynamic contrast enhanced MR imaging (DCE MRI) of the breast provides additional information for computer aided diagnosis (CAD) systems. Automatic reporting using BI-RADS criteria benefits of information about location of those structures. Lesion positions can be automatically described relatively to such reference structures for reporting purposes. Furthermore, this information can assist data reduction for computation expensive preprocessing such as registration, or for visualization of only the segments of current interest. In this paper, a novel automatic method for determining the air-breast boundary resp. skin edge, for approximation of the chest wall, and locating of the nipples is presented. The method consists of several steps which are built on top of each other. Automatic threshold computation leads to the air-breast boundary which is then analyzed to determine the location of the nipple. Finally, results of both steps are starting point for approximation of the chest wall. The proposed process was evaluated on a large data set of DCE MRI recorded by T1 sequences and yielded reasonable results in all cases.

  20. Live minimal path for interactive segmentation of medical images

    NASA Astrophysics Data System (ADS)

    Chartrand, Gabriel; Tang, An; Chav, Ramnada; Cresson, Thierry; Chantrel, Steeve; De Guise, Jacques A.

    2015-03-01

    Medical image segmentation is nowadays required for medical device development and in a growing number of clinical and research applications. Since dedicated automatic segmentation methods are not always available, generic and efficient interactive tools can alleviate the burden of manual segmentation. In this paper we propose an interactive segmentation tool based on image warping and minimal path segmentation that is efficient for a wide variety of segmentation tasks. While the user roughly delineates the desired organs boundary, a narrow band along the cursors path is straightened, providing an ideal subspace for feature aligned filtering and minimal path algorithm. Once the segmentation is performed on the narrow band, the path is warped back onto the original image, precisely delineating the desired structure. This tool was found to have a highly intuitive dynamic behavior. It is especially efficient against misleading edges and required only coarse interaction from the user to achieve good precision. The proposed segmentation method was tested for 10 difficult liver segmentations on CT and MRI images, and the resulting 2D overlap Dice coefficient was 99% on average..

  1. Recent advances in quantitative analysis of fluid interfaces in multiphase fluid flow measured by synchrotron-based x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Schlueter, S.; Sheppard, A.; Wildenschild, D.

    2013-12-01

    Imaging of fluid interfaces in three-dimensional porous media via x-ray microtomography is an efficient means to test thermodynamically derived predictions on the relationship between capillary pressure, fluid saturation and specific interfacial area (Pc-Sw-Anw) in partially saturated porous media. Various experimental studies exist to date that validate the uniqueness of the Pc-Sw-Anw relationship under static conditions and with current technological progress direct imaging of moving interfaces under dynamic conditions is also becoming available. Image acquisition and subsequent image processing currently involves many steps each prone to operator bias, like merging different scans of the same sample obtained at different beam energies into a single image or the generation of isosurfaces from the segmented multiphase image on which the interface properties are usually calculated. We demonstrate that with recent advancements in (i) image enhancement methods, (ii) multiphase segmentation methods and (iii) methods of structural analysis we can considerably decrease the time and cost of image acquisition and the uncertainty associated with the measurement of interfacial properties. In particular, we highlight three notorious problems in multiphase image processing and provide efficient solutions for each: (i) Due to noise, partial volume effects, and imbalanced volume fractions, automated histogram-based threshold detection methods frequently fail. However, these impairments can be mitigated with modern denoising methods, special treatment of gray value edges and adaptive histogram equilization, such that most of the standard methods for threshold detection (Otsu, fuzzy c-means, minimum error, maximum entropy) coincide at the same set of values. (ii) Partial volume effects due to blur may produce apparent water films around solid surfaces that alter the specific fluid-fluid interfacial area (Anw) considerably. In a synthetic test image some local segmentation methods like Bayesian Markov random field, converging active contours and watershed segmentation reduced the error in Anw associated with apparent water films from 21% to 6-11%. (iii) The generation of isosurfaces from the segmented data usually requires a lot of postprocessing in order to smooth the surface and check for consistency errors. This can be avoided by calculating specific interfacial areas directly on the segmented voxel image by means of Minkowski functionals which is highly efficient and less error prone.

  2. Shot boundary detection and label propagation for spatio-temporal video segmentation

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David

    2015-02-01

    This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.

  3. Segment Alignment Maintenance System for the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo -elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the subarray SAMS.

  4. 47 CFR 95.857 - Emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES 218-219 MHz Service Technical Standards § 95.857 Emission standards. (a) All transmissions by each... frequency as close to the edge of the authorized frequency segment as the transmitter is designed to be...

  5. 47 CFR 95.857 - Emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES 218-219 MHz Service Technical Standards § 95.857 Emission standards. (a) All transmissions by each... frequency as close to the edge of the authorized frequency segment as the transmitter is designed to be...

  6. 47 CFR 95.857 - Emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES 218-219 MHz Service Technical Standards § 95.857 Emission standards. (a) All transmissions by each... frequency as close to the edge of the authorized frequency segment as the transmitter is designed to be...

  7. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  8. The Detection of Transport Land-Use Data Using Crowdsourcing Taxi Trajectory

    NASA Astrophysics Data System (ADS)

    Ai, T.; Yang, W.

    2016-06-01

    This study tries to explore the question of transport land-use change detection by large volume of vehicle trajectory data, presenting a method based on Deluanay triangulation. The whole method includes three steps. The first one is to pre-process the vehicle trajectory data including the point anomaly removing and the conversion of trajectory point to track line. Secondly, construct Deluanay triangulation within the vehicle trajectory line to detect neighborhood relation. Considering the case that some of the trajectory segments are too long, we use a interpolation measure to add more points for the improved triangulation. Thirdly, extract the transport road by cutting short triangle edge and organizing the polygon topology. We have conducted the experiment of transport land-use change discovery using the data of taxi track in Beijing City. We extract not only the transport land-use area but also the semantic information such as the transformation speed, the traffic jam distribution, the main vehicle movement direction and others. Compared with the existed transport network data, such as OpenStreet Map, our method is proved to be quick and accurate.

  9. Crack detection in oak flooring lamellae using ultrasound-excited thermography

    NASA Astrophysics Data System (ADS)

    Pahlberg, Tobias; Thurley, Matthew; Popovic, Djordje; Hagman, Olle

    2018-01-01

    Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).

  10. Vision-based obstacle recognition system for automated lawn mower robot development

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  11. Automated, on-board terrain analysis for precision landings

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.

  12. Superpixel-based segmentation of muscle fibers in multi-channel microscopy.

    PubMed

    Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa

    2016-12-05

    Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.

  13. Segmentation and analysis of mouse pituitary cells with graphic user interface (GUI)

    NASA Astrophysics Data System (ADS)

    González, Erika; Medina, Lucía.; Hautefeuille, Mathieu; Fiordelisio, Tatiana

    2018-02-01

    In this work we present a method to perform pituitary cell segmentation in image stacks acquired by fluorescence microscopy from pituitary slice preparations. Although there exist many procedures developed to achieve cell segmentation tasks, they are generally based on the edge detection and require high resolution images. However in the biological preparations that we worked on, the cells are not well defined as experts identify their intracellular calcium activity due to fluorescence intensity changes in different regions over time. This intensity changes were associated with time series over regions, and because they present a particular behavior they were used into a classification procedure in order to perform cell segmentation. Two logistic regression classifiers were implemented for the time series classification task using as features the area under the curve and skewness in the first classifier and skewness and kurtosis in the second classifier. Once we have found both decision boundaries in two different feature spaces by training using 120 time series, the decision boundaries were tested over 12 image stacks through a python graphical user interface (GUI), generating binary images where white pixels correspond to cells and the black ones to background. Results show that area-skewness classifier reduces the time an expert dedicates in locating cells by up to 75% in some stacks versus a 92% for the kurtosis-skewness classifier, this evaluated on the number of regions the method found. Due to the promising results, we expect that this method will be improved adding more relevant features to the classifier.

  14. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  15. Identifying trout refuges in the Indian and Hudson Rivers in northern New York through airborne thermal infrared remote sensing

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Calef, Fred J.; Freehafer, Douglas A.; Kremens, Robert L.

    2015-10-09

    The locations and sizes of potential cold-water refuges for trout were examined in 2005 along a 27-kilometer segment of the Indian and Hudson Rivers in northern New York to evaluate the extent of refuges, the effects of routine flow releases from an impoundment, and how these refuges and releases might influence trout survival in reaches that otherwise would be thermally stressed. This river segment supports small populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) and also receives regular releases of reservoir-surface waters to support rafting during the summer, when water temperatures in both the reservoir and the river frequently exceed thermal thresholds for trout survival. Airborne thermal infrared imaging was supplemented with continuous, in-stream temperature loggers to identify potential refuges that may be associated with tributary inflows or groundwater seeps and to define the extent to which the release flows decrease the size of existing refuges. In general, the release flows overwhelmed the refuge areas and greatly decreased the size and number of the areas. Mean water temperatures were unaffected by the releases, but small-scale heterogeneity was diminished. At a larger scale, water temperatures in the upper and lower segments of the reach were consistently warmer than in the middle segment, even during passage of release waters. The inability of remote thermal infrared images to consistently distinguish land from water (in shaded areas) and to detect groundwater seeps (away from the shallow edges of the stream) limited data analysis and the ability to identify potential thermal refuge areas.

  16. Automated segmentation of MS lesions in FLAIR, DIR and T2-w MR images via an information theoretic approach

    NASA Astrophysics Data System (ADS)

    Hill, Jason E.; Matlock, Kevin; Pal, Ranadip; Nutter, Brian; Mitra, Sunanda

    2016-03-01

    Magnetic Resonance Imaging (MRI) is a vital tool in the diagnosis and characterization of multiple sclerosis (MS). MS lesions can be imaged with relatively high contrast using either Fluid Attenuated Inversion Recovery (FLAIR) or Double Inversion Recovery (DIR). Automated segmentation and accurate tracking of MS lesions from MRI remains a challenging problem. Here, an information theoretic approach to cluster the voxels in pseudo-colorized multispectral MR data (FLAIR, DIR, T2-weighted) is utilized to automatically segment MS lesions of various sizes and noise levels. The Improved Jump Method (IJM) clustering, assisted by edge suppression, is applied to the segmentation of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF) and MS lesions, if present, into a subset of slices determined to be the best MS lesion candidates via Otsu's method. From this preliminary clustering, the modal data values for the tissues can be determined. A Euclidean distance is then used to estimate the fuzzy memberships of each brain voxel for all tissue types and their 50/50 partial volumes. From these estimates, binary discrete and fuzzy MS lesion masks are constructed. Validation is provided by using three synthetic MS lesions brains (mild, moderate and severe) with labeled ground truths. The MS lesions of mild, moderate and severe designations were detected with a sensitivity of 83.2%, and 88.5%, and 94.5%, and with the corresponding Dice similarity coefficient (DSC) of 0.7098, 0.8739, and 0.8266, respectively. The effect of MRI noise is also examined by simulated noise and the application of a bilateral filter in preprocessing.

  17. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity.

    PubMed

    Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun

    2013-08-01

    Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.

  18. Demonstration of a Segment Alignment Maintenance System on a Seven-Segment Sub-Array of the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo-elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors supplemented by inclinometers for global radius of curvature sensing. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the sub-array SAMS.

  19. White blood cell segmentation by circle detection using electromagnetism-like optimization.

    PubMed

    Cuevas, Erik; Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.

  20. White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization

    PubMed Central

    Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability. PMID:23476713

  1. Fast hierarchical knowledge-based approach for human face detection in color images

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Gong, Jie; Zhang, Guilin; Hu, Ruolan

    2001-09-01

    This paper presents a fast hierarchical knowledge-based approach for automatically detecting multi-scale upright faces in still color images. The approach consists of three levels. At the highest level, skin-like regions are determinated by skin model, which is based on the color attributes hue and saturation in HSV color space, as well color attributes red and green in normalized color space. In level 2, a new eye model is devised to select human face candidates in segmented skin-like regions. An important feature of the eye model is that it is independent of the scale of human face. So it is possible for finding human faces in different scale with scanning image only once, and it leads to reduction the computation time of face detection greatly. In level 3, a human face mosaic image model, which is consistent with physical structure features of human face well, is applied to judge whether there are face detects in human face candidate regions. This model includes edge and gray rules. Experiment results show that the approach has high robustness and fast speed. It has wide application perspective at human-computer interactions and visual telephone etc.

  2. SU-E-J-252: Reproducibility of Radiogenomic Image Features: Comparison of Two Semi-Automated Segmentation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M; Woo, B; Kim, J

    Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automaticallymore » from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI.« less

  3. Edge Detection Based On the Characteristic of Primary Visual Cortex Cells

    NASA Astrophysics Data System (ADS)

    Zhu, M. M.; Xu, Y. L.; Ma, H. Q.

    2018-01-01

    Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness

  4. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2017-07-04

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  5. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  6. Anti-impulse-noise Edge Detection via Anisotropic Morphological Directional Derivatives.

    PubMed

    Shui, Peng-Lang; Wang, Fu-Ping

    2017-07-13

    Traditional differential-based edge detection suffers from abrupt degradation in performance when images are corrupted by impulse noises. The morphological operators such as the median filters and weighted median filters possess the intrinsic ability to counteract impulse noise. In this paper, by combining the biwindow configuration with weighted median filters, anisotropic morphological directional derivatives (AMDD) robust to impulse noise are proposed to measure the local grayscale variation around a pixel. For ideal step edges, the AMDD spatial response and directional representation are derived. The characteristics and edge resolution of two kinds of typical biwindows are analyzed thoroughly. In terms of the AMDD spatial response and directional representation of ideal step edges, the spatial matched filter is used to extract the edge strength map (ESM) from the AMDDs of an image. The spatial and directional matched filters are used to extract the edge direction map (EDM). Embedding the extracted ESM and EDM into the standard route of the differential-based edge detection, an anti-impulse-noise AMDD-based edge detector is constructed. It is compared with the existing state-of-the-art detectors on a recognized image dataset for edge detection evaluation. The results show that it attains competitive performance in noise-free and Gaussian noise cases and the best performance in impulse noise cases.

  7. On the edge of language acquisition: inherent constraints on encoding multisyllabic sequences in the neonate brain.

    PubMed

    Ferry, Alissa L; Fló, Ana; Brusini, Perrine; Cattarossi, Luigi; Macagno, Francesco; Nespor, Marina; Mehler, Jacques

    2016-05-01

    To understand language, humans must encode information from rapid, sequential streams of syllables - tracking their order and organizing them into words, phrases, and sentences. We used Near-Infrared Spectroscopy (NIRS) to determine whether human neonates are born with the capacity to track the positions of syllables in multisyllabic sequences. After familiarization with a six-syllable sequence, the neonate brain responded to the change (as shown by an increase in oxy-hemoglobin) when the two edge syllables switched positions but not when two middle syllables switched positions (Experiment 1), indicating that they encoded the syllables at the edges of sequences better than those in the middle. Moreover, when a 25 ms pause was inserted between the middle syllables as a segmentation cue, neonates' brains were sensitive to the change (Experiment 2), indicating that subtle cues in speech can signal a boundary, with enhanced encoding of the syllables located at the edges of that boundary. These findings suggest that neonates' brains can encode information from multisyllabic sequences and that this encoding is constrained. Moreover, subtle segmentation cues in a sequence of syllables provide a mechanism with which to accurately encode positional information from longer sequences. Tracking the order of syllables is necessary to understand language and our results suggest that the foundations for this encoding are present at birth. © 2015 John Wiley & Sons Ltd.

  8. Image enhancement of real-time television to benefit the visually impaired.

    PubMed

    Wolffsohn, James S; Mukhopadhyay, Ditipriya; Rubinstein, Martin

    2007-09-01

    To examine the use of real-time, generic edge detection, image processing techniques to enhance the television viewing of the visually impaired. Prospective, clinical experimental study. One hundred and two sequential visually impaired (average age 73.8 +/- 14.8 years; 59% female) in a single center optimized a dynamic television image with respect to edge detection filter (Prewitt, Sobel, or the two combined), color (red, green, blue, or white), and intensity (one to 15 times) of the overlaid edges. They then rated the original television footage compared with a black-and-white image displaying the edges detected and the original television image with the detected edges overlaid in the chosen color and at the intensity selected. Footage of news, an advertisement, and the end of program credits were subjectively assessed in a random order. A Prewitt filter was preferred (44%) compared with the Sobel filter (27%) or a combination of the two (28%). Green and white were equally popular for displaying the detected edges (32%), with blue (22%) and red (14%) less so. The average preferred edge intensity was 3.5 +/- 1.7 times. The image-enhanced television was significantly preferred to the original (P < .001), which in turn was preferred to viewing the detected edges alone (P < .001) for each of the footage clips. Preference was not dependent on the condition causing visual impairment. Seventy percent were definitely willing to buy a set-top box that could achieve these effects for a reasonable price. Simple generic edge detection image enhancement options can be performed on television in real-time and significantly enhance the viewing of the visually impaired.

  9. The effects of leading edge modifications on the post-stall characteristics of wings

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.

    1980-01-01

    An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.

  10. An automated and universal method for measuring mean grain size from a digital image of sediment

    USGS Publications Warehouse

    Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.

    2010-01-01

    Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.

  11. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico

    2006-08-01

    Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.

  12. Wind Evaluation Breadboard electronics and software

    NASA Astrophysics Data System (ADS)

    Núñez, Miguel; Reyes, Marcos; Viera, Teodora; Zuluaga, Pablo

    2008-07-01

    WEB, the Wind Evaluation Breadboard, is an Extremely Large Telescope Primary Mirror simulator, developed with the aim of quantifying the ability of a segmented primary mirror to cope with wind disturbances. This instrument supported by the European Community (Framework Programme 6, ELT Design Study), is developed by ESO, IAC, MEDIA-ALTRAN, JUPASA and FOGALE. The WEB is a bench of about 20 tons and 7 meter diameter emulating a segmented primary mirror and its cell, with 7 hexagonal segments simulators, including electromechanical support systems. In this paper we present the WEB central control electronics and the software development which has to interface with: position actuators, auxiliary slave actuators, edge sensors, azimuth ring, elevation actuator, meteorological station and air balloons enclosure. The set of subsystems to control is a reduced version of a real telescope segmented primary mirror control system with high real time performance but emphasizing on development time efficiency and flexibility, because WEB is a test bench. The paper includes a detailed description of hardware and software, paying special attention to real time performance. The Hardware is composed of three computers and the Software architecture has been divided in three intercommunicated applications and they have been implemented using Labview over Windows XP and Pharlap ETS real time operating system. The edge sensors and position actuators close loop has a sampling and commanding frequency of 1KHz.

  13. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  14. Semi-automatic segmentation of brain tumors using population and individual information.

    PubMed

    Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan

    2013-08-01

    Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.

  15. Computational wing optimization and comparisons with experiment for a semi-span wing model

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.

    1978-01-01

    A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.

  16. Automatic facial animation parameters extraction in MPEG-4 visual communication

    NASA Astrophysics Data System (ADS)

    Yang, Chenggen; Gong, Wanwei; Yu, Lu

    2002-01-01

    Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.

  17. Stroke-model-based character extraction from gray-level document images.

    PubMed

    Ye, X; Cheriet, M; Suen, C Y

    2001-01-01

    Global gray-level thresholding techniques such as Otsu's method, and local gray-level thresholding techniques such as edge-based segmentation or the adaptive thresholding method are powerful in extracting character objects from simple or slowly varying backgrounds. However, they are found to be insufficient when the backgrounds include sharply varying contours or fonts in different sizes. A stroke-model is proposed to depict the local features of character objects as double-edges in a predefined size. This model enables us to detect thin connected components selectively, while ignoring relatively large backgrounds that appear complex. Meanwhile, since the stroke width restriction is fully factored in, the proposed technique can be used to extract characters in predefined font sizes. To process large volumes of documents efficiently, a hybrid method is proposed for character extraction from various backgrounds. Using the measurement of class separability to differentiate images with simple backgrounds from those with complex backgrounds, the hybrid method can process documents with different backgrounds by applying the appropriate methods. Experiments on extracting handwriting from a check image, as well as machine-printed characters from scene images demonstrate the effectiveness of the proposed model.

  18. Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering

    NASA Astrophysics Data System (ADS)

    Cui, Binge; Ma, Xiudan; Xie, Xiaoyun; Ren, Guangbo; Ma, Yi

    2017-03-01

    The classification of hyperspectral images with a few labeled samples is a major challenge which is difficult to meet unless some spatial characteristics can be exploited. In this study, we proposed a novel spectral-spatial hyperspectral image classification method that exploited spatial autocorrelation of hyperspectral images. First, image segmentation is performed on the hyperspectral image to assign each pixel to a homogeneous region. Second, the visible and infrared bands of hyperspectral image are partitioned into multiple subsets of adjacent bands, and each subset is merged into one band. Recursive edge-preserving filtering is performed on each merged band which utilizes the spectral information of neighborhood pixels. Third, the resulting spectral and spatial feature band set is classified using the SVM classifier. Finally, bilateral filtering is performed to remove "salt-and-pepper" noise in the classification result. To preserve the spatial structure of hyperspectral image, edge-preserving filtering is applied independently before and after the classification process. Experimental results on different hyperspectral images prove that the proposed spectral-spatial classification approach is robust and offers more classification accuracy than state-of-the-art methods when the number of labeled samples is small.

  19. A Minimum Path Algorithm Among 3D-Polyhedral Objects

    NASA Astrophysics Data System (ADS)

    Yeltekin, Aysin

    1989-03-01

    In this work we introduce a minimum path theorem for 3D case. We also develop an algorithm based on the theorem we prove. The algorithm will be implemented on the software package we develop using C language. The theorem we introduce states that; "Given the initial point I, final point F and S be the set of finite number of static obstacles then an optimal path P from I to F, such that PA S = 0 is composed of straight line segments which are perpendicular to the edge segments of the objects." We prove the theorem as well as we develop the following algorithm depending on the theorem to find the minimum path among 3D-polyhedral objects. The algorithm generates the point Qi on edge ei such that at Qi one can find the line which is perpendicular to the edge and the IF line. The algorithm iteratively provides a new set of initial points from Qi and exploits all possible paths. Then the algorithm chooses the minimum path among the possible ones. The flowchart of the program as well as the examination of its numerical properties are included.

  20. Current Status of the Quality of 4H-SiC Substrates and Epilayers for Power Device Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudley, M.; Wang, H.; Guo, Jianqiu

    ABSTRACT Interfacial dislocations (IDs) and half-loop arrays (HLAs) present in the epilayers of 4H-SiC crystal are known to have a deleterious effect on device performance. Synchrotron X-ray Topography studies carried out on n-type 4H-SiC offcut wafers before and after epitaxial growth show that in many cases BPD segments in the substrate are responsible for creating IDs and HLAs during CVD growth. This paper reviews the behaviors of BPDs in the substrate during the epitaxial growth in different cases: (1) screw-oriented BPD segments intersecting the surface replicate directly through the interface during the epitaxial growth and take part in stress relaxationmore » process by creating IDs and HLAs (Matthews-Blakeslee model [1] ); (2) non-screw oriented BPD half loop intersecting the surface glides towards and replicates through the interface, while the intersection points convert to threading edge dislocations (TEDs) and pin the half loop, leaving straight screw segments in the epilayer and then create IDs and HLAs; (3) edge oriented short BPD segments well below the surface get dragged towards the interface during epitaxial growth, leaving two long screw segments in their wake, some of which replicate through the interface and create IDs and HLAs. The driving force for the BPDs to glide toward the interface is thermal stress and driving force for the relaxation process to occur is the lattice parameter difference at growth temperature which results from the doping concentration difference between the substrate and epilayer.« less

  1. Robustness of Thirty Meter Telescope primary mirror control

    NASA Astrophysics Data System (ADS)

    Macmynowski, Douglas G.; Thompson, Peter M.; Shelton, Chris; Roberts, Lewis C., Jr.

    2010-07-01

    The primary mirror control system for the Thirty Meter Telescope (TMT) maintains the alignment of the 492 segments in the presence of both quasi-static (gravity and thermal) and dynamic disturbances due to unsteady wind loads. The latter results in a desired control bandwidth of 1Hz at high spatial frequencies. The achievable bandwidth is limited by robustness to (i) uncertain telescope structural dynamics (control-structure interaction) and (ii) small perturbations in the ill-conditioned influence matrix that relates segment edge sensor response to actuator commands. Both of these effects are considered herein using models of TMT. The former is explored through multivariable sensitivity analysis on a reduced-order Zernike-basis representation of the structural dynamics. The interaction matrix ("A-matrix") uncertainty has been analyzed theoretically elsewhere, and is examined here for realistic amplitude perturbations due to segment and sensor installation errors, and gravity and thermal induced segment motion. The primary influence of A-matrix uncertainty is on the control of "focusmode"; this is the least observable mode, measurable only through the edge-sensor (gap-dependent) sensitivity to the dihedral angle between segments. Accurately estimating focus-mode will require updating the A-matrix as a function of the measured gap. A-matrix uncertainty also results in a higher gain-margin requirement for focus-mode, and hence the A-matrix and CSI robustness need to be understood simultaneously. Based on the robustness analysis, the desired 1 Hz bandwidth is achievable in the presence of uncertainty for all except the lowest spatial-frequency response patterns of the primary mirror.

  2. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  3. Overview and Summary of the Advanced Mirror Technology Development Project

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness. This presentation will introduce the goals and objectives of the AMTD project and summarize its recent accomplishments.

  4. Simultaneous Tumor Segmentation, Image Restoration, and Blur Kernel Estimation in PET Using Multiple Regularizations

    PubMed Central

    Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan

    2016-01-01

    Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407

  5. Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity

    NASA Astrophysics Data System (ADS)

    Bocchini, G. M.; Brüstle, A.; Becker, D.; Meier, T.; van Keken, P. E.; Ruscic, M.; Papadopoulos, G. A.; Rische, M.; Friederich, W.

    2018-06-01

    This study revisits subduction processes at the Hellenic Subduction Zone (HSZ) including tearing, segmentation, and backstepping, by refining the geometry of the Nubian slab down to 150-180 km depth using well-located hypocentres from global and local seismicity catalogues. At the western termination of the HSZ, the Kefalonia Transform Fault marks the transition between oceanic and continental lithosphere subducting to the south and to the north of it, respectively. A discontinuity is suggested to exist between the two slabs at shallow depths. The Kefalonia Transform Fault is interpreted as an active Subduction-Transform-Edge-Propagator-fault formed as consequence of faster trench retreat induced by the subduction of oceanic lithosphere to the south of it. A model reconstructing the evolution of the subduction system in the area of Peloponnese since 34 Ma, involving the backstepping of the subduction to the back-side of Adria, provides seismological evidence that supports the single-slab model for the HSZ and suggests the correlation between the downdip limit of the seismicity to the amount of subducted oceanic lithosphere. In the area of Rhodes, earthquake hypocentres indicate the presence of a NW dipping subducting slab that rules out the presence of a NE-SW striking Subduction-Transform-Edge-Propagator-fault in the Pliny-Strabo trenches region. Earthquake hypocentres also allow refining the slab tear beneath southwestern Anatolia down to 150-180 km depth. Furthermore, the distribution of microseismicity shows a first-order slab segmentation in the region between Crete and Karpathos, with a less steep and laterally wider slab segment to the west and a steeper and narrower slab segment to the east. Thermal models indicate the presence of a colder slab beneath the southeastern Aegean that leads to deepening of the intermediate-depth seismicity. Slab segmentation affects the upper plate deformation that is stronger above the eastern slab segment and the seismicity along the interplate seismogenic zone.

  6. Topology polymorphism graph for lung tumor segmentation in PET-CT images.

    PubMed

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Eberl, Stefan; Yin, Yong; Feng, Dagan; Fulham, Michael

    2015-06-21

    Accurate lung tumor segmentation is problematic when the tumor boundary or edge, which reflects the advancing edge of the tumor, is difficult to discern on chest CT or PET. We propose a 'topo-poly' graph model to improve identification of the tumor extent. Our model incorporates an intensity graph and a topology graph. The intensity graph provides the joint PET-CT foreground similarity to differentiate the tumor from surrounding tissues. The topology graph is defined on the basis of contour tree to reflect the inclusion and exclusion relationship of regions. By taking into account different topology relations, the edges in our model exhibit topological polymorphism. These polymorphic edges in turn affect the energy cost when crossing different topology regions under a random walk framework, and hence contribute to appropriate tumor delineation. We validated our method on 40 patients with non-small cell lung cancer where the tumors were manually delineated by a clinical expert. The studies were separated into an 'isolated' group (n = 20) where the lung tumor was located in the lung parenchyma and away from associated structures / tissues in the thorax and a 'complex' group (n = 20) where the tumor abutted / involved a variety of adjacent structures and had heterogeneous FDG uptake. The methods were validated using Dice's similarity coefficient (DSC) to measure the spatial volume overlap and Hausdorff distance (HD) to compare shape similarity calculated as the maximum surface distance between the segmentation results and the manual delineations. Our method achieved an average DSC of 0.881 ± 0.046 and HD of 5.311 ± 3.022 mm for the isolated cases and DSC of 0.870 ± 0.038 and HD of 9.370 ± 3.169 mm for the complex cases. Student's t-test showed that our model outperformed the other methods (p-values <0.05).

  7. Development of X-43A Mach 10 Leading Edges

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Glass, David E.; Bruce, Walter E., III; Lindell, Michael C.; Vaughn, Wallace L.; Dirling, R. B., Jr.; Hogenson, P. A.; Nichols, J. M.; Risner, N. W.; Thompson, D. R.

    2005-01-01

    The nose leading edge of the Hyper-X Mach 10 vehicle was orginally anticipated to reach temperatures near 4000 F at the leading-edge stagnation line. A SiC coated carbon/carbon (C/C) leading-edge material will not survive that extreme temperature for even a short duration single flight. To identify a suitable leading edge for the Mach 10 vehicle, arc-jet testing was performed on thirteen leading-edge segments fabricated from different material systems to evaluate their performance in a simulated flight environment. Hf, Zr, Si, and Ir based materials, in most cases as a coating on C/C, were included in the evaluation. Afterwards, MER, Tucson, AZ was selected as the supplier of the flight vehicle leading edges. The nose and the vertical and horizontal tail leading edges were fabricated out of a 3:1 biased high thermal conductivity C/C. The leading edges were coated with a three layer coating comprised of a SiC conversion of the top surface of the C/C, followed by a chemical vapor deposited layer of SiC, followed by a thin chemical vapor deposited layer of HfC. This paper will describe the fabrication of the Mach 10 C/C leading edges and the testing performed to validate performance.

  8. Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging.

    PubMed

    Ahmad, R; Ding, Y; Simonetti, O P

    2015-05-01

    In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications.

  9. Content-based unconstrained color logo and trademark retrieval with color edge gradient co-occurrence histograms

    NASA Astrophysics Data System (ADS)

    Phan, Raymond; Androutsos, Dimitrios

    2008-01-01

    In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.

  10. Implementation of sobel method to detect the seed rubber plant leaves

    NASA Astrophysics Data System (ADS)

    Suyanto; Munte, J.

    2018-03-01

    This research was conducted to develop a system that can identify and recognize the type of rubber tree based on the pattern of leaves of the plant. The steps research are started with the identification of the image data acquisition, image processing, image edge detection and identification method template matching. Edge detection is using Sobel edge detection. Pattern recognition would detect image as input and compared with other images in a database called templates. Experiments carried out in one phase, identification of the leaf edge, using a rubber plant leaf image 14 are superior and 5 for each type of test images (clones) of the plant. From the experimental results obtained by the recognition rate of 91.79%.

  11. Local/non-local regularized image segmentation using graph-cuts: application to dynamic and multispectral MRI.

    PubMed

    Hanson, Erik A; Lundervold, Arvid

    2013-11-01

    Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.

  12. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  13. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    PubMed Central

    Park, Keunyeol; Song, Minkyu

    2018-01-01

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273

  14. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    PubMed

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  15. Fault model of the 2014 Cephalonia seismic sequence - Evidence of spatiotemporal fault segmentation along the NW edge of Aegean Arc

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Moschas, Fanis; Stiros, Stathis

    2017-04-01

    Finite fault models (FFM) are presented for the two main shocks of the 2014 Cephalonia (Ionian Sea, Greece) seismic sequence (M 6.0) which produced extreme peak ground accelerations ( 0.7g) in the west edge of the Aegean Arc, an area in which the poor coverage by seismological and GPS/INSAR data makes FFM a real challenge. Modeling was based on co-seismic GPS data and on the recently introduced TOPological INVersion algorithm. The latter is a novel uniform grid search-based technique in n-dimensional spaces, is based on the concept of stochastic variables and which can identify multiple unconstrained ("free") solutions in a specified search space. Derived FFMs for the 2014 earthquakes correspond to an essentially strike slip fault and of part of a shallow thrust, the surface projection of both of which run roughly along the west coast of Cephalonia. Both faults correlate with pre-existing faults. The 2014 faults, in combination with the faults of the 2003 and 2015 Leucas earthquakes farther NE, form a string of oblique slip, partly overlapping fault segments with variable geometric and kinematic characteristics along the NW edge of the Aegean Arc. This composite fault, usually regarded as the Cephalonia Transform Fault, accommodates shear along this part of the Arc. Because of the highly fragmented crust, dominated by major thrusts in this area, fault activity is associated with 20km long segments and magnitude 6.0-6.5 earthquakes recurring in intervals of a few seconds to 10 years.

  16. Segmented inlet nozzle for gas turbine, and methods of installation

    DOEpatents

    Klompas, Nicholas

    1985-01-01

    A gas turbine nozzle guide vane assembly is formed of individual arcuate nozzle segments. The arcuate nozzle segments are elastically joined to each other to form a complete ring, with edges abutted to prevent leakage. The resultant nozzle ring is included within the overall gas turbine stationary structure and secured by a mounting arrangement which permits relative radial movement at both the inner and outer mountings. A spline-type outer mounting provides circumferential retention. A complete rigid nozzle ring with freedom to "float" radially results. Specific structures are disclosed for the inner and outer mounting arrangements. A specific tie-rod structure is also disclosed for elastically joining the individual nozzle segments. Also disclosed is a method of assembling the nozzle ring subassembly-by-subassembly into a gas turbine employing temporary jacks.

  17. Homestake Vein in Color

    NASA Image and Video Library

    2011-12-07

    This color view from NASA Mars Exploration Rover Opportunity of a mineral vein called Homestake and is found to be rich in calcium and sulfur. Homestake is near the edge of the Cape York segment of the western rim of Endeavour Crater.

  18. Mean curvature and texture constrained composite weighted random walk algorithm for optic disc segmentation towards glaucoma screening.

    PubMed

    Panda, Rashmi; Puhan, N B; Panda, Ganapati

    2018-02-01

    Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the proposed algorithm in handling the complex challenges in OD segmentation.

  19. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    PubMed

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  20. Fast Appearance Modeling for Automatic Primary Video Object Segmentation.

    PubMed

    Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong

    2016-02-01

    Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.

  1. A top-down manner-based DCNN architecture for semantic image segmentation.

    PubMed

    Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin

    2017-01-01

    Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

  2. Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.

    2017-05-01

    This paper proposes a two-stage method for the reconstruction of city buildings with discontinuities and roof overhangs from oriented nadir and oblique aerial images. To model the structures the input data is transformed into a dense point cloud, segmented and filtered with a modified marching cubes algorithm to reduce the positional noise. Assuming a monolithic building the remaining vertices are initially projected onto a 2D grid and passed to RANSAC-based regression and topology analysis to geometrically determine finite wall, ground and roof planes. If this should fail due to the presence of discontinuities the regression will be repeated on a 3D level by traversing voxels within the regularly subdivided bounding box of the building point set. For each cube a planar piece of the current surface is approximated and expanded. The resulting segments get mutually intersected yielding both topological and geometrical nodes and edges. These entities will be eliminated if their distance-based affiliation to the defining point sets is violated leaving a consistent building hull including its structural breaks. To add the roof overhangs the computed polygonal meshes are projected onto the digital surface model derived from the point cloud. Their shapes are offset equally along the edge normals with subpixel accuracy by detecting the zero-crossings of the second-order directional derivative in the gradient direction of the height bitmap and translated back into world space to become a component of the building. As soon as the reconstructed objects are finished the aerial images are further used to generate a compact texture atlas for visualization purposes. An optimized atlas bitmap is generated that allows perspectivecorrect multi-source texture mapping without prior rectification involving a partially parallel placement algorithm. Moreover, the texture atlases undergo object-based image analysis (OBIA) to detect window areas which get reintegrated into the building models. To evaluate the performance of the proposed method a proof-of-concept test on sample structures obtained from real-world data of Heligoland/Germany has been conducted. It revealed good reconstruction accuracy in comparison to the cadastral map, a speed-up in texture atlas optimization and visually attractive render results.

  3. Combining Stereo SECCHI COR2 and HI1 Images for Automatic CME Front Edge Tracking

    NASA Technical Reports Server (NTRS)

    Kirnosov, Vladimir; Chang, Lin-Ching; Pulkkinen, Antti

    2016-01-01

    COR2 coronagraph images are the most commonly used data for coronal mass ejection (CME) analysis among the various types of data provided by the STEREO (Solar Terrestrial Relations Observatory) SECCHI (Sun-Earth Connection Coronal and Heliospheric Investigation) suite of instruments. The field of view (FOV) in COR2 images covers 215 solar radii (Rs) that allow for tracking the front edge of a CME in its initial stage to forecast the lead-time of a CME and its chances of reaching the Earth. However, estimating the lead-time of a CME using COR2 images gives a larger lead-time, which may be associated with greater uncertainty. To reduce this uncertainty, CME front edge tracking should be continued beyond the FOV of COR2 images. Therefore, heliospheric imager (HI1) data that covers 1590 Rs FOV must be included. In this paper, we propose a novel automatic method that takes both COR2 and HI1 images into account and combine the results to track the front edges of a CME continuously. The method consists of two modules: pre-processing and tracking. The pre-processing module produces a set of segmented images, which contain the signature of a CME, for both COR2 and HI1 separately. In addition, the HI1 images are resized and padded, so that the center of the Sun is the central coordinate of the resized HI1 images. The resulting COR2 andHI1 image set is then fed into the tracking module to estimate the position angle (PA) and track the front edge of a CME. The detected front edge is then used to produce a height-time profile that is used to estimate the speed of a CME. The method was validated using 15 CME events observed in the period from January 1, 2008 to August 31, 2009. The results demonstrate that the proposed method is effective for CME front edge tracking in both COR2 and HI1 images. Using this method, the CME front edge can now be tracked automatically and continuously in a much larger range, i.e., from 2 to 90 Rs, for the first time. These improvement scan greatly help in making the quantitative CME analysis more accurate and have the potential to assist in space weather forecasting.

  4. A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

    PubMed

    Nanthagopal, A Padma; Rajamony, R Sukanesh

    2012-07-01

    The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

  5. Contour Tracking with a Spatio-Temporal Intensity Moment.

    PubMed

    Demi, Marcello

    2016-06-01

    Standard edge detection operators such as the Laplacian of Gaussian and the gradient of Gaussian can be used to track contours in image sequences. When using edge operators, a contour, which is determined on a frame of the sequence, is simply used as a starting contour to locate the nearest contour on the subsequent frame. However, the strategy used to look for the nearest edge points may not work when tracking contours of non isolated gray level discontinuities. In these cases, strategies derived from the optical flow equation, which look for similar gray level distributions, appear to be more appropriate since these can work with a lower frame rate than that needed for strategies based on pure edge detection operators. However, an optical flow strategy tends to propagate the localization errors through the sequence and an additional edge detection procedure is essential to compensate for such a drawback. In this paper a spatio-temporal intensity moment is proposed which integrates the two basic functions of edge detection and tracking.

  6. Gas-path leakage seal for a turbine

    DOEpatents

    Bagepalli, B.S.; Aksit, M.F.; Farrell, T.R.

    1999-08-10

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges. 5 figs.

  7. Gas-path leakage seal for a turbine

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Aksit, Mahmut Faruk; Farrell, Thomas Raymond

    1999-01-01

    A gas-path leakage seal for generally sealing a gas-path leakage-gap between spaced-apart first and second members of a turbine (such as combustor casing segments of a gas turbine). The seal includes a flexible and generally imperforate metal sheet assemblage having opposing first and second surfaces and two opposing raised edges extending a generally identical distance above and below the surfaces. A first cloth layer assemblage has a thickness generally equal to the previously-defined identical distance and is superimposed on the first surface between the raised edges. A second cloth layer assemblage is generally identical to the first cloth layer assemblage and is superimposed on the second surface between the raised edges.

  8. Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru

    2017-03-15

    X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.

  9. Method and apparatus for detecting flaws and defects in heat seals

    NASA Technical Reports Server (NTRS)

    Rai, Kula R. (Inventor); Lew, Thomas M. (Inventor); Sinclair, Robert B. (Inventor)

    1993-01-01

    Flaws and defects in heat seals formed between sheets of translucent film are identified by optically examining consecutive lateral sections of the seal along the seal length. Each lateral seal section is illuminated and an optical sensor array detects the intensity of light transmitted through the seal section for the purpose of detecting and locating edges in the heat seal. A line profile for each consecutive seal section is derived having an amplitude proportional to the change in light intensity across the seal section. Instances in the derived line profile where the amplitude is greater than a threshold level indicate the detection of a seal edge. The detected edges in each derived line profile are then compared to a preset profile edge standard to identify the existence of a flaw or defect.

  10. Longitudinal Evaluation of Wound Healing after Penetrating Corneal Injury: Anterior Segment Optical Coherence Tomography Study.

    PubMed

    Zheng, Kang Keng; Cai, Jianhao; Rong, Shi Song; Peng, Kun; Xia, Honghe; Jin, Chuan; Lu, Xuehui; Liu, Xinyu; Chen, Haoyu; Jhanji, Vishal

    2017-07-01

    Ocular imaging can enhance our understanding of wound healing. We report anterior segment optical coherence tomography (ASOCT) findings in penetrating corneal injury. Serial ASOCT was performed after repair of penetrating corneal injury. Internal aberrations of wound edges were labeled as "steps" or "gaps" on ASOCT images. The wound type was characterized as: type 1: continuous inner wound edge or step height ≤ 80 µm; type 2: step height > 80 µm; type 3: gap between wound edges; and type 4: intraocular tissue adherent to wound. Surgical outcomes of different wound types were compared. 50 consecutive patients were included (6 females, 44 males; mean age 33 ± 12 years). The average size of wound was 4.2 ± 2.6 mm (type 1, 8 eyes; type 2, 27 eyes; type 3, 12 eyes; type 4, 3 eyes). At the end of 3 months, 70% (n = 35) of the wounds were type 1. At the end of 6 months, all type 1 wounds had healed completely, whereas about half of type 2 (48.1%) and type 3 (50%) wounds had recovered to type 1 configuration. The wound type at baseline affected the height of step (p = 0.047) and corneal thickness at 6 months (p = 0.035). ASOCT is a useful tool for monitoring wound healing in cases with penetrating corneal injury. Majority of the wound edges appose between 3 and 6 months after trauma. In our study, baseline wound configuration affected the healing pattern.

  11. Edge-directed inference for microaneurysms detection in digital fundus images

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Yan, Michelle; Aviyente, Selin

    2007-03-01

    Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.

  12. Smoke regions extraction based on two steps segmentation and motion detection in early fire

    NASA Astrophysics Data System (ADS)

    Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan

    2018-03-01

    Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.

  13. Searching for geodetic transient slip signals along the Parkfield segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Rousset, B.; Burgmann, R.

    2017-12-01

    The Parkfield section of the San Andreas fault is at the transition between a segment locked since the 1857 Mw 7.9 Fort Tejon earthquake to its south and a creeping segment to the north. It is particularly well instrumented since it is the many previous studies have focused on studying the coseismic and postseismic phases of the two most recent earthquake cycles, the interseismic phase is exhibiting interesting dynamics at the down-dip edge of the seismogenic zone, characterized by a very large number of low frequency earthquakes (LFE) with different behaviors depending on location. Interseismic fault creep rates appear to vary over a wide range of spatial and temporal scales, from the Earth's surface to the base of crust. In this study, we take advantage of the dense Global Positioning System (GPS) network, with 77 continuous stations located within a circle of radius 80 km centered on Parkfield. We correct these time series for the co- and postseismic signals of the 2003 Mw 6.3 San Simeon and 2004 Mw 6.0 Parkfield earthquakes. We then cross-correlate the residual time series with synthetic slow-slip templates following the approach of Rousset et al. (2017). Synthetic tests with transient events contained in GPS time series with realistic noise show the limit of detection of the method. In the application with real GPS time series, the highest correlation amplitudes are compared with micro-seismicity rates, as well as tremor and LFE observations.

  14. Coronary arteries segmentation based on the 3D discrete wavelet transform and 3D neutrosophic transform.

    PubMed

    Chen, Shuo-Tsung; Wang, Tzung-Dau; Lee, Wen-Jeng; Huang, Tsai-Wei; Hung, Pei-Kai; Wei, Cheng-Yu; Chen, Chung-Ming; Kung, Woon-Man

    2015-01-01

    Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.

  15. Segmentation of touching mycobacterium tuberculosis from Ziehl-Neelsen stained sputum smear images

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Liu, Yunhui

    2015-12-01

    Touching Mycobacterium tuberculosis objects in the Ziehl-Neelsen stained sputum smear images present different shapes and invisible boundaries in the adhesion areas, which increases the difficulty in objects recognition and counting. In this paper, we present a segmentation method of combining the hierarchy tree analysis with gradient vector flow snake to address this problem. The skeletons of the objects are used for structure analysis based on the hierarchy tree. The gradient vector flow snake is used to estimate the object edge. Experimental results show that the single objects composing the touching objects are successfully segmented by the proposed method. This work will improve the accuracy and practicability of the computer-aided diagnosis of tuberculosis.

  16. Processing Images of Craters for Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.

    2009-01-01

    A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.

  17. Hemorrhage Detection and Segmentation in Traumatic Pelvic Injuries

    PubMed Central

    Davuluri, Pavani; Wu, Jie; Tang, Yang; Cockrell, Charles H.; Ward, Kevin R.; Najarian, Kayvan; Hargraves, Rosalyn H.

    2012-01-01

    Automated hemorrhage detection and segmentation in traumatic pelvic injuries is vital for fast and accurate treatment decision making. Hemorrhage is the main cause of deaths in patients within first 24 hours after the injury. It is very time consuming for physicians to analyze all Computed Tomography (CT) images manually. As time is crucial in emergence medicine, analyzing medical images manually delays the decision-making process. Automated hemorrhage detection and segmentation can significantly help physicians to analyze these images and make fast and accurate decisions. Hemorrhage segmentation is a crucial step in the accurate diagnosis and treatment decision-making process. This paper presents a novel rule-based hemorrhage segmentation technique that utilizes pelvic anatomical information to segment hemorrhage accurately. An evaluation measure is used to quantify the accuracy of hemorrhage segmentation. The results show that the proposed method is able to segment hemorrhage very well, and the results are promising. PMID:22919433

  18. Alpha-ray detection with a MgB 2 transition edge sensor

    NASA Astrophysics Data System (ADS)

    Okayasu, S.; Katagiri, M.; Hojou, K.; Morii, Y.; Miki, S.; Shimakage, H.; Wang, Z.; Ishida, T.

    2008-09-01

    We have been investigating for neutron detection with the MgB 2 transition edge sensor (TES). For the purpose, we have been developing a low noise measurement system for the detection. To confirm the performance of the detecting sensor, alpha ray detection from an americium-241 ( 241Am) alpha-ray source was achieved. A short microfabricated sample with 10 μm length and 1 μm width is used to improve the S/N ratio. The detection is achieved under a constant current condition in the range between 1 and 6 μA bias current, and the resistivity changes at the sample due to the alpha ray irradiation is detected just on the transition edge.

  19. Detection of Low Temperature Volcanogenic Thermal Anomalies with ASTER

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Baxter, S.

    2009-12-01

    Predicting volcanic eruptions is a thorny problem, as volcanoes typically exhibit idiosyncratic waxing and/or waning pre-eruption emission, geodetic, and seismic behavior. It is no surprise that increasing our accuracy and precision in eruption prediction depends on assessing the time-progressions of all relevant precursor geophysical, geochemical, and geological phenomena, and on more frequently observing volcanoes when they become restless. The ASTER instrument on the NASA Terra Earth Observing System satellite in low earth orbit provides important capabilities in the area of detection of volcanogenic anomalies such as thermal precursors and increased passive gas emissions. Its unique high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), bore-sighted with visible and near-IR imaging data, and combined with off-nadir pointing and stereo-photogrammetric capabilities make ASTER a potentially important volcanic precursor detection tool. We are utilizing the JPL ASTER Volcano Archive (http://ava.jpl.nasa.gov) to systematically examine 80,000+ ASTER volcano images to analyze (a) thermal emission baseline behavior for over 1500 volcanoes worldwide, (b) the form and magnitude of time-dependent thermal emission variability for these volcanoes, and (c) the spatio-temporal limits of detection of pre-eruption temporal changes in thermal emission in the context of eruption precursor behavior. We are creating and analyzing a catalog of the magnitude, frequency, and distribution of volcano thermal signatures worldwide as observed from ASTER since 2000 at 90m/pixel. Of particular interest as eruption precursors are small low contrast thermal anomalies of low apparent absolute temperature (e.g., melt-water lakes, fumaroles, geysers, grossly sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and their combinations). To systematically detect such intrinsically difficult anomalies within our large archive, we are exploring a four step approach: (a) the recursive application of a GPU-accelerated, edge-preserving bilateral filter prepares a thermal image by removing noise and fine detail; (b) the resulting stylized filtered image is segmented by a path-independent region-growing algorithm, (c) the resulting segments are fused based on thermal affinity, and (d) fused segments are subjected to thermal and geographical tests for hotspot detection and classification, to eliminate false alarms or non-volcanogenic anomalies. We will discuss our progress in creating the general thermal anomaly catalog as well as algorithm approach and results. This work was carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  20. First Order Statistics of Speckle around a Scatterer Volume Density Edge and Edge Detection in Ultrasound Images.

    NASA Astrophysics Data System (ADS)

    Li, Yue

    1990-01-01

    Ultrasonic imaging plays an important role in medical imaging. But the images exhibit a granular structure, commonly known as speckle. The speckle tends to mask the presence of low-contrast lesions and reduces the ability of a human observer to resolve fine details. Our interest in this research is to examine the problem of edge detection and come up with methods for improving the visualization of organ boundaries and tissue inhomogeneity edges. An edge in an image can be formed either by acoustic impedance change or by scatterer volume density change (or both). The echo produced from these two kinds of edges has different properties. In this work, it has been proved that the echo from a scatterer volume density edge is the Hilbert transform of the echo from a rough impedance boundary (except for a constant) under certain conditions. This result can be used for choosing the correct signal to transmit to optimize the performance of edge detectors and characterizing an edge. The signal to noise ratio of the echo produced by a scatterer volume density edge is also obtained. It is found that: (1) By transmitting a signal with high bandwidth ratio and low center frequency, one can obtain a higher signal to noise ratio. (2) For large area edges, the farther the transducer is from the edge, the larger is the signal to noise ratio. But for small area edges, the nearer the transducer is to the edge, the larger is the signal to noise ratio. These results enable us to maximize the signal to noise ratio by adjusting these parameters. (3) The signal to noise ratio is not only related to the ratio of scatterer volume densities at the edge, but also related to the absolute value of scatterer volume densities. Some of these results have been proved through simulation and experiment. Different edge detection methods have been used to detect simulated scatterer volume density edges to compare their performance. A so-called interlaced array method has been developed for speckle reduction in the images formed by synthetic aperture focussing technique, and experiments have been done to evaluate its performance.

Top