NASA Technical Reports Server (NTRS)
Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.
2000-01-01
The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.
Ocean-shelf interaction and exchange (Fridtjof Nansen Medal Lecture)
NASA Astrophysics Data System (ADS)
Huthnance, John M.
2016-04-01
A brief review will be given of physical processes where shallow shelf seas border the deep ocean, including waves that travel and propagate responses around the ocean boundary. Some implications for ocean-shelf exchange of water and its physical and biochemical contents will be discussed, along with an outline of some studies estimating these exchanges. There will be an emphasis on the north-west European shelf edge. A recent study is the project FASTNEt: "Fluxes across sloping topography of the North East Atlantic". This aims to resolve seasonal, interannual and regional variations. Novel and varied measurements have been made in three contrasting sectors of shelf edge: the Celtic Sea south-west of Britain, the Malin-Hebrides shelf west of Scotland and the West Shetland shelf north of Scotland. Previous studies established the existence of flow along the continental slope in these areas, more persistently poleward in northern sectors. Modelling aims to diagnose and estimate the contribution of various processes to transports and to exchange along and across the slope. Estimates obtained so far will be presented; overall transport from drifters and moored current meters; effective "diffusivity" from drifter dispersion and salinity surveys; other estimates of velocity variance contributing to exchange. In addition to transport by the along-slope flow, possible process contributions which may be estimated include internal waves and their Stokes drift, tidal pumping, eddies and Ekman transports, in a wind-driven surface layer and in a bottom boundary layer. Overall estimates of exchange across the shelf edge here are large by global standards, several m**2/s (Sverdrups per 1000 km). However, the large majority of this exchange is in tides and other motion of comparably short period, and is only effective for water properties or contents that evolve on a time-scale of a day or less.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... Rule Change Relating To Amending the Direct Edge ECN Fee Schedule April 7, 2010. Pursuant to Section 19... of the Proposed Rule Change The Exchange proposes to amend Direct Edge ECN's (``DECN'') fee schedule... EDGA Exchange, Inc. and EDGX Exchange, Inc. Direct Edge ECN LLC (EDGA and EDGX) will cease to operate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity as an... Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN (``DECN''), in its... Exchange, Inc. (``EDGA and EDGX Exchanges'') [sic] Direct Edge ECN will cease to operate in its capacity as...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-08
... Rule Change Relating to Amending the Direct Edge ECN Fee Schedule April 1, 2010. Pursuant to Section 19... Statement of the Terms of Substance of the Proposed Rule Change The Exchange proposes to amend Direct Edge... EDGA Exchange, Inc. and EDGX Exchange, Inc. Direct Edge ECN LLC (EDGA and EDGX) will cease to operate...
Turbulent energy transfer in electromagnetic turbulence: hints from a Reversed Field Pinch plasma
NASA Astrophysics Data System (ADS)
Vianello, N.; Bergsaker, H.
2005-10-01
The relationship between electromagnetic turbulence and sheared plasma flow in a Reversed Field Pinch is addressed. ExB sheared flows and turbulence at the edge tends to organize themeselves near marginal stability, suggesting an underlying energy exchange process between turbulence and mean flow. In MHD this process is well described through the quantity P which represents the energy transfer (per mass and time unit) from turbulence to mean fields. In the edge region of RFP configuration, where magnetic field is mainly poloidal and the mean ExB is consequently toroidal, the quantity P results: P =[ -
Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.
Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent
2017-05-16
Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Rule Change Relating to Amending the Direct Edge ECN Fee Schedule June 2, 2010. Pursuant to Section 19... Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to pass through rebates/fees from other... by ISE and not EDGA Exchange, Inc. and EDGX Exchange, Inc. Direct Edge ECN LLC (EDGA and EDGX) will...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... Change Relating to Fees for EdgeBook Attributed\\SM\\ January 23, 2013. Pursuant to Section 19(b)(1) of the... external distribution of EdgeBook Attributed\\SM\\, the Exchange's attributed book feed, and (ii) offer a new... SR-EDGX-2011-18,\\4\\ the Exchange made available the EDGX Book Feed (``EdgeBook Depth X\\SM\\'') to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... Change Relating to Fees for EdgeBook Attributed\\SM\\ January 23, 2012. Pursuant to Section 19(b)(1) of the... external distribution of EdgeBook Attributed\\SM\\, the Exchange's attributed book feed, and (ii) offer a new...-2011-19,\\4\\ the Exchange made available the EDGA Book Feed (``EdgeBook Depth A\\SM\\'') to Members and...
Effect of dynamical phase on the resonant interaction among tsunami edge wave modes
Geist, Eric L.
2018-01-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
NASA Astrophysics Data System (ADS)
Geist, Eric L.
2018-02-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
NASA Astrophysics Data System (ADS)
Geist, Eric L.
2018-04-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
NASA Astrophysics Data System (ADS)
Benlattar, M.; El koraychy, E.; Kotri, A.; Mazroui, M.
2017-12-01
We have used molecular dynamics simulations combined with an interatomic potential derived from the embedded atom method, to investigate the hetero-diffusion of Au adatom near a stepped Ag(110) surface with the height of one monoatomic layer. The activation energies for different diffusion processes, which occur on the terrace and near the step edge, are calculated both by molecular statics and molecular dynamics simulations. Static energies are found by the drag method, whereas the dynamic barriers are computed at high temperature from the Arrhenius plots. Our numerical results reveal that the jump process requires very high activation energy compared to the exchange process either on the terrace or near the step edge. In this work, other processes, such as upward and downward diffusion at step edges, have also been discussed.
Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF.
Cong, Yingnan; Chan, Yao-Ban; Phillips, Charles A; Langston, Michael A; Ragan, Mark A
2017-01-01
Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k ) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k . Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k .
Tuning energy relaxation along quantum Hall channels.
Altimiras, C; le Sueur, H; Gennser, U; Cavanna, A; Mailly, D; Pierre, F
2010-11-26
The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at a filling factor of ν(L)=2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating Ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at ν(L)=2, informing us, in particular, that those within the outer edge channel are negligible.
Reaction limited aggregation in surfactant-mediated epitaxy
NASA Astrophysics Data System (ADS)
Wu, Jing; Liu, Bang-Gui; Zhang, Zhenyu; Wang, E. G.
2000-05-01
A theoretical model for reaction limited aggregation (RLA) is introduced to study the effect of a monolayer of surfactant on the formation of two-dimensional islands in heteroepitaxial and homoepitaxial growth. In this model the basic atomic processes are considered as follows. A stable island consists of the adatoms that have exchanged positions with the surfactant atoms beneath them. Movable active adatoms may (a) diffuse on the surfactant terrace, (b) exchange positions with the surfactant atoms beneath them and become island seeds (seed exchange), or (c) stick to stable islands and become stuck but still active adatoms. The rate-limiting step for the formation of a stable island is the seed exchange. Furthermore, a stuck but still active adatom must overcome a sizable potential-energy barrier to exchange positions with the surfactant atom beneath it and become a member of the stable island (aided exchange). The seed exchange process can occur with an adatom or collectively with an addimer. In the case of dimer exchange, the diffusing adatoms on the surfactant terrace can meet and (after exchanging) form stable dimers, which can then become island seeds. Systematic kinetic Monte Carlo simulations and rate-equation analysis of the model are carried out. The key finding of these simulations is that a counterintuitive fractal-to-compact island shape transition can be induced either by increasing deposition flux or by decreasing growth temperature. This major qualitative conclusion is valid for both the monomer and the dimer seed exchanges and for two different substrate lattices (square and triangular, respectively), although there are some quantitative differences in the flux and temperature dependence of the island density. The shape transition observed is contrary to the prediction of the classic diffusion-limited aggregation (DLA) theory, but in excellent qualitative agreement with recent experiments. In rationalizing the main finding, it is crucial to realize that the adatoms stuck to a stable island edge are still active and are surrounded by the surfactant atoms. Therefore, these stuck atoms cannot capture incoming adatoms before they join the island through aided exchange. As a result, an incoming adatom must on average hit the island many times before it finally finds a free edge site to stick to. This search is effectively equivalent to edge diffusion in DLA theory. The stuck adatoms thus act as shields which prevent other mobile adatoms from sticking to the stable islands. This shielding effect, determined by the aided exchange barrier and the density of the mobile adatoms, plays an essential role in inducing the above shape transition in surfactant-mediated epitaxial growth.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
... Accelerated Approval to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity... Substance of the Proposed Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN... immediate effectiveness a proposed rule change to amend Direct Edge ECN's (``DECN'') fee schedule for ISE...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... Edge, Inc. June 10, 2010. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (``Act... its corporate structure to provide that it will be a wholly-owned subsidiary of Direct Edge, Inc. (``DEI'') instead of Direct Edge Holdings, LLC (``DE Holdings''). The proposed Certificate of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity as an... Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN (``DECN''), in its... immediate effectiveness a proposed rule change to amend Direct Edge ECN's (``DECN'') fee schedule for ISE...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity as an... Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN (``DECN''), in its... effectiveness a proposed rule change to amend Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... Edge, Inc. June 10, 2010. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (``Act... its corporate structure to provide that it will be a wholly-owned subsidiary of Direct Edge, Inc. (``DEI'') instead of Direct Edge Holdings, LLC (``DE Holdings''). The proposed Certificate of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... Rule Change Relating to Amending the Direct Edge ECN Fee Schedule July 1, 2010. Pursuant to Section 19... Statement of the Terms of Substance of the Proposed Rule Change The Exchange proposes to amend Direct Edge... Edge ECN LLC (EDGA and EDGX) will cease to operate in its capacity as an electronic communications...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
... to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity as an... Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN (``DECN''), in its... change to amend Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\4\\ to: (i) Change the rates...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity as an... Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN (``DECN''), in its... effectiveness a proposed rule change to amend Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity as an... Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN (``DECN''), in its... rule change to amend Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\4\\ to: (i) Eliminate a...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-08
... to a Proposed Rule Change Relating to the Amounts That Direct Edge ECN, in Its Capacity as an... Rule Change The Exchange proposes to modify the amounts that Direct Edge ECN (``DECN''), in its... effectiveness a proposed rule change to amend Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\4\\ to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... data (``Logical Ports''). Each Logical Port is assigned an access gateway that performs order... Change to Offer and Establish Fees for a New Exchange Service, EdgeRisk Gateways June 25, 2013. Pursuant... Exchange has designated the proposed rule change as it pertains to the fees for EdgeRisk Gateway SM (the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... data (``Logical Ports''). Each Logical Port is assigned an access gateway that performs order... Change to Offer and Establish Fees for a New Exchange Service, EdgeRisk Gateways June 25, 2013. Pursuant... Exchange has designated the proposed rule change as it pertains to the fees for EdgeRisk Gateway\\SM\\ (the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
... Rule Change Relating to Amending the Direct Edge ECN Fee Schedule May 6, 2010. Pursuant to Section 19(b... Statement of the Terms of Substance of the Proposed Rule Change The Exchange proposes to amend Direct Edge... Edge ECN LLC (EDGA and EDGX) will cease to operate in its capacity as an electronic communications...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... Rule 11.5(c) To Add the Edge Market Close\\SM\\ Order November 8, 2012. I. Introduction On July 27, 2012...-4 thereunder,\\2\\ a proposed rule change that would have introduced the Edge Market Close\\SM\\ (``EMC... Officer, DirectEdge, dated November 8, 2012. On November 6, 2012, the Exchange withdrew the proposed rule...
Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF
Cong, Yingnan; Chan, Yao-ban; Phillips, Charles A.; Langston, Michael A.; Ragan, Mark A.
2017-01-01
Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k. Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k. PMID:28154557
Electrochemistry at Edge of Single Graphene Layer in a Nanopore
Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid
2013-01-01
We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127
Molecular dynamics simulations of cesium adsorption on illite nanoparticles.
Lammers, Laura N; Bourg, Ian C; Okumura, Masahiko; Kolluri, Kedarnath; Sposito, Garrison; Machida, Masahiko
2017-03-15
The charged surfaces of micaceous minerals, especially illite, regulate the mobility of the major radioisotopes of Cs ( 134 Cs, 135 Cs, 137 Cs) in the geosphere. Despite the long history of Cs adsorption studies, the nature of the illite surface sites remains incompletely understood. To address this problem, we present atomistic simulations of Cs competition with Na for three candidate illite adsorption sites - edge, basal plane, and interlayer. Our simulation results are broadly consistent with affinities and selectivities that have been inferred from surface complexation models. Cation exchange on the basal planes is thermodynamically ideal, but exchange on edge surfaces and within interlayers shows complex, thermodynamically non-ideal behavior. The basal planes are weakly Cs-selective, while edges and interlayers have much higher affinity for Cs. The dynamics of NaCs exchange are rapid for both cations on the basal planes, but considerably slower for Cs localized on edge surfaces. In addition to new insights into Cs adsorption and exchange with Na on illite, we report the development of a methodology capable of simulating fully-flexible clay mineral nanoparticles with stable edge surfaces using a well-tested interatomic potential model. Copyright © 2016 Elsevier Inc. All rights reserved.
76 FR 28001 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
..., Department of Defense. Deletion: K890.09 Enterprise Data and Global Exchange (EDGE) Knowledge Management Portal (March 21, 2006, 71 FR 14187). Reason: Enterprise Data and Global Exchange (EDGE) Knowledge....regulations.gov Follow the instructions for submitting comments. Mail: Federal Docket Management System Office...
Evolution of Edge Pedestal Profiles Between ELMs
NASA Astrophysics Data System (ADS)
Floyd, J. P.; Stacey, W. M.; Groebner, R. J.
2012-10-01
The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).
Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T
2012-03-01
While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than plantation edges in summer months (most likely due to greater water availability at pasture edges), resulting in significantly greater estimates of annual transpiration at pasture than plantation edges (430 vs. 343lm(-2)year(-1), respectively). Our study highlights the need for landscape-level water flux models to account for edge effects on stand transpiration, particularly in highly fragmented landscapes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... change is available on the Exchange's Web site at www.nyse.com , at the principal office of the Exchange... forms of alternative trading systems (``ATSs''), including dark pools and electronic communication... and Direct Edge. Today, BATS and Direct Edge provide certain market data at no charge on their Web...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... maintains logical ports for order entry (FIX, HP-API), drop copies (DROP), EdgeRisk and market data (collectively, ``Direct Logical Ports'').\\4\\ In SR-EDGX-2012-36, the Exchange reduced the number of free Direct... 33871 (June 5, 2013) (SR-EDGX-2013-18) (adding EdgeRisk ports to the list of logical ports offered by...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
... maintains logical ports for order entry (FIX, HP-API), drop copies (DROP), EdgeRisk and market data (collectively, ``Direct Logical Ports'').\\4\\ In SR-EDGA-2012-37, the Exchange reduced the number of free Direct... 30, 2013) 78 FR 33880 (June 5, 2013) (SR-EDGA-2013-14) (adding EdgeRisk ports to the list of logical...
Nakayama, Masataka; Saito, Satoru
2015-08-01
The present study investigated principles of phonological planning, a common serial ordering mechanism for speech production and phonological short-term memory. Nakayama and Saito (2014) have investigated the principles by using a speech-error induction technique, in which participants were exposed to an auditory distracIor word immediately before an utterance of a target word. They demonstrated within-word adjacent mora exchanges and serial position effects on error rates. These findings support, respectively, the temporal distance and the edge principles at a within-word level. As this previous study induced errors using word distractors created by exchanging adjacent morae in the target words, it is possible that the speech errors are expressions of lexical intrusions reflecting interactive activation of phonological and lexical/semantic representations. To eliminate this possibility, the present study used nonword distractors that had no lexical or semantic representations. This approach successfully replicated the error patterns identified in the abovementioned study, further confirming that the temporal distance and edge principles are organizing precepts in phonological planning.
NASA Astrophysics Data System (ADS)
Foken, T.
2013-12-01
Near the FLUXNET site DE-Bay (Waldstein-Weidenbrunnen) three intensive measuring periods took place in 2007, 2008, and 2011 within the EGER project (ExchanGE processes in mountainous Regions). The main focus of all three experiments was the investigation of turbulent structures and their influence on the energy exchange and trace gas fluxes as well as trace gas reactions. Due to a tornado-like storm event an approximately 300 m long forest edge between a 25 m high spruce forest and a clearing was generated about 150 m south of the DE-Bay site. The investigation of processes at these forest edge was the main issue of the 2011 experiment. A main topic of all experiments was the investigation of the coupling between the atmosphere, the crowns and the trunk space as well as the horizontal coupling. This coupling algorithm is based on the analysis of coherent structures at three levels. While a complete coupling was only observed during daytime, at night well-coupled events were found in connection with low-level jets. The change of inert (CO2) or reactive (O3, NO, NO2, HONO) trace gas concentration could be explained with the coupling situation. It was also found that at the forest edge, coherent structures contribute less to total turbulent flux than within the forest. Accordingly, these coherent motions do not ensure that there is better vertical coupling between the forest stand and the overlying atmosphere at the forest edge. The relative contributions of sweeps and ejections to coherent flux reveal that there might be even larger circulations that cause better ventilation at the forest edge. Ejections dominate during the daytime, whereas sweeps contribute more during nighttime. Thus, there is systematic outflow during the daytime and inflow of fresh air directly at the forest edge during the nighttime. To underline these findings perpendicular to the edge, a mobile measuring system investigated the horizontal gradients of temperature, moisture, radiation, carbon dioxide and ozone concentrations. The data analysis was coupled with a higher order closure modelling and a typical K-approach modelling. The first showed the best agreement with experimental data and differences between both model types could be explained by the degree of coupling. An LES simulation and comparison with the experimental data is ongoing.
Solar technology assessment project. Volume 6: Photovoltaic technology assessment
NASA Astrophysics Data System (ADS)
Backus, C. E.
1981-04-01
Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.
ERIC Educational Resources Information Center
Zhu, Lijuan
2011-01-01
Along with the greater productivity that CAD automation provides nowadays, the product data of engineering applications needs to be shared and managed efficiently to gain a competitive edge for the engineering product design. However, exchanging and sharing the heterogeneous product data is still challenging. This dissertation first presents a…
On Edge Exchangeable Random Graphs
NASA Astrophysics Data System (ADS)
Janson, Svante
2017-06-01
We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).
Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin
2005-01-20
Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.
Local structural effects in Sr 3NiRhO 6 across magnetic transitions
Singh, Navneet; Khalid, S.; Bindu, R.
2016-04-06
Here, we investigate the temperature dependence of the structural parameters of quasi-one-dimensional Sr 3NiRhO 6 across the region of magnetic phase transitions using Ni K-edge and Sr K-edge x-ray absorption spectroscopy (XAS). The features in the x-ray absorption near-edge region are identified using multiple scattering calculations. The temperature-dependent extended x-ray absorption fine structure (EXAFS) studies show that the setting of the intra-chain super exchange interaction starts at ~200 K, which is well above the first transition temperature (45 K) revealed by magnetic susceptibility studies. The onset of the inter-chain super–super exchange interaction appears to be at ~125 K. Interestingly, themore » role played by direct exchange interaction between the Ni 3d and Rh 4d states in stabilising the magnetic interaction is less significant. The present results shed light on the generic features exhibited by isostructural compounds and may help in identifying the magnetic exchange pathways useful for understanding the unusual properties exhibited by such compounds.« less
Cation Exchange in the Presence of Oil in Porous Media
2017-01-01
Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media. PMID:28580442
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62514; File No. SR-EDGA-2010-02] Self-Regulatory Organizations; EDGA Exchange, Inc.; Order Approving a Proposed Rule Change Relating to Direct Edge... Holdings will be the sole stockholder of DEI. The self-regulatory functions of the Exchange will remain...
Volume change and energy exchange: How they affect symmetry in the Noh problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vachal, Pavel; Wendroff, Burton
The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.
Volume change and energy exchange: How they affect symmetry in the Noh problem
Vachal, Pavel; Wendroff, Burton
2018-03-14
The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.
A coupled dynamic-thermodynamic model of an ice-ocean system in the marginal ice zone
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa
1987-01-01
Thermodynamics are incorporated into a coupled ice-ocean model in order to investigate wind-driven ice-ocean processes in the marginal zone. Upswelling at the ice edge which is generated by the difference in the ice-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the areas affected by the ice edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling areas. It is noted that new ice formation occurs in the region not affected by ice edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.
Improved edge charge exchange recombination spectroscopy in DIII-D
NASA Astrophysics Data System (ADS)
Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Haskey, S. R.; Groebner, R. J.; Kaplan, D. H.; Briesemeister, A.
2016-11-01
The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.
Improved edge charge exchange recombination spectroscopy in DIII-D.
Chrystal, C; Burrell, K H; Grierson, B A; Haskey, S R; Groebner, R J; Kaplan, D H; Briesemeister, A
2016-11-01
The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.
China’s Exchange Rate Policy: A Double Edged Sword
2013-12-01
acts as a subsidy to industry, but is a tax on savers. Although this process has facilitated past growth by providing a subsidy to exports and allowing...competing nations makes exports less expensive and imports more expensive, thereby providing advantages to specific sectors in the country with the...domestic economy can subsequently harm American competitors. Conversely, Chinese sectors harmed by these same policies may provide an advantage to
Spin Mode Switching at the Edge of a Quantum Hall System.
Khanna, Udit; Murthy, Ganpathy; Rao, Sumathi; Gefen, Yuval
2017-11-03
Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge potential, the edge has long been known to undergo spontaneous reconstruction driven by charging effects. In this Letter we demonstrate a qualitatively distinct phenomenon driven by exchange effects, in which the ordering of the edge modes at ν=3 switches abruptly as the edge potential is made softer, while the ordering in the bulk remains intact. We demonstrate that this phenomenon is robust, and has many verifiable experimental signatures in transport.
Melt-Infiltration Process For SiC Ceramics And Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1994-01-01
Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.
NASA Astrophysics Data System (ADS)
Lammers, L. N.; Pestana, L. R.; Schaettle, K. B.; Head-Gordon, T.
2016-12-01
High structural charge clay minerals govern the transport and retention of radiocesium in soils and clay-rich geologic repositories. Cation exchange capacities in these phases are typically assumed to be limited to fast-exchanging basal and high-affinity edge sites, while ions in anhydrous interlayers, usually K+, are considered non-exchangeable. However, recent high resolution imaging and spectroscopic studies have demonstrated that Cs ions can in fact exchange with interlayer K without the formation of a hydrated intermediate.1,2 These exchange reactions result in sharp exchange fronts wherein K+ ions are completely replaced by Cs+ at the exchange interface, and the rate of exchange varies from layer to layer, resulting in the formation of interstratified structures (i.e., randomly alternating layers of exchanged and pristine interlayers). Currently, this process cannot be explained by any known exchange mechanism, and consequently, no kinetic expressions are available to account for this phenomenon in models of subsurface radiocesium fate and transport. We present a mesoscale model for direct exchange in anhydrous clay interlayers that is based on the kinetics of single ion migration events. Single atom migration kinetics derived from density functional theory (DFT) calculations are used as inputs to kinetic Monte Carlo (kMC) simulations, which capture the collective dynamics of the exchange process over length- and timescales relevant for implementation in reactive transport models. Potential energy surfaces derived from DFT demonstrate that exchange of Cs+ for K+ in anhydrous interlayers lowers the energy barrier to K ion migration by 145 kJ/mol, leading to a positive feedback mechanism that generates atomically sharp exchange fronts. Our work demonstrates the application of "coarse-graining" techniques to develop models for processes with characteristic length- and timescales not accessible by direct atomistic simulation. 1 Okumura T. et al. (2014) Direct observation of cesium at the interlayer region in phlogopite mica. Microscopy 63(1), 65-72. 2 Fuller A. J. et al. (2015) Caesium incorporation and retention in illite interlayers. Appl. Clay Sci. 108, 128-134.
Improved edge charge exchange recombination spectroscopy in DIII-D
Chrystal, Colin; Burrell, K. H.; Grierson, Brian A.; ...
2016-08-02
The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma ( r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased frommore » 16 to 38.As a result, new fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.« less
Edge momentum transport by neutrals: an interpretive numerical framework
NASA Astrophysics Data System (ADS)
Omotani, J. T.; Newton, S. L.; Pusztai, I.; Viezzer, E.; Fülöp, T.; The ASDEX Upgrade Team
2017-06-01
Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6-2 \\text{N} \\text{m} are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, K.; Honda, M.; Urano, H.
2014-12-15
Modulation charge eXchange recombination spectroscopy measurements with high spatial and temporal resolution have made the evaluation of the toroidal plasma flow of fully stripped carbon impurity ions (V{sub ϕ}{sup C6+}) in the JT-60U tokamak peripheral region (including, in particular, the separatrix) possible with a better signal-to-noise ratio. By comparing co- and counter-neutral beam injection discharges experimentally, we have identified the boundary condition of V{sub ϕ}{sup C6+} and radial electric field shear (∇E{sub r}) imposed at the separatrix in high confinement (H-mode) plasmas with edge localized modes (ELMs). The V{sub ϕ}{sup C6+} value at the separatrix is not fixed at zeromore » but varies with the momentum input direction. On the other hand, the ∇E{sub r} value is nearly zero (or very weakly positive) at the separatrix. Furthermore, the edge localized mode perturbation does not appear to affect both V{sub ϕ}{sup C6+} and ∇E{sub r} values at the separatrix as strongly as that in the pedestal region. The above experimental findings based on the precise edge measurements have been used to validate a theoretical model and develop a new empirical model. A better understanding of the physical process in the edge transport barrier (ETB) formation due to the sheared E{sub r} formation is also discussed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... Rule Change Relating To Amending the Direct Edge ECN Fee Schedule; Correction AGENCY: Securities and... Effectiveness of Proposed Rule Change Relating to Amending the Direct Edge ECN Fee Schedule by the International...
Keeping the Door Open: A Soviet-American Exchange.
ERIC Educational Resources Information Center
Herring, J. Daniel; Humes, Debra
1988-01-01
Provides a first-hand account of a Soviet-American theater arts exchange, the world premiere of Soviet playwright Gennadi Mamlin's "On the Edge," performed in the Soviet Union by the Louisville Children's Theatre. (MM)
Fenn, Daniel J; Porter, Mason A; McDonald, Mark; Williams, Stacy; Johnson, Neil F; Jones, Nick S
2009-09-01
We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; McDonald, Mark; Williams, Stacy; Johnson, Neil F.; Jones, Nick S.
2009-09-01
We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62515; File No. SR-EDGX-2010-02] Self-Regulatory Organizations; EDGX Exchange, Inc; Order Approving a Proposed Rule Change Relating to Direct Edge... DE Holdings, and DE Holdings will be the sole stockholder of DEI. The self-regulatory functions of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... Rule Change Relating To Amending the Direct Edge ECN Fee Schedule February 4, 2010. Pursuant to Section... Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to amend its fee schedule by (i) re...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
... Effectiveness of Proposed Rule Change Relating To Amending the Direct Edge ECN Fee Schedule January 5, 2010... proposes to amend Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to simplify its fee...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... Rule Change Relating To Amending the Direct Edge ECN Fee Schedule February 4, 2010. Pursuant to Section... Direct Edge ECN's (``DECN'') fee schedule for ISE Members \\3\\ to amend its fee schedule by (i) re...
Stellwagen, E; Cass, R D
1975-03-25
Electrostatic binding of at least two anionic iron hexacyanides to cationic horse heart cytochrome c was demonstrated by equilibrium dialysis measurements. No binding was detected following trifluoroacetylation of all of the 19 lysine residues. Replacement of the natural heme iron ligand methionine 80 by the alternative intrinsic ligand lysine 79 but not the extrinsic ligand imidazole resulted in the loss of one hexacyanide binding site. It is proposed that this site is located at the exposed heme edge and is functional in electron exchange.
Quasi-horizontal transport and mixing in the Antarctic stratosphre
NASA Technical Reports Server (NTRS)
Chen, Ping; Holton, James R.; O'Neill, Alan; Swinbank, Richard
1994-01-01
The quasi-horizontal transport and mixing properties of the Antarctic stratosphere are investigated with a simi-Lagrangian transport model and a 'contour advection' technique for the winter and spring of 1992 using analyzed winds from the United Kingdom Meteorological Office data assimiliation system. Transport calculations show that passive tracers are well mixed inside the polar vortex as well as in the midlatitude 'surf zone.' A the vortex edge, strong radial gradients in the tracer fields are well preserved, and their evolutions follow that of the potential vorticity until some time after the breakdown of the polar vortex. In the middle stratosphere there is little tracer exchange across the vortex edge in August and September. Some vortex air is eroded into the surf zone in filamentary form in October, and very strong exchange of air occurs between high and middle latitudes in November. In the lower stratosphere the vortex is not so isolated from the midlatitudes as in the middle stratosphere, and there is more mass exchange across the vortex edge. Calculations of the lengthening of material contours using the contour advection technique show that in the middle stratosphere, strong stirring (i.e., stretching and folding of material elements) occurs in the inner vortex, while the strongest stirring occurs in the midlatitude surf zone and the weakest occurs at the vortex edge. In the lower strtosphere, strong stirring occurs in the inner vortex. Stirring is moderate at the vortex edge and in the midlatitudes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
...' orders that yield Flag BY. When Direct Edge ECN LLC (d/b/a DE Route) (``DE Route''), the Exchange's... for removing liquidity from the BYX order book for executions by members that add a daily average... competing venues to maintain their competitive standing in the financial markets. The Exchange believes that...
NASA Astrophysics Data System (ADS)
Komsa, Hannu-Pekka; Broqvist, Peter; Pasquarello, Alfredo
2010-05-01
We investigate how various treatments of exact exchange affect defect charge transition levels and band edges in hybrid functional schemes for a variety of systems. We distinguish the effects of long-range vs short-range exchange and of local vs nonlocal exchange. This is achieved by the consideration of a set of four functionals, which comprise the semilocal Perdew-Burke-Ernzerhof (PBE) functional, the PBE hybrid (PBE0), the Heyd-Scuseria-Ernzerhof (HSE) functional, and a hybrid derived from PBE0 in which the Coulomb kernel in the exact exchange term is screened as in the HSE functional but which, unlike HSE, does not include a local expression compensating for the loss of the long-range exchange. We find that defect levels in PBE0 and in HSE almost coincide when aligned with respect to a common reference potential, due to the close total-energy differences in the two schemes. At variance, the HSE band edges determined within the same alignment scheme are found to shift significantly with respect to the PBE0 ones: the occupied and the unoccupied states undergo shifts of about +0.4eV and -0.4eV , respectively. These shifts are found to vary little among the materials considered. Through a rationale based on the behavior of local and nonlocal long-range exchange, this conclusion is generalized beyond the class of materials used in this study. Finally, we explicitly address the practice of tuning the band gap by adapting the fraction of exact exchange incorporated in the functional. When PBE0-like and HSE-like functionals are tuned to yield identical band gaps, their respective results for the positions of defect levels within the band gap and for the band alignments at interfaces are found to be very close.
Replica Exchange Simulations of the Thermodynamics of Aβ Fibril Growth
Takeda, Takako; Klimov, Dmitri K.
2009-01-01
Abstract Replica exchange molecular dynamics and an all-atom implicit solvent model are used to probe the thermodynamics of deposition of Alzheimer's Aβ monomers on preformed amyloid fibrils. Consistent with the experiments, two deposition stages have been identified. The docking stage occurs over a wide temperature range, starting with the formation of the first peptide-fibril interactions at 500 K. Docking is completed when a peptide fully adsorbs on the fibril edge at the temperature of 380 K. The docking transition appears to be continuous, and occurs without free energy barriers or intermediates. During docking, incoming Aβ monomer adopts a disordered structure on the fibril edge. The locking stage occurs at the temperature of ≈360 K and is characterized by the rugged free energy landscape. Locking takes place when incoming Aβ peptide forms a parallel β-sheet structure on the fibril edge. Because the β-sheets formed by locked Aβ peptides are typically off-registry, the structure of the locked phase differs from the structure of the fibril interior. The study also reports that binding affinities of two distinct fibril edges with respect to incoming Aβ peptides are different. The peptides bound to the concave edge have significantly lower free energy compared to those bound on the convex edge. Comparison with the available experimental data is discussed. PMID:19167295
Estimation of Sorption Behavior of Europium(III) Using Biotite Flakes - 13272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Go; Niibori, Yuichi; Mimura, Hitoshi
2013-07-01
The interaction of biotite and Eu(III) (europium (III)) was examined by using secondary ion-microprobe mass spectrometer (SIMS), fluorescence emission spectrum and decay behavior of fluorescence emission spectrum in addition to the time-changes of Eu(III) and potassium ions concentrations in a solution, using the flake form samples. The results of SIMS showed that the intensity of Eu was gradually decreasing with depth, while the intensity of Eu in the case shaken for 30 days exceeded that in the case for 1 day. Furthermore, the spatial distribution of Eu(III) and potassium ions in the flake of biotite suggested that Eu ions diffusemore » mainly from the edges of biotite flake, while Eu ions can slightly diffuse through some small cracks existing on the flake surface far from the edges. Besides, the elution amount of potassium from the biotite flakes into a solution was proportional to the sorption amount of Eu(III). The changes nearly revealed ion exchange between these ions, while muscovite flake sample did not show such ion exchange reaction. In addition, from the time-change of Eu(III) concentration, an apparent diffusion coefficient was estimated to be 8.0x10{sup -12} m{sup 2}/s, by using two-dimensional diffusion model coupled with a film between the solid phase and the liquid phase. Furthermore, the fluorescent intensity decreased with the shaking (contacting) time. This means that Eu(III) gradually diffuses into the inside of biotite edges of the biotite flakes, after the sorption of Eu(III) in the edges. This tendency was observed also in the powder samples. The observed fluorescence decay (at 592 nm in wave length) showed almost similar curve in any samples, indicating a certain sorption form of Eu(III) onto the edges of the biotite flakes. These results mentioned above suggest that the diffusion processes through internal layer in biotite mainly control the sorption behavior of multivalent ions. Such diffusion processes affect the retardation-effects on fracture surfaces in the rock matrix, depending on the fluid flow velocity of groundwater. That is, a more reliable model considering the mass transfer in the internal layer of biotite may be required to estimate the sorption behavior of RNs with biotite which controls the whole sorption behavior of granite. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Flag RB. The proposed change represents a pass through of the rate that Direct Edge ECN LLC (d/b/a DE... in the financial markets. The Exchange believes that its proposal to lower the default rebate for... Change Relating to Amendments to the EDGA Exchange, Inc. Fee Schedule June 10, 2013. Pursuant to Section...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... rate that Direct Edge ECN LLC (d/b/a DE Route) (``DE Route''), the Exchange's affiliated routing broker... daily average volume of at least 50,000 shares from $0.0002 per share to $0.0005 per share). The... the financial markets. The Exchange believes that its proposal to pass through a rebate of $0.0005 per...
Basis of the tubesheet heat exchanger design rules used in the French pressure vessel code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osweiller, F.
1992-02-01
For about 40 years most tubessheet exchangers have been designed according to the standards of TEMA. Partly due to their simplicity, these rules do not assure a safe heat-exchanger design in all cases. This is the main reason why new tubesheet design rules were developed in 1981 in France for the French pressure vessel code CODAP. For fixed tubesheet heat exchangers, the new rules account for the elastic rotational restraint of the shell and channel at the outer edge of the tubesheet, as proposed in 1959 by Galletly. For floating-head and U-tube heat exchangers, the approach developed by Gardner inmore » 1969 was selected with some modifications. In both cases, the tubesheet is replaced by an equivalent solid plate with adequate effective elastic constants, and the tube bundle is simulated by an elastic foundation. The elastic restraint at the edge of the tubesheet due the shell and channel is accounted for in different ways in the two types of heat exchangers. The purpose of the paper is to present the main basis of these rules and to compare them to TEMA rules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallego-Marcos, Fernando; Sánchez, Rafael; Platero, Gloria
We analyze long-range transport through an ac driven triple quantum dot with a single electron. Resonant transitions between separated and detuned dots are mediated by the exchange of n photons with the time-dependent field. An effective model is proposed in terms of second order (cotunneling) processes which dominate the long-range transport between the edge quantum dots. The ac field renormalizes the inter dot hopping, modifying the level hybridization. It results in a non-trivial behavior of the current with the frequency and amplitude of the external ac field.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Change Relating to New Market Access Risk Management Service, EdgeRisk Controls SM June 26, 2012... access risk management service, called EdgeRisk Controls\\SM\\ (the ``Service''). II. Self-Regulatory... and maintain a system of risk management controls and supervisory procedures that are reasonably...
Dyon proliferation in interacting quantum spin Hall edges
NASA Astrophysics Data System (ADS)
Lee, Shu-Ping; Maciejko, Joseph
We show that a quantum spin Hall system with intra-edge multiparticle backscattering and inter-edge exchange interactions exhibits a modular invariant zero-temperature phase diagram. We establish this through mapping to a classical 2D Coulomb gas with electrically and magnetically charged particles; strong coupling phases in the quantum edge problem correspond to the proliferation of various dyons in the Coulomb gas. Distinct dyon proliferated phases can be accessed by tuning the edge Luttinger parameters, for example using a split gate geometry. This research was supported by NSERC Grant #RGPIN-2014-4608, the Canada Research Chair Program (CRC) and the Canadian Institute for Advanced Research (CIFAR).
Band positions of Rutile surfaces and the possibility of water splitting
NASA Astrophysics Data System (ADS)
Esch, Tobit R.; Bredow, Thomas
2017-11-01
It is well known that both the band gap and the band edge positions of oxide semiconductors are important for the photocatalytic water splitting. In this study, we show that different surface terminations of the same crystalline solid lead to considerable variations of the band gaps and band edges. As an example, we investigate the low-index surfaces of rutile TiO2. A series of hybrid methods based on the PBE exchange-correlation functional, PBE0, HSE06 and HISS, are employed to study the effect of long-range exchange on the electronic properties. In aqueous solution, the oxide particles employed in photocatalysis are fully covered with water molecules. We therefore study the influence of molecularly and dissociatively adsorbed water on the band positions. It is found that water adsorption leads to significant shifts of the band edge positions due to changes of the electrostatic potential at the surface atom positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
NASA Astrophysics Data System (ADS)
Zare, Mohammad-Hossein; Biderang, Mehdi; Akbari, Alireza
2017-11-01
We study the symmetry of the potential superconducting order parameter in 5 d Mott insulators with an eye toward hole-doped Sr2IrO4 . Using a mean-field method, a mixed singlet-triplet superconductivity, d +p , is observed due to the antisymmetric exchange originating from a quasi-spin-orbit coupling. Our calculation on ribbon geometry shows the possible existence of the topologically protected edge states, because of the nodal structure of the superconducting gap. These edge modes are spin polarized and emerge as zero-energy flat bands, supporting a symmetry-protected Majorana state, verified by evaluation of the winding number and Z2 topological invariant. At the end, a possible experimental approach for observation of these edge states and determination of the superconducting gap symmetry is discussed based on the quasiparticle interference technique.
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; ...
2017-10-06
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... the Proposed Business Combination Involving BATS Global Markets, Inc. and Direct Edge Holdings LLC...'') in connection with the proposed business combination (the ``Combination''), as described in more detail below, involving its parent company, BATS Global Markets, Inc. and Direct Edge Holdings LLC (``DE...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... With the Proposed Business Combination Involving BATS Global Markets, Inc. and Direct Edge Holdings LLC...'') in connection with the proposed business combination (the ``Combination''), as described in more detail below, involving its parent company, BATS Global Markets, Inc. and Direct Edge Holdings LLC (``DE...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Change Relating to New Market Access Risk Management Service, EdgeRisk Controls SM June 26, 2012... access risk management service, called EdgeRisk Controls SM (the ``Service''). II. Self-Regulatory..., document and maintain a system of risk management controls and supervisory procedures that are reasonably...
Decoherence of high-energy electrons in weakly disordered quantum Hall edge states
NASA Astrophysics Data System (ADS)
Nigg, Simon E.; Lunde, Anders Mathias
2016-07-01
We investigate theoretically the phase coherence of electron transport in edge states of the integer quantum Hall effect at filling factor ν =2 , in the presence of disorder and inter edge state Coulomb interaction. Within a Fokker-Planck approach, we calculate analytically the visibility of the Aharonov-Bohm oscillations of the current through an electronic Mach-Zehnder interferometer. In agreement with recent experiments, we find that the visibility is independent of the energy of the current-carrying electrons injected high above the Fermi sea. Instead, it is the amount of disorder at the edge that sets the phase space available for inter edge state energy exchange and thereby controls the visibility suppression.
Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z
2018-04-11
The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.
Core x-ray spectra in semiconductors and the Mahan-Nozieres-De Dominicis model
NASA Astrophysics Data System (ADS)
Livins, Peteris
1998-10-01
The Mahan-Nozières-De Dominicis (MND) model of core x-ray spectra is examined for semiconductors. Due to the finite band gap, the Anderson orthogonality does not occur, and thus spectra near the band edge can be calculated without the shakeup contribution. For semiconductors, and not only for metals, we investigate whether the remaining many-particle dynamic exchange effect of the MND model, or so-called replacement, can significantly alter x-ray spectral shapes near the band edge from those obtained from a straightforward final-state rule. For both emission and absorption, in the absence of shakeup, an exact formulation suitable for materials with band structure is discussed. A numerical model for a semiconductor with a 1-eV band gap demonstrates the band-edge modifications, and shows a 50% effect at the band edge, indicating that this dynamic exchange effect can be significant and should be considered in any specific emission or absorption calculation for a semiconductor. Although the ineffectiveness of the orthogonality theorem in semiconductors is emphasized, a suppression near the band edge also remains a possibility. Included is a discussion on the breakdown of the final-state rule. In addition, connection is made to the determinantal approach of Ohtaka and Tanabe.
Silicon solar cell process development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Minahan, J. A.
1981-01-01
The fabrication of solar cells from several unconventional silicon materials is described, and cell performance measured and analyzed. Unconventional materials evaluated are edge defined film fed grown (EFG), heat exchanger method (HEM), dendritic web grown, and continuous CZ silicons. Resistivity, current voltage, and spectral sensitivity of the cells were measured. Current voltage was measured under AM0 and AM1 conditions. Maximum conversion efficiencies of cells fabricated from these and other unconventional silicons were compared and test results analyzed. The HEM and continuous CZ silicon were found to be superior to silicon materials considered previously.
Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
NASA Technical Reports Server (NTRS)
Cisar, Alan J. (Inventor); Murphy, Oliver J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor)
1997-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
... through of the rate that Direct Edge ECN LLC (d/b/a DE Route) (``DE Route''), the Exchange's affiliated... daily basis, measured monthly, more than that MPID's December 2012 added TCV (the ``December Baseline... of Members or competing venues to maintain their competitive standing in the financial markets...
Sorption of Metal Ions on Clay Minerals.
Schlegel; Charlet; Manceau
1999-12-15
The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 µM, 0.3 M NaNO(3)) and ionic strength (0.3 and 0.01 M NaNO(3), TotCo = 100 µM) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. At low ionic strength (0.01 M NaNO(3)), important Co uptake occurred within the first 5 min of reaction, consistent with Co adsorption on exchange sites of hectorite basal planes. Thereafter, the sorption rate dramatically decreased. In contrast, at high ionic strength (0.3 M NaNO(3)), Co uptake rate was much slower within the first 5 min and afterward higher than at 0.01 M NaNO(3), consistent with Co adsorption on specific surface sites located on the edges of hectorite. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. A congruent dissolution regime was observed prior to Co addition. Just after Co addition, an excess release of Mg relatively to congruent dissolution rates occurred at both high and low ionic strengths. At high ionic strength, this excess release nearly equaled the amount of sorbed Co. The dissolution rate of hectorite then decreased at longer Co sorption times. EXAFS spectra of hectorite reacted with Co at high and low ionic strengths and for reaction times longer than 6 h, exhibited similar features, suggesting that the local structural environments of Co atoms are similar. Spectral simulations revealed the occurrence of approximately 2 Mg and approximately 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites. Copyright 1999 Academic Press.
Non-abelian anyons and topological quantum information processing in 1D wire networks
NASA Astrophysics Data System (ADS)
Alicea, Jason
2012-02-01
Topological quantum computation provides an elegant solution to decoherence, circumventing this infamous problem at the hardware level. The most basic requirement in this approach is the ability to stabilize and manipulate particles exhibiting non-Abelian exchange statistics -- Majorana fermions being the simplest example. Curiously, Majorana fermions have been predicted to arise both in 2D systems, where non-Abelian statistics is well established, and in 1D, where exchange statistics of any type is ill-defined. An important question then arises: do Majorana fermions in 1D hold the same technological promise as their 2D counterparts? In this talk I will answer this question in the affirmative, describing how one can indeed manipulate and harness the non-Abelian statistics of Majoranas in a remarkably simple fashion using networks formed by quantum wires or topological insulator edges.
Varet, Hugo; Brillet-Guéguen, Loraine; Coppée, Jean-Yves; Dillies, Marie-Agnès
2016-01-01
Several R packages exist for the detection of differentially expressed genes from RNA-Seq data. The analysis process includes three main steps, namely normalization, dispersion estimation and test for differential expression. Quality control steps along this process are recommended but not mandatory, and failing to check the characteristics of the dataset may lead to spurious results. In addition, normalization methods and statistical models are not exchangeable across the packages without adequate transformations the users are often not aware of. Thus, dedicated analysis pipelines are needed to include systematic quality control steps and prevent errors from misusing the proposed methods. SARTools is an R pipeline for differential analysis of RNA-Seq count data. It can handle designs involving two or more conditions of a single biological factor with or without a blocking factor (such as a batch effect or a sample pairing). It is based on DESeq2 and edgeR and is composed of an R package and two R script templates (for DESeq2 and edgeR respectively). Tuning a small number of parameters and executing one of the R scripts, users have access to the full results of the analysis, including lists of differentially expressed genes and a HTML report that (i) displays diagnostic plots for quality control and model hypotheses checking and (ii) keeps track of the whole analysis process, parameter values and versions of the R packages used. SARTools provides systematic quality controls of the dataset as well as diagnostic plots that help to tune the model parameters. It gives access to the main parameters of DESeq2 and edgeR and prevents untrained users from misusing some functionalities of both packages. By keeping track of all the parameters of the analysis process it fits the requirements of reproducible research.
Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.
2014-01-01
Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263
Bipolar magnetic semiconductor in silicene nanoribbons
NASA Astrophysics Data System (ADS)
Farghadan, Rouhollah
2017-08-01
A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green's function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.
Champion, Guillaume; Lalioti, Nikolia; Tangoulis, Vassilis; Arrio, Marie-Anne; Sainctavit, Philippe; Villain, Françoise; Caneschi, Andrea; Gatteschi, Dante; Giorgetti, Christine; Baudelet, François; Verdaguer, Michel; Cartier dit Moulin, Christophe
2003-07-09
We report here the X-ray magnetic circular dichroism (XMCD) study at the Gd M(4,5)- and L(2,3)-edges of two linear magnetic chains involving Gd(III) cations bridged by nitronyl nitroxide radicals. This spectroscopy directly probes the magnetic moments of the 4f and 5d orbitals of the gadolinium ions. We compare macroscopic magnetic measurements and local XMCD signals. The M(4,5)-edges results are in agreement with the J values extracted from the fits of the SQUID magnetic measurements. The L(2,3)-edges signals show that the electronic density in the Gd 5d orbitals depends on the neighbors of the gadolinium cations. Nevertheless, the 5d orbitals do not seem to play any role in the superexchange pathway between radicals through the metal ion proposed to explain the particular magnetic exchange interactions between the radicals in these chains.
Correlated XANES, TEM, and NanoSIMS of presolar graphite grains
NASA Astrophysics Data System (ADS)
Groopman, Evan E.; Nittler, Larry R.
2018-01-01
We report correlated XANES, TEM, and NanoSIMS measurements of twelve presolar graphite grains extracted from primitive meteorites and for which isotopic data indicate predominantly Type-II supernovae origins. We find continued evidence for isotopic heterogeneities in presolar graphite grains, including the first observation of a radial gradient in the inferred initial 26Al/27Al within a presolar graphite grain. The XANES spectra of these samples show a variety of minor absorbances near the C K-edge, attributable to vinyl-keto, aliphatic, carboxyl, and carbonate molecules, as well as possible damage during sample preparation. Each sample exhibits homogeneous C K-edge XANES spectra within the graphite, however, showing no correlation with isotopic heterogeneities. Gradients in the isotope ratios of C, N, O, and Al could be due to both processes during condensation, e.g., mixing in stellar ejecta and granular transport, and post-condensation effects, such as isotope dilution and exchange with isotopically normal material in the early Solar System or laboratory, the latter of which is a significant issue for high-density presolar graphite grains. It remains unknown whether the mechanisms behind isotope exchange would also affect the local chemistry and therefore the XANES spectra. Ti L-edge XANES from most Ti-rich subgrains match standard spectra for TiC and potentially TiCN. A rare rutile (TiO2) subgrain has been identified, though it lacks the lowest energy L3 peak typically seen in standard spectra. Ca has also been identified by EDXS in TiC subgrains, likely due to the decay of live 44Ti at the time of formation. Future NanoSIMS measurements will determine the variability of initial 44Ti in TiC subgrains, an important constraint on mixing in the ejecta of the grains' parent supernovae.
NASA Astrophysics Data System (ADS)
Merz, M.; Fuchs, D.; Assmann, A.; Uebe, S.; v. Löhneysen, H.; Nagel, P.; Schuppler, S.
2011-07-01
The doping-dependent valence, orbital, and spin-state configurations of single-layered La2-xCaxCoO4 (x=0, 0.5, 1, and 1.5) were investigated with temperature-dependent near-edge x-ray absorption fine structure at the Co L2,3 and O K edges. The spectra show that in La2CoO4, the superexchange between neighboring Co2+ HS states is responsible for the strong antiferromagnetism. With increasing hole doping, the superexchange interactions between Co2+ HS ions are rapidly reduced by interlaced nonmagnetic Co3+ LS. For La1.5Ca0.5CoO4, the low Néel temperature of the samples together with the 50% Co2+ HS and 50% Co3+ LS configuration suggests a checkerboard arrangement of these ions. The spin blockade resulting from this arrangement naturally explains the high resistivity of La1.5Ca0.5CoO4. Upon further doping, Co2+ HS ions are replaced by Co3+ HS, and for LaCaCoO4 a mixture of Co3+ LS and Co3+ HS occurs. Superexchange via configuration fluctuation processes between these two species seems to induce long-range ferromagnetism, while the superexchange between adjacent Co3+ HS neighbors may lead to a competing antiferromagnetic exchange. For a doping content beyond x=1, Co4+ HS is introduced to the system at the expense of Co3+ LS, and a t2g double exchange between Co3+ HS and Co4+ HS is established, which further enhances ferromagnetic interactions and reduces resistivity. No indications for a Co3+ IS state are found throughout the La2-xCaxCoO4 doping series.
NASA Astrophysics Data System (ADS)
Briggs, E.; Martz, T. R.; Talley, L. D.; Mazloff, M. R.
2015-12-01
Ice cover has strong influence over gas exchange, vertical stability, and biological production which are critical to understanding the Southern Ocean's central role in oceanic biogeochemical cycling and heat and carbon uptake under a changing climate. However the relative influence of physical versus biological processes in this hard-to-study region is poorly understood due to limited observations. Here we present new findings from a profiling float equipped with biogeochemical sensors in the seasonal ice zone of the Ross Sea capturing, for the first time, under-ice pH profile data over a two year timespan from 2014 to the present. The relative influence of physical (e.g. vertical mixing and air-sea gas exchange) and biological (e.g. production and respiration) drivers of pH and O2 within the mixed layer are explored during the phases of ice formation, ice cover, and ice melt over the two seasonal cycles. During the austral fall just prior to and during ice formation, O2 increases as expected due to surface-layer undersaturation and enhanced gas exchange. A small increase in pH is also observed during this phase, but without a biological signal in accompanying profiling float chlorophyll data, which goes against common reasoning from both a biological and physical standpoint. During the phase of ice cover, gas exchange is inhibited and a clear respiration signal is observed in pH and O2 data from which respiration rates are calculated. In the austral spring, ice melt gives rise to substantial ice edge phytoplankton blooms indicated by O2 supersaturation and corresponding increase in pH and large chlorophyll signal. The influence of the duration of ice cover and mixed layer depth on the magnitude of the ice edge blooms is explored between the two seasonal cycles.
Edge profile measurements using Thomson scattering on the KSTAR tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. H., E-mail: jhleel@nfri.re.kr; Ko, W. H.; Department of Nuclear Fusion and Plasma Science, University of Science and Technology
2014-11-15
In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS systemmore » is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.« less
ETR HEAT EXCHANGER BUILDING, TRA644. EAST SIDE. CAMERA FACING WEST. ...
ETR HEAT EXCHANGER BUILDING, TRA-644. EAST SIDE. CAMERA FACING WEST. NOTE COURSE OF PIPE FROM GROUND AND FOLLOWING ROOF OF BUILDING. MTR BUILDING IN BACKGROUND AT RIGHT EDGE OF VIEW. INL NEGATIVE NO. HD46-36-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
3D Field Modifications of Core Neutral Fueling In the EMC3-EIRENE Code
NASA Astrophysics Data System (ADS)
Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Feng, Yuehe; Kaye, Stanley; Maingi, Rajesh; Soukhanovskii, Vsevolod
2017-10-01
The application of 3-D magnetic field perturbations to the edge plasmas of tokamaks has long been seen as a viable way to control damaging Edge Localized Modes (ELMs). These 3-D fields have also been correlated with a density drop in the core plasmas of tokamaks; known as `pump-out'. While pump-out is typically explained as the result of enhanced outward transport, degraded fueling of the core may also play a role. By altering the temperature and density of the plasma edge, 3-D fields will impact the distribution function of high energy neutral particles produced through ion-neutral energy exchange processes. Starved of the deeply penetrating neutral source, the core density will decrease. Numerical studies carried out with the EMC3-EIRENE code on National Spherical Tokamak eXperiment-Upgrade (NSTX-U) equilibria show that this change to core fueling by high energy neutrals may be a significant contributor to the overall particle balance in the NSTX-U tokamak: deep core (Ψ < 0.5) fueling from neutral ionization sources is decreased by 40-60% with RMPs. This work was funded by the US Department of Energy under Grant DE-SC0012315.
Dorf, M. A.; Cohen, R. H.; Simakov, A. N.; ...
2013-08-27
The use of the standard approaches for evaluating a neoclassical radial electric field E r, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of amore » tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (E r-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. As a result, the parameter regimes where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.« less
Membrane with supported internal passages
NASA Technical Reports Server (NTRS)
Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)
2000-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.
First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. Y., E-mail: liyy@ipp.ac.cn; Fu, J.; Jiang, D.
2016-11-15
An edge toroidal charge exchange recombination spectroscopy (eCXRS) diagnostic, based on a heating neutral beam injection (NBI), has been deployed recently on the Experimental Advanced Superconducting Tokamak (EAST). The eCXRS, which aims to measure the plasma ion temperature and toroidal rotation velocity in the edge region simultaneously, is a complement to the exiting core CXRS (cCXRS). Two rows with 32 fiber channels each cover a radial range from ∼2.15 m to ∼2.32 m with a high spatial resolution of ∼5-7 mm. Charge exchange emission of Carbon VI CVI at 529.059 nm induced by the NBI is routinely observed, but canmore » be tuned to any interested wavelength in the spectral range from 400 to 700 nm. Double-slit fiber bundles increase the number of channels, the fibers viewing the same radial position are binned on the CCD detector to improve the signal-to-noise ratio, enabling shorter exposure time down to 5 ms. One channel is connected to a neon lamp, which provides the real-time wavelength calibration on a shot-to-shot basis. In this paper, an overview of the eCXRS diagnostic on EAST is presented and the first results from the 2015 experimental campaign will be shown. Good agreements in ion temperature and toroidal rotation are obtained between the eCXRS and cCXRS systems.« less
Effect of the Edge Radial Electric Field on Neutral Particle Measurements
NASA Astrophysics Data System (ADS)
Guldi, C.; Heidbrink, W. W.; Beitzel, T. A.; Burrell, K. H.
2000-10-01
Neutral particle measurements in ASDEX were originally interpreted as evidence that the edge radial electric field Er changes gradually at the L-H transition.(W. Herrmann et al.), Phys. Rev. Lett. 75 (1995) 4401. We have relocated an analyzer to an orientation similar to the ASDEX analyzer: at the outer midplane viewing perpendicular ions midway between toroidal field coils. The electric field is measured by charge-exchange recombination and motional stark effect diagnostics. The passive charge exchange signal from the relocated analyzer is usually undetectable but, in discharges with large E_r, the flux of 5 keV neutrals can resemble ASDEX signals. The combined effects of ripple trapping and E_r× B_φ drifts(J.A. Heikkinen et al.), Plasma Phys. Contr. Fusion 40 (1998) 679. may explain the results.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Direct Edge ECN LLC (``DE ECN''), DE ECN is no longer a facility of the Exchange, and ISE (including its...-reference number in paragraph (a), as well as to add non-substantive words to correct the sentence structure..., competition, and capital formation. See 15 U.S.C. 78c(f). At any time within 60 days of the filing of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... to Rule 2.11 That Establish the Authority To Cancel Orders and Describe the Operation of an Error... routing broker-dealer, Direct Edge ECN LLC d/b/a DE Route (``DE Route'') to cancel orders if and when a... Center \\5\\ that causes EDGX or DE Route to cancel orders, if the Exchange or DE Route determines that...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... to Rule 2.11 That Establish the Authority To Cancel Orders and Describe the Operation of an Error... and its routing broker-dealer, Direct Edge ECN LLC d/b/a DE Route (``DE Route'') to cancel orders if... Center \\5\\ that causes EDGA or DE Route to cancel orders, if the Exchange or DE Route determines that...
Comparing the Development of Transversal Skills between Virtual and Physical Exchanges
ERIC Educational Resources Information Center
Van der Velden, Bart; Millner, Sophie; Van der Heijden, Casper
2016-01-01
This paper aims to compare the impact on the development of transversal skills, such as self-esteem, of virtual and physical exchanges. This is done by comparing the Europe on the Edge programme to the results of the Erasmus Impact Study. In doing so it fills the need that has been expressed in the telecollaboration field to study the impact of…
A high-efficiency spin polarizer based on edge and surface disordered silicene nanoribbons
NASA Astrophysics Data System (ADS)
Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Chen, Qiao; Ding, Jianwen
2018-07-01
Using the tight-binding formalism, we explore the effect of weak disorder upon the conductance of zigzag edge silicene nanoribbons (SiNRs), in the limit of phase-coherent transport. We find that the fashion of the conductance varies with disorder, and depends strongly on the type of disorder. Conductance dips are observed at the Van Hove singularities, owing to quasilocalized states existing in surface disordered SiNRs. A conductance gap is observed around the Fermi energy for both edge and surface disordered SiNRs, because edge states are localized. The average conductance of the disordered SiNRs decreases exponentially with the increase of disorder, and finally tends to disappear. The near-perfect spin polarization can be realized in SiNRs with a weak edge or surface disorder, and also can be attained by both the local electric field and the exchange field.
Edge-mode superconductivity in a two-dimensional topological insulator.
Pribiag, Vlad S; Beukman, Arjan J A; Qu, Fanming; Cassidy, Maja C; Charpentier, Christophe; Wegscheider, Werner; Kouwenhoven, Leo P
2015-07-01
Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.
ERIC Educational Resources Information Center
Higher Education Funding Council for England, 2016
2016-01-01
As part of its commitment to keeping the UK at the leading edge as a global knowledge-based economy, the last Government asked the Higher Education Funding Council for England (HEFCE) in 2014 to develop a knowledge exchange (KE) performance framework that would secure effective practice in universities on key productive elements in the…
NASA Astrophysics Data System (ADS)
Lucas, A.; Sengupta, D.; D'Asaro, E. A.; Nash, J. D.; Shroyer, E.; Mahadevan, A.; Tandon, A.; MacKinnon, J. A.; Pinkel, R.
2016-02-01
The exchange of heat between the atmosphere and ocean depends sensitively on the structure and extent of the oceanic boundary layer. Heat fluxes into and out of the ocean in turn influence atmospheric processes, and, in the northern Indian Ocean, impact the dominant regional weather pattern (the southwest Monsoon). In late 2015, measurements of the physical structure of the oceanic boundary layer were collected from a pair of research vessels and an array of autonomous assets in the Bay of Bengal as part of an India-U.S. scientific collaboration. Repeated CTD casts by a specialized shipboard system to 200m with a repeat rate of <3 min and a lateral spacing of < 200m, as well as near-surface sampling acoustic current profilers, showed how on the edge of an oceanic mesoscale eddy, the interaction of the mesoscale strain field, Ekman dynamics, and nonlinear submesoscale processes acted to subduct relative saline water under a very thin layer of fresher water derived from riverine sources. Our detailed surveys of the front between the overriding thin, fresh layer, and subducting adjacent more saline water demonstrated the important of small-scale physical dynamics to frontal slumping and the resulting re-stratification processes. These processes were strongly 3-dimensional and time-dependent. Such dynamics ultimately influence air-sea interactions by creating strongly stratified and very thin oceanic boundary layers in the Bay of Bengal, and allow the development of strong, persistent subsurface temperature maxima.
Sea Ice, Climate and Fram Strait
NASA Technical Reports Server (NTRS)
Hunkins, K.
1984-01-01
When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.
Villaume, Sebastien; Ekström, Ulf; Ottosson, Henrik; Norman, Patrick
2010-06-07
The relativistic four-component static exchange approach for calculation of near-edge X-ray absorption spectra has been reviewed. Application of the method is made to the Au(111) interface and the adsorption of methanethiol by a study of the near sulfur L-edge spectrum. The binding energies of the sulfur 2p(1/2) and 2p(3/2) sublevels in methanethiol are determined to be split by 1.2 eV due to spin-orbit coupling, and the binding energy of the 2p(3/2) shell is lowered from 169.2 eV for the isolated system to 167.4 and 166.7-166.8 eV for methanethiol in mono- and di-coordinated adsorption sites, respectively (with reference to vacuum). In the near L-edge X-ray absorption fine structure spectrum only the sigma*(S-C) peak at 166 eV remains intact by surface adsorption, whereas transitions of predominantly Rydberg character are largely quenched in the surface spectra. The sigma*(S-H) peak of methanethiol is replaced by low-lying, isolated, sigma*(S-Au) peak(s), where the number of peaks in the latter category and their splittings are characteristic of the local bonding situation of the sulfur.
Evidence of Stratosphere-to-Troposphere Transport Within a Mesoscale Model and TOMS Total Ozone
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Stanford, John L.; Einaudi, Franco (Technical Monitor)
2001-01-01
We present evidence for stratospheric mass transport into, and remaining in, the troposphere in an intense midlatitude cyclone. Mesoscale forecast model analysis fields from the Mesoscale Analysis and Prediction System (MAPS) were compared with total ozone observations from the Total Ozone Measurement Spectrometer (TOMS). Coupled with parcel back-trajectory calculations, the analyses suggest two mechanisms contributed to the mass exchange: (1) A region of dynamical ly-induced exchange occurred on the cyclone's southern edge. Parcels originally in the stratosphere crossed the jet core and experienced dilution by turbulent mixing with tropospheric air. (2) Diabatic effects reduced parcel potential vorticity (PV) for trajectories traversing precipitation regions, resulting in a "PV-hole" signature in the cyclone center. Air with lower-stratospheric values of ozone and water vapor was left in the troposphere. The strength of the latter process may be atypical. These results, combined with other research, suggest that precipitation-induced diabatic effects can significantly modify, (either decreasing or increasing) parcel potential vorticity, depending on parcel trajectory configuration with respect to jet core and maximum heating regions. In addition, these results underscore the importance of using not only PV but also chemical constituents for diagnoses of stratosphere-troposphere exchange (STE).
Oscillating-Coolant Heat Exchanger
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.
1992-01-01
Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; ...
2016-09-26
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less
Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
Partnership For Edge Physics Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, Manish
In this effort, we will extend our prior work as part of CPES (i.e., DART and DataSpaces) to support in-situ tight coupling between application codes that exploits data locality and core-level parallelism to maximize on-chip data exchange and reuse. This will be accomplished by mapping coupled simulations so that the data exchanges are more localized within the nodes. Coupled simulation workflows can more effectively utilize the resources available on emerging HEC platforms if they can be mapped and executed to exploit data locality as well as the communication patterns between application components. Scheduling and running such workflows requires an extendedmore » framework that should provide a unified hybrid abstraction to enable coordination and data sharing across computation tasks that run on the heterogeneous multi-core-based systems, and develop a data-locality based dynamic tasks scheduling approach to increase on-chip or intra-node data exchanges and in-situ execution. This effort will extend our prior work as part of CPES (i.e., DART and DataSpaces), which provided a simple virtual shared-space abstraction hosted at the staging nodes, to support application coordination, data sharing and active data processing services. Moreover, it will transparently manage the low-level operations associated with the inter-application data exchange, such as data redistributions, and will enable running coupled simulation workflow on multi-cores computing platforms.« less
Tuning exchange interactions in organometallic semiconductors
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.
2015-09-01
Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.
NASA Technical Reports Server (NTRS)
Spitzer, M. B.
1983-01-01
The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.
Time-dependent mean-field theory for x-ray near-edge spectroscopy
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Lee, A. J.
2014-02-01
We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.
Hα line shape in front of the limiter in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group
1999-11-01
The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.
Plating Patches On Heat-Exchanger Jackets
NASA Technical Reports Server (NTRS)
Loureiro, Henry; Kubik, Frank
1989-01-01
Permanent repairs made without welding. Technique used to repair nickel-alloy nozzle jacket of Space Shuttle main engine. Applicable to other metal heat-exchanger jackets with similar configurations. Does not require welding, brazing, soldering, or other operations involving high temperatures and consequent damage to surrounding areas. Portion of jacket around damaged area removed by grinding and polishing out to edges adjacent to tube/jacket braze bonds. Spaces between tubes filled with wax preventing contamination of spaces during subsequent plating.
NASA Astrophysics Data System (ADS)
Straneo, F.
2017-12-01
The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.
NASA Astrophysics Data System (ADS)
Stanley, V.; Schoephoester, P.; Lodge, R. W. D.
2016-12-01
The widespread speed up of Greenland's glaciers, over the last two decades, was unpredicted, revealing major gaps in our understanding of how ice sheets respond to a changing climate. Increased submarine melting at the edge of glaciers has emerged as a key trigger - indicating that glacier/ocean exchanges must be accounted for in ice sheet variability reconstructions and predictions. In parallel, the increasing freshwater discharge into the ocean, associated with Greenland's ice loss, has the potential to impact the North Atlantic's circulation and climate. Thus glacier/ocean exchanges are also relevant to understanding drivers of past and future changes in the North Atlantic Ocean's circulation. Here, I present recent findings from observations collected at the edge of several Greenland glaciers that reveal how melting is caused by intrusions of warm, subtropical waters into the fjords and enhanced by the release of surface melt hundreds of meters below sea level. Similarly, hydrographic and tracer data collected at the glaciers' margins, and within the glacial fjords, reveal how Greenland meltwater are exported in the form of highly diluted glacially modified waters, often subsurface, and temporally lagged with respect to the meltwater release. These findings underline the need for improved representation of ice/ocean exchanges in models in order understand and predict the ice sheet's impact on the ocean and the ocean's impact on the ice sheet.
Inner edge magnetisms in carbon honeycombs
NASA Astrophysics Data System (ADS)
Liu, Xiaofei; Guo, Wanlin
2018-04-01
We show by comprehensive ab initio calculations that sp2 carbon honeycombs recently synthesised by Krainyukova et al. [Phys. Rev. Lett. 116, 055501 (2016)] exhibit antiferromagnetism, not only at the inner edge of the zigzag ribbon component but also at the chain of sp2 carbon that joins three zigzag ribbons. The π antiferromagnetism at the joint chain has spin orientations that alternatively change along the axis and stems from a super-exchange mechanism. Along with the spin-polarization, the joint chain conduction channel opens an energy gap. The spin-polarization of the zigzag edge due to the magnetic instability of the localized edge states is less stable in energy. Through hole doping, the zigzag edge antiferromagnetism is enhanced and stabilized as the magnetic ground state, along with the re-opening of the joint chain conduction channel. When the carbon honeycombs are reconstructed into sp3-sp2 hybrid honeycombs, the π states of the joint are diminished, but the zigzag edge magnetism is preserved. Our results propose carbon honeycombs as novel magnetic carbon with competing polarization configurations.
Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.
Shiklomanov, Alexey N; Levia, Delphis F
2014-10-01
Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...
2017-05-16
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-01-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866
NASA Astrophysics Data System (ADS)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-05-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.
NASA Astrophysics Data System (ADS)
Gibbes, B.; Robinson, C.; Li, L.; Lockington, D.; Li, H.
2008-12-01
Field measurements presented by [Gibbes, B., Robinson, C., Li, L., Lockington, D.A., Carey, H., 2008. Tidally driven pore water exchange within offshore intertidal sandbanks: Part I Field measurements. Estuarine, Coastal and Shelf Science 79, pp. 121-132.] revealed a tidally driven pore water flow system within an offshore intertidal sandbank in Moreton Bay, Australia. The field data suggested that this flow system might be capable of delivering nutrients, and in particular bio-available iron, across the sediment-water interface. Bio-available iron has been implicated as a key nutrient in the growth of the toxic marine cyanobacteria Lyngbya majuscula and therefore this pore water exchange process is of interest at sites where L. majuscula blooms have been observed. In this study two-dimensional numerical simulations were used in conjunction with hydraulic data from field measurements to further investigate the tidally induced pore water flow patterns. Simulation results generally showed good agreement with the field data and revealed a more complex residual pore water flow system in the sandbank than shown by the field data. The flow system, strongly influenced by the geometry of the sandbank, was characterized by two circulation cells which resulted in pore water discharge at the bank edge and also to a permanently ponded area within the sandbank interior. Simulated discharge volumes in these two zones were in the order of 0.813 m 3 and 0.143 m 3 per meter width (along shore) of sandbank per tidal cycle at the bank edge and sandbank interior respectively. Transit times of pore water circulating through these cells were found to range from ≈ 17 days to > 60 years with an average time of 780 days. The results suggest that the tidally driven flow systems might provide a mechanism for transport of bio-available iron across the sediment-water interface. This flow could constitute a previously unrecognized source of bio-available iron for L. majuscula blooms in the Bay.
Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions
NASA Astrophysics Data System (ADS)
Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves
2012-05-01
Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.
Mapping Catalytically Relevant Edge Electronic States of MoS2
2018-01-01
Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532
Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva
2018-05-23
Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).
At-edge minima in elastic photon scattering amplitudes for dilute aqueous ions
NASA Astrophysics Data System (ADS)
Bradley, D. A.; Hugtenburg, R. P.; Yusoff, A. L.
2006-11-01
Elastic photon scattering and absorption in the vicinity of core atomic orbital energies give rise to resonances in the elastic photon scattering cross-section. Of interest is whether a dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. Predictions of the energy of these resonances have been determined for a Dirac-Slater exchange potential with a Latter tail. At BM28 (ESRF), tuneable X-rays were obtained at eV resolution using a 1 1 1 Si monochromator. From target systems including Cu 2+ and Zn 2+, the X-rays were scattered through high angle from an aqueous medium contained in a thin Perspex cell provided with 8 μm kaplan windows. An energy resolution of ˜500 eV from the HPGe detector was adequate to separate the elastic scattering signal from K α radiation but not from Compton or K β contributions. The Compton contribution from the medium was removed assuming validity of the relativistic impulse approximation. The contribution due to K β fluorescence and the resonant X-ray Raman scattering process were handled by assuming the branching ratio for K α and K β contributions to be constant and to be accurately described by fluorescent yields measured above edge. At ionic concentrations ranging from 0.01 to 0.1 mol/l, resonance structures accord with predictions of elastic scattering cross-sections calculated within IPA. Amplitudes calculated using modified form-factors and anomalous scatter factors computed from a Dirac-Slater exchange potential were convolved with a Lorentzian of several eV (FWHM).
High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.
Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H
2016-11-01
A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.
Activating without Inhibiting: Left-Edge Boundary Tones and Syntactic Processing
ERIC Educational Resources Information Center
Roll, Mikael; Horne, Merle; Lindgren, Magnus
2011-01-01
Right-edge boundary tones have earlier been found to restrict syntactic processing by closing a clause for further integration of incoming words. The role of left-edge intonation, however, has received little attention to date. We show that Swedish left-edge boundary tones selectively facilitate the on-line processing of main clauses, the…
NASA Astrophysics Data System (ADS)
Agishev, B. Y.; Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Smorchova, Y. V.
2018-03-01
The effectiveness of the heat exchange intensifier “rib-twisted wire” is considered in this paper. The main goal is to study the influence of the wire coiling step t on heat transfer and hydraulic resistance for different values Ḣ of the dimensionless height of the edge Ḣ, as well as some results on heat exchange during bubbly boiling in an annular channel. Show: • a brief description and an image of the heat exchange intensifier “rib-twisted wire” • generalized results of studies of heat exchange and hydraulic resistance in the annular channel in the single-phase convection with different geometric characteristics of the intensifier; • empirical correlations of the generalized experimental results that allow to calculating the coefficient of hydraulic resistance and heat transfer in the range of regime parameters in the single-phase convection that is being studied. • some results of experiments in bubbly boiling regimes and near-critical thermal loads.
Variation in Local-Scale Edge Effects: Mechanisms and landscape Context
Therese M. Donovan; Peter W. Jones; Elizabeth M. Annand; Frank R. Thompson III
1997-01-01
Ecological processes near habitat edges often differ from processes away from edges. Yet, the generality of "edge effects" has been hotly debated because results vary tremendously. To understand the factors responsible for this variation, we described nest predation and cowbird distribution patterns in forest edge and forest core habitats on 36 randomly...
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
First-principles calculations of the magnetic properties of (Cd,Mn)Te nanocrystals
NASA Astrophysics Data System (ADS)
Echeverría-Arrondo, C.; Pérez-Conde, J.; Ayuela, A.
2009-04-01
We investigate the electronic and magnetic properties of Mn-doped CdTe nanocrystals (NCs) with ˜2nm in diameter which can be experimentally synthesized with Mn atoms inside. Using the density-functional theory, we consider two doping cases: NCs containing one or two Mn impurities. Although the Mnd peaks carry five up electrons in the dot, the local magnetic moment on the Mn site is 4.65μB . It is smaller than 5μB because of the sp-d hybridization between the localized 3d electrons of the Mn atoms and the s - and p -type valence states of the host compound. The sp-d hybridization induces small magnetic moments on the Mn-nearest-neighbor Te sites, antiparallel to the Mn moment affecting the p -type valence states of the undoped dot, as usual for a kinetic-mediated exchange magnetic coupling. Furthermore, we calculate the parameters standing for the sp-d exchange interactions. Conduction N0α and valence N0β are close to the experimental bulk values when the Mn impurities occupy bulklike NCs’ central positions, and they tend to zero close to the surface. This behavior is further explained by an analysis of valence-band-edge states showing that symmetry breaking splits the states and in consequence reduces the exchange. For two Mn atoms in several positions, the valence edge states show a further departure from an interpretation based in a perturbative treatment. We also calculate the d-d exchange interactions |Jdd| between Mn spins. The largest |Jdd| value is also for Mn atoms on bulklike central sites; in comparison with the experimental d-d exchange constant in bulk Cd0.95Mn0.05Te , it is four times smaller.
Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange.
Zhang, Jianbing; Chernomordik, Boris D; Crisp, Ryan W; Kroupa, Daniel M; Luther, Joseph M; Miller, Elisa M; Gao, Jianbo; Beard, Matthew C
2015-07-28
We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd(2+) cation is exchanged for the Pb(2+) cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd(2+), we also find suitable conditions for the exchange of Zn(2+) cations for Pb(2+) cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the ⟨111⟩ direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.
Acoustic energy exchange through flow turning
NASA Astrophysics Data System (ADS)
Baum, Joseph D.
1987-01-01
A numerical investigation of the mechanisms of acoustic energy exchange between the mean and acoustic flow fields in resonance chambers, such as rocket engines, is reported. A noniterative linearized block implicit scheme was used to solve the time-dependent compressible Navier-Stokes equations. Two test cases were investigated: acoustic wave propagation in a tube with a coexisting sheared mean flow (the refraction test) and acoustic wave propagation in a tube where the mean sheared flow was injected into the tube through its lateral boundary (the flow turning study). For flow turning, significant excitation of mean flow energy was observed at two locations: at the edge of the acoustic boundary layer and within a zone adjacent to the acoustic boundary layer extending up to 0.1 radii away from the wall. A weaker streaming effect was observed for the refraction study, and only at the edge of the acoustic boundary layer. The total dissipation for the flow turning test was twice the dissipation for refraction.
NASA Technical Reports Server (NTRS)
Natesh, R.; Mena, M.; Plichta, M.; Smith, J. M.; Sellani, M. A.
1982-01-01
One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope.
High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal
Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...
2016-09-12
A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less
Minimum wear tube support hole design
Glatthorn, Raymond H.
1986-01-01
A minimum-wear through-bore (16) is defined within a heat exchanger tube support plate (14) so as to have an hourglass configuration as determined by means of a constant radiused surface curvature (18) as defined by means of an external radius (R3), wherein the surface (18) extends between the upper surface (20) and lower surface (22) of the tube support plate (14). When a heat exchange tube (12) is disposed within the tube support plate (14) so as to pass through the through-bore (16), the heat exchange tube (12) is always in contact with a smoothly curved or radiused portion of the through-bore surface (16) whereby unacceptably excessive wear upon the heat exchange tube (12), as normally developed by means of sharp edges, lands, ridges, or the like conventionally part of the tube support plates, is eliminated or substantially reduced.
Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement
NASA Astrophysics Data System (ADS)
Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.
In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.
Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds
NASA Astrophysics Data System (ADS)
Murzionak, Aliaksandr
A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.
Fast and accurate edge orientation processing during object manipulation
Flanagan, J Randall; Johansson, Roland S
2018-01-01
Quickly and accurately extracting information about a touched object’s orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system’s capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system. PMID:29611804
NASA Astrophysics Data System (ADS)
Okamoto, Hiroaki; Sakaguchi, Naoshi; Hayano, Fuminori
2010-03-01
It is becoming increasingly important to monitor wafer edge profiles in the immersion lithography era. A Nikon edge defect inspection tool acquires the circumferential optical images of the wafer edge during its inspection process. Nikon's unique illumination system and optics make it possible to then convert the brightness data of the captured images to quantifiable edge profile information. During this process the wafer's outer shape is also calculated. Test results show that even newly shipped bare wafers may not have a constant shape over 360 degree. In some cases repeated deformations with 90 degree pitch are observed.
Microbial, Physical and Chemical Drivers of COS and 18O-CO2 Exchange in Soils
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Boye, K.; Whelan, M.; Pang, E.; von Sperber, C.; Brueggemann, N.; Berry, J. A.; Welander, P. V.
2015-12-01
Carbonyl sulfide (COS) and the oxygen isotope composition (δ18O) of CO2 are potential tools for differentiating the contributions of photosynthesis and respiration to the balance of global carbon cycling. These processes are coupled at the leaf level via the enzyme carbonic anhydrase (CA), which hydrolyzes CO2 in the first biochemical step of the photosynthetic pathway (CO2 + H2O ⇌ HCO3- + H+) and correspondingly structural analogue COS (COS + H2O → CO2 + H2S). CA also accelerates the exchange of oxygen isotopes between CO2 and H2O leading to a distinct isotopic imprint [1]. The biogeochemical cycles of these tracers include significant, yet poorly characterized soil processes that challenge their utility for probing the carbon cycle. In soils, microbial CA also hydrolyze COS and accelerate O isotope exchange between CO2 and soil water. Soils have been observed to emit COS by undetermined processes. To account for these soil processes, measurements are needed to identify the key microbial, chemical, and physical factors. In this study, we survey COS and δ18O exchange in twenty different soils spanning a variety of biomes and soil properties. By comparing COS fluxes and δ18O-CO2 values emitted from moist soils we investigate whether the same types of CA catalyze these two processes. Additionally, we seek to identify the potential chemical drivers of COS emissions by measuring COS fluxes in dry soils. These data are compared with soil physical (bulk density, volumetric water content, texture), chemical (pH, elemental analysis, sulfate, sulfur K-edge XANES), and microbial measurements (biomass and phylogeny). Furthermore, we determine the abundance and diversity of CA-encoding genes to directly link CA with measured soil function. This work will define the best predictors for COS fluxes and δ18O-CO2 values from our suite of biogeochemical measurements. The suitability of identified predictor variables can be tested in follow-up studies and applied for modeling purposes. References: [1] Von Sperber, C., Weiler, M. and Brüggemann, N.: The effect of soil moisture, soil particle size, litter layer and carbonic anhydrase on the oxygen isotopic composition of soil-released CO2, Eur. J. Soil Sci., 66(3), doi:10.1111/ejss.12241, 2015.
Neutral recycling effects on ITG turbulence
Stotler, D. P.; Lang, J.; Chang, C. S.; ...
2017-07-04
Here, the effects of recycled neutral atoms on tokamak ion temperature gradient (ITG) driven turbulence have been investigated in a steep edge pedestal, magnetic separatrix configuration, with the full-f edge gryokinetic code XGC1. An adiabatic electron model has been used; hence, the impacts of neutral particles and turbulence on the density gradient are not considered, nor are electromagnetic turbulence effects. The neutral atoms enhance the ITG turbulence, first, by increasing the ion temperature gradient in the pedestal via the cooling effects of charge exchange and, second, by a relative reduction in themore » $$E\\times B$$ shearing rate.« less
Lattice spin models for non-Abelian chiral spin liquids
Lecheminant, P.; Tsvelik, A. M.
2017-04-26
Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.
Neutral recycling effects on ITG turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stotler, D. P.; Lang, J.; Chang, C. S.
Here, the effects of recycled neutral atoms on tokamak ion temperature gradient (ITG) driven turbulence have been investigated in a steep edge pedestal, magnetic separatrix configuration, with the full-f edge gryokinetic code XGC1. An adiabatic electron model has been used; hence, the impacts of neutral particles and turbulence on the density gradient are not considered, nor are electromagnetic turbulence effects. The neutral atoms enhance the ITG turbulence, first, by increasing the ion temperature gradient in the pedestal via the cooling effects of charge exchange and, second, by a relative reduction in themore » $$E\\times B$$ shearing rate.« less
Gao, Min -Rui; Chan, Maria K. Y.; Sun, Yugang
2015-07-03
In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10 -3more » mA cm -2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.« less
Gao, Min-Rui; Chan, Maria K.Y.; Sun, Yugang
2015-01-01
Layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of −103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10−3 mA cm−2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance. PMID:26138031
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: experiment and theory.
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-22
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288 eV photon energy, due to absorption to pi* virtual orbitals, and broader structures at higher energy, involving sigma* virtual orbitals. The sharp absorption structures to the pi* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of pi* symmetry, from the six chemically shifted C 1s core orbitals.
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory
NASA Astrophysics Data System (ADS)
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-01
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288eV photon energy, due to absorption to π* virtual orbitals, and broader structures at higher energy, involving σ* virtual orbitals. The sharp absorption structures to the π* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of π* symmetry, from the six chemically shifted C 1s core orbitals.
Spin Qubits in Germanium Structures with Phononic Gap
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.
2014-01-01
We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.
NASA Astrophysics Data System (ADS)
Zusin, Dmitriy; Tengdin, Phoebe M.; Gopalakrishnan, Maithreyi; Gentry, Christian; Blonsky, Adam; Gerrity, Michael; Legut, Dominik; Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.; Oppeneer, Peter M.; Kapteyn, Henry C.; Murnane, Margaret M.
2018-01-01
The microscopic state of a magnetic material is characterized by its resonant magneto-optical response through the off-diagonal dielectric tensor component ɛx y. However, the measurement of the full complex ɛx y in the extreme ultraviolet spectral region covering the M absorption edges of 3 d ferromagnets is challenging due to the need for either a careful polarization analysis, which is complicated by a lack of efficient polarization analyzers, or scanning the angle of incidence in fine steps. Here, we propose and demonstrate a technique to extract the complex resonant permittivity ɛx y simply by scanning the polarization angle of linearly polarized high harmonics to measure the magneto-optical asymmetry in reflection geometry. Because this technique is more practical and faster to experimentally implement than previous approaches, we can directly measure the full time evolution of ɛx y(t ) during laser-induced demagnetization across the entire M2 ,3 absorption edge of cobalt with femtosecond time resolution. We find that for polycrystalline Co films on an insulating substrate, the changes in ɛx y are uniform throughout the spectrum, to within our experimental precision. This result suggests that, in the regime of strong demagnetization, the ultrafast demagnetization response is primarily dominated by magnon generation. We estimate the contribution of exchange-splitting reduction to the ultrafast demagnetization process to be no more than 25%.
USDA-ARS?s Scientific Manuscript database
A fermentation process, which was designated the EDGE (enhanced dry grind enzymatic) process, has recently been developed for barley ethanol production. In the EDGE process, in addition to the enzymes normally required for starch hydrolysis, commercial Beta-glucanases were used to hydrolyze (1,3)(1,...
Wave effects on ocean-ice interaction in the marginal ice zone
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.
1993-01-01
The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Stanford, John L.
2001-01-01
We evaluate evidence for stratospheric mass transport into, and mass remaining in, the troposphere during an intense midlatitude cyclone. Mesoscale forecast model analysis fields from the Mesoscale Analysis and Prediction System were matched with total ozone observations from the Total Ozone Measurement Spectrometer. Combined with parcel back trajectory calculations, the analyses imply that two mechanisms contributed to the mass exchange: (1) An area of dynamically induced exchange was observed on the cyclone's southern edge. Parcels originally in the stratosphere crossed the jet core and were diluted through turbulent mixing with tropospheric air; (2) Diabetic effects reduced parcel potential vorticity (PC) for trajectories traversing precipitation regions, creating a 'PV hole' signature in the center of the cyclone. Air with characteristics of ozone and water vapor found in the lower stratosphere remained in the troposphere. The strength of the latter process may be unusual. Combined with other research, these results suggest that precipitation-induced diabetic effects can significantly modify (either decreasing or increasing) parcel potential vorticity, depending on parcel trajectory configuration with respect to maximum heating regions and jet core. The diabetic heating effect on stratosphere-troposphere exchange (STE) is more important to tropopause erosion than to altering parcel trajectories. In addition, these results underline the importance of using not only PC but also chemical constituents for diagnoses of STE.
Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions
NASA Technical Reports Server (NTRS)
Kleinsasser, A. W.; Barner, J. B.
1997-01-01
The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.
Effects of the U boson on the inner edge of neutron star crusts
NASA Astrophysics Data System (ADS)
Zheng, Hao; Chen, Lie-Wen
2012-02-01
We explore effects of the light vector U boson, which is weakly coupled to nucleons, on the transition density ρt and pressure Pt at the inner edge separating the liquid core from the solid crust of neutron stars. Three methods, i.e., the thermodynamical approach, the curvature matrix approach, and the Vlasov equation approach, are used to determine the transition density ρt with the Skyrme effective nucleon-nucleon interactions. We find that the ρt and Pt depend on not only the ratio of coupling strength to mass squared of the U boson g2/μ2 but also its mass μ due to the finite-range interaction from the U-boson exchange. In particular, our results indicate that the ρt and Pt are sensitive to both g2/μ2 and μ if the U-boson mass μ is larger than about 2 MeV. Furthermore, we show that both g2/μ2 and μ can have significant influence on the mass-radius relation and the crustal fraction of total moment of inertia of neutron stars. In addition, we study the exchange term contribution of the U boson based on the density matrix expansion method, and demonstrate that the exchange term effects on the nuclear matter equation of state as well as the ρt and Pt are generally negligible.
Atomic physics effects on tokamak edge drift-tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
Atomic physics effects on tokamak edge drift-tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahm, T.S.
1993-03-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.
Sasaki, Kotaro; Marinkovic, Nebojsa; Isaacs, Hugh S.; ...
2015-11-17
Understanding oxidation/dissolution mechanisms of Pt is critical in designing durable catalysts for the oxygen reduction reaction (ORR), but exact mechanisms remain unclear. Our present work explores the oxidation/dissolution of Pt and Pt monolayer (ML) electrocatalysts over a wide range of applied potentials using cells that facilitate in situ measurements by combining X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. Furthermore, the X-ray absorption near edge structure (XANES) measurement demonstrated that Pt nanoparticle surfaces were oxidized from metallic Pt to α-PtO 2-type oxide during the potential sweep from 0.41 to 1.5 V, and the transition state of O or OHmore » adsorption on Pt and the onset of the place exchange process were revealed by the delta mu (Δμ) method. Only the top layers of Pt nanoparticles were oxidized, while the inner Pt atoms remained intact. At a higher potential over 1.9 V, α-PtO 2-type surface oxides dissolve due to local acidification caused by the oxygen evolution reaction and carbon corrosion. Pt oxidation of Pt ML on the Pd nanoparticle electrocatalyst is considerably hampered compared with the Pt/C catalyst, presumably because preferential Pd oxidation proceeds at the defects in Pt MLs up to 0.91 V and through O penetrated through the Pt MLs by the place exchange process above 1.11 V.« less
Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces
2013-07-12
perfect, lattice-matched hetero- structures of complex perovskite oxides using state-of-the-art thin fi lm growth techniques has generated new physical...investigated for several BFO/LSMO heterostructures by X-ray absorption spectroscopy (XAS) measurements at 17 K of the Fe- L 2,3 edge at the Advanced Light
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... nature of any liquidity the originating routing strategy seeks. Purchasers of Edge Routed Liquidity... market participants to improve their trading and order routing strategies by being able to discern missed... market research and analysis as well as back-testing of new trading strategies to gauge effectiveness...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... nature of any liquidity the originating routing strategy seeks. Purchasers of Edge Routed Liquidity... participants to improve their trading and order routing strategies by being able to discern missed trading... research and analysis as well as back-testing of new trading strategies to gauge effectiveness. The [[Page...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... available on the Exchange's Web site at http://www.nasdaq.cchwallstreet.com , at the principal office of the... trading systems (``ATSs''), including dark pools and electronic communication networks (``ECNs''). Each...ECN, BATS Trading and Direct Edge. A proliferation of dark pools and other ATSs operate profitably...
Plant Available Nutrients, Barrow, Alaska, Ver. 1
Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie
2014-02-19
This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.
NASA Astrophysics Data System (ADS)
Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.
2018-06-01
We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.
NASA Astrophysics Data System (ADS)
Matsumoto, Nobuhiro; Watanabe, Takuro; Maruyama, Masaaki; Horimoto, Yoshiyuki; Maeda, Tsuneaki; Kato, Kenji
2004-06-01
The gravimetric method is the most popular method for preparing reference gas mixtures with high accuracy. We have designed and manufactured novel mass measurement equipment for gravimetric preparation of reference gas mixtures. This equipment consists of an electronic mass-comparator with a maximum capacity of 15 kg and readability of 1 mg and an automatic cylinder exchanger. The structure of this equipment is simpler and the cost is much lower than a conventional mechanical knife-edge type large balance used for gravimetric preparation of primary gas mixtures in Japan. This cylinder exchanger can mount two cylinders alternatively on the weighing pan of the comparator. In this study, the performance of the equipment has been evaluated. At first, the linearity and repeatability of the mass measurement were evaluated using standard mass pieces. Then, binary gas mixtures of propane and nitrogen were prepared and compared with those prepared with the conventional knife-edge type balance. The comparison resulted in good consistency at the compatibility criterion described in ISO6143:2001.
NASA Astrophysics Data System (ADS)
Hsu, Chih-Yu; Huang, Hsuan-Yu; Lee, Lin-Tsang
2010-12-01
The paper propose a new procedure including four stages in order to preserve the desired edges during the image processing of noise reduction. A denoised image can be obtained from a noisy image at the first stage of the procedure. At the second stage, an edge map can be obtained by the Canny edge detector to find the edges of the object contours. Manual modification of an edge map at the third stage is optional to capture all the desired edges of the object contours. At the final stage, a new method called Edge Preserved Inhomogeneous Diffusion Equation (EPIDE) is used to smooth the noisy images or the previously denoised image at the first stage for achieving the edge preservation. The Optical Character Recognition (OCR) results in the experiments show that the proposed procedure has the best recognition result because of the capability of edge preservation.
Du, Hang; Song, Ci; Li, Shengyi; Xu, Mingjin; Peng, Xiaoqiang
2017-05-20
In the process of computer controlled optical surfacing (CCOS), the uncontrollable rolled edge restricts further improvements of the machining accuracy and efficiency. Two reasons are responsible for the rolled edge problem during small tool polishing. One is that the edge areas cannot be processed because of the orbit movement. The other is that changing the tool influence function (TIF) is difficult to compensate for in algorithms, since pressure step appears in the local pressure distribution at the surface edge. In this paper, an acentric tool influence function (A-TIF) is designed to remove the rolled edge after CCOS polishing. The model of A-TIF is analyzed theoretically, and a control point translation dwell time algorithm is used to verify that the full aperture of the workpiece can be covered by the peak removal point of the tool influence functions. Thus, surface residual error in the full aperture can be effectively corrected. Finally, the experiments are carried out. Two fused silica glass samples of 100 mm×100 mm are polished by traditional CCOS and the A-TIF method, respectively. The rolled edge was clearly produced in the sample polished by the traditional CCOS, while residual errors do not show this problem the sample polished by the A-TIF method. Therefore, the rolled edge caused by the traditional CCOS process is successfully suppressed during the A-TIF process. The ability to suppress the rolled edge of the designed A-TIF has been confirmed.
Research on reducing the edge effect in magnetorheological finishing.
Hu, Hao; Dai, Yifan; Peng, Xiaoqiang; Wang, Jianmin
2011-03-20
The edge effect could not be avoided in most optical manufacturing methods based on the theory of computer controlled optical surfacing. The difference between the removal function at the workpiece edge and that inside it is also the primary cause for edge effect in magnetorheological finishing (MRF). The change of physical dimension and removal ratio of the removal function is investigated through experiments. The results demonstrate that the situation is different when MRF "spot" is at the leading edge or at the trailing edge. Two methods for reducing the edge effect are put into practice after analysis of the processing results. One is adopting a small removal function for dealing with the workpiece edge, and the other is utilizing the removal function compensation. The actual processing results show that these two ways are both effective on reducing the edge effect in MRF.
Edge Detection Method Based on Neural Networks for COMS MI Images
NASA Astrophysics Data System (ADS)
Lee, Jin-Ho; Park, Eun-Bin; Woo, Sun-Hee
2016-12-01
Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.
Determinants of field edge habitat restoration on farms in California's Sacramento Valley.
Garbach, Kelly; Long, Rachael Freeman
2017-03-15
Degradation and loss of biodiversity and ecosystem services pose major challenges in simplified agricultural landscapes. Consequently, best management practices to create or restore habitat areas on field edges and other marginal areas have received a great deal of recent attention and policy support. Despite this, remarkably little is known about how landholders (farmers and landowners) learn about field edge management practices and which factors facilitate, or hinder, adoption of field edge plantings. We surveyed 109 landholders in California's Sacramento Valley to determine drivers of adoption of field edge plantings. The results show the important influence of landholders' communication networks, which included two key roles: agencies that provide technical support and fellow landholders. The networks of landholders that adopted field edge plantings included both fellow landholders and agencies, whereas networks of non-adopters included either landholders or agencies. This pattern documents that social learning through peer-to-peer information exchange can serve as a complementary and reinforcing pathway with technical learning that is stimulated by traditional outreach and extension programs. Landholder experience with benefits and concerns associated with field edge plantings were also significant predictors of adoption. Our results suggest that technical learning, stimulated by outreach and extension, may provide critical and necessary support for broad-scale adoption of field-edge plantings, but that this alone may not be sufficient. Instead, outreach and extension efforts may need to be strategically expanded to incorporate peer-to-peer communication, which can provide critical information on benefits and concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Puri, Sanjiv
2015-08-01
The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.
NASA Astrophysics Data System (ADS)
Gyergyek, T.; Kovačič, J.
2016-06-01
Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .
NASA Astrophysics Data System (ADS)
Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.
2018-02-01
Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional occupancies. The pH dependent sorption determined for trace Zn concentrations showed large Rd values across the entire pH range with almost no dependence on the background electrolyte concentration. Additional sorption experiments carried out at substantial fractional Zn loadings demonstrated that the selectivity for the exchange of Na+ for Zn2+ at the planar sites could not explain the large Rd values measured at low pH and trace Zn concentrations. This suggests that another mechanism is ruling Zn uptake under these conditions.
Systems Biology Graphical Notation: Process Description language Level 1 Version 1.3.
Moodie, Stuart; Le Novère, Nicolas; Demir, Emek; Mi, Huaiyu; Villéger, Alice
2015-09-04
The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Process Description language represents biological entities and processes between these entities within a network. SBGN PD focuses on the mechanistic description and temporal dependencies of biological interactions and transformations. The nodes (elements) are split into entity nodes describing, e.g., metabolites, proteins, genes and complexes, and process nodes describing, e.g., reactions and associations. The edges (connections) provide descriptions of relationships (or influences) between the nodes, such as consumption, production, stimulation and inhibition. Among all three languages of SBGN, PD is the closest to metabolic and regulatory pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.
Tidally driven pore water exchange in offshore intertidal sandbanks: Part I. Field measurements
NASA Astrophysics Data System (ADS)
Gibbes, B.; Robinson, C.; Carey, H.; Li, L.; Lockington, D.
2008-08-01
In recent years blooms of the toxic marine cyanobacteria Lyngbya majuscula have been frequently observed in a system of offshore intertidal sandbanks in Moreton Bay, Australia. Past research suggests that these blooms are linked to the presence of bio-available forms of iron. Using hydraulic and pore water chemistry data collected from a shore normal transect at an offshore bloom site, the role of tidally driven exchange as a potential mechanism for delivery of bio-available iron across the sediment-water interface was examined. Field data revealed a residual pore water flow system in the sandbank, with seawater entering the upper sandbank platform and discharging through the bank edge. Upward flow and elevated near-surface dissolved Fe(II) concentrations (>20 μM Fe(II) at -0.05 m depth) were measured simultaneously in the discharge zones at the sandbank edge. The measured concentrations were more than four times greater than concentrations previously shown to stimulate L. majuscula growth. These results suggest that the tidally driven exchange mechanism might be capable of delivering dissolved Fe(II) to sites within offshore intertidal sandbanks where blooms of L. majuscula have been observed. While the source of the iron was not identified, potential candidates are discussed. These findings have implications for the current conceptual model for L. majuscula blooms in offshore intertidal sandbanks within Moreton Bay. Further investigations are required to fully understand the role of tidally driven exchange in controlling the export of bio-available iron to coastal waters at the field site. In particular there is a need to better assess the link between the pore water flows and the geochemical reactions that might occur along the flow path.
Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution
Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...
2016-05-21
Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less
Theory of nitrogen doping of carbon nanoribbons: Edge effects
Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; ...
2012-01-01
Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less
Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A
2015-11-11
It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.
Improved Edge Performance in MRF
NASA Technical Reports Server (NTRS)
Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc
2004-01-01
The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.
Scalable polylithic on-package integratable apparatus and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Surhud; Somasekhar, Dinesh; Borkar, Shekhar Y.
Described is an apparatus which comprises: a first die including: a processing core; a crossbar switch coupled to the processing core; and a first edge interface coupled to the crossbar switch; and a second die including: a first edge interface positioned at a periphery of the second die and coupled to the first edge interface of the first die, wherein the first edge interface of the first die and the first edge interface of the second die are positioned across each other; a clock synchronization circuit coupled to the second edge interface; and a memory interface coupled to the clockmore » synchronization circuit.« less
Health care's most wired. A wired exchange.
Solovy, Alden
2004-08-01
There was a time when innovation in health care information technology meant being at the cutting edge of managerial systems. Hospitals made significant investments in financially oriented technology. In the past five years, the investment in clinical IT appears to have outstripped the investment in managerial systems, including enterprise resource planning aimed at improving the supply chain.
78 FR 21019 - Retail Foreign Exchange Transactions (Regulation NN)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... institution \\3\\ for which there is a Federal regulatory agency \\4\\ shall not enter into, or offer to enter... at 7 U.S.C. 2(c)(2)(E) (2011). \\3\\ The CEA defines ``financial institution'' to include an agreement corporation, an Edge Act corporation, a depository institution (as defined in section 3 of the Federal Deposit...
Intensity dependent spread theory
NASA Technical Reports Server (NTRS)
Holben, Richard
1990-01-01
The Intensity Dependent Spread (IDS) procedure is an image-processing technique based on a model of the processing which occurs in the human visual system. IDS processing is relevant to many aspects of machine vision and image processing. For quantum limited images, it produces an ideal trade-off between spatial resolution and noise averaging, performs edge enhancement thus requiring only mean-crossing detection for the subsequent extraction of scene edges, and yields edge responses whose amplitudes are independent of scene illumination, depending only upon the ratio of the reflectance on the two sides of the edge. These properties suggest that the IDS process may provide significant bandwidth reduction while losing only minimal scene information when used as a preprocessor at or near the image plane.
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
NASA Astrophysics Data System (ADS)
Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.
2018-01-01
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.
Estimating cross-slope exchange from drifter tracks and from glider sections
NASA Astrophysics Data System (ADS)
Huthnance, John M.
2017-04-01
In areas of complex topography, it can be difficult to define "along-slope" or "cross-slope" direction, yet transport estimates are sensitive to these definitions, especially as along-slope flow is favoured by geostrophy. However, if drifter positions and hence underlying water depths are recorded regularly, we know where and when depth contours are crossed by the drifters, and hence by the water assuming that the drifters follow the water. An approach is discussed for deriving statistics of contour-crossing speed, via depth changes experienced by the drifters and an effective slope. The transport equation for (e.g.) salinity S can be reduced to an explicit equation for effective diffusivity K if we assume steady along-slope flow with known total transport Q, a salinity maximum at its "core" and effective diffusion to less saline waters to either side. Salinity gradients along the flow and to either side are needed to calculate K. Gliders provide a means of measuring salinity gradients in this context. Measurements at the continental shelf edge south-west of England and west of Scotland illustrate the calculation. Both approaches give overall rather than process-related estimates. There is limited scope for process discrimination according to (i) how often drifter locations are recorded and (ii) the time-intervals into which estimates are "binned". (i) Frequent recording may record more crossings owing to processes of short time scale, albeit these are less significant for slowly-evolving water contents. (ii) Sufficient samples for statistically significant estimates of exchange entail "bins" spanning some weeks or months for typically-limited numbers of drifters or gliders.
Code of Federal Regulations, 2013 CFR
2013-04-01
... controls the production process in Haiti through a contractual relationship or other indirect means; (g... process in Haiti; (n) Self-start edge. “Self-start edge,” when used with reference to knit-to-shape... components with finished edges may be linked by yarn or thread as they are produced from the knitting machine...
Code of Federal Regulations, 2014 CFR
2014-04-01
... controls the production process in Haiti through a contractual relationship or other indirect means; (g... process in Haiti; (n) Self-start edge. “Self-start edge,” when used with reference to knit-to-shape... components with finished edges may be linked by yarn or thread as they are produced from the knitting machine...
Code of Federal Regulations, 2012 CFR
2012-04-01
... controls the production process in Haiti through a contractual relationship or other indirect means; (g... process in Haiti; (n) Self-start edge. “Self-start edge,” when used with reference to knit-to-shape... components with finished edges may be linked by yarn or thread as they are produced from the knitting machine...
Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons
NASA Astrophysics Data System (ADS)
Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Chuang, Feng-Chuan; Su, Wan-Sheng; Guo, Guang-Yu
2016-12-01
The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as ~9 meV/edge-site, being 2×103 time greater than that of bulk Ni and Fe (~5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5% to 5%. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.
Pinned orbital moments in uncompensated antiferromagnetic Co doped ZnO
NASA Astrophysics Data System (ADS)
Buchner, Martin; Henne, Bastian; Ney, Verena; Lumetzberger, Julia; Wilhelm, Fabrice; Rogalev, Andrei; Hen, Amir; Ney, Andreas
2018-05-01
Low temperature Co K-edge x-ray magnetic circular dichroism spectra at different field cooling conditions were recorded to study the imprinted magnetization in antiferromagnetic (AFM) Co doped ZnO (Co:ZnO) films which manifests itself in a vertical exchange bias effect. Co:ZnO films with 50% and 60% doping concentrations were investigated to provide a high degree of pinned magnetic moments. The measurements reveal a change at the main absorption energy of the spectra, while the signal obtained at the pre-edge stays unaffected by the cooling conditions. Therefore, the pinned uncompensated AFM moments, resulting in an imprinted magnetization, are predominantly of orbital character and are independent of ferromagnetic layers.
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...
2018-03-14
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
Atomistic Insights Into the Oriented Attachment of Tunnel-Based Oxide Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yifei; Wood, Stephen M; He, Kun
Controlled synthesis of nanomaterials is one of the grand challenges facing materials scientists. In particular, how tunnel-based nanomaterials aggregate during synthesis while maintaining their well-aligned tunneled structure is not fully understood. Here, we describe the atomistic mechanism of oriented attachment (OA) during solution synthesis of tunneled α-MnO2 nanowires based on a combination of in situ liquid cell transmission electron microscopy (TEM), aberration-corrected scanning TEM with subangstrom spatial resolution, and first-principles calculations. It is found that primary tunnels (1 × 1 and 2 × 2) attach along their common {110} lateral surfaces to form interfaces corresponding to 2 × 3 tunnelsmore » that facilitate their short-range ordering. The OA growth of α-MnO2 nanowires is driven by the stability gained from elimination of {110} surfaces and saturation of Mn atoms at {110}-edges. During this process, extra [MnOx] radicals in solution link the two adjacent {110} surfaces and bond with the unsaturated Mn atoms from both surface edges to produce stable nanowire interfaces. Our results provide insights into the controlled synthesis and design of nanomaterials in which tunneled structures can be tailored for use in catalysis, ion exchange, and energy storage applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels
NASA Astrophysics Data System (ADS)
Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.
2017-09-01
The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.
Magnetic bilayer-skyrmions without skyrmion Hall effect
NASA Astrophysics Data System (ADS)
Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
2016-01-01
Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed.
Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite.
Pecini, Eliana M; Avena, Marcelo J
2013-12-03
The isoelectric point (IEP) of the edge surface of a montmorillonite sample was determined by using electrophoretic mobility measurements. This parameter, which is fundamental for the understanding of the charging behavior of clay mineral surfaces, was never measured so far because of the presence of permanent negative charges within the montmorillonite structure, charges that mask the electrokinetic behavior of the edges. The strategy was to block or neutralize the structural charges with two different cations, methylene blue (MB(+)) and tetraethylenepentaminecopper(II) ([Cu(tetren)](2+)), so that the charging behavior of the particles becomes that of the edge surfaces. Adsorption isotherms of MB(+) and [Cu(tetren)](2+) at different ionic strengths (NaCl) were performed to establish the uptakes that neutralize the cation exchange capacity (CEC, 0.96 meq g(-1)) of the sample. At high adsorptive concentrations, there was a superequivalent adsorption of MB(+) (adsorption exceeding the CEC) and an equivalent adsorption of [Cu(tetren)](2+) (adsorption reaching the CEC). In both cases, structural charges were neutralized at uptakes very close to the CEC. Zeta potential (ζ) vs pH data at different ionic strengths of montmorillonite with adsorbed MB(+) allowed to estimate an upper limit of the edge's IEP, 5.3 ± 0.2. The same kind of data obtained with adsorbed [Cu(tetren)](2+) provided a lower limit of the IEP, 4.0 ± 0.2. These values are in agreement with previously informed IEP and point of zero charge of pyrophyllite, which is structurally analogous to montmorillonite but carries no permanent charges. The importance of knowing the IEP of the edge surface of clay minerals is discussed. This value characterizes the intrinsic reactivity of edges, that is, the protonating capacity of edge groups in absence of any electric field generated by structural charges. It also allows us to correct relative edge charge vs pH curves obtained by potentiometric titrations and to obtain the true edge charge vs pH curves at different electrolyte concentrations.
Takashiro, Jun-ichi; Kudo, Yasuhiko; Kaneko, Satoshi; Takai, Kazuyuki; Ishii, Takafumi; Kyotani, Takashi; Enoki, Toshiaki; Kiguchi, Manabu
2014-04-28
The heat treatment effect on the electronic and magnetic structures of a disordered network of nanographene sheets has been investigated by in situ measurements of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance, together with temperature-programmed desorption measurements. Oxygen-containing functional groups bonded to nanographene edges in the pristine sample are almost completely decomposed under heat treatment up to 1300-1500 K, resulting in the formation of edges primarily terminated by hydrogen. The removal of the oxygen-containing groups enhances the conductance owing to the decrease in the electron transport barriers between nanographene sheets. Heat treatment above 1500 K removes also the hydrogen atoms from the edges, promoting the successive fusion of nanographene sheets at the expense of edges. The decrease in the π* peak width in NEXAFS indicates the progress of the fusion reaction, that is, the extension of the π-conjugation, which agrees with the increase in the orbital susceptibility previously reported. The fusion leads to the formation of local π/sp(2) bridges between nanographene sheets and brings about an insulator-to-metal transition at 1500-1600 K, at which the bridge network becomes infinite. As for the magnetism, the intensity of the edge state peak in NEXAFS, which corresponds to the number of the spin-polarized edge states, decreases above 1500 K, though the effective edge-state spin density per edge state starts decreasing at approximately 200 K lower than the temperature of the edge state peak change. This disagreement indicates the development of antiferromagnetic short range ordering as a precursor of a spin glass state near the insulator-metal transition, at which the random network of inter-nanographene-sheet exchange interactions strengthened with the formation of the π/sp(2) bridges becomes infinite.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, Craig; Rainville, Luc; Perry, Mary Jane
2016-04-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders
NASA Astrophysics Data System (ADS)
Lee, C.; Rainville, L.; Perry, M. J.
2016-02-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.
Finite Element Analysis of the Implantation Process of Overlapping Stents
Xu, Jiang; Yang, Jie; Sohrabi, Salman; Zhou, Yihua; Liu, Yaling
2017-01-01
Overlapping stents are widely used in vascular stent surgeries. However, the rate of stent fractures (SF) and in-stent restenosis (ISR) after using overlapping stents is higher than that of single stent implantations. Published studies investigating the nature of overlapping stents rely primarily on medical images, which can only reveal the effect of the surgery without providing insights into how stent overlap influences the implantation process. In this paper, a finite element analysis of the overlapping stent implantation process was performed to study the interaction between overlapping stents. Four different cases, based on three typical stent overlap modes and two classical balloons, were investigated. The results showed that overlapping contact patterns among struts were edge-to-edge, edge-to-surface, and noncontact. These were mainly induced by the nonuniform deformation of the stent in the radial direction and stent tubular structures. Meanwhile, the results also revealed that the contact pressure was concentrated in the edge of overlapping struts. During the stent overlap process, the contact pattern was primarily edge-to-edge contact at the beginning and edge-to-surface contact as the contact pressure increased. The interactions between overlapping stents suggest that the failure of overlapping stents frequently occurs along stent edges, which agrees with the previous experimental research regarding the safety of overlapping stents. This paper also provides a fundamental understanding of the mechanical properties of overlapping stents. PMID:28690712
Remote hardware-reconfigurable robotic camera
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.
2001-10-01
In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.
Edge printability: techniques used to evaluate and improve extreme wafer edge printability
NASA Astrophysics Data System (ADS)
Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.
2004-05-01
The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.
Self-regenerating column chromatography
Park, Woo K.
1995-05-30
The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... instant rule filing proposes to add an explanatory ``Interpretation and Policy'' to Rule 11.11(d) to... DirectEdge, the use of the Replace Message to adjust Tag 111 under the instant rule filing is proposed to... specification. The instant rule change also proposes to modify the language of NSX Rule 11.14 (Priority of...
Designing Collaboration Tools to Optimize Distributed Battlespace Synchronization
2009-08-01
Collective Efficacy Self-efficacy represents the belief that one possesses the ability to meet the demands of a specific situation ( Bandura , 1997). These...military teams ( Alberts & Hayes, 2003). Research has shown that high- performing teams tend to optimize information exchange (Aubert & Kelsey, 2003...17 REFERENCES Alberts , D.S., & Hayes, R.E. (2003). Power to the edge: Command control in the
A Working Framework for Quantifying Carbon Sequestration in Disturbed Land Mosaics
Jiquan Chen; Kimberley Brosofske; Asko Noormets; Thomas R. Crow; Mary K. Bresee; James M. Le Moine; Eug& #233; nie Euskirchen; Steve V. Mather; Daolan Zheng; Daolan Zheng
2003-01-01
We propose a working framework for future studies of net carbon exchange (NCE) in disturbed landscapes at broad spatial scales based on the central idea that landscape-level NCE is determined by the land mosaic, including its age structure. Within this framework, we argue that the area-of-edge-influence (AEI), which is prevalent in many disturbed, fragmented landscapes...
Information theoretic analysis of edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2010-08-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.
Development of Passive Fuel Cell Thermal Management Heat Exchanger
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.
2010-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.
Adsorption of nucleotides onto Fe-Mg-Al rich swelling clays
NASA Astrophysics Data System (ADS)
Feuillie, Cécile; Daniel, Isabelle; Michot, Laurent J.; Pedreira-Segade, Ulysse
2013-11-01
Mineral surfaces may have played a role in the origin of the first biopolymers, by concentrating organic monomers from a dilute ocean. Swelling clays provide a high surface area for the concentration of prebiotic monomers, and have therefore been the subject of numerous investigations. In that context, montmorillonite, the most abundant swelling clay in modern environments, has been extensively studied with regard to adsorption and polymerization of nucleic acids. However, montmorillonite was probably rather marginal on the primitive ocean floor compared to iron-magnesium rich phyllosilicates such as nontronite that results from the hydrothermal alteration of a mafic or ultramafic oceanic crust. In the present paper, we study the adsorption of nucleotides on montmorillonite and nontronite, at various pH and ionic strength conditions plausible for Archean sea-water. A thorough characterization of the mineral surfaces shows that nucleotide adsorb mainly on the edge faces of the smectites by ligand exchange between the phosphate groups of the nucleotides and the -OH groups from the edge sites over a wide pH range (4-10). Nontronite is more reactive than montmorillonite. At low pH, additional ion exchange may play a role as the nucleotides become positively charged.
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
Population-based Incidence of Intraocular Lens Exchange in Olmsted County, Minnesota.
Bothun, Erick D; Cavalcante, Lilian C B; Hodge, David O; Patel, Sanjay V
2018-03-01
To determine the population-based incidence of pseudophakic intraocular lens exchange in Olmsted County, Minnesota. Retrospective review of a population-based cohort. Patients undergoing pseudophakic intraocular lens exchange in Olmsted County, Minnesota, between January 1, 1986 and December 31, 2016 were identified from the Rochester Epidemiology Project medical record linkage system. Indications and outcomes were determined, and the incidence rate was calculated as cases per 1 000 000 person-years. Poisson regression analysis was used to assess changes in incidence over time, and the cumulative probability of needing a lens exchange was estimated by Kaplan-Meier analysis. Eighty cases of intraocular lens exchange were identified, yielding an overall age- and sex-adjusted incidence rate of 28.4 per million (confidence interval [CI], 22.1-34.7), which increased over the study period (P = .04). The 30-year cumulative probability of intraocular lens exchange among patients undergoing cataract surgery was 1.5% (CI, 0.6%-2.4%), increasing at a relatively constant rate. Dislocated lenses accounted for 72.5% of lens exchanges. Unplanned refractive outcome of primary cataract surgery and uveitis-glaucoma-hyphema syndrome from squared-edged haptics emerged as newer indications for intraocular lens exchange. The population-based incidence of pseudophakic intraocular lens exchange has increased over the last 30 years, and can be explained by the increase in incidence rate of cataract surgery over the same period. Surgeons should be aware of emerging indications of intraocular lens exchange, which reflect changes in lens design and increasing expectations of refractive outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Functioning at the Edge of Knowledge: A Study of Learning Processes in New Product Development
ERIC Educational Resources Information Center
Doos, Marianne; Wilhelmson, Lena; Backlund, Thomas; Dixon, Nancy
2005-01-01
Purpose: In the telecommunication industry, companies gain a competitive edge through the competence of their employees, making issues of learning critical. The study aims to identify specific learning processes necessary when working at the edge both of one's own knowledge and of that of the branch. Design/methodology/approach: This research…
Zhang, Renqin; Helling, Kathy; McEwen, Jean-Sabin
2016-03-29
Copper-exchanged SAPO-34 (Cu-SAPO-34) provides excellent catalytic activity and hydrothermal sta-bility in the selective catalytic reduction (SCR) of NOxby using NH3as a reductant. Here, we find that the6-membered ring (6MR) site is the most energetically favorable for a Cu+ion while the 8-memberedring (8MR) sites are less favorable by about 0.5 eV with respect to the 6MR site in Cu-SAPO-34. Uponadsorption of molecular species (H2O, O, OH, O2), the energy differences between Cu in the 8MR and 6MRsites decreases and almost disappears. Further, a thermodynamic phase diagram study shows that a Cu+ion bound to a single H2O molecule is the most stablemore » species at low oxygen potential values while aCu2+ion bound to 2 OH species is more stable when the oxygen chemical potential is sufficiently high. Bycomparing Cu K-edge XANES between Cu-SSZ-13 and Cu-SAPO-34 with Cu in different oxidation states,we conclude that it is difficult to differentiate the simulated XANES of Cu in these structures at a givenoxidation state. By studying the Cu K-edge XANES of several favorable structures in Cu-SAPO-34 in thepresence of adspecies, the simulated XANES results capture the real trend of the edge shift with oxidationstate and gives new insights into the experimentally determined XANES of Cu-SAPO-34 obtained understandard SCR conditions.« less
Edge detection and localization with edge pattern analysis and inflection characterization
NASA Astrophysics Data System (ADS)
Jiang, Bo
2012-05-01
In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge detection method improvements are effective in enhancing the accuracy of edge detection and localization.
Robust integer and fractional helical modes in the quantum Hall effect
NASA Astrophysics Data System (ADS)
Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir
2018-04-01
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.
Negative dysphotopsia: A perfect storm.
Henderson, Bonnie An; Geneva, Ivayla I
2015-10-01
The objective of this review was to provide a summary of the peer-reviewed literature on the etiologies of negative dysphotopsia that occurs after routine cataract surgery. A search of PubMed, Google Scholar, and Retina Medical identified 59 reports. Negative dysphotopsia has been associated with many types of intraocular lenses (IOLs), including hydrophobic and hydrophilic acrylic, silicone, and 1-piece and 3-piece designs. Proposed etiologies include edge design, edge smoothness, edge thickness, index of refraction of the IOL, pupil size, amount of functional nasal retina, edema from the clear corneal incision, distance between the iris and IOL, amount of pigmentation of the eye, corneal shape, prominent globe and shallow orbit, and interaction between the anterior capsulorhexis and IOL. Treatments include a piggyback IOL, reverse optic capture, dilation of the pupil, constriction of the pupil, neodymium:YAG capsulotomy of the nasal portion of the anterior capsule, IOL exchange with round-edged optics, and time alone. This review summarizes the findings. Dr. Henderson is a consultant to Alcon Laboratories, Inc., Abbott Medical Optics, Inc., Bausch & Lomb, and Genzyme Corp. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Sanjiv
The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, inmore » order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.« less
The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)
NASA Astrophysics Data System (ADS)
Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen
2017-04-01
High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological models. These unique high-resolution climate information simulations in the EDgE project provide an unprecedented information system for decision-making over Europe.
Tuning magnetic exchange interactions in crystalline thin films of substituted Cobalt Phthalocyanine
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Manning, Lane; Hua, Kim-Ngan; Headrick, Randall; Bishop, Michael; McGill, Stephen; Waterman, Rory; Furis, Madalina
Magnetic exchange interactions in diluted organometallic crystalline thin film alloys of Phthalocyanines (Pcs) made of a organo-soluble derivatives of Cobalt Pc and metal-free (H2Pc) molecule and is investigated. To this end, we synthesized a organosoluble CoPc and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of different ratios ranging from 1:1 to 10:1 H2Pc:CoPc. Our previous magnetic circular dichroism (MCD) results on the parent CoPc crystalline thin films identified different electronic states mediating exchange interactions and indirect exchange interaction competing with superexchange interaction. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins along with the excitonic delocalization character enabled the further tuning of these interactions by essentially varying the spatial distance between the spins. Furthermore, high magnetic field (B < 25 T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials. This work was possible due to support by the National Science Foundation, Division of Materials Research MRI, CAREER and EPM program Awards: DMR-0722451, DMR-0821268, DMR-1307017 and DMR-1056589, DMR-1229217.
Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.
Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu
2015-06-02
A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.
Image flows and one-liner graphical image representation.
Makhervaks, Vadim; Barequet, Gill; Bruckstein, Alfred
2002-10-01
This paper introduces a novel graphical image representation consisting of a single curve-the one-liner. The first step of the algorithm involves the detection and ranking of image edges. A new edge exploration technique is used to perform both tasks simultaneously. This process is based on image flows. It uses a gradient vector field and a new operator to explore image edges. Estimation of the derivatives of the image is performed by using local Taylor expansions in conjunction with a weighted least-squares method. This process finds all the possible image edges without any pruning, and collects information that allows the edges found to be prioritized. This enables the most important edges to be selected to form a skeleton of the representation sought. The next step connects the selected edges into one continuous curve-the one-liner. It orders the selected edges and determines the curves connecting them. These two problems are solved separately. Since the abstract graph setting of the first problem is NP-complete, we reduce it to a variant of the traveling salesman problem and compute an approximate solution to it. We solve the second problem by using Dijkstra's shortest-path algorithm. The full software implementation for the entire one-liner determination process is available.
Building the Next Generation of Scientists with US-Africa Exchange Programs
NASA Astrophysics Data System (ADS)
Sheth, Kartik
2014-01-01
In the past couple of decades and in the upcoming decade an explosion of cutting edge multi-wavelength facilities have begun or are expected to be operating across the African continent (SALT, HESS, MITRA, AVN, PAPER, MeerKAT, African VLBI and the SKA). At the same time countries across the continent are developing human capacity in science and technology using astronomy as a gateway science. Building on previous collaborations between the National Radio Astronomy Observatory and South Africa, we are embarking on an effort to build a new international (and national) partnership to exchange students and faculty between the US and the African continent. I will describe the status and future development plans for this program.
Cue competition affects temporal dynamics of edge-assignment in human visual cortex.
Brooks, Joseph L; Palmer, Stephen E
2011-03-01
Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.
Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser
NASA Astrophysics Data System (ADS)
Hung, Chia-Hung; Chang, Fuh-Yu
2017-05-01
In this study, a curve micromaching process on the edges of nitinol biliary stent was proposed by a femtosecond laser system with a galvano-mirror scanner. Furthermore, the outer diameter of nitinol tube was 5.116 mm, its inner diameter was 4.648 mm, and its length was 100 mm. The initial fabricated results of nitinol biliary stent represented that the edges of nitinol biliary stent were steep and squared by femtosecond laser. However, the results also indicated that if the laser movement path was precisely programmed by utilizing the unique characteristic of Gaussian beam of femtosecond laser with aligning the edges of stent, the radius of edges enhanced significantly from 9 μm to 42.5 μm. As a result, the edges of nitinol biliary stent can be successfully fabricated from squared edges to rounded-shaped edges with precise dimension, clean surface morphology, and minimal heat-affected zone remained. Hence, the nitinol biliary stent, after femtosecond laser micromachining, would not need any further post-process to remove heat-affected zone and the squared edges.
Processing Images of Craters for Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.
2009-01-01
A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.
Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons
NASA Astrophysics Data System (ADS)
Chuang, Feng-Chuan; Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Su, Wan-Sheng; Guo, Guang-Yu
The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV, depending on the parent and passivating elements as well as the applied strain, magnetic configuration and magnetization orientation. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as 9 meV/edge-site, being 2000 time greater than that of bulk Ni and Fe ( 5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5 % to 5 %. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.
IR-thermography for Quality Prediction in Selective Laser Deburring
NASA Astrophysics Data System (ADS)
Möller, Mauritz; Conrad, Christian; Haimerl, Walter; Emmelmann, Claus
Selective Laser Deburring (SLD) is an innovative edge-refinement process being developed at the Laser Zentrum Nord (LZN) in Hamburg. It offers a wear-free processing of defined radii and bevels at the edges as well as the possibility to deburr several materials with the same laser source. Sheet metal parts of various applications need to be post-processed to remove sharp edges and burrs remaining from the initial production process. Thus, SLD will provide an extended degree of automation for the next generation of manufacturing facilities. This paper investigates the dependence between the deburring result and the temperature field in- and post-process. In order to achieve this, the surface temperature near to the deburred edge is monitored with IR-thermography. Different strategies are discussed for the approach using the IR-information as a quality assurance. Additional experiments are performed to rate the accuracy of the quality prediction method in different deburring applications.
The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer
NASA Astrophysics Data System (ADS)
Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.
2011-12-01
In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as
Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J.H.; Kim, M.S.
The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching processmore » revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.« less
In-flight edge response measurements for high-spatial-resolution remote sensing systems
NASA Astrophysics Data System (ADS)
Blonski, Slawomir; Pagnutti, Mary A.; Ryan, Robert; Zanoni, Vickie
2002-09-01
In-flight measurements of spatial resolution were conducted as part of the NASA Scientific Data Purchase Verification and Validation process. Characterization included remote sensing image products with ground sample distance of 1 meter or less, such as those acquired with the panchromatic imager onboard the IKONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effects of both the image acquisition system and image post-processing. Spatial resolution was characterized by full width at half maximum of an edge-response-derived line spread function. The edge responses were analyzed using the tilted-edge technique that overcomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as tarps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. The effects of such factors as acquisition geometry, temporal variability, Modulation Transfer Function compensation, and ground sample distance on spatial resolution were investigated.
Demonstration of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William
2012-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
Short-term Morphodynamics of an Eroding Salt Marsh Shoreline in the Delaware Estuary, USA
NASA Astrophysics Data System (ADS)
Fanta, D.; Quirk, T. E.
2017-12-01
Marsh edge morphology can change rapidly through erosional and depositional processes. Along seemingly similar stretches of marsh shoreline, erosion processes and rates can vary dramatically. In the Delaware Estuary, annual rates of edge erosion vary from a few centimeters to several meters across relatively short stretches of shoreline. Differences in erosion processes observed here include areas with and without vegetation growth seaward of the eroding marsh scarp. To better understand the factors that influence changes in marsh edge morphology, we examined wave energy, marsh scarp profile, and vegetation structure in relation to lateral erosion and accretion along two stretches of the Delaware Estuary for two years. Rates of erosion ranged from 0.01 to over 7 m/yr depending on shoreline exposure to waves and location on marsh scarp depth profile. Sediment deposition and accretion were up to an order of magnitude higher 15 cm from the marsh edge than 5 cm from the marsh edge, and were driven by storm events. In some areas, vegetation persisted seaward of eroding marshes where wave activity was dampened by a shallower bathymetric profile. Wave energy, distance from the edge and marsh elevation all contributed to vegetation structure, and therefore sedimentation and accretion dynamics. These results highlight the interactive nature of biophysical processes leading to lateral retreat or potential resilience of marsh edges.
Kolar, Katja; Wischhusen, Hanna M; Müller, Konrad; Karlsson, Maria; Weber, Wilfried; Zurbriggen, Matias D
2015-12-30
Multicellular organisms depend on the exchange of information between specialized cells. This communication is often difficult to decipher in its native context, but synthetic biology provides tools to engineer well-defined systems that allow the convenient study and manipulation of intercellular communication networks. Here, we present the first mammalian synthetic network for reciprocal cell-cell communication to compute the border between a sender/receiver and a processing cell population. The two populations communicate via L-tryptophan and interleukin-4 to highlight the population border by the production of a fluorescent protein. The sharpness of that visualized edge can be adjusted by modulating key parameters of the network. We anticipate that this network will on the one hand be a useful tool to gain deeper insights into the mechanisms of tissue formation in nature and will on the other hand contribute to our ability to engineer artificial tissues.
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1978-01-01
Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.
A next generation processing system for edging and trimming
A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman
2000-01-01
This paper describes a prototype scanning system that is being developed for the processing of rough hardwood lumber. The overall goal of the system is to automate the selection of cutting positions for the edges and ends of rough, green lumber. Such edge and trim cuts are typically performed at sawmills in an effort to increase board value prior to sale, and this...
Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711
BP fusion model for the detection of oil spills on the sea by remote sensing
NASA Astrophysics Data System (ADS)
Chen, Weiwei; An, Jubai; Zhang, Hande; Lin, Bin
2003-06-01
Oil spills are very serious marine pollution in many countries. In order to detect and identify the oil-spilled on the sea by remote sensor, scientists have to conduct a research work on the remote sensing image. As to the detection of oil spills on the sea, edge detection is an important technology in image processing. There are many algorithms of edge detection developed for image processing. These edge detection algorithms always have their own advantages and disadvantages in the image processing. Based on the primary requirements of edge detection of the oil spills" image on the sea, computation time and detection accuracy, we developed a fusion model. The model employed a BP neural net to fuse the detection results of simple operators. The reason we selected BP neural net as the fusion technology is that the relation between simple operators" result of edge gray level and the image"s true edge gray level is nonlinear, while BP neural net is good at solving the nonlinear identification problem. Therefore in this paper we trained a BP neural net by some oil spill images, then applied the BP fusion model on the edge detection of other oil spill images and obtained a good result. In this paper the detection result of some gradient operators and Laplacian operator are also compared with the result of BP fusion model to analysis the fusion effect. At last the paper pointed out that the fusion model has higher accuracy and higher speed in the processing oil spill image"s edge detection.
Qin, Yujiao; Zhong, Hualiang; Wen, Ning; Snyder, Karen; Huang, Yimei; Chetty, Indrin J
2016-11-08
The goal of this study was to investigate small field output factors (OFs) for flat-tening filter-free (FFF) beams on a dedicated stereotactic linear accelerator-based system. From this data, the collimator exchange effect was quantified, and detector-specific correction factors were generated. Output factors for 16 jaw-collimated small fields (from 0.5 to 2 cm) were measured using five different detectors including an ion chamber (CC01), a stereotactic field diode (SFD), a diode detector (Edge), Gafchromic film (EBT3), and a plastic scintillator detector (PSD, W1). Chamber, diodes, and PSD measurements were performed in a Wellhofer water tank, while films were irradiated in solid water at 100 cm source-to-surface distance and 10 cm depth. The collimator exchange effect was quantified for rectangular fields. Monte Carlo (MC) simulations of the measured configurations were also performed using the EGSnrc/DOSXYZnrc code. Output factors measured by the PSD and verified against film and MC calculations were chosen as the benchmark measurements. Compared with plastic scintillator detector (PSD), the small volume ion chamber (CC01) underestimated output factors by an average of -1.0% ± 4.9% (max. = -11.7% for 0.5 × 0.5 cm2 square field). The stereotactic diode (SFD) overestimated output factors by 2.5% ± 0.4% (max. = 3.3% for 0.5 × 1 cm2 rectangular field). The other diode detector (Edge) also overestimated the OFs by an average of 4.2% ± 0.9% (max. = 6.0% for 1 × 1 cm2 square field). Gafchromic film (EBT3) measure-ments and MC calculations agreed with the scintillator detector measurements within 0.6% ± 1.8% and 1.2% ± 1.5%, respectively. Across all the X and Y jaw combinations, the average collimator exchange effect was computed: 1.4% ± 1.1% (CC01), 5.8% ± 5.4% (SFD), 5.1% ± 4.8% (Edge diode), 3.5% ± 5.0% (Monte Carlo), 3.8% ± 4.7% (film), and 5.5% ± 5.1% (PSD). Small field detectors should be used with caution with a clear understanding of their behaviors, especially for FFF beams and small, elongated fields. The scintillator detector exhibited good agreement against Gafchromic film measurements and MC simulations over the range of field sizes studied. The collimator exchange effect was found to be impor-tant at these small field sizes. Detector-specific correction factors were computed using the scintillator measurements as the benchmark. © 2016 The Authors.
Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications
NASA Astrophysics Data System (ADS)
Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William
2012-03-01
Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.
How much riverine nutrients do shelf seas allow into the open ocean?
NASA Astrophysics Data System (ADS)
Sharples, J.; Fennel, K.; Jickells, T. D.
2016-02-01
Globally rivers deliver 35 Tg of dissolved N and 2 Tg of dissolved P into the coastal zone each year. Investigating the effects of this nutrient supply on the open ocean generally takes one of two approaches: either all or none of the nutrients are assumed to enter the open ocean. Here we use some general assumptions on the behaviour of river plumes on the shelf to arrive at an estimate of the proportions of dissolved N and P that are processed on the shelf, and thus the amount of riverine nutrient that enters the open ocean. Using the Global NEWS database of 6000 rivers we assume that discharges to the shelf are initially constrained within coastal buoyancy currents of width 2 internal Rossby radii. This width is compared to the local shelf width for each river. For plume widths greater than the shelf width riverine nutrients are assumed to be transported over the shelf edge within the plume. For plume widths less than the shelf width we assume that exchange with the open ocean is controlled by physical processes at the shelf break. For each river an estimate of the residence time of riverine water is made, based on the transport or exchange rate and the shelf volume. Empirical relationships between residence time and the proportion of supplied N and P that is retained on the shelf are then used to estimate the amount of dissolved N and P that escapes to the open ocean. The results suggest that 25% of dissolved N and 20% of dissolved P are processed in shelf seas, with the rest exported to the open ocean. There is a latitudinal pattern, with tropical rivers delivering more nutrients to the open ocean. This is partially a result of the high discharges of some tropical rivers, but a key issue is our assumption of the internal Rossby radius governing plume width. A range of values for transport rates within plumes and exchange rates across the shelf break are used to assess the sensitivity of these results, which appear to be robust.
Azores 2017 Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Birgit; Chevallier, Karine; Weinhold, Kay
Aerosol particles play an important role for the regional and global climate. Therefore, a network of measurement sites has been established worldwide, but only a small fraction of them is capturing the marine boundary layer (MBL) while approximately 70% of the Earth’s surface is covered with water. The main focus of this project is to improve the knowledge of sources and exchange processes of aerosol particles in general (German Research Foundation [DFG] project WE 2757/2-1) and of cloud condensation nuclei in particular (DFG project HE 6770/2-1) in the MBL in the northeastern Atlantic Ocean where the influence of local anthropogenicmore » sources is negligible. The main hypothesis of the project is that long-range transport of aerosols from North America as well as new particle formation in the free troposphere (FT) and at cloud edges followed by vertical transport contribute significantly to the aerosol budget in the MBL. The knowledge of sources and sinks of aerosol particles in combination with vertical exchange between FT and MBL is a prerequisite to predict aerosol particle number concentrations in the lowest regions of the MBL and its influence on the formation of clouds. These processes are not sufficiently quantified over the ocean up to now. To verify the hypothesis stated above, vertical exchange processes and particle sources over the Azores will be quantified using data of 17 measurement flights with high spatial resolution using a helicopter-borne platform developed at the Leibniz Institute for Tropospheric Research (TROPOS). Here, aerosol particle number concentration and vertical wind speed have been measured with a temporal resolution allowing the direct estimate of the vertical turbulent flux of aerosol particles in different heights for the first time. In addition, aerosol particle number size distributions, number concentrations of cloud condensation nuclei (CCN), cloud droplet number concentration (CDNC), and particle absorption at three different wavelengths have been determined. The data analysis is ongoing and final results are not available yet. The detailed analysis of these data will be used to conclude sources and origin of the investigated aerosol particles.« less
Segmentation of neuroanatomy in magnetic resonance images
NASA Astrophysics Data System (ADS)
Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.
1992-06-01
Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.
NASA Astrophysics Data System (ADS)
Fabbrini, L.; Messina, M.; Greco, M.; Pinelli, G.
2011-10-01
In the context of augmented integrity Inertial Navigation System (INS), recent technological developments have been focusing on landmark extraction from high-resolution synthetic aperture radar (SAR) images in order to retrieve aircraft position and attitude. The article puts forward a processing chain that can automatically detect linear landmarks on highresolution synthetic aperture radar (SAR) images and can be successfully exploited also in the context of augmented integrity INS. The processing chain uses constant false alarm rate (CFAR) edge detectors as the first step of the whole processing procedure. Our studies confirm that the ratio of averages (RoA) edge detector detects object boundaries more effectively than Student T-test and Wilcoxon-Mann-Whitney (WMW) test. Nevertheless, all these statistical edge detectors are sensitive to violation of the assumptions which underlie their theory. In addition to presenting a solution to the previous problem, we put forward a new post-processing algorithm useful to remove the main false alarms, to select the most probable edge position, to reconstruct broken edges and finally to vectorize them. SAR images from the "MSTAR clutter" dataset were used to prove the effectiveness of the proposed algorithms.
The crack detection algorithm of pavement image based on edge information
NASA Astrophysics Data System (ADS)
Yang, Chunde; Geng, Mingyue
2018-05-01
As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.
Sriram, Vinay K; Montgomery, Doug
2017-07-01
The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.
NASA Astrophysics Data System (ADS)
Islam, M. S.; Nakashima, Y.; Hatayama, A.
2017-12-01
The linear divertor analysis with fluid model (LINDA) code has been developed in order to simulate plasma behavior in the end-cell of linear fusion device GAMMA 10/PDX. This paper presents the basic structure and simulated results of the LINDA code. The atomic processes of hydrogen and impurities have been included in the present model in order to investigate energy loss processes and mechanism of plasma detachment. A comparison among Ar, Kr and Xe shows that Xe is the most effective gas on the reduction of electron and ion temperature. Xe injection leads to strong reduction in the temperature of electron and ion. The energy loss terms for both the electron and the ion are enhanced significantly during Xe injection. It is shown that the major energy loss channels for ion and electron are charge-exchange loss and radiative power loss of the radiator gas, respectively. These outcomes indicate that Xe injection in the plasma edge region is effective for reducing plasma energy and generating detached plasma in linear device GAMMA 10/PDX.
A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils
NASA Astrophysics Data System (ADS)
Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando
2009-02-01
The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Ku, S.; Hager, R.; Chang, C. S.; ...
2016-04-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, S.; Hager, R.; Chang, C. S.
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, S., E-mail: sku@pppl.gov; Hager, R.; Chang, C.S.
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less
A new method of edge detection for object recognition
Maddox, Brian G.; Rhew, Benjamin
2004-01-01
Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.
NASA Astrophysics Data System (ADS)
Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji
For detecting life from reflectance spectra on extrasolar planets, several indicators called surface biosignatures have been proposed. One of them is the vegetation red edge (VRE) which derives from surface vegetation. VRE is observed in 700-750 nm on the Earth, but there is no guarantee that exovegetation show the red edge in this wavelength. Therefore it is necessary to check the validity of current standards of VRE as the signatures. In facts, M stars (cooler than Sun) will be the main targets in future missions, it is significantly important to know on the fundamental mechanisms in photosynthetic organism such as purple bacteria which absorb longer wavelength radiation. We investigated light absorptions and excitation energy transfers (EETs) in light harvesting complexes in purple bacteria (LH2s) by using quantum dynamics simulations. In LH2, effective EET is accomplished by corporative electronic excitation of the pigments. In our theoretical model, a dipole-dipole approximation was used for the electronic interactions between pigment excitations. Quantum dynamics simulations were performed according to Liouville equation to examine the EET process. The calculated oscillator strength and the transfer time between LH2 were good agreement with the experimental values. As the system size increases, the absorption bands shifted longer and the transfer velocities became larger. When two pigments in a LHC were exchanged to another pigments with lower excitation energy, faster and intensive light collection were observed.
NASA Astrophysics Data System (ADS)
Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro
2016-07-01
The high throughput of character projection (CP) electron-beam (EB) lithography makes it a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as for standard-cell logics and memory arrays. However, non-VLSI applications such as MEMS and MOEMS may not be able to fully utilize the benefits of the CP method due to the wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear because of the EB exposure process often result in intolerable edge roughness, which degrades device performances. In this study, we propose a general EB lithography methodology for such applications utilizing a combination of the CP and variable-shaped beam methods. In the process of layout data conversion with CP character instantiation, several control parameters were optimized to minimize the shot count, improve the edge quality, and enhance the overall device performance. We have demonstrated EB shot reduction and edge-quality improvement with our methodology by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and a high-resolution hydrogen silsesquioxane resist. Atomic force microscope observations were used to analyze the resist edge profiles' quality to determine the influence of the control parameters used in the data conversion process.
Process Damping and Cutting Tool Geometry in Machining
NASA Astrophysics Data System (ADS)
Taylor, C. M.; Sims, N. D.; Turner, S.
2011-12-01
Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.
47. PROCESS PIPING AT SOUTH EDGE OF SOUTH PLANT. VIEW ...
47. PROCESS PIPING AT SOUTH EDGE OF SOUTH PLANT. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO
NASA Astrophysics Data System (ADS)
Palano, M.; Piromallo, C.; Chiarabba, C.
2017-01-01
Dense GPS observations can help Earth scientists to capture the surface imprint of mantle toroidal flow at slab edges. We document this process in the Calabrian subduction system, where the Ionian slab rollback took place during the past 30 Ma, following a stepwise process driven by migration of lithospheric tearing. We found rotation rates of 1.29°/Ma (counterclockwise) and 1.74°/Ma (clockwise), for poles located close to the northern and southern slab edges, respectively. These small-scale, opposite rotations occur along complex sets of active faults representing the present-day lithospheric expression of the tearing processes affecting the southeastward retreating Ionian slab at both edges. The observed rotations are likely still young and the process more immature at the northern tear, where it is unable to reorient mantle fabric and therefore is unseen by SKS splitting.
Vav1: Friend and Foe of Cancer.
Guo, Fukun; Zheng, Yi
2017-12-01
A recent study shows that the protumorigenic guanine nucleotide exchange factor (GEF) Vav1 functions as a tumor suppressor in T cell acute lymphoblastic leukemia (T-ALL) through its ability to complex with the Cbl-b ubiquitin ligase and the intracellular domain of Notch1 (ICN1) and to promote ICN1 degradation. Vav1can act as a double-edged sword in tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ion selection of charge-modified large nanopores in a graphene sheet
NASA Astrophysics Data System (ADS)
Zhao, Shijun; Xue, Jianming; Kang, Wei
2013-09-01
Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.
He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C
2014-01-01
Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Haskey, S. R.; Grierson, B. A.; Stagner, L.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Ashourvan, A.; Pablant, N. A.
2017-10-01
Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D [J.L. Luxon, Nucl. Fusion 42 (2002) 614] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the Dα spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (C6+) and main-ion (D+) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D+ temperature can be half the value of the C6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. These measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.
Bayes-Turchin analysis of x-ray absorption data above the Fe L{sub 2,3}-edges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossner, H. H.; Schmitz, D.; Imperia, P.
2006-10-01
Extended x-ray absorption fine structure (EXAFS) data and magnetic EXAFS (MEXAFS) data were measured at two temperatures (180 and 296 K) in the energy region of the overlapping L-edges of bcc Fe grown on a V(110) crystal surface. In combination with a Bayes-Turchin data analysis procedure these measurements enable the exploration of local crystallographic and magnetic structures. The analysis determined the atomic-like background together with the EXAFS parameters which consisted of ten shell radii, the Debye-Waller parameters, separated into structural and vibrational components, and the third cumulant of the first scattering path. The vibrational components for 97 different scattering pathsmore » were determined by a two parameter force-field model using a priori values adjusted to Born-von Karman parameters of inelastic neutron scattering data. The investigations of the system Fe/V(110) demonstrate that the simultaneous fitting of atomic background parameters and EXAFS parameters can be performed reliably. Using the L{sub 2}- and L{sub 3}-components extracted from the EXAFS analysis and the rigid-band model, the MEXAFS oscillations can only be described when the sign of the exchange energy is changed compared to the predictions of the Hedin Lundquist exchange and correlation functional.« less
Haskey, S. R.; Grierson, B. A.; Stagner, L.; ...
2017-10-25
Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the D α spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (Cmore » 6+) and main-ion (D +) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D + temperature can be half the value of the C 6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. Furthermore, these measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.« less
NASA Astrophysics Data System (ADS)
Perdrial, Nicolas; Thompson, Aaron; O'Day, Peggy A.; Steefel, Carl I.; Chorover, Jon
2014-09-01
Portions of the Hanford Site (WA, USA) vadose zone were subjected to weathering by caustic solutions during documented releases of high level radioactive waste (containing Sr, Cs and I) from leaking underground storage tanks. Previous studies have shown that waste-sediment interactions can promote variable incorporation of contaminants into neo-formed mineral products (including feldspathoids and zeolites), but processes regulating the subsequent contaminant release from these phases into infiltrating background pore waters remain poorly known. In this paper, reactive transport experiments were conducted with Hanford sediments previously weathered for one year in simulated hyper-alkaline waste solutions containing high or low 88Sr, 127I, and 133Cs concentrations, with or without CO2(aq). These waste-weathered sediments were leached in flow-through column experiments with simulated background pore water (characteristic of meteoric recharge) to measure contaminant release from solids formed during waste-sediment interaction. Contaminant sorption-desorption kinetics and mineral transformation reactions were both monitored using continuous-flow and wet-dry cycling regimes for ca. 300 pore volumes. Less than 20% of contaminant 133Cs and 88Sr mass and less than 40% 127I mass were released over the course of the experiment. To elucidate molecular processes limiting contaminant release, reacted sediments were studied with micro- (TEM and XRD) and molecular- (Sr K-edge EXAFS) scale methods. Contaminant dynamics in column experiments were principally controlled by rapid dissolution of labile solids and competitive exchange reactions. In initially feldspathoidic systems, time-dependent changes in the local zeolitic bonding environment observed with X-ray diffraction and EXAFS are responsible for limiting contaminant release. Linear combination fits and shell-by-shell analysis of Sr K-edge EXAFS data revealed modification in Sr-Si/Al distances within the zeolite cage. Wet-dry cycling did not affect significantly molecular-scale transformations relative to continuous-flow controls. Results indicate that contaminants bound to the solid phase in distinct micro- and molecular-scale coordinative environments can generate similar macro-scale release behaviors, highlighting the need for multi-scale interrogations to constrain mechanisms of reactive transport. Data also indicate that weathering-induced change in ion exchange selectivity coefficients should be incorporated in simulations of contaminant release from caustic high-level radioactive waste impacted sediments.
Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin
2014-03-01
Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.
Interpretation of the molecular fluxes measured at the periphery of a magnetically confined plasma
NASA Astrophysics Data System (ADS)
Liu-Hinz, C.; Terreault, B.; Martin, F.
1995-04-01
A new instrument ("Variable Geometry Sniffer Probe" or VGSP), allowing one to sample and mass analyse atoms, ions or molecules moving in different directions and at different locations at the periphery of a plasma, has been built and used in plasma edge studies in the TdeV tokamak. Three different regimes of particle sampling have been identified. First, the VGSP can measure the fluxes of hydrogen and impurity molecules issuing from the walls. Second, it has the capability of detecting low energy charge-exchange and Franck-Condon neutrals. Finally, there is a parallel ion flux sampling regime, for which it is shown that both the connection lengths to the divertor plates and the X × B plasma flows induced by edge electric fields play major roles.
Formation of RNA oligomers on montmorillonite: site of catalysis
NASA Technical Reports Server (NTRS)
Ertem, G.; Ferris, J. P.
1998-01-01
Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.
Densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1982-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
NASA Astrophysics Data System (ADS)
Longo, R. M.; Ribeiro, A. I.
2017-12-01
Regina Márcia Longo2, Deborah Regina Mendes2, Admilson Irio Ribeiro31 Part of the project funded by the Foundation of the State of São Paulo Research - Brazil (FAPESP - process 2012 / 14423-8)2 Pontifícal Catholic University of Campinas - Brazil; email: regina.longo@puc-campinas.edu.br 3 Paulista State University (UNESP-Sorocaba - Brazil)Due to the disorderly growth of cities, especially in tropical areas, it is observed that the destruction or fragmentation of natural ecosystems has presented itself as one of the great problems of the present time. The forest fragments, although important for the maintenance of microclimate, genetic variety and species diversity, are increasingly impacted due to the activities that are developed in their environment. The present work had as main objective to quantify the level of natural fertility and the presence of heavy metals in the soil in border areas of a forest remnant located in an urban area in the city of Campinas / SP - Brazil in order to verify possible interferences of the anthropic actions carried out in adjacent areas. Soil composite samples were collected at 40 points equidistant at 200 m along the edge. In the samples were determined the contents of: pH (CaCl2); organic matter (OM); phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg), Cation Exchange Capacity (CEC), base sum (SB) and percentage saturation of bases in addition to heavy metals lead (Pb), chromium (Cr) and nickel (Ni). The results indicated that the nutritional quality of the soil was adequate for the tropical regions. In relation to micronutrients, high levels of copper, zinc and manganese were observed. Regarding the metals, it was observed that iron was the one that accused the most irregularities along the edge, while the lead had higher indices for all the edges evaluated. In general, the presented results indicated that the forest remnant presents its border areas under external pressures, presenting several factors of degradation as real estate occupation, presence of access roads and traffic of vehicles and people, of the production of sugar cane, fire and deposition of solid waste, or other degradation factor that directly interfere in the areas of the edges of this important remnant of Atlantic Forest. Key words: forest remnants, tropical soils, edge effect
Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor
2008-06-01
The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.
Nwosu, Ugwumsinachi G.; Roy, Amitava; dela Cruz, Albert Leo N.; Dellinger, Barry; Cook, Robert
2016-01-01
Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm−1 and 1595 cm−1, and at lower frequencies between 694 cm−1 and 806 cm−1, as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHp-p of 6.1 G at an average concentration of 7.5 × 1017 spins/g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10−2 spins/Fe(II) atom. PMID:26647158
Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert
2016-01-01
Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.
Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
NASA Astrophysics Data System (ADS)
Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
Meng, Andrew C; Cheng, Jun; Sprik, Michiel
2016-03-03
Conduction band edge (CBE) and valence band edge (VBE) positions of InxGa1-xN photoelectrodes were computed using density functional theory methods. The band edges of fully solvated GaN and InN model systems were aligned with respect to the standard hydrogen electrode using a molecular dynamics hydrogen electrode scheme applied earlier to TiO2/water interfaces. Similar to the findings for TiO2, we found that the Purdew-Burke-Ernzerhof (PBE) functional gives a VBE potential which is too negative by 1 V. This cathodic bias is largely corrected by application of the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional containing a fraction of Hartree-Fock exchange. The effect of a change of composition was investigated using simplified model systems consisting of vacuum slabs covered on both sides by one monolayer of H2O. The CBE was found to vary linearly with In content. The VBE, in comparison, is much less sensitive to composition. The data show that the band edges straddle the hydrogen and oxygen evolution potentials for In fractions less than 47%. The band gap was found to exceed 2 eV for an In fraction less than 54%.
Complete exchange on the iPSC-860
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1991-01-01
The implementation of complete exchange on the circuit switched Intel iPSC-860 hypercube is described. This pattern, also known as all-to-all personalized communication, is the densest requirement that can be imposed on a network. On the iPSC-860, care needs to be taken to avoid edge contention, which can have a disastrous impact on communication time. There are basically two classes of algorithms that achieve contention-free complete exchange. The first contains the classical standard exchange algorithm that is generally useful for small message sizes. The second includes a number of optimal or near-optimal algorithms that are best for large messages. Measurement of communication overhead on the iPSC-860 are given and a notation for analyzing communication link usage is developed. It is shown that for the two classes of algorithms, there is substantial variation in performance with synchronization technique and choice of message protocol. Timings of six implementations are given; each of these is useful over a particular range of message size and cube dimension. Since the complete exchange is a superset of communication patterns, these timings represent upper bounds on the time required by an arbitrary communication requirement. These results indicate that the programmer needs to evaluate several possibilities before finalizing an implementation - a careful choice can lead to very significant savings in time.
Real-time edge tracking using a tactile sensor
NASA Technical Reports Server (NTRS)
Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.
1989-01-01
Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.
NASA Astrophysics Data System (ADS)
Zhu, Qi; Li, Ji-Guang; Li, Xiaodong; Sun, Xudong; Qi, Yang; Zhu, Miaoyong; Sakka, Yoshio
2014-02-01
Layered rare-earth hydroxide (LRH) crystals of (Y0.95Eu0.05)2(OH)5NO3·nH2O with a lateral size of ˜ 300 μm and a thickness of ˜ 9 μm have been synthesized via a hydrothermal reaction of mixed nitrate solutions in the presence of mineralizer NH4NO3 at 200 °C for 24 h. LRH exhibits the ability to undergo intercalation and anion exchange with DS- (C12H25OSO3-) via hydrothermal treatment. Compared with traditional anion exchange at room temperature, hydrothermal processing not only shortens the anion exchange time from 720 to 24 h but also increases the basal spacing. The arrangements of DS- in the interlayer of LRH are significantly affected by the DS- concentration and reaction temperature, and the basal spacing of the LRH-DS sample in the crystal edge is assumed to be larger than that in the crystal center. A higher DS- concentration and reaction temperature both induce more intercalation of DS- anions into the interlayer gallery, thus yielding a larger basal spacing. Unilamellar nanosheets with a lateral size of ⩾60 μm and a thickness of ˜ 1.6 nm can be obtained by delaminating LRH-DS in formamide. The resultant unilamellar nanosheets are single crystalline. Transparent (Y0.95Eu0.05)2O3 phosphor films with a uniform [111] orientation and a layer thickness of ˜ 90 nm were constructed with the nanosheets as building blocks via spin-coating, followed by proper annealing. The oriented oxide film exhibits a strong red emission at 614 nm (the 5D0-7F2 transition of Eu3+), whose intensity is ˜ 2 times that of the powder form owing to the significant exposure of the (222) facets.
Chai, Mei; Tang, Xuyan; Liang, Guangku
2015-12-01
To investigate clinical effect of individual light-curing resin tray as edge plastic material in complete denture modulo. A total of 30 patients with poor condition for alveolar ridge of mandible were chosen individual tray with individual light-curing resin tray for material edge shaping or traditional individual impression tray for edge shaping cream to produce complete denture. The operability, questionnaire about denture retention, comfort, mucosal cases and chewing function in the process of shaping the edge were investigated three months later after wearing dentures. There was no significant difference in retention, comfort, mucosa and the chewing function between the two mandibular denture impression methods. However, the patients with individual light-curing resin tray as edge shaping material felt better in the process than that in the patients with die-cream as the edge shaping material (P<0.05). Furthermore, the manipulation with individual light-curing resin tray as edge shaping material is easy for doctor. Although the clinical effect of Individual light-curing resin tray material as the edge shaping material is equal to that of impression cream, it saves time and human resource. Moreover, it is more acceptable for the patients and thus it can be spread in clinics.
Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks
NASA Astrophysics Data System (ADS)
Xu, Qiang; Xu, Zezhong; Li, Li; Zheng, Yan
2017-10-01
Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.
Magnetic gating of a 2D topological insulator
NASA Astrophysics Data System (ADS)
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.
2016-09-01
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.
Method of forming densified edge seals for fuel cell components
DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.
1981-01-01
A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.
Robol, Valentina; Grassi, Massimo; Casco, Clara
2013-08-09
Both neurophysiological and psychophysical evidence suggest a strong influence of context on texture-segmentation. Here we extend and further analyse this issue, with a particular focus on the underlying mechanism. Specifically, we use a texture-edge discrimination task and separately investigate the effect of elements far from and along the edge. Consistent with previous studies, we report both an iso-near contextual effect - whereby performance is better if elements along the edge are iso-oriented compared to ortho-oriented to the edge - as well as an ortho-far effect - whereby discrimination is higher when elements far from the edge are orthogonal to the edge. We found that backward mask, which is known to interrupt re-entrant processing from extrastriate areas, only interferes with the iso-near effect whereas perturbing orientation, position or contrast polarity of elements far from the edge only abolishes the ortho-far effect. This suggests that feedback processes may be involved in the iso-near effect. Instead, the ortho-far effect may be accounted for by recurrent interactions among 1st order filters. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tesfay, Hayelom D.
Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava, and Alumina) were conducted. Based on the experimental results, analytical models for UVAG and CG (conventional grinding without ultrasonic vibration) processes were developed. As for the numerical study, an extended finite element method (XFEM) based on Virtual Crack Closure Technique (VCCT) in ABAQUS was used to model the formation of edge chippings both for UVAG and CG processes. The experimental results are compared against the numerical FEA and the analytical models. The experimental, theoretical, and computational simulation results revealed that the edge chipping size of bioceramics can be significantly reduced with the assistance of ultrasonic vibration. The investigation procedures and the results obtained in this dissertation would be used as a reference and practical guidance for choosing reasonable process variables as well as designing mathematical (analytical and numerical) models in manufacturing industries and academic institutions when the edge chippings of brittle materials are expected to be controlled.
NASA Astrophysics Data System (ADS)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.
2018-01-01
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was laboratory air. Because of strong aqueous U(VI)-carbonate solution complexes, the measurement of DIC concentrations was even important for systems set up in the 'absence' of CO2, due to low levels of CO2 contamination during the experiment.
The edge detection method of the infrared imagery of the laser spot
NASA Astrophysics Data System (ADS)
Che, Jinxi; Zhang, Jinchun; Li, Zhongmin
2016-01-01
In the jamming effectiveness experiments, in which the thermal infrared imager was interfered by the CO2 Laser, in order to evaluate the jamming effect of the thermal infrared imager by the CO2 Laser, it was needed to analyses the obtained infrared imagery of laser spot. Because the laser spot pictures obtained from the thermal infrared imager are irregular, the edge detection is an important process. The image edge is one of the most basic characteristics of the image, and it contains most of the information of the image. Generally, because of the thermal balance effect, the partly temperature of objective is no quite difference; therefore the infrared imagery's ability of reflecting the local detail of object is obvious week. At the same time, when the information of heat distribution of the thermal imagery was combined with the basic information of target, such as the object size, the relative position of field of view, shape and outline, and so on, the information just has more value. Hence, it is an important step for making image processing to extract the objective edge of the infrared imagery. Meanwhile it is an important part of image processing procedure and it is the premise of many subsequent processing. So as to extract outline information of the target from the original thermal imagery, and overcome the disadvantage, such as the low image contrast of the image and serious noise interference, and so on, the edge of thermal imagery needs detecting and processing. The principles of the Roberts, Sobel, Prewitt and Canny operator were analyzed, and then they were used to making edge detection on the thermal imageries of laser spot, which were obtained from the jamming effect experiments of CO2 laser jamming the thermal infrared imager. On the basis of the detection result, their performances were compared. At the end, the characteristics of the operators were summarized, which provide reference for the choice of edge detection operators in thermal imagery processing in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.
2013-05-30
Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less
Exoplanet recycling in massive white-dwarf debris discs
NASA Astrophysics Data System (ADS)
van Lieshout, R.; Kral, Q.; Charnoz, S.; Wyatt, M. C.; Shannon, A.
2018-05-01
Several tens of white dwarfs are known to host circumstellar discs of dusty debris, thought to arise from the tidal disruption of rocky bodies originating in the star's remnant planetary system. This paper investigates the evolution of such discs if they are very massive, as may be the case if their progenitor was a terrestrial planet, moon, or dwarf planet. Assuming the discs are physically thin and flat, like Saturn's rings, their evolution is governed by Poynting-Robertson drag or viscous spreading, where the disc's effective viscosity is due to self-gravity wakes. For discs with masses ≳ 1026 g, located in the outer parts of the tidal disruption zone, viscous spreading dominates the evolution, and mass is transported both in- and outwards. When outwards-spreading material flows beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of moonlets at the outer edge of Saturn's rings. The newly formed bodies migrate outwards by exchanging angular momentum with the disc and coalesce into larger objects through mutual collisions. Eventually, the disc's Roche-limit overflow recycles tens of percent of the original disc mass; most ends up in a single large body near 2:1 mean-motion resonance with the disc's outer edge. Hence, the recycling of a tidally disrupted super-Earth, for example, could yield an Earth-mass planet on a ˜10-h orbit, located in the habitable zone for 2-to-10-Gyr-old white dwarfs. The recycling process also creates a population of smaller bodies just outside the Roche limit, which may explain the minor planets recently postulated to orbit WD 1145+017.
Active edge control in the precessions polishing process for manufacturing large mirror segments
NASA Astrophysics Data System (ADS)
Li, Hongyu; Zhang, Wei; Walker, David; Yu, Gouyo
2014-09-01
The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The `Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under `Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the `Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.
Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M
2004-05-01
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.
Secure and QoS-Managed Information Exchange Between Enterprise and Constrained Environments
2014-01-01
systems and enterprise services during mission operation can enable greater situational awareness and empowerment for the tactical user . For example...April 01, 2007. [17] Robbins, D., Unmanned Aircraft Operational Integration using MITRE’s Cursor on Target, The Edge, Volume 10, Number 2, MITRE...appropriate level of security protection and quality of service (QoS) for the tactical users is one possibility. Such an approach is not cost ef
USDA-ARS?s Scientific Manuscript database
A cost model was developed for fuel ethanol production from barley based on the EDGE (Enhanced Dry Grind Enzymatic) process (Nghiem, et al., 2008). In this process, in addition to beta-glucanases, which is added to reduce the viscosity of the barley mash for efficient mixing, another enzyme, beta-...
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation
Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu
2016-01-01
The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers. PMID:27991552
Method of Preparation AZP4330 PR Pattern with Edge Slope 40°
NASA Astrophysics Data System (ADS)
Wu, Jie; Zhao, Hongyuan; Yu, Yuanwei; Zhu, Jian
2018-03-01
When the edge which is under the multi-film is more steep or angular, the stress in the multilayer film near the edge is concentrated, this situation will greatly reduce the reliability of electronic components. And sometimes, we need some special structure such as a slope with a specific angle in the MEMS, so that the metal line can take the signal to the output pad through the slope instead of deep step. To cover these problems, the lithography method of preparing the structure with edge slope is studied. In this paper, based on the Kirchhoff scalar diffraction theory we try to change the contact exposure gap and the post-baking time at the specific temperature to find out the effect about the edge angle of the photoresist. After test by SEM, the results were presented by using AZP4330 photoresist, we can get the PR Pattern with edge slope 40° of the process and the specific process parameters.
Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface
NASA Astrophysics Data System (ADS)
Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin
2018-05-01
In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.
Klonoff, David C
2017-07-01
The Internet of Things (IoT) is generating an immense volume of data. With cloud computing, medical sensor and actuator data can be stored and analyzed remotely by distributed servers. The results can then be delivered via the Internet. The number of devices in IoT includes such wireless diabetes devices as blood glucose monitors, continuous glucose monitors, insulin pens, insulin pumps, and closed-loop systems. The cloud model for data storage and analysis is increasingly unable to process the data avalanche, and processing is being pushed out to the edge of the network closer to where the data-generating devices are. Fog computing and edge computing are two architectures for data handling that can offload data from the cloud, process it nearby the patient, and transmit information machine-to-machine or machine-to-human in milliseconds or seconds. Sensor data can be processed near the sensing and actuating devices with fog computing (with local nodes) and with edge computing (within the sensing devices). Compared to cloud computing, fog computing and edge computing offer five advantages: (1) greater data transmission speed, (2) less dependence on limited bandwidths, (3) greater privacy and security, (4) greater control over data generated in foreign countries where laws may limit use or permit unwanted governmental access, and (5) lower costs because more sensor-derived data are used locally and less data are transmitted remotely. Connected diabetes devices almost all use fog computing or edge computing because diabetes patients require a very rapid response to sensor input and cannot tolerate delays for cloud computing.
Wallace, Sarah H; Shaw, Samuel; Morris, Katherine; Small, Joe S; Burke, Ian T
2013-04-16
Results are presented from 1 year batch experiments where K-rich hyperalkaline pH 13.5 young cement water (YCW) was reacted with sediments to investigate the effect of high pH, mineral alteration, and secondary mineral precipitation on (90)Sr sorption. After reaction with YCW, Sr sorption was found to be greater than 75% in all samples up to 365 days and 98% in a sample reacted for 365 days at 70 °C. Scanning electron microscopy analysis of sediment samples reacted at room temperature showed surface alteration and precipitation of a secondary phase, likely a K-rich aluminosilicate gel. The presence of Sr-Si(Al) bond distances in Sr K-edge extended X-ray absorption fine structure (EXAFS) analysis suggested that the Sr was present as an inner-sphere adsorption complex. However, sequential extractions found the majority of this Sr was still exchangeable with Mg(2+) at pH 7. For the sample reacted for 1 year at 70 °C, EXAFS analysis revealed clear evidence for ∼6 Sr-Si(Al) backscatters at 3.45 Å, consistent with Sr incorporation into the neoformed K-chabazite phase that was detected by X-ray diffraction and electron microscopy. Once incorporated into chabazite, (90)Sr was not exchangeable with Mg(2+), and chemical leaching with pH 1.5 HNO3 was required to remobilize 60% of the (90)Sr. These results indicate that, in high pH cementitious leachate, there is significantly enhanced Sr retention in sediments due to changes in the adsorption mechanism and incorporation into secondary silicate minerals. This suggests that Sr retention may be enhanced in this high pH zone and that the incorporation process may lead to irreversible exchange of the contaminant over extended time periods.
Distributed Scene Analysis For Autonomous Road Vehicle Guidance
NASA Astrophysics Data System (ADS)
Mysliwetz, Birger D.; Dickmanns, E. D.
1987-01-01
An efficient distributed processing scheme has been developed for visual road boundary tracking by 'VaMoRs', a testbed vehicle for autonomous mobility and computer vision. Ongoing work described here is directed to improving the robustness of the road boundary detection process in the presence of shadows, ill-defined edges and other disturbing real world effects. The system structure and the techniques applied for real-time scene analysis are presented along with experimental results. All subfunctions of road boundary detection for vehicle guidance, such as edge extraction, feature aggregation and camera pointing control, are executed in parallel by an onboard multiprocessor system. On the image processing level local oriented edge extraction is performed in multiple 'windows', tighly controlled from a hierarchically higher, modelbased level. The interpretation process involving a geometric road model and the observer's relative position to the road boundaries is capable of coping with ambiguity in measurement data. By using only selected measurements to update the model parameters even high noise levels can be dealt with and misleading edges be rejected.
New scheme for image edge detection using the switching mechanism of nonlinear optical material
NASA Astrophysics Data System (ADS)
Pahari, Nirmalya; Mukhopadhyay, Sourangshu
2006-03-01
The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.
Augmented reality enabling intelligence exploitation at the edge
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Roy, Heather; Bowman, Elizabeth K.; Patton, Debra
2015-05-01
Today's Warfighters need to make quick decisions while interacting in densely populated environments comprised of friendly, hostile, and neutral host nation locals. However, there is a gap in the real-time processing of big data streams for edge intelligence. We introduce a big data processing pipeline called ARTEA that ingests, monitors, and performs a variety of analytics including noise reduction, pattern identification, and trend and event detection in the context of an area of operations (AOR). Results of the analytics are presented to the Soldier via an augmented reality (AR) device Google Glass (Glass). Non-intrusive AR devices such as Glass can visually communicate contextually relevant alerts to the Soldier based on the current mission objectives, time, location, and observed or sensed activities. This real-time processing and AR presentation approach to knowledge discovery flattens the intelligence hierarchy enabling the edge Soldier to act as a vital and active participant in the analysis process. We report preliminary observations testing ARTEA and Glass in a document exploitation and person of interest scenario simulating edge Soldier participation in the intelligence process in disconnected deployment conditions.
The exchange of Kuroshio and East China Sea shelf water
NASA Astrophysics Data System (ADS)
Chern, Ching-Sheng; Wang, Joe; Wang, Dong-Ping
1990-09-01
A detailed hydrographic study of the East China Sea shelf edge north of Taiwan revealed an intense cold eddy on the shelf break and a large low-salinity filament at the slope. The cold eddy which is induced by the upwelling of the subsurface Kuroshio water has been repeatedly documented in previous studies. The filament which is made of the mixed shelf and subsurface Kuroshio water, on the other hand, has not been recognized before. The shelf edge upwelling appears to be associated with the sharp bending of the Kuroshio north of Taiwan, while the outpouring of shelf water appears to be associated with the northeasterly storms. Both the eddy and the filament consist of large fractions of the subsurface Kuroshio water, and they may be important to the salt and nutrient budget on the East China Sea shelf.
Enhancing the hydrodynamic performance of a tapered swept-back wing through leading-edge tubercles
NASA Astrophysics Data System (ADS)
Wei, Zhaoyu; Lian, Lian; Zhong, Yisen
2018-06-01
The hydrodynamic benefit of implementing leading-edge (LE) tubercles on wings at very low Reynolds numbers ( Res) has not been thoroughly elucidated to date, though their benefits at relatively higher Res are well-studied. Through wind tunnel testing at Re = 5.5 × 104, we found that the LE tubercles increase the lift at all pitch angles tested and slightly reduce the drag at a pitch angle of 4° < α < 10°, which finally results in a significant hydrodynamic performance enhancement at lower pitch angles. Flow visualization reveals that the hydrodynamic performance enhancement is due to the favourable attached flows downstream of the tubercle peaks. The attached flows are believed to be closely related to the downwash and momentum exchange within the boundary layers, which originate from surface and streamwise-aligned counter-rotating vortex pairs (CVPs).
Asmuruf, Frans A; Besley, Nicholas A
2008-08-14
The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.
NASA Technical Reports Server (NTRS)
Schmid, F.
1981-01-01
The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.
Eddy properties in the Southern California Current System
NASA Astrophysics Data System (ADS)
Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent
2018-05-01
The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.
Superpixel edges for boundary detection
Moya, Mary M.; Koch, Mark W.
2016-07-12
Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.
Spatial vision processes: From the optical image to the symbolic structures of contour information
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1988-01-01
The significance of machine and natural vision is discussed together with the need for a general approach to image acquisition and processing aimed at recognition. An exploratory scheme is proposed which encompasses the definition of spatial primitives, intrinsic image properties and sampling, 2-D edge detection at the smallest scale, the construction of spatial primitives from edges, and the isolation of contour information from textural information. Concepts drawn from or suggested by natural vision at both perceptual and physiological levels are relied upon heavily to guide the development of the overall scheme. The scheme is intended to provide a larger context in which to place the emerging technology of detector array focal-plane processors. The approach differs from many recent efforts in edge detection and image coding by emphasizing smallest scale edge detection as a foundation for multi-scale symbolic processing while diminishing somewhat the importance of image convolutions with multi-scale edge operators. Cursory treatments of information theory illustrate that the direct application of this theory to structural information in images could not be realized.
Ion Exchange and Adsorption of Inorganic Contaminants
In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...
Kemeny, Steven Frank; Clyne, Alisa Morss
2011-04-01
Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.
Laser Processed Heat Exchangers
NASA Technical Reports Server (NTRS)
Hansen, Scott
2017-01-01
The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.
Edge-effect fragmentation in the context of foliar disease transmission
NASA Astrophysics Data System (ADS)
Lejeune, S.; Gilet, T.; Bourouiba, L.
2017-11-01
Rain-induced foliar pathogen propagation is inherently linked to raindrop fragmentation upon impact on infected leaves. Close to leaf edges, the outcome of a drop impact is complex and asymmetric. Despite the ubiquitous nature of impacts close to edges, little is known on the role of edges in shaping drop fragmentation (edge-effect fragmentation). To address this gap, we present a series of drop impact experimental results with impact point close to the surface edge. We focus on the liquid sheet expansion in the air and the role of the edge in introducing the asymmetry in such expansion. We link the edge-induced asymmetry of the sheet to the emergence of different families of droplet-producing fragmentation processes. We discuss how our results can help shed light on foliar disease transmission.
Constraint-based stereo matching
NASA Technical Reports Server (NTRS)
Kuan, D. T.
1987-01-01
The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.
Plasma-edge studies using carbon resistance probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, W.R.
1984-01-01
Characterization of erosion and hydrogen-recycling processes occurring at the edge of magnetically confined plasmas requires knowledge of the energy and flux of hydrogen isotopes incident on the materials. A new plasma-edge probe technique, the carbon resistance probe, has been developed to obtain this information. This technique uti
Grouping puts figure-ground assignment in context by constraining propagation of edge-assignment
Brooks, Joseph L.; Driver, Jon
2010-01-01
Figure-ground organization involves assignment of edges to a figural shape on one or the other side of each dividing edge. Established visual cues for edge-assignment primarily concern relatively local rather than contextual factors. Here we show that assignment for a locally-unbiased edge can be affected by assignment of a remote contextual edge that has its own locally-biased assignment. We find that such propagation of edge-assignment from the biased remote context occurs only when the biased and unbiased edges are grouped. This new principle, whereby grouping constrains propagation of figural edge-assignment, emerges from both subjective reports and from an objective short-term edge-matching task. It generalizes from moving displays involving grouping by common fate and collinearity, to static displays with grouping by similarity of edge-contrast polarity, or apparent occlusion. Our results identify a new contextual influence upon edge-assignment. They also identify a new mechanistic relation between grouping and figure-ground processes, whereby grouping between remote elements can constrain propagation of edge-assignment between those elements. PMID:20436200
Lunar-edge based on-orbit modulation transfer function (MTF) measurement
NASA Astrophysics Data System (ADS)
Cheng, Ying; Yi, Hongwei; Liu, Xinlong
2017-10-01
Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.
Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.
2002-01-01
Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.
ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...
ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Computational Modeling and Design of Actively-Cooled Microvascular Materials
2012-06-14
the oscillations of the microchannel for exchanging the heat between the top and bottom edges become ineffective for reducing the temperature of the...Miniature loop heat pipes for electronics cooling, Appl. Therm. Eng. 23 (9) (2003) 1125–1135. [11] X. Wei, Y. Joshi, M.K. Patterson, Experimental and...systems ( MEMS ) [10–12]. In many of these applications, biomimicry has been used as an inspiration for the design of the microvascular sys- tem, while
Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design
NASA Astrophysics Data System (ADS)
Wang, X. S.; Zhang, H. W.; Wang, X. R.
2018-02-01
Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.
NASA Astrophysics Data System (ADS)
Katba, Savan; Jethva, Sadaf; Udeshi, Malay; Trivedi, Priyanka; Vagadia, Megha; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kuberkar, D. G.
2017-11-01
The electronic structure of Pulsed Laser Deposited (PLD) ZnO, Zn0.95Fe0.05O (ZFO), Zn0.98Al0.02O (ZAO) and Zn0.93Fe0.05Al0.02O (ZFAO) films were investigated by Photoelectron spectroscopy and X-ray absorption spectroscopy. X-ray diffraction and ϕ-scan measurements show epitaxial c-directional growth of the films. Temperature dependent magnetization and M-H loop measurements show the presence of room temperature magnetic ordering in all the films. Fittings of Fe 2p XPS and Fe L3,2 -edge XAS of ZFO and ZFAO films show the presence of Fe, in both, Fe+2 and Fe+3 states in tetrahedral symmetry. Valence band spectra in resonance mode show resonance photon energy at 56 eV showing the presence of Fe2+ state (∼2 eV) near the Fermi level. A significant effect of Fe and Al doping on the spectral shape of O K-edge XAS was observed. Results of the Spectroscopic studies reveal that, ferromagnetism in the films is due to the contribution of oxygen deficiency which increases the number of charge carriers that take part in the exchange interaction. Al co-doping with Fe (in ZFAO) results in the enhancement of saturation magnetization by increase in the carrier-mediated ferromagnetic exchange interaction.
Gettering in multicrystalline silicon: A design-of-experiments approach
NASA Astrophysics Data System (ADS)
Schubert, W. K.
1994-12-01
Design-of-experiment methods were used to study gettering due to phosphorus diffusion and aluminum alloying in four industrial multicrystalline silicon materials: Silicon-Film material from AstroPower, heat-exchanger method (HEM) material from Crystal Systems, edge-defined film-fed growth (EFG) material from Mobil Solar, and cast material from Solarex. Time and temperature for the diffusion and alloy processes were chosen for a four-factor quadratic interaction experiment. Simple diagnostic devices were used to evaluate the gettering. Only EFG and HEM materials exhibited statistically significant gettering effects within the ranges used for the various parameters. Diffusion and alloying temperature were significant for HEM material; also there was a second-order interaction between the diffusion time and temperature. There was no interaction between the diffusion and alloying processes in HEM material. EFG material showed a first-order dependence on diffusion temperature and a second-order interaction between the diffusion temperature and the alloying time. Gettering recommendations for the HEM material were used to produce the best-yet Sandia cells on this material, but correlation with the gettering experiment was not strong. Some of the discrepancy arises from necessary processing differences between the diagnostic devices and regular solar cells. This issue and other lessons learned concerning this type of experiment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.M.; Thurner, R.P.
1977-01-01
In considering the use of regenerative and recuperative heat exchangers for process-gas heat recovery general information regarding heat-exchanger effectiveness versus initial capital investment and operating costs is discussed. Specific examples for preheating combustion air for process furnaces and for using primary and secondary heat exchangers in conjunction with an air-pollution-control system for drying and curing ovens cover basic heat-exchanger design and application considerations as well as investment-payback factors.
NASA Astrophysics Data System (ADS)
Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu
2012-05-01
In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.
Edge Evaluation Using Local Edge Coherence
1980-12-01
response within each region. (The operators discussed below also compute an esti- mate of the direction of brightness change .) In the next step, the edges...worth remarking on is that Abdou and Pratt vary the relative strength of signal to noise by holding the contrast constant and changing the standard...threshold level on the basis of the busyness of the resulting thresholded image.) In applications where edge extraction is an important part of the processing
NASA Astrophysics Data System (ADS)
Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi
2018-01-01
A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.
Exploring knowledge exchange: a useful framework for practice and policy.
Ward, Vicky; Smith, Simon; House, Allan; Hamer, Susan
2012-02-01
Knowledge translation is underpinned by a dynamic and social knowledge exchange process but there are few descriptions of how this unfolds in practice settings. This has hampered attempts to produce realistic and useful models to help policymakers and researchers understand how knowledge exchange works. This paper reports the results of research which investigated the nature of knowledge exchange. We aimed to understand whether dynamic and fluid definitions of knowledge exchange are valid and to produce a realistic, descriptive framework of knowledge exchange. Our research was informed by a realist approach. We embedded a knowledge broker within three service delivery teams across a mental health organisation in the UK, each of whom was grappling with specific challenges. The knowledge broker participated in the team's problem-solving process and collected observational fieldnotes. We also interviewed the team members. Observational and interview data were analysed quantitatively and qualitatively in order to determine and describe the nature of the knowledge exchange process in more detail. This enabled us to refine our conceptual framework of knowledge exchange. We found that knowledge exchange can be understood as a dynamic and fluid process which incorporates distinct forms of knowledge from multiple sources. Quantitative analysis illustrated that five broadly-defined components of knowledge exchange (problem, context, knowledge, activities, use) can all be in play at any one time and do not occur in a set order. Qualitative analysis revealed a number of distinct themes which better described the nature of knowledge exchange. By shedding light on the nature of knowledge exchange, our findings problematise some of the linear, technicist approaches to knowledge translation. The revised model of knowledge exchange which we propose here could therefore help to reorient thinking about knowledge exchange and act as a starting point for further exploration and evaluation of the knowledge exchange process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shape Recognition Inputs to Figure-Ground Organization in Three-Dimensional Displays.
ERIC Educational Resources Information Center
Peterson, Mary A.; Gibson, Bradley S.
1993-01-01
Three experiments with 29 college students and 8 members of a university community demonstrate that shape recognition processes influence perceived figure-ground relationships in 3-dimensional displays when the edge between 2 potential figural regions is both a luminance contrast edge and a disparity edge. Implications for shape recognition and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Yu, Chao; Zhang, Chenxi
A dynamic covalent approach towards rigid aryleneethynylene covalent organic polyhedrons (COPs) was explored. Our study on the relationship of the COP structures and the geometry of their building blocks reveals that the topology of aryleneethynylene COPs strongly depends on the size of the building blocks. A tetramer (D2h symmetric), dimer, or interlocked complex can be formed from monomers with the same face-to-edge angle but in different sizes. As alkyne metathesis is a self-exchange reaction and non-directional, the cyclooligomerization of multi-alkyne monomers involves both intramolecular cyclization and intermolecular metathesis reaction, resulting in complicated thermodynamic process disturbed by kinetic competition. Although amore » tetrahedron-shaped tetramer (Td symmetric) has comparable thermodynamic stability to a D2h symmetric tetramer, its formation is kinetically disfavored and was not observed experimentally. Aryleneethynylene COPs consist of purely unsaturated carbon backbones and exhibit large internal cavities, which would have interesting applications in host-guest chemistry and development of porous materials.« less
Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy
NASA Astrophysics Data System (ADS)
Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.
2016-01-01
Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.
Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J.
2013-01-01
Synchronization is crucial to wireless sensor networks due to their decentralized structure. We propose an energy-efficient pulse-coupled synchronization strategy to achieve this goal. The basic idea is to reduce idle listening by intentionally introducing a large refractory period in the sensors’ cooperation. The large refractory period greatly reduces idle listening in each oscillation period, and is analytically proven to have no influence on the time to synchronization. Hence, it significantly reduces the total energy consumption in a synchronization process. A topology control approach tailored for pulse-coupled synchronization is given to guarantee a k-edge strongly connected interaction topology, which is tolerant to communication-link failures. The topology control approach is totally decentralized and needs no information exchange among sensors, and it is applicable to dynamic network topologies as well. This facilitates a completely decentralized implementation of the synchronization strategy. The strategy is applicable to mobile sensor networks, too. QualNet case studies confirm the effectiveness of the synchronization strategy. PMID:24307831
Status of parallel Python-based implementation of UEDGE
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Pankin, A. Y.; Rognlien, T. D.; Dimits, A. M.; Friedman, A.; Joseph, I.
2017-10-01
The tokamak edge transport code UEDGE has long used the code-development and run-time framework Basis. However, with the support for Basis expected to terminate in the coming years, and with the advent of the modern numerical language Python, it has become desirable to move UEDGE to Python, to ensure its long-term viability. Our new Python-based UEDGE implementation takes advantage of the portable build system developed for FACETS. The new implementation gives access to Python's graphical libraries and numerical packages for pre- and post-processing, and support of HDF5 simplifies exchanging data. The older serial version of UEDGE has used for time-stepping the Newton-Krylov solver NKSOL. The renovated implementation uses backward Euler discretization with nonlinear solvers from PETSc, which has the promise to significantly improve the UEDGE parallel performance. We will report on assessment of some of the extended UEDGE capabilities emerging in the new implementation, and will discuss the future directions. Work performed for U.S. DOE by LLNL under contract DE-AC52-07NA27344.
Hofmann, Thomas; Krautwurst, Dietmar; Schieberle, Peter
2018-03-14
The 11th Wartburg Symposium on Flavor Chemistry & Biology, held at the hotel "Auf der Wartburg" in Eisenach, Germany, from June 21 to 24 in 2016, offered a venue for global exchange on cutting-edge research in chemistry and biology of odor and taste. The focus areas were (1) functional flavor genomics and biotechnology, (2) flavor generation and precursors, (3) new approaches and precursors, (4) new approaches and technologies, (5) new molecules and structure/activity relationships, (6) food-borne bioactives and chemosensory health prevention, and (7) chemosensory reception, processing, and perception. Selected from more than 250 applicants, 160 distinguished scientists and rising stars from academia and industry from 24 countries participated in this multidisciplinary event. This special issue comprises a selection of 33 papers from oral presentations and poster contributions and is prefaced by this symposium introduction to carve out essential achievements in odor and taste chemistry and to share future research perspectives.
Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.
Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used tomore » better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.« less
Itinerant and localized magnetization dynamics in antiferromagnetic Ho
Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; ...
2016-06-21
Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L 3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similarmore » spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less
Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy
2015-06-14
It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC havemore » low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.« less
Satisloh centering technology developments past to present
NASA Astrophysics Data System (ADS)
Leitz, Ernst Michael; Moos, Steffen
2015-10-01
The centering of an optical lens is the grinding of its edge profile or contour in relationship to its optical axis. This is required to ensure that the lens vertex and radial centers are accurately positioned within an optical system. Centering influences the imaging performance and contrast of an optical system. Historically, lens centering has been a purely manual process. Along its 62 years of assembling centering machines, Satisloh introduced several technological milestones to improve the accuracy and quality of this process. During this time more than 2.500 centering machines were assembled. The development went from bell clamping and diamond grinding to Laser alignment, exchange chuckor -spindle systems, to multi axis CNC machines with integrated metrology and automatic loading systems. With the new centering machine C300, several improvements for the clamping and grinding process were introduced. These improvements include a user friendly software to support the operator, a coolant manifold and "force grinding" technology to ensure excellent grinding quality and process stability. They also include an air bearing directly driven centering spindle to provide a large working range of lenses made of all optical materials and diameters from below 10 mm to 300 mm. The clamping force can be programmed between 7 N and 1200 N to safely center lenses made of delicate materials. The smaller C50 centering machine for lenses below 50 mm diameter is available with an optional CNC loading system for automated production.
NASA Astrophysics Data System (ADS)
Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter
2015-03-01
Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.
Comprehensive analysis of line-edge and line-width roughness for EUV lithography
NASA Astrophysics Data System (ADS)
Bonam, Ravi; Liu, Chi-Chun; Breton, Mary; Sieg, Stuart; Seshadri, Indira; Saulnier, Nicole; Shearer, Jeffrey; Muthinti, Raja; Patlolla, Raghuveer; Huang, Huai
2017-03-01
Pattern transfer fidelity is always a major challenge for any lithography process and needs continuous improvement. Lithographic processes in semiconductor industry are primarily driven by optical imaging on photosensitive polymeric material (resists). Quality of pattern transfer can be assessed by quantifying multiple parameters such as, feature size uniformity (CD), placement, roughness, sidewall angles etc. Roughness in features primarily corresponds to variation of line edge or line width and has gained considerable significance, particularly due to shrinking feature sizes and variations of features in the same order. This has caused downstream processes (Etch (RIE), Chemical Mechanical Polish (CMP) etc.) to reconsider respective tolerance levels. A very important aspect of this work is relevance of roughness metrology from pattern formation at resist to subsequent processes, particularly electrical validity. A major drawback of current LER/LWR metric (sigma) is its lack of relevance across multiple downstream processes which effects material selection at various unit processes. In this work we present a comprehensive assessment of Line Edge and Line Width Roughness at multiple lithographic transfer processes. To simulate effect of roughness a pattern was designed with periodic jogs on the edges of lines with varying amplitudes and frequencies. There are numerous methodologies proposed to analyze roughness and in this work we apply them to programmed roughness structures to assess each technique's sensitivity. This work also aims to identify a relevant methodology to quantify roughness with relevance across downstream processes.
Transport phenomena in helical edge state interferometers: A Green's function approach
NASA Astrophysics Data System (ADS)
Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael
2013-10-01
We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.
Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush; Michael McKellar
2012-06-01
The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less
RKKY interaction in a chirally coupled double quantum dot system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heine, A. W.; Tutuc, D.; Haug, R. J.
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtainedmore » Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.« less
Besley, Nicholas A
2016-10-11
The computational cost of calculations of K-edge X-ray absorption spectra using time-dependent density functional (TDDFT) within the Tamm-Dancoff approximation is significantly reduced through the introduction of a severe integral screening procedure that includes only integrals that involve the core s basis function of the absorbing atom(s) coupled with a reduced quality numerical quadrature for integrals associated with the exchange and correlation functionals. The memory required for the calculations is reduced through construction of the TDDFT matrix within the absorbing core orbitals excitation space and exploiting further truncation of the virtual orbital space. The resulting method, denoted fTDDFTs, leads to much faster calculations and makes the study of large systems tractable. The capability of the method is demonstrated through calculations of the X-ray absorption spectra at the carbon K-edge of chlorophyll a, C 60 and C 70 .
Grouping puts figure-ground assignment in context by constraining propagation of edge assignment.
Brooks, Joseph L; Brook, Joseph L; Driver, Jon
2010-05-01
Figure-ground organization involves the assignment of edges to a figural shape on one or the other side of each dividing edge. Established visual cues for edge assignment primarily concern relatively local rather than contextual factors. In the present article, we show that an assignment for a locally unbiased edge can be affected by an assignment of a remote contextual edge that has its own locally biased assignment. We find that such propagation of edge assignment from the biased remote context occurs only when the biased and unbiased edges are grouped. This new principle, whereby grouping constrains the propagation of figural edge assignment, emerges from both subjective reports and an objective short-term edge-matching task. It generalizes from moving displays involving grouping by common fate and collinearity, to static displays with grouping by similarity of edge-contrast polarity, or apparent occlusion. Our results identify a new contextual influence on edge assignment. They also identify a new mechanistic relation between grouping and figure-ground processes, whereby grouping between remote elements can constrain the propagation of edge assignment between those elements. Supplemental materials for this article may be downloaded from http://app.psychonomic-journals.org/content/supplemental.
Lord, Alex M; Ramasse, Quentin M; Kepaptsoglou, Despoina M; Evans, Jonathan E; Davies, Philip R; Ward, Michael B; Wilks, Steve P
2017-02-08
Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.
Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone
NASA Astrophysics Data System (ADS)
Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.
2016-12-01
The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.
NASA Technical Reports Server (NTRS)
Mulholland, Donald R.; Perkins, Porter J.
1948-01-01
An investigation to determine the effectiveness of icing protection afforded by air-heating hollow steel unpartitioned propeller blades has been conducted In the NACA Cleveland icing research tunnel. The propeller used was a production model modified with blade shank and tip openings to permit internal passage of heated air. Blade-surface and heated-air temperatures were obtained and photographic observations of Ice formations were made with variations In icing intensity and heating rate to the blades. For the conditions of Icing to which the propeller was subjected, it was found that adequate ice protection was afforded with a heating rate of 40 1 000 Btu per hour per blade. With less than 40,000 Btu per hour per blade, ice protection failed because of significant ice accretions on the leading edge. The chordwise distribution of heat was unsatisfactory with most of the available heat dissipated well back of the leading edge on both the thrust and camber face's instead of at the leading edge where it was most needed. A low utilization of available heat for icing protection is indicated by a beat-exchanger effectiveness of approximately 47 percent.
New Scheduling Algorithms for Agile All-Photonic Networks
NASA Astrophysics Data System (ADS)
Mehri, Mohammad Saleh; Ghaffarpour Rahbar, Akbar
2017-12-01
An optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.
Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning
NASA Astrophysics Data System (ADS)
Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios
2017-12-01
We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.
NASA Astrophysics Data System (ADS)
Thiéblemont, R.; Huret, N.; Orsolini, Y.; Hauchecorne, A.; Drouin, M.
2010-12-01
During winter, the polar vortex forms in arctic stratosphere a dynamical barrier which prevents large scale exchanges between high latitude and tropical regions. However, thin tropical air mass intrusions at the edge of the polar vortex have already been detected and modelled. These structures could play an important role for the knowledge of the balance between chemistry and dynamical processes associated with ozone budget. During springtime, after the final stratospheric warming, the breakdown of the polar vortex occurs and the summer circulation starts to develop. Air mass intrusions from the tropics can be trapped into the polar latitudes in an anticyclone which can persist until August, advected by summer easterlies. These structures, named “Frozen In Anticyclones” (FrIAC’s), have already been observed in 2003 and 2005 by MIPAS-ENVISAT and MLS-AURA instruments. We present here a new case of FrIAC in 2007 highlighted using MLS-AURA measurements. Time evolution of N2O and H2O mixing ratios in the core of this FRIAC are compared with the 2005 similar event. In addition, we perform a climatology of tropical air mass intrusions during the last decade based on the results of the potential vorticity contour advection model MIMOSA (Hauchecorne et al., 2002) and MLS-AURA measurements. This climatology reveals a favourite path for exchanges between polar and tropical stratosphere allowing us to establish closed links between FrIAC’s occurrence and Rossby wave activity. Using wind and temperature fields from ECMWF, we performed a study to understand dynamical processes responsible of such dynamical structures. Discussion on the link between them and Sudden Stratospheric Warming, Final Stratsopheric Warming and Quasi Biennal Oscillation will be presented. This study is made in the framework the STRAPOLETE project which has started on January 2009 to study the Arctic stratosphere in the summertime.
An open canvas--2D materials with defects, disorder, and functionality.
Zou, Xiaolong; Yakobson, Boris I
2015-01-20
CONSPECTUS: While some exceptional properties are unique to graphene only (its signature Dirac-cone gapless dispersion, carrier mobility, record strength), other features are common to other two-dimensional materials. The broader family "beyond graphene" offers greater choices to be explored and tailored for various applications. Transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), and 2D layers of pure elements, like phosphorus or boron, can complement or even surpass graphene in many ways and uses, ranging from electronics and optoelectronics to catalysis and energy storage. Their availability greatly relies on chemical vapor deposition growth of large samples, which are highly polycrystalline and include interfaces such as edges, heterostructures, and grain boundaries, as well as dislocations and point defects. These imperfections do not always degrade the material properties, but they often bring new physics and even useful functionality. It turns particularly interesting in combination with the sheer openness of all 2D sheets, fully exposed to the environment, which, as we show herein, can change and tune the defect structures and consequently all their qualities, from electronic levels, conductivity, magnetism, and optics to structural mobility of dislocations and catalytic activities. In this Account, we review our progress in understanding of various defects. We begin by expressing the energy of an arbitrary graphene edge analytically, so that the environment is regarded by "chemical phase shift". This has profound implications for graphene and carbon nanotube growth. Generalization of this equation to heteroelemental BN gives a method to determine the energy for arbitrary edges of BN, depending on the partial chemical potentials. This facilitates the tuning of the morphology and electronic and magnetic properties of pure BN or hybrid BN|C systems. Applying a similar method to three-atomic-layer TMDCs reveals more diverse edge structures for thermodynamically stable flakes. Moreover, CVD samples show new types of edge reconstruction, providing insight into the nonequilibrium growth process. Combining dislocation theory with first-principles computations, we could predict the dislocation cores for BN and TMDC and reveal their variable chemical makeup. This lays the foundation for the unique sensitivity to ambient conditions. For example, partial occupation of the defect states for dislocations in TMDCs renders them intrinsically magnetic. The exchange coupling between electrons from neighboring dislocations in grain boundaries further makes them half-metallic, which may find its applications in spintronics. Finally, brief discussion of monoelemental 2D-layer phosphorus and especially the structures and growth routes of 2D boron shows how theoretical assessment can help the quest for new synthetic routes.
Distributed Trust Evaluation in Ad-Hoc Networks
2004-01-01
of money that the issuer will pay to anyone who is misled because of the certificate. Being misled means falsely authenticating the certified entity...Alice to Bob. This is the minimum amount of money for which Alice is insured in the case of her being misled by Bob’s key. Note that if all edges are...confidence gets to vote first. Moreover, some paths are pruned which means that fewer messages are exchanged, thus saving bandwidth, but also some of the
T-Burner Testing of Metallized Solid Propellants
1974-10-01
The heat exchanger reduces the temperature of the combustion products and, therefore, serves to decrease the pressure build up in the overall system by...transducer (4-5). The high temperature gases will not affect the flush mounted Kistler unit for duratiens of several seconds, with only a thin film of sili...Assume that the average speeds of the particles and gases are the same, and that the local value of p p/pg = C at the edge of the combustion zone is
Sherman, David M.
1986-01-01
A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.
Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff
The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cientmore » industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.« less
NASA Astrophysics Data System (ADS)
Kazakov, Alexander; Simion, George; Kolkovsky, Valery; Adamus, Zbigniew; Karczewski, Grzegorz; Wojtowicz, Tomasz; Lyanda-Geller, Yuli; Rokhinson, Leonid
Development of a two-dimensional systems with reconfigurable one-dimensional topological superconductor channels became primary direction in experimental branch of Majorana physics. Such system would allow to probe non-Abelian properties of Majorana quasiparticles and realize the ultimate goal of Majorana research - topological qubit for topologically protected quantum computations. In order to create and exchange Majorana quasiparticles desired system may be spin-full, but fermion doubling should be lifted. These requirements may be fulfilled in domain walls (DW) which are formed during quantum Hall ferromagnet (QHF) transition when two Landau levels with opposite spin polarization become degenerate. We developed a system based on CdMnTe quantum well with engineered placement of Mn ions where exchange interaction and, consequently, QHF transition can be controlled by electrostatic gating. Using electrostatic control of exchange we create conductive channels of DWs which, unlike conventional edge channels, are not chiral and should contain both spin polarizations. We will present results on the formation of isolated DWs of various widths and discuss their transport properties. Department of Defence Office of Naval research Award N000141410339.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken
2015-05-18
We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizesmore » of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... reasonable fees incurred for processing such orders. \\3\\ See Securities Exchange Act Release No. 61152... orders is an equitable allocation of reasonable fees because such orders require processing and the assessment of such fees allows the Exchange to recoup costs incurred processing such orders, as well as...
Large-scale Atmospheric Transport Processes
NASA Technical Reports Server (NTRS)
Plumb, R. Alan
2004-01-01
Continuing earlier work, we continued an investigation of the seasonal behavior of the edges of the stratospheric surf zone. These edges form a barrier between the rapidly mixed surf zone and the relatively isolated tropics. In collaboration with Dr Lynn Sparling at GSFC, we used a statistical analysis of HALOE and CLAES trace gas data from UARS to identify and locate these edges during each UARS observing period. We found that the edges on both sides of the equator are present all year (a fact that is important for conceptual models of stratospheric transport), though that on the summer side of the equator is much less sharp than the winter edge. The edges migrate seasonally into the summer hemisphere. Their location also shows influence of the QBO, together with the SAO at higher altitudes. Comparisons with effective diffusivities, and the edge locations, suggest that the edge is sustained by surf zone entrainment during winter, but by the residual circulation during summer.
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Generalized master equations for non-Poisson dynamics on networks
NASA Astrophysics Data System (ADS)
Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Cutting thin glass by femtosecond laser ablation
NASA Astrophysics Data System (ADS)
Shin, Hyesung; Kim, Dongsik
2018-06-01
The femtosecond laser ablation process for cutting thin aluminoborosilicate glass sheets of thickness 100 μm was investigated with emphasis on effective cutting speed (Veff) and mechanical strength of diced samples. The process parameters including the laser fluence (F), overlap ratio (r) of the laser beam and polarization direction were varied at a fixed pulse repetition rate f = 1 kHz to find the optimal process condition that maximizes Veff and edge strength. A three-point bending test was performed to evaluate the front-side and back-side bending (edge) strength of the laser-cut samples. Veff was proportional to F unless r exceeded a critical value, at which excessive energy began to be delivered at the same spot. The front-side edge strength was bigger than the back-side strength because of the back-side damages such as chipping. Good edge strength, as high as ∼280 MPa (front-side) and ∼230 MPa (back-side), was obtained at F = 19 J/m2, r = 0.99, with laser polarization vertical to the cutting path.
Kim, Ho Sung; Choi, Jung-Ah
2016-01-01
According to the reports presented at the Asian Radiology Forum 2015, organized by the Korean Society of Radiology (KSR) during the Korean Congress of Radiology (KCR) in September 2015 in Seoul, there is an increasing need to promote international exchange and collaboration amongst radiology societies in Asian countries. The Asian Radiology Forum was first held by KSR and the national delegates of Asian radiological partner societies, who attended this meeting with the aim of discussing selected subjects of global relevance in radiology. In 2015, current stands, pros and cons, and future plans for inter-society collaboration between each Asian radiological partner societies were primarily discussed. The Asian radiology societies have international collaborations with each other through various activities, such as joint symposia, exchange programs, social exchange, and international membership. The advantages of continuing inter-society collaboration in most of the Asian radiology societies include international speakers, diverse clinical research, and cutting edge technology; while limited range of financial and human resources, language barrier, differences in goals and expectations are claimed as disadvantages. With regard to the future, most of the Asian radiology societies focus on expanding partner societies and enhancing globalization and collaboration programs through various international meetings and exchange programs. PMID:26957902
The fabrication of ordered arrays of exchange biased Ni/FeF2 nanostructures.
Kovylina, M; Erekhinsky, M; Morales, R; Schuller, I K; Labarta, A; Batlle, X
2010-04-30
The fabrication of ordered arrays of exchange biased Ni/FeF(2) nanostructures by focused ion beam lithography is reported. High quality nano-elements, with controlled removal depth and no significant re-deposition, were carved using small ion beam currents (30 pA), moderate dwell times (1 micros) and repeated passages over the same area. Two types of nanostructures were fabricated: square arrays of circular dots with diameters from 125 +/- 8 to 500 +/- 12 nm and periodicities ranging from 200 +/- 8 to 1000 +/- 12 nm, and square arrays of square antidots (207 +/- 8 nm in edge length) with periodicities ranging from 300 +/- 8 to 1200 +/- 12 nm. The arrays were characterized using scanning ion and electron microscopy, and atomic force microscopy. The effect of the patterning on the exchange bias field (i.e., the shift in the hysteresis loop of ferromagnetic Ni due to proximity to antiferromagnetic FeF(2)) was studied using magneto-transport measurements. These high quality nanostructures offer a unique method to address some of the open questions regarding the microscopic origin of exchange bias. This is not only of major relevance in the fabrication and miniaturization of magnetic devices but it is also one of the important proximity phenomena in nanoscience and materials science.
NASA Technical Reports Server (NTRS)
Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)
1988-01-01
A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.
Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly
NASA Technical Reports Server (NTRS)
1979-01-01
A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.
Real-time model-based vision system for object acquisition and tracking
NASA Technical Reports Server (NTRS)
Wilcox, Brian; Gennery, Donald B.; Bon, Bruce; Litwin, Todd
1987-01-01
A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.
Sampling Operations on Big Data
2015-11-29
gories. These include edge sampling methods where edges are selected by a predetermined criteria; snowball sampling methods where algorithms start... Sampling Operations on Big Data Vijay Gadepally, Taylor Herr, Luke Johnson, Lauren Milechin, Maja Milosavljevic, Benjamin A. Miller Lincoln...process and disseminate information for discovery and exploration under real-time constraints. Common signal processing operations such as sampling and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Artyushkova, Kateryna; Strand, Matthew B.
A combination of N 1s X-ray photoelectron spectroscopy (XPS) and first principles calculations of nitrogen-containing model electrocatalysts was used to elucidate the nature of the nitrogen defects that contribute to the binding energy (BE) range of the N 1s XPS spectra of these materials above ~400 eV. Experimental core level shifts were obtained for a set of model materials, namely N-doped carbon nanospheres, Fe–N–carbon nanospheres, polypyrrole, polypyridine, and pyridinium chloride, and were compared to the shifts calculated using density functional theory. The results confirm that the broad peak positioned at ~400.7 eV in the N 1s XPS spectra of N-containingmore » catalysts, which is typically assigned to pyrrolic nitrogen, contains contributions from other hydrogenated nitrogen species such as hydrogenated pyridinic functionalities. Namely, N 1s BEs of hydrogenated pyridinic-N and pyrrolic-N were calculated as 400.6 and 400.7 eV, respectively, using the Perdew–Burke–Ernzerhof exchange-correlation functional. A special emphasis was placed on the study of the differences in the XPS imprint of N-containing defects that are situated in the plane and on the edges of the graphene sheet. Density functional theory calculations for BEs of the N 1s of in-plane and edge defects show that hydrogenated N defects are more sensitive to the change in the chemical environment in the carbon matrix than the non-hydrogenated N defects. In conclusion, calculations also show that edge-hydrogenated pyridinic-N and pyrrolic-N defects only contribute to the N 1s XPS peak located at ~400.7 eV if the graphene edges are oxygenated or terminated with bare carbon atoms.« less
Matanovic, Ivana; Artyushkova, Kateryna; Strand, Matthew B.; ...
2016-12-07
A combination of N 1s X-ray photoelectron spectroscopy (XPS) and first principles calculations of nitrogen-containing model electrocatalysts was used to elucidate the nature of the nitrogen defects that contribute to the binding energy (BE) range of the N 1s XPS spectra of these materials above ~400 eV. Experimental core level shifts were obtained for a set of model materials, namely N-doped carbon nanospheres, Fe–N–carbon nanospheres, polypyrrole, polypyridine, and pyridinium chloride, and were compared to the shifts calculated using density functional theory. The results confirm that the broad peak positioned at ~400.7 eV in the N 1s XPS spectra of N-containingmore » catalysts, which is typically assigned to pyrrolic nitrogen, contains contributions from other hydrogenated nitrogen species such as hydrogenated pyridinic functionalities. Namely, N 1s BEs of hydrogenated pyridinic-N and pyrrolic-N were calculated as 400.6 and 400.7 eV, respectively, using the Perdew–Burke–Ernzerhof exchange-correlation functional. A special emphasis was placed on the study of the differences in the XPS imprint of N-containing defects that are situated in the plane and on the edges of the graphene sheet. Density functional theory calculations for BEs of the N 1s of in-plane and edge defects show that hydrogenated N defects are more sensitive to the change in the chemical environment in the carbon matrix than the non-hydrogenated N defects. In conclusion, calculations also show that edge-hydrogenated pyridinic-N and pyrrolic-N defects only contribute to the N 1s XPS peak located at ~400.7 eV if the graphene edges are oxygenated or terminated with bare carbon atoms.« less
Equity Theory Ratios as Causal Schemas.
Arvanitis, Alexios; Hantzi, Alexandra
2016-01-01
Equity theory approaches justice evaluations based on ratios of exchange inputs to exchange outcomes. Situations are evaluated as just if ratios are equal and unjust if unequal. We suggest that equity ratios serve a more fundamental cognitive function than the evaluation of justice. More particularly, we propose that they serve as causal schemas for exchange outcomes, that is, they assist in determining whether certain outcomes are caused by inputs of other people in the context of an exchange process. Equality or inequality of ratios in this sense points to an exchange process. Indeed, Study 1 shows that different exchange situations, such as disproportional or balanced proportional situations, create perceptions of give-and-take on the basis of equity ratios. Study 2 shows that perceptions of justice are based more on communicatively accepted rules of interaction than equity-based evaluations, thereby offering a distinction between an attribution and an evaluation cognitive process for exchange outcomes.
Equity Theory Ratios as Causal Schemas
Arvanitis, Alexios; Hantzi, Alexandra
2016-01-01
Equity theory approaches justice evaluations based on ratios of exchange inputs to exchange outcomes. Situations are evaluated as just if ratios are equal and unjust if unequal. We suggest that equity ratios serve a more fundamental cognitive function than the evaluation of justice. More particularly, we propose that they serve as causal schemas for exchange outcomes, that is, they assist in determining whether certain outcomes are caused by inputs of other people in the context of an exchange process. Equality or inequality of ratios in this sense points to an exchange process. Indeed, Study 1 shows that different exchange situations, such as disproportional or balanced proportional situations, create perceptions of give-and-take on the basis of equity ratios. Study 2 shows that perceptions of justice are based more on communicatively accepted rules of interaction than equity-based evaluations, thereby offering a distinction between an attribution and an evaluation cognitive process for exchange outcomes. PMID:27594846
Nestola, E; Scartazza, A; Di Baccio, D; Castagna, A; Ranieri, A; Cammarano, M; Mazzenga, F; Matteucci, G; Calfapietra, C
2018-01-15
This study investigates the functionality of a Mediterranean-mountain beech forest in Central Italy using simultaneous determinations of optical measurements, carbon (C) fluxes, leaf eco-physiological and biochemical traits during two growing seasons (2014-2015). Meteorological variables showed significant differences between the two growing seasons, highlighting a heat stress coupled with a reduced water availability in mid-summer 2015. As a result, a different C sink capacity of the forest was observed between the two years of study, due to the differences in stressful conditions and the related plant physiological status. Spectral indices related to vegetation (VIs, classified in structural, chlorophyll and carotenoid indices) were computed at top canopy level and used to track CO 2 fluxes and physiological changes. Optical indices related to structure (EVI 2, RDVI, DVI and MCARI 1) were found to better track Net Ecosystem Exchange (NEE) variations for 2014, while indices related to chlorophylls (SR red edge, CL red edge, MTCI and DR) provided better results for 2015. This suggests that when environmental conditions are not limiting for forest sink capacity, structural parameters are more strictly connected to C uptake, while under stress conditions indices related to functional features (e.g., chlorophyll content) become more relevant. Chlorophyll indices calculated with red edge bands (SR red edge, NDVI red edge, DR, CL red edge) resulted to be highly correlated with leaf nitrogen content (R 2 >0.70), while weaker, although significant, correlations were found with chlorophyll content. Carotenoid indices (PRI and PSRI) were strongly correlated with both chlorophylls and carotenoids content, suggesting that these indices are good proxies of the shifting pigment composition related to changes in soil moisture, heat stress and senescence. Our work suggests the importance of integrating different methods as a successful approach to understand how changing climatic conditions in the Mediterranean mountain region will impact on forest conditions and functionality. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Cox, Cary M.
This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.
Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan
2005-10-01
In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases.
Role of helical edge modes in the chiral quantum anomalous Hall state.
Mani, Arjun; Benjamin, Colin
2018-01-22
Although indications are that a single chiral quantum anomalous Hall(QAH) edge mode might have been experimentally detected. There have been very many recent experiments which conjecture that a chiral QAH edge mode always materializes along with a pair of quasi-helical quantum spin Hall (QSH) edge modes. In this work we deal with a substantial 'What If?' question- in case the QSH edge modes, from which these QAH edge modes evolve, are not topologically-protected then the QAH edge modes wont be topologically-protected too and thus unfit for use in any applications. Further, as a corollary one can also ask if the topological-protection of QSH edge modes does not carry over during the evolution process to QAH edge modes then again our 'What if?' scenario becomes apparent. The 'how' of the resolution of this 'What if?' conundrum is the main objective of our work. We show in similar set-ups affected by disorder and inelastic scattering, transport via trivial QAH edge mode leads to quantization of Hall resistance and not that via topological QAH edge modes. This perhaps begs a substantial reinterpretation of those experiments which purported to find signatures of chiral(topological) QAH edge modes albeit in conjunction with quasi helical QSH edge modes.
A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells
Huang, Lawrence; Helmke, Brian P.
2011-01-01
Spatial asymmetry of actin edge ruffling contributes to the process of cell polarization and directional migration, but mechanisms by which external cues control actin polymerization near cell edges remain unclear. We designed a quantitative image analysis strategy to measure the spatiotemporal distribution of actin edge ruffling. Time-lapse images of endothelial cells (ECs) expressing mRFP-actin were segmented using an active contour method. In intensity line profiles oriented normal to the cell edge, peak detection identified the angular distribution of polymerized actin within 1 µm of the cell edge, which was localized to lamellipodia and edge ruffles. Edge features associated with filopodia and peripheral stress fibers were removed. Circular statistical analysis enabled detection of cell polarity, indicated by a unimodal distribution of edge ruffles. To demonstrate the approach, we detected a rapid, nondirectional increase in edge ruffling in serum-stimulated ECs and a change in constitutive ruffling orientation in quiescent, nonpolarized ECs. Error analysis using simulated test images demonstrate robustness of the method to variations in image noise levels, edge ruffle arc length, and edge intensity gradient. These quantitative measurements of edge ruffling dynamics enable investigation at the cellular length scale of the underlying molecular mechanisms regulating actin assembly and cell polarization. PMID:21643526
The rheology and processing of “edge sheared” colloidal polymer opals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Hon Sum; Mackley, Malcolm, E-mail: mrm5@cam.ac.uk; Butler, Simon
This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colors can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colors by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature, and the material was found to be highly viscoelastic at all tested temperatures.more » A Cambridge multipass rheometer was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective polyethylene terephthalate sheets. Axial extension, simple shear, and a novel “edge shearing” geometry were all evaluated, and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing, and mechanisms relating to ordering within complex viscoelastic fluids.« less
NASA Astrophysics Data System (ADS)
Li, Yizhen; McGillicuddy, Dennis J.; Dinniman, Michael S.; Klinck, John M.
2017-02-01
Both remotely sensed and in situ observations in austral summer of early 2012 in the Ross Sea suggest the presence of cold, low-salinity, and high-biomass eddies along the edge of the Ross Ice Shelf (RIS). Satellite measurements include sea surface temperature and ocean color, and shipboard data sets include hydrographic profiles, towed instrumentation, and underway acoustic Doppler current profilers. Idealized model simulations are utilized to examine the processes responsible for ice shelf eddy formation. 3-D model simulations produce similar cold and fresh eddies, although the simulated vertical lenses are quantitatively thinner than observed. Model sensitivity tests show that both basal melting underneath the ice shelf and irregularity of the ice shelf edge facilitate generation of cold and fresh eddies. 2-D model simulations further suggest that both basal melting and downwelling-favorable winds play crucial roles in forming a thick layer of low-salinity water observed along the edge of the RIS. These properties may have been entrained into the observed eddies, whereas that entrainment process was not captured in the specific eddy formation events studied in our 3-D model-which may explain the discrepancy between the simulated and observed eddies, at least in part. Additional sensitivity experiments imply that uncertainties associated with background stratification and wind stress may also explain why the model underestimates the thickness of the low-salinity lens in the eddy interiors. Our study highlights the importance of incorporating accurate wind forcing, basal melting, and ice shelf irregularity for simulating eddy formation near the RIS edge. The processes responsible for generating the high phytoplankton biomass inside these eddies remain to be elucidated. Appendix B. Details for the basal melting and mechanical forcing by the ice shelf edge.
Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis; ...
2016-12-30
The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis
The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903
Speciation and Distribution of Phosphorus in a Fertilized Soil: A Synchrotron-Based Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombi, E.; Scheckel, K.G.; Armstrong, R.D.
2008-06-09
Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of southern Australia, to be more efficient for crop (wheat [Triticum aestivum L.]) P nutrition than granular products. To elucidate the mechanisms responsible for this differential response, an isotopic dilution technique (E value) coupled with a synchrotron-based spectroscopic investigation were used to assess the reaction products of a granular (monoammonium phosphate, MAP) and a fluid P (technical-grade monoammonium phosphate, TG-MAP)more » fertilizer in a highly calcareous soil. The isotopic exchangeability of P from the fluid fertilizer, measured with the E-value technique, was higher than that of the granular product. The spatially resolved spectroscopic investigation, performed using nano x-ray fluorescence and nano x-ray absorption near-edge structure (n-XANES), showed that P is heterogeneously distributed in soil and that, at least in this highly calcareous soil, it is invariably associated with Ca rather than Fe at the nanoscale. 'Bulk' XANES spectroscopy revealed that, in the soil surrounding fertilizer granules, P precipitation in the form of octacalcium phosphate and apatite-like compounds is the dominant mechanism responsible for decreases in P exchangeability. This process was less prominent when the fluid P fertilizer was applied to the soil.« less
Optimization of Process Parameters of Edge Robotic Deburring with Force Control
NASA Astrophysics Data System (ADS)
Burghardt, A.; Szybicki, D.; Kurc, K.; Muszyńska, M.
2016-12-01
The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.
Non-rigid ultrasound image registration using generalized relaxation labeling process
NASA Astrophysics Data System (ADS)
Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun
2013-03-01
This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.
Drake, Ian J; Zhang, Yihua; Briggs, Daniel; Lim, Bomyi; Chau, Tanguy; Bell, Alexis T
2006-06-22
Cu-exchanged Y zeolite was investigated in order to determine the location of the copper cations relative to the zeolite framework and to determine which Cu cations are active for the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Cu-Y zeolite was prepared by vapor-phase exchange of H-Y with CuCl. The oxidation state, local coordination, and bond distances of Al and Cu were determined using Al K-edge and Cu K-edge X-ray absorption spectroscopy (XAS). Complimentary information was obtained by H2 temperature-programmed reduction and by in-situ infrared spectroscopy. Cu-Y has a Cu/Al ratio of unity and very little occluded CuCl. The average Al-O and Al-Cu bond distances are 1.67 angstroms and 2.79 angstroms, respectively, and the average Cu-O and Cu-Si(Al) bond distances are 1.99 angstroms and 3.13 angstroms, respectively. All of the Cu exchanged is present as Cu+ in sites I', II, and III'. Cu-Y is active for the oxidative carbonylation of methanol, and at low reactant contact time produces DMC as the primary product. With increasing reactant contact time, DMC formation decreases in preference to the formation of dimethoxy methane (DMM) and methylformate (MF). The formation of DMM and MF is attributed to the hydrogenation of DMC and the hydrogenolysis of DMM, respectively. Observation of the catalyst under reaction conditions reveals that most of the copper cations remain as Cu+, but some oxidation of Cu+ to Cu2+ does occur. It is also concluded that only those copper cations present in site II and III' positions are accessible to the reactants, and hence are catalytically active. The dominant adsorbed species on the surface are methoxy groups, and adsorbed CO is present as a minority species. The relationship of these observations to the kinetics of DMC synthesis is discussed.
Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H.
2014-01-01
Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the actin cytoskeleton controlling directional movement. PMID:25356636
Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon1.fr
2014-05-01
Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoS{sub x} (x≈4) of 10–30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoS{sub x} under nitrogen or hydrogen flow atmore » 400 °C allows obtaining mesoporous MoS{sub 2} materials with very high pore volume and specific surface area, up to 0.45 cm{sup 3}/g and 190 m{sup 2}/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts. - Graphical abstract: Solution reaction in propylene carbonate allows preparing weakly agglomerated molybdenum sulfide with particle size 20 nm and advantageous catalytic properties. - Highlights: • Solution reaction in propylene carbonate yields MoS{sub x} particles near 20 nm size. • Addition of starch as capping agent reduces particles size and hinder agglomeration. • EXAFS at Mo K edge shows rapid oxygen to sulfur exchange in the solution. • Thermal treatment leads to MoS{sub 2} with very high porosity and surface area.« less
Laboratory modeling of edge wave generation over a plane beach by breaking waves
NASA Astrophysics Data System (ADS)
Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim
2015-04-01
Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential growth rate index on the amplitude of surface wave is found. On the plane of parameters (amplitude - frequency) of surface wave we have found a region corresponding parametric instability leading to excitation of edge waves. It is shown that for small super criticalities, the amplitude of edge wave grows with amplitude of surface wave. For large amplitude of surface wave, wave breaking appears and parametric instability is suppressed. Such suppression of instability is caused by increasing of turbulent viscosity in near shore zone. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up. Theoretical model is developed to explain suppression of instability due to turbulent viscosity. This theoretical model is based on nonlinear mode amplitude equation including terms responsible for parametric forcing, frequency detuning, nonlinear detuning, linear and nonlinear edge wave damping. Dependence of coefficients on turbulent viscosity is discussed.
A superior edge preserving filter with a systematic analysis
NASA Technical Reports Server (NTRS)
Holladay, Kenneth W.; Rickman, Doug
1991-01-01
A new, adaptive, edge preserving filter for use in image processing is presented. It had superior performance when compared to other filters. Termed the contiguous K-average, it aggregates pixels by examining all pixels contiguous to an existing cluster and adding the pixel closest to the mean of the existing cluster. The process is iterated until K pixels were accumulated. Rather than simply compare the visual results of processing with this operator to other filters, some approaches were developed which allow quantitative evaluation of how well and filter performs. Particular attention is given to the standard deviation of noise within a feature and the stability of imagery under iterative processing. Demonstrations illustrate the performance of several filters to discriminate against noise and retain edges, the effect of filtering as a preprocessing step, and the utility of the contiguous K-average filter when used with remote sensing data.
Effects of exchanged cation on the microporosity of montmorillonite
Rutherford, David W.; Chiou, Cary T.; Eberl, Dennis D.
1997-01-01
The micropore volumes of 2 montmorillonites (SAz-1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and αs-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K > Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 Å, the limiting molecular dimension of neo-hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 Å determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 Å determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.
1987-11-10
The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.
Microactuator production via high aspect ratio, high edge acuity metal fabrication technology
NASA Technical Reports Server (NTRS)
Guckel, H.; Christenson, T. R.
1993-01-01
LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.
Processing circuitry for single channel radiation detector
NASA Technical Reports Server (NTRS)
Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)
2009-01-01
Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.
Shang, Yang; Sun, Du; Shao, Yiming; Zhang, Dongfeng; Guo, Lin; Yang, Shihe
2012-11-05
Cutting edge: A Cu(2)O jagged polyhedron, with numerous {110} edges and {111} corners, has been developed through a top-down selective oxidative etching process at the expense of the original {111} facet (see figure). The as-prepared nanocrystals exhibited higher photocatalytic activities for the degradation of methylene orange, which may be primarily ascribed to the increased edges and corners. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The edge complex: implicit memory for figure assignment in shape perception.
Peterson, Mary A; Enns, James T
2005-05-01
Viewing a stepped edge is likely to prompt the perceptual assignment of one side of the edge as figure. This study demonstrates that even a single brief glance at a novel edge gives rise to an implicit memory regarding which side was seen as figure; this edge complex enters into the figure assignment process the next time the edge is encountered, both speeding same-different judgments when the figural side is repeated and slowing these judgments when the new figural side is identical to the former ground side (Experiments 1A and 1B). These results were obtained even when the facing direction of the repeated edge was mirror reversed (Experiment 2). This study shows that implicit measures can reveal the effects of past experience on figure assignment, following a single prior exposure to a novel shape, and supports a competitive model of figure assignment in which past experience serves as one of many figural cues.
Characterization of edge oscillation in a traveling-wave field-effect transistor.
Narahara, Koichi
2013-07-01
In this study, we characterize the oscillating pulse edges developed in a traveling-wave field-effect transistor (TWFET). Recently, it has been found that a stable shock front can develop on a TWFET, which can travel in one direction only. Once the reflected pulse edge at the far end is transmitted to the input, the shock front develops and begins to travel on the device again. This process establishes a permanent edge oscillation. This paper discusses the device setup necessary to excite such oscillations and how pulse edges oscillate on a TWFET. By applying the phase reduction scheme to the transmission equations of a TWFET, we obtain phase sensitivity, which appropriately explains the measured spatial dependence of the locking range in frequency. Moreover, multiple oscillating edges can develop simultaneously, which are mutually synchronized. The dynamics of these multiple edges are also described.
Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.
Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong
2015-07-01
To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.
Effect of Hardwood Sawmill Edging and Trimming Practices on Furniture Part Production
D. Earl Kline; Carmen Regalado; Eugene M. Wengert; Fred M. Lamb; Philip A. Araman
1993-01-01
In a recent edging and trimming study at three hardwood sawmills, it was observed that the lumber volume produced was approximately 10 percent less than would be necessary to make the most valuable lumber. Furthermore, the excess portion of wood that was removed from the edging and trimming process contained a large percentage of clear wood. In light of rising costs...
Edge-effect interactions in fragmented and patchy landscapes.
Porensky, Lauren M; Young, Truman P
2013-06-01
Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.
Effective field model of roughness in magnetic nano-structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepadatu, Serban, E-mail: SLepadatu@uclan.ac.uk
2015-12-28
An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domainmore » wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.« less
Managing residual refractive error after cataract surgery.
Sáles, Christopher S; Manche, Edward E
2015-06-01
We present a review of keratorefractive and intraocular approaches to managing residual astigmatic and spherical refractive error after cataract surgery, including laser in situ keratomileusis (LASIK), photorefractive keratectomy (PRK), arcuate keratotomy, intraocular lens (IOL) exchange, piggyback IOLs, and light-adjustable IOLs. Currently available literature suggests that laser vision correction, whether LASIK or PRK, yields more effective and predictable outcomes than intraocular surgery. Piggyback IOLs with a rounded-edge profile implanted in the sulcus may be superior to IOL exchange, but both options present potential risks that likely outweigh the refractive benefits except in cases with large residual spherical errors. The light-adjustable IOL may provide an ideal treatment to pseudophakic ametropia by obviating the need for secondary invasive procedures after cataract surgery, but it is not widely available nor has it been sufficiently studied. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Reshak, A H; Parasyuk, O V; Fedorchuk, A O; Kamarudin, H; Auluck, S; Chyský, J
2013-12-05
Theoretical and experimental studies of the Ag(x)Ga(x)Ge(1-x)Se2 (x = 0.333, 0.250, 0.200, 0.167) single crystals are performed. These crystals possess a lot of intrinsic defects which are responsible for their optoelectronic features. The theoretical investigations were performed by means of DFT calculations using different exchange-correlation potentials. The experimental studies were carried out using the modulated VUV ellipsometry for dielectric constants and birefringence studies. The comparison of the structure obtained from X-ray with the theoretically optimized structure is presented. The crucial role of the intrinsic defect states is manifested in the choice of the exchange correlation potential used. The data may be applicable for a large number of the ternary chalcogenides which are sensitive to the presence of the local disordered states near the band edges.
Silicon K-edge XANES spectra of silicate minerals
NASA Astrophysics Data System (ADS)
Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.
1995-03-01
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.
Process for disposing of radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantham, L.F.; Gray, R.L.; McCoy, L.R.
1988-05-03
A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing ormore » melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.« less
Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E
2016-08-18
Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.
A peek into the history of sapphire crystal growth
NASA Astrophysics Data System (ADS)
Harris, Daniel C.
2003-09-01
After the chemical compositions of sapphire and ruby were unraveled in the middle of the 19th century, chemists set out to grow artificial crystals of these valuable gemstones. In 1885 a dealer in Geneva began to sell ruby that is now believed to have been created by flame fusion. Gemnologists rapidly concluded that the stones were artificial, but the Geneva ruby stimulated A. V. L. Verneuil in Paris to develop a flame fusion process to produce higher quality ruby and sapphire. By 1900 there was brisk demand for ruby manufactured by Verneuil's method, even though Verneuil did not publicly announce his work until 1902 and did not publish details until 1904. The Verneuil process was used with little alteration for the next 50 years. From 1932-1953, S. K. Popov in the Soviet Union established a capability for manufacturing high quality sapphire by the Verneuil process. In the U.S., under government contract, Linde Air Products Co. implemented the Verneuil process for ruby and sapphire when European sources were cut off during World War II. These materials were essential to the war effort for jewel bearings in precision instruments. In the 1960s and 1970s, the Czochralski process was implemented by Linde and its successor, Union Carbide, to make higher crystal quality material for ruby lasers. Stimulated by a government contract for structural fibers in 1966, H. LaBelle invented edge-defined film-fed growth (EFG). The Saphikon company, which is currently owned by Saint-Gobain, evolved from this effort. Independently and simultaneously, Stepanov developed edge-defined film-fed growth in the Soviet Union. In 1967 F. Schmid and D. Viechnicki at the Army Materials Research Lab grew sapphire by the heat exchanger method (HEM). Schmid went on to establish Crystal Systems, Inc. around this technology. Rotem Industries, founded in Israel in 1969, perfected the growth of sapphire hemispheres and near-net-shape domes by gradient solidification. In the U.S., growth of near-net-shape sapphire domes was demonstrated by both the EFG and HEM methods in the 1980s under government contract, but neither method entered commercial production. Today, domes in the U.S. are made by "scooping" sapphire boules with diamond-impregnated cutting tools. Commercial markets for sapphire, especially in the semiconductor industry, are healthy and growing at the dawn of the 21st century.
Toward edge minability for role mining in bipartite networks
NASA Astrophysics Data System (ADS)
Dong, Lijun; Wang, Yi; Liu, Ran; Pi, Benjie; Wu, Liuyi
2016-11-01
Bipartite network models have been extensively used in information security to automatically generate role-based access control (RBAC) from dataset. This process is called role mining. However, not all the topologies of bipartite networks are suitable for role mining; some edges may even reduce the quality of role mining. This causes unnecessary time consumption as role mining is NP-hard. Therefore, to promote the quality of role mining results, the capability that an edge composes roles with other edges, called the minability of edge, needs to be identified. We tackle the problem from an angle of edge importance in complex networks; that is an edge easily covered by roles is considered to be more important. Based on this idea, the k-shell decomposition of complex networks is extended to reveal the different minability of edges. By this way, a bipartite network can be quickly purified by excluding the low-minability edges from role mining, and thus the quality of role mining can be effectively improved. Extensive experiments via the real-world datasets are conducted to confirm the above claims.
Moderating Effect of Intimate Exchange on Delinquent Socialization Processes
ERIC Educational Resources Information Center
Gaertner, Alden E.; Fite, Paula J.; Colder, Craig R.
2011-01-01
Research indicates peer socialization processes affect the development of problem behavior in childhood and adolescence; however moderating peer factors have not been readily examined. Friendship intimate exchange may be an important factor to consider, as literature suggests that intimate exchange becomes an increasingly important aspect of…
3D road marking reconstruction from street-level calibrated stereo pairs
NASA Astrophysics Data System (ADS)
Soheilian, Bahman; Paparoditis, Nicolas; Boldo, Didier
This paper presents an automatic approach to road marking reconstruction using stereo pairs acquired by a mobile mapping system in a dense urban area. Two types of road markings were studied: zebra crossings (crosswalks) and dashed lines. These two types of road markings consist of strips having known shape and size. These geometric specifications are used to constrain the recognition of strips. In both cases (i.e. zebra crossings and dashed lines), the reconstruction method consists of three main steps. The first step extracts edge points from the left and right images of a stereo pair and computes 3D linked edges using a matching process. The second step comprises a filtering process that uses the known geometric specifications of road marking objects. The goal is to preserve linked edges that can plausibly belong to road markings and to filter others out. The final step uses the remaining linked edges to fit a theoretical model to the data. The method developed has been used for processing a large number of images. Road markings are successfully and precisely reconstructed in dense urban areas under real traffic conditions.
Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters
NASA Astrophysics Data System (ADS)
Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon
2018-04-01
In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.
NASA Astrophysics Data System (ADS)
Fan, Chenzi; Li, Qiaoying; Chu, Binbin; Lu, Guohui; Gao, Yuhong; Xu, Lingxiao
2018-02-01
The knowledge of the nature of silver occurrence and sites in argentiferous manganese oxides is significant for developing better process to extract silver from manganese-silver ores. Synchrotron radiation has been used to collect Ag K-edge X-ray absorption spectroscopy of three natural and five synthetic samples of silver-containing manganese oxide, basically in the phases of tunnel-type cryptomelane or todorokite and layer-type birnessite or chalcophanite. Data were also gathered on five standards including Ag foil, Ag2O, Ag2SO4, Ag2CO3, and AgNO3 to compare the local environments of Ag atoms with the samples. Ag K-edge XANES studies show that Ag is present in most of the samples in Ag+ oxidation state, except in the Ag-Tod sample through annealing step in the form of Ag0 nanoparticles which are also identified by TEM. The natural samples from Xiangguang manganese-silver ores exhibit similar coordination distances as the corresponding tunnel or layer structured synthetic samples. In the argentiferous cryptomelanes, silver cations do not occupy the tunnel centers like K+, but rather place on the common face sites of the cubic cage formed by MnO6 octahedra, coordinated with about four oxygen anions at 2.4 Å bond distances proved by the EXAFS results. In the silver-exchanged birnessites or natural argentiferous chalcophanite, silver cations probably occupy a tetrahedral coordination to interlayer O atoms and a position located above or below the vacant cavities in the Mn octahedra layers.
Numerical study of transition to supersonic flows in the edge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Rajiv, E-mail: rajiv@ipr.res.in; Artaud, Jean-François; Imbeaux, Frédéric
The plasma scrape-off layer (SOL) in a tokamak is characterized by ion flow down a long narrow flux tube terminating on a solid surface. The ion flow velocity along a magnetic field line can be equal to or greater than sonic at the entrance of a Debye sheath or upstream in the presheath. This paper presents a numerical study of the transition between subsonic and supersonics flows. A quasineutral one-dimensional (1D) fluid code has been used for modeling of plasma transport in the SOL along magnetic field lines, both in steady state and under transient conditions. The model uses coupledmore » equations for continuity, momentum, and energy balance with ionization, radiation, charge exchange, and recombination processes. The recycled neutrals are described in the diffusion approximation. Standard Bohm sheath criterion is used as boundary conditions at the material surface. Three conditions conducive for the generation of supersonic flows in SOL plasmas have been explored. It is found that in steady state high (attached) and low (detached) divertor temperatures cases, the role of particle, momentum, and energy loss is critical. For attached case, the appearance of shock waves in the divertor region if the incoming plasma flow is supersonic and its effect on impurity retention is presented. In the third case, plasma expansion along the magnetic field can yield time-dependent supersonic solutions in the quasineutral rarefaction wave. Such situations can arise in the parallel transport of intermittent structures such as blobs and edge localized mode filaments along field lines.« less
Philip Araman; A Palmer; Matthew Winn; D Kline
2009-01-01
In the hardwood sawmill industry, decisions made at the various processing stages directly affect the value of the end product. In order to realize maximum product value, it is essential that employees be properly trained. The edging and trimming stage of lumber processing is one area where lack of proper training can result in poor manufacturing decisions and...
The solution of private problems for optimization heat exchangers parameters
NASA Astrophysics Data System (ADS)
Melekhin, A.
2017-11-01
The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.
Vectorized image segmentation via trixel agglomeration
Prasad, Lakshman [Los Alamos, NM; Skourikhine, Alexei N [Los Alamos, NM
2006-10-24
A computer implemented method transforms an image comprised of pixels into a vectorized image specified by a plurality of polygons that can be subsequently used to aid in image processing and understanding. The pixelated image is processed to extract edge pixels that separate different colors and a constrained Delaunay triangulation of the edge pixels forms a plurality of triangles having edges that cover the pixelated image. A color for each one of the plurality of triangles is determined from the color pixels within each triangle. A filter is formed with a set of grouping rules related to features of the pixelated image and applied to the plurality of triangle edges to merge adjacent triangles consistent with the filter into polygons having a plurality of vertices. The pixelated image may be then reformed into an array of the polygons, that can be represented collectively and efficiently by standard vector image.
Fast digital zooming system using directionally adaptive image interpolation and restoration.
Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki
2014-01-01
This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.
NASA Astrophysics Data System (ADS)
Wang, Ashu; Zeng, Lingyan; Wang, Wen; Calle, Fernando
2018-03-01
Due to the piezoelectricity, the density of 2DEG (NS) formed in the AlGaN/GaN heterostructure can be altered when it is deformed externally, which may be exploited to develop pressure sensors and to enhance the performance of power devices by stress engineering based on the heterostructure. In this paper, a 3D electro-mechanical simulation is presented to study how the induced strains and NS for the AlGaN/GaN wafer under bending exerted uniaxial stress are influenced by the edges caused by processing: the fabrication of the mesa used for isolation, the ohmic contact metal, the gate metal, and the passivation. Results show that the influences are dependent on distance between the edges, depth of the edges, and direction of the exerted uniaxial stress.
Emergent Properties of Patch Shapes Affect Edge Permeability to Animals
Nams, Vilis O.
2011-01-01
Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965
NASA Technical Reports Server (NTRS)
Danforth, Richard A.
1991-01-01
Qualification of the full-scale process and design changes for elimination of redesigned solid rocket motor tang nitrile butadiene rubber insulation edge separations and voids was performed from 24 March to 3 December 1990. The objectives of this test were: to qualify design and process changes on flight hardware using a tie ply between the redesigned solid rocket motor steel case and the nitrile butadiene rubber insulation over the tang capture features; to qualify the use of methyl ethyl ketone in the tang flap region to reduce voids; and to determine if holes in the separator film reduce voids in the tang flap region. The tie ply is intended to aid insulation flow during the insulation cure process, and thus reduce or eliminate edge unbonds. Methyl ethyl ketone is intended to reduce voids in the tang flap area by providing better tacking characteristics. The perforated film was intended to provide possible vertical breathe paths to reduce voids in the tang area. Tang tie ply testing consisted of 270 deg of the tang circumference using a new layup method and 90 deg of the tang circumference using the current layup methods. Tie ply process success was defined as a reduction of insulation unbonds. Lack of any insulation edge unbonds on the tang area where the new process was used, and the presence of 17 unbonds with the current process, proves the test to be a success. Successful completion of this test has qualified the new processes.
NASA Astrophysics Data System (ADS)
Amalia, A.; Rachmawati, D.; Lestari, I. A.; Mourisa, C.
2018-03-01
Colposcopy has been used primarily to diagnose pre-cancer and cancerous lesions because this procedure gives an exaggerated view of the tissues of the vagina and the cervix. But, the poor quality of colposcopy image sometimes makes physician challenging to recognize and analyze it. Generally, Implementation of image processing to identify cervical cancer have to implement a complex classification or clustering method. In this study, we wanted to prove that by only applying the identification of edge detection in the colposcopy image, identification of cervical cancer can be determined. In this study, we implement and comparing two edge detection operator which are isotropic and canny operator. Research methodology in this paper composed by image processing, training, and testing stages. In the image processing step, colposcopy image transformed by nth root power transformation to get better detection result and continued with edge detection process. Training is a process of labelling all dataset image with cervical cancer stage. This process involved pathology doctor as an expert in diagnosing the colposcopy image as a reference. Testing is a process of deciding cancer stage classification by comparing the similarity image of colposcopy results in the testing stage with the image of the results of the training process. We used 30 images as a dataset. The result gets same accuracy which is 80% for both Canny or Isotropic operator. Average running time for Canny operator implementation is 0.3619206 ms while Isotropic get 1.49136262 ms. The result showed that Canny operator is better than isotropic operator because Canny operator generates a more precise edge with a fast time instead.
NASA Astrophysics Data System (ADS)
Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris
2015-07-01
In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.
Edge detection for optical synthetic aperture based on deep neural network
NASA Astrophysics Data System (ADS)
Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin
2017-09-01
Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.
17 CFR 202.11 - Public Company Accounting Oversight Board budget approval process.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Public Company Accounting Oversight Board budget approval process. 202.11 Section 202.11 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION INFORMAL AND OTHER PROCEDURES § 202.11 Public Company Accounting Oversight...
Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method
NASA Astrophysics Data System (ADS)
Wiyantoko, Bayu; Rahmah, Nafisa
2017-12-01
The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.
Process and apparatus for the production of BI-213 cations
Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark
1998-01-01
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.
Process and apparatus for the production of Bi-213 cations
Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.
1998-12-29
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.
Hu, Haixiang; Zhang, Xin; Ford, Virginia; Luo, Xiao; Qi, Erhui; Zeng, Xuefeng; Zhang, Xuejun
2016-11-14
Edge effect is regarded as one of the most difficult technical issues in a computer controlled optical surfacing (CCOS) process. Traditional opticians have to even up the consequences of the two following cases. Operating CCOS in a large overhang condition affects the accuracy of material removal, while in a small overhang condition, it achieves a more accurate performance, but leaves a narrow rolled-up edge, which takes time and effort to remove. In order to control the edge residuals in the latter case, we present a new concept of the 'heterocercal' tool influence function (TIF). Generated from compound motion equipment, this type of TIF can 'transfer' the material removal from the inner place to the edge, meanwhile maintaining the high accuracy and efficiency of CCOS. We call it the 'heterocercal' TIF, because of the inspiration from the heterocercal tails of sharks, whose upper lobe provides most of the explosive power. The heterocercal TIF was theoretically analyzed, and physically realized in CCOS facilities. Experimental and simulation results showed good agreement. It enables significant control of the edge effect and convergence of entire surface errors in large tool-to-mirror size-ratio conditions. This improvement will largely help manufacturing efficiency in some extremely large optical system projects, like the tertiary mirror of the Thirty Meter Telescope.
NASA Astrophysics Data System (ADS)
Serov, S. V.; Tugarinov, S. N.; Klyuchnikov, L. A.; Krupin, V. A.; von Hellermann, M.
2017-12-01
The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.
Adsorption and ion exchange: basic principles and their application in food processing.
Kammerer, Judith; Carle, Reinhold; Kammerer, Dietmar R
2011-01-12
A comprehensive overview of adsorption and ion exchange technology applied for food and nutraceutical production purposes is given in the present paper. Emanating from these fields of application, the main adsorbent and ion-exchange resin materials, their historical development, industrial production, and the main parameters characterizing these sorbents are covered. Furthermore, adsorption and ion exchange processes are detailed, also providing profound insights into kinetics, thermodynamics, and equilibrium model assumptions. In addition, the most important industrial adsorber and ion exchange processes making use of vessels and columns are summarized. Finally, an extensive overview of selected industrial applications of these technologies is provided, which is divided into general applications, food production applications, and the recovery of valuable bio- and technofunctional compounds from the byproducts of plant food processing, which may be used as natural food additives or for their potential health-beneficial effects in functional or enriched foods and nutraceuticals.
2014-10-01
activity meant to test many different technologies. As such, it occurred over the course of one day with extremely limited Fig. 5. Raspberry Pi , battery...ferry ran on a Raspberry Pi (Rev B) single-board computer with a 15000mAh external battery and connected to Persistent System’s Wave Relay MPU4...tactical radio. The external battery is capable of powering the Raspberry Pi for approximately 21 hours and the MPU4 is capable of running for 14 hours
NASA Astrophysics Data System (ADS)
Zhang, XiaoDong; Wang, ZhengMin; Hu, LiQun
1994-04-01
A low energy neutral lithium beam source with energy about 6 keV and a neutral beam equivalent current of 20 μA/cm2 has been developed in ASIPP in order to measure the density gradient and the fluctuations in the edge plasma of the HT-6M tokamak. In the source, lithium ions are extracted from a solid emitter (β-eucryptite), focused in a two-tube immersion lens, and neutralized in a charge-exchange cell with sodium. This source operates in pulsed mode. The pulse length is adjustable from 10 to 100 ms.
Topological Exciton Bands in Moire Heterojunctions.
Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.
2017-04-05
Moire patterns are common in Van der Waals heterostructures and can be used to apply periodic potentials to elementary excitations. Here, we show that the optical absorption spectrum of transition metal dichalcogenide bilayers is profoundly altered by long period moire patterns that introduce twist-angle dependent satellite excitonic peaks. Topological exciton bands with non-zero Chern numbers that support chiral excitonic edge states can be engineered by combining three ingredients: i) the valley Berry phase induced by electron-hole exchange interactions, ii) the moire potential, and iii) the valley Zeeman field.
Architecture for Absorption Based Heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghaddam, Saeed; Chugh, Devesh
An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less
Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo
2012-01-01
The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.
Ion Exchange Method - Diffusion Barrier Investigations
NASA Astrophysics Data System (ADS)
Pielak, G.; Szustakowski, M.; Kiezun, A.
1990-01-01
Ion exchange method is used to GRIN-rod lenses manufacturing. In this process the ion exchange occurs between bulk glass (rod) and a molten salt. It was find that diffusion barrier exists on a border of glass surface and molten salt. The investigations of this barrier show that it value varies with ion exchange time and process temperature. It was find that in the case when thalium glass rod was treated in KNO3, bath, the minimum of the potential after 24 h was in temperature of 407°C, after 48 h in 422°C, after 72 h in 438°C and so on. So there are the possibility to keep the minimum of diffusion barrier by changing the temperature of the process and then the effectiveness of ion exchange process is the most effective. The time needed to obtain suitable refractive index distribution in a process when temperature was linearly changed from 400°C to 460°C was shorter of about 30% compare with the process in which temperature was constant and equal 450°C.
First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys
NASA Astrophysics Data System (ADS)
Khatta, Swati; Tripathi, S. K.; Prakash, Satya
2017-09-01
The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.
Fu, Chi-Yung; Petrich, Loren I.
1997-01-01
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.
Fu, C.Y.; Petrich, L.I.
1997-03-25
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.
An approach for traffic prohibition sign detection
NASA Astrophysics Data System (ADS)
Li, Qingquan; Xu, Dihong; Li, Bijun; Zeng, Zhe
2006-10-01
This paper presents an off-line traffic prohibition sign detection approach, whose core is based on combination with the color feature of traffic prohibition signs, shape feature and degree of circularity. Matlab-Image-processing toolbox is used for this purpose. In order to reduce the computational cost, a pre-processing of the image is applied before the core. Then, we employ the obvious redness attribute of prohibition signs to coarsely eliminate the non-redness image in the input data. Again, a edge-detection operator, Canny edge detector, is applied to extract the potential edge. Finally, Degree of circularity is used to verdict the traffic prohibition sign. Experimental results show that our systems offer satisfactory performance.
A graph signal filtering-based approach for detection of different edge types on airborne lidar data
NASA Astrophysics Data System (ADS)
Bayram, Eda; Vural, Elif; Alatan, Aydin
2017-10-01
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge
NASA Technical Reports Server (NTRS)
Yap, Keng C.
2010-01-01
This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.
Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images
NASA Astrophysics Data System (ADS)
Rogowska, Jadwiga; Brezinski, Mark E.
2002-02-01
Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.
The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS
Cho, Deok-Yong; Xi, Lifei; Boothroyd, Chris; Kardynal, Beata; Lam, Yeng Ming
2016-01-01
We have investigated the chemical state of In(Zn)P/ZnS core/shell nanocrystals (NCs) for color conversion applications using hard X-ray absorption spectroscopy (XAS) and photoluminescence excitation (PLE). Analyses of the edge energies as well as the X-ray absorption fine structure (XAFS) reveal that the Zn2+ ions from ZnS remain in the shell while the S2− ions penetrate into the core at an early stage of the ZnS deposition. It is further demonstrated that for short growth times, the ZnS shell coverage on the core was incomplete, whereas the coverage improved gradually as the shell deposition time increased. Together with evidence from PLE spectra, where there is a strong indication of the presence of P vacancies, this suggests that the core-shell interface in the In(Zn)P/ZnS NCs are subject to substantial atomic exchanges and detailed models for the shell structure beyond simple layer coverage are needed. This substantial atomic exchange is very likely to be the reason for the improved photoluminescence behavior of the core-shell particles compare to In(Zn)P-only NCs as S can passivate the NCs surfaces. PMID:26972936
A combined Eulerian-Lagrangian two-phase analysis of the SSME HPOTP nozzle plug trajectories
NASA Technical Reports Server (NTRS)
Garcia, Robert; Mcconnaughey, P. K.; Dejong, F. J.; Sabnis, J. S.; Pribik, D.
1989-01-01
As a result of high cycle fatigue, hydrogen embrittlement, and extended engine use, it was observed in testing that the trailing edge on the first stage nozzle plug in the High Pressure Oxygen Turbopump (HPOTP) could detach. The objective was to predict the trajectories followed by particles exiting the turbine. Experiments had shown that the heat exchanger soils, which lie downstream of the turbine, would be ruptured by particles traveling in the order of 360 ft/sec. An axisymmetric solution of the flow was obtained from the work of Lin et. al., who used INS3D to obtain the solution. The particle trajectories were obtained using the method of de Jong et. al., which employs Lagrangian tracking of the particle through the Eulerian flow field. The collision parameters were obtained from experiments conducted by Rocketdyne using problem specific alloys, speeds, and projectile geometries. A complete 3-D analysis using the most likely collision parameters shows maximum particle velocities of 200 ft/sec. in the heat exchanger region. Subsequent to this analysis, an engine level test was conducted in which seven particles passed through the turbine but no damage was observed on the heat exchanger coils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle
2016-08-31
During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less
Node-based measures of connectivity in genetic networks.
Koen, Erin L; Bowman, Jeff; Wilson, Paul J
2016-01-01
At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.
Refinement of ground reference data with segmented image data
NASA Technical Reports Server (NTRS)
Robinson, Jon W.; Tilton, James C.
1991-01-01
One of the ways to determine ground reference data (GRD) for satellite remote sensing data is to photo-interpret low altitude aerial photographs and then digitize the cover types on a digitized tablet and register them to 7.5 minute U.S.G.S. maps (that were themselves digitized). The resulting GRD can be registered to the satellite image or, vice versa. Unfortunately, there are many opportunities for error when using digitizing tablet and the resolution of the edges for the GRD depends on the spacing of the points selected on the digitizing tablet. One of the consequences of this is that when overlaid on the image, errors and missed detail in the GRD become evident. An approach is discussed for correcting these errors and adding detail to the GRD through the use of a highly interactive, visually oriented process. This process involves the use of overlaid visual displays of the satellite image data, the GRD, and a segmentation of the satellite image data. Several prototype programs were implemented which provide means of taking a segmented image and using the edges from the reference data to mask out these segment edges that are beyond a certain distance from the reference data edges. Then using the reference data edges as a guide, those segment edges that remain and that are judged not to be image versions of the reference edges are manually marked and removed. The prototype programs that were developed and the algorithmic refinements that facilitate execution of this task are described.
NASA Astrophysics Data System (ADS)
Wang, Hongtao; Li, Kun; Cheng, Yingchun; Wang, Qingxiao; Yao, Yingbang; Schwingenschlögl, Udo; Zhang, Xixiang; Yang, Wei
2012-04-01
Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms.Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. Electronic supplementary information (ESI) available: Additional Figures for characterization of mono-layer CVD graphene samples with free edges and Pt atoms decorations and analysis of the effect of electron irradiation; supporting movie on edge evolution. See DOI: 10.1039/c2nr00059h
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions. The cell cathodic...
Collaborative environments for capability-based planning
NASA Astrophysics Data System (ADS)
McQuay, William K.
2005-05-01
Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.
NASA Astrophysics Data System (ADS)
Gallegos, S. C.; Gould, R. W.; Arnone, R. A.; Teague, W. J.; Mitchell, D. A.; Ko, D.
2005-05-01
The continental shelf of the northeastern Gulf of Mexico between 87.5 W and 88.5 W is an ideal place to study coastal processes. In this region, the shelf slopes gently down to depths of 100 m, and then increases rapidly to depths greater than a mile. The Naval Research Laboratory at Stennis Space Center in Mississippi is currently undertaking an intensive measurement and modeling program to determine the cross-shelf exchange processes and their relation to the optical parameters of this area. In this study, we report our efforts to quantify the variability of the spectral backscattering coefficient derived from SeaWiFS imagery via empirical orthogonal functions. We compare the most relevant modes with the spatial distribution of Eddy Kinetic Energy (EKE) computed by the Inter Americas Seas (IAS) model and in-situ measurements by acoustic Doppler current profilers deployed between May 2004 and May 2005. The results indicate that most of the backscattering variability is contained in areas north of 29.2N which coincides with the edge of the continental shelf (100 m depth). Sporadic increases in backscattering are observed as far south as 29.0 N and to the east of 88.1W. These increases can be explained by fluctuations in surface EKE.
Walch, Nicole; Jungbauer, Alois
2017-06-01
Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps
NASA Astrophysics Data System (ADS)
Zhurmilova, I.; Shtym, A.
2017-11-01
For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.
Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony
2012-08-27
Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.
Water and the oxidation state of subduction zone magmas.
Kelley, Katherine A; Cottrell, Elizabeth
2009-07-31
Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.
Non-Dirac Chern insulators with large band gaps and spin-polarized edge states.
Xue, Y; Zhang, J Y; Zhao, B; Wei, X Y; Yang, Z Q
2018-05-10
Based on first-principles calculations and k·p models, we demonstrate that PbC/MnSe heterostructures are a non-Dirac type of Chern insulator with very large band gaps (244 meV) and exotically half-metallic edge states, providing the possibilities of realizing very robust, completely spin polarized, and dissipationless spintronic devices from the heterostructures. The achieved extraordinarily large nontrivial band gap can be ascribed to the contribution of the non-Dirac type electrons (composed of px and py) and the very strong atomic spin-orbit coupling (SOC) interaction of the heavy Pb element in the system. Surprisingly, the band structures are found to be sensitive to the different exchange and correlation functionals adopted in the first-principles calculations. Chern insulators with various mechanisms are acquired from them. These discoveries show that the predicted nontrivial topology in PbC/MnSe heterostructures is robust and can be observed in experiments at high temperatures. The system has great potential to have attractive applications in future spintronics.
NASA Astrophysics Data System (ADS)
Sallander, J.; Hedqvist, A.; Rachlew-Källne, E.
1998-09-01
The investigations of the radial distributions of 0953-4075/31/17/015/img2 emission from the EXTRAP-T2 reversed-field pinch (RFP) plasma show that the emission profile varies a lot, even during one plasma discharge. At central electron temperatures of about 150 eV it was expected that the 0953-4075/31/17/015/img2 emission should emerge from the plasma centre. In comparison, 0953-4075/31/17/015/img4 is always observed to radiate from the centre. Our measurements of 0953-4075/31/17/015/img2 emission have, however, shown that this is not always the case, the emission often comes from the plasma edge. The analysis of the measurements has led us to conclude that the edge emission comes from charge-exchange recombination with neutral hydrogen near the carbon first wall. These observations provide a way to estimate the change in neutral hydrogen density during local plasma-wall interaction.
To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.
Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E
2008-01-01
The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.
NASA Astrophysics Data System (ADS)
Rognlien, Thomas; Rensink, Marvin
2016-10-01
Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.
Edge Modes and Teleportation in a Topologically Insulating Quantum Wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrear, Majd; Mackovic, Brie; Semenoff, Gordon W.
We find a simple model of an insulating state of a quantum wire which has a single isolated edge mode. We argue that, when brought to proximity, the edge modes on independent wires naturally form Bell entangled states which could be used for elementary quantum processes such as teleportation. We give an example of an algorithm which teleports the spin state of an electron from one quantum wire to another.
40 CFR 63.104 - Heat exchange system requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... heat exchange system or at locations where the cooling water enters and exits each heat exchanger or any combination of heat exchangers. (i) For samples taken at the entrance and exit of recirculating... manufacturing process units. (iii) For samples taken at the entrance and exit of each heat exchanger or any...
Recent developments on ion-exchange membranes and electro-membrane processes.
Nagarale, R K; Gohil, G S; Shahi, Vinod K
2006-02-28
Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.
Directional filtering for block recovery using wavelet features
NASA Astrophysics Data System (ADS)
Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.
2005-07-01
When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.
Dang, Jing-Shuang; Wang, Wei-Wei; Zheng, Jia-Jia; Nagase, Shigeru; Zhao, Xiang
2017-10-05
Although the existence of Stone-Wales (5-7) defect at graphene edge has been clarified experimentally, theoretical study on the formation mechanism is still imperfect. In particular, the regioselectivity of multistep reactions at edge (self-reconstruction and growth with foreign carbon feedstock) is essential to understand the kinetic behavior of reactive boundaries but investigations are still lacking. Herein, by using finite-sized models, multistep reconstructions and carbon dimer additions of a bared zigzag edge are introduced using density functional theory calculations. The zigzag to 5-7 transformation is proved as a site-selective process to generate alternating 5-7 pairs sequentially and the first step with largest barrier is suggested as the rate-determining step. Conversely, successive C 2 insertions on the active edge are calculated to elucidate the formation of 5-7 edge during graphene growth. A metastable intermediate with a triple sequentially fused pentagon fragment is proved as the key structure for 5-7 edge formation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Physical explosion analysis in heat exchanger network design
NASA Astrophysics Data System (ADS)
Pasha, M.; Zaini, D.; Shariff, A. M.
2016-06-01
The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.
Living on the edge: transfer and traffic of E. coli in a confined flow.
Figueroa-Morales, Nuris; Leonardo Miño, Gastón; Rivera, Aramis; Caballero, Rogelio; Clément, Eric; Altshuler, Ernesto; Lindner, Anke
2015-08-21
We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.
Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.
Caiazzo, Fabrizia; Alfieri, Vittorio
2018-03-16
In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.
Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges
2018-01-01
In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters. PMID:29547571
Using fuzzy fractal features of digital images for the material surface analisys
NASA Astrophysics Data System (ADS)
Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.
2018-01-01
Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.
Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum.
Huang, Jun; Zhang, Jianbo; Eikerling, Michael
2018-05-07
Rapid conversion of oxygen into water is crucial to the operation of polymer electrolyte fuel cells and other emerging electrochemical energy technologies. Chemisorbed oxygen species play double-edged roles in this reaction, acting as vital intermediates on one hand and site-blockers on the other. Any attempt to decipher the oxygen reduction reaction (ORR) must first relate the formation of oxygen intermediates to basic electronic and electrostatic properties of the catalytic surface, and then link it to parameters of catalyst activity. An approach that accomplishes this feat will be of great utility for catalyst materials development and predictive model formulation of electrode operation. Here, we present a theoretical framework for the multiple interrelated surface phenomena and processes involved, particularly, by incorporating the double-layer effects. It sheds light on the roles of oxygen intermediates and gives out the Tafel slope and exchange current density as continuous functions of electrode potential. Moreover, it develops the concept of a rate determining term, which should replace the concept of a rate determining step for multielectron reactions, and offers a new perspective on the volcano relation of the ORR.
Mechanics and polarity in cell motility
NASA Astrophysics Data System (ADS)
Ambrosi, D.; Zanzottera, A.
2016-09-01
The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.
A programmable light engine for quantitative single molecule TIRF and HILO imaging.
van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin
2008-10-27
We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.
Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2.
Sorokin, Anatoly; Le Novère, Nicolas; Luna, Augustin; Czauderna, Tobias; Demir, Emek; Haw, Robin; Mi, Huaiyu; Moodie, Stuart; Schreiber, Falk; Villéger, Alice
2015-09-04
The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Entity Relationship language (ER) represents biological entities and their interactions and relationships within a network. SBGN ER focuses on all potential relationships between entities without considering temporal aspects. The nodes (elements) describe biological entities, such as proteins and complexes. The edges (connections) provide descriptions of interactions and relationships (or influences), e.g., complex formation, stimulation and inhibition. Among all three languages of SBGN, ER is the closest to protein interaction networks in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.
Enhance gas processing with reflux heat-exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, A.J.
1994-05-01
Despite recent successes of membrane-based separations in low-throughput applications, cryogenic processing remains the best route for separating and purifying gas mixtures, especially when high recoveries are required. Now conventional units are being modified to yield even higher recoveries at lower costs. Throughout the chemical process industries (CPI), this is being accomplished with reflux or plate-fin exchangers, especially for processing of natural gas, and offgases from refineries and petrochemical facilities. The concept of utilizing a heat exchanger as a multi stage rectification device is not new. However, only in the last fifteen years or so has accurate design of reflux exchangersmore » become feasible. Also helpful have been the availability of prediction techniques for high-quality thermodynamic data, and process simulators that can rapidly solve the complex material, equilibrium and enthalpy relationships involved in simulating the performance of reflux exchangers. Four projects that show the value and effectiveness of reflux exchangers are discussed below in more detail. The first example considers hydrogen recovery from demethanizer overheads; the second highlights a low energy process for NGL and LPG recovery from natural gas. The third is a simple process for recovery of ethylene from fluid-catalytic cracker (FCC) offgas; and the fourth is a similar process for olefin recovery from dehydrogenation-reactor offgas.« less
Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Adams, J. M.; Bailey, C. N.; Bandler, S.; Brekosky, R. P.; Eckart, M. E.; Erwin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.;
2012-01-01
We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R(sub n), G, and T(sub c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring.
NASA Technical Reports Server (NTRS)
Streett, C. L.; Lockard, D. P.; Singer, B. A.; Khorrami, M. R.; Choudhari, M. M.
2003-01-01
The LaRC investigative process for airframe noise has proven to be a useful guide for elucidation of the physics of flow-induced noise generation over the last five years. This process, relying on a close interplay between experiment and computation, is described and demonstrated here on the archetypal problem of flap-edge noise. Some detailed results from both experiment and computation are shown to illustrate the process, and a description of the multi-source physics seen in this problem is conjectured.