Sample records for edge impact detection

  1. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  2. The Impact of the Implementation of Edge Detection Methods on the Accuracy of Automatic Voltage Reading

    NASA Astrophysics Data System (ADS)

    Sidor, Kamil; Szlachta, Anna

    2017-04-01

    The article presents the impact of the edge detection method in the image analysis on the reading accuracy of the measured value. In order to ensure the automatic reading of the measured value by an analog meter, a standard webcam and the LabVIEW programme were applied. NI Vision Development tools were used. The Hough transform was used to detect the indicator. The programme output was compared during the application of several methods of edge detection. Those included: the Prewitt operator, the Roberts cross, the Sobel operator and the Canny edge detector. The image analysis was made for an analog meter indicator with the above-mentioned methods, and the results of that analysis were compared with each other and presented.

  3. Hypervelocity Impact (HVI). Volume 7; WLE High Fidelity Specimen RCC16R

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target RCC16R was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  4. Edge detection and localization with edge pattern analysis and inflection characterization

    NASA Astrophysics Data System (ADS)

    Jiang, Bo

    2012-05-01

    In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge detection method improvements are effective in enhancing the accuracy of edge detection and localization.

  5. Hypervelocity Impact (HVI). Volume 6; WLE High Fidelity Specimen Fg(RCC)-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-2 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  6. Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  7. Hypervelocity Impact (HVI). Volume 5; WLE High Fidelity Specimen Fg(RCC)-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-1 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  8. Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  9. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  10. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  11. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  12. Information theoretic analysis of canny edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  13. Measurement of pattern roughness and local size variation using CD-SEM: current status

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori

    2018-03-01

    Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.

  14. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  15. Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.

    2009-01-01

    An overview of significant Micrometeoroid and Orbital Debris (MMOD) impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. The concept of "Late Inspection" of the Nose Cap and Wing leading Edge (WLE) Reinforced Carbon Carbon (RCC) regions will be introduced. An alternative mated attitude with the International Space Station (ISS) on shuttle MMOD risk will also be presented. The significant threat mitigation effect of these two techniques will be demonstrated. The wing leading edge impact detection system, on-orbit repair techniques and disabled vehicle contingency plans will also be discussed.

  16. Information theoretic analysis of edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2010-08-01

    Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.

  17. KSC-04pd2122

    NASA Image and Video Library

    2004-10-12

    KENNEDY SPACE CENTER, FLA. - In an installation demonstration in the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  18. KSC-04pd2123

    NASA Image and Video Library

    2004-10-12

    KENNEDY SPACE CENTER, FLA. - In an installation demonstration the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  19. Information theoretic analysis of linear shift-invariant edge-detection operators

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2012-06-01

    Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.

  20. Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  1. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  2. The ship edge feature detection based on high and low threshold for remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Li, Shengyang

    2018-05-01

    In this paper, a method based on high and low threshold is proposed to detect the ship edge feature due to the low accuracy rate caused by the noise. Analyze the relationship between human vision system and the target features, and to determine the ship target by detecting the edge feature. Firstly, using the second-order differential method to enhance the quality of image; Secondly, to improvement the edge operator, we introduction of high and low threshold contrast to enhancement image edge and non-edge points, and the edge as the foreground image, non-edge as a background image using image segmentation to achieve edge detection, and remove the false edges; Finally, the edge features are described based on the result of edge features detection, and determine the ship target. The experimental results show that the proposed method can effectively reduce the number of false edges in edge detection, and has the high accuracy of remote sensing ship edge detection.

  3. Development of an FBG Sensor Array for Multi-Impact Source Localization on CFRP Structures.

    PubMed

    Jiang, Mingshun; Sai, Yaozhang; Geng, Xiangyi; Sui, Qingmei; Liu, Xiaohui; Jia, Lei

    2016-10-24

    We proposed and studied an impact detection system based on a fiber Bragg grating (FBG) sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts. The edge-filter method was employed for signal demodulation. Shannon wavelet transform was used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results show that the maximum error and average error of the multi-impacts' localization are 9.2 mm and 7.4 mm, respectively.

  4. Slot angle detecting method for fiber fixed chip

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao

    2018-04-01

    The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.

  5. Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method

    NASA Astrophysics Data System (ADS)

    Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin

    2017-12-01

    Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.

  6. KSC-04pd2127

    NASA Image and Video Library

    2004-10-12

    KENNEDY SPACE CENTER, FLA. - This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  7. KSC-04PD-2127

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  8. Hypervelocity Impact (HVI). Volume 1; General Introduction

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.

  9. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work also explores the concept of an edge within hyperspectral space, the relative importance of spatial and spectral resolutions as they pertain to HSI edge detection and how effectively compressed HSI data improves edge detection results. The HSI edge detection experiments yielded valuable insights into the algorithms' strengths, weaknesses and optimal alignment to remote sensing applications. The gradient-based edge operator produced strong edge planes across a range of evaluation measures and applications, particularly with respect to false negatives, unbroken edges, urban mapping, vegetation mapping and oil spill mapping applications. False positives and uncompressed HSI data presented occasional challenges to the algorithm. The HySPADE edge operator produced satisfactory results with respect to localization, single-point response, oil spill mapping and trace chemical detection, and was challenged by false positives, declining spectral resolution and vegetation mapping applications. The level set edge detector produced high-quality edge planes for most tests and demonstrated strong performance with respect to false positives, single-point response, oil spill mapping and mineral mapping. False negatives were a regular challenge for the level set edge detection algorithm. Finally, HSI data optimized for spectral information compression and noise was shown to improve edge detection performance across all three algorithms, while the gradient-based algorithm and HySPADE demonstrated significant robustness to declining spectral and spatial resolutions.

  10. Power spectrum weighted edge analysis for straight edge detection in images

    NASA Astrophysics Data System (ADS)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  11. Practical Study for the Properties of Hueckel Edge Detection Operator

    NASA Astrophysics Data System (ADS)

    Jabbar, Hameed M. Abdul; Hatem, Amal J.; Ameer, Inbethaq M. A. Abdul

    2018-05-01

    The first practical study for the Hueckel edge detection operator was presented in this research, where it is tested on standard step edge set images. A number of criteria were adopted to evaluate its practical performance, which is the accuracy in detecting the edges direction, the error in the edges location (dislocation), edges width, the calculated edge goodness criterion and the consumed execution time. These criteria were studied with the edge direction and the used disk radius of the Hueckel edge detection operator. Important notes were recorded for the performance of this operator depending on the direction of the edge and/or with the radius of the used disk. There is a variation in the performance of the operator in terms of precision in detecting of the edges direction and position. A discussion was presented for the all criteria adopted in the research.

  12. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A total of 35 impacts on leading edge sensors and 22 impacts on trailing edge sensors were analyzed.

  13. Research on improved edge extraction algorithm of rectangular piece

    NASA Astrophysics Data System (ADS)

    He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu

    Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.

  14. Edge detection based on computational ghost imaging with structured illuminations

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  15. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  16. Impact of coronary artery stent edge dissections on long-term clinical outcome in patients with acute coronary syndrome: an optical coherence tomography study.

    PubMed

    Bouki, Konstantina P; Sakkali, Eleni; Toutouzas, Konstantinos; Vlad, Delia; Barmperis, Dimitrios; Phychari, Stavroula; Riga, Maria; Apostolou, Thomas; Stefanadis, Christodoulos

    2015-08-01

    The purpose of the present study was to assess the incidence, predictors and long term prognosis of stent edge dissections identified by (OCT) after the implantation of bare metal (BMS) and drug eluting stents (DES). We studied 74 patients who underwent percutaneous coronary intervention (PCI) because of an acute coronary syndrome. Edge dissections were found in 29 of 74 patients (39.1%). Independent predictors of edge dissections were: the presence of ST-elevation myocardial infarction (STEMI) (P = 0.005, odds ratio 11.78; 95% Cl 2.06-67.10), the small reference lumen diameter (P = 0.009, odds ratio 0.11; 95% Cl 0.02-0.58) and the short stents implanted (P = 0.013, odds ratio 0.83; 95% Cl 0.72-0.96). During a follow-up period of 25.6 ± 9.4 months 11 patients presented with at least one major adverse cardiac event. Event free survival was significantly decreased in patients with edge dissection with a flap thickness >0.31 mm compared to patients with thinner flap or without any dissection (P < 0.001). OCT frequently detects edge dissections, usually related to STEMI presentation and to PCI technique. Deep vessel wall injury at stent edges with a dissection flap thickness more than 0.31mm carries an adverse clinical impact on long-term clinical outcome. © 2015 Wiley Periodicals, Inc.

  17. Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface

    NASA Astrophysics Data System (ADS)

    Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin

    2018-05-01

    In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.

  18. Applications of 3D-EDGE Detection for ALS Point Cloud

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    Edge detection has been one of the major issues in the field of remote sensing and photogrammetry. With the fast development of sensor technology of laser scanning system, dense point clouds have become increasingly common. Precious 3D-edges are able to be detected from these point clouds and a great deal of edge or feature line extraction methods have been proposed. Among these methods, an easy-to-use 3D-edge detection method, AGPN (Analyzing Geometric Properties of Neighborhoods), has been proposed. The AGPN method detects edges based on the analysis of geometric properties of a query point's neighbourhood. The AGPN method detects two kinds of 3D-edges, including boundary elements and fold edges, and it has many applications. This paper presents three applications of AGPN, i.e., 3D line segment extraction, ground points filtering, and ground breakline extraction. Experiments show that the utilization of AGPN method gives a straightforward solution to these applications.

  19. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  20. Optimal frequency domain textural edge detection filter

    NASA Technical Reports Server (NTRS)

    Townsend, J. K.; Shanmugan, K. S.; Frost, V. S.

    1985-01-01

    An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the given model and filter bandwidth, the filter maximizes the amount of output image energy placed within a specified resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edge detection via the complex low-pass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of the prolate spheroidal wave functions translated in frequency. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and nonideal textures. In addition, the filter can be adjusted to detect textural edges in noisy images at the expense of edge resolution.

  1. A threshold-based fixed predictor for JPEG-LS image compression

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.

  2. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  3. Edge-effect fragmentation in the context of foliar disease transmission

    NASA Astrophysics Data System (ADS)

    Lejeune, S.; Gilet, T.; Bourouiba, L.

    2017-11-01

    Rain-induced foliar pathogen propagation is inherently linked to raindrop fragmentation upon impact on infected leaves. Close to leaf edges, the outcome of a drop impact is complex and asymmetric. Despite the ubiquitous nature of impacts close to edges, little is known on the role of edges in shaping drop fragmentation (edge-effect fragmentation). To address this gap, we present a series of drop impact experimental results with impact point close to the surface edge. We focus on the liquid sheet expansion in the air and the role of the edge in introducing the asymmetry in such expansion. We link the edge-induced asymmetry of the sheet to the emergence of different families of droplet-producing fragmentation processes. We discuss how our results can help shed light on foliar disease transmission.

  4. Efficient method of image edge detection based on FSVM

    NASA Astrophysics Data System (ADS)

    Cai, Aiping; Xiong, Xiaomei

    2013-07-01

    For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.

  5. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.

  6. Edge effects in the primate community of the biological dynamics of Forest Fragments Project, Amazonas, Brazil.

    PubMed

    Lenz, Bryan B; Jack, Katharine M; Spironello, Wilson R

    2014-11-01

    While much is known about abiotic and vegetative edge effects in tropical forests, considerably less is known about the impact of forest edges on large mammals. In this study, we examine edge effects in a primate community to determine: 1) the distance from the edge over which edge effects in primate density are detectable, 2) whether individual species exhibit edge effects in their density, and 3) whether biological characteristics can be used to predict primate presence in edge habitats. Given their importance to many primate species, we also examine the influence of the number of large trees. We found edge penetration distances of 150 m for the five species that experienced edge effects, suggesting that primates respond to edge-related changes in the plant community that are known to be strongest over the first 150 m. Four species had higher edge densities: Alouatta macconnelli (folivore-frugivore), Chiropotes chiropotes (frugivorous seed predator), Saguinus midas (frugivore-faunivore), and Sapajus apella apella (frugivore-faunivore); one species' density was lower: Ateles paniscus (frugivore); and the final species, Pithecia chrysocephala (frugivorous seed predator), did not show an edge-related pattern. The lone significant relationship between the biological characteristics examined (body weight, diet, group size, and home range size) and primate presence in edge habitats was a negative relationship with the amount of fruit consumed. Though we did not examine primate responses to edges that border a denuded matrix, we have shown that edges influence primate distribution even following decades of secondary forest regeneration at habitat edges. © 2014 Wiley Periodicals, Inc.

  7. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  8. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform

    PubMed Central

    Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711

  9. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification.

    PubMed

    Kemeny, Steven Frank; Clyne, Alisa Morss

    2011-04-01

    Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

  10. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.

    PubMed

    Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong

    2015-07-01

    To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.

  11. Structural health monitoring and impact detection for primary aircraft structures

    NASA Astrophysics Data System (ADS)

    Kosters, Eric; van Els, Thomas J.

    2010-04-01

    The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.

  12. Quantitative Ultrasound Assessment of Duchenne Muscular Dystrophy Using Edge Detection Analysis.

    PubMed

    Koppaka, Sisir; Shklyar, Irina; Rutkove, Seward B; Darras, Basil T; Anthony, Brian W; Zaidman, Craig M; Wu, Jim S

    2016-09-01

    The purpose of this study was to investigate the ability of quantitative ultrasound (US) using edge detection analysis to assess patients with Duchenne muscular dystrophy (DMD). After Institutional Review Board approval, US examinations with fixed technical parameters were performed unilaterally in 6 muscles (biceps, deltoid, wrist flexors, quadriceps, medial gastrocnemius, and tibialis anterior) in 19 boys with DMD and 21 age-matched control participants. The muscles of interest were outlined by a tracing tool, and the upper third of the muscle was used for analysis. Edge detection values for each muscle were quantified by the Canny edge detection algorithm and then normalized to the number of edge pixels in the muscle region. The edge detection values were extracted at multiple sensitivity thresholds (0.01-0.99) to determine the optimal threshold for distinguishing DMD from normal. Area under the receiver operating curve values were generated for each muscle and averaged across the 6 muscles. The average age in the DMD group was 8.8 years (range, 3.0-14.3 years), and the average age in the control group was 8.7 years (range, 3.4-13.5 years). For edge detection, a Canny threshold of 0.05 provided the best discrimination between DMD and normal (area under the curve, 0.96; 95% confidence interval, 0.84-1.00). According to a Mann-Whitney test, edge detection values were significantly different between DMD and controls (P < .0001). Quantitative US imaging using edge detection can distinguish patients with DMD from healthy controls at low Canny thresholds, at which discrimination of small structures is best. Edge detection by itself or in combination with other tests can potentially serve as a useful biomarker of disease progression and effectiveness of therapy in muscle disorders.

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

    NASA Image and Video Library

    2003-10-27

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  14. BP fusion model for the detection of oil spills on the sea by remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; An, Jubai; Zhang, Hande; Lin, Bin

    2003-06-01

    Oil spills are very serious marine pollution in many countries. In order to detect and identify the oil-spilled on the sea by remote sensor, scientists have to conduct a research work on the remote sensing image. As to the detection of oil spills on the sea, edge detection is an important technology in image processing. There are many algorithms of edge detection developed for image processing. These edge detection algorithms always have their own advantages and disadvantages in the image processing. Based on the primary requirements of edge detection of the oil spills" image on the sea, computation time and detection accuracy, we developed a fusion model. The model employed a BP neural net to fuse the detection results of simple operators. The reason we selected BP neural net as the fusion technology is that the relation between simple operators" result of edge gray level and the image"s true edge gray level is nonlinear, while BP neural net is good at solving the nonlinear identification problem. Therefore in this paper we trained a BP neural net by some oil spill images, then applied the BP fusion model on the edge detection of other oil spill images and obtained a good result. In this paper the detection result of some gradient operators and Laplacian operator are also compared with the result of BP fusion model to analysis the fusion effect. At last the paper pointed out that the fusion model has higher accuracy and higher speed in the processing oil spill image"s edge detection.

  15. Detection and labeling ribs on expiration chest radiographs

    NASA Astrophysics Data System (ADS)

    Park, Mira; Jin, Jesse S.; Wilson, Laurence S.

    2003-06-01

    Typically, inspiration is preferred when xraying the lungs. The x-ray technologist will ask a patient to be still and to take a deep breath and to hold it. This not only reduces the possibility of a blurred image but also enhances the quality of the image since air-filled lungs are easier to see on x-ray film. However, inspiration causes low density in the inner part of lung field. That means that ribs in the inner part of lung field have lower density than the other parts nearer to the border of the lung field. That is why edge detection algorithms often fail to detect ribs. Therefore to make rib edges clear we try to produce an expiration lung field using a 'hemi-elliptical cavity.' Based on the expiration lung field, we extract the rib edges using canny edge detector and a new connectivity method, called '4 way with 10-neighbors connectivity' to detect clavicle and rib edge candidates. Once the edge candidates are formed, our system selects the best candidates using knowledge-based constraints such as a gradient, length and location. The edges can be paired and labeled as superior rib edge and inferior rib edge. Then the system uses the clavicle, which is obtained in a same method for the rib edge detection, as a landmark to label all detected ribs.

  16. A non-reference evaluation method for edge detection of wear particles in ferrograph images

    NASA Astrophysics Data System (ADS)

    Wang, Jingqiu; Bi, Ju; Wang, Lianjun; Wang, Xiaolei

    2018-02-01

    Edges are one of the most important features of wear particles in a ferrograph image and are widely used to extract parameters, recognize types of wear particles, and assist in the identification of the wear mode and severity. Edge detection is a critical step in ferrograph image processing and analysis. Till date, there has been no single algorithm that guarantees the production of good quality edges in ferrograph images for a variety of applications. Therefore, it is desirable to have a reliable evaluation method for measuring the performance of various edge detection algorithms and for aiding in the selection of the optimal parameter and algorithm for ferrographic applications. In this paper, a new non-reference method for the objective evaluation of wear particle edge detection is proposed. In this method, a comprehensive index of edge evaluation is composed of three components, i.e., the reconstruction based similarity sub-index between the original image and the reconstructed image, the confidence degree sub-index used to show the true or false degree of the edge pixels, and the edge form sub-index that is used to determine the direction consistency and width uniformity of the edges. Two experiments are performed to illustrate the validity of the proposed method. First, this method is used to select the best parameters for an edge detection algorithm, and it is then used to compare the results obtained using various edge detection algorithms and determine the best algorithm. Experimental results of various real ferrograph images verify the effectiveness of the proposed method.

  17. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    PubMed

    Crowley, Brooke E; McGoogan, Keriann C; Lehman, Shawn M

    2012-01-01

    Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar.

  18. Edge Effects on Foliar Stable Isotope Values in a Madagascan Tropical Dry Forest

    PubMed Central

    Crowley, Brooke E.; McGoogan, Keriann C.; Lehman, Shawn M.

    2012-01-01

    Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ13C values where leaves collected close to the forest floor would have lower δ13C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ13C and δ15N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ13C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ13C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ15N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar. PMID:22973460

  19. System and method for automated object detection in an image

    DOEpatents

    Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.

    2015-10-06

    A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.

  20. The crack detection algorithm of pavement image based on edge information

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Geng, Mingyue

    2018-05-01

    As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.

  1. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Simon, Charles G.; Swan, P.; Walker, R. M.; Zinner, E.; Jessberger, E. K.; Lange, G.; Stadermann, F.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Experiment AO187-2 consisted of 237 capture cells, 120 on the leading edge and 117 on the trailing edge. Each cell was made of polished Ge plates covered with 2.5 micron thick mylar foil at 200 microns from the Ge. Although all leading edge cells and 105 trailing edge cells had lost their plastic covers during flight, optical and electron microscope examination revealed extended impacts in bare cells from either edge that apparently were produced by high velocity projectiles while the plastic foils were still in place. Detailed optical scanning yielded 53 extended impacts on 100 bare cells from the trailing edge that were selected for SIMS chemical analysis. Lateral multi-element ion probe profiles were obtained on 40 of these impacts. Material that can be attributed to the incoming projectiles was found in all analyzed extended compact features and most seem to be associated with cosmic dust particles. However, LDEF deposits are systematically enriched in the refractory elements Al, Ca, and Ti relative to Mg and Fe when compared to IDP's collected in the stratosphere and to chondritic compositions. These differences are most likely due to elemental fractionation effects during the high velocity impact but real differences between interplanetary particles captured on LDEF and stratospheric IDP's cannot be excluded. Recently we extended our studies to cells from the leading edge and the covered cells from the trailing edge. The 12 covered cells contain 20 extended impact candidates. Ion probe analysis of 3 yielded results similar to those obtained for impacts on the bare cells from the trailing edge. Optical scanning of the bare leading edge cell also reveals many extended impacts (42 on 22 cells scanned to date), demonstrating that the cover foils remained intact at least for some time. However, SIMS analysis showed elements that can reasonably be attributed to micrometeoroids in only 2 out of 11 impacts. Eight impacts have residues dominated by Al and one dominated by Ti, indicating a preponderance of orbital debris in leading edge impacts.

  2. Manhole Cover Detection Using Vehicle-Based Multi-Sensor Data

    NASA Astrophysics Data System (ADS)

    Ji, S.; Shi, Y.; Shi, Z.

    2012-07-01

    A new method combined wit multi-view matching and feature extraction technique is developed to detect manhole covers on the streets using close-range images combined with GPS/IMU and LINDAR data. The covers are an important target on the road traffic as same as transport signs, traffic lights and zebra crossing but with more unified shapes. However, the different shoot angle and distance, ground material, complex street scene especially its shadow, and cars in the road have a great impact on the cover detection rate. The paper introduces a new method in edge detection and feature extraction in order to overcome these difficulties and greatly improve the detection rate. The LIDAR data are used to do scene segmentation and the street scene and cars are excluded from the roads. And edge detection method base on canny which sensitive to arcs and ellipses is applied on the segmented road scene and the interesting areas contain arcs are extracted and fitted to ellipse. The ellipse are then resampled for invariance to shooting angle and distance and then are matched to adjacent images for further checking if covers and . More than 1000 images with different scenes are used in our tests and the detection rate is analyzed. The results verified our method have its advantages in correct covers detection in the complex street scene.

  3. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    PubMed

    Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo

    2010-09-08

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  4. Cutting Edge RFID Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2007-01-01

    This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID.

  5. Image edge detection based tool condition monitoring with morphological component analysis.

    PubMed

    Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng

    2017-07-01

    The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. An Experimental Exploration of the Impact of Network-Level Packet Loss on Network Intrusion Detection

    DTIC Science & Technology

    2015-08-01

    Experimental environment 5 Table 1 Hardware specifications Name Manufacture Model CPU Memory Hard Drive IP Address Bilbo Dell PowerEdge R610 Intel...10 we replayed the same hour of network traffic from the CDX 20093 that we used in our theoretical2 exploration to show the impact of our packet... replay the traffic at arbitrary speeds. Table 3 lists the speed multiplier that we used and the packet loss we observed. Table 3 Network packet loss

  7. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  8. Equilibrium drives of the low and high field side n  =  2 plasma response and impact on global confinement

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.

    2016-05-01

    The nature of the multi-modal n  =  2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n  =  2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n  =  2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.

  9. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE PAGES

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...

    2016-03-31

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less

  10. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  11. Effect of low-speed impact damage and damage location on behavior of composite panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1992-01-01

    The effect of low speed impact damage on the compression and tension strength of thin and moderately thick composite specimens was investigated. Impact speed ranged from 50 to 550 ft./sec., with corresponding impact energies from 0.25 to 30.7 ft. x lb. Impact locations were near the center of the specimen or near a lateral unloaded edge. In this study, thin specimens with only 90 degree and + or - 45 degree plies that were impacted away from the unloaded edge suffered less reduction in load carrying capability because of impact damage than of the same specimens impacted near the unloaded edge. Failure loads of thicker compression loaded specimens with a similar stacking sequence were independent of impact location. Failure loads of thin tension loaded specimens with 0 degree plies was independent of impact location, whereas failure loads of thicker compression loaded specimens with 0 degree plies were dependent upon impact location. A finite element analysis indicated that high axial strains occurred near the unloaded edges of the postbuckled panels. Thus, impacts near the unloaded edge would significantly affect the behavior of the postbuckled panel.

  12. Edge Detection Based On the Characteristic of Primary Visual Cortex Cells

    NASA Astrophysics Data System (ADS)

    Zhu, M. M.; Xu, Y. L.; Ma, H. Q.

    2018-01-01

    Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness

  13. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2017-07-04

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  14. Using new edges for anomaly detection in computer networks

    DOEpatents

    Neil, Joshua Charles

    2015-05-19

    Creation of new edges in a network may be used as an indication of a potential attack on the network. Historical data of a frequency with which nodes in a network create and receive new edges may be analyzed. Baseline models of behavior among the edges in the network may be established based on the analysis of the historical data. A new edge that deviates from a respective baseline model by more than a predetermined threshold during a time window may be detected. The new edge may be flagged as potentially anomalous when the deviation from the respective baseline model is detected. Probabilities for both new and existing edges may be obtained for all edges in a path or other subgraph. The probabilities may then be combined to obtain a score for the path or other subgraph. A threshold may be obtained by calculating an empirical distribution of the scores under historical conditions.

  15. Lessons Learned JSC Micro-Wireless Instrumentation Systems on Space Shuttle and International Space Station CANEUS 2006

    NASA Technical Reports Server (NTRS)

    Studor, George

    2007-01-01

    A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Eric Madaras (left), NASA-Langley Research Center, and Jim McGee, The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

    NASA Image and Video Library

    2003-10-27

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Eric Madaras (left), NASA-Langley Research Center, and Jim McGee, The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  17. Anti-impulse-noise Edge Detection via Anisotropic Morphological Directional Derivatives.

    PubMed

    Shui, Peng-Lang; Wang, Fu-Ping

    2017-07-13

    Traditional differential-based edge detection suffers from abrupt degradation in performance when images are corrupted by impulse noises. The morphological operators such as the median filters and weighted median filters possess the intrinsic ability to counteract impulse noise. In this paper, by combining the biwindow configuration with weighted median filters, anisotropic morphological directional derivatives (AMDD) robust to impulse noise are proposed to measure the local grayscale variation around a pixel. For ideal step edges, the AMDD spatial response and directional representation are derived. The characteristics and edge resolution of two kinds of typical biwindows are analyzed thoroughly. In terms of the AMDD spatial response and directional representation of ideal step edges, the spatial matched filter is used to extract the edge strength map (ESM) from the AMDDs of an image. The spatial and directional matched filters are used to extract the edge direction map (EDM). Embedding the extracted ESM and EDM into the standard route of the differential-based edge detection, an anti-impulse-noise AMDD-based edge detector is constructed. It is compared with the existing state-of-the-art detectors on a recognized image dataset for edge detection evaluation. The results show that it attains competitive performance in noise-free and Gaussian noise cases and the best performance in impulse noise cases.

  18. Image enhancement of real-time television to benefit the visually impaired.

    PubMed

    Wolffsohn, James S; Mukhopadhyay, Ditipriya; Rubinstein, Martin

    2007-09-01

    To examine the use of real-time, generic edge detection, image processing techniques to enhance the television viewing of the visually impaired. Prospective, clinical experimental study. One hundred and two sequential visually impaired (average age 73.8 +/- 14.8 years; 59% female) in a single center optimized a dynamic television image with respect to edge detection filter (Prewitt, Sobel, or the two combined), color (red, green, blue, or white), and intensity (one to 15 times) of the overlaid edges. They then rated the original television footage compared with a black-and-white image displaying the edges detected and the original television image with the detected edges overlaid in the chosen color and at the intensity selected. Footage of news, an advertisement, and the end of program credits were subjectively assessed in a random order. A Prewitt filter was preferred (44%) compared with the Sobel filter (27%) or a combination of the two (28%). Green and white were equally popular for displaying the detected edges (32%), with blue (22%) and red (14%) less so. The average preferred edge intensity was 3.5 +/- 1.7 times. The image-enhanced television was significantly preferred to the original (P < .001), which in turn was preferred to viewing the detected edges alone (P < .001) for each of the footage clips. Preference was not dependent on the condition causing visual impairment. Seventy percent were definitely willing to buy a set-top box that could achieve these effects for a reasonable price. Simple generic edge detection image enhancement options can be performed on television in real-time and significantly enhance the viewing of the visually impaired.

  19. Debris and meteoroid proportions deduced from impact crater residue analysis

    NASA Technical Reports Server (NTRS)

    Berthoud, Lucinda; Mandeville, Jean-Claude; Durin, Christian; Borg, Janet

    1995-01-01

    This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian 'Aragatz' dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, we note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural v. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris. Oblique impacts and multiple foil detectors provide a higher likelihood of detection of residues as the velocities involved are lower.

  20. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  1. A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells

    PubMed Central

    Huang, Lawrence; Helmke, Brian P.

    2011-01-01

    Spatial asymmetry of actin edge ruffling contributes to the process of cell polarization and directional migration, but mechanisms by which external cues control actin polymerization near cell edges remain unclear. We designed a quantitative image analysis strategy to measure the spatiotemporal distribution of actin edge ruffling. Time-lapse images of endothelial cells (ECs) expressing mRFP-actin were segmented using an active contour method. In intensity line profiles oriented normal to the cell edge, peak detection identified the angular distribution of polymerized actin within 1 µm of the cell edge, which was localized to lamellipodia and edge ruffles. Edge features associated with filopodia and peripheral stress fibers were removed. Circular statistical analysis enabled detection of cell polarity, indicated by a unimodal distribution of edge ruffles. To demonstrate the approach, we detected a rapid, nondirectional increase in edge ruffling in serum-stimulated ECs and a change in constitutive ruffling orientation in quiescent, nonpolarized ECs. Error analysis using simulated test images demonstrate robustness of the method to variations in image noise levels, edge ruffle arc length, and edge intensity gradient. These quantitative measurements of edge ruffling dynamics enable investigation at the cellular length scale of the underlying molecular mechanisms regulating actin assembly and cell polarization. PMID:21643526

  2. Improvement and implementation for Canny edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  3. An Integrated Retrieval Framework for AMSR2: Implications for Light Precipitation and Sea Ice Edge Detectability

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.; Meier, W.

    2016-12-01

    Over the lifetime of AMSR-E, operational retrieval algorithms were developed and run for precipitation, ocean suite (SST, wind speed, cloud liquid water path, and column water vapor over ocean), sea ice, snow water equivalent, and soil moisture. With a separate algorithm for each group, the retrievals were never interactive or integrated in any way despite many co-sensitivities. AMSR2, the follow-on mission to AMSR-E, retrieves the same parameters at a slightly higher spatial resolution. We have combined the operational algorithms for AMSR2 in a way that facilitates sharing information between the retrievals. Difficulties that arose were mainly related to calibration, spatial resolution, coastlines, and order of processing. The integration of all algorithms for AMSR2 has numerous benefits, including better detection of light precipitation and sea ice, fewer screened out pixels, and better quality flags. Integrating the algorithms opens up avenues for investigating the limits of detectability for precipitation from a passive microwave radiometer and the impact of spatial resolution on sea ice edge detection; these are investigated using CloudSat and MODIS coincident observations from the A-Train constellation.

  4. Applied breath analysis: an overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications

    PubMed Central

    Hunter, Gary W; Dweik, Raed A

    2010-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A family of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption, and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity. However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This paper gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology. Clinical applications and the potential impact to the biomedical field of miniaturized smart gas sensor technology are discussed. PMID:20622933

  5. Content-based unconstrained color logo and trademark retrieval with color edge gradient co-occurrence histograms

    NASA Astrophysics Data System (ADS)

    Phan, Raymond; Androutsos, Dimitrios

    2008-01-01

    In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.

  6. Implementation of sobel method to detect the seed rubber plant leaves

    NASA Astrophysics Data System (ADS)

    Suyanto; Munte, J.

    2018-03-01

    This research was conducted to develop a system that can identify and recognize the type of rubber tree based on the pattern of leaves of the plant. The steps research are started with the identification of the image data acquisition, image processing, image edge detection and identification method template matching. Edge detection is using Sobel edge detection. Pattern recognition would detect image as input and compared with other images in a database called templates. Experiments carried out in one phase, identification of the leaf edge, using a rubber plant leaf image 14 are superior and 5 for each type of test images (clones) of the plant. From the experimental results obtained by the recognition rate of 91.79%.

  7. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  8. MO-DE-207A-01: Impact of Statistical Weights On Detection of Low-Contrast Details in Model-Based Iterative CT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noo, F; Guo, Z

    2016-06-15

    Purpose: Penalized-weighted least-square reconstruction has become an important research topic in CT, to reduce dose without affecting image quality. Two components impact image quality in this reconstruction: the statistical weights and the use of an edge-preserving penalty term. We are interested in assessing the influence of statistical weights on their own, without the edge-preserving feature. Methods: The influence of statistical weights on image quality was assessed in terms of low-contrast detail detection using LROC analysis. The task amounted to detect and localize a 6-mm lesion with random contrast inside the FORBILD head phantom. A two-alternative forced-choice experiment was used withmore » two human observers performing the task. Reconstructions without and with statistical weights were compared, both using the same quadratic penalty term. The beam energy was set to 30keV to amplify spatial differences in attenuation and thereby the role of statistical weights. A fan-beam data acquisition geometry was used. Results: Visual inspection of images clearly showed a difference in noise between the two reconstructions methods. As expected, the reconstruction without statistical weights exhibited noise streaks. The other reconstruction appeared better in this aspect, but presented other disturbing noise patterns and artifacts induced by the weights. The LROC analysis yield the following 95-percent confidence interval for the difference in reader-averaged AUC (reconstruction without weights minus reconstruction with weights): [0.0026,0.0599]. The mean AUC value was 0.9094. Conclusion: We have investigated the impact of statistical weights without the use of edge-preserving penalty in penalized weighted least-square reconstruction. A decrease rather than increase in image quality was observed when using statistical weights. Thus, the observers were better able to cope with the noise streaks than the noise patterns and artifacts induced by the statistical weights. It may be that different results would be obtained if the penalty term was used with a pixel-dependent weight. F Noo receives research support from Siemens Healthcare GmbH.« less

  9. Contour Tracking with a Spatio-Temporal Intensity Moment.

    PubMed

    Demi, Marcello

    2016-06-01

    Standard edge detection operators such as the Laplacian of Gaussian and the gradient of Gaussian can be used to track contours in image sequences. When using edge operators, a contour, which is determined on a frame of the sequence, is simply used as a starting contour to locate the nearest contour on the subsequent frame. However, the strategy used to look for the nearest edge points may not work when tracking contours of non isolated gray level discontinuities. In these cases, strategies derived from the optical flow equation, which look for similar gray level distributions, appear to be more appropriate since these can work with a lower frame rate than that needed for strategies based on pure edge detection operators. However, an optical flow strategy tends to propagate the localization errors through the sequence and an additional edge detection procedure is essential to compensate for such a drawback. In this paper a spatio-temporal intensity moment is proposed which integrates the two basic functions of edge detection and tracking.

  10. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.

    1993-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  11. Method and apparatus for detecting flaws and defects in heat seals

    NASA Technical Reports Server (NTRS)

    Rai, Kula R. (Inventor); Lew, Thomas M. (Inventor); Sinclair, Robert B. (Inventor)

    1993-01-01

    Flaws and defects in heat seals formed between sheets of translucent film are identified by optically examining consecutive lateral sections of the seal along the seal length. Each lateral seal section is illuminated and an optical sensor array detects the intensity of light transmitted through the seal section for the purpose of detecting and locating edges in the heat seal. A line profile for each consecutive seal section is derived having an amplitude proportional to the change in light intensity across the seal section. Instances in the derived line profile where the amplitude is greater than a threshold level indicate the detection of a seal edge. The detected edges in each derived line profile are then compared to a preset profile edge standard to identify the existence of a flaw or defect.

  12. Defect imaging in composite structures

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Endrizzi, Marco; Olivo, Alessandro

    2018-04-01

    Carbon fiber laminate composites offer advantages including a good strength to weight ratio for aerospace structures. However, manufacturing imperfections and impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Incorrect ply lay-up during the manufacturing process can result in fiber misalignment or in-plane and out-of-plane waviness. Impact, such as bird strike, during the service life can lead to delamination and cracking, reducing the load carrying capacity of the structure. Both ultrasonic and X-ray techniques have a good track record for the nondestructive testing of composite structures; for the latter, phase-based approaches provide additional advantages due to their enhanced sensitivity. Bulk and guided ultrasonic waves propagating in the composite panel were employed for defect imaging. Ultrasonic immersion C-scans of a composite panel with barely visible impact damage were taken to characterize the size and shape of damage (delamination). The first antisymmetric A0 Lamb wave mode was excited experimentally using piezoelectric transducers and measured using a laser vibrometer. X-ray phase-contrast and dark field imaging, implemented through the edge-illumination (EI) approach, were used for the detailed visualization of the damages in the composite material. The Edge-illumination approach is multi-modal and provides three representations of the sample: absorption, differential phase and dark-field. The latter is of particular interest to detect cracks and voids of dimensions that are smaller than the actual spatial resolution of the imaging system. Application examples for carbon fiber composite plates with barely visible impact damage are shown.

  13. Edge-directed inference for microaneurysms detection in digital fundus images

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Yan, Michelle; Aviyente, Selin

    2007-03-01

    Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.

  14. Optical Assessment of Soft Contact Lens Edge-Thickness.

    PubMed

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P

    2016-08-01

    To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.

  15. Optical Assessment of Soft Contact Lens Edge-Thickness

    PubMed Central

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.

    2016-01-01

    Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902

  16. Processing Images of Craters for Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew E.; Matthies, Larry H.

    2009-01-01

    A crater-detection algorithm has been conceived to enable automation of what, heretofore, have been manual processes for utilizing images of craters on a celestial body as landmarks for navigating a spacecraft flying near or landing on that body. The images are acquired by an electronic camera aboard the spacecraft, then digitized, then processed by the algorithm, which consists mainly of the following steps: 1. Edges in an image detected and placed in a database. 2. Crater rim edges are selected from the edge database. 3. Edges that belong to the same crater are grouped together. 4. An ellipse is fitted to each group of crater edges. 5. Ellipses are refined directly in the image domain to reduce errors introduced in the detection of edges and fitting of ellipses. 6. The quality of each detected crater is evaluated. It is planned to utilize this algorithm as the basis of a computer program for automated, real-time, onboard processing of crater-image data. Experimental studies have led to the conclusion that this algorithm is capable of a detection rate >93 percent, a false-alarm rate <5 percent, a geometric error <0.5 pixel, and a position error <0.3 pixel.

  17. Alpha-ray detection with a MgB 2 transition edge sensor

    NASA Astrophysics Data System (ADS)

    Okayasu, S.; Katagiri, M.; Hojou, K.; Morii, Y.; Miki, S.; Shimakage, H.; Wang, Z.; Ishida, T.

    2008-09-01

    We have been investigating for neutron detection with the MgB 2 transition edge sensor (TES). For the purpose, we have been developing a low noise measurement system for the detection. To confirm the performance of the detecting sensor, alpha ray detection from an americium-241 ( 241Am) alpha-ray source was achieved. A short microfabricated sample with 10 μm length and 1 μm width is used to improve the S/N ratio. The detection is achieved under a constant current condition in the range between 1 and 6 μA bias current, and the resistivity changes at the sample due to the alpha ray irradiation is detected just on the transition edge.

  18. First Order Statistics of Speckle around a Scatterer Volume Density Edge and Edge Detection in Ultrasound Images.

    NASA Astrophysics Data System (ADS)

    Li, Yue

    1990-01-01

    Ultrasonic imaging plays an important role in medical imaging. But the images exhibit a granular structure, commonly known as speckle. The speckle tends to mask the presence of low-contrast lesions and reduces the ability of a human observer to resolve fine details. Our interest in this research is to examine the problem of edge detection and come up with methods for improving the visualization of organ boundaries and tissue inhomogeneity edges. An edge in an image can be formed either by acoustic impedance change or by scatterer volume density change (or both). The echo produced from these two kinds of edges has different properties. In this work, it has been proved that the echo from a scatterer volume density edge is the Hilbert transform of the echo from a rough impedance boundary (except for a constant) under certain conditions. This result can be used for choosing the correct signal to transmit to optimize the performance of edge detectors and characterizing an edge. The signal to noise ratio of the echo produced by a scatterer volume density edge is also obtained. It is found that: (1) By transmitting a signal with high bandwidth ratio and low center frequency, one can obtain a higher signal to noise ratio. (2) For large area edges, the farther the transducer is from the edge, the larger is the signal to noise ratio. But for small area edges, the nearer the transducer is to the edge, the larger is the signal to noise ratio. These results enable us to maximize the signal to noise ratio by adjusting these parameters. (3) The signal to noise ratio is not only related to the ratio of scatterer volume densities at the edge, but also related to the absolute value of scatterer volume densities. Some of these results have been proved through simulation and experiment. Different edge detection methods have been used to detect simulated scatterer volume density edges to compare their performance. A so-called interlaced array method has been developed for speckle reduction in the images formed by synthetic aperture focussing technique, and experiments have been done to evaluate its performance.

  19. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, and Jim McGee (right), The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

    NASA Image and Video Library

    2003-10-27

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Bill Prosser (left) and Eric Madaras, NASA-Langley Research Center, and Jim McGee (right), The Boeing Company, Huntington Beach, Calif., conduct impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  20. Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.

    2014-10-01

    Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.

  1. STS-114 Micrometeoroid/Orbital Debris (MMOD) Post-Flight Assessment

    NASA Technical Reports Server (NTRS)

    Hyde, J.; Bernhard, R.; Christiansen, E.

    2007-01-01

    NASA Johnson Space Center (JSC) personnel assisted Kennedy Space Center (KSC) inspection teams in the identification of 41 micrometeoroid/orbital debris (MMOD) impact sites on the OV-103 vehicle (Discovery) during STS-114 postflight inspections. There were 14 MMOD impacts reported on the crew module windows (Figure 1). The largest impact feature, a 6.6 mm x 5.8 mm crater on window #4, was caused by a particle with an estimated diameter of 0.22 mm (Figure 2). This impact was among the largest ever recorded on a crew module window. The window was removed and replaced. Scanning Electron Microscope/Energy Dispersive X-ray (SEM/EDX) analysis of dental mold samples from the impact site to determine particle origin was inconclusive, possibly due to contamination picked up on the ferry flight from Edwards Air Force Base to KSC. The radiators on the inside of the payload bay doors sustained 19 impacts (Figure 3) with one of the impacts causing a face sheet perforation. The 0.61 mm diameter hole was produced by a particle with an estimated diameter of 0.4 mm, which approaches the 0.5-mm critical particle diameter of the wing leading edge reinforced carbon-carbon (RCC) panel high-temperature regions (Zone 3, Figure 4) that was established during Return to Flight testing of the RCC panels. An inspection of the payload bay door exterior insulation (FRSI) revealed a 5.8 mm x 4.5 mm defect that was caused by an MMOD particle with unknown composition, as the sample obtained was contaminated. Figure 5 provides a summary of the exterior surface survey that was conducted following the STS-114 mission. Two windows were removed and replaced due to hypervelocity impact. Nineteen impacts were recorded on the payload bay door radiators, with one face sheet penetration. Three impact sites were identified on the FRSI. There were four hypervelocity impact sites detected on the wing leading edge RCC panels. One impact was detected on the top cover of the TPS sample box (TSB) payload that was mounted on a carrier in the aft portion of the payload bay.

  2. Ultrasound-Guided Bar Edge Labeling in the Perioperative Assessment of Nuss Bar Removal.

    PubMed

    Incerti, Filippo; Bertocchini, Alessia; Ghionzoli, Marco; Messineo, Antonio

    2017-12-01

    Nuss bar removal after minimally invasive repair of pectus excavatum in patients where bar ends are not palpable, can be a challenging procedure for the surgeon; a blind dissection toward the bar edges may lead to intercostal vessels or deep intercostal muscle injuries. In this article, we describe a fast, repeatable, low-cost technique to detect bar edge and stabilizers. A perioperative scan is performed by means of a portable ultrasonograph a few minutes before the operation. The bar edge stabilizer is detected as a hyperechogenic image with a concentric crescent while the bar edge is detected as a hyperechogenic dashed line with net edges. The scan is performed, and the actual projection on the skin of the metal plaque bulk is then labeled on the patient's chest by an ink marker. We believe that this method may improve morbidity, operative time, and consequently, hospitalization length and costs.

  3. Edge detection and mathematic fitting for corneal surface with Matlab software.

    PubMed

    Di, Yue; Li, Mei-Yan; Qiao, Tong; Lu, Na

    2017-01-01

    To select the optimal edge detection methods to identify the corneal surface, and compare three fitting curve equations with Matlab software. Fifteen subjects were recruited. The corneal images from optical coherence tomography (OCT) were imported into Matlab software. Five edge detection methods (Canny, Log, Prewitt, Roberts, Sobel) were used to identify the corneal surface. Then two manual identifying methods (ginput and getpts) were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve (y=Ax 2 +Bx+C), Polynomial curve [p(x)=p1x n +p2x n-1 +....+pnx+pn+1] and Conic section (Ax 2 +Bxy+Cy 2 +Dx+Ey+F=0) were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally, the eccentricity (e) obtained by corneal topography and conic section were compared with paired t -test. Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis, eccentricity, circle center, etc . There were no significant differences between 'e' values by corneal topography and conic section ( t =0.9143, P =0.3760 >0.05). It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.

  4. Edge detection techniques for iris recognition system

    NASA Astrophysics Data System (ADS)

    Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.

    2013-12-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.

  5. Origin and analysis of microbial population heterogeneity in bioprocesses.

    PubMed

    Müller, Susann; Harms, Hauke; Bley, Thomas

    2010-02-01

    Heterogeneity of industrial production cultures is accepted to a certain degree; however, the underlying mechanisms are seldom perceived or included in the development of new bioprocess control strategies. Population heterogeneity and its basics, perceptible in the diverse proficiency of cells, begins with asymmetric birth and is found to recess during the life cycle. Since inefficient subpopulations have significant impact on the productivity of industrial cultures, cellular heterogeneity needs to be detected and quantified by using high speed detection tools like flow cytometry. Possible origins of population heterogeneity, sophisticated fluorescent techniques for detection of individual cell states, and cutting-edge Omics-technologies for extended information beyond the resolution of fluorescent labelling are highlighted.

  6. Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants.

    PubMed

    Seager, S; Turner, E L; Schafer, J; Ford, E B

    2005-06-01

    Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge," as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light-harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.

  7. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  8. Edge Detection Method Based on Neural Networks for COMS MI Images

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Park, Eun-Bin; Woo, Sun-Hee

    2016-12-01

    Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.

  9. Edge detection of optical subaperture image based on improved differential box-counting method

    NASA Astrophysics Data System (ADS)

    Li, Yi; Hui, Mei; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-01-01

    Optical synthetic aperture imaging technology is an effective approach to improve imaging resolution. Compared with monolithic mirror system, the image of optical synthetic aperture system is often more complex at the edge, and as a result of the existence of gap between segments, which makes stitching becomes a difficult problem. So it is necessary to extract the edge of subaperture image for achieving effective stitching. Fractal dimension as a measure feature can describe image surface texture characteristics, which provides a new approach for edge detection. In our research, an improved differential box-counting method is used to calculate fractal dimension of image, then the obtained fractal dimension is mapped to grayscale image to detect edges. Compared with original differential box-counting method, this method has two improvements as follows: by modifying the box-counting mechanism, a box with a fixed height is replaced by a box with adaptive height, which solves the problem of over-counting the number of boxes covering image intensity surface; an image reconstruction method based on super-resolution convolutional neural network is used to enlarge small size image, which can solve the problem that fractal dimension can't be calculated accurately under the small size image, and this method may well maintain scale invariability of fractal dimension. The experimental results show that the proposed algorithm can effectively eliminate noise and has a lower false detection rate compared with the traditional edge detection algorithms. In addition, this algorithm can maintain the integrity and continuity of image edge in the case of retaining important edge information.

  10. Edge detection for optical synthetic aperture based on deep neural network

    NASA Astrophysics Data System (ADS)

    Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin

    2017-09-01

    Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.

  11. The Influence of Clocking Angle of the Projectile on the Simulated Impact Response of a Shuttle Leading Edge Wing Panel

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2005-01-01

    An analytical study was conducted to determine the influence of clocking angle of a foam projectile impacting a space shuttle leading edge wing panel. Four simulations were performed using LS-DYNA. The leading edge panels are fabricated of multiple layers of reinforced carbon-carbon (RCC) material. The RCC material was represented using Mat 58, which is a material property that can be used for laminated composite fabrics. Simulations were performed of a rectangular-shaped foam block, weighing 0.23-lb., impacting RCC Panel 9 on the top surface. The material properties of the foam were input using Mat 83. The impact velocity was 1,000 ft/s along the Orbiter X-axis. In two models, the foam impacted on a corner, in one model the foam impacted the panel initially on the 2-in.-long edge, and in the last model the foam impacted the panel on the 7-in.- long edge. The simulation results are presented as contour plots of first principal infinitesimal strain and time history plots of contact force and internal and kinetic energy of the foam and RCC panel.

  12. Researches on Position Detection for Vacuum Switch Electrode

    NASA Astrophysics Data System (ADS)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  13. Direct Detection Doppler Lidar for Spaceborne Wind Measurement

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Flesia, Cristina

    1999-01-01

    Aerosol and molecular based versions of the double-edge technique can be used for direct detection Doppler lidar spaceborne wind measurement. The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We have developed double edge versions of the edge technique for aerosol and molecular-based lidar measurement of the wind. Aerosol-based wind measurements have been made at Goddard Space Flight Center and molecular-based wind measurements at the University of Geneva. We have demonstrated atmospheric measurements using these techniques for altitudes from 1 to more than 10 km. Measurement accuracies of better than 1.25 m/s have been obtained with integration times from 5 to 30 seconds. The measurements can be scaled to space and agree, within a factor of two, with satellite-based simulations of performance based on Poisson statistics. The theory of the double edge aerosol technique is described by a generalized formulation which substantially extends the capabilities of the edge technique. It uses two edges with opposite slopes located about the laser frequency at approximately the half-width of each edge filter. This doubles the signal change for a given Doppler shift and yields a factor of 1.6 improvement in the measurement accuracy compared to the single edge technique. The use of two high resolution edge filters substantially reduces the effects of Rayleigh scattering on the measurement, as much as order of magnitude, and allows the signal to noise ratio to be substantially improved in areas of low aerosol backscatter. We describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined using the two edge channels and an energy monitor channel. The effects of Rayleigh scattering may then subtracted from the measurement and we show that the correction process does not significantly increase the measurement noise for Rayleigh to aerosol ratios up to 10. We show that for small Doppler shifts a measurement accuracy of 0.4 m/s can be obtained for 5000 detected photon, 1.2 m/s for 1000 detected photons, and 3.7 m/s for 50 detected photons for a Rayleigh to aerosol ratio of 5. Methods for increasing the dynamic range of the aerosol-based system to more than +/- 100 m/s are given.

  14. A study on obstacle detection method of the frontal view using a camera on highway

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Quang; Park, Jeonghyeon; Seo, Changjun; Kim, Heungseob; Boo, Kwangsuck

    2018-03-01

    In this work, we introduce an approach to detect vehicles for driver assistance, or warning system. For driver assistance system, it must detect both lanes (left and right side lane), and discover vehicles ahead of the test vehicle. Therefore, in this study, we use a camera, it is installed on the windscreen of the test vehicle. Images from the camera are used to detect three lanes, and detect multiple vehicles. In lane detection, line detection and vanishing point estimation are used. For the vehicle detection, we combine the horizontal and vertical edge detection, the horizontal edge is used to detect the vehicle candidates, and then the vertical edge detection is used to verify the vehicle candidates. The proposed algorithm works with of 480 × 640 image frame resolution. The system was tested on the highway in Korea.

  15. Optimization of Visual Information Presentation for Visual Prosthesis.

    PubMed

    Guo, Fei; Yang, Yuan; Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  16. Optimization of Visual Information Presentation for Visual Prosthesis

    PubMed Central

    Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769

  17. Comparison of edge detection techniques for M7 subtype Leukemic cell in terms of noise filters and threshold value

    NASA Astrophysics Data System (ADS)

    Salam, Afifah Salmi Abdul; Isa, Mohd. Nazrin Md.; Ahmad, Muhammad Imran; Che Ismail, Rizalafande

    2017-11-01

    This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection). Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML) is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.

  18. Edge grouping combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2007-10-01

    This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.

  19. Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization.

    PubMed

    Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2014-01-01

    Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.

  20. Quality detection system and method of micro-accessory based on microscopic vision

    NASA Astrophysics Data System (ADS)

    Li, Dongjie; Wang, Shiwei; Fu, Yu

    2017-10-01

    Considering that the traditional manual detection of micro-accessory has some problems, such as heavy workload, low efficiency and large artificial error, a kind of quality inspection system of micro-accessory has been designed. Micro-vision technology has been used to inspect quality, which optimizes the structure of the detection system. The stepper motor is used to drive the rotating micro-platform to transfer quarantine device and the microscopic vision system is applied to get graphic information of micro-accessory. The methods of image processing and pattern matching, the variable scale Sobel differential edge detection algorithm and the improved Zernike moments sub-pixel edge detection algorithm are combined in the system in order to achieve a more detailed and accurate edge of the defect detection. The grade at the edge of the complex signal can be achieved accurately by extracting through the proposed system, and then it can distinguish the qualified products and unqualified products with high precision recognition.

  1. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    PubMed Central

    Yang, Jing; Gao, Qian; Zhou, Sheng

    2017-01-01

    Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology. PMID:29065594

  2. Forward rotor vortex effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Laur, Michele; Squires, Becky; Nagel, Robert T.

    1992-01-01

    Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.

  3. Fundamentals of angled-beam ultrasonic NDE for potential characterization of hidden regions of impact damage in composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Wertz, John N.; Welter, John T.; Wallentine, Sarah; Lindgren, Eric A.; Kramb, Victoria; Zainey, David

    2018-04-01

    In this study, the use of angled-beam ultrasonic NDE was explored for the potential characterization of the hidden regions of impact damage in composites. Simulated studies using CIVA FIDEL 2D were used to explore this inspection problem. Quasi-shear (qS) modes can be generated over a wide range of angles and used to reflect off the backwall and interrogate under the top delaminations of impact damage. Secondary probe signals that do propagate normal to the surface were found to be significant under certain probe conditions, and can potentially interfere with weakly scattered signals from within the composite panel. Simulations were used to evaluate the source of the multiple paths of reflections from the edge of a delamination; time-of-flight and amplitude will depend on the depth of the delamination and location of neighboring delaminations. For angled-beam inspections, noise from both the top surface roughness and internal features was found to potentially mask the detection of signals from the edge of delaminations. Lastly, the study explored the potential of generating "guided" waves along the backwall using an angled-beam source and subsequently measuring scattered signals from a far surface crack hidden under a delamination.

  4. Image processing system and method for recognizing and removing shadows from the image of a monitored scene

    DOEpatents

    Osbourn, Gordon C.

    1996-01-01

    The shadow contrast sensitivity of the human vision system is simulated by configuring information obtained from an image sensor so that the information may be evaluated with multiple pixel widths in order to produce a machine vision system able to distinguish between shadow edges and abrupt object edges. A second difference of the image intensity for each line of the image is developed and this second difference is used to screen out high frequency noise contributions from the final edge detection signals. These edge detection signals are constructed from first differences of the image intensity where the screening conditions are satisfied. The positional coincidence of oppositely signed maxima in the first difference signal taken from the right and the second difference signal taken from the left is used to detect the presence of an object edge. Alternatively, the effective number of responding operators (ENRO) may be utilized to determine the presence of object edges.

  5. Automatic comic page image understanding based on edge segment analysis

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  6. An Iris Segmentation Algorithm based on Edge Orientation for Off-angle Iris Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J

    Iris recognition is known as one of the most accurate and reliable biometrics. However, the accuracy of iris recognition systems depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. In this paper, we present a segmentation algorithm for off-angle iris images that uses edge detection, edge elimination, edge classification, and ellipse fitting techniques. In our approach, we first detect all candidate edges in the iris image by using the canny edge detector; this collection contains edges from the iris and pupil boundaries as well as eyelash, eyelids, iris texturemore » etc. Edge orientation is used to eliminate the edges that cannot be part of the iris or pupil. Then, we classify the remaining edge points into two sets as pupil edges and iris edges. Finally, we randomly generate subsets of iris and pupil edge points, fit ellipses for each subset, select ellipses with similar parameters, and average to form the resultant ellipses. Based on the results from real experiments, the proposed method shows effectiveness in segmentation for off-angle iris images.« less

  7. Detecting the Edge of the Tongue: A Tutorial

    ERIC Educational Resources Information Center

    Iskarous, Khalil

    2005-01-01

    The goal of this paper is to provide a tutorial introduction to the topic of edge detection of the tongue from ultrasound scans for researchers in speech science and phonetics. The method introduced here is Active Contours (also called snakes), a method for searching for an edge, assuming that it is a smooth curve in the image data. The advantage…

  8. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  9. Analysis of LDEF experiment AO187-2: Chemically and isotopic measurements of micrometeoroids by secondary ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells have been successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data have been obtained from the trailing edge cells where 45 of 58 impacts have been classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultra-violet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noticed in simulation experiment but is more pronounced in the Long Duration Exposure Facility (LDEF) capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si but also containing Mg and Al provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  10. Shearlet-based edge detection: flame fronts and tidal flats

    NASA Astrophysics Data System (ADS)

    King, Emily J.; Reisenhofer, Rafael; Kiefer, Johannes; Lim, Wang-Q.; Li, Zhen; Heygster, Georg

    2015-09-01

    Shearlets are wavelet-like systems which are better suited for handling geometric features in multi-dimensional data than traditional wavelets. A novel method for edge and line detection which is in the spirit of phase congruency but is based on a complex shearlet transform will be presented. This approach to detection yields an approximate tangent direction of detected discontinuities as a byproduct of the computation, which then yields local curvature estimates. Two applications of the edge detection method will be discussed. First, the tracking and classification of flame fronts is a critical component of research in technical thermodynamics. Quite often, the flame fronts are transient or weak and the images are noisy. The standard methods used in the field for the detection of flame fronts do not handle such data well. Fortunately, using the shearlet-based edge measure yields good results as well as an accurate approximation of local curvature. Furthermore, a modification of the method will yield line detection, which is important for certain imaging modalities. Second, the Wadden tidal flats are a biodiverse region along the North Sea coast. One approach to surveying the delicate region and tracking the topographical changes is to use pre-existing Synthetic Aperture Radar (SAR) images. Unfortunately, SAR data suffers from multiplicative noise as well as sensitivity to environmental factors. The first large-scale mapping project of that type showed good results but only with a tremendous amount of manual interaction because there are many edges in the data which are not boundaries of the tidal flats but are edges of features like fields or islands. Preliminary results will be presented.

  11. A novel cloning template designing method by using an artificial bee colony algorithm for edge detection of CNN based imaging sensors.

    PubMed

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.

  12. A Novel Cloning Template Designing Method by Using an Artificial Bee Colony Algorithm for Edge Detection of CNN Based Imaging Sensors

    PubMed Central

    Parmaksızoğlu, Selami; Alçı, Mustafa

    2011-01-01

    Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903

  13. Fpga based hardware synthesis for automatic segmentation of retinal blood vessels in diabetic retinopathy images.

    PubMed

    Sivakamasundari, J; Kavitha, G; Sujatha, C M; Ramakrishnan, S

    2014-01-01

    Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Real-Time mass screening system for DR is vital for timely diagnosis and periodic screening to prevent the patient from severe visual loss. Human retinal fundus images are widely used for an automated segmentation of blood vessel and diagnosis of various blood vessel disorders. In this work, an attempt has been made to perform hardware synthesis of Kirsch template based edge detection for segmentation of blood vessels. This method is implemented using LabVIEW software and is synthesized in field programmable gate array board to yield results in real-time application. The segmentation of blood vessels using Kirsch based edge detection is compared with other edge detection methods such as Sobel, Prewitt and Canny. The texture features such as energy, entropy, contrast, mean, homogeneity and structural feature namely ratio of vessel to vessel free area are obtained from the segmented images. The performance of segmentation is analysed in terms of sensitivity, specificity and accuracy. It is observed from the results that the Kirsch based edge detection technique segmented the edges of blood vessels better than other edge detection techniques. The ratio of vessel to vessel free area classified the normal and DR affected retinal images more significantly than other texture based features. FPGA based hardware synthesis of Kirsch edge detection method is able to differentiate normal and diseased images with high specificity (93%). This automated segmentation of retinal blood vessels system could be used in computer-assisted diagnosis for diabetic retinopathy screening in real-time application.

  14. ``Particle traps'' at planet gap edges in disks: effects of grain growth and fragmentation

    NASA Astrophysics Data System (ADS)

    Gonzalez, J.-F.; Laibe, G.; Maddison, S. T.; Pinte, C.; Ménard, F.

    2014-12-01

    We model the dust evolution in protoplanetary disks (PPD) with 3D, Smoothed Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial distribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the gap's detectability with ALMA. Here we take into account the effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show that rapid grain growth in the ``particle traps'' at the edges of planet gaps are strongly affected by fragmentation. We discuss the consequences for ALMA and NOEMA observations.

  15. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    PubMed

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Confounding factors in the detection of species responses to habitat fragmentation.

    PubMed

    Ewers, Robert M; Didham, Raphael K

    2006-02-01

    Habitat loss has pervasive and disruptive impacts on biodiversity in habitat remnants. The magnitude of the ecological impacts of habitat loss can be exacerbated by the spatial arrangement -- or fragmentation -- of remaining habitat. Fragmentation per se is a landscape-level phenomenon in which species that survive in habitat remnants are confronted with a modified environment of reduced area, increased isolation and novel ecological boundaries. The implications of this for individual organisms are many and varied, because species with differing life history strategies are differentially affected by habitat fragmentation. Here, we review the extensive literature on species responses to habitat fragmentation, and detail the numerous ways in which confounding factors have either masked the detection, or prevented the manifestation, of predicted fragmentation effects. Large numbers of empirical studies continue to document changes in species richness with decreasing habitat area, with positive, negative and no relationships regularly reported. The debate surrounding such widely contrasting results is beginning to be resolved by findings that the expected positive species-area relationship can be masked by matrix-derived spatial subsidies of resources to fragment-dwelling species and by the invasion of matrix-dwelling species into habitat edges. Significant advances have been made recently in our understanding of how species interactions are altered at habitat edges as a result of these changes. Interestingly, changes in biotic and abiotic parameters at edges also make ecological processes more variable than in habitat interiors. Individuals are more likely to encounter habitat edges in fragments with convoluted shapes, leading to increased turnover and variability in population size than in fragments that are compact in shape. Habitat isolation in both space and time disrupts species distribution patterns, with consequent effects on metapopulation dynamics and the genetic structure of fragment-dwelling populations. Again, the matrix habitat is a strong determinant of fragmentation effects within remnants because of its role in regulating dispersal and dispersal-related mortality, the provision of spatial subsidies and the potential mediation of edge-related microclimatic gradients. We show that confounding factors can mask many fragmentation effects. For instance, there are multiple ways in which species traits like trophic level, dispersal ability and degree of habitat specialisation influence species-level responses. The temporal scale of investigation may have a strong influence on the results of a study, with short-term crowding effects eventually giving way to long-term extinction debts. Moreover, many fragmentation effects like changes in genetic, morphological or behavioural traits of species require time to appear. By contrast, synergistic interactions of fragmentation with climate change, human-altered disturbance regimes, species interactions and other drivers of population decline may magnify the impacts of fragmentation. To conclude, we emphasise that anthropogenic fragmentation is a recent phenomenon in evolutionary time and suggest that the final, long-term impacts of habitat fragmentation may not yet have shown themselves.

  17. Microfluidic devices to enrich and isolate circulating tumor cells

    PubMed Central

    Myung, J. H.; Hong, S.

    2015-01-01

    Given the potential clinical impact of circulating tumor cells (CTCs) in blood as a clinical biomarker for diagnosis and prognosis of various cancers, a myriad of detection methods for CTCs have been recently introduced. Among those, a series of microfluidic devices are particularly promising as these uniquely offer micro-scale analytical systems that are highlighted by low consumption of samples and reagents, high flexibility to accommodate other cutting-edge technologies, precise and well-defined flow behaviors, and automation capability, presenting significant advantages over the conventional larger scale systems. In this review, we highlight the advantages of microfluidic devices and their translational potential into CTC detection methods, categorized by miniaturization of bench-top analytical instruments, integration capability with nanotechnologies, and in situ or sequential analysis of captured CTCs. This review provides a comprehensive overview of recent advances in the CTC detection achieved through application of microfluidic devices and their challenges that these promising technologies must overcome to be clinically impactful. PMID:26549749

  18. Natural history of optical coherence tomography-detected non-flow-limiting edge dissections following drug-eluting stent implantation.

    PubMed

    Radu, Maria D; Räber, Lorenz; Heo, Jungho; Gogas, Bill D; Jørgensen, Erik; Kelbæk, Henning; Muramatsu, Takashi; Farooq, Vasim; Helqvist, Steffen; Garcia-Garcia, Hector M; Windecker, Stephan; Saunamäki, Kari; Serruys, Patrick W

    2014-01-22

    Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections--particularly non-flow-limiting--compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. OCT-detected edge dissections which are angiographically silent in the majority of cases are not associated with acute stent thrombosis or restenosis up to one-year follow-up.

  19. High-Speed Photographic Study of Wave Propagation and Impact Damage in Fused Silica and AlON Using the Edge-On Impact (EOI) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strassburger, E.; Patel, P.; McCauley, J. W.

    An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 {mu}s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardinmore » cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.« less

  20. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    PubMed

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  1. High Precision Edge Detection Algorithm for Mechanical Parts

    NASA Astrophysics Data System (ADS)

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  2. Wear Detection of Drill Bit by Image-based Technique

    NASA Astrophysics Data System (ADS)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  3. Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.; Sutton, Jason O.

    1988-01-01

    Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.

  4. In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes

    DOE PAGES

    Leonard, Francois; Dickerson, J. R.; King, M. P.; ...

    2016-05-03

    Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less

  5. Design of compactly supported wavelet to match singularities in medical images

    NASA Astrophysics Data System (ADS)

    Fung, Carrson C.; Shi, Pengcheng

    2002-11-01

    Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.

  6. Accurately estimating PSF with straight lines detected by Hough transform

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong

    2018-04-01

    This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.

  7. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  8. Reflection symmetry detection using locally affine invariant edge correspondence.

    PubMed

    Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao

    2015-04-01

    Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.

  9. Bio-inspired color sketch for eco-friendly printing

    NASA Astrophysics Data System (ADS)

    Safonov, Ilia V.; Tolstaya, Ekaterina V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sang Ho; Choi, Donchul

    2012-01-01

    Saving of toner/ink consumption is an important task in modern printing devices. It has a positive ecological and social impact. We propose technique for converting print-job pictures to a recognizable and pleasant color sketches. Drawing a "pencil sketch" from a photo relates to a special area in image processing and computer graphics - non-photorealistic rendering. We describe a new approach for automatic sketch generation which allows to create well-recognizable sketches and to preserve partly colors of the initial picture. Our sketches contain significantly less color dots then initial images and this helps to save toner/ink. Our bio-inspired approach is based on sophisticated edge detection technique for a mask creation and multiplication of source image with increased contrast by this mask. To construct the mask we use DoG edge detection, which is a result of blending of initial image with its blurred copy through the alpha-channel, which is created from Saliency Map according to Pre-attentive Human Vision model. Measurement of percentage of saved toner and user study proves effectiveness of proposed technique for toner saving in eco-friendly printing mode.

  10. Local extinction and turnover rates at the edge and interior of species' ranges

    USGS Publications Warehouse

    Doherty, P.F.; Boulinier, T.; James., D.

    2003-01-01

    One hypothesis for the maintenance of the edge of a species' range suggests that more central (and abundant) populations are relatively stable and edge populations are less stable with increased local extinction and turnover rates. To date, estimates of such metrics are equivocal due to design and analysis flaws. Apparent increased estimates of extinction and turnover rates at the edge of range, versus the interior, could be a function of decreased detection probabilities alone, and not of a biological process. We estimated extinction and turnover rates for species at the interiors and edges of their ranges using an approach which incorporates potential heterogeneity in species detection probabilities. Extinction rates were higher at the edges (0.17 ?? 0.03 []) than in the interiors (0.04 ?? 0.01), as was turnover. Without taking the probability of detection into account these differences would be artificially magnified. Knowledge of extinction and turnover rates is essential in furthering our understanding of range dynamics, and in directing conservation efforts. This study further illustrates the practical application of methods proposed recently for estimating extinction rates and other community dynamic parameters.

  11. Local extinction and turnover rates at the edge and interior of species' ranges

    USGS Publications Warehouse

    Doherty, P.F.; Boulinier, T.; Nichols, J.D.

    2003-01-01

    One hypothesis for the maintenance of the edge of a species' range suggests that more central (and abundant) populations are relatively stable and edge populations are less stable with increased local extinction and turnover rates. To date, estimates of such metrics are equivocal due to design and analysis flaws. Apparent increased estimates of extinction and turnover rates at the edge of range, versus the interior, could be a function of decreased detection probabilities alone, and not of a biological process. We estimated extinction and turnover rates for species at the interiors and edges of their ranges using an approach which incorporates potential heterogeneity in species detection probabilities. Extinction rates were higher at the edges (0.17 ' 0.03 [SE]) than in the interiors (0.04 ' 0.01), as was turnover. Without taking the probability of detection into account these differences would be artificially magnified. Knowledge of extinction and turnover rates is essential in furthering our understanding of range dynamics, and in directing conservation efforts. This study further illustrates the practical application of methods proposed recently for estimating extinction rates and other community dynamic parameters.

  12. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  13. Habitat edges have weak effects on duck nest survival at local spatial scales

    USGS Publications Warehouse

    Raquel, Amelia J; Ringelman, Kevin M.; Ackerman, Joshua T.; Eadie, John M.

    2015-01-01

    Edge effects on nesting success have been documented in breeding birds in a variety of contexts, but there is still uncertainty in how edge type and spatial scale determine the magnitude and detectability of edge effects. Habitat edges are often viewed as predator corridors that surround or penetrate core habitat and increase the risk of predation for nearby nests. We studied the effects of three different types of potential predator corridors (main perimeter roads, field boundaries, and ATV trails within fields) on waterfowl nest survival in California. We measured the distance from duck nests to the nearest edge of each type, and used distance as a covariate in a logistic exposure analysis of nest survival. We found only weak evidence for edge effects due to predation. The best supported model of nest survival included all three distance categories, and while all coefficient estimates were positive (indicating that survival increased with distance from edge), 85% coefficient confidence intervals approached or bounded zero indicating an overall weak effect of habitat edges on nest success. We suggest that given the configuration of edges at our site, there may be few areas far enough from hard edges to be considered ‘core’ habitat, making edge effects on nest survival particularly difficult to detect.

  14. A new edge detection algorithm based on Canny idea

    NASA Astrophysics Data System (ADS)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  15. Enhancing Community Detection By Affinity-based Edge Weighting Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Andy; Sanders, Geoffrey; Henson, Van

    Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is idealmore » for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.« less

  16. Endeavour Impulse Tests

    NASA Image and Video Library

    2003-10-27

    In the Orbiter Processing Facility, Eric Madaras, NASA-Langley Research Center, conducts impulse tests on the right wing leading edge (WLE) of Space Shuttle Endeavour. The tests monitor how sound impulses propagate through the WLE area. The data collected will be analyzed to explore the possibility of adding new instrumentation to the wing that could automatically detect debris or micrometeroid impacts on the Shuttle while in flight. The study is part of the initiative ongoing at KSC and around the agency to return the orbiter fleet to flight status.

  17. Creation of forest edges has a global impact on forest vertebrates

    PubMed Central

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  18. A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage.

    PubMed

    Van derWerff, Harald; Van der Meijde, Mark; Jansma, Fokke; Van der Meer, Freek; Groothuis, Gert Jan

    2008-06-04

    Hydrocarbon leakage into the environment has large economic and environmental impact. Traditional methods for investigating seepages and their resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an efficient tool that offers a non-destructive investigation method. Optical remote sensing has been extensively tested for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth's surface. In this research, we investigate indirect manifestations of pipeline leakage by way of visualizing vegetation anomalies in airborne hyperspectral imagery. Agricultural land-use causes a heterogeneous landcover; variation in red edge position between fields was much larger than infield red edge position variation that could be related to hydrocarbon pollution. A moving and growing kernel procedure was developed to normalzie red edge values relative to values of neighbouring pixels to enhance pollution related anomalies in the image. Comparison of the spatial distribution of anomalies with geochemical data obtained by drilling showed that 8 out of 10 polluted sites were predicted correctly while 2 out of 30 sites that were predicted clean were actually polluted.

  19. A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage

    PubMed Central

    van der Werff, Harald; van der Meijde, Mark; Jansma, Fokke; van der Meer, Freek; Groothuis, Gert Jan

    2008-01-01

    Hydrocarbon leakage into the environment has large economic and environmental impact. Traditional methods for investigating seepages and their resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an efficient tool that offers a non-destructive investigation method. Optical remote sensing has been extensively tested for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth's surface. In this research, we investigate indirect manifestations of pipeline leakage by way of visualizing vegetation anomalies in airborne hyperspectral imagery. Agricultural land-use causes a heterogeneous landcover; variation in red edge position between fields was much larger than infield red edge position variation that could be related to hydrocarbon pollution. A moving and growing kernel procedure was developed to normalzie red edge values relative to values of neighbouring pixels to enhance pollution related anomalies in the image. Comparison of the spatial distribution of anomalies with geochemical data obtained by drilling showed that 8 out of 10 polluted sites were predicted correctly while 2 out of 30 sites that were predicted clean were actually polluted. PMID:27879905

  20. Variations in the Sea Ice Edge and the Marginal Ice Zone on Different Spatial Scales as Observed from Different Satellite Sensor

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Henrichs, John

    2006-01-01

    The Marginal sea Ice Zone (MIZ) and the sea ice edge are the most dynamic areas of the sea ice cover. Knowledge of the sea ice edge location is vital for routing shipping in the polar regions. The ice edge is the location of recurrent plankton blooms, and is the habitat for a number of animals, including several which are under severe ecological threat. Polar lows are known to preferentially form along the sea ice edge because of induced atmospheric baroclinicity, and the ice edge is also the location of both vertical and horizontal ocean currents driven by thermal and salinity gradients. Finally, sea ice is both a driver and indicator of climate change and monitoring the position of the ice edge accurately over long time periods enables assessment of the impact of global and regional warming near the poles. Several sensors are currently in orbit that can monitor the sea ice edge. These sensors, though, have different spatial resolutions, different limitations, and different repeat frequencies. Satellite passive microwave sensors can monitor the ice edge on a daily or even twice-daily basis, albeit with low spatial resolution - 25 km for the Special Sensor Microwave Imager (SSM/I) or 12.5 km for the Advanced Microwave Scanning Radiometer (AMSR-E). Although special methods exist that allow the detection of the sea ice edge at a quarter of that nominal resolution (PSSM). Visible and infrared data from the Advanced Very High Resolution Radiometer (AVHRR) and from the Moderate Resolution Imaging Spectroradiometer (MODIS) provide daily coverage at 1 km and 250 m, respectively, but the surface observations me limited to cloud-free periods. The Landsat 7 Enhanced Thematic Mapper (ETM+) has a resolution of 15 to 30 m but is limited to cloud-free periods as well, and does not provide daily coverage. Imagery from Synthetic Aperture Radar (SAR) instruments has resolutions of tens of meters to 100 m, and can be used to distinguish open water and sea ice on the basis of surface and volume scattering characteristics. The Canadian RADARSAT C-band SAR provides data that cover the Arctic Ocean and the MIZ every 3 days. A change-point detection approach was utilized to obtain an ice edge estimate from the RADARSAT data The Quickscat scatterometer provides ice edge information with a resolution of a few kilometers on a near-daily basis. During portions of March and April of 2003 a series of aircraft flights were conducted over the ice edge in the Bering Sea carrying the Polarimetric Scanning Radiometer (PSR), which provides spectral coverage identical with the AMSR-E instrument at a resolution of 500 meters. In this study we investigated these different data sets and analyzed differences in their definition of the sea ice edge and the marginal ice zone and how these differences as well as their individual limitations affect the monitoring of the ice edge dynamics. We also examined how the nature of the sea ice edge, including its location, compactness and shape, changes over the seasons. Our approach was based on calculation of distances between ice edges derived from the satellite and aircraft data sets listed above as well as spectral coherence methods and shape parameters such as tortuosity, curvature, and fractional dimension.

  1. The edge detection method of the infrared imagery of the laser spot

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Zhang, Jinchun; Li, Zhongmin

    2016-01-01

    In the jamming effectiveness experiments, in which the thermal infrared imager was interfered by the CO2 Laser, in order to evaluate the jamming effect of the thermal infrared imager by the CO2 Laser, it was needed to analyses the obtained infrared imagery of laser spot. Because the laser spot pictures obtained from the thermal infrared imager are irregular, the edge detection is an important process. The image edge is one of the most basic characteristics of the image, and it contains most of the information of the image. Generally, because of the thermal balance effect, the partly temperature of objective is no quite difference; therefore the infrared imagery's ability of reflecting the local detail of object is obvious week. At the same time, when the information of heat distribution of the thermal imagery was combined with the basic information of target, such as the object size, the relative position of field of view, shape and outline, and so on, the information just has more value. Hence, it is an important step for making image processing to extract the objective edge of the infrared imagery. Meanwhile it is an important part of image processing procedure and it is the premise of many subsequent processing. So as to extract outline information of the target from the original thermal imagery, and overcome the disadvantage, such as the low image contrast of the image and serious noise interference, and so on, the edge of thermal imagery needs detecting and processing. The principles of the Roberts, Sobel, Prewitt and Canny operator were analyzed, and then they were used to making edge detection on the thermal imageries of laser spot, which were obtained from the jamming effect experiments of CO2 laser jamming the thermal infrared imager. On the basis of the detection result, their performances were compared. At the end, the characteristics of the operators were summarized, which provide reference for the choice of edge detection operators in thermal imagery processing in future.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gislason-Lee, Amber J., E-mail: A.J.Gislason@leeds.ac.uk; Tunstall, Clare M.; Kengyelics, Stephen K.

    Purpose: Cardiac x-ray detectors are used to acquire moving images in real-time for angiography and interventional procedures. Detective quantum efficiency (DQE) is not generally measured on these dynamic detectors; the required “for processing” image data and control of x-ray settings have not been accessible. By 2016, USA hospital physicists will have the ability to measure DQE and will likely utilize the International Electrotechnical Commission (IEC) standard for measuring DQE of dynamic x-ray imaging devices. The current IEC standard requires an image of a tilted tungsten edge test object to obtain modulation transfer function (MTF) for DQE calculation. It specifies themore » range of edge angles to use; however, it does not specify a preferred method to determine this angle for image analysis. The study aimed to answer the question “will my choice in method impact my results?” Four different established edge angle determination methods were compared to investigate the impact on DQE. Methods: Following the IEC standard, edge and flat field images were acquired on a cardiac flat-panel detector to calculate MTF and noise power spectrum, respectively, to determine DQE. Accuracy of the methods in determining the correct angle was ascertained using a simulated edge image with known angulations. Precision of the methods was ascertained using variability of MTF and DQE, calculated via bootstrapping. Results: Three methods provided near equal angles and the same MTF while the fourth, with an angular difference of 6%, had a MTF lower by 3% at 1.5 mm{sup −1} spatial frequency and 8% at 2.5 mm{sup −1}; corresponding DQE differences were 6% at 1.5 mm{sup −1} and 17% at 2.5 mm{sup −1}; differences were greater than standard deviations in the measurements. Conclusions: DQE measurements may vary by a significant amount, depending on the method used to determine the edge angle when following the IEC standard methodology for a cardiac x-ray detector. The most accurate and precise methods are recommended for absolute assessments and reproducible measurements, respectively.« less

  3. Robust approach to ocular fundus image analysis

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-07-01

    The analysis of morphological and structural modifications of retinal blood vessels plays an important role both to establish the presence of some systemic diseases as hypertension and diabetes and to study their course. The paper describes a robust set of techniques developed to quantitatively evaluate morphometric aspects of the ocular fundus vascular and micro vascular network. They are defined: (1) the concept of 'Local Direction of a vessel' (LD); (2) a special form of edge detection, named Signed Edge Detection (SED), which uses LD to choose the convolution kernel in the edge detection process and is able to distinguish between the left or the right vessel edge; (3) an iterative tracking (IT) method. The developed techniques use intensively both LD and SED in: (a) the automatic detection of number, position and size of blood vessels departing from the optical papilla; (b) the tracking of body and edges of the vessels; (c) the recognition of vessel branches and crossings; (d) the extraction of a set of features as blood vessel length and average diameter, arteries and arterioles tortuosity, crossing position and angle between two vessels. The algorithms, implemented in C language, have an execution time depending on the complexity of the currently processed vascular network.

  4. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  5. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    PubMed

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  6. A novel algorithm for osteoarthritis detection in Hough domain

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Poria, Nilanjan; Chakraborty, Rajanya; Pratiher, Sawon; Mukherjee, Sukanya; Panigrahi, Prasanta K.

    2018-02-01

    Background subtraction of knee MRI images has been performed, followed by edge detection through canny edge detector. In order to avoid the discontinuities among edges, Daubechies-4 (Db-4) discrete wavelet transform (DWT) methodology is applied for the smoothening of edges identified through canny edge detector. The approximation coefficients of Db-4, having highest energy is selected to get rid of discontinuities in edges. Hough transform is then applied to find imperfect knee locations, as a function of distance (r) and angle (θ). The final outcome of the linear Hough transform is a two-dimensional array i.e., the accumulator space (r, θ) where one dimension of this matrix is the quantized angle θ and the other dimension is the quantized distance r. A novel algorithm has been suggested such that any deviation from the healthy knee bone structure for diseases like osteoarthritis can clearly be depicted on the accumulator space.

  7. 77 FR 33125 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... along the wing leading edge and the inboard end rib of the wing leading edge due to insufficient clearance. This proposed AD would require inspecting the wire harness along the leading edge for chafing... to detect and correct chafing damage to the wire harness along the wing leading edge which, if not...

  8. Development of a fully automatic scheme for detection of masses in whole breast ultrasound images.

    PubMed

    Ikedo, Yuji; Fukuoka, Daisuke; Hara, Takeshi; Fujita, Hiroshi; Takada, Etsuo; Endo, Tokiko; Morita, Takako

    2007-11-01

    Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional hand-held probe is operator dependent and thus it is possible that some areas of the breast may not be scanned. To overcome such problems, a mechanical whole breast ultrasound (US) scanner has been proposed and developed for screening purposes. However, another issue is that radiologists might tire while interpreting all images in a large-volume screening; this increases the likelihood that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic scheme for the detection of masses in whole breast US images in order to assist the interpretations of radiologists and potentially improve the screening accuracy. The authors database comprised 109 whole breast US imagoes, which include 36 masses (16 malignant masses, 5 fibroadenomas, and 15 cysts). A whole breast US image with 84 slice images (interval between two slice images: 2 mm) was obtained by the ASU-1004 US scanner (ALOKA Co., Ltd., Japan). The feature based on the edge directions in each slice and a method for subtracting between the slice images were used for the detection of masses in the authors proposed scheme. The Canny edge detector was applied to detect edges in US images; these edges were classified as near-vertical edges or near-horizontal edges using a morphological method. The positions of mass candidates were located using the near-vertical edges as a cue. Then, the located positions were segmented by the watershed algorithm and mass candidate regions were detected using the segmented regions and the low-density regions extracted by the slice subtraction method. For the removal of false positives (FPs), rule-based schemes and a quadratic discriminant analysis were applied for the distribution between masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was 80.6% (29/36) with 3.8 FPs per whole breast image. The authors scheme for a computer-aided detection may be useful in improving the screening performance and efficiency.

  9. Natural and artificial spectral edges in exoplanets

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  10. Three-dimensional contour edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yizhou; Ong, Sim Heng; Kassim, Ashraf A.; Foong, Kelvin W. C.

    2000-06-01

    This paper presents a novel algorithm for automatically extracting 3D contour edges, which are points of maximum surface curvature in a surface range image. The 3D image data are represented as a surface polygon mesh. The algorithm transforms the range data, obtained by scanning a dental plaster cast, into a 2D gray scale image by linearly converting the z-value of each vertex to a gray value. The Canny operator is applied to the median-filtered image to obtain the edge pixels and their orientations. A vertex in the 3D object corresponding to the detected edge pixel and its neighbors in the direction of the edge gradient are further analyzed with respect to their n-curvatures to extract the real 3D contour edges. This algorithm provides a fast method of reducing and sorting the unwieldy data inherent in the surface mesh representation. It employs powerful 2D algorithms to extract features from the transformed 3D models and refers to the 3D model for further analysis of selected data. This approach substantially reduces the computational burden without losing accuracy. It is also easily extended to detect 3D landmarks and other geometrical features, thus making it applicable to a wide range of applications.

  11. Detection of fractional solitons in quantum spin Hall systems

    NASA Astrophysics Data System (ADS)

    Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.

    2018-03-01

    We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.

  12. Algorithm for Automated Detection of Edges of Clouds

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2006-01-01

    An algorithm processes cloud-physics data gathered in situ by an aircraft, along with reflectivity data gathered by ground-based radar, to determine whether the aircraft is inside or outside a cloud at a given time. A cloud edge is deemed to be detected when the in/out state changes, subject to a hysteresis constraint. Such determinations are important in continuing research on relationships among lightning, electric charges in clouds, and decay of electric fields with distance from cloud edges.

  13. Real-time line-width measurements: a new feature for reticle inspection systems

    NASA Astrophysics Data System (ADS)

    Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal

    1997-07-01

    The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.

  14. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  15. Creation of forest edges has a global impact on forest vertebrates.

    PubMed

    Pfeifer, M; Lefebvre, V; Peres, C A; Banks-Leite, C; Wearn, O R; Marsh, C J; Butchart, S H M; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D'Cruze, N; Faria, D; Hadley, A; Harris, S M; Klingbeil, B T; Kormann, U; Lens, L; Medina-Rangel, G F; Morante-Filho, J C; Olivier, P; Peters, S L; Pidgeon, A; Ribeiro, D B; Scherber, C; Schneider-Maunoury, L; Struebig, M; Urbina-Cardona, N; Watling, J I; Willig, M R; Wood, E M; Ewers, R M

    2017-11-09

    Forest edges influence more than half of the world's forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  16. Creation of forest edges has a global impact on forest vertebrates

    NASA Astrophysics Data System (ADS)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  17. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  18. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  19. Intelligent identification of remnant ridge edges in region west of Yongxing Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Guo, Jing; Cai, Guanqiang; Wang, Dawei

    2018-02-01

    Edge detection enables identification of geomorphologic unit boundaries and thus assists with geomorphical mapping. In this paper, an intelligent edge identification method is proposed and image processing techniques are applied to multi-beam bathymetry data. To accomplish this, a color image is generated by the bathymetry, and a weighted method is used to convert the color image to a gray image. As the quality of the image has a significant influence on edge detection, different filter methods are applied to the gray image for de-noising. The peak signal-to-noise ratio and mean square error are calculated to evaluate which filter method is most appropriate for depth image filtering and the edge is subsequently detected using an image binarization method. Traditional image binarization methods cannot manage the complicated uneven seafloor, and therefore a binarization method is proposed that is based on the difference between image pixel values; the appropriate threshold for image binarization is estimated according to the probability distribution of pixel value differences between two adjacent pixels in horizontal and vertical directions, respectively. Finally, an eight-neighborhood frame is adopted to thin the binary image, connect the intermittent edge, and implement contour extraction. Experimental results show that the method described here can recognize the main boundaries of geomorphologic units. In addition, the proposed automatic edge identification method avoids use of subjective judgment, and reduces time and labor costs.

  20. Tablet compression tooling - Impact of punch face edge modification.

    PubMed

    Anbalagan, Parthiban; Heng, Paul Wan Sia; Liew, Celine Valeria

    2017-05-30

    The influence of punch face edge geometry modification on tablet compression and the properties of the resultant tablets produced on a rotary press were investigated. The results revealed that tablets produced from the punches with radius edge face geometry consistently displayed better physical quality; higher tensile strength and lower capping tendency. Modification of the angled edge of the bevel face to the curved edge of the radius face, enabled deeper punch penetration in the die cavity during the compression cycle, bringing about greater compact densification. Improved die fill packing increased interparticulate bond formation and helped to dissipate destructive elasticity within the compact, consequently reduced tablet expansion during the decompression phase. The positive impact of punch face edge modification was also more noticeable at a higher turret speed. The application of the precompression force along with dwell time extension amplified the tableting performance of radius edge punch face design to a greater extent when compared to bevel edge punch face design. This could be attributed to the enhanced packing efficiency at both precompression and main compression stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of Shock and High-Rate Data for Ceramics: Equation of State Properties and Fragmentation in the Ballistic Environment

    DTIC Science & Technology

    2009-05-01

    No. 15796 50 Comparisons with Impact Failure Experimental results from the edge-on impact of steel projectiles onto soda - lime silica glass ...fracture front at successive times in the edge-on impact of soda - lime silica glass subject to steel projectile impact at comparable velocities...criterion. When fit to experimental data an exponent m close to two is frequently observed. Impact breach tests on plates of soda - lime glass of Sun et

  2. Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shih, Hsueh-Fu; Ho, Te-Wei; Hsu, Jui-Tse; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming

    2017-02-01

    Postsurgical wound care has a great impact on patients' prognosis. It often takes few days, even few weeks, for the wound to stabilize, which incurs a great cost of health care and nursing resources. To assess the wound condition and diagnosis, it is important to segment out the wound region for further analysis. However, the scenario of this strategy often consists of complicated background and noise. In this study, we propose a wound segmentation algorithm based on Canny edge detector and genetic algorithm with an unsupervised evaluation function. The results were evaluated by the 112 clinical images, and 94.3% of images were correctly segmented. The judgment was based on the evaluation of experimented medical doctors. This capability to extract complete wound regions, makes it possible to conduct further image analysis such as intelligent recovery evaluation and automatic infection requirements.

  3. Test and Analysis Correlation of Form Impact onto Space Shuttle Wing Leading Edge RCC Panel 8

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan; Melis, Matthew; Carney, Kelly

    2004-01-01

    Soon after the Columbia Accident Investigation Board (CAIB) began their study of the space shuttle Columbia accident, "physics-based" analyses using LS-DYNA were applied to characterize the expected damage to the Reinforced Carbon-Carbon (RCC) leading edge from high-speed foam impacts. Forensic evidence quickly led CAIB investigators to concentrate on the left wing leading edge RCC panels. This paper will concentrate on the test of the left-wing RCC panel 8 conducted at Southwest Research Institute (SwRI) and the correlation with an LS-DYNA analysis. The successful correlation of the LS-DYNA model has resulted in the use of LS-DYNA as a predictive tool for characterizing the threshold of damage for impacts of various debris such as foam, ice, and ablators onto the RCC leading edge for shuttle return-to-flight.

  4. Impact of edge lines on safety of rural two-lane highways.

    DOT National Transportation Integrated Search

    2005-10-01

    This report documents the results of the project for Impact of Edge Lines on Safety of Rural Two Lane Highways. This research project was initiated in the effort of compliance with the updated version of the Manual on Uniform Traffic Control De...

  5. Spatial vision processes: From the optical image to the symbolic structures of contour information

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1988-01-01

    The significance of machine and natural vision is discussed together with the need for a general approach to image acquisition and processing aimed at recognition. An exploratory scheme is proposed which encompasses the definition of spatial primitives, intrinsic image properties and sampling, 2-D edge detection at the smallest scale, the construction of spatial primitives from edges, and the isolation of contour information from textural information. Concepts drawn from or suggested by natural vision at both perceptual and physiological levels are relied upon heavily to guide the development of the overall scheme. The scheme is intended to provide a larger context in which to place the emerging technology of detector array focal-plane processors. The approach differs from many recent efforts in edge detection and image coding by emphasizing smallest scale edge detection as a foundation for multi-scale symbolic processing while diminishing somewhat the importance of image convolutions with multi-scale edge operators. Cursory treatments of information theory illustrate that the direct application of this theory to structural information in images could not be realized.

  6. Segmentation of blurred objects using wavelet transform: application to x-ray images

    NASA Astrophysics Data System (ADS)

    Barat, Cecile S.; Ducottet, Christophe; Bilgot, Anne; Desbat, Laurent

    2004-02-01

    First, we present a wavelet-based algorithm for edge detection and characterization, which is an adaptation of Mallat and Hwang"s method. This algorithm relies on a modelization of contours as smoothed singularities of three particular types (transitions, peaks and lines). On the one hand, it allows to detect and locate edges at an adapted scale. On the other hand, it is able to identify the type of each detected edge point and to measure its amplitude and smoothing size. The latter parameters represent respectively the contrast and the smoothness level of the edge point. Second, we explain that this method has been integrated in a 3D bone surface reconstruction algorithm designed for computer-assisted and minimal invasive orthopaedic surgery. In order to decrease the dose to the patient and to obtain rapidly a 3D image, we propose to identify a bone shape from few X-ray projections by using statistical shape models registered to segmented X-ray projections. We apply this approach to pedicle screw insertion (scoliosis, fractures...) where ten to forty percent of the screws are known to be misplaced. In this context, the proposed edge detection algorithm allows to overcome the major problem of vertebrae segmentation in the X-ray images.

  7. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  8. Automatic airline baggage counting using 3D image segmentation

    NASA Astrophysics Data System (ADS)

    Yin, Deyu; Gao, Qingji; Luo, Qijun

    2017-06-01

    The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.

  9. The Superior-Edge-of-the-Knee Incision Method in Lymphaticovenular Anastomosis for Lower Extremity Lymphedema.

    PubMed

    Seki, Yukio; Yamamoto, Takumi; Yoshimatsu, Hidehiko; Hayashi, Akitatsu; Kurazono, Arito; Mori, Masanori; Kato, Yoichi; Koshima, Isao

    2015-11-01

    Lymphatic vessel diameter and lymph flow are important for accurate anastomosis and effective lymph-to-venous flow in lymphaticovenular anastomosis. The authors developed a reliable method, the superioredge-of-the-knee incision method, for detecting and making the best use of high-flow lymphatic vessels in the distal medial thigh between the deep and superficial fascia, where movement of the knee, combined with compression between these fascial layers, theoretically results in upward propulsion of lymphatic fluid. Intraoperative detection of large lymphatic vessels and of venous reflux and postoperative lymphedematous volume reduction were compared between 15 patients in whom lymphaticovenular anastomoses with the superior-edge-of-the-knee incision method were undergone and 15 in whom conventional lymphaticovenular anastomoses were undergone. Lymphaticovenular anastomosis at the thigh yielded 30 anastomoses in the superior-edge-of-the-knee incision group and 32 anastomoses in the non-superior-edge-of-the-knee incision group. Large lymphatic vessels were more frequently found in the superior-edge-of-the-knee incision group than in the non-superior-edge-of-the-knee incision group (60.0 percent versus 18.8 percent; p = 0.002). Venous reflux occurred less frequently in the superior-edge-of-the-knee incision group than in the non-superior-edge-of-the-knee incision group (10.0 percent versus 65.6 percent; p < 0.001). Reduction of the lower extremity lymphedema index was significantly greater in the superior-edge-of-the-knee incision group than in the non-superior-edge-of-the-knee incision group (24.427 ± 12.400 versus 0.032 ± 20.535; p < 0.001). The superior-edge-of-the-knee incision method facilitates detection and use of large, high-flow lymphatic vessels in the distal medial thigh, both of which are important for optimum therapeutic effects in patients with lower extremity lymphedema. Therapeutic, III.

  10. Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics.

    PubMed

    Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil

    2016-11-01

    In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.

  11. Content modification attacks on consensus seeking multi-agent system with double-integrator dynamics

    NASA Astrophysics Data System (ADS)

    Dong, Yimeng; Gupta, Nirupam; Chopra, Nikhil

    2016-11-01

    In this paper, vulnerability of a distributed consensus seeking multi-agent system (MAS) with double-integrator dynamics against edge-bound content modification cyber attacks is studied. In particular, we define a specific edge-bound content modification cyber attack called malignant content modification attack (MCoMA), which results in unbounded growth of an appropriately defined group disagreement vector. Properties of MCoMA are utilized to design detection and mitigation algorithms so as to impart resilience in the considered MAS against MCoMA. Additionally, the proposed detection mechanism is extended to detect the general edge-bound content modification attacks (not just MCoMA). Finally, the efficacies of the proposed results are illustrated through numerical simulations.

  12. An approach for traffic prohibition sign detection

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Xu, Dihong; Li, Bijun; Zeng, Zhe

    2006-10-01

    This paper presents an off-line traffic prohibition sign detection approach, whose core is based on combination with the color feature of traffic prohibition signs, shape feature and degree of circularity. Matlab-Image-processing toolbox is used for this purpose. In order to reduce the computational cost, a pre-processing of the image is applied before the core. Then, we employ the obvious redness attribute of prohibition signs to coarsely eliminate the non-redness image in the input data. Again, a edge-detection operator, Canny edge detector, is applied to extract the potential edge. Finally, Degree of circularity is used to verdict the traffic prohibition sign. Experimental results show that our systems offer satisfactory performance.

  13. Linear array optical edge sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1987-01-01

    A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.

  14. Sub-surface defects detection of by using active thermography and advanced image edge detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Gaochao

    2017-05-01

    Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.

  15. Doppler lidar wind measurement with the edge technique

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Gentry, Bruce M.

    1992-01-01

    The edge technique is a new and powerful method for measuring small frequency shifts. Range resolved lidar measurements of winds can be made with high accuracy and high vertical resolution using the edge technique to measure the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used at near-infrared or visible wavelengths using well developed solid state lasers and detectors with various edge filters. In the edge technique, the laser frequency is located on the steep slope of the spectral response function of a high resolution optical filter. Due to the steep slope of the edge, very small frequency shifts cause large changes in measured signal. The frequency of the outgoing laser pulse is determined by measuring its location on the edge of the filter. This is accomplished by sending a small portion of the beam to the edge detection setup where the incoming light is split into two channels - an edge filter and an energy monitor channel. The energy monitor signal is used to normalize the edge filter signal for magnitude. The laser return backscattered from the atmosphere is collected by a telescope and directed through the edge detection setup to determine its frequency (location on the edge) in a similar manner for each range element. The Doppler shift, and thus the wind, is determined from a differential measurement of the frequency of the outgoing laser pulse and the frequency of the laser return backscattered from the atmosphere. We have conducted simulations of the performance of an edge lidar system using an injection seeded pulsed Nd:YAG laser at 1.06 microns. The central fringe of a Fabry-Perot etalon is used as a high resolution edge filter to measure the shift of the aerosol return.

  16. Active edge maps for medical image registration

    NASA Astrophysics Data System (ADS)

    Kerwin, William; Yuan, Chun

    2001-07-01

    Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.

  17. An Efficient Neural-Network-Based Microseismic Monitoring Platform for Hydraulic Fracture on an Edge Computing Architecture.

    PubMed

    Zhang, Xiaopu; Lin, Jun; Chen, Zubin; Sun, Feng; Zhu, Xi; Fang, Gengfa

    2018-06-05

    Microseismic monitoring is one of the most critical technologies for hydraulic fracturing in oil and gas production. To detect events in an accurate and efficient way, there are two major challenges. One challenge is how to achieve high accuracy due to a poor signal-to-noise ratio (SNR). The other one is concerned with real-time data transmission. Taking these challenges into consideration, an edge-computing-based platform, namely Edge-to-Center LearnReduce, is presented in this work. The platform consists of a data center with many edge components. At the data center, a neural network model combined with convolutional neural network (CNN) and long short-term memory (LSTM) is designed and this model is trained by using previously obtained data. Once the model is fully trained, it is sent to edge components for events detection and data reduction. At each edge component, a probabilistic inference is added to the neural network model to improve its accuracy. Finally, the reduced data is delivered to the data center. Based on experiment results, a high detection accuracy (over 96%) with less transmitted data (about 90%) was achieved by using the proposed approach on a microseismic monitoring system. These results show that the platform can simultaneously improve the accuracy and efficiency of microseismic monitoring.

  18. Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.

  19. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  20. Remote Sensing of Mars: Detection of Impact Craters on the Mars Global Surveyor DTM by Integrating Edge- and Region-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Athanassas, C. D.; Vaiopoulos, A.; Kolokoussis, P.; Argialas, D.

    2018-03-01

    This study integrates two different computer vision approaches, namely the circular Hough transform (CHT) and the determinant of Hessian (DoH), to detect automatically the largest number possible of craters of any size on the digital terrain model (DTM) generated by the Mars Global Surveyor mission. Specifically, application of the standard version of CHT to the DTM captured a great number of craters with diameter smaller than 50 km only, failing to capture larger craters. On the other hand, DoH was successful in detecting craters that were undetected by CHT, but its performance was deterred by the irregularity of the topographic surface encompassed: strongly undulated and inclined (trended) topographies hindered crater detection. When run on a de-trended DTM (and keeping the topology unaltered) DoH scored higher. Current results, although not optimal, encourage combined use of CHT and DoH for routine crater detection undertakings.

  1. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  2. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  3. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  4. Spray formation during the vertical impact of a flat plate on a quiescent water surface

    NASA Astrophysics Data System (ADS)

    Wang, An; Duncan, James H.

    2017-11-01

    Spay formation during the impact of a rigid flat plate (122 cm by 38 cm) on a quiescent water surface is studied experimentally. The plate is mounted on a carriage that is driven by an electric servo motor that can slam the plate vertically into the water surface under feedback-controlled motions at various speeds. The long edges of the plate are kept horizontal and the short edges are set at various angles (roll angles) with respect to the quiescent water surface. A laser light sheet is created in a vertical plane at the middle of the long edges of the plate. The evolution of the spray within the light sheet is measured with a cinematic laser induced fluorescence technique. Two types of spray are found with nonzero roll angles. The first type is a cloud of high-speed droplets and ligaments that are generated when the plate's leading edge impacts the free surface. The second type is a thin water sheet that is connected to the trailing edge of the plate via a crater and is formed after the trailing edge moves below the local water level. In a reference frame moving with the plate, the profiles of the crater collapse when scaled with a power law function of time. The characteristics of the two types of spray are found to be affected by both the roll angle and the impact velocity. The support of the Office of Naval Research is gratefully acknowledged.

  5. Impact behavior of graphite-epoxy simulated fan blades

    NASA Technical Reports Server (NTRS)

    Cook, T. S.; Preston, J. L., Jr.

    1977-01-01

    The response of a graphite-epoxy material, Modmor II/PR-286, to foreign object impact was investigated by impacting spherical projectiles of three different materials - gelatin, ice, and steel - on simulated blade specimens. Visual and metallographic inspection revealed three damage mechanisms: penetration, leading edge bending failure, and stress wave delamination and cracking. The steel projectiles caused penetration damage regardless of the impact location and angle. For the ice and gelatin particles impacting the leading edge, failure was due to large local bending strains, resulting in significant material removal and delamination damage.

  6. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  7. Theory of step on leading edge of negative corona current pulse

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.

    2000-03-01

    Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.

  8. Sampled-data consensus in switching networks of integrators based on edge events

    NASA Astrophysics Data System (ADS)

    Xiao, Feng; Meng, Xiangyu; Chen, Tongwen

    2015-02-01

    This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.

  9. Range image segmentation using Zernike moment-based generalized edge detector

    NASA Technical Reports Server (NTRS)

    Ghosal, S.; Mehrotra, R.

    1992-01-01

    The authors proposed a novel Zernike moment-based generalized step edge detection method which can be used for segmenting range and intensity images. A generalized step edge detector is developed to identify different kinds of edges in range images. These edge maps are thinned and linked to provide final segmentation. A generalized edge is modeled in terms of five parameters: orientation, two slopes, one step jump at the location of the edge, and the background gray level. Two complex and two real Zernike moment-based masks are required to determine all these parameters of the edge model. Theoretical noise analysis is performed to show that these operators are quite noise tolerant. Experimental results are included to demonstrate edge-based segmentation technique.

  10. Mode I Failure of Armor Ceramics: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Meredith, Christopher; Leavy, Brian

    2017-06-01

    The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.

  11. A model for managing edge effects in harvest scheduling using spatial optimization

    Treesearch

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  12. Real-time edge tracking using a tactile sensor

    NASA Technical Reports Server (NTRS)

    Berger, Alan D.; Volpe, Richard; Khosla, Pradeep K.

    1989-01-01

    Object recognition through the use of input from multiple sensors is an important aspect of an autonomous manipulation system. In tactile object recognition, it is necessary to determine the location and orientation of object edges and surfaces. A controller is proposed that utilizes a tactile sensor in the feedback loop of a manipulator to track along edges. In the control system, the data from the tactile sensor is first processed to find edges. The parameters of these edges are then used to generate a control signal to a hybrid controller. Theory is presented for tactile edge detection and an edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.

  13. Spatial heterogeneity of type I error for local cluster detection tests

    PubMed Central

    2014-01-01

    Background Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’ type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of edge effect. Methods A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks. The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify, the edge effect. Results The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated. Conclusions In routine analysis of real data, clusters on the edge of the region should be carefully considered as they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this work in order to optimize CDTs performance. PMID:24885343

  14. 78 FR 52419 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... trailing edge flap area that qualify as structural significant items (SSIs). This AD requires revising the... detect and correct fatigue cracking of the wing trailing edge structure, which could result in... within the wing trailing edge flap area that qualify as structural significant items (SSI). We are...

  15. A graph signal filtering-based approach for detection of different edge types on airborne lidar data

    NASA Astrophysics Data System (ADS)

    Bayram, Eda; Vural, Elif; Alatan, Aydin

    2017-10-01

    Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.

  16. Safety improvement from edge lines on rural two-lane highways : tech summary.

    DOT National Transportation Integrated Search

    2012-01-01

    The previous study "Impact of Edge Lines on Safety of Rural Two-Lane Highways" completed in 2005 concluded that, : with edge lines, centralization of a vehicle's position is more apparent during nighttime, which reduces the risk of runoff : -road (RO...

  17. Quality optimized medical image information hiding algorithm that employs edge detection and data coding.

    PubMed

    Al-Dmour, Hayat; Al-Ani, Ahmed

    2016-04-01

    The present work has the goal of developing a secure medical imaging information system based on a combined steganography and cryptography technique. It attempts to securely embed patient's confidential information into his/her medical images. The proposed information security scheme conceals coded Electronic Patient Records (EPRs) into medical images in order to protect the EPRs' confidentiality without affecting the image quality and particularly the Region of Interest (ROI), which is essential for diagnosis. The secret EPR data is converted into ciphertext using private symmetric encryption method. Since the Human Visual System (HVS) is less sensitive to alterations in sharp regions compared to uniform regions, a simple edge detection method has been introduced to identify and embed in edge pixels, which will lead to an improved stego image quality. In order to increase the embedding capacity, the algorithm embeds variable number of bits (up to 3) in edge pixels based on the strength of edges. Moreover, to increase the efficiency, two message coding mechanisms have been utilized to enhance the ±1 steganography. The first one, which is based on Hamming code, is simple and fast, while the other which is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego image that is close to the cover image through minimizing the embedding impact. The proposed steganography algorithm embeds the secret data bits into the Region of Non Interest (RONI), where due to its importance; the ROI is preserved from modifications. The experimental results demonstrate that the proposed method can embed large amount of secret data without leaving a noticeable distortion in the output image. The effectiveness of the proposed algorithm is also proven using one of the efficient steganalysis techniques. The proposed medical imaging information system proved to be capable of concealing EPR data and producing imperceptible stego images with minimal embedding distortions compared to other existing methods. In order to refrain from introducing any modifications to the ROI, the proposed system only utilizes the Region of Non Interest (RONI) in embedding the EPR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    NASA Astrophysics Data System (ADS)

    Rogowska, Jadwiga; Brezinski, Mark E.

    2002-02-01

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  19. Joint detection of anatomical points on surface meshes and color images for visual registration of 3D dental models

    NASA Astrophysics Data System (ADS)

    Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves

    2015-04-01

    Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.

  20. Localization of tumors in various organs, using edge detection algorithms

    NASA Astrophysics Data System (ADS)

    López Vélez, Felipe

    2015-09-01

    The edge of an image is a set of points organized in a curved line, where in each of these points the brightness of the image changes abruptly, or has discontinuities, in order to find these edges there will be five different mathematical methods to be used and later on compared with its peers, this is with the aim of finding which of the methods is the one that can find the edges of any given image. In this paper these five methods will be used for medical purposes in order to find which one is capable of finding the edges of a scanned image more accurately than the others. The problem consists in analyzing the following two biomedicals images. One of them represents a brain tumor and the other one a liver tumor. These images will be analyzed with the help of the five methods described and the results will be compared in order to determine the best method to be used. It was decided to use different algorithms of edge detection in order to obtain the results shown below; Bessel algorithm, Morse algorithm, Hermite algorithm, Weibull algorithm and Sobel algorithm. After analyzing the appliance of each of the methods to both images it's impossible to determine the most accurate method for tumor detection due to the fact that in each case the best method changed, i.e., for the brain tumor image it can be noticed that the Morse method was the best at finding the edges of the image but for the liver tumor image it was the Hermite method. Making further observations it is found that Hermite and Morse have for these two cases the lowest standard deviations, concluding that these two are the most accurate method to find the edges in analysis of biomedical images.

  1. DipTest: A litmus test for E. coli detection in water.

    PubMed

    Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb; Mitra, Sushanta K

    2017-01-01

    We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source.

  2. DipTest: A litmus test for E. coli detection in water

    PubMed Central

    Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb

    2017-01-01

    We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source. PMID:28877199

  3. Enhanced Component Performance Study: Emergency Diesel Generators 1998–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-11-01

    This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using (1) Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2014 and (2) maintenance unavailability (UA) performance data from Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2014. The objective is to show estimates of current failure probabilities and rates related to EDGs, trend these data on an annual basis, determine if the current data are consistent with the probability distributions currently recommended for use inmore » NRC probabilistic risk assessments, show how the reliability data differ for different EDG manufacturers and for EDGs with different ratings; and summarize the subcomponents, causes, detection methods, and recovery associated with each EDG failure mode. Engineering analyses were performed with respect to time period and failure mode without regard to the actual number of EDGs at each plant. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating. Six trends with varying degrees of statistical significance were identified in the data.« less

  4. Single-view phase retrieval of an extended sample by exploiting edge detection and sparsity

    DOE PAGES

    Tripathi, Ashish; McNulty, Ian; Munson, Todd; ...

    2016-10-14

    We propose a new approach to robustly retrieve the exit wave of an extended sample from its coherent diffraction pattern by exploiting sparsity of the sample's edges. This approach enables imaging of an extended sample with a single view, without ptychography. We introduce nonlinear optimization methods that promote sparsity, and we derive update rules to robustly recover the sample's exit wave. We test these methods on simulated samples by varying the sparsity of the edge-detected representation of the exit wave. Finally, our tests illustrate the strengths and limitations of the proposed method in imaging extended samples.

  5. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  6. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  7. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  8. On the possibility to detect multipolar order in URu 2 Si 2 by the electric quadrupolar transition of resonant elastic x-ray scattering

    DOE PAGES

    Wang, Y. L.; Fabbris, G.; Meyers, D.; ...

    2017-08-30

    Resonant elastic x-ray scattering is a powerful technique for measuring multipolar order parameters. In this paper, we theoretically and experimentally study the possibility of using this technique to detect the proposed multipolar order parameters in URu 2 Si 2 at the U- L 3 edge with the electric quadrupolar transition. Based on an atomic model, we calculate the azimuthal dependence of the quadrupolar transition at the U- L 3 edge. Our results illustrate the potential of this technique for distinguishing different multipolar order parameters. We then perform experiments on ultraclean single crystals of URu 2 Si 2 at the U-more » L 3 edge to search for the predicted signal, but do not detect any indications of multipolar moments within the experimental uncertainty. We also theoretically estimate the orders of magnitude of the cross section and the expected count rate of the quadrupolar transition and compare them to the dipolar transitions at the U- M 4 and U- L 3 edges, clarifying the difficulty in detecting higher order multipolar order parameters in URu 2 Si 2 in the current experimental setup.« less

  9. Assessing co-regulation of directly linked genes in biological networks using microarray time series analysis.

    PubMed

    Del Sorbo, Maria Rosaria; Balzano, Walter; Donato, Michele; Draghici, Sorin

    2013-11-01

    Differential expression of genes detected with the analysis of high throughput genomic experiments is a commonly used intermediate step for the identification of signaling pathways involved in the response to different biological conditions. The impact analysis was the first approach for the analysis of signaling pathways involved in a certain biological process that was able to take into account not only the magnitude of the expression change of the genes but also the topology of signaling pathways including the type of each interactions between the genes. In the impact analysis, signaling pathways are represented as weighted directed graphs with genes as nodes and the interactions between genes as edges. Edges weights are represented by a β factor, the regulatory efficiency, which is assumed to be equal to 1 in inductive interactions between genes and equal to -1 in repressive interactions. This study presents a similarity analysis between gene expression time series aimed to find correspondences with the regulatory efficiency, i.e. the β factor as found in a widely used pathway database. Here, we focused on correlations among genes directly connected in signaling pathways, assuming that the expression variations of upstream genes impact immediately downstream genes in a short time interval and without significant influences by the interactions with other genes. Time series were processed using three different similarity metrics. The first metric is based on the bit string matching; the second one is a specific application of the Dynamic Time Warping to detect similarities even in presence of stretching and delays; the third one is a quantitative comparative analysis resulting by an evaluation of frequency domain representation of time series: the similarity metric is the correlation between dominant spectral components. These three approaches are tested on real data and pathways, and a comparison is performed using Information Retrieval benchmark tools, indicating the frequency approach as the best similarity metric among the three, for its ability to detect the correlation based on the correspondence of the most significant frequency components. Copyright © 2013. Published by Elsevier Ireland Ltd.

  10. Edge detection, cosmic strings and the south pole telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Andrew; Brandenberger, Robert, E-mail: stewarta@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2009-02-15

    We develop a method of constraining the cosmic string tension G{mu} which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with G{mu} > 5.5 Multiplication-Sign 10{sup -8} could be detected.

  11. Leading edge gypsy moth population dynamics

    Treesearch

    M. R. Carter; F. W. Ravlin; M. L. McManus

    1991-01-01

    Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...

  12. Effects of Edge Directions on the Structural Controllability of Complex Networks

    PubMed Central

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042

  13. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    PubMed

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  14. Contrast-guided image interpolation.

    PubMed

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  15. Correlation of quantitative PCR for a poultry-specific brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter.

    PubMed

    Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J

    2011-03-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.

  16. Automated macromolecular crystal detection system and method

    DOEpatents

    Christian, Allen T [Tracy, CA; Segelke, Brent [San Ramon, CA; Rupp, Bernard [Livermore, CA; Toppani, Dominique [Fontainebleau, FR

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  17. Reproducibility of aortic intima-media thickness in infants using edge-detection software and manual caliper measurements.

    PubMed

    McCloskey, Kate; Ponsonby, Anne-Louise; Carlin, John B; Jachno, Kim; Cheung, Michael; Skilton, Michael R; Koleff, Jane; Vuillermin, Peter; Burgner, David

    2014-06-03

    Aortic intima-media thickness measured by transabdominal ultrasound (aIMT) is an intermediate phenotype of cardiovascular risk. We aimed to (1) investigate the reproducibility of aIMT in a population-derived cohort of infants; (2) establish the distribution of aIMT in early infancy; (3) compare measurement by edge-detection software to that by manual sonographic calipers; and (4) assess the effect of individual and environmental variables on image quality. Participants were term infants recruited to a population-derived birth cohort study. Transabdominal ultrasound was performed at six weeks of age by one of two trained operators. Thirty participants had ultrasounds performed by both operators on the same day. Data were collected on environmental (infant sleeping, presence of a sibling, use of sucrose, timing during study visit) and individual (post-conception age, weight, gender) variables. Two readers assessed image quality and measured aIMT by edge-detection software and a subset by manual sonographic calipers. Measurements were repeated by the same reader and between readers to obtain intra-observer and inter-observer reliability. Aortic IMT was measured successfully using edge-detection in 814 infants, and 290 of these infants also had aIMT measured using manual sonographic calipers. The intra-reader intra-class correlation (ICC) (n = 20) was 0.90 (95% CI 0.76, 0.96), mean difference 1.5 μm (95% LOA -39, 59). The between reader ICC using edge-detection (n = 20) was 0.92 (95% CI 0.82, 0.97) mean difference 2 μm (95% LOA -45.0, 49.0) and with manual caliper measurement (n = 290) the ICC was 0.84 (95% CI 0.80, 0.87) mean difference 5 μm (95% LOA -51.8, 61.8). Edge-detection measurements were greater than those from manual sonographic calipers (mean aIMT 618 μm (50) versus mean aIMT 563 μm (49) respectively; p < 0.001, mean difference 44 μm, 95% LOA -54, 142). With the exception of infant crying (p = 0.001), no associations were observed between individual and environmental variables and image quality. In a population-derived cohort of term infants, aIMT measurement has a high level of intra and inter-reader reproducibility. Measurement of aIMT using edge-detection software gives higher inter-reader ICC than manual sonographic calipers. Image quality is not substantially affected by individual and environmental factors.

  18. SIMS analysis of extended impact features on LDEF experiment

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Jessberger, E. K.; Simon, C.; Stadermann, F. J.; Swan, P.; Walker, R.; Zinner, E.

    1991-01-01

    Discussed here are the first Secondary Ion Mass Spectroscopy (SIMS) analysis of projectile material deposited in extended impact features on Ge wafers from the trailing edge. Although most capture cells lost their plastic film covers, they contain extended impact features that apparently were produced by high velocity impacts when the plastic foils were still intact. Detailed optical scanning of all bare capture cells from the trailing edge revealed more than 100 impacts. Fifty-eight were selected by scanning electron microscope (SEM) inspection as prime candidates for SIMS analysis. Preliminary SIMS measurements were made on 15 impacts. More than half showed substantial enhancements of Mg, Al, Si, Ca, and Fe in the impact region, indicating micrometeorites as the projectiles.

  19. Image Edge Tracking via Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  20. Superpixel edges for boundary detection

    DOEpatents

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  1. Effects of vehicle impact velocity and front-end structure on dynamic responses of child pedestrians.

    PubMed

    Liu, Xuejun; Yang, Jikuang

    2003-12-01

    To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.

  2. An enhanced narrow-band imaging method for the microvessel detection

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  3. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    NASA Astrophysics Data System (ADS)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  4. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  5. The SKED: speckle knife edge detector

    NASA Astrophysics Data System (ADS)

    Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.

    2014-06-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.

  6. Safety improvement from edge lines on rural two-lane highways (with three-years before and one-year after crash data analysis).

    DOT National Transportation Integrated Search

    2012-04-01

    The previous study Impact of Edge Lines on Safety of Rural Two-Lane Highways completed in 2005 concluded: with edge lines, centralization of vehicles positions is more apparent during night time, which reduces the risk of run-off road (ROR) and he...

  7. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  8. Iris segmentation using an edge detector based on fuzzy sets theory and cellular learning automata.

    PubMed

    Ghanizadeh, Afshin; Abarghouei, Amir Atapour; Sinaie, Saman; Saad, Puteh; Shamsuddin, Siti Mariyam

    2011-07-01

    Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.

  9. Materials, Manufacturing and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Handschuh, Katherine M.; Miller, Sandi G.; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Pereira, J. Michael; Ruggeri, Charles R.

    2014-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite of is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  10. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  11. Does the edge effect impact on the measure of spatial accessibility to healthcare providers?

    PubMed

    Gao, Fei; Kihal, Wahida; Le Meur, Nolwenn; Souris, Marc; Deguen, Séverine

    2017-12-11

    Spatial accessibility indices are increasingly applied when investigating inequalities in health. Although most studies are making mentions of potential errors caused by the edge effect, many acknowledge having neglected to consider this concern by establishing spatial analyses within a finite region, settling for hypothesizing that accessibility to facilities will be under-reported. Our study seeks to assess the effect of edge on the accuracy of defining healthcare provider access by comparing healthcare provider accessibility accounting or not for the edge effect, in a real-world application. This study was carried out in the department of Nord, France. The statistical unit we use is the French census block known as 'IRIS' (Ilot Regroupé pour l'Information Statistique), defined by the National Institute of Statistics and Economic Studies. The geographical accessibility indicator used is the "Index of Spatial Accessibility" (ISA), based on the E2SFCA algorithm. We calculated ISA for the pregnant women population by selecting three types of healthcare providers: general practitioners, gynecologists and midwives. We compared ISA variation when accounting or not edge effect in urban and rural zones. The GIS method was then employed to determine global and local autocorrelation. Lastly, we compared the relationship between socioeconomic distress index and ISA, when accounting or not for the edge effect, to fully evaluate its impact. The results revealed that on average ISA when offer and demand beyond the boundary were included is slightly below ISA when not accounting for the edge effect, and we found that the IRIS value was more likely to deteriorate than improve. Moreover, edge effect impact can vary widely by health provider type. There is greater variability within the rural IRIS group than within the urban IRIS group. We found a positive correlation between socioeconomic distress variables and composite ISA. Spatial analysis results (such as Moran's spatial autocorrelation index and local indicators of spatial autocorrelation) are not really impacted. Our research has revealed minor accessibility variation when edge effect has been considered in a French context. No general statement can be set up because intensity of impact varies according to healthcare provider type, territorial organization and methodology used to measure the accessibility to healthcare. Additional researches are required in order to distinguish what findings are specific to a territory and others common to different countries. It constitute a promising direction to determine more precisely healthcare shortage areas and then to fight against social health inequalities.

  12. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    PubMed

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be obtained from git.io/diffslcpy. The R implementation and code to reproduce the analysis is available via git.io/diffslc.

  13. Edge effects in phase-shifting masks for 0.25-µm lithography

    NASA Astrophysics Data System (ADS)

    Wong, Alfred K. K.; Neureuther, Andrew R.

    1993-03-01

    The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.

  14. The Embedding Problem for Markov Models of Nucleotide Substitution

    PubMed Central

    Verbyla, Klara L.; Yap, Von Bing; Pahwa, Anuj; Shao, Yunli; Huttley, Gavin A.

    2013-01-01

    Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored. Violations of this assumption can be found by identifying non-embeddability. A process is non-embeddable if it can not be embedded in a continuous time-homogeneous Markov process. In this study, non-embeddability was demonstrated to exist when modelling sequence evolution with Markov models. Evidence of non-embeddability was found primarily at the third codon position, possibly resulting from changes in mutation rate over time. Outgroup edges and those with a deeper time depth were found to have an increased probability of the underlying process being non-embeddable. Overall, low levels of non-embeddability were detected when examining individual edges of triads across a diverse set of alignments. Subsequent phylogenetic reconstruction analyses demonstrated that non-embeddability could impact on the correct prediction of phylogenies, but at extremely low levels. Despite the existence of non-embeddability, there is minimal evidence of violations of the local time homogeneity assumption and consequently the impact is likely to be minor. PMID:23935949

  15. Impact of biased scores on ranking in bipartite competition networks and inference of modular structure via generalized modularity

    NASA Astrophysics Data System (ADS)

    Jeon, Gyuhyeon; Park, Juyong

    2017-02-01

    In the common jury-contestant competition format, a jury consisting of multiple judges grade contestants on their performances to determine their ranking. Unlike in another common competition format where two contestants play a head-to-head match to produce the winner such as in football or basketball, the objectivity of judges are often called into question, potentially undermining the public's trust in the fairness of the competition. In this work we show, by modeling the jury-contestant competition format as a weighted bipartite network, how one can identify biased scores and how they impact the competition and its structure. Analyzing the prestigious International Chopin Piano Competition of 2015 as an example with a well-publicized scoring controversy, we show that the presence of even a very small fraction of biased edges can gravely distort our inference of the network structure —in the example a single biased edge is shown to lead to an incorrect “solution” that also wrongly appears to be robust exclusively, dominating other reasonable solutions— highlighting the importance of bias detection and elimination in network inference. In the process our work also presents a modified modularity measure for the one-mode projection of weighted complete bipartite networks.

  16. Models for IP/MPLS routing performance: convergence, fast reroute, and QoS impact

    NASA Astrophysics Data System (ADS)

    Choudhury, Gagan L.

    2004-09-01

    We show how to model the black-holing and looping of traffic during an Interior Gateway Protocol (IGP) convergence event at an IP network and how to significantly improve both the convergence time and packet loss duration through IGP parameter tuning and algorithmic improvement. We also explore some congestion avoidance and congestion control algorithms that can significantly improve stability of networks in the face of occasional massive control message storms. Specifically we show the positive impacts of prioritizing Hello and Acknowledgement packets and slowing down LSA generation and retransmission generation on detecting congestion in the network. For some types of video, voice signaling and circuit emulation applications it is necessary to reduce traffic loss durations following a convergence event to below 100 ms and we explore that using Fast Reroute algorithms based on Multiprotocol Label Switching Traffic Engineering (MPLS-TE) that effectively bypasses IGP convergence. We explore the scalability of primary and backup MPLS-TE tunnels where MPLS-TE domain is in the backbone-only or edge-to-edge. We also show how much extra backbone resource is needed to support Fast Reroute and how can that be reduced by taking advantage of Constrained Shortest Path (CSPF) routing of MPLS-TE and by reserving less than 100% of primary tunnel bandwidth during Fast Reroute.

  17. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  18. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    PubMed

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes.

  19. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    PubMed Central

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes. PMID:24810286

  20. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  1. Living on the edge: roe deer (Capreolus capreolus) density in the margins of its geographical range.

    PubMed

    Valente, Ana M; Fonseca, Carlos; Marques, Tiago A; Santos, João P; Rodrigues, Rogério; Torres, Rita Tinoco

    2014-01-01

    Over the last decades roe deer (Capreolus capreolus) populations have increased in number and distribution throughout Europe. Such increases have profound impacts on ecosystems, both positive and negative. Therefore monitoring roe deer populations is essential for the appropriate management of this species, in order to achieve a balance between conservation and mitigation of the negative impacts. Despite being required for an effective management plan, the study of roe deer ecology in Portugal is at an early stage, and hence there is still a complete lack of knowledge of roe deer density within its known range. Distance sampling of pellet groups coupled with production and decay rates for pellet groups provided density estimates for roe deer in northeastern Portugal (Lombada National Hunting Area--LNHA, Serra de Montesinho--SM and Serra da Nogueira--SN; LNHA and SM located in Montesinho Natural Park). The estimated roe deer density using a stratified detection function was 1.23/100 ha for LNHA, 4.87/100 ha for SM and 4.25/100 ha in SN, with 95% confidence intervals (CI) of 0.68 to 2.21, 3.08 to 7.71 and 2.25 to 8.03, respectively. For the entire area, the estimated density was about 3.51/100 ha (95% CI - 2.26-5.45). This method can provide estimates of roe deer density, which will ultimately support management decisions. However, effective monitoring should be based on long-term studies that are able to detect population fluctuations. This study represents the initial phase of roe deer monitoring at the edge of its European range and intends to fill the gap in this species ecology, as the gathering of similar data over a number of years will provide the basis for stronger inferences. Monitoring should be continued, although the study area should be increased to evaluate the accuracy of estimates and assess the impact of management actions.

  2. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    NASA Astrophysics Data System (ADS)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.

  3. Wisps in the outer edge of the Keeler Gap

    NASA Astrophysics Data System (ADS)

    Tiscareno, M. S.; Arnault, E. G.

    2014-12-01

    The outer part of Saturn's A ring contains five sharp edges: the inner and outer edges of the Encke Gap and of the Keeler Gap (which contain the moons Pan and Daphnis, respectively), and the outer edge of the A ring itself. Four of these five edges are characterized by structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS). Only the outer edge of the Keeler Gap is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear. We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure (see Figure, which compares our fitted edge to the figure presented by Porco et al. 2005) and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.

  4. Impact of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    Van Buren, T.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A. J.

    2017-01-01

    The effects of changing the trailing edge shape on the wake and propulsive performance of a pitching rigid panel are examined experimentally. The panel aspect ratio is AR=1 , and the trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the mean streamwise velocity field contains a single jet. Conversely, convex trailing edges promote wake compression and produce a quadfurcated wake with four jets. As the trailing edge shape changes from the most concave to the most convex, the thrust and efficiency increase significantly.

  5. Lunar-edge based on-orbit modulation transfer function (MTF) measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Ying; Yi, Hongwei; Liu, Xinlong

    2017-10-01

    Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.

  6. Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.

    2017-01-01

    A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.

  7. 78 FR 66859 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... airplanes. This proposed AD was prompted by reports of bearing damage at certain trailing edge (TE) flap... certain trailing edge (TE) flap support rib assemblies. We are issuing this AD to detect and correct...

  8. Image registration with uncertainty analysis

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  9. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    USGS Publications Warehouse

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  10. Lightning protection of the Fokker 100 CFRP rudder

    NASA Technical Reports Server (NTRS)

    Ruiter, A. J. M.

    1991-01-01

    The construction of the structural parts of the Fokker 100 CFRP rudder is described with respect to the requirements for electrical bonding and lightning protection. Furthermore, the philosophy for the selection of a consumable trailing edge is given. A description of possible alternative designs for trailing edges and their advantages and disadvantages with respect to damage after lightning impact will also be reviewed. An overview of the tests performed on test samples and the rudder construction are presented and discussed. The effectiveness of both the selected structural provisions and trailing edge are described (and proven) by reporting the results of the simulated lightning tests performed. Proof is given that the trailing edge construction and its bonding through the structural parts of the rudder to the main aircraft structure is a solution which results in minor damage to the rudder after lightning impact. Furthermore, it is shown that the selected trailing edge construction is less favored by the structural designers due to the weight penalty.

  11. Drought and Fragmentation Impacts on Forest Evapotranspiration in Southwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Numata, I.; Khand, K.; Kjaersgaard, J.

    2017-12-01

    We assessed the effects of forest fragmentation and drought on forest evapotranspiration (ET) estimated using the energy balance-based model METRIC with Landsat imagery in Rondônia and Acre in the southwestern Amazon. Forest ET estimates were produced for the dry seasons (June-August) of 2009-2011 thus including the 2010 drought period to quantify its impact by comparing to pre- and post-drought years. Furthermore, we tested forest edge distance, edge density, shape index, and area/edge ratio of forest fragments as fragmentation variables. The 2010 drought year showed the lowest monthly forest ET in August and September in both Rondônia and Acre within the study time period. However, part of the decline of forest ET in Acre during this period appeared to be due to less incoming solar radiation caused by atmospheric contamination from fires in addition to inadequate moisture availability. Lingering impacts of the drought on forest ET were observed in 2011, the post-drought year. Both sites showed lower forest ET in the late dry season in 2011 compared to 2009, the pre-drought year. Among forest fragmentation variables, edge distance presented significant impacts on forest ET in the drought and post-drought years (p<0.05), whereas the other variables were not significant. The magnitude of ET changes along edge distance becomes even greater in the drought year (2010) and the post-drought year (2011) in the month of August.

  12. Antenna Design and Foreground Characterization for Improved Detection of the Redshifted 21 cm Global Signature During the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Mozdzen, Thomas J.; Bowman, Judd D.; Monsalve, Raul A.; Rogers, Alan E. E.

    2018-01-01

    The Experiment to Detect the Global Epoch of Reionization (EoR) Signature (EDGES) is an effort to measure the sky-averaged redshifted 21 cm difference temperature, Tb, with a single wide field-of-view well-calibrated antenna placed in Western Australia. Tb is due to interactions of the hyperfine ground state of HI with the CMB and is four to five orders of magnitude dimmer than the foreground synchrotron radiation whose removal requires very low systematic errors in data collection. I analyzed two different antenna designs, a rectangular blade-shaped antenna and a fourpoint-shaped antenna, by comparing and quantifying the impact of the chromatic nature of the antenna beam directivity. Foreground removal of simulated antenna temperatures, formed by convolving a frequency scaled Haslam 408 MHz sky map with each of the antenna’s chromatic beams, resulted in a factor of 10 lower rms error for the blade antenna when using a five term polynomial for the sky foreground. The signal to noise ratio was at a maximum when five terms were used to represent the sky foreground and was superior for the blade antenna by factors between 1.35 and 1.95. These results led to the conversion of all EDGES antenna designs to the blade design. The spectral index, β, of the sky was measured, using 211 nights of data, to be ‑2.60 > β > ‑2.62 in lower LST regions, increasing to ‑2.50 near the Galactic plane. I compared our measurements with spectral index simulations derived from two published sky maps and found good agreement at the transit of the Galactic Center, but at other LST values tended to overpredict by at most by Δβ < 0.05 for one map and by Δβ < 0.12 for the other. The EDGES instrument is shown to be very stable throughout the observations as the data scatter is very low, σβ < 0.003, and the total systematic uncertainty in β is 0.02. The improved systematic error enhances our ability to detect EoR signatures. I present preliminary results that show an EoR model by Kaurov & Gnedin (2016) is inconsistent with measured EDGES data at a significance of 1.9σ.

  13. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih

    2017-08-01

    In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

  14. MuSCoWERT: multi-scale consistence of weighted edge Radon transform for horizon detection in maritime images.

    PubMed

    Prasad, Dilip K; Rajan, Deepu; Rachmawati, Lily; Rajabally, Eshan; Quek, Chai

    2016-12-01

    This paper addresses the problem of horizon detection, a fundamental process in numerous object detection algorithms, in a maritime environment. The maritime environment is characterized by the absence of fixed features, the presence of numerous linear features in dynamically changing objects and background and constantly varying illumination, rendering the typically simple problem of detecting the horizon a challenging one. We present a novel method called multi-scale consistence of weighted edge Radon transform, abbreviated as MuSCoWERT. It detects the long linear features consistent over multiple scales using multi-scale median filtering of the image followed by Radon transform on a weighted edge map and computing the histogram of the detected linear features. We show that MuSCoWERT has excellent performance, better than seven other contemporary methods, for 84 challenging maritime videos, containing over 33,000 frames, and captured using visible range and near-infrared range sensors mounted onboard, onshore, or on floating buoys. It has a median error of about 2 pixels (less than 0.2%) from the center of the actual horizon and a median angular error of less than 0.4 deg. We are also sharing a new challenging horizon detection dataset of 65 videos of visible, infrared cameras for onshore and onboard ship camera placement.

  15. Threshold-adaptive canny operator based on cross-zero points

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Zhang, Xiuhua; Hong, Hanyu

    2018-03-01

    Canny edge detection[1] is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems. There are two thresholds have to be settled before the edge is segregated from background. Usually, by the experience of developers, two static values are set as the thresholds[2]. In this paper, a novel automatic thresholding method is proposed. The relation between the thresholds and Cross-zero Points is analyzed, and an interpolation function is deduced to determine the thresholds. Comprehensive experimental results demonstrate the effectiveness of proposed method and advantageous for stable edge detection at changing illumination.

  16. Quantifying edge effect extent and its impacts on carbon stocks across a degraded landscape in the Amazon using airborne lidar.

    NASA Astrophysics Data System (ADS)

    dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.

    2017-12-01

    Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the scale of changes in forest microclimate from fragmentation.

  17. Wisps in the outer edge of the Keeler Gap

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Arnault, Ethan G.

    2015-11-01

    Superposed upon the relatively smooth outer edge of the Keeler Gap are a system of "wisps," which appear to be ring material protruding inward into the gap, usually with a sharp trailing edge and a smooth gradation back to the background edge location on the leading side (Porco et al. 2005, Science). The radial amplitude of wisps is usually 0.5 to 1 km, and their azimuthal extent is approximately a degree of longitude (~2400 km). Wisps are likely caused by an interplay between Daphnis (and perhaps other moons) and embedded moonlets within the ring, though the details remain unclear.Aside from the wisps, the Keeler Gap outer edge is the only one of the five sharp edges in the outer part of Saturn's A ring that is reasonably smooth in appearance (Tiscareno et al. 2005, DPS), with occultations indicating residuals less than 1 km upon a possibly non-zero eccentricity (R.G. French, personal communication, 2014). The other four (the inner and outer edges of the Encke Gap, the inner edge of the Keeler Gap, and the outer edge of the A ring itself) are characterized by wavy structure at moderate to high spatial frequencies, with amplitudes ranging from 2 to 30 km (Tiscareno et al. 2005, DPS).We will present a catalogue of wisp detections in Cassini images. We carry out repeated gaussian fits of the radial edge location in order to characterize edge structure and visually scan those fitted edges in order to detect wisps. With extensive coverage in longitude and in time, we will report on how wisps evolve and move, both within an orbit period and on longer timescales. We will also report on the frequency and interpretation of wisps that deviate from the standard morphology. We will discuss the implications of our results for the origin and nature of wisps, and for the larger picture of how masses interact within Saturn's rings.

  18. Comparison of birds detected from roadside and off-road point counts in the Shenandoah National Park

    USGS Publications Warehouse

    Keller, C.M.E.; Fuller, M.R.; Ralph, C. John; Sauer, John R.; Droege, Sam

    1995-01-01

    Roadside point counts are generally used for large surveys to increase the number of samples. We examined differences in species detected from roadside versus off-road (200-m and 400-ha) point counts in the Shenandoah National Park. We also compared the list of species detected in the first 3 minutes to those detected in 10 minutes for potential species biases. Results from 81 paired roadside and off-road counts indicated that roadside counts had higher numbers of several edge species but did not have lower numbers of nonedge forest species. More individuals and species were detected from roadside points because of this increase in edge species. Sixty-five percent of the species detected in 10 minutes were recorded in the first 3 minutes.

  19. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2011-09-01

    the inline phase contrast imaging has good potential of greatly enhanc - ing the detection sensitivity and reducing radiation doses involved in the...the edge- enhancement generated by phase- contrast is generally useful for imaging the wrap, however, such edge- enhancements may lead interpretation...Kotre and I. P. Birch, “Phase contrast enhancement of x-ray mam- mography: A design study,” Phys. Med. Biol. 44, 2853–2866 (1999). 6F. Arfelli et al

  20. In silico simulation of liver crack detection using ultrasonic shear wave imaging.

    PubMed

    Nie, Erwei; Yu, Jiao; Dutta, Debaditya; Zhu, Yanying

    2018-05-16

    Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method. We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack. Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated. In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future crack detection studies in a tissue phantom or liver.

  1. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    NASA Astrophysics Data System (ADS)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  2. Computer vision, camouflage breaking and countershading

    PubMed Central

    Tankus, Ariel; Yeshurun, Yehezkel

    2008-01-01

    Camouflage is frequently used in the animal kingdom in order to conceal oneself from visual detection or surveillance. Many camouflage techniques are based on masking the familiar contours and texture of the subject by superposition of multiple edges on top of it. This work presents an operator, Darg, for the detection of three-dimensional smooth convex (or, equivalently, concave) objects. It can be used to detect curved objects on a relatively flat background, regardless of image edges, contours and texture. We show that a typical camouflage found in some animal species seems to be a ‘countermeasure’ taken against detection that might be based on our method. Detection by Darg is shown to be very robust, from both theoretical considerations and practical examples of real-life images. PMID:18990669

  3. Analysis of edge impact stresses in composite plates

    NASA Technical Reports Server (NTRS)

    Moon, F. C.; Kang, C. K.

    1974-01-01

    The in-plane edge impact of composite plates, with or without a protection strip, is investigated. A computational analysis based on the Fast Fourier Transform technique is presented. The particular application of the present method is in the understanding of the foreign object damage problem of composite fan blades. The method is completely general and may be applied to the study of other stress wave propagation problems in a half space. Results indicate that for the protective strip to be effective in reducing impact stresses in the composite the thickness must be equal or greater than the impact contact dimension. Large interface shear stresses at the strip - composite boundary can be induced under impact.

  4. Assessment of AVIRIS data from vegetated sites in the Owens Valley, California

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Elvidge, Christopher D.; Defeo, N. J.

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired from the Bishop, CA area, located at the northern end of the Owens Valley, on July 30, 1987. Radiometrically-corrected AVIRIS data were flat-field corrected, and spectral curves produced and analyzed for pixels taken from both native and cultivated vegetation sites, using the JPS SPAM software program and PC-based spreadsheet programs. Analyses focussed on the chlorophyll well and red edge portions of the spectral curves. Results include the following: AVIRIS spectral data are acquired at sufficient spectral resolution to allow detection of blue shifts of both the chlorophyll well and red edge in moisture-stressed vegetation when compared with non-stressed vegetation; a normalization of selected parameters (chlorophyll well and near infrared shoulder) may be used to emphasize the shift in red edge position; and the presence of the red edge in AVIRIS spectral curves may be useful in detecting small amounts (20 to 30 pct cover) of semi-arid and arid vegetation ground cover. A discussion of possible causes of AVIRIS red edge shifts in respsonse to stress is presented.

  5. Detecting transit signatures of exoplanetary rings using SOAP3.0

    NASA Astrophysics Data System (ADS)

    Akinsanmi, B.; Oshagh, M.; Santos, N. C.; Barros, S. C. C.

    2018-01-01

    Context. It is theoretically possible for rings to have formed around extrasolar planets in a similar way to that in which they formed around the giant planets in our solar system. However, no such rings have been detected to date. Aims: We aim to test the possibility of detecting rings around exoplanets by investigating the photometric and spectroscopic ring signatures in high-precision transit signals. Methods: The photometric and spectroscopic transit signals of a ringed planet is expected to show deviations from that of a spherical planet. We used these deviations to quantify the detectability of rings. We present SOAP3.0 which is a numerical tool to simulate ringed planet transits and measure ring detectability based on amplitudes of the residuals between the ringed planet signal and best fit ringless model. Results: We find that it is possible to detect the photometric and spectroscopic signature of near edge-on rings especially around planets with high impact parameter. Time resolution ≤7 min is required for the photometric detection, while 15 min is sufficient for the spectroscopic detection. We also show that future instruments like CHEOPS and ESPRESSO, with precisions that allow ring signatures to be well above their noise-level, present good prospects for detecting rings.

  6. Simulation of Hypervelocity Impact Effects on Reinforced Carbon-Carbon. Chapter 6

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    Spacecraft operating in low earth orbit face a significant orbital debris impact hazard. Of particular concern, in the case of the Space Shuttle, are impacts on critical components of the thermal protection system. Recent research has formulated a new material model of reinforced carbon-carbon, for use in the analysis of hypervelocity impact effects on the Space Shuttle wing leading edge. The material model has been validated in simulations of published impact experiments and applied to model orbital debris impacts at velocities beyond the range of current experimental methods. The results suggest that momentum scaling may be used to extrapolate the available experimental data base, in order to predict the size of wing leading edge perforations at impact velocities as high as 13 km/s.

  7. The Double Edge Technique for Doppler lidar wind measurement

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Gentry, Bruce M.; Li, S. Xingfu; Flesia, Cristina; Chen, Huailin; Mathur, S.

    1998-01-01

    The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result, the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We will discuss the methodology of the technique in detail, present a broad range of simulation results, and provide preprints of a journal article currently in press.

  8. Infrared On-Orbit Inspection of Shuttle Orbiter Reinforced Carbon-Carbon Using Solar Heating

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, W. P.; Cramer, K. Elliott

    2005-01-01

    Thermographic nondestructive inspection techniques have been shown to provide quantitative, large area damage detection capabilities for the ground inspection of the reinforced carbon-carbon (RCC) used for the wing leading edge of the Shuttle orbiter. The method is non-contacting and able to inspect large areas in a relatively short inspection time. Thermal nondestructive evaluation (NDE) inspections have been shown to be applicable for several applications to the Shuttle in preparation for return to flight, including for inspection of RCC panels during impact testing, and for between-flight orbiter inspections. The focus of this work is to expand the capabilities of the thermal NDE methodology to enable inspection by an astronaut during orbital conditions. The significant limitations of available resources, such as weight and power, and the impact of these limitations on the inspection technique are discussed, as well as the resultant impact on data analysis and processing algorithms. Of particular interest is the impact to the inspection technique resulting from the use of solar energy as a heat source, the effect on the measurements due to working in the vacuum of space, and the effect of changes in boundary conditions, such as radiation losses seen by the material, on the response of the RCC. The resultant effects on detectability limits are discussed. Keywords: Nondestructive Evaluation, Shuttle, on-orbit inspection, thermography, infrared

  9. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. Anmore » assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.« less

  10. Image steganography based on 2k correction and coherent bit length

    NASA Astrophysics Data System (ADS)

    Sun, Shuliang; Guo, Yongning

    2014-10-01

    In this paper, a novel algorithm is proposed. Firstly, the edge of cover image is detected with Canny operator and secret data is embedded in edge pixels. Sorting method is used to randomize the edge pixels in order to enhance security. Coherent bit length L is determined by relevant edge pixels. Finally, the method of 2k correction is applied to achieve better imperceptibility in stego image. The experiment shows that the proposed method is better than LSB-3 and Jae-Gil Yu's in PSNR and capacity.

  11. Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis

    NASA Astrophysics Data System (ADS)

    Che, E.; Olsen, M. J.

    2017-09-01

    Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.

  12. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  13. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1997-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  14. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1997-03-04

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  15. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1996-01-09

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  16. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being Joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  17. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  18. Text, photo, and line extraction in scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2012-07-01

    We propose a page layout analysis algorithm to classify a scanned document into different regions such as text, photo, or strong lines. The proposed scheme consists of five modules. The first module performs several image preprocessing techniques such as image scaling, filtering, color space conversion, and gamma correction to enhance the scanned image quality and reduce the computation time in later stages. Text detection is applied in the second module wherein wavelet transform and run-length encoding are employed to generate and validate text regions, respectively. The third module uses a Markov random field based block-wise segmentation that employs a basis vector projection technique with maximum a posteriori probability optimization to detect photo regions. In the fourth module, methods for edge detection, edge linking, line-segment fitting, and Hough transform are utilized to detect strong edges and lines. In the last module, the resultant text, photo, and edge maps are combined to generate a page layout map using K-Means clustering. The proposed algorithm has been tested on several hundred documents that contain simple and complex page layout structures and contents such as articles, magazines, business cards, dictionaries, and newsletters, and compared against state-of-the-art page-segmentation techniques with benchmark performance. The results indicate that our methodology achieves an average of ˜89% classification accuracy in text, photo, and background regions.

  19. Identification of jasmine flower (Jasminum sp.) based on the shape of the flower using sobel edge and k-nearest neighbour

    NASA Astrophysics Data System (ADS)

    Qur’ania, A.; Sarinah, I.

    2018-03-01

    People often wrong in knowing the type of jasmine by just looking at the white color of the jasmine, while not all white flowers including jasmine and not all jasmine flowers have white. There is a jasmine that is yellow and there is a jasmine that is white and purple.The aim of this research is to identify Jasmine flower (Jasminum sp.) based on the shape of the flower image-based using Sobel edge detection and k-Nearest Neighbor. Edge detection is used to detect the type of flower from the flower shape. Edge detection aims to improve the appearance of the border of a digital image. While k-Nearest Neighbor method is used to classify the classification of test objects into classes that have neighbouring properties closest to the object of training. The data used in this study are three types of jasmine namely jasmine white (Jasminum sambac), jasmine gambir (Jasminum pubescens), and jasmine japan (Pseuderanthemum reticulatum). Testing of jasmine flower image resized 50 × 50 pixels, 100 × 100 pixels, 150 × 150 pixels yields an accuracy of 84%. Tests on distance values of the k-NN method with spacing 5, 10 and 15 resulted in different accuracy rates for 5 and 10 closest distances yielding the same accuracy rate of 84%, for the 15 shortest distance resulted in a small accuracy of 65.2%.

  20. Functional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae) in pronounced moisture gradients within fog-dependent forest fragments.

    PubMed

    Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J; Pérez, Fernanda

    2015-01-01

    Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.

  1. Functional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae) in pronounced moisture gradients within fog-dependent forest fragments

    PubMed Central

    Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J.; Pérez, Fernanda

    2015-01-01

    Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species’ responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale. PMID:26257746

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihailescu, Lucian

    This disclosure provides systems, methods, and apparatus related to ion beam therapy. In one aspect, a system includes a position sensitive detector and a collimator. The position sensitive detector configured to detect gamma rays generated by an ion beam interacting with a target. The collimator is positioned between the target and the position sensitive detector. The collimator includes a plurality of knife-edge slits, with a first knife-edge slit intersecting with a second knife-edge slit.

  3. Detection of radon emission at the edges of lunar maria with the Apollo alpha-particle spectrometer

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Golub, L.; Bjorkholm, P.

    1974-01-01

    The distribution of radioactive polonium-210, a decay product of radon-222, shows enhanced concentrations at the edges of lunar maria. Enhancements are seen at the edges of Mare Fecunditatis, Mare Crisium, Mare Smythii, Mare Tranquillitatis, Mare Nubium, Mare Cognitum, and Oceanus Procellarum. The observation is indicative of the transient emission of radon gas from the perimeters of lunar maria.

  4. Detection of radon emission at the edges of lunar maria with the apollo alpha-particle spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorenstein, P.; Golub, L.; Bjorkholm, P.

    1974-02-01

    The distribution of radioactive /sup 210/Po, a decay product of /sup 222/ Rn, shows enhanced concentrations at the edges of lunar maria. Enhancements are seen at the edges of Mare Fecunditatis, Mare Crisium, Mare Smythii, Mare Tranquillitatis, Mare Nubium, Mare Cognitum, and Oceanus Procellarum. The observation is indicative of the transient emission of radon gas from the perimeters of lunar maria. (auth)

  5. Integration of adaptive guided filtering, deep feature learning, and edge-detection techniques for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoqing; Zhao, Chunhui; Gao, Bing

    2017-11-01

    The integration of an edge-preserving filtering technique in the classification of a hyperspectral image (HSI) has been proven effective in enhancing classification performance. This paper proposes an ensemble strategy for HSI classification using an edge-preserving filter along with a deep learning model and edge detection. First, an adaptive guided filter is applied to the original HSI to reduce the noise in degraded images and to extract powerful spectral-spatial features. Second, the extracted features are fed as input to a stacked sparse autoencoder to adaptively exploit more invariant and deep feature representations; then, a random forest classifier is applied to fine-tune the entire pretrained network and determine the classification output. Third, a Prewitt compass operator is further performed on the HSI to extract the edges of the first principal component after dimension reduction. Moreover, the regional growth rule is applied to the resulting edge logical image to determine the local region for each unlabeled pixel. Finally, the categories of the corresponding neighborhood samples are determined in the original classification map; then, the major voting mechanism is implemented to generate the final output. Extensive experiments proved that the proposed method achieves competitive performance compared with several traditional approaches.

  6. Antigens in electron-dense granules from Entamoeba histolytica as possible markers for pathogenicity.

    PubMed Central

    Muñoz, M L; Lamoyi, E; León, G; Tovar, R; Pérez-García, J; De La Torre, M; Murueta, E; Bernal, R M

    1990-01-01

    In vitro interaction of Entamoeba histolytica with collagen induces intracellular formation and release of electron-dense granules (EDG) and stimulation of collagenolytic activity. Purified EDG contain 1.66 U of collagenase per mg of protein. Thus, EDG may participate in tissue destruction during invasive amebiasis. Monoclonal antibodies (MAbs) L1.1 and L7.1 reacted specifically with EDG in enzyme-linked immunosorbent assay (ELISA) and immunofluorescence and immunoelectron microscopy. MAb L7.1 immunoprecipitated three polypeptides with molecular weights of 95,000, 68,000, and 28,000 from lysates of biosynthetically labeled E. histolytica. Both MAbs recognized the pathogenic E. histolytica axenic strains HM1:IMSS, HM38:IMSS, and HK-9 but failed to react in ELISA with Entamoeba moshkovskii, Entamoeba invadens, and E. histolytica-like Laredo. In addition, MAb L7.1 reacted with one E. histolytica isolate from a symptomatic patient but did not react with four of five isolates from asymptomatic patients. EDG antigens were detected by a MAb L7.1-based ELISA in E. histolytica-containing fecal samples from symptomatic, but not asymptomatic, individuals. These results suggest that the EDG antigen detected with MAb L7.1 may be differentially expressed in pathogenic and nonpathogenic E. histolytica. Images PMID:2174899

  7. Brain's tumor image processing using shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  8. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    NASA Astrophysics Data System (ADS)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement conduits, for example powerline openings, may have even stronger effects, demanding further studies.

  9. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  10. Glue detection based on teaching points constraint and tracking model of pixel convolution

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen

    2018-01-01

    On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.

  11. The Case of the Missing Crater Rim

    NASA Image and Video Library

    2017-08-21

    In this observation from NASA's Mars Reconnaissance Orbiter, these two craters perched at the edge of an outflow channel, appear to have lost a portion of their crater rims during a flood event. Alternatively, it is also possible that the craters impacted the edge of the outflow channel after the flood occurred and we are seeing the difference in the strength of the material impacted. https://photojournal.jpl.nasa.gov/catalog/PIA21881

  12. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  13. SIMS chemical analysis of extended impact features from the trailing edge portion of experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, Sachiko; Foote, John; Simon, Charles; Jessberger, Elmar K.; Lange, Gundolf; Stadermann, Frank; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1992-01-01

    One hundred capture cells from the trailing edge, which had lost their cover foils during flight, were optically scanned for extended impact features caused by high velocity projectiles impinging on the cells while the foils were still intact. Of the 53 candidates, 24 impacts were analyzed by secondary ion mass spectroscopy for the chemical composition of the deposits. Projectile material was found in all impacts, and at least 75 percent of them appear to be caused by interplanetary dust particles. Elemental ratios are fractionated, with refractory elements enriched in the impacts relative to interplanetary dust particles collected in the stratosphere. Although this could be due to systematic differences in the compositions, a more likely explanation is volatility fractionation during the impact process.

  14. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  15. Edge magnetism of Heisenberg model on honeycomb lattice.

    PubMed

    Huang, Wen-Min; Hikihara, Toshiya; Lee, Yen-Chen; Lin, Hsiu-Hau

    2017-03-07

    Edge magnetism in graphene sparks intense theoretical and experimental interests. In the previous study, we demonstrated the existence of collective excitations at the zigzag edge of the honeycomb lattice with long-ranged Néel order. By employing the Schwinger-boson approach, we show that the edge magnons remain robust even when the long-ranged order is destroyed by spin fluctuations. Furthermore, in the effective field-theory limit, the dynamics of the edge magnon is captured by the one-dimensional relativistic Klein-Gordon equation. It is intriguing that the boundary field theory for the edge magnon is tied up with its bulk counterpart. By performing density-matrix renormalization group calculations, we show that the robustness may be attributed to the closeness between the ground state and the Néel state. The existence of edge magnon is not limited to the honeycomb structure, as demonstrated in the rotated-square lattice with zigzag edges as well. The universal behavior indicates that the edge magnons may attribute to the uncompensated edges and can be detected in many two-dimensional materials.

  16. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    NASA Astrophysics Data System (ADS)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  17. Deep convolutional networks for automated detection of posterior-element fractures on spine CT

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Wang, Yinong; Yao, Jianhua; Lu, Le; Burns, Joseph E.; Summers, Ronald M.

    2016-03-01

    Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of `positive', i.e. fractured posterior-elements and `negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.

  18. Edge Detection,

    DTIC Science & Technology

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  19. Appearance-Based Vision and the Automatic Generation of Object Recognition Programs

    DTIC Science & Technology

    1992-07-01

    q u a groued into equivalence clases with respect o visible featms; the equivalence classes me called alpecu. A recognitio smuegy is generated from...illustates th concept. pge 9 Table 1: Summary o fSnsors Samr Vertex Edge Face Active/ Passive Edge detector line, passive Shape-fzm-shading - r passive...example of the detectability computation for a liht-stripe range finder is shown zn Fqgur 2. Figure 2: Detectability of a face for a light-stripe range

  20. Feature extraction algorithm for space targets based on fractal theory

    NASA Astrophysics Data System (ADS)

    Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin

    2007-11-01

    In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.

  1. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    PubMed

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  2. Eb&D: A new clustering approach for signed social networks based on both edge-betweenness centrality and density of subgraphs

    NASA Astrophysics Data System (ADS)

    Qi, Xingqin; Song, Huimin; Wu, Jianliang; Fuller, Edgar; Luo, Rong; Zhang, Cun-Quan

    2017-09-01

    Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb &D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb &D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb &D compared with other methods is that the number of clusters do not need to be known prior.

  3. Generation and detection of edge magnetoplasmons in a quantum Hall system using a photoconductive switch

    NASA Astrophysics Data System (ADS)

    Lin, Chaojing; Morita, Kyosuke; Muraki, Koji; Fujisawa, Toshimasa

    2018-04-01

    Edge magnetoplasmons (EMPs) are unidirectional charge density waves travelling in an edge channel of a two-dimensional electron gas in the quantum Hall regime. We present both generation and detection schemes with a photoconductive switch (PCS) for EMPs. Here, the conductance of the PCS is modulated by irradiation with a laser beam, whose amplitude can be modulated by an external signal. When the PCS is used as a generator, the electrical current from the PCS is injected into the edge channel to excite EMPs. When the PCS is used as a detector, the electronic potential induced by EMPs is applied to the PCS with a modulated laser beam so as to constitute a phase-sensitive measurement. For both experiments, we confirm that the time of flight for the EMPs increases with the magnetic field in agreement with the EMP characteristics. Combination of the two schemes would be useful in investigating and utilizing EMPs at higher frequencies.

  4. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  5. Operator-coached machine vision for space telerobotics

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Wilcox, Brian; Litwin, Todd; Gennery, Donald B.

    1991-01-01

    A prototype system for interactive object modeling has been developed and tested. The goal of this effort has been to create a system which would demonstrate the feasibility of high interactive operator-coached machine vision in a realistic task environment, and to provide a testbed for experimentation with various modes of operator interaction. The purpose for such a system is to use human perception where machine vision is difficult, i.e., to segment the scene into objects and to designate their features, and to use machine vision to overcome limitations of human perception, i.e., for accurate measurement of object geometry. The system captures and displays video images from a number of cameras, allows the operator to designate a polyhedral object one edge at a time by moving a 3-D cursor within these images, performs a least-squares fit of the designated edges to edge data detected with a modified Sobel operator, and combines the edges thus detected to form a wire-frame object model that matches the Sobel data.

  6. Distributed Scene Analysis For Autonomous Road Vehicle Guidance

    NASA Astrophysics Data System (ADS)

    Mysliwetz, Birger D.; Dickmanns, E. D.

    1987-01-01

    An efficient distributed processing scheme has been developed for visual road boundary tracking by 'VaMoRs', a testbed vehicle for autonomous mobility and computer vision. Ongoing work described here is directed to improving the robustness of the road boundary detection process in the presence of shadows, ill-defined edges and other disturbing real world effects. The system structure and the techniques applied for real-time scene analysis are presented along with experimental results. All subfunctions of road boundary detection for vehicle guidance, such as edge extraction, feature aggregation and camera pointing control, are executed in parallel by an onboard multiprocessor system. On the image processing level local oriented edge extraction is performed in multiple 'windows', tighly controlled from a hierarchically higher, modelbased level. The interpretation process involving a geometric road model and the observer's relative position to the road boundaries is capable of coping with ambiguity in measurement data. By using only selected measurements to update the model parameters even high noise levels can be dealt with and misleading edges be rejected.

  7. Role of helical edge modes in the chiral quantum anomalous Hall state.

    PubMed

    Mani, Arjun; Benjamin, Colin

    2018-01-22

    Although indications are that a single chiral quantum anomalous Hall(QAH) edge mode might have been experimentally detected. There have been very many recent experiments which conjecture that a chiral QAH edge mode always materializes along with a pair of quasi-helical quantum spin Hall (QSH) edge modes. In this work we deal with a substantial 'What If?' question- in case the QSH edge modes, from which these QAH edge modes evolve, are not topologically-protected then the QAH edge modes wont be topologically-protected too and thus unfit for use in any applications. Further, as a corollary one can also ask if the topological-protection of QSH edge modes does not carry over during the evolution process to QAH edge modes then again our 'What if?' scenario becomes apparent. The 'how' of the resolution of this 'What if?' conundrum is the main objective of our work. We show in similar set-ups affected by disorder and inelastic scattering, transport via trivial QAH edge mode leads to quantization of Hall resistance and not that via topological QAH edge modes. This perhaps begs a substantial reinterpretation of those experiments which purported to find signatures of chiral(topological) QAH edge modes albeit in conjunction with quasi helical QSH edge modes.

  8. Image Edge Extraction via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  9. Linear landmark extraction in SAR images with application to augmented integrity aero-navigation: an overview to a novel processing chain

    NASA Astrophysics Data System (ADS)

    Fabbrini, L.; Messina, M.; Greco, M.; Pinelli, G.

    2011-10-01

    In the context of augmented integrity Inertial Navigation System (INS), recent technological developments have been focusing on landmark extraction from high-resolution synthetic aperture radar (SAR) images in order to retrieve aircraft position and attitude. The article puts forward a processing chain that can automatically detect linear landmarks on highresolution synthetic aperture radar (SAR) images and can be successfully exploited also in the context of augmented integrity INS. The processing chain uses constant false alarm rate (CFAR) edge detectors as the first step of the whole processing procedure. Our studies confirm that the ratio of averages (RoA) edge detector detects object boundaries more effectively than Student T-test and Wilcoxon-Mann-Whitney (WMW) test. Nevertheless, all these statistical edge detectors are sensitive to violation of the assumptions which underlie their theory. In addition to presenting a solution to the previous problem, we put forward a new post-processing algorithm useful to remove the main false alarms, to select the most probable edge position, to reconstruct broken edges and finally to vectorize them. SAR images from the "MSTAR clutter" dataset were used to prove the effectiveness of the proposed algorithms.

  10. Wild Chimpanzees on the Edge: Nocturnal Activities in Croplands

    PubMed Central

    Krief, Sabrina; Cibot, Marie; Bortolamiol, Sarah; Seguya, Andrew; Krief, Jean-Michel; Masi, Shelly

    2014-01-01

    In a rapidly changing landscape highly impacted by anthropogenic activities, the great apes are facing new challenges to coexist with humans. For chimpanzee communities inhabiting encroached territories, not bordered by rival conspecifics but by human agricultural fields, such boundaries are risky areas. To investigate the hypothesis that they use specific strategies for incursions out of the forest into maize fields to prevent the risk of detection by humans guarding their field, we carried out video recordings of chimpanzees at the edge of the forest bordered by a maize plantation in Kibale National Park, Uganda. Contrary to our expectations, large parties are engaged in crop-raids, including vulnerable individuals such as females with clinging infants. More surprisingly chimpanzees were crop-raiding during the night. They also stayed longer in the maize field and presented few signs of vigilance and anxiety during these nocturnal crop-raids. While nocturnal activities of chimpanzees have been reported during full moon periods, this is the first record of frequent and repeated nocturnal activities after twilight, in darkness. Habitat destruction may have promoted behavioural adjustments such as nocturnal exploitation of open croplands. PMID:25338066

  11. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    PubMed

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  12. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  13. Edge detection

    NASA Astrophysics Data System (ADS)

    Hildreth, E. C.

    1985-09-01

    For both biological systems and machines, vision begins with a large and unwieldly array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene such as the location of object boundaries and the structure, color and texture of object surfaces, from the two-dimensional image that is projected onto the eye or camera. This goal is not achieved in a single step: vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clues about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processing has led to extensive research on their detection, description and use, both in computer and biological vision systems. This article reviews some of the theory that underlies the detection of edges, and the methods used to carry out this analysis.

  14. Computer simulation and evaluation of edge detection algorithms and their application to automatic path selection

    NASA Technical Reports Server (NTRS)

    Longendorfer, B. A.

    1976-01-01

    The construction of an autonomous roving vehicle requires the development of complex data-acquisition and processing systems, which determine the path along which the vehicle travels. Thus, a vehicle must possess algorithms which can (1) reliably detect obstacles by processing sensor data, (2) maintain a constantly updated model of its surroundings, and (3) direct its immediate actions to further a long range plan. The first function consisted of obstacle recognition. Obstacles may be identified by the use of edge detection techniques. Therefore, the Kalman Filter was implemented as part of a large scale computer simulation of the Mars Rover. The second function consisted of modeling the environment. The obstacle must be reconstructed from its edges, and the vast amount of data must be organized in a readily retrievable form. Therefore, a Terrain Modeller was developed which assembled and maintained a rectangular grid map of the planet. The third function consisted of directing the vehicle's actions.

  15. Using fuzzy fractal features of digital images for the material surface analisys

    NASA Astrophysics Data System (ADS)

    Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.

    2018-01-01

    Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.

  16. Performance evaluation of canny edge detection on a tiled multicore architecture

    NASA Astrophysics Data System (ADS)

    Brethorst, Andrew Z.; Desai, Nehal; Enright, Douglas P.; Scrofano, Ronald

    2011-01-01

    In the last few years, a variety of multicore architectures have been used to parallelize image processing applications. In this paper, we focus on assessing the parallel speed-ups of different Canny edge detection parallelization strategies on the Tile64, a tiled multicore architecture developed by the Tilera Corporation. Included in these strategies are different ways Canny edge detection can be parallelized, as well as differences in data management. The two parallelization strategies examined were loop-level parallelism and domain decomposition. Loop-level parallelism is achieved through the use of OpenMP,1 and it is capable of parallelization across the range of values over which a loop iterates. Domain decomposition is the process of breaking down an image into subimages, where each subimage is processed independently, in parallel. The results of the two strategies show that for the same number of threads, programmer implemented, domain decomposition exhibits higher speed-ups than the compiler managed, loop-level parallelism implemented with OpenMP.

  17. Quantum anomalous Hall phase in a one-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Shao, L. B.; Hou, Qi-Zhe; Xue, Zheng-Yuan

    2018-03-01

    We propose to simulate and detect quantum anomalous Hall phase with ultracold atoms in a one-dimensional optical lattice, with the other synthetic dimension being realized by modulating spin-orbit coupling. We show that the system manifests a topologically nontrivial phase with two chiral edge states which can be readily detected in this synthetic two-dimensional system. Moreover, it is interesting that at the phase transition point there is a flat energy band and this system can also be in a topologically nontrivial phase with two Fermi zero modes existing at the boundaries by considering the synthetic dimension as a modulated parameter. We also show how to measure these topological phases experimentally in ultracold atoms. Another model with a random Rashba and Dresselhaus spin-orbit coupling strength is also found to exhibit topological nontrivial phase, and the impact of the disorder to the system is revealed.

  18. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  19. Sizes of the Smallest Particles at the Outer B Ring Edge, Huygens Ringlet, and Strange Ringlet

    NASA Astrophysics Data System (ADS)

    Eckert, Stephanie; Colwell, Josh E.; Becker, Tracy M.; Esposito, Larry W.

    2016-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS)'s High Speed Photometer (HSP) has observed stellar occultations of Saturn's rings that reveal ring structure at high resolution. We observe diffraction spikes at the sharp edges of some rings and ringlets where the observed signal exceeds the unocculted star signal, indicating that small particles are diffracting light into the detector. Becker et al. (2015 Icarus doi:10.1016/j.icarus.2015.11.001) analyzed data at the A ring edge and edges of the Encke gap. The smallest particle sizes were a few mm. We use the same technique to analyze the diffraction signal at the outer edge of the B ring and the edges of the so-called Strange ringlet near the outer edge of the Huygens Gap. While we see diffraction from sub-cm particles in the Strange Ringlet, detections from the wider Huygens Ringlet which resides in between the Strange Ringlet and the outer edge of the B ring are weaker and narrower, indicating a cutoff of the size distribution above 1 cm. At the outer edge of the B ring we find strong diffraction signals in 7 of 19 occultations for which the signal and geometry make the detection possible. The typical value of the smallest particle size (amin) is 4 mm and the derived slope of the power-law size distribution (q) is 2.9. The average amin is similar to the 4.5 mm average observed at the A ring outer edge while the q value is lower than the A ring outer edge value of 3.2. In the Strange Ringlet we find strong diffraction signals in 2 of 19 possible occultations for the outer edge and 1 of 17 possible occultations for the inner edge. The smallest particle size is ~5 mm and the derived slope of the power-law size distribution is 3.3. These values are similar to the average values at the A ring outer edge. The absence of a broad diffraction signal at the Huygens Ringlet suggests a different size distribution for that ring than for the Strange Ringlet and the outer several km of the B ring or perhaps less vigorous collisions so that fewer small particles are liberated from the regolith of larger particles.

  20. Improved CORF model of simple cell combined with non-classical receptive field and its application on edge detection

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie

    2018-02-01

    Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.

  1. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8-4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ˜0.1 and ˜0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°-80°.

  2. A Real-Time System for Lane Detection Based on FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Li, Shutao; Sun, Bin

    2016-12-01

    This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.

  3. Optic disc detection using ant colony optimization

    NASA Astrophysics Data System (ADS)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  4. Salient man-made structure detection in infrared images

    NASA Astrophysics Data System (ADS)

    Li, Dong-jie; Zhou, Fu-gen; Jin, Ting

    2013-09-01

    Target detection, segmentation and recognition is a hot research topic in the field of image processing and pattern recognition nowadays, among which salient area or object detection is one of core technologies of precision guided weapon. Many theories have been raised in this paper; we detect salient objects in a series of input infrared images by using the classical feature integration theory and Itti's visual attention system. In order to find the salient object in an image accurately, we present a new method to solve the edge blur problem by calculating and using the edge mask. We also greatly improve the computing speed by improving the center-surround differences method. Unlike the traditional algorithm, we calculate the center-surround differences through rows and columns separately. Experimental results show that our method is effective in detecting salient object accurately and rapidly.

  5. Core level electron energy-loss spectra of minerals: pre-edge fine structures at the oxygen K-edge . Comment on ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, Phys Chem Minerals (1997) 24:561-568

    NASA Astrophysics Data System (ADS)

    van Aken, P. A.; Liebscher, B.; Styrsa, V. J.

    In a recent paper entitled ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, it has been claimed that OH-- and H2O-bearing minerals exhibit a characteristic peak in the ELNES spectra at about 528 eV prior to the onset of the O K-edge at 532 eV, which could be used for (semi-)quantitative determination of water- or OH-contents on a nanometer scale. It is shown here by parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM) that O K-pre-edge peaks with very high intensities may also exist in water-free compounds and minerals, in particular when they contain transition metals. These spectral features arise from covalent mixing of the metal and oxygen states, which introduces oxygen p character in unoccupied states of mainly metal character. The point is illustrated by the comparison of hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) O K-edge PEELS spectra which exhibit similar intensities of the pre-edge peak, despite of their grossly different OH- contents. As a consequence, the general validity of the method proposed by Wirth is questioned.

  6. External synchronization of oscillating pulse edge on a transmission line with regularly spaced tunnel diodes.

    PubMed

    Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji

    2013-01-01

    We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.

  7. Edge disturbance drives liana abundance increase and alteration of liana-host tree interactions in tropical forest fragments.

    PubMed

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F

    2018-04-01

    Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.

  8. Detecting trends in academic research from a citation network using network representation learning

    PubMed Central

    Mori, Junichiro; Ochi, Masanao; Sakata, Ichiro

    2018-01-01

    Several network features and information retrieval methods have been proposed to elucidate the structure of citation networks and to detect important nodes. However, it is difficult to retrieve information related to trends in an academic field and to detect cutting-edge areas from the citation network. In this paper, we propose a novel framework that detects the trend as the growth direction of a citation network using network representation learning(NRL). We presume that the linear growth of citation network in latent space obtained by NRL is the result of the iterative edge additional process of a citation network. On APS datasets and papers of some domains of the Web of Science, we confirm the existence of trends by observing that an academic field grows in a specific direction linearly in latent space. Next, we calculate each node’s degree of trend-following as an indicator called the intrinsic publication year (IPY). As a result, there is a correlation between the indicator and the number of future citations. Furthermore, a word frequently used in the abstracts of cutting-edge papers (high-IPY paper) is likely to be used often in future publications. These results confirm the validity of the detected trend for predicting citation network growth. PMID:29782521

  9. Automatic detection of artifacts in converted S3D video

    NASA Astrophysics Data System (ADS)

    Bokov, Alexander; Vatolin, Dmitriy; Zachesov, Anton; Belous, Alexander; Erofeev, Mikhail

    2014-03-01

    In this paper we present algorithms for automatically detecting issues specific to converted S3D content. When a depth-image-based rendering approach produces a stereoscopic image, the quality of the result depends on both the depth maps and the warping algorithms. The most common problem with converted S3D video is edge-sharpness mismatch. This artifact may appear owing to depth-map blurriness at semitransparent edges: after warping, the object boundary becomes sharper in one view and blurrier in the other, yielding binocular rivalry. To detect this problem we estimate the disparity map, extract boundaries with noticeable differences, and analyze edge-sharpness correspondence between views. We pay additional attention to cases involving a complex background and large occlusions. Another problem is detection of scenes that lack depth volume: we present algorithms for detecting at scenes and scenes with at foreground objects. To identify these problems we analyze the features of the RGB image as well as uniform areas in the depth map. Testing of our algorithms involved examining 10 Blu-ray 3D releases with converted S3D content, including Clash of the Titans, The Avengers, and The Chronicles of Narnia: The Voyage of the Dawn Treader. The algorithms we present enable improved automatic quality assessment during the production stage.

  10. Chromium speciation in oxide-type compounds: application to minerals, gems, aqueous solutions and silicate glasses

    NASA Astrophysics Data System (ADS)

    Farges, François

    2009-09-01

    Cr K-edge XANES spectra were obtained for a variety of Cr-bearing model compounds containing Cr(II), Cr(III), Cr(IV), Cr(V) and Cr(VI), in which the Cr-site symmetry is D4h, Oh and Td. The centroid position of the pre-edge feature is a better indicator of the Cr valence than the edge position. In Cr-rich oxides, higher-energy transitions must be excluded in order to refine a robust valence for Cr. The pre-edge for chromates is not unique and varies as a function of the CrO4 2- moiety distortion, which is often related to Cr-polymerization (monochromate vs. dichromate). Both the analogy with the Mn K-pre-edge information and ab initio FEFF calculations of the pre-edge feature for Cr(III) and Cr(VI) confirm the experimental trends. This methodology is applied to the Cr K-edge pre-edge feature collected in gems (emerald, spinel and ruby), the layered minerals fuchsite and kämmererite, two Cr-bearing aqueous solutions and a set of sodo-calcic silicate glasses used for bottling sparkling white wine. In emerald and fuchsite, the Cr-site is differently distorted than its ruby or spinel counterpart. In a Cr(III)-bearing aqueous solution and sodo-calcic glass, no evidence for Cr(III) with Td and C3v symmetry is detected. However, minor amounts of chromate moieties (most likely monomeric) are detected in a glass synthesized in air. Preliminary spectra for the wine bottle glass suggest that only trace amounts of chromates might possibly be present in these glasses.

  11. Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface.

    PubMed

    Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2012-08-27

    Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.

  12. Comparing object recognition from binary and bipolar edge images for visual prostheses.

    PubMed

    Jung, Jae-Hyun; Pu, Tian; Peli, Eli

    2016-11-01

    Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition.

  13. Some aspects of precise laser machining - Part 2: Experimental

    NASA Astrophysics Data System (ADS)

    Grabowski, Marcin; Wyszynski, Dominik; Ostrowski, Robert

    2018-05-01

    The paper describes the role of laser beam polarization on quality of laser beam machined cutting tool edge. In micromachining the preparation of the cutting tools in play a key role on dimensional accuracy, sharpness and the quality of the cutting edges. In order to assure quality and dimensional accuracy of the cutting tool edge it is necessary to apply laser polarization control. In the research diode pumped Nd:YAG 532nm pulse laser was applied. Laser beam polarization used in the research was linear (horizontal, vertical). The goal of the carried out research was to describe impact of laser beam polarization on efficiency of the cutting process and quality of machined parts (edge, surface) made of polycrystalline diamond (PCD) and cubic boron nitride (cBN). Application of precise cutting tool in micromachining has significant impact on the minimum uncut chip thickness and quality of the parts. The research was carried within the INNOLOT program funded by the National Centre for Research and Development.

  14. Transition-edge sensor with enhanced electrothermal feedback for cryogenic particle detection

    DOEpatents

    Nam, Sae Woo; Cabrera, Blas

    2001-01-01

    A superconducting transition-edge sensor with an electrothermal-feedback circuit, a heat sink thermally coupled thereto, a bias-feedback circuit electrically coupled with the electrothermal feedback circuit, and a current sensor electrically coupled with the bias-feedback circuit and inductively coupled with the electrothermal-feedback circuit.

  15. CNNEDGEPOT: CNN based edge detection of 2D near surface potential field data

    NASA Astrophysics Data System (ADS)

    Aydogan, D.

    2012-09-01

    All anomalies are important in the interpretation of gravity and magnetic data because they indicate some important structural features. One of the advantages of using gravity or magnetic data for searching contacts is to be detected buried structures whose signs could not be seen on the surface. In this paper, a general view of the cellular neural network (CNN) method with a large scale nonlinear circuit is presented focusing on its image processing applications. The proposed CNN model is used consecutively in order to extract body and body edges. The algorithm is a stochastic image processing method based on close neighborhood relationship of the cells and optimization of A, B and I matrices entitled as cloning template operators. Setting up a CNN (continues time cellular neural network (CTCNN) or discrete time cellular neural network (DTCNN)) for a particular task needs a proper selection of cloning templates which determine the dynamics of the method. The proposed algorithm is used for image enhancement and edge detection. The proposed method is applied on synthetic and field data generated for edge detection of near-surface geological bodies that mask each other in various depths and dimensions. The program named as CNNEDGEPOT is a set of functions written in MATLAB software. The GUI helps the user to easily change all the required CNN model parameters. A visual evaluation of the outputs due to DTCNN and CTCNN are carried out and the results are compared with each other. These examples demonstrate that in detecting the geological features the CNN model can be used for visual interpretation of near surface gravity or magnetic anomaly maps.

  16. The Role of Interface Shape on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model,.

    PubMed

    Vaughan, Patrick E; Vogelsberg, Caitlin C M; Vollner, Jennifer M; Fenton, Todd W; Haut, Roger C

    2016-09-01

    The forensic literature suggests that when adolescents fall onto edged and pointed surfaces, depressed fractures can occur at low energy levels. This study documents impact biomechanics and fracture characteristics of infant porcine skulls dropped onto flat, curved, edged, and focal surfaces. Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. While characteristic measures of fracture such as number and length of fractures did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. While experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI), more focal impacts produced depressed fractures initiating at the POI. The study supported case-based forensic literature suggesting cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. © 2016 American Academy of Forensic Sciences.

  17. [An object-oriented remote sensing image segmentation approach based on edge detection].

    PubMed

    Tan, Yu-Min; Huai, Jian-Zhu; Tang, Zhong-Shi

    2010-06-01

    Satellite sensor technology endorsed better discrimination of various landscape objects. Image segmentation approaches to extracting conceptual objects and patterns hence have been explored and a wide variety of such algorithms abound. To this end, in order to effectively utilize edge and topological information in high resolution remote sensing imagery, an object-oriented algorithm combining edge detection and region merging is proposed. Susan edge filter is firstly applied to the panchromatic band of Quickbird imagery with spatial resolution of 0.61 m to obtain the edge map. Thanks to the resulting edge map, a two-phrase region-based segmentation method operates on the fusion image from panchromatic and multispectral Quickbird images to get the final partition result. In the first phase, a quad tree grid consisting of squares with sides parallel to the image left and top borders agglomerates the square subsets recursively where the uniform measure is satisfied to derive image object primitives. Before the merger of the second phrase, the contextual and spatial information, (e. g., neighbor relationship, boundary coding) of the resulting squares are retrieved efficiently by means of the quad tree structure. Then a region merging operation is performed with those primitives, during which the criterion for region merging integrates edge map and region-based features. This approach has been tested on the QuickBird images of some site in Sanxia area and the result is compared with those of ENVI Zoom Definiens. In addition, quantitative evaluation of the quality of segmentation results is also presented. Experiment results demonstrate stable convergence and efficiency.

  18. A community detection algorithm based on structural similarity

    NASA Astrophysics Data System (ADS)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  19. Improving the Efficiency and Effectiveness of Community Detection via Prior-Induced Equivalent Super-Network.

    PubMed

    Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise

    2017-03-29

    Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.

  20. Automatic Target Cueing (ATC) Task 1 Report - Literature Survey on ATC

    DTIC Science & Technology

    2013-10-30

    xa s In st ru m en t D aV in ci c hi p C ++ O ut da te d in fo rm at io n as w eb pa ge w as la st u pd at ed in...techniques such as contrast/ edge enhancement to increase the detectability of targets in the urban terrain. [P-4] restores long-distance thermal...Range? Sensor Experimental Setup Results [P-3] Contrast enhancement Edge enhancement Multi-scale edge domain Still images Yes IR

  1. Impacts of Deepwater Horizon Oil on Marsh Sediment Biogeochemistry in Barataria Bay, LA, USA

    NASA Astrophysics Data System (ADS)

    Mills, C. T.; Windham-Myers, L.; Waldrop, M. P.; Krabbenhoft, D. P.; Marvin-DiPasquale, M. C.; Orem, W. H.; Piazza, S.; Haw, M.; McFarland, J.; Varonka, M. S.

    2012-12-01

    Oil from the Deepwater Horizon spill came ashore on many salt marsh islands in Barataria Bay, LA in summer 2010, coating plants and settling on the sediment surface. In coordination with a plant community study of affected marshes, we investigated impacts of oiling on marsh sediment microbial biogeochemistry. Sediment samples (upmost 2 cm) were collected along transects perpendicular and parallel to the shore at three oiled and three non-oiled sites in both July and Oct. 2011. Samples from both collections were analyzed for sediment characteristics, total and methylmercury, and microbial membrane phospholipid fatty acids (PLFAs) which are a proxy for viable microbial cell numbers. Sediment DNA collected in Oct. 2011 was analyzed for bacterial, fungal, and archaeal community composition and abundance as well as various enzyme activities. Select Oct. 2011 samples were assayed to determine the rates of terminal electron accepting processes (oxygen demand, denitrification, iron reduction, sulfate reduction, methanogenesis). All sites had similar sediment characteristics. Impacts on sediment biogeochemistry were greatest at marsh edges, and reduced microbial abundance appeared to be more important than changes in microbial community structure. In July 2011, the mean PLFA concentration in oiled marsh edge sediments (0.15±0.03 μmol g-1; 95% CI; n=9) was substantially lower than for non-oiled sites (0.33±0.08 μmol g-1; n=9). Mean PLFA concentrations for interior marsh samples were more similar for oiled (0.30±0.08 μmol g-1; n=8) and non-oiled (0.37±0.04 μmol g-1; n=9) sites. This PLFA pattern was also observed in Oct. 2011 samples, and other measures of microbial abundance and activity showed similar trends. Cellulase, phosphatase, and chitinase mean activities were nearly twice as great in non-oiled versus oiled edge sites. Lower microbial activity in oiled sites was also inferred by somewhat lower denitrification and sulfate reduction potentials. Conversely, both methanogenesis rates and concentrations of methanogen DNA were somewhat greater in oiled edge samples, suggesting an effect of oiling on terminal electron accepting processes. The mean methylmercury concentration was lower in oiled versus non-oiled edge sites, likely as a result of decreased sulfate-reducer activity. The reduced microbial activity in near-edge sediments of the oiled marsh is likely an indirect effect of reduced plant productivity which supports rhizosphere communities. Both mean above- and below-ground live biomass at oiled edge sites were less than half that at non-oiled edge sites. Some marsh edge samples from the oiled site contained relatively large amounts of oil and we are currently quantifying oil-derived hydrocarbons to understand impacts of the oil itself on sediment biogeochemistry.

  2. Cutting edge technology to enhance nursing classroom instruction at Coppin State University.

    PubMed

    Black, Crystal Day; Watties-Daniels, A Denyce

    2006-01-01

    Educational technologies have changed the paradigm of the teacher-student relationship in nursing education. Nursing students expect to use and to learn from cutting edge technology during their academic careers. Varied technology, from specified software programs (Tegrity and Blackboard) to the use of the Internet as a research medium, can enhance student learning. The authors provide an overview of current cutting edge technologies in nursing classroom instruction and its impact on future nursing practice.

  3. The impact of using an intravenous workflow management system (IVWMS) on cost and patient safety.

    PubMed

    Lin, Alex C; Deng, Yihong; Thaibah, Hilal; Hingl, John; Penm, Jonathan; Ivey, Marianne F; Thomas, Mark

    2018-07-01

    The aim of this study was to determine the financial costs associated with wasted and missing doses before and after the implementation of an intravenous workflow management system (IVWMS) and to quantify the number and the rate of detected intravenous (IV) preparation errors. A retrospective analysis of the sample hospital information system database was conducted using three months of data before and after the implementation of an IVWMS System (DoseEdge ® ) which uses barcode scanning and photographic technologies to track and verify each step of the preparation process. The financial impact associated with wasted and missing >IV doses was determined by combining drug acquisition, labor, accessory, and disposal costs. The intercepted error reports and pharmacist detected error reports were drawn from the IVWMS to quantify the number of errors by defined error categories. The total number of IV doses prepared before and after the implementation of the IVWMS system were 110,963 and 101,765 doses, respectively. The adoption of the IVWMS significantly reduced the amount of wasted and missing IV doses by 14,176 and 2268 doses, respectively (p < 0.001). The overall cost savings of using the system was $144,019 over 3 months. The total number of errors detected was 1160 (1.14%) after using the IVWMS. The implementation of the IVWMS facilitated workflow changes that led to a positive impact on cost and patient safety. The implementation of the IVWMS increased patient safety by enforcing standard operating procedures and bar code verifications. Published by Elsevier B.V.

  4. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    PubMed

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  5. Automatic Detection of Frontal Face Midline by Chain-coded Merlin-Farber Hough Trasform

    NASA Astrophysics Data System (ADS)

    Okamoto, Daichi; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka

    We propose a novel approach for detection of the facial midline (facial symmetry axis) from a frontal face image. The facial midline has several applications, for instance reducing computational cost required for facial feature extraction (FFE) and postoperative assessment for cosmetic or dental surgery. The proposed method detects the facial midline of a frontal face from an edge image as the symmetry axis using the Merlin-Faber Hough transformation. And a new performance improvement scheme for midline detection by MFHT is present. The main concept of the proposed scheme is suppression of redundant vote on the Hough parameter space by introducing chain code representation for the binary edge image. Experimental results on the image dataset containing 2409 images from FERET database indicate that the proposed algorithm can improve the accuracy of midline detection from 89.9% to 95.1 % for face images with different scales and rotation.

  6. Flight investigation of insect contamination and its alleviation

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Fisher, D. F.

    1978-01-01

    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.

  7. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  8. Experimental Study of Airfoil Trailing Edge Noise: Instrumentation, Methodology and Initial Results. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Manley, M. B.

    1980-01-01

    The mechanisms of aerodynamic noise generation at the trailing edge of an airfoil is investigated. Instrumentation was designed, a miniature semiconductor strain-gauge pressure transducer and associated electronic amplifier circuitry were designed and tested and digital signal analysis techniques applied to gain insight into the relationship between the dynamic pressure close to the trailing edge and the sound in the acoustic far-field. Attempts are made to verify some trailing-edge noise generation characteristics as theoretically predicted by several contemporary acousticians. It is found that the noise detected in the far-field is comprised of the sum of many uncorrelated emissions radiating from the vicinity of the trailing edge. These emissions appear to be the result of acoustic energy radiation which has been converted by the trailing-edge noise mechanism from the dynamic fluid energy of independent streamwise 'strips' of the turbulent boundary layer flow.

  9. Experimental and Numerical Investigation of Fiber Reinforced Laminated Composites Subject to Low-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Thorsson, Solver I.

    Foreign object impact on composite materials continues to be an active field due to its importance in the design of load bearing composite aerostructures. The problem has been studied by many through the decades. Extensive experimental studies have been performed to characterize the impact damage and failure mechanisms. Leaders in aerospace industry are pushing for reliable, robust and efficient computational methods for predicting impact response of composite structures. Experimental and numerical investigations on the impact response of fiber reinforced polymer matrix composite (FRPC) laminates are presented. A detailed face-on and edge-on impact experimental study is presented. A novel method for conducting coupon-level edge-on impact experiments is introduced. The research is focused on impact energy levels that are in the vicinity of the barely visible impact damage (BVID) limit of the material system. A detailed post-impact damage study is presented where non-destructive inspection (NDI) methods such as ultrasound scanning and computed tomography (CT) are used. Detailed fractography studies are presented for further investigation of the through-the-thickness damage due to the impact event. Following the impact study, specimens are subjected to compression after impact (CAI) to establish the effect of BVID on the compressive strength after impact (CSAI). A modified combined loading compression (CLC) test method is proposed for compression testing following an edge-on impact. Experimental work on the rate sensitivity of the mode I and mode II inter-laminar fracture toughness is also investigated. An improved wedge-insert fracture (WIF) method for conducting mode I inter-laminar fracture at elevated loading rates is introduced. Based on the experimental results, a computational modeling approach for capturing face-on impact and CAI is developed. The model is then extended to edge-on impact and CAI. Enhanced Schapery Theory (EST) is utilized for modeling the full field damage and failure present in a unidirectional (UD) lamina within a laminate. Schapery Theory (ST) is a thermodynamically based work potential material model which captures the pre-peak softening due to matrix micro-cracking such as hackling, micro fissures, etc. The Crack Band (CB) method is utilized to capture macroscopic matrix and fiber failure modes such as ply splitting and fiber rupture. Discrete Cohesive Zone Method (DCZM) elements are implemented for capturing inter-laminar delaminations, using discrete nodal traction-separation governed interactions. The model is verified against the impact experimental results and the associated CAI procedures. The model results are in good agreement with experimental findings. The model proved capable of predicting the representative experimental failure modes.

  10. Quantized edge modes in atomic-scale point contacts in graphene

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  11. Quantized edge modes in atomic-scale point contacts in graphene.

    PubMed

    Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0  = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  12. Development of XAFS Into a Structure Determination Technique

    NASA Astrophysics Data System (ADS)

    Stern, E. A.

    After the detection of diffraction of x-rays by M. Laue in 1912, the technique was soon applied to structure determination by Bragg within a year. On the other hand, although the edge steps in X-Ray absorption were discovered even earlier by Barkla and both the near edge (XANES) and extended X-Ray fine structure (EXAFS) past the edge were detected by 1929, it still took over 40 years to realize the structure information contained in this X-Ray absorption fine structure (XAFS). To understand this delay a brief historical review of the development of the scientific ideas that transformed XAFS into the premiere technique for local structure determination is given. The development includes both advances in theoretical understanding and calculational capabilities, and in experimental facilities, especially synchrotron radiation sources. The present state of the XAFS technique and its capabilities are summarized.

  13. A simple approach to detect and correct signal faults of Hall position sensors for brushless DC motors at steady speed

    NASA Astrophysics Data System (ADS)

    Shi, Yongli; Wu, Zhong; Zhi, Kangyi; Xiong, Jun

    2018-03-01

    In order to realize reliable commutation of brushless DC motors (BLDCMs), a simple approach is proposed to detect and correct signal faults of Hall position sensors in this paper. First, the time instant of the next jumping edge for Hall signals is predicted by using prior information of pulse intervals in the last electrical period. Considering the possible errors between the predicted instant and the real one, a confidence interval is set by using the predicted value and a suitable tolerance for the next pulse edge. According to the relationship between the real pulse edge and the confidence interval, Hall signals can be judged and the signal faults can be corrected. Experimental results of a BLDCM at steady speed demonstrate the effectiveness of the approach.

  14. Design of coherent receiver optical front end for unamplified applications.

    PubMed

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-01-30

    Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.

  15. Development of a cyber physical apparatus for investigating fluid structure interaction on leading edge vortex evolution

    NASA Astrophysics Data System (ADS)

    Raghu Gowda, Belagumba Venkatachalaiah

    This dissertation examines how simple structural compliance impacts a specific transient vortex phenomenon that occurs on high angle of attack lifting surfaces termed dynamic stall. In many Fluid structure interaction (FSI) research efforts, a purely physical or purely computational approach is taken. In this work a low cost cyber-physical (CPFD) system is designed and developed for representing the FSI in the leading edge vortex (LEV) development problem. The leading edge compliance appears to be favorable in a specific spring constant range for a given wing. When the leading edge compliance prescribed via CPFD system is too low compared with the moment due to dynamic pressure or fluid unsteady effect, the LEV behavior is similar to that of a rigid wing system. When the leading edge compliance is too high, excessive compliance is introduced into the wing system and the leading edge vortex evolution is affected by the large change in wing angle. At moderate leading edge compliance, a balance appears to be achieved in which the leading edge vorticity shedding rate supports the long term evolution of the leading edge vortex. Further investigation is required to determine specific parameters governing these leading edge compliance ranges.

  16. Road-edge effects on herpetofauna in a lowland Amazonian rainforest

    Treesearch

    Ross J. Maynard; Nathalie C. Aall; Daniel Saenz; Paul S. Hamilton; Matthew A. Kwiatkowski

    2016-01-01

    The impact of roads on the flora and fauna of Neotropical rainforest is perhaps the single biggest driver of habitat modification and population declines in these ecosystems. We investigated the road-edge effect of a low-use dirt road on amphibian and reptile abundance, diversity, and...

  17. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  18. Spatial characterization of the edge barrier in wide superconducting films

    NASA Astrophysics Data System (ADS)

    Sivakov, A. G.; Turutanov, O. G.; Kolinko, A. E.; Pokhila, A. S.

    2018-03-01

    The current-induced destruction of superconductivity is discussed in wide superconducting thin films, whose width is greater than the magnetic field penetration depth, in weak magnetic fields. Particular attention is paid to the role of the boundary potential barrier (the Bin-Livingston barrier) in critical state formation and detection of the edge responsible for this critical state with different mutual orientations of external perpendicular magnetic field and transport current. Critical and resistive states of the film were visualized using the space-resolving low-temperature laser scanning microscopy (LTLSM) method, which enables detection of critical current-determining areas on the film edges. Based on these observations, a simple technique was developed for investigation of the critical state separately at each film edge, and for the estimation of residual magnetic fields in cryostats. The proposed method only requires recording of the current-voltage characteristics of the film in a weak magnetic field, thus circumventing the need for complex LTLSM techniques. Information thus obtained is particularly important for interpretation of studies of superconducting film single-photon light emission detectors.

  19. Axial segmentation of lungs CT scan images using canny method and morphological operation

    NASA Astrophysics Data System (ADS)

    Noviana, Rina; Febriani, Rasal, Isram; Lubis, Eva Utari Cintamurni

    2017-08-01

    Segmentation is a very important topic in digital image process. It is found simply in varied fields of image analysis, particularly within the medical imaging field. Axial segmentation of lungs CT scan is beneficial in designation of abnormalities and surgery planning. It will do to ascertain every section within the lungs. The results of the segmentation are accustomed discover the presence of nodules. The method which utilized in this analysis are image cropping, image binarization, Canny edge detection and morphological operation. Image cropping is done so as to separate the lungs areas, that is the region of interest. Binarization method generates a binary image that has 2 values with grey level, that is black and white (ROI), from another space of lungs CT scan image. Canny method used for the edge detection. Morphological operation is applied to smoothing the lungs edge. The segmentation methodology shows an honest result. It obtains an awfully smooth edge. Moreover, the image background can also be removed in order to get the main focus, the lungs.

  20. New scheme for image edge detection using the switching mechanism of nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Pahari, Nirmalya; Mukhopadhyay, Sourangshu

    2006-03-01

    The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.

  1. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    PubMed

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.

  2. Historical harvests reduce neighboring old-growth basal area across a forest landscape.

    PubMed

    Bell, David M; Spies, Thomas A; Pabst, Robert

    2017-07-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.

  3. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  4. Implementation of Canny and Isotropic Operator with Power Law Transformation to Identify Cervical Cancer

    NASA Astrophysics Data System (ADS)

    Amalia, A.; Rachmawati, D.; Lestari, I. A.; Mourisa, C.

    2018-03-01

    Colposcopy has been used primarily to diagnose pre-cancer and cancerous lesions because this procedure gives an exaggerated view of the tissues of the vagina and the cervix. But, the poor quality of colposcopy image sometimes makes physician challenging to recognize and analyze it. Generally, Implementation of image processing to identify cervical cancer have to implement a complex classification or clustering method. In this study, we wanted to prove that by only applying the identification of edge detection in the colposcopy image, identification of cervical cancer can be determined. In this study, we implement and comparing two edge detection operator which are isotropic and canny operator. Research methodology in this paper composed by image processing, training, and testing stages. In the image processing step, colposcopy image transformed by nth root power transformation to get better detection result and continued with edge detection process. Training is a process of labelling all dataset image with cervical cancer stage. This process involved pathology doctor as an expert in diagnosing the colposcopy image as a reference. Testing is a process of deciding cancer stage classification by comparing the similarity image of colposcopy results in the testing stage with the image of the results of the training process. We used 30 images as a dataset. The result gets same accuracy which is 80% for both Canny or Isotropic operator. Average running time for Canny operator implementation is 0.3619206 ms while Isotropic get 1.49136262 ms. The result showed that Canny operator is better than isotropic operator because Canny operator generates a more precise edge with a fast time instead.

  5. Sizes of the Smallest Particles at Saturn Ring Edges from Diffraction in UVIS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Eckert, S.; Colwell, J. E.; Becker, T. M.; Esposito, L. W.

    2017-12-01

    Cassini's Ultraviolet Imaging Spectrograph (UVIS) has observed more than 150 ring stellar occultations since its arrival at Saturn in 2004. We use stellar occultation data from the UVIS High Speed Photometer (HSP) to identify diffraction signals at ring edges caused by small particles diffracting light into the detector and consequently increasing the signal above that of the unocculted star. The shape of a diffraction signal is indicative of the particle size distribution at the ring edge, which may be a dynamically perturbed region. Becker et al. (2015 Icarus doi:10.1016/j.icarus.2015.11.001) analyzed diffraction signals at the outer edge of the A Ring and the edges of the Encke Gap. We apply the Becker et al. (2015) model to the outer edge of the B Ring as well as the edges of ringlets within the C Ring and Cassini Division. In addition, we analyze diffraction signatures at the A Ring outer edge in 2 new occultations. The best-fit model signals to these occultations are consistent with the findings of Becker et al. (2015) who found an average minimum particle size amin =4.5 mm and average power law slope q=3.2. At the B Ring outer edge, we detect a diffraction signal in 10 of 28 occultations in which the diffraction signal would be observable according to our criteria for star brightness and observation geometry. We find a mean amin =11 mm and a mean q=3.0. At both edges of the so-called "Strange" ringlet (R6) we find a mean amin = 20 mm and mean q values of 3.0 and 2.8 at the inner and outer edges, respectively. In contrast, we do not observe any clear diffraction signals at either edge of the wider Huygens ringlet. This could imply an absence of cm-scale or smaller particles and indicates that collisions here may be less vigorous than at the other ring edges analyzed in this study. We detect diffraction in a small fraction ( 10%) of occultations at 3 ringlets within the Cassini Division: the Herschel ringlet, the Laplace ringlet, and the Barnard ringlet. We also found diffraction signals in only 2 of 30 occultations of the Maxwell ringlet in the C Ring. These ringlet diffraction signals, when present, indicate larger minimum particle sizes than seen in the outer A Ring and B ring edge.

  6. Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Atsuko; Ohashi, Takeyoshi; Kawasaki, Takahiro; Inoue, Osamu; Kawada, Hiroki

    2013-04-01

    A new method for calculating critical dimension (CDs) at the top and bottom of three-dimensional (3D) pattern profiles from a critical-dimension scanning electron microscope (CD-SEM) image, called as "T-sigma method", is proposed and evaluated. Without preparing a library of database in advance, T-sigma can estimate a feature of a pattern sidewall. Furthermore, it supplies the optimum edge-definition (i.e., threshold level for determining edge position from a CDSEM signal) to detect the top and bottom of the pattern. This method consists of three steps. First, two components of line-edge roughness (LER); noise-induced bias (i.e., LER bias) and unbiased component (i.e., bias-free LER) are calculated with set threshold level. Second, these components are calculated with various threshold values, and the threshold-dependence of these two components, "T-sigma graph", is obtained. Finally, the optimum threshold value for the top and the bottom edge detection are given by the analysis of T-sigma graph. T-sigma was applied to CD-SEM images of three kinds of resist-pattern samples. In addition, reference metrology was performed with atomic force microscope (AFM) and scanning transmission electron microscope (STEM). Sensitivity of CD measured by T-sigma to the reference CD was higher than or equal to that measured by the conventional edge definition. Regarding the absolute measurement accuracy, T-sigma showed better results than the conventional definition. Furthermore, T-sigma graphs were calculated from CD-SEM images of two kinds of resist samples and compared with corresponding STEM observation results. Both bias-free LER and LER bias increased as the detected edge point moved from the bottom to the top of the pattern in the case that the pattern had a straight sidewall and a round top. On the other hand, they were almost constant in the case that the pattern had a re-entrant profile. T-sigma will be able to reveal a re-entrant feature. From these results, it is found that T-sigma method can provide rough cross-sectional pattern features and achieve quick, easy and accurate measurements of top and bottom CD.

  7. Comparing object recognition from binary and bipolar edge images for visual prostheses

    PubMed Central

    Jung, Jae-Hyun; Pu, Tian; Peli, Eli

    2017-01-01

    Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition. PMID:28458481

  8. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  9. The Influence of Projectile Trajectory Angle on the Simulated Impact Response of a Shuttle Leading Edge Wing Panel

    NASA Technical Reports Server (NTRS)

    Spellman, Regina L.; Jones, Lisa E.; Lyle, Karen H.; Jackson, Karen E.; Fasanella, Edwin L.

    2005-01-01

    In support of recommendations by the Columbia Accident Investigation Board, a team has been studying the effect of debris impacting the reinforced carbon-carbon panels of the shuttle leading edge. The objective of this study was to examine the effect of varying parameters of the debris trajectory on the damage tolerance. Impacts at the upper and lower surface and the apex of the leading edge were examined. For each location, trajectory variances included both the alpha and beta directions. The results of the analysis indicated in all cases the beta sweep decreased the amount of damage to the panel. The increases in alpha resulted in a significant increase in damage to the RCC panel. In particular, for the lower surface, where the alpha can increase by 10 degrees, there was a nearly 40% increase in the impulse. As a result, it is recommended that for future analyses, a 10 degree offset in alpha from the nominal trajectory is included for impacts on the lower surface. It is also recommended to assume a straight aft, or zero beta, trajectory for a more conservative analysis.

  10. General-Purpose Heat Source Safety Verification Test Program: Edge-on flyer plate tests

    NASA Astrophysics Data System (ADS)

    George, T. G.

    1987-03-01

    The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of Pu-238 alpha-decay to an array of thermoelectric elements. Each module contains four Pu-238O2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-TO) plate is approximately 140 m/s.

  11. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 9.

    DTIC Science & Technology

    1973-11-01

    Poison Ivy are the most common shrub layer vegetation, although neither is abundant in the forest proper. Vine form Poison Ivy, Virginia Creeper...Parthenocissus sp.), Wild Grape (Vitis sp.) and Smilax sp. are the common woody vines . The high unshaded edges of running sloughs in the forest areas...the forest edge, or be succeeded by 1a shrub willow zone, which ends abruptly at the forest edge. The forest 4margin is most often dominated by red or

  12. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  13. Image gathering and processing - Information and fidelity

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.

    1985-01-01

    In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.

  14. Rotation and scale invariant shape context registration for remote sensing images with background variations

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  15. An improved algorithm of laser spot center detection in strong noise background

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong

    2018-01-01

    Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.

  16. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was the most significant factor for all the contaminants generally detected at less than 1 atom percent, or detected only occasionally (i.e., all but Si, O, and C). Flight control surfaces, including sample backsides not exposed to space radiation or atomic oxygen flux, have accumulated some contamination on flight (compared to laboratory controls), but experimentally, the LDEF exposed surface contamination levels are generally higher for the contaminants Si and O. For most materials analyzed, Si contamination levels were higher on the leading edge surfaces than on the trailing edge surfaces. This was true even for the composite samples where considerable atomic oxygen erosion of the leading edge surfaces was observed by SEM. It is probable that the return flux associated with atmospheric backscatter resulted in enhanced deposition of silicones and other contaminants on the leading edge flight surfaces relative to the trailing edge. Although the Si concentration data suggested greater on-flight deposition of contaminants on the leading edge surfaces, the XPS analyses did not conclusively show different relative total thicknesses of flight deposited contamination for leading and trailing edge surfaces. It is possible that atomic oxygen reactions on the leading edge resulted in greater volatilization of the carbon component of the deposited silicones, effectively 'thinning' the leading edge deposited overlayer. Unlike other materials, exposed polymers such as Kapton and FEP-type Teflon had very low contamination on the leading edge surfaces. SEM evidence showed that undercutting of the contaminant overlayer and damaged polymer layers occurred during atomic oxygen erosion, which would enhance loss of material from the exposed surface.

  17. Numerical analysis of the impact of permeability on trailing-edge noise

    NASA Astrophysics Data System (ADS)

    Koh, Seong Ryong; Meinke, Matthias; Schröder, Wolfgang

    2018-05-01

    The impact of porous surfaces on the near-wall turbulent structures and the generated trailing-edge noise is analyzed for several trailing-edge shapes of finite thickness using a high resolution large-eddy simulation (LES)/computational aeroacoustics (CAA) method. The porous surface of the trailing edge is defined by the porosity and the viscous permeability determined by the solution of a turbulent flat plate boundary layer at a Reynolds number 1280 based on the displacement thickness in the inflow cross section. The volume-averaged approach for the homogeneous porous medium shows that the porous impedance scales linearly with the porosity and exponentially with the mean structure size of a porous medium. The drag induced by the porous surface changes the friction velocity and the permeability Reynolds number ReK which determines the porous impedance Rs scaled by ReK-2/3. The trailing-edge noise is analyzed for three solid and three porous trailing edges. The effect of a finite span is investigated by the spanwise correlation model based on the measured coherence distribution. The acoustic prediction shows a good agreement with measurements of the broadband spectrum and the strong tone generated by a finite trailing-edge thickness. The pressure gradient inside the porous media is redistributed by the Darcy drag defined by the viscous permeability and the porosity. The mean pressure increases in the upstream direction inside the porous medium such that the flow acceleration involved in the acoustic generation is reduced inside the porous medium. The noise reduction by a porous medium reaches 11 dB for the trailing-edge shape which possesses a sharp corner for the solid surface. The porous surface applied to a semi-circular trailing edge achieves a 4 dB noise reduction. The directivity pattern for individual components of the acoustic spectrum shows that the massive noise reduction is determined at the tone. Enhanced wave diffraction by the thick flat plate changes the directivity pattern in the high frequency range.

  18. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.

  19. Extraction of edge-based and region-based features for object recognition

    NASA Astrophysics Data System (ADS)

    Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima

    1993-08-01

    One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.

  20. Adaptive Gaze Strategies for Locomotion with Constricted Visual Field

    PubMed Central

    Authié, Colas N.; Berthoz, Alain; Sahel, José-Alain; Safran, Avinoam B.

    2017-01-01

    In retinitis pigmentosa (RP), loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10–25° in diameter, and nine healthy subjects were asked to walk in one of three directions—straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present), of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures. PMID:28798674

  1. Avian use of natural versus planted woodlands in eastern South Dakota, USA

    USGS Publications Warehouse

    Bakker, K.K.; Higgins, K.F.

    2003-01-01

    We compared avian use of naturally occurring and planted woodlands in eastern South Dakota, USA, to evaluate whether planted woodlands support the same avian communities as natural woodlands. A stratified cluster sample was used to randomly select 307 public areas in which to survey planted (n = 425) and natural (n = 99) woodland patches. Eighty-five species of birds were detected in eastern South Dakota woodlands, 36 of which occurred in ??? 5 of 524 patches surveyed. The probability of occurrence for 8 of 13 woodland-obligate species was significantly greater in natural woodland habitats than in planted woodland habitats. Four of these species breed in relatively high numbers in eastern South Dakota. Only one woodland-obligate occurred less frequently in natural woodlands. Probability of occurrence for 6 edge and generalist species, including the brown-headed cowbird (Molothrus ater [Boddaert]), was significantly higher in planted woodlands. The avian community of planted woodlands was dominated by edge and generalist species. The homogeneous vegetation structure typical of planted woodlands does not appear to provide the habitat characteristics needed by woodland-obligate birds. We conclude that planted woodlands do not support significant numbers of woodland-obligate species and may negatively impact grassland-nesting birds by attracting edge and generalist bird species and predators into previously treeless habitats. Planted woodlands cannot be considered equal replacement habitats for natural woodland patches when managing for nongame woodland bird species. However, the preservation and maintenance of natural woodlands is critical for woodland-obligate species diversity in the northern Great Plains.

  2. Experimental Investigation on Minimum Frame Rate Requirements of High-Speed Videoendoscopy for Clinical Voice Assessment

    PubMed Central

    Deliyski, Dimitar D; Powell, Maria EG; Zacharias, Stephanie RC; Gerlach, Terri Treman; de Alarcon, Alessandro

    2015-01-01

    This study investigated the impact of high-speed videoendoscopy (HSV) frame rates on the assessment of nine clinically-relevant vocal-fold vibratory features. Fourteen adult patients with voice disorder and 14 adult normal controls were recorded using monochromatic rigid HSV at a rate of 16000 frames per second (fps) and spatial resolution of 639×639 pixels. The 16000-fps data were downsampled to 16 other rate denominations. Using paired comparisons design, nine common clinical vibratory features were visually compared between the downsampled and the original images. Three raters reported the thresholds at which: (1) a detectable difference between the two videos was first noticed, and (2) differences between the two videos would result in a change of clinical rating. Results indicated that glottal edge, mucosal wave magnitude and extent, aperiodicity, contact and loss of contact of the vocal folds were the vibratory features most sensitive to frame rate. Of these vibratory features, the glottal edge was selected for further analysis, due to its higher rating reliability, universal prevalence and consistent definition. Rates of 8000 fps were found to be free from visually-perceivable feature degradation, and for rates of 5333 fps, degradation was minimal. For rates of 4000 fps and higher, clinical assessments of glottal edge were not affected. Rates of 2000 fps changed the clinical ratings in over 16% of the samples, which could lead to inaccurate functional assessment. PMID:28989342

  3. Monitoring of peri-distal gastrectomy carbohydrate antigen 19-9 level in gastric juice and its significance

    PubMed Central

    Xu, A-Man; Huang, Lei; Han, Wen-Xiu; Wei, Zhi-Jian

    2014-01-01

    Gastric carcinoma is one of the most common and deadly malignancies nowadays, and carbohydrate antigen 19-9 (CA 19-9) in gastric juice has been rarely studied. To compare peri-distal gastrectomy (DG) gastric juice and serum CA 19-9 and reveal its significance, we selected 67 patients diagnosed with gastric carcinoma who underwent DG, and collected their perioperative gastric juice whose CA 19-9 was detected, with serum CA 19-9 monitored as a comparison. We found that: gastric juice CA 19-9 pre-gastrectomy was significantly correlated with tumor TNM classification, regarding tumor size, level of gastric wall invaded, differentiated grade and number of metastatic lymph nodes as influencing factors, while serum CA 19-9 revealed little information; gastric juice CA 19-9 was significantly correlated with radical degree, and regarded number of resected lymph nodes and classification of cutting edge as impact factors; thirteen patients whose gastric juice CA 19-9 rose post-DG showed features indicating poor prognosis; the difference of gastric juice CA 19-9 between pre- and post-gastrectomy was correlated with tumor TNM classification and radical degree, and regarded tumor size, number of resected metastatic and normal lymph nodes, sum of distances from tumor to cutting edges and classification of cutting edge as influential factors. We conclude that peri-DG gastric juice CA 19-9 reveals much information about tumor and radical gastrectomy, and may indicate prognosis; while serum CA 19-9 has limited significance. PMID:24482710

  4. Recognition of three dimensional obstacles by an edge detection scheme. [for Mars roving vehicle using laser range finder

    NASA Technical Reports Server (NTRS)

    Reed, M. A.

    1974-01-01

    The need for an obstacle detection system on the Mars roving vehicle was assumed, and a practical scheme was investigated and simulated. The principal sensing device on this vehicle was taken to be a laser range finder. Both existing and original algorithms, ending with thresholding operations, were used to obtain the outlines of obstacles from the raw data of this laser scan. A theoretical analysis was carried out to show how proper value of threshold may be chosen. Computer simulations considered various mid-range boulders, for which the scheme was quite successful. The extension to other types of obstacles, such as craters, was considered. The special problems of bottom edge detection and scanning procedure are discussed.

  5. Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick

    2009-01-01

    Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters

  6. Compositional analysis and classification of projectile residues in LDEF impact craters

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, Ronald P.

    1992-01-01

    This catalog contains preliminary analyses of residues of hypervelocity projectiles that encountered gold substrates exposed by instrument A0187-1 on the Long Duration Exposure Facility (LDEF). This instrument was on LDEF's trailing edge where relative encounter speeds should be lowest for any non-spinning platform in low Earth orbit (LEO). Approximately 0.6 m(exp 2) of Au substrates yielded 198 impact craters greater than 20 micrometers in diameter. Some 30 percent of the craters were made by natural cosmic dust particles and some 15 percent by man-made objects. Some 50 percent of all features, however, have residues, if any, that are beyond the detection threshold of the SEM-EDXA method used. The purpose of this catalog is to provide detailed evidence and criteria that may be used to arrive at specific particle types on a case-by-case basis and to group such particles into compositional classes. Clearly this is a somewhat interpretative undertaking. For that reason, we encourage and solicit critique and comments from those interested in the systematic analysis of all impact features on LDEF.

  7. Characterizing the 21-cm Signal from Neutral Hydrogen in the IGM at Redshifts 27>z>6 with EDGES

    NASA Astrophysics Data System (ADS)

    Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.; Mahesh, Nivedita

    2018-01-01

    Understanding the period when the first stars formed and ionized the InterGalactic Medium (IGM) during the Epoch of Reionization (EoR) represents one of the main objectives of modern cosmology. The Experiment to Detect the Global EoR Signature (EDGES) strives to characterize this period by measuring, for the first time, the all-sky spectrum of the 21-cm signal produced by neutral hydrogen in the IGM at redshifts 27>z>6. In this talk I will describe recent EDGES constraints for the 21-cm signal. Specifically, with measurements from the EDGES High-Band instrument in the range 90-190 MHz, we rule out traditional Tanh models for the epoch of reionization with durations of up to dz=1 over the redshift range 14>z>7. We also rule out a wide range of phenomenological and physically-motivated 21-cm models that contain a large absorption feature in this redshift range, produced by the complex interaction between UV and X-ray radiation from the first sources and the neutral hydrogen in the IGM. Finally, I will describe our efforts to detect the 21-cm signal in the range 27>z>13 with two Low-Band instruments that have observed over 50-100 MHz since 2015. These instruments implement refined calibration techniques and lessons learned from previous generations of EDGES, and have achieved a level of systematic uncertainty low enough to enable detection. I will present Low-Band analysis results, including a variety of cross-checks performed to discriminate between residual instrumental effects and spectral structure that is intrinsic to the sky. I will conclude by describing the preparation of the next observational campaign with upgraded instrumentation.

  8. From voxel to curvature

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ayache, Nicholas; Sander, Peter T.

    1991-09-01

    Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, Morgan W; Battaglia, D. J.; Unterberg, Ezekial A

    A new tangential 2D Soft X-Ray Imaging System (SXRIS) is being designed to examine the edge magnetic island structure in the lower X-point region of DIII-D. A synthetic diagnostic calculation coupled to 3D emissivity estimates is used to generate phantom images. Phillips-Tikhonov regularization is used to invert the phantom images for comparison to the original emissivity model. Noise level, island size, and equilibrium accuracy are scanned to assess the feasibility of detecting edge island structures. Models of typical DIII-D discharges indicate integration times > 1 ms with accurate equilibrium reconstruction are needed for small island (< 3 cm) detection.

  10. Global Anomaly Detection in Two-Dimensional Symmetry-Protected Topological Phases

    NASA Astrophysics Data System (ADS)

    Bultinck, Nick; Vanhove, Robijn; Haegeman, Jutho; Verstraete, Frank

    2018-04-01

    Edge theories of symmetry-protected topological phases are well known to possess global symmetry anomalies. In this Letter we focus on two-dimensional bosonic phases protected by an on-site symmetry and analyze the corresponding edge anomalies in more detail. Physical interpretations of the anomaly in terms of an obstruction to orbifolding and constructing symmetry-preserving boundaries are connected to the cohomology classification of symmetry-protected phases in two dimensions. Using the tensor network and matrix product state formalism we numerically illustrate our arguments and discuss computational detection schemes to identify symmetry-protected order in a ground state wave function.

  11. Composite transport wing technology development

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.

    1988-01-01

    The design, fabrication, testing, and analysis of stiffened wing cover panels to assess damage tolerance criteria are discussed. The damage tolerance improvements were demonstrated in a test program using full-sized cover panel subcomponents. The panels utilized a hard skin concept with identical laminates of 44-percent 0-degree, 44-percent plus or minus 45-degree, and 12-percent 90-degree plies in the skins and stiffeners. The panel skins were impacted at midbay between the stiffeners, directly over the stiffener, and over the stiffener flange edge. The stiffener blades were impacted laterally. Impact energy levels of 100 ft-lb and 200 ft-lb were used. NASTRAN finite-element analyses were performed to simulate the nonvisible damage that was detected in the panels by nondestructive inspection. A closed-form solution for generalized loading was developed to evaluate the peel stresses in the bonded structure. Two-dimensional delamination growth analysis was developed using the principle of minimum potential energy in terms of closed-form solution for critical strain. An analysis was conducted to determine the residual compressive stress in the panels after impact damage, and the analytical predictions were verified by compression testing of the damaged panels.

  12. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being <1km from an edge, our understanding of forest carbon dynamics is largely derived from intact forest systems. In the northeastern USA, we find that over 23% of the current forest area is just 30m from an agricultural or developed edge. Edge effects on the carbon cycle vary in their magnitude by biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  13. Observation of chiral currents at the magnetic domain boundary of a topological insulator

    DOE PAGES

    Wang, Y. H.; Kirtley, J. R.; Katmis, F.; ...

    2015-08-28

    A magnetic domain boundary on the surface of a three-dimensional topological insulator is predicted to host a chiral edge state, but direct demonstration is challenging. Here, we used a scanning superconducting quantum interference device to show that current in a magnetized EuS/Bi 2Se 3 heterostructure flows at the edge when the Fermi level is gate-tuned to the surface band gap. We further induced micron-scale magnetic structures on the heterostructure, and detected a chiral edge current at the magnetic domain boundary. The chirality of the current was determined by magnetization of the surrounding domain and its magnitude by the local chemicalmore » potential rather than the applied current. As a result, such magnetic structures, provide a platform for detecting topological magnetoelectric effects and may enable progress in quantum information processing and spintronics.« less

  14. Defining the computational structure of the motion detector in Drosophila

    PubMed Central

    Clark, Damon A.; Bursztyn, Limor; Horowitz, Mark; Schnitzer, Mark J.; Clandinin, Thomas R.

    2011-01-01

    SUMMARY Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt Correlator (HRC), relates visual inputs to neural and behavioral responses to motion, but the circuits that implement this computation remain unknown. Using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, “reverse phi”, that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. PMID:21689602

  15. Online Community Detection for Large Complex Networks

    PubMed Central

    Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian

    2014-01-01

    Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683

  16. Impact resistance of composite fan blades. [fiber reinforced graphite and boron epoxy blades for STOL operating conditions

    NASA Technical Reports Server (NTRS)

    Premont, E. J.; Stubenrauch, K. R.

    1973-01-01

    The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.

  17. Electrical control of flying spin precession in chiral 1D edge states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting

    2013-12-04

    Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.

  18. Pharmaceutical Compounds Studied Using NEXAFS

    NASA Astrophysics Data System (ADS)

    Murray Booth, A.; Braun, Simon; Lonsbourough, Tom; Purton, John; Patel, Sunil; Schroeder, Sven L. M.

    2007-02-01

    Total Electron Yield (TEY) oxygen K-edge NEXAFS detects the presence of strongly adsorbed water molecules on poloxamer-coated pharmaceutical actives, which provides a useful spectroscopic indicator for bioavailability. The results are supported by complementary XPS measurements. Carbon K-edge spectra obtained in a high-pressure NEXAFS cell were used in situ to establish how a polymer coating spread on a drug surface by using humidity induced dispersion of the coating. Finally, we demonstrate how combined Carbon and Oxygen K-edge measurements can be used to characterize amorphous surface layers on micronised crystals of a drug compound.

  19. The optimization of edge and line detectors for forest image analysis

    Treesearch

    Zhiling Long; Joseph Picone; Victor A. Rudis

    2000-01-01

    Automated image analysis for forestry applications is becoming increasingly important with the rapid evolution of satellite and land-based remote imaging industries. Features derived from line information play a very important role in analyses of such images. Many edge and line detection algorithms have been proposed but few, if any, comprehensive studies exist that...

  20. Boundary and object detection in real world images. [by means of algorithms

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.

    1974-01-01

    A solution to the problem of automatic location of objects in digital pictures by computer is presented. A self-scaling local edge detector which can be applied in parallel on a picture is described. Clustering algorithms and boundary following algorithms which are sequential in nature process the edge data to locate images of objects.

  1. Measles on the edge: coastal heterogeneities and infection dynamics.

    PubMed

    Bharti, Nita; Xia, Yingcun; Bjornstad, Ottar N; Grenfell, Bryan T

    2008-04-09

    Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted 'edge effect' by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of 'edge effects' on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models.

  2. A new method of inshore ship detection in high-resolution optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Hu, Qifeng; Du, Yaling; Jiang, Yunqiu; Ming, Delie

    2015-10-01

    Ship as an important military target and water transportation, of which the detection has great significance. In the military field, the automatic detection of ships can be used to monitor ship dynamic in the harbor and maritime of enemy, and then analyze the enemy naval power. In civilian field, the automatic detection of ships can be used in monitoring transportation of harbor and illegal behaviors such as illegal fishing, smuggling and pirates, etc. In recent years, research of ship detection is mainly concentrated in three categories: forward-looking infrared images, downward-looking SAR image, and optical remote sensing images with sea background. Little research has been done into ship detection of optical remote sensing images with harbor background, as the gray-scale and texture features of ships are similar to the coast in high-resolution optical remote sensing images. In this paper, we put forward an effective harbor ship target detection method. First of all, in order to overcome the shortage of the traditional difference method in obtaining histogram valley as the segmentation threshold, we propose an iterative histogram valley segmentation method which separates the harbor and ships from the water quite well. Secondly, as landing ships in optical remote sensing images usually lead to discontinuous harbor edges, we use Hough Transform method to extract harbor edges. First, lines are detected by Hough Transform. Then, lines that have similar slope are connected into a new line, thus we access continuous harbor edges. Secondary segmentation on the result of the land-and-sea separation, we eventually get the ships. At last, we calculate the aspect ratio of the ROIs, thereby remove those targets which are not ship. The experiment results show that our method has good robustness and can tolerate a certain degree of noise and occlusion.

  3. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications

    PubMed Central

    Mousa, Shaker A.; Bharali, Dhruba J.

    2011-01-01

    The application of nanotechnology to biomedicine, particularly in cancer diagnosis and treatment, promises to have a profound impact on healthcare. The exploitation of the unique properties of nano-sized particles for cancer therapeutics is most popularly known as nanomedicine. The goals of this review are to discuss the current state of nanomedicine in the field of cancer detection and the subsequent application of nanotechnology to treatment. Current cancer detection methods rely on the patient contacting their provider when they feel ill, or relying on non-specific screening methods, which unfortunately often result in cancers being detected only after it is too late for effective treatment. Cancer treatment paradigms mainly rely on whole body treatment with chemotherapy agents, exposing the patient to medications that non-specifically kill rapidly dividing cells, leading to debilitating side effects. In addition, the use of toxic organic solvents/excipients can hamper the further effectiveness of the anticancer drug. Nanomedicine has the potential to increase the specificity of treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles. This review discusses the use of nanoparticles such as quantum dots, nanoshells, nanocrystals, nanocells, and dendrimers for the detection and treatment of cancer. Future directions and perspectives of this cutting-edge technology are also discussed. PMID:24212938

  4. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

    PubMed

    Vasas, Vera; Hanley, Daniel; Kevan, Peter G; Chittka, Lars

    2017-04-01

    Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

  5. Real-Time Lane Region Detection Using a Combination of Geometrical and Image Features

    PubMed Central

    Cáceres Hernández, Danilo; Kurnianggoro, Laksono; Filonenko, Alexander; Jo, Kang Hyun

    2016-01-01

    Over the past few decades, pavement markings have played a key role in intelligent vehicle applications such as guidance, navigation, and control. However, there are still serious issues facing the problem of lane marking detection. For example, problems include excessive processing time and false detection due to similarities in color and edges between traffic signs (channeling lines, stop lines, crosswalk, arrows, etc.). This paper proposes a strategy to extract the lane marking information taking into consideration its features such as color, edge, and width, as well as the vehicle speed. Firstly, defining the region of interest is a critical task to achieve real-time performance. In this sense, the region of interest is dependent on vehicle speed. Secondly, the lane markings are detected by using a hybrid color-edge feature method along with a probabilistic method, based on distance-color dependence and a hierarchical fitting model. Thirdly, the following lane marking information is extracted: the number of lane markings to both sides of the vehicle, the respective fitting model, and the centroid information of the lane. Using these parameters, the region is computed by using a road geometric model. To evaluate the proposed method, a set of consecutive frames was used in order to validate the performance. PMID:27869657

  6. Parallel Hough Transform-Based Straight Line Detection and Its FPGA Implementation in Embedded Vision

    PubMed Central

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-01-01

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness. PMID:23867746

  7. Parallel Hough Transform-based straight line detection and its FPGA implementation in embedded vision.

    PubMed

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-07-17

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.

  8. Real time automated inspection

    DOEpatents

    Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  9. The Columbia Accident Investigation and The NASA Glenn Ballistic Impact Laboratory Contributions Supporting NASA's Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2007-01-01

    On February 1, 2003, the Space Shuttle Columbia broke apart during reentry, resulting in loss of the vehicle and its seven crewmembers. For the next several months, an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA, concluded in August, 2003 that the most likely cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing, which ultimately led to the breakup of the orbiter. The findings of the CAIB were supported by ballistic impact tests, which simulated the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA spent the next 18 months focused on returning the shuttle safely to flight. In order to fully evaluate all potential impact threats from the many debris sources on the Space Shuttle during ascent, NASA instituted a significant impact testing program. The results from these tests led to the validation of high-fidelity computer models, capable of predicting actual or potential Shuttle impact events, were used in the certification of STS-114, NASA s Return to Flight Mission, as safe to fly. This presentation will provide a look into the inner workings of the Space Shuttle and a behind the scenes perspective on the impact analysis and testing done for the Columbia Accident Investigation and NASA's Return to Flight programs. In addition, highlights from recent Shuttle missions are presented.

  10. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated noise. The models were shown to adequately describe the sound-pressure levels obtained for a configuration in the center of the design space indicating the models can be used to navigate the design space.

  11. Linear calculations of edge current driven kink modes with BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less

  12. Impact Testing on Reinforced Carbon-Carbon Flat Panels with Ice Projectiles for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.

  13. Impact Testing on Reinforced Carbon-Carbon Flat Panels With BX-265 and PDL-1034 External Tank Foam for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.

  14. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  15. Binarization algorithm for document image with complex background

    NASA Astrophysics Data System (ADS)

    Miao, Shaojun; Lu, Tongwei; Min, Feng

    2015-12-01

    The most important step in image preprocessing for Optical Character Recognition (OCR) is binarization. Due to the complex background or varying light in the text image, binarization is a very difficult problem. This paper presents the improved binarization algorithm. The algorithm can be divided into several steps. First, the background approximation can be obtained by the polynomial fitting, and the text is sharpened by using bilateral filter. Second, the image contrast compensation is done to reduce the impact of light and improve contrast of the original image. Third, the first derivative of the pixels in the compensated image are calculated to get the average value of the threshold, then the edge detection is obtained. Fourth, the stroke width of the text is estimated through a measuring of distance between edge pixels. The final stroke width is determined by choosing the most frequent distance in the histogram. Fifth, according to the value of the final stroke width, the window size is calculated, then a local threshold estimation approach can begin to binaries the image. Finally, the small noise is removed based on the morphological operators. The experimental result shows that the proposed method can effectively remove the noise caused by complex background and varying light.

  16. Patient comfort from the technologist perspective: factors to consider in mammographic imaging

    PubMed Central

    Mendat, Christina C; Mislan, Dave; Hession-Kunz, Lisa

    2017-01-01

    A sample size of 280 certified mammography technologists were surveyed to understand what factors affect patient discomfort during breast imaging. Given mammography technologists’ level of patient involvement, they are uniquely positioned to observe factors that affect patient comfort. The findings suggest that according to technologists, multiple factors, including patient ethnicity, breast density, previous biopsy and lumpectomy experience, as well as psychological factors, impact breast discomfort during mammography. Additionally, with respect to imaging protocols, technologists attributed 80% of moderate-to-extreme discomfort to “length of compression time” (27%) and “compression force” (53%). Technologists also attributed “pinching at chest wall” and “hard edges of breast platform” to “very high” discomfort significantly more times (P<0.05) than “coolness and edges of paddle”. These findings confirm some of what has been reported to date and challenge other findings. Given that recent decline in breast cancer mortality has been attributed to improvements in early detection and treatment, approaches to reduce discomfort should be considered in order to promote screening compliance. Although more research is needed, it is apparent that the patient experience of comfort and pain during mammography is an area warranting increased research and solutions. PMID:28572739

  17. Quenched dynamics and spin-charge separation in an interacting topological lattice

    NASA Astrophysics Data System (ADS)

    Barbiero, L.; Santos, L.; Goldman, N.

    2018-05-01

    We analyze the static and dynamical properties of a one-dimensional topological lattice, the fermionic Su-Schrieffer-Heeger model, in the presence of on-site interactions. Based on a study of charge and spin correlation functions, we elucidate the nature of the topological edge modes, which, depending on the sign of the interactions, either display particles of opposite spin on opposite edges, or a pair and a holon. This study of correlation functions also highlights the strong entanglement that exists between the opposite edges of the system. This last feature has remarkable consequences upon subjecting the system to a quench, where an instantaneous edge-to-edge signal appears in the correlation functions characterizing the edge modes. Besides, other correlation functions are shown to propagate in the bulk according to the light cone imposed by the Lieb-Robinson bound. Our study reveals how one-dimensional lattices exhibiting entangled topological edge modes allow for a nontrivial correlation spreading, while providing an accessible platform to detect spin-charge separation using state-of-the-art experimental techniques.

  18. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1-bit comparator, which digitizes the input referenced to an adjustable threshold value. This results in four independent serial sample streams of binary 1s and 0s, which are ORed together at rates up to 10 GHz. This single serial stream is then deserialized by a factor of 16 to create 16 signal lines at a rate of 622.5 MHz or lower for input to a high-speed digital processor assembly. The new design and corresponding hardware can be employed with a quad-photon counting detector capable of handling photon rates on the order of multi-gigaphotons per second, whereas prior art was only capable of handling a single input at 1/4 the flux rate. Additionally, the hardware edge-detection algorithm has provided the ability to process 3-10 higher photon flux rates than previously possible by removing the limitation that photoncounting detector output pulses on multiple channels being ORed not overlap. Now, only the leading edges of the pulses are required to not overlap. This new photon counting digitizer hardware architecture supports a universal front end for an optical communications receiver operating at data rates from kilobits to over one gigabit per second to meet increased mission data volume requirements.

  19. How bees distinguish patterns by green and blue modulation

    PubMed Central

    Horridge, Adrian

    2015-01-01

    In the 1920s, Mathilde Hertz found that trained bees discriminated between shapes or patterns of similar size by something related to total length of contrasting contours. This input is now interpreted as modulation in green and blue receptor channels as flying bees scan in the horizontal plane. Modulation is defined as total contrast irrespective of sign multiplied by length of edge displaying that contrast, projected to vertical, therefore, combining structure and contrast in a single input. Contrast is outside the eye; modulation is a phasic response in receptor pathways inside. In recent experiments, bees trained to distinguish color detected, located, and measured three independent inputs and the angles between them. They are the tonic response of the blue receptor pathway and modulation of small-field green or (less preferred) blue receptor pathways. Green and blue channels interacted intimately at a peripheral level. This study explores in more detail how various patterns are discriminated by these cues. The direction of contrast at a boundary was not detected. Instead, bees located and measured total modulation generated by horizontal scanning of contrasts, irrespective of pattern. They also located the positions of isolated vertical edges relative to other landmarks and distinguished the angular widths between vertical edges by green or blue modulation alone. The preferred inputs were the strongest green modulation signal and angular width between outside edges, irrespective of color. In the absence of green modulation, the remaining cue was a measure and location of blue modulation at edges. In the presence of green modulation, blue modulation was inhibited. Black/white patterns were distinguished by the same inputs in blue and green receptor channels. Left–right polarity and mirror images could be discriminated by retinotopic green modulation alone. Colors in areas bounded by strong green contrast were distinguished as more or less blue than the background. The blue content could also be summed over the whole target. There were no achromatic patterns for bees and no evidence that they detected black, white, or gray levels apart from the differences in blue content or modulation at edges. Most of these cues would be sensitive to background color but some were influenced by changes in illumination. The bees usually learned only to avoid the unrewarded target. Exactly the same preferences of the same inputs were used in the detection of single targets as in discrimination between two targets. PMID:28539796

  20. Computer assisted diagnostic system in tumor radiography.

    PubMed

    Faisal, Ahmed; Parveen, Sharmin; Badsha, Shahriar; Sarwar, Hasan; Reza, Ahmed Wasif

    2013-06-01

    An improved and efficient method is presented in this paper to achieve a better trade-off between noise removal and edge preservation, thereby detecting the tumor region of MRI brain images automatically. Compass operator has been used in the fourth order Partial Differential Equation (PDE) based denoising technique to preserve the anatomically significant information at the edges. A new morphological technique is also introduced for stripping skull region from the brain images, which consequently leading to the process of detecting tumor accurately. Finally, automatic seeded region growing segmentation based on an improved single seed point selection algorithm is applied to detect the tumor. The method is tested on publicly available MRI brain images and it gives an average PSNR (Peak Signal to Noise Ratio) of 36.49. The obtained results also show detection accuracy of 99.46%, which is a significant improvement than that of the existing results.

  1. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  2. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  3. Advanced CD-SEM solution for edge placement error characterization of BEOL pitch 32nm metal layers

    NASA Astrophysics Data System (ADS)

    Charley, A.; Leray, P.; Lorusso, G.; Sutani, T.; Takemasa, Y.

    2018-03-01

    Metrology plays an important role in edge placement error (EPE) budgeting. Control for multi-patterning applications as new critical distances needs to be measured (edge to edge) and requirements become tighter and tighter in terms of accuracy and precision. In this paper we focus on imec iN7 BEOL platform and particularly on M2 patterning scheme using SAQP + block EUV for a 7.5 track logic design. Being able to characterize block to SAQP edge misplacement is important in a budgeting exercise (1) but is also extremely difficult due to challenging edge detection with CD-SEM (similar materials, thin layers, short distances, 3D features). In this study we develop an advanced solution to measure block to SAQP placement, we characterize it in terms of sensitivity, precision and accuracy through the comparison to reference metrology. In a second phase, the methodology is applied to budget local effects and the results are compared to the characterization of the SAQP and block independently.

  4. DAVs: Red Edge and Outbursts

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500K< Teff < 10800K . Known as DAVs or ZZ Ceti stars, their oscillations are attributed to overstable g-modes excited by convective driving. The effective temperature at the blue edge of the instability strip is slightly lower than that at which a surface convection zone appears. The temperature at the red edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  5. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  6. Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders.

    PubMed

    Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin

    2005-01-20

    Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.

  7. Impact resistance of fiber composite blades used in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Friedrich, L. A.; Preston, J. L., Jr.

    1973-01-01

    Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investigated as a function of impacting projectile characteristics, and composite material properties. Ballistic impact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting), penetrative, or structural (gross failure). Steel projectiles were found to be gelatin ice projectiles in causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either transverse or structural damage, depending upon projectile mass and velocity. Improved composite transverse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-glass fibers correlated with improved resistance of composite materials to transverse damage. In non-normal impacts against simulated blade shapes, the normal velocity component of the impact was used to correlate damage results with normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic damage, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter projectiles of ice and gelatin.

  8. Experimental investigation of passive infrared ice detection for helicopter applications

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Hansman, R. John, Jr.

    1991-01-01

    A technique is proposed to remotely detect rotor icing on helicopters. Using passive infrared (IR) thermometry it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the blade leading edge will be warmer than the uniced trailing edge resulting in a chordwise temperature profile characteristic of icing. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The characteristic chordwise temperature profiles were observed with an IR thermal video system and confirmed with thermocouple measurements. A prototype detector system was built consisting of a single point IR pyrometer, and experiments were run on a small scale rotor model. Again the characteristic chordwise temperature profiles were observed during icing, and the IR system was able to remotely detect icing. Based on the static and subscale rotor tests the passive IR technique is promising for rotor ice detection.

  9. Experimental investigation of passive infrared ice detection for helicopter applications

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Hansman, R. John, Jr.

    1991-01-01

    A technique is proposed to remotely detect rotor icing on helicopters. Using passive infrared (IR) thermometry, it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the blade leading edge will be warmer than the uniced trailing edge, resulting in a chordwise temperature profile characteristic of icing. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The characteristic chordwise temperature profiles were observed with an IR thermal video system and confirmed with thermocouple measurements. A prototype detector system was built consisting of a single point IR pyrometer. Experiments were run on a small scale rotor model. Again, the characteristic chordwise temperature profiles were observed during icing, and the IR system was able to remotely detect icing. Based on the static and subscale rotor tests, the passive IR technique is promising for rotor ice detection.

  10. The impact of logging roads on dung beetle assemblages in a tropical rainforest reserve.

    PubMed

    Edwards, Felicity A; Finan, Jessica; Graham, Lucy K; Larsen, Trond H; Wilcove, David S; Hsu, Wayne W; Chey, V K; Hamer, Keith C

    2017-01-01

    The demand for timber products is facilitating the degradation and opening up of large areas of intact habitats rich in biodiversity. Logging creates an extensive network of access roads within the forest, yet these are commonly ignored or excluded when assessing impacts of logging on forest biodiversity. Here we determine the impact of these roads on the overall condition of selectively logged forests in Borneo, Southeast Asia. Focusing on dung beetles along > 40 km logging roads we determine: (i) the magnitude and extent of edge effects alongside logging roads; (ii) whether vegetation characteristics can explain patterns in dung beetle communities, and; (iii) how the inclusion of road edge forest impacts dung beetle assemblages within the overall logged landscape. We found that while vegetation structure was significantly affected up to 34 m from the road edge, impacts on dung beetle communities penetrated much further and were discernible up to 170 m into the forest interior. We found larger species and particularly tunnelling species responded more than other functional groups which were also influenced by micro-habitat variation. We provide important new insights into the long-term ecological impacts of tropical logging. We also support calls for improved logging road design both during and after timber extraction to conserve more effectively biodiversity in production forests, for instance, by considering the minimum volume of timber, per unit length of logging road needed to justify road construction. In particular, we suggest that governments and certification bodies need to highlight more clearly the biodiversity and environmental impacts of logging roads.

  11. Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

    1989-01-01

    Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

  12. Intensity dependent spread theory

    NASA Technical Reports Server (NTRS)

    Holben, Richard

    1990-01-01

    The Intensity Dependent Spread (IDS) procedure is an image-processing technique based on a model of the processing which occurs in the human visual system. IDS processing is relevant to many aspects of machine vision and image processing. For quantum limited images, it produces an ideal trade-off between spatial resolution and noise averaging, performs edge enhancement thus requiring only mean-crossing detection for the subsequent extraction of scene edges, and yields edge responses whose amplitudes are independent of scene illumination, depending only upon the ratio of the reflectance on the two sides of the edge. These properties suggest that the IDS process may provide significant bandwidth reduction while losing only minimal scene information when used as a preprocessor at or near the image plane.

  13. K-shell photoabsorption coefficients of O2, CO2, CO, and N2O

    NASA Technical Reports Server (NTRS)

    Barrus, D. M.; Blake, R. L.; Burek, A. J.; Chambers, K. C.; Pregenzer, A. L.

    1979-01-01

    The total photoabsorption coefficient has been measured from 500 to 600 eV around the K edge of oxygen in gases O2, CO2, CO, and N2O by means of a gold continuum source and crystal spectrometer with better than 1-eV resolution. The cross sections are dominated by discrete molecular-orbital transitions below the K-edge energy. A few Rydberg transitions were barely detectable. Broad shape resonances appear at or above the K edge. Additional broad, weak features above the K edge possibly arise from shake up. Quantitative results are given that have about 10% accuracy except on the very strong peaks. All the measured features are discussed in relation to other related measurements and theory.

  14. Non-destructive Analysis Reveals Effect of Installation Details on Plywood Siding Performance

    Treesearch

    Christopher G. Hunt; Gregory T. Schueneman; Steven Lacher; Xiping Wang; R. Sam Williams

    2015-01-01

    This study evaluated the influence of a variety of construction techniques on the performance of plywood siding and the applied paint, using both ultrasound and conventional visual inspection techniques. The impact of bottom edge contact, flashing vs. caulking board ends, priming the bottom edge, location (Wisconsin vs. Mississippi) and a gap behind the siding to...

  15. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images.

    PubMed

    Liu, Meiling; Wang, Tiejun; Skidmore, Andrew K; Liu, Xiangnan

    2018-05-05

    Regional-level information on heavy metal pollution in agro-ecosystems is essential for food security because excessive levels of heavy metals in crops may pose risks to humans. However, collecting this information over large areas is inherently costly. This paper investigates the possibility of applying multi-temporal Sentinel-2 satellite images to detect heavy metal-induced stress (i.e., Cd stress) in rice crops in four study areas in Zhuzhou City, Hunan Province, China. For this purpose, we compared seven Sentinel-2 images acquired in 2016 and 2017 with in situ measured hyper-spectral data, chlorophyll content, rice leaf area index, and heavy metal concentrations in soil collected from 2014 to 2017. Vegetation indices (VIs) related to red edge bands were referred to as the sensitive indicators for screening stressed rice from unstressed rice. The coefficients of spatio-temporal variation (CSTV) derived from the VIs allowed us to discriminate crops exposed to pollution from heavy metals as well as environmental stressors. The results indicate that (i) the red edge chlorophyll index, the red edge position index, and the normalized difference red edge 2 index derived from multi-temporal Sentinel-2 images were good indicators for screening stressed rice from unstressed rice; (ii) Rice under Cd stress remained stable with lower CSTV values of VIs overall growth stages in the experimental region, whereas rice under other stressors (i.e., pests and disease) showed abrupt changes at some growth stages and presented "hot spots" with greater CSTV values; and (iii) the proposed spatio-temporal anomaly detection method was successful at detecting rice under Cd stress; and CSTVs of rice VIs stabilized regardless of whether they were applied to consecutive growth stages or to two different crop years. This study suggests that regional heavy metal stress may be accurately detected using multi-temporal Sentinel-2 images, using VIs sensitive to the spatio-temporal characteristics of crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Innovative tidal notch detection using TLS and fuzzy logic: Implications for palaeo-shorelines from compressional (Crete) and extensional (Gulf of Corinth) tectonic settings

    NASA Astrophysics Data System (ADS)

    Schneiderwind, S.; Boulton, S. J.; Papanikolaou, I.; Reicherter, K.

    2017-04-01

    Tidal notches are a generally accepted sea-level marker and maintain particular interest for palaeoseismic studies since coastal seismic activity potentially displaces them from their genetic position. The result of subsequent seismic events is a notch sequence reflecting the cumulative coastal uplift. In order to evaluate preserved notch sequences, an innovative and interdisciplinary workflow is presented that accurately highlights evidence for palaeo-sea-level markers. The workflow uses data from terrestrial laser scanning and iteratively combines high-resolution curvature analysis, high performance edge detection, and feature extraction. Based on the assumptions that remnants, such as the roof of tidal notches, form convex patterns, edge detection is performed on principal curvature images. In addition, a standard algorithm is compared to edge detection results from a custom Fuzzy logic approach. The results pass through a Hough transform in order to extract continuous line features of an almost horizontal orientation. The workflow was initially developed on a single, distinct, and sheltered exposure in southern Crete and afterwards successfully tested on laser scans of different coastal cliffs from the Perachora Peninsula. This approach allows a detailed examination of otherwise inaccessible locations and the evaluation of lateral and 3D geometries, thus evidence for previously unrecognised sea-level markers can be identified even when poorly developed. High resolution laser scans of entire cliff exposures allow local variations to be quantified. Edge detection aims to reduce information on the surface curvature and Hough transform limits the results towards orientation and continuity. Thus, the presented objective methodology enhances the recognition of tidal notches and supports palaeoseismic studies by contributing spatial information and accurate measurements of horizontal movements, beyond that recognised during traditional surveys. This is especially useful for the identification of palaeo-shorelines in extensional tectonic environments where coseismic footwall uplift (only 1/2 to 1/4 of net slip per event) is unlikely to raise an entire notch above the tidal range.

  17. Using gradient-based ray and candidate shadow maps for environmental illumination distribution estimation

    NASA Astrophysics Data System (ADS)

    Eem, Changkyoung; Kim, Iksu; Hong, Hyunki

    2015-07-01

    A method to estimate the environmental illumination distribution of a scene with gradient-based ray and candidate shadow maps is presented. In the shadow segmentation stage, we apply a Canny edge detector to the shadowed image by using a three-dimensional (3-D) augmented reality (AR) marker of a known size and shape. Then the hierarchical tree of the connected edge components representing the topological relation is constructed, and the connected components are merged, taking their hierarchical structures into consideration. A gradient-based ray that is perpendicular to the gradient of the edge pixel in the shadow image can be used to extract the shadow regions. In the light source detection stage, shadow regions with both a 3-D AR marker and the light sources are partitioned into candidate shadow maps. A simple logic operation between each candidate shadow map and the segmented shadow is used to efficiently compute the area ratio between them. The proposed method successively extracts the main light sources according to their relative contributions on the segmented shadows. The proposed method can reduce unwanted effects due to the sampling positions in the shadow region and the threshold values in the shadow edge detection.

  18. Extensions of algebraic image operators: An approach to model-based vision

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morelli, Michael V.

    1990-01-01

    Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.

  19. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Panahifar, Arash; Swanston, Treena M.; Pushie, M. Jake; Belev, George; Chapman, Dean; Weber, Lynn; Cooper, David M. L.

    2016-07-01

    Bone is a dynamic tissue which exhibits complex patterns of growth as well as continuous internal turnover (i.e. remodeling). Tracking such changes can be challenging and thus a high resolution imaging-based tracer would provide a powerful new perspective on bone tissue dynamics. This is, particularly so if such a tracer can be detected in 3D. Previously, strontium has been demonstrated to be an effective tracer which can be detected by synchrotron-based dual energy K-edge subtraction (KES) imaging in either 2D or 3D. The use of strontium is, however, limited to very small sample thicknesses due to its low K-edge energy (16.105 keV) and thus is not suitable for in vivo application. Here we establish proof-of-principle for the use of barium as an alternative tracer with a higher K-edge energy (37.441 keV), albeit for ex vivo imaging at the moment, which enables application in larger specimens and has the potential to be developed for in vivo imaging of preclinical animal models. New bone formation within growing rats in 2D and 3D was demonstrated at the Biomedical Imaging and Therapy bending magnet (BMIT-BM) beamline of the Canadian Light Source synchrotron. Comparative x-ray fluorescence imaging confirmed those patterns of uptake detected by KES. This initial work provides a platform for the further development of this tracer and its exploration of applications for in vivo development.

  20. Human recognition based on head-shoulder contour extraction and BP neural network

    NASA Astrophysics Data System (ADS)

    Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian

    2014-11-01

    In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.

  1. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    PubMed

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  2. The Impact of a New Speckle Holography Analysis on the Galactic Center Orbits Initiative

    NASA Astrophysics Data System (ADS)

    Mangian, John; Ghez, Andrea; Gautam, Abhimat; Gallego, Laly; Schödel, Rainer; Lu, Jessica; Chen, Zhuo; UCLA Galactic Center Group; W.M. Keck Observatory Staff

    2018-01-01

    The Galactic Center Orbit Initiative has used two decades of high angular resolution imaging data from the W. M. Keck Observatory to make astrometric measurements of stellar motion around our Galaxy's central supermassive black hole. We present an analysis of a new approach to ten years of speckle imaging data (1995 - 2005) that has been processed with a new holography analysis. This analysis has (1) improved the image quality near the edge of the combined speckle frame and (2) increased the depth of the images and therefore increased the number of sources detected throughout the entire image. By directly comparing each holography analysis, we find a 41% increase in total detected sources and a 81% increase in sources further than 3" from the central black hole (SgrA*). Further, we find a 49% increase in sources of K-band magnitude greater than the old holography limiting magnitude due to the reduction of light halos surrounding bright sources.

  3. Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts

    NASA Astrophysics Data System (ADS)

    Senn, Sergei; Liewald, Mathias

    2018-05-01

    This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.

  4. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  5. Real time automated inspection

    DOEpatents

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  6. Edge analyzing properties of center/surround response functions in cybernetic vision

    NASA Technical Reports Server (NTRS)

    Jobson, D. J.

    1984-01-01

    The ability of center/surround response functions to make explicit high resolution spatial information in optical images was investigated by performing convolutions of two dimensional response functions and image intensity functions (mainly edges). The center/surround function was found to have the unique property of separating edge contrast from shape variations and of providing a direct basis for determining contrast and subsequently shape of edges in images. Computationally simple measures of contrast and shape were constructed for potential use in cybernetic vision systems. For one class of response functions these measures were found to be reasonably resilient for a range of scan direction and displacements of the response functions relative to shaped edges. A pathological range of scan directions was also defined and methods for detecting and handling these cases were developed. The relationship of these results to biological vision is discussed speculatively.

  7. Role of chiral quantum Hall edge states in nuclear spin polarization.

    PubMed

    Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu

    2017-04-20

    Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

  8. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images

    NASA Astrophysics Data System (ADS)

    Wong, D. W. K.; Liu, J.; Lim, J. H.; Li, H.; Wong, T. Y.

    2009-02-01

    The accurate localization of the optic cup in retinal images is important to assess the cup to disc ratio (CDR) for glaucoma screening and management. Glaucoma is physiologically assessed by the increased excavation of the optic cup within the optic nerve head, also known as the optic disc. The CDR is thus an important indicator of risk and severity of glaucoma. In this paper, we propose a method of determining the cup boundary using non-stereographic retinal images by the automatic detection of a morphological feature within the optic disc known as kinks. Kinks are defined as the bendings of small vessels as they traverse from the disc to the cup, providing physiological validation for the cup boundary. To detect kinks, localized patches are first generated from a preliminary cup boundary obtained via level set. Features obtained using edge detection and wavelet transform are combined using a statistical approach rule to identify likely vessel edges. The kinks are then obtained automatically by analyzing the detected vessel edges for angular changes, and these kinks are subsequently used to obtain the cup boundary. A set of retinal images from the Singapore Eye Research Institute was obtained to assess the performance of the method, with each image being clinically graded for the CDR. From experiments, when kinks were used, the error on the CDR was reduced to less than 0.1 CDR units relative to the clinical CDR, which is within the intra-observer variability of 0.2 CDR units.

  9. Comparing impacts between formal and informal recreational trails.

    PubMed

    Pickering, Catherine Marina; Norman, Patrick

    2017-05-15

    Globally there are hundreds of thousands of kilometres of recreational trails traversing natural areas of high conservation value: but what are their impacts and do impacts differ among trails? We compared the effects of four common types of recreational trails [(1) narrow and (2) medium width informal bare earth trails and (3) gravel and (4) tarmac/concrete formal trails] on vegetation adjacent to trails in a high conservation value plant community that is popular for mountain biking and hiking in Australia. Plant species composition was recorded in quadrats along the edge of the four types of trails and in control sites away from trails. Vegetation cover, the cover of individual growth forms, and species richness along the edges of all four types of trails were similar to the controls, although the wider trails affected plant composition, with the tarmac and gravel trails favouring different species. With very few comparative studies, more research is required to allow managers and researchers to directly compare differences in the severity and types of impacts on vegetation among trails. In the meantime, limiting damage to vegetation on the edge of hardened trails during construction, use and maintenance is important, and hardening trails may not always be appropriate. Copyright © 2016. Published by Elsevier Ltd.

  10. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana.

    PubMed

    Hester, Mark W; Willis, Jonathan M; Rouhani, Shahrokh; Steinhoff, Marla A; Baker, Mary C

    2016-09-01

    The coastal wetland vegetation component of the Deepwater Horizon oil spill Natural Resource Damage Assessment documented significant injury to the plant production and health of Louisiana salt marshes exposed to oiling. Specifically, marsh sites experiencing trace or greater vertical oiling of plant tissues displayed reductions in cover and peak standing crop relative to reference (no oiling), particularly in the marsh edge zone, for the majority of this four year study. Similarly, elevated chlorosis of plant tissue, as estimated by a vegetation health index, was detected for marsh sites with trace or greater vertical oiling in the first two years of the study. Key environmental factors, such as hydrologic regime, elevation, and soil characteristics, were generally similar across plant oiling classes (including reference), indicating that the observed injury to plant production and health was the result of plant oiling and not potential differences in environmental setting. Although fewer significant impacts to plant production and health were detected in the latter years of the study, this is due in part to decreased sample size occurring as a result of erosion (shoreline retreat) and resultant loss of plots, and should not be misconstrued as indicating full recovery of the ecosystem. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    PubMed

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  12. Synergistic interactions between edge and area effects in a heavily fragmented landscape.

    PubMed

    Ewers, Robert M; Thorpe, Stephen; Didham, Raphael K

    2007-01-01

    Both area and edge effects have a strong influence on ecological processes in fragmented landscapes, but there is little understanding of how these two factors might interact to exacerbate local species declines. To test for synergistic interactions between area and edge effects, we sampled a diverse beetle community in a heavily fragmented landscape in New Zealand. More than 35,000 beetles of approximately 900 species were sampled over large gradients in habitat area (10(-2) 10(6) ha) and distance from patch edge (2(0)-2(10) m from the forest edge into both the forest and adjacent matrix). Using a new approach to partition variance following an ordination analysis, we found that a synergistic interaction between habitat area and distance to edge was a more important determinant of patterns in beetle community composition than direct edge or area effects alone. The strength of edge effects in beetle-species composition increased nonlinearly with increasing fragment area. One important consequence of the synergy is that the slopes of species area (SA) curves constructed from habitat islands depend sensitively on the distance from edge at which sampling is conducted. Surprisingly, we found negative SA curves for communities sampled at intermediate distances from habitat edges, caused by differential edge responses of matrix- vs. forest-specialist species in fragments of increasing area. Our data indicate that distance to habitat edge has a consistently greater impact on beetle community composition than habitat area and that variation in the strength of edge effects may underlie many patterns that are superficially related to habitat area.

  13. Low-Speed Aerodynamic Data for an 0.18-Scale Model of an F-16XL with Various Leading-Edge Modifications

    NASA Technical Reports Server (NTRS)

    Hahne, Daniel E.

    1999-01-01

    Using the F-16XL as a test-bed, two strategies for improving the low-speed flying characteristics that had minimal impact on high-speed performance were evaluated. In addition to the basic F-16XL configuration several modifications to the baseline configuration were tested in the Langley 30- X 60-Foot Tunnel: 1) the notched area at the wing leading edge and fuselage juncture was removed resulting in a continuous 70 deg leading-edge sweep on the inboard portion of the wing; 2) an integral attached-flow leading-edge flap concept was added to the continuous leading edge; and 3) a deployable vortex flap concept was added to the continuous leading edge. The purpose of this report is simply to document the test configurations, test conditions, and data obtained in this investigation for future reference and analysis. No analysis is presented herein and the data only appear in tabulated format.

  14. X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems

    PubMed Central

    Sarangi, Ritimukta

    2012-01-01

    Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635

  15. Vertical cup-to-disc ratio measurement for diagnosis of glaucoma on fundus images

    NASA Astrophysics Data System (ADS)

    Hatanaka, Yuji; Noudo, Atsushi; Muramatsu, Chisako; Sawada, Akira; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi

    2010-03-01

    Glaucoma is a leading cause of permanent blindness. Retinal fundus image examination is useful for early detection of glaucoma. In order to evaluate the presence of glaucoma, the ophthalmologists determine the cup and disc areas and they diagnose glaucoma using a vertical cup-to-disc ratio. However, determination of the cup area is very difficult, thus we propose a method to measure the cup-to-disc ratio using a vertical profile on the optic disc. First, the blood vessels were erased from the image and then the edge of optic disc was then detected by use of a canny edge detection filter. Twenty profiles were then obtained around the center of the optic disc in the vertical direction on blue channel of the color image, and the profile was smoothed by averaging these profiles. After that, the edge of the cup area on the vertical profile was determined by thresholding technique. Lastly, the vertical cup-to-disc ratio was calculated. Using seventy nine images, including twenty five glaucoma images, the sensitivity of 80% and a specificity of 85% were achieved with this method. These results indicated that this method can be useful for the analysis of the optic disc in glaucoma examinations.

  16. Transfer characteristics of optical profilers with respect to rectangular edge and step height measurement

    NASA Astrophysics Data System (ADS)

    Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter

    2017-06-01

    Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve. Nevertheless, these models are used to study the characteristics of the measured signals occurring at edges of different step height compared to signals occurring at plateaus. Moreover, a special calibration sample with continuous step height variation was developed to reduce the impact of unknown sample properties. We analyzed the signals in both, the spatial and the spatial frequency domain, and found systematic signal changes that will be discussed. As a consequence, these simulations will help to interpret measurement results appropriately and to improve them by proper parameter settings and calibration and finally to increase the edge detection accuracy.

  17. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  18. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  19. Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the trapped gyro-Landau-fluid model [Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the TGLF model

    DOE PAGES

    Kinsey, Jon E.; Staebler, Gary M.; Candy, Jefferey M.; ...

    2015-01-14

    Previous studies of DIII-D L-mode plasmas have shown that a transport shortfall exists in that our current models of turbulent transport can significantly underestimate the energy transport in the near edge region. In this paper, the Trapped Gyro-Landau-Fluid (TGLF) drift wave transport model is used to simulate the near edge transport in a DIII-D L-mode experiment designed to explore the impact of varying the safety factor on the shortfall. We find that the shortfall systematically increases with increasing safety factor and is more pronounced for the electrons than for the ions. Within the shortfall dataset, a single high current casemore » has been found where no transport shortfall is predicted. Reduced neutral beam injection power has been identified as the key parameter separating this discharge from other discharges exhibiting a shortfall. Further analysis shows that the energy transport in the L-mode near edge region is not stiff according to TGLF. Unlike the H-mode core region, the predicted temperature profiles are relatively more responsive to changes in auxiliary heating power. In testing the fidelity of TGLF for the near edge region, we find that a recalibration of the collision model is warranted. A recalibration improves agreement between TGLF and nonlinear gyrokinetic simulations performed using the GYRO code with electron-ion collisions. As a result, the recalibration only slightly impacts the predicted shortfall.« less

  20. Impact fracture toughness evaluation for high-density polyethylene materials

    NASA Astrophysics Data System (ADS)

    Cherief, M. N. D.; Elmeguenni, M.; Benguediab, M.

    2017-03-01

    The impact fracture behavior of a high-density polyethylene (HDPE) material is investigated experimentally and theoretically. Single-edge notched bending (SENB) specimens are tested in experiments with three-point bending and in the Charpy impact tests. An energy model is proposed for evaluating the HDPE impact toughness, which provides a description of both brittle and ductile fracture.

  1. Environmental effects on FOD resistance of composite fan blade

    NASA Technical Reports Server (NTRS)

    Murphy, G. C.; Selemme, C. T.

    1981-01-01

    The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.

  2. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  3. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1995-01-01

    Laser altimeters measure the time of flight of the laser pulses to determine the range of the target. The simplest altimeter receiver consists of a photodetector followed by a leading edge detector. A time interval unit (TIU) measures the time from the transmitted laser pulse to the leading edge of the received pulse as it crosses a preset threshold. However, the ranging error of this simple detection scheme depends on the received, pulse amplitude, pulse shape, and the threshold. In practice, the pulse shape and the amplitude are determined by the target target characteristics which has to be assumed unknown prior to the measurement. The ranging error can be improved if one also measures the pulse width and use the average of the leading and trailing edges (half pulse width) as the pulse arrival time. The ranging error becomes independent of the received pulse amplitude and the pulse width as long as the pulse shape is symmetric. The pulse width also gives the slope of the target. The ultimate detection scheme is to digitize the received waveform and calculate the centroid as the pulse arrival time. The centroid detection always gives unbiased measurement even for asymmetric pulses. In this report, we analyze the laser altimeter ranging errors for these three detection schemes using the Mars Orbital Laser Altimeter (MOLA) as an example.

  4. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  5. Local and landscape scale factors influencing edge effects on woodland salamanders.

    PubMed

    Moseley, Kurtis R; Ford, W Mark; Edwards, John W

    2009-04-01

    We examined local and landscape-scale variable influence on the depth and magnitude of edge effects on woodland salamanders in mature mixed mesophytic and northern hardwood forest adjacent to natural gas well sites maintained as wildlife openings. We surveyed woodland salamander occurrence from June-August 2006 at 33 gas well sites in the Monongahela National Forest, West Virginia. We used an information-theoretic approach to test nine a priori models explaining landscape-scale effects on woodland salamander capture proportion within 20 m of field edge. Salamander capture proportion was greater within 0-60 m than 61-100 m of field edges. Similarly, available coarse woody debris proportion was greater within 0-60 m than 61-100 m of field edge. Our ASPECT model, that incorporated the single variable aspect, received the strongest support for explaining landscape-scale effects on salamander capture proportion within 20 m of opening edge. The ASPECT model indicated that fewer salamanders occurred within 20 m of opening edges on drier, hotter southwestern aspects than in moister, cooler northeastern aspects. Our results suggest that forest habitat adjacent to maintained edges and with sufficient cover still can provide suitable habitat for woodland salamander species in central Appalachian mixed mesophytic and northern hardwood forests. Additionally, our modeling results support the contention that edge effects are more severe on southwesterly aspects. These results underscore the importance of distinguishing among different edge types as well as placing survey locations within a landscape context when investigating edge impacts on woodland salamanders.

  6. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  7. Infinite coherence time of edge spins in finite-length chains

    NASA Astrophysics Data System (ADS)

    Maceira, Ivo A.; Mila, Frédéric

    2018-02-01

    Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.

  8. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  9. Pupillometry: Cutting Edge Biometrics for Early Intervention in Increased Intracranial Pressure.

    PubMed

    John, Jennilee St

    2015-10-01

    The pupillometer, a cutting-edge biometric device, is a valuable assessment tool that can aid in the early detection and prompt treatment of neurological abnormalities. Pupil assessment is a critical component of the neurological examination, and manual pupil assessment leaves much room for error. Automated pupillometry improves the quality and reliability of pupillary and neurological assessments, ultimately improving patient outcomes. Copyright 2015, SLACK Incorporated.

  10. Three-dimensional object recognitions from two-dimensional images using wavelet transforms and neural networks

    NASA Astrophysics Data System (ADS)

    Deschenes, Sylvain; Sheng, Yunlong; Chevrette, Paul C.

    1998-03-01

    3D object classification from 2D IR images is shown. The wavelet transform is used for edge detection. Edge tracking is used for removing noise effectively int he wavelet transform. The invariant Fourier descriptor is used to describe the contour curves. Invariance under out-of-plane rotation is achieved by the feature space trajectory neural network working as a classifier.

  11. Impact of cover crop, irrigation and season on nutrient and sediment in the runoff water measured at the edge-of-fields in northeast Arkansas

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of water quality at the edge-of-field (EOF) from production-size fields is needed to better inform agriculture and resource managers regarding sustainable farming practices and environmental stewardship. We measured runoff water quality at EOF of paired commercial fields in Mi...

  12. Growth dominates choice in network percolation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.

    2013-09-01

    The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.

  13. Measles on the Edge: Coastal Heterogeneities and Infection Dynamics

    PubMed Central

    Bharti, Nita; Xia, Yingcun; Bjornstad, Ottar N.; Grenfell, Bryan T.

    2008-01-01

    Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted ‘edge effect’ by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of ‘edge effects’ on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models. PMID:18398467

  14. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    PubMed

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-05-01

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  15. Image flows and one-liner graphical image representation.

    PubMed

    Makhervaks, Vadim; Barequet, Gill; Bruckstein, Alfred

    2002-10-01

    This paper introduces a novel graphical image representation consisting of a single curve-the one-liner. The first step of the algorithm involves the detection and ranking of image edges. A new edge exploration technique is used to perform both tasks simultaneously. This process is based on image flows. It uses a gradient vector field and a new operator to explore image edges. Estimation of the derivatives of the image is performed by using local Taylor expansions in conjunction with a weighted least-squares method. This process finds all the possible image edges without any pruning, and collects information that allows the edges found to be prioritized. This enables the most important edges to be selected to form a skeleton of the representation sought. The next step connects the selected edges into one continuous curve-the one-liner. It orders the selected edges and determines the curves connecting them. These two problems are solved separately. Since the abstract graph setting of the first problem is NP-complete, we reduce it to a variant of the traveling salesman problem and compute an approximate solution to it. We solve the second problem by using Dijkstra's shortest-path algorithm. The full software implementation for the entire one-liner determination process is available.

  16. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction. One source of light for shading does show all morphologic features needed for description. Additionally, more details such as fault lines, overlaps and characteristic edges of complex shell structures are clearly detected by simply changing the illumination on the shaded digital surface model. In a further study, the potential of edge detection of the individual shells will be analyzed based on statistical analysis by keeping track of the local accumulative shading gradient. The results are compared to manually identified edges. In a following study phase, the detected edges will be improved by graph cut segmentation. We assume that this technique can lead to automatically extracted teaching set for object segmentation on a complex environment. The project is supported by the Austrian Science Fund (FWF P 25883-N29).

  17. Active edge control in the precessions polishing process for manufacturing large mirror segments

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Zhang, Wei; Walker, David; Yu, Gouyo

    2014-09-01

    The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The `Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under `Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the `Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.

  18. Automatic removal of cosmic ray signatures in Deep Impact images

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; A'Hearn, M. F.; Klaasen, K. P.

    The results of recognition of cosmic ray (CR) signatures on single images made during the Deep Impact mission were analyzed for several codes written by several authors. For automatic removal of CR signatures on many images, we suggest using the code imgclean ( http://pdssbn.astro.umd.edu/volume/didoc_0001/document/calibration_software/dical_v5/) written by E. Deutsch as other codes considered do not work properly automatically with a large number of images and do not run to completion for some images; however, other codes can be better for analysis of certain specific images. Sometimes imgclean detects false CR signatures near the edge of a comet nucleus, and it often does not recognize all pixels of long CR signatures. Our code rmcr is the only code among those considered that allows one to work with raw images. For most visual images made during low solar activity at exposure time t > 4 s, the number of clusters of bright pixels on an image per second per sq. cm of CCD was about 2-4, both for dark and normal sky images. At high solar activity, it sometimes exceeded 10. The ratio of the number of CR signatures consisting of n pixels obtained at high solar activity to that at low solar activity was greater for greater n. The number of clusters detected as CR signatures on a single infrared image is by at least a factor of several greater than the actual number of CR signatures; the number of clusters based on analysis of two successive dark infrared frames is in agreement with an expected number of CR signatures. Some glitches of false CR signatures include bright pixels repeatedly present on different infrared images. Our interactive code imr allows a user to choose the regions on a considered image where glitches detected by imgclean as CR signatures are ignored. In other regions chosen by the user, the brightness of some pixels is replaced by the local median brightness if the brightness of these pixels is greater by some factor than the median brightness. The interactive code allows one to delete long CR signatures and prevents removal of false CR signatures near the edge of the nucleus of the comet. The interactive code can be applied to editing any digital images. Results obtained can be used for other missions to comets.

  19. Delaunay based algorithm for finding polygonal voids in planar point sets

    NASA Astrophysics Data System (ADS)

    Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.

    2018-01-01

    This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.

  20. X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region

    NASA Astrophysics Data System (ADS)

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-10-01

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.

Top