Living on the edge: transfer and traffic of E. coli in a confined flow.
Figueroa-Morales, Nuris; Leonardo Miño, Gastón; Rivera, Aramis; Caballero, Rogelio; Clément, Eric; Altshuler, Ernesto; Lindner, Anke
2015-08-21
We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegfried, Matthew J.; Radford, Daniel R.; Huffman, Russell K.
An electrostatic particle collector may generally include a housing having sidewalls extending lengthwise between a first end and a second end. The housing may define a plate slot that extends heightwise within the housing between a top end and a bottom end. The housing may further include a plate access window that provides access to the bottom end of the plate slot. The collector may also include a collector plate configured to be installed within the plate slot that extends heightwise between a top edge and a bottom edge. Additionally, when the collector plate is installed within the plate slot,more » the bottom edge of the collector plate may be accessible from an exterior of the housing via the plate access window so as to allow the bottom edge of the collector plate to be moved relative to the housing to facilitate removal of the collector plate from the housing.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... the top edge of the flange and five holes in the bottom flange at a distance of 40 mm (1.6 in) from the bottom edge of the flange. The holes are spaced at 100 mm (3.9 in), 300 mm (11.8 in), 500 mm (19.7 in), 700 mm (27.5 in), 900 mm (35.4 in) horizontally, from either edge of the barrier. All holes are...
Air lifted and propelled vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.E.; Johnson, R.A.
1987-02-17
This patent describes a vehicle which rides on air cushion and which is propelled by air, comprising: upper deck means, having a bottom edge which defines the periphery of an area; a thin, flexible sheet located below the upper deck means, extending beneath the bottom edge and secured beneath the bottom edge for defining a plenum that is defined by and closed off by the upper deck means and the sheet. The deck means is shaped within the area defined by its bottom edge for causing the plenum to always be an open space and the upper deck means ismore » rigid enough to maintain that open condition of the plenum; the sheet being secured in a manner permitting the sheet to pillow when air is pressurized in the plenum; and the sheet being perforated below the upper deck means for permitting exit of air from the plenum at a controllable rate through the perforations; the sheet having a large plurality of the perforations dispersed over most of its area below the upper deck means; each of the perforations being a hole.« less
Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling
NASA Astrophysics Data System (ADS)
Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan
2016-12-01
Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.
NASA Astrophysics Data System (ADS)
Yamaguchi, Atsuko; Ohashi, Takeyoshi; Kawasaki, Takahiro; Inoue, Osamu; Kawada, Hiroki
2013-04-01
A new method for calculating critical dimension (CDs) at the top and bottom of three-dimensional (3D) pattern profiles from a critical-dimension scanning electron microscope (CD-SEM) image, called as "T-sigma method", is proposed and evaluated. Without preparing a library of database in advance, T-sigma can estimate a feature of a pattern sidewall. Furthermore, it supplies the optimum edge-definition (i.e., threshold level for determining edge position from a CDSEM signal) to detect the top and bottom of the pattern. This method consists of three steps. First, two components of line-edge roughness (LER); noise-induced bias (i.e., LER bias) and unbiased component (i.e., bias-free LER) are calculated with set threshold level. Second, these components are calculated with various threshold values, and the threshold-dependence of these two components, "T-sigma graph", is obtained. Finally, the optimum threshold value for the top and the bottom edge detection are given by the analysis of T-sigma graph. T-sigma was applied to CD-SEM images of three kinds of resist-pattern samples. In addition, reference metrology was performed with atomic force microscope (AFM) and scanning transmission electron microscope (STEM). Sensitivity of CD measured by T-sigma to the reference CD was higher than or equal to that measured by the conventional edge definition. Regarding the absolute measurement accuracy, T-sigma showed better results than the conventional definition. Furthermore, T-sigma graphs were calculated from CD-SEM images of two kinds of resist samples and compared with corresponding STEM observation results. Both bias-free LER and LER bias increased as the detected edge point moved from the bottom to the top of the pattern in the case that the pattern had a straight sidewall and a round top. On the other hand, they were almost constant in the case that the pattern had a re-entrant profile. T-sigma will be able to reveal a re-entrant feature. From these results, it is found that T-sigma method can provide rough cross-sectional pattern features and achieve quick, easy and accurate measurements of top and bottom CD.
Non-destructive Analysis Reveals Effect of Installation Details on Plywood Siding Performance
Christopher G. Hunt; Gregory T. Schueneman; Steven Lacher; Xiping Wang; R. Sam Williams
2015-01-01
This study evaluated the influence of a variety of construction techniques on the performance of plywood siding and the applied paint, using both ultrasound and conventional visual inspection techniques. The impact of bottom edge contact, flashing vs. caulking board ends, priming the bottom edge, location (Wisconsin vs. Mississippi) and a gap behind the siding to...
Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira
2017-11-01
We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.
Topological helical edge states in water waves over a topographical bottom
NASA Astrophysics Data System (ADS)
Wu, Shiqiao; Wu, Ying; Mei, Jun
2018-02-01
We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full-wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.
Jolitz, Rebecca D; McKay, Christopher P
2013-07-01
In extreme desert environments, photosynthetic microorganisms often live on the buried undersides of translucent rocks. Computing the light level reaching these locations requires 3D modeling of a finite rock. We report on Monte Carlo calculations of skylight and sunlight transmission through a partially buried flat cylindrical rock using one billion photons per simulation. Transmitted light level drops inversely with increasing rock opacity, as expected for purely scattering media. For a half-buried rock with an extinction coefficient of 0.1 cm(-1) (opacity of 0.2), transmission at the bottom is 64 % for sunlight at a solar zenith angle of 60° and 82 % for skylight. Transmitted light level increases slowly with increasing scattering asymmetry factor of the rock independent of illumination or depth buried. Transmitted sunlight at zenith through a thick half-buried rock (opacity of 0.6) is six times brighter at the bottom than the subsurface sides. Skylight transmits equally to the subsurface sides and bottom. When the sun is not straight overhead, the sunward side of the rock is brighter than the underside of the rock. Compared to the sunlight transmitted to the bottom, transmitted sunlight inclined at 60° is 24 times brighter at the subsurface side towards the sun and 14 times brighter at the subsurface side 70° away from the sun. Transmitted sunlight emitted from zenith and skylight is uniformly bright at the bottom regardless of how deeply the rock is buried. Sunlight not at zenith transmits preferentially to the sunward bottom edge depending on the depth the rock is buried.
Reduction of Flap Side Edge Noise - the Blowing Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, THomas F.
2005-01-01
A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.
NASA Astrophysics Data System (ADS)
Grinyó, Jordi; Gori, Andrea; Greenacre, Michael; Requena, Susana; Canepa, Antonio; Lo Iacono, Claudio; Ambroso, Stefano; Purroy, Ariadna; Gili, Josep-Maria
2018-03-01
Highly diverse megabenthic assemblages dominated by passive and active suspension feeders have been recently reported in shelf edge environments of the Mediterranean Sea. Due to their frequent association with species of commercial interest, these assemblages have been heavily impacted by fishing. The vulnerability and low resilience of these assemblages, composed mainly by long-living and slow-growing species, have motivated the implementation of management measures such as the restriction of bottom trawling, and the establishment of large protected areas embracing these environments. The Menorca Channel is one of such areas recently included in the European Union Natura 2000 network. Quantitative analysis of video transects recorded at 95-360 m depth by manned submersible and remotely operated vehicles were used to characterize megabenthic assemblages and to assess their geographical and bathymetric distribution. Six different assemblages were identified, mainly segregated by substrate type and depth. Hard substrates hosted coral gardens and sponge grounds, whereas soft sediments were mainly characterized by large extensions of the crinoid Leptometra phalangium and the brachiopod Gryphus vitreus. The good preservation of most of the observed assemblages is probably related to a low bottom trawling pressure, which mainly concentrates deeper on the adjacent continental slope. Because of their biological and ecological value, management and conservation measures need to be established to preserve these benthic assemblages.
19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ...
19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ORE BIN IN FOREGROUND WITH DISCHARGE TO GRIZZLY AT BOTTOM OF VIEW. CONCRETE RETAINING WALL TO LEFT (SOUTH) AND BOTTOM (EAST EDGE OF EAST BIN). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Development of an NPS Middle Ultraviolet Spectrograph (Mustang) Electronic Interface
1991-12-01
connecting coaxial shield ................................ 140 xiii Figure 7-12 Encode Command Signal (top) and Video Data Signal (bottom) after connecting...coaxial shield ................................................ 142 Figure 7-13 Data Ready Signal (top) and Video Data Signal (bottom) after...connecting coaxial shield ....................................................... 142 Figure 7-14 Word Clock (top) and Gated Enable Signal Rising Edge (bottom
PIV Measurements on a Blowing Flap
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Stead, Daniel J.
2004-01-01
PIV measurements of the flow in the region of a flap side edge are presented for several blowing flap configurations. The test model is a NACA 63(sub 2)-215 Hicks Mod-B main-element airfoil with a half-span Fowler flap. Air is blown from small slots located along the flap side edge on either the top, bottom or side surfaces. The test set up is described and flow measurements for a baseline and three blowing flap configurations are presented. The effects that the flap tip jets have on the structure of the flap side edge flow are discussed for each of the flap configurations tested. The results indicate that blowing air from a slot located along the top surface of the flap greatly weakened the top vortex system and pushed it further off the top surface. Blowing from the bottom flap surface kept the strong side vortex further outboard while blowing from the side surface only strengthened the vortex system or accelerated the merging of the side vortex to the flap top surface. It is concluded that blowing from the top or bottom surfaces of the flap may lead to a reduction of flap side edge noise.
Integral Textile Structure for 3-D CMC Turbine Airfoils
NASA Technical Reports Server (NTRS)
Marshall, David B. (Inventor); Cox, Brian N. (Inventor); Sudre, Olivier H. (Inventor)
2017-01-01
An integral textile structure for 3-D CMC turbine airfoils includes top and bottom walls made from an angle-interlock weave, each of the walls comprising warp and weft fiber tows. The top and bottom walls are merged on a first side parallel to the warp fiber tows into a single wall along a portion of their widths, with the weft fiber tows making up the single wall interlocked through the wall's thickness such that delamination of the wall is inhibited. The single wall suitably forms the trailing edge of an airfoil; the top and bottom walls are preferably joined along a second side opposite the first side and parallel to the radial fiber tows by a continuously curved section in which the weave structure remains continuous with the weave structure in the top and bottom walls, the continuously curved section being the leading edge of the airfoil.
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H
2013-01-01
High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to experimental data. Using the same turbulence model shows that the height of ribs used in the study is not suitable for inducing secondary flow. Also, the orthogonal rib does not strengthen the secondary flow rotational momentum. The comparison between the new designs for trailing edge shows that if pressure drop is acceptable, staggered arrangement is suitable for the outlet pass heat transfer. For the trailing edge wall, the thermal performance for the ribbed trailing edge only was found about 8% better than other configurations.
NASA Astrophysics Data System (ADS)
Wilde, C.; Langehanenberg, P.; Schenk, T.
2017-10-01
For modern production of micro lens systems, such as cementing of doublets or more lenses, precise centering of the lens edge is crucial. Blocking the lens temporarily on a centering arbor ensures that the centers of all optical lens surfaces coincide with the lens edge, while the arbor's axis serves as reference for both alignment and edging process. This theoretical assumption of the traditional cementing technology is not applicable for high-end production. In reality cement wedges between the bottom lens surface and the arbor's ring knife edge may occur and even expensive arbors with single-micron precision suffer from reduced quality of the ring knife edge after multiple usages and cleaning cycles. Consequently, at least the position of the bottom lens surface is undefined and the optical axis does not coincide with the arbor's reference axis! In order to overcome this basic problem in using centering arbors, we present a novel and efficient technique which can measure and align both surfaces of a lens with respect to the arbor axis with high accuracy and furthermore align additional lenses to the optical axis of the bottom lens. This is accomplished by aligning the lens without mechanical contact to the arbor. Thus the lens can be positioned in four degrees of freedom, while the centration errors of all lens surfaces are measured and considered. Additionally the arbor's reference axis is not assumed to be aligned to the rotation axis, but simultaneously measured with high precision.
Experimental visualization of the cathode layer in AC surface dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Kim, Sang-You; Lho, Taihyeop; Chung, Kyu-Sun
2018-06-01
A narrow etched polyimide line at the bottom edge of a biased electrode (BE) and a non-etched dielectric surface near the biased electrode were observed in an atmospheric AC flexible surface dielectric barrier discharge of polyimide dielectric. These findings are attributed to the bombardment of positive oxygen ions on the bottom edge of the BE and the electron breakdown trajectory not contacting the polyimide surface following the electric field lines formed between the BE edge and the surface charge layer on the dielectric. The length of the non-etched dielectric surface during the first micro-discharge was observed as 22 μm. This occurred, regardless of three different operating durations, which is in good agreement with the length of the cathode layer according to Paschen's law.
Effect of disorder on longitudinal resistance of a graphene p-n junction in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Chen, Jiang-Chai; Yeung, T. C. Au; Sun, Qing-Feng
2010-06-01
The longitudinal resistances of a six-terminal graphene p-n junction under a perpendicular magnetic field are investigated. Because of the chirality of the Hall edge states, the longitudinal resistances on top and bottom edges of the graphene ribbon are not equal. In the presence of suitable disorder, the top-edge and bottom-edge resistances well show the plateau structures in the both unipolar and bipolar regimes, and the plateau values are determined by the Landau filling factors only. These plateau structures are in excellent agreement with the recent experiment. For the unipolar junction, the resistance plateaus emerge in the absence of impurity and they are destroyed by strong disorder. But for the bipolar junction, the resistances are very large without the plateau structures in the clean junction. The disorder can strongly reduce the resistances and leads the formation of the resistance plateaus due to the mixture of the Hall edge states in virtue of the disorder. In addition, the size effect of the junction on the resistances is studied and some extra resistance plateaus are found in the long graphene junction case. This is explained by the fact that only part of the edge states participate in the full mixing.
Simultaneous laser cutting and welding of metal foil to edge of a plate
Pernicka, John C.; Benson, David K.; Tracy, C. Edwin
1996-01-01
A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.
16 CFR 1211.7 - Inherent entrapment protection requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... installation and at various heights under the edge of the door and located in line with the driving point of... installation, the bottom edge of the door under the driving force of the operator is to be against the floor... that represents the most severe operating condition. Any accessories having an effect on the intended...
19. Detail of base of revolving lens assembly, showing bottom ...
19. Detail of base of revolving lens assembly, showing bottom of lamp at center and brass tens framework at edges of circular platform. Mercury float bearing lies in circular well just beneath lens platform. (Blurred due to lens motion.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI
Simultaneous laser cutting and welding of metal foil to edge of a plate
Pernicka, J.C.; Benson, D.K.; Tracy, C.E.
1996-03-19
A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.
Rotatable crucible for rapid solidification process
NASA Technical Reports Server (NTRS)
Gaspar, Thomas (Inventor)
1990-01-01
This invention relates to an apparatus for producing filament, fiber, ribbon or film from a molten material, comprising a preferably heat extracting crucible which contains a pool of molten material at a selected horizontal level in the pool. The crucible has an opening extending from above the free surface level to a bottom edge of the opening, the bottom edge being sufficiently below the free surface level so that the molten material cannot form and hold a meniscus by surface tension between the edge and the level of the free surface and further comprises a heat extracting substrate laterally disposed with respect to the crucible and which rotates about an axis of rotation. The substrate is positioned adjacent the edge of the opening which confines the molten material and prevents it from overflowing downwardly out of the crucible. The invention features rotating means which includes a first drive means for tiltably rotating the crucible about an axis of rotation which is coaxial with the axis of rotation of the substrate, so the crucible edge can be maintained a predetermined constant distance from the substrate. The distance chosen is suitable for depositing molten material on the substrate and the apparatus also has a second drive means which is drivingly connected to the substrate for continuously moving the surface of the substrate upwardly past the edge and a melt front formed at the interface of the molten material and the substrate surface.
Individualized FAC on bottom tab subassemblies to minimize adhesive gap between emitter and optics
NASA Astrophysics Data System (ADS)
Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Beleke, Andreas; Zontar, Daniel; Baum, Christoph; Brecher, Christian
2017-02-01
High Power Diode Laser (HPDL) systems with short focal length fast-axis collimators (FAC) require submicron assembly precision. Conventional FAC-Lens assembly processes require adhesive gaps of 50 microns or more in order to compensate for component tolerances (e.g. deviation of back focal length) and previous assembly steps. In order to control volumetric shrinkage of fast-curing UV-adhesives shrinkage compensation is mandatory. The novel approach described in this paper aims to minimize the impact of volumetric shrinkage due to the adhesive gap between HPDL edge emitters and FAC-Lens. Firstly, the FAC is actively aligned to the edge emitter without adhesives or bottom tab. The relative position and orientation of FAC to emitter are measured and stored. Consecutively, an individual subassembly of FAC and bottom tab is assembled on Fraunhofer IPT's mounting station with a precision of +/-1 micron. Translational and lateral offsets can be compensated, so that a narrow and uniform glue gap for the consecutive bonding process of bottom tab to heatsink applies (Figure 4). Accordingly, FAC and bottom tab are mounted to the heatsink without major shrinkage compensation. Fraunhofer IPT's department assembly of optical systems and automation has made several publications regarding active alignment of FAC lenses [SPIE LASE 8241-12], volumetric shrinkage compensation [SPIE LASE 9730-28] and FAC on bottom tab assembly [SPIE LASE 9727-31] in automated production environments. The approach described in this paper combines these and is the logical continuation of that work towards higher quality of HPDLs.
The Effects of through the Thickness Delaminations on Curved Composite Panels.
1985-12-01
experimental test device are a clamped top edge (u = v = w = w,x = 0), clamped bottom edge (u = free, v - w - wix = 0), and simply supported on the vertical...on the platform between x-rays. In this procedure, a hole is drilled in the specimen through the damaged region and a penetrant, tetrabromoethane (TBE
Foster, Richard J; Whitaker, David; Scally, Andrew J; Buckley, John G; Elliott, David B
2015-05-01
Falls on stairs are a significant cause of morbidity and mortality in elderly people. A simple safety strategy to avoid tripping on stairs is increasing foot clearance. We determined whether a horizontal-vertical illusion superimposed onto stairs to create an illusory perceived increase in stair-riser height would increase stair ascent foot clearance in older participants. Preliminary experiments determined the optimum parameters for the horizontal-vertical illusion. Fourteen older adults (mean age ± 1 SD, 68.5 ± 7.4 years) ascended a three-step staircase with the optimized version of the horizontal-vertical illusion (spatial frequency: 12 cycles per stair riser) positioned either on the bottom or top stair only, or on the bottom and top stair simultaneously. These were compared to a control condition, which had a plain stair riser with edge highlighters positioned flush with each stair-tread edge. Foot clearance and measures of postural stability were compared across conditions. The optimized illusion on the bottom and top stair led to a significant increase in foot clearance over the respective stair edge, compared to the control condition. There were no significant decreases in postural stability. An optimized horizontal-vertical visual illusion led to significant increases in foot clearance in older adults when ascending a staircase, but the effects did not destabilize their postural stability. Inclusion of the horizontal-vertical illusion on raised surfaces (e.g., curbs) or the bottom and top stairs of staircases could improve stair ascent safety in older adults.
View of Central Texas as seen from Apollo 9
NASA Technical Reports Server (NTRS)
1969-01-01
Central Texas area as photographed from the Apollo 9 spacecraft during its earth-orbital mission. Interstate 35 runs from Austin (right center edge of pictures) to Waco (near bottom left corner). Also, visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.
Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears
Kraus, Richard T.; Knight, Carey T.; Farmer, Troy M.; Gorman, Ann Marie; Collingsworth, Paris D.; Warren, Glenn J.; Kocovsky, Patrick M.; Conroy, Joseph D.
2015-01-01
Seasonal degradation of aquatic habitats from hypoxia occurs in numerous freshwater and coastal marine systems and can result in direct mortality or displacement of fish. Yet, fishery landings from these systems are frequently unresponsive to changes in the severity and extent of hypoxia, and population-scale effects have been difficult to measure except in extreme hypoxic conditions with hypoxia-sensitive species. We investigated fine-scale temporal and spatial variability in dissolved oxygen in Lake Erie as it related to fish distribution and catch efficiencies of both active (bottom trawls) and passive (trap nets) fishing gears. Temperature and dissolved oxygen loggers placed near the edge of the hypolimnion exhibited much higher than expected variability. Hypoxic episodes of variable durations were frequently punctuated by periods of normoxia, consistent with high-frequency internal waves. High-resolution interpolations of water quality and hydroacoustic surveys suggest that fish habitat is compressed during hypoxic episodes, resulting in higher fish densities near the edges of hypoxia. At fixed locations with passive commercial fishing gear, catches with the highest values occurred when bottom waters were hypoxic for intermediate proportions of time. Proximity to hypoxia explained significant variation in bottom trawl catches, with higher catch rates near the edge of hypoxia. These results emphasize how hypoxia may elevate catch rates in various types of fishing gears, leading to a lack of association between indices of hypoxia and fishery landings. Increased catch rates of fish at the edges of hypoxia have important implications for stock assessment models that assume catchability is spatially homogeneous.
Earth observations taken from Space Shuttle Columbia during STS-80 mission
1996-11-23
STS080-709-094 (19 Nov.-7 Dec. 1996) --- This is a view of the western portion of the Florida Keys. The view shows the city of Key West, bottom mid-right, with Marathon Key, near top middle left, and the edge of the Straits of Florida, the dark water on the right edge. Clouds form over the cooler waters of the strait. The runways at Boca Chica Key Naval Air Station are seen near Key West. The bottom can be seen clearly in the shallow water, the deeper water has depths of over a half a mile. The thin line of the Overseas Highway can be traced east from Key West. Prior to a hurricane in 1935, this route was a railway line.
50 CFR 622.227 - Adjustment of management measures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.227 Adjustment of management measures. In accordance with the framework procedures of the FMP for Coral, Coral... following: (a) South Atlantic coral, coral reefs, and live/hard bottom habitats. Definitions of essential...
50 CFR 622.227 - Adjustment of management measures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.227 Adjustment of management measures. In accordance with the framework procedures of the FMP for Coral, Coral... following: (a) South Atlantic coral, coral reefs, and live/hard bottom habitats. Definitions of essential...
Edge-on View of Saturn's Rings
NASA Technical Reports Server (NTRS)
1996-01-01
TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.
In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Processing and evaluation of riverine waveforms acquired by an experimental bathymetric LiDAR
NASA Astrophysics Data System (ADS)
Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.
2010-12-01
Accurate mapping of fluvial environments with airborne bathymetric LiDAR is challenged not only by environmental characteristics but also the development and application of software routines to post-process the recorded laser waveforms. During a bathymetric LiDAR survey, the transmission of the green-wavelength laser pulses through the water column is influenced by a number of factors including turbidity, the presence of organic material, and the reflectivity of the streambed. For backscattered laser pulses returned from the river bottom and digitized by the LiDAR detector, post-processing software is needed to interpret and identify distinct inflections in the reflected waveform. Relevant features of this energy signal include the air-water interface, volume reflection from the water column itself, and, ideally, a strong return from the bottom. We discuss our efforts to acquire, analyze, and interpret riverine surveys using the USGS Experimental Advanced Airborne Research LiDAR (EAARL) in a variety of fluvial environments. Initial processing of data collected in the Trinity River, California, using the EAARL Airborne Lidar Processing Software (ALPS) highlighted the difficulty of retrieving a distinct bottom signal in deep pools. Examination of laser waveforms from these pools indicated that weak bottom reflections were often neglected by a trailing edge algorithm used by ALPS to process shallow riverine waveforms. For the Trinity waveforms, this algorithm had a tendency to identify earlier inflections as the bottom, resulting in a shallow bias. Similarly, an EAARL survey along the upper Colorado River, Colorado, also revealed the inadequacy of the trailing edge algorithm for detecting weak bottom reflections. We developed an alternative waveform processing routine by exporting digitized laser waveforms from ALPS, computing the local extrema, and fitting Gaussian curves to the convolved backscatter. Our field data indicate that these techniques improved the definition of pool areas dominated by weak bottom reflections. These processing techniques are also being tested for EAARL surveys collected along the Platte and Klamath Rivers where environmental conditions have resulted in suppressed or convolved bottom reflections.
View of Central Texas as seen from Apollo 9
1969-03-09
AS09-22-3341 (3-13 March 1969) --- Central Texas area as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. Interstate 35 runs from Austin (right center edge of picture) to Waco (near bottom left corner). Also visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.
Sectioning Coated Specimens Without Edge Rounding
NASA Technical Reports Server (NTRS)
Mckechnie, Timothy N.
1988-01-01
New method devised for preparation of cross sections of coated specimens for scanning electron microscopy or energy-dispersive analysis without rounding edges of coatings. After cutting and polishing, specimen section remains smooth and flat so it can be examined under high magnification out to edge of coating. Sectioned blade first electroplated with hard nickel 0.003 in., then encapsulated in two layers of material: soft conductive material at bottom and 0.25 in. of hard diallyl phthalate at top. Nickel plate provides electrical path from surface of section to conductive material below.
Fife, A.B.
1998-09-01
A bottom head dome assembly is described which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome. The bottom head dome has a plurality of openings extending there through. The liner also has a plurality of openings extending there through, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending there through, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore there through, and each support stub bore aligns with a respective bottom head dome opening. 2 figs.
2006-06-02
The soft, sweeping shadows of Saturn C ring cover bright patches of clouds in the planet atmosphere. The shadow-throwing rings stretch across the view at bottom. The dark inner edge of the B ring is visible at top
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stitt, Robert R.
1994-01-01
A device for removing a rubber stopper from a test tube is mountable to an upright wall, has a generally horizontal splash guard, and a lower plate spaced parallel to and below the splash guard. A slot in the lower plate has spaced-apart opposing edges that converge towards each other from the plate outer edge to a narrowed portion, the opposing edges shaped to make engagement between the bottom of the stopper flange and the top edge of the test tube to wedge therebetween and to grasp the stopper in the slot narrowed portion to hold the stopper as themore » test tube is manipulated downwardly and pulled from the stopper. The opposing edges extend inwardly to adjoin an opening having a diameter significantly larger than that of the stopper flange.« less
Meffert, Darrel Henry; Urven, Jr., Roger Leroy; Brown, Cory Andrew; Runge, Mark Harold
2007-03-06
A piston for an internal combustion engine is disclosed. The piston has a piston crown with a face having an interior annular edge. The piston also has first piston bowl recessed within the face of the piston crown. The first piston bowl has a bottom surface and an outer wall. A line extending from the interior annular edge of the face and tangent with the outer wall forms an interior angle greater than 90 degrees with the face of the piston. The piston also has a second piston bowl that is centrally located and has an upper edge located below a face of the piston crown.
Electrostatically clean solar array
NASA Technical Reports Server (NTRS)
Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)
2004-01-01
Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.
Particle Physics. C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 {\\mathit s}}$)${\\mathit {\\mathit c}}$${\\mathit {\\mathit b}}$${\\mathit {\\mathit t}}$${\\mathit {\\mathit b StatesStrangeCharmedCharmed, StrangeBottomBottom, StrangeBottom, Charmed${\\mathit {\\mathit c}}{\\mathit {\\overline{\\mathit c
Nonlinear simulations of particle source effects on edge localized mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.; Tang, C. J.; Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064
2015-12-15
The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadeningmore » of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.« less
Rain increases methane production and methane oxidation in a boreal thermokarst bog
NASA Astrophysics Data System (ADS)
Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.
2017-12-01
Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in thermokarst bogs to energy and oxygen inputs from rain, and have implications for how boreal wetland methane emissions may respond in the future to altered precipitation patterns. Advective delivery of energy and oxygen to wetland subsoils via rainwater is not currently a mechanism included in bottom-up wetland methane models.
2009-12-21
A subset of NAC Image M112162602L showing landslides bottom covering impact melt on the floor top of a fresh Copernican-age crater at the edge of Oceanus Procellarum and west of Balboa crater taken by NASA Lunar Reconnaissance Orbiter.
16 CFR 1616.3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in a prescribed cabinet and subjected to a standard flame along their bottom edges for a specified... exceed 17.8 cm. (7.0 in.). (2) Full-specimen burn. No individual specimen shall have a char length of 25...
Study on installation of the submersible mixer
NASA Astrophysics Data System (ADS)
Tian, F.; Shi, W. D.; He, X. H.; Jiang, H.; Xu, Y. H.
2013-12-01
Study on installation of the submersible mixer for sewage treatment has been limited. In this article, large-scale computational fluid dynamics software FLUENT6.3 was adopted. ICEM software was used to build an unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. Agitation pools on four different installation location cases were simulated respectively, and the external characteristic of the submersible mixer and the velocity cloud of the axial section were respectively comparatively analyzed. The best stirring effect can be reached by the installation location of case C, which is near the bottom of the pool 600 mm and blade distance the bottom at least for 200 mm wide and wide edge and narrow edge distance by 4:3. The conclusion can guide the engineering practice.
Priddy, Tommy G.
1988-01-01
An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.
Food supply mechanisms for cold-water corals along a continental shelf edge
NASA Astrophysics Data System (ADS)
Thiem, Øyvind; Ravagnan, Elisa; Fosså, Jan Helge; Berntsen, Jarle
2006-05-01
In recent years it has been documented that deep-water coral reefs of the species Lophelia pertusa are a major benthic habitat in Norwegian waters. However, basic information about the biology and ecology of this species is still unknown. Lophelia live and thrive under special environmental conditions of which factors such as temperature, water depth, water movement and food supply are important. The present work explores the hypothesis that Lophelia forms reefs in places where the encounter rate of food particles is sufficiently high and stable over long periods of time for continuous growth. This is done by relating the distribution of reefs with the results of numerical ocean modelling. Numerical simulations have been performed with an idealized bottom topography similar to what is found outside parts of the Norwegian coast. In the simulations the model is first forced with an along slope jet and then with an idealized atmospheric low pressure. The model results show that the encounter rates between the particles and the water layer near the seabed are particularly high close to the shelf break. This may indicate that many Lophelia reefs are located along the shelf edges because the supply of food is particularly good in these areas. A sensitivity study of the particle supply in the area close to the seabed for increasing latitude has also been done. This shows that the Ekman transport in the benthic layer tends to create a steady supply of food for benthic organisms near the shelf edge away from the equator.
Combining Image Processing with Signal Processing to Improve Transmitter Geolocation Estimation
2014-03-27
transmitter by searching a grid of possible transmitter locations within the image region. At each evaluated grid point, theoretical TDOA values are computed...requires converting the image to a grayscale intensity image. This allows efficient manipulation of data and ease of comparison among pixel values . The...cluster of redundant y values along the top edge of an ideal rectangle. The same is true for the bottom edge, as well as for the x values along the
62. VIEW OF MILL SOLUTION TANKS FLOOR FROM WEST. THE ...
62. VIEW OF MILL SOLUTION TANKS FLOOR FROM WEST. THE BOTTOM OF MILL SOLUTION TANK No. 1 IS IN THE LOWER RIGHT QUADRANT UNDER A PILE OF SOLUTION SEDIMENT. JOISTS OF TANK No. 2 ARE ABOVE AND SLIGHTLY LEFT OF No. 1. THE BOTTOM OF THE MILL SOLUTION SURGE TANK WITH ATTACHED DISCHARGE PIPE IS VISIBLE ON LOWER RIGHT HAND EDGE OF VIEW; TANKS ORIGINALLY SAT ON DIAGONAL BEAM CUTTING ACROSS UPPER LEFT CORNER OF VIEW. DISCHARGE LAUNDER FROM THE UNOXIDIZED ORE CIRCUIT PIERCES THE FOUNDATION WALL ABOVE TANK No. 1 (FOR DETAIL SEE SD-2-61). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
NASA Astrophysics Data System (ADS)
Ma, Xing-Bing; Jiang, Ting
2018-04-01
A wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), two λ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR and λ/2 resonators. I/O feed lines are directly connected with two λ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.
Changes of benthic fauna in the Kattegat - An indication of climate change at mid-latitudes?
NASA Astrophysics Data System (ADS)
Göransson, Peter
2017-07-01
Several predictions point to changes in the marine benthic macrofauna associated with climate change, but so far only a few and minor changes have been reported. This study relates observed changes in the species composition to climate change by looking on the past decades in the Kattegat between Denmark and Sweden. A reduction of the total number species and a reduction of species with a northern range parallel to an increase of species with a southern range have been observed. The most likely explanation of the changes is the increase in temperature of the bottom water. Increased temperature could change the species distributions but also decrease primary production which impacts recruitment and growth. Hypoxia and bottom trawling could also act synergistic in this process. A sparse occurrence of previously encountered Arctic-Boreal species and critical foundation species, which gives the area its special character, suggests a change in biodiversity and might therefore be designated as early warning signals of a warmer climate. The northern fauna below the halocline with limited capacity of dispersal and low reproduction potential, can be considered as sensitive with low adaptive capacity to climate change. Therefore, not only tropical and high-latitude species, but also benthos on deep bottoms at mid-latitudes, could be vulnerable to warming. As many species live at the edge of their range in the Kattegat, and also are dependent of distant recruitment, large scale changes will probably be detected here at an early stage. It is important to protect relatively undisturbed reference areas in the Kattegat for future studies, but also for preserving a large number of ecosystem services, biotopes, habitats, and fish species.
69. VIEW FROM ABOVE OF PRIMARY MILL AND CLASSIFIER No. ...
69. VIEW FROM ABOVE OF PRIMARY MILL AND CLASSIFIER No. 2. PRIMARY CLASSIFIER No. 1 AT RIGHT EDGE OF VIEW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
NASA Astrophysics Data System (ADS)
Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.
2018-04-01
Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verzhbitskiy, Ivan A.; Corato, Marzio De; Ruini, Alice
Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. As a result, the low-energy spectral region below 1000 cm –1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp 2 carbon nanostructures.
NASA Astrophysics Data System (ADS)
Otaki, Takayoshi; Hamana, Masahiro; Tanoe, Hideaki; Miyazaki, Nobuyuki; Shibuno, Takuro; Komatsu, Teruhisa
2015-06-01
Most demersal fishes maintain strong relations with bottom substrates and bottom depths and/or topography during their lives. It is important to know these relations to for understand their lives. In Tokyo Bay, red stingray, Dasyatis akajei, classified as near-threatened species by IUCN, has increased since the 1980s. It is a top predator and engages in ecosystem engineer by mixing the sand bed surface through burring behavior, and greatly influences a coastal ecosystem. It is reported that this species invades in plage and tidal flats and has sometimes injured beachgoers and people gathering clams in Tokyo bay. Thus, it is necessary to know its behavior and habitat use to avoid accidents and to better conserve the biodiversity of ecosystems. However, previous studies have not examined its relationship with the bottom environment. This study aims to describe its behavior in relation to the bottom environment. We sounded three dimensional bottom topography of their habitat off Kaneda Cove in Tokyo Bay with interferometric sidescan sonar system and traced the movement of red stingrays by attaching a data logger system to survey their migration. The results revealed that red stingray repeated vertical movement between the surface and bottom, and used not only sand beds but also rocky beds.
Living on the Future Edge: Windows on Tomorrow
ERIC Educational Resources Information Center
Jukes, Ian; McCain, Ted; Crockett, Lee
2010-01-01
"Living on the Future Edge" challenges school leaders to rethink longstanding paradigms and transform pedagogy for tomorrow's learners. Apple Computer, Inc. co-founder Steve Wozniak's foreword underscores the overwhelming need to adjust traditional instruction to fit today's high-tech world. The book explores this new landscape and…
49 CFR 571.302 - Standard No. 302; Flammability of interior materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... interior of the vehicle from sources such as matches or cigarettes. S3. Application. This standard applies... bottom edge of the open end of the specimen. (d) Expose the specimen to the flame for 15 seconds. (e...
49 CFR 571.302 - Standard No. 302; Flammability of interior materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... interior of the vehicle from sources such as matches or cigarettes. S3. Application. This standard applies... bottom edge of the open end of the specimen. (d) Expose the specimen to the flame for 15 seconds. (e...
Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
Hu, Jiuning; Ruan, Xiulin; Chen, Yong P
2009-07-01
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
Airfoil System for Cruising Flight
NASA Technical Reports Server (NTRS)
Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)
2014-01-01
An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.
Apollo 9 Mission image - S0-65 Multispectral Photography - California and Mexico
1969-03-12
AS09-26A-3799A (12 March 1969) --- Color infrared photograph of the Salton Sea and Imperial Valley area of Southern California as seen from the Apollo 9 spacecraft. This picture was taken as a part of the SO-65 Multispectral Terrain Photography Experiment. On the eastern edge of the picture are the Colorado River and a small portion of Arizona. Yuma, Arizona, is at the bottom right corner. The cities of El Centro, California, and Mexicali, Mexico, are at the bottom center.
Computer-assisted image analysis of plant growth, thigmomorphogenesis and gravitropism
NASA Technical Reports Server (NTRS)
Jaffe, M. J.; Wakefield, A. H.; Telewski, F.; Gulley, E.; Biro, R.
1985-01-01
A nonintrusive auxonometric system, based on the DARWIN image processor (Telewski et al. 1983 Plant Physiol 72: 177-181), is described and demonstrated in the analysis of gravitropism and thigmomorphogenesis in corn seedlings (Zea mays). Using this system, growth and bending of regularly shaped plants or organs can be quickly and accurately measured without, in any way, interfering with the plant. Furthermore, the growth and bending curves are automatically plotted. Thigmomorphogenesis in the aerial part of corn seedlings involves growth promotion at a low force load and growth retardation at higher force loads. The time courses of the two kinds of response are somewhat different, with retardation occurring immediately after mechanical perturbation and growth promotion taking somewhat longer to begin. Gravitropic experiments show that when dark-grown corn seedlings are placed on their side in the light, the resulting curvature is due to two consecutive morphological mechanisms. In the first instance, lasting for about 15 minutes, the elongation of the bottom edge of the plant accelerates, while the elongation of the top edge remains constant. After that, for the next 1.75 hours, the elongation of the top edge decelerates and stops while that of the bottom edge remains constant at the increased rate for most of the period. The measurements taken from both experiments at relatively high resolution (0.08-0.1 millimeter) show that the growth curves are not smooth but show many small irregularities which may or may not involve micronutations.
Nearshore Wave and Current Dynamics
1999-09-30
bottom perturbation and an " influence function ". This influence function has its maximum at the shoreline and decays away from the shore. Also, the...magnitude of the influence function increases with edge-wave mode. These results show that the dispersion relationship is more sensitive to the
25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ...
25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ON LEFT EDGE OF VIEW. THE SECONDARY THICKENER No. 7 IS OFF VIEW TO THE RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiman, A.
Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils.
Moss, Owen R.
1980-01-01
A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.
Dinwoodie, Thomas L.
2005-04-26
A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The bottom edges of the barriers of one row may overlap the top edges of the barriers of another row. The shingle assemblies may be mounted by first mounting the bases to an inclined surface; the barriers may be then secured to the bases using the supports to create rows of shingle assemblies defining venting regions between the barriers and the bases for temperature regulation.
Graphene: Nanostructure engineering and applications
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Wu, Shuang; Yang, Rong; Zhang, Guangyu
2017-02-01
Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.
Raman fingerprints of atomically precise graphene nanoribbons
Verzhbitskiy, Ivan A.; Corato, Marzio De; Ruini, Alice; ...
2016-02-23
Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. As a result, the low-energy spectral region below 1000 cm –1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp 2 carbon nanostructures.
A Study of Baroclinic Instability Induced Convergence Near the Bottom Using Water Age Simulations
NASA Astrophysics Data System (ADS)
Zhang, Wenxia; Hetland, Robert D.
2018-03-01
Baroclinic instability of lateral density gradients gives way to lateral buoyancy transport, which often results in convergence of buoyancy transport. Along a sloping bottom, the induced convergence can force upward extension of bottom water. Eddy transport induced convergence at the bottom and the consequent suspended layers of bottom properties are investigated using a three-dimensional idealized model. Motivated by the distinct characteristics of intrusions over the Texas-Louisiana shelf, a series of configurations are performed with the purpose of identifying parameter impacts on the intensity of eddy transport. This study uses the "horizontal slope Burger number" as the predominant parameter; the parameter is functioned with SH=SRi-1/2=δ/Ri to identify formation of baroclinic instability, where S is the slope Burger number, δ is the slope parameter, and Ri is the Richardson number, previously shown to be the parameter that predicts the intensity of baroclinic instability on the shelf. Intrusion spreads into the interior abutting a layer that is characterized by degraded vertical stratification; a thickening in the bottom boundary layer colocates with the intrusion, which usually thins at either edge of the intrusion because of a density barrier in association with concentrated isopycnals. The intensity of convergence degrades and bottom tracer fluxes reduce linearly with increased SH on logarithmic scales, and the characteristics of bottom boundary layer behavior and the reversal in alongshore current tend to vanish.
Nearshore Wave and Current Dynamics
1997-09-30
relationship is proportional to the (cross-shore) integral of the product of the bottom perturbation and an " influence function ". This influence function has...its maximum at the shoreline and decays away from the shore. Also, the magnitude of the influence function increases with edge-wave mode. These
Nearshore Wave and Current Dynamics
1998-09-30
to the (cross-shore) integral of the product of the bottom perturbation and an " influence function ". This influence function has its maximum at the...shoreline and decays away from the shore. Also, the magnitude of the influence function increases with edge-wave mode. These results show that the
Edge effects on the electronic properties of phosphorene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun
2014-10-14
Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less
Finite element stress analysis of idealized composite damage zones
NASA Technical Reports Server (NTRS)
Obrien, D.; Herakovich, C. T.
1978-01-01
A quasi three dimensional finite element stress analysis of idealized damage zones in composite laminates is presented. The damage zones consist of a long centered groove or cutout extending one or two layers in depth from both top and bottom surfaces of a thin composite laminate. Elastic results are presented for compressive loading of four and eight layer laminates. It is shown that a boundary layer exists near the cutout edge similar to that previously shown to exist along free edges. The cutout is shown to produce significant interlaminar stresses in the interior of the laminate away from free cutout edges. The interlaminar stresses are also shown to contribute to failure which is defined using the Tsai-Wu failure criteria.
A synthetic genetic edge detection program.
Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D
2009-06-26
Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto
2015-04-10
Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.
A Synthetic Genetic Edge Detection Program
Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.
2009-01-01
Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759
Laboratory modeling of edge wave generation over a plane beach by breaking waves
NASA Astrophysics Data System (ADS)
Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim
2015-04-01
Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential growth rate index on the amplitude of surface wave is found. On the plane of parameters (amplitude - frequency) of surface wave we have found a region corresponding parametric instability leading to excitation of edge waves. It is shown that for small super criticalities, the amplitude of edge wave grows with amplitude of surface wave. For large amplitude of surface wave, wave breaking appears and parametric instability is suppressed. Such suppression of instability is caused by increasing of turbulent viscosity in near shore zone. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up. Theoretical model is developed to explain suppression of instability due to turbulent viscosity. This theoretical model is based on nonlinear mode amplitude equation including terms responsible for parametric forcing, frequency detuning, nonlinear detuning, linear and nonlinear edge wave damping. Dependence of coefficients on turbulent viscosity is discussed.
Computer-Assisted Image Analysis of Plant Growth, Thigmomorphogenesis, and Gravitropism 1
Jaffe, Mordecai J.; Wakefield, Andrew H.; Telewski, Frank; Gulley, Edward; Biro, Ronald
1985-01-01
A nonintrusive auxonometric system, based on the DARWIN image processor (Telewski et al. 1983 Plant Physiol 72: 177-181), is described and demonstrated in the analysis of gravitropism and thigmomorphogenesis in corn seedlings (Zea mays). Using this system, growth and bending of regularly shaped plants or organs can be quickly and accurately measured without, in any way, interfering with the plant. Furthermore, the growth and bending curves are automatically plotted. Thigmomorphogenesis in the aerial part of corn seedlings involves growth promotion at a low force load and growth retardation at higher force loads. The time courses of the two kinds of response are somewhat different, with retardation occurring immeditely after mechanical perturbation and growth promotion taking somewhat longer to begin. Gravitropic experiments show that when dark-grown corn seedlings are placed on their side in the light, the resulting curvature is due to two consecutive morphological mechanisms. In the first instance, lasting for about 15 minutes, the elongation of the bottom edge of the plant accelerates, while the elongation of the top edge remains constant. After that, for the next 1.75 hours, the elongation of the top edge decelerates and stops while that of the bottom edge remains constant at the increased rate for most of the period. The measurements taken from both experiments at relatively high resolution (0.08-0.1 millimeter) show that the growth curves are not smooth but show many small irregularities which may or may not involve micronutations. Images Fig. 1 Fig. 2 Fig. 3 PMID:11539042
50 CFR 622.221 - Recordkeeping and reporting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.221 Recordkeeping and reporting. (a) Individuals with coral or live rock permits. (1) An individual with a Federal...
24 CFR 3280.204 - Kitchen cabinet protection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Kitchen cabinet protection. (a) The bottom and sides of combustible kitchen cabinets over cooking ranges to a horizontal distance of 6 inches from the outside edge of the cooking range shall be protected... framing members and trim are exempted from this requirement. The cabinet area over the cooking range or...
Manifold to uniformly distribute a solid-liquid slurry
Kern, Kenneth C.
1983-01-01
This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.
Perceptual Fading without Retinal Adaptation
ERIC Educational Resources Information Center
Hsieh, Po-Jang; Colas, Jaron T.
2012-01-01
A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…
33 CFR 157.21 - Subdivision and stability.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... vessel must meet the following subdivision and damage stability criteria after assuming side and bottom damages, as defined in appendix B of this part. A U.S. vessel that meets the requirements in this section... account sinkage, heel, and trim, must be below the lower edge of an opening through which progressive...
33 CFR 157.21 - Subdivision and stability.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... vessel must meet the following subdivision and damage stability criteria after assuming side and bottom damages, as defined in appendix B of this part. A U.S. vessel that meets the requirements in this section... account sinkage, heel, and trim, must be below the lower edge of an opening through which progressive...
33 CFR 157.21 - Subdivision and stability.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... vessel must meet the following subdivision and damage stability criteria after assuming side and bottom damages, as defined in appendix B of this part. A U.S. vessel that meets the requirements in this section... account sinkage, heel, and trim, must be below the lower edge of an opening through which progressive...
Earth observations taken during the STS-71 mission
1995-07-06
STS071-708-040 (27 June-7 July 1995) --- This view shows Cape Cod in some detail in the center right of the view. Provincetown lies on the inside of the hook of Cape Cod. Other larger cities are unusually easy to see on this frame. The Boston metropolitan area is the large gray area at the top (north), with a smaller gray patch immediately south indicating Brockton, Massachusetts. Other smaller patches in southern Massachusetts (bottom left) indicate Fall River (far left) and New Bedford in the coast on the north side of Buzzard's Bay. The outskirts of Providence, Rhode Island appear half way up the left edge of the frame. The islands at the bottom of the frame are Martha's Vineyard (bottom left) and Nantucket Island (partial view). Shoals (near-surface sand bars) appear as light-blue swirls on the shallow sea bottom between Cape Cod and these islands. The distance from Boston to Nantucket is almost 100 miles.
50 CFR 622.222 - Prohibited gear and methods.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.222... tool may not be used in the South Atlantic EEZ to take allowable octocoral, prohibited coral, or live...
50 CFR 622.222 - Prohibited gear and methods.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.222... tool may not be used in the South Atlantic EEZ to take allowable octocoral, prohibited coral, or live...
Undercut feature recognition for core and cavity generation
NASA Astrophysics Data System (ADS)
Yusof, Mursyidah Md; Salman Abu Mansor, Mohd
2018-01-01
Core and cavity is one of the important components in injection mould where the quality of the final product is mostly dependent on it. In the industry, with years of experience and skill, mould designers commonly use commercial CAD software to design the core and cavity which is time consuming. This paper proposes an algorithm that detect possible undercut features and generate the core and cavity. Two approaches are presented; edge convexity and face connectivity approach. The edge convexity approach is used to recognize undercut features while face connectivity is used to divide the faces into top and bottom region.
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL ...
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL HOLES IN GRANITE AT RIGHT EDGE. US GEOLOGICAL SURVEY BENCHMARK AT BOTTOM CORNER OF SIDEWALK - 4,621 FEET. SLOT IN FAR WALL FOR SEMAPHORE OF OBSOLETE CARBON MONOXIDE WARNING SYSTEM. - Wawona Tunnel, Wawona Road through Turtleback Dome, Yosemite Village, Mariposa County, CA
Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
Eliche-Quesada, D; Leite-Costa, J
2016-02-01
Olive pomace bottom ash was used to replace different amounts (10-50wt%) of clay in brick manufacturing. The aim of this study is both studying bricks properties and showing a new way of olive pomace bottom ash recycling. Properties of waste bricks were compared to conventional products following standard procedures in order to determine the maximum waste percentage. The amount of olive pomace bottom ash is limited to 20wt%, obtaining bricks with superior engineering properties when 10wt% of waste is added. Adding higher amount of waste (30-50wt%) resulted in bricks with water absorption and compressive strength values on the edge of meeting those established by standards. Therefore, the addition of 10 and 20wt% of olive pomace bottom ash produced bricks with a bulk density of 1635 and 1527kg/m(3) and a compressive strength of 33.9MPa and 14.2MPa, respectively. Fired bricks fulfil standards requirements for clay masonry units, offering, at the same time, better thermal insulation of buildings due to a reduction in thermal conductivity of 14.4% and 16.8% respectively, compared to control bricks (only clay). Copyright © 2015 Elsevier Ltd. All rights reserved.
Mueller, David S.
2017-01-01
This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when evaluating the uncertainty of moving-boat ADCP measurements.
MaxSynBio - Avenues towards creating cells from the bottom up.
Schwille, Petra; Spatz, Joachim; Landfester, Katharina; Bodenschatz, Eberhard; Herminghaus, Stephan; Sourjik, Victor; Erb, Tobias; Bastiaens, Philippe; Lipowsky, Reinhard; Hyman, Anthony; Dabrock, Peter; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Bieling, Peter; Dimova, Rumiana; Mutschler, Hannes; Robinson, Tom; Tang, Dora; Wegner, Seraphine; Sundmacher, Kai
2018-05-11
A large Max Planck-based German research consortium ('MaxSynBio') was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom-up approach to Synthetic Biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life, via their modular reconstitution in minimal synthetic systems. The ultimate goal is to construct a basic living unit entirely from non-living components. The fundamental insights gained from the activities in MaxSynBio can eventually be utilized for establishing a new generation of biotechnological processes, which would be based on synthetic cell constructs that replace natural cells currently used in conventional biotechnology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Critical edge between frozen extinction and chaotic life
NASA Astrophysics Data System (ADS)
Monetti, Roberto A.; Albano, Ezequiel V.
1995-12-01
The cellular automata ``game of life'' (GL) proposed by J. Conway simulates the dynamic evolution of a society of living organisms. It has been extensively studied in order to understand the emergence of complexity and diversity from a set of local rules. More recently, the capability of GL to self-oranize into a critical state has opened an interesting debate. In this work we adopt a different approach: by introducing stochastic rules in the GL it is found that ``life'' exhibits a very rich critical behavior. Discontinuous (first-order) irreversible phase transitions (IPT's) between an extinct phase and a steady state supporting life are found. A precise location of the critical edge is achieved by means of an epidemic analysis, which also allows us to determine dynamic critical exponents. Furthermore, by means of a damage spreading study we conclude that the living phase is chaotic. The edge of the frozen-chaotic transition coincides with that of the IPT's life extinction. Close to the edge, fractal spreading of the damage is observed; however, deep inside the living phase such spreading becomes homogeneous. (c) 1995 The American Physical Society
Giant edge spin accumulation in a symmetric quantum well with two subbands
NASA Astrophysics Data System (ADS)
Khaetskii, Alexander; Egues, J. Carlos
We have studied the edge spin accumulation due to an electric current in a high mobility two-dimensional electron gas formed in a symmetric well with two subbands. This study is strongly motivated by recent experiments which demonstrated the spin accumulation near the edges of a symmetric bilayer GaAs structure in contrast to no effect in a single-layer configuration. The intrinsic mechanism of the spin-orbit interaction we consider arises from the coupling between two subband states of opposite parities. Following the method developed in, we show that the presence of a gap in the system (i.e., the energy separation between the two subband bottoms) changes drastically the picture of the edge spin accumulation. We obtain a parametrically large magnitude of the edge spin density for a two-subband well as compared to the usual single-subband structure, and show that by changing the gap from zero up to 1 ÷2 K, the magnitude of the effect changes by three orders of magnitude. It opens up the possibility for the design of new interesting spintronic devices. We acknowledge financial support from FAPESP.
Evidence for edge state photoluminescence in graphene quantum dots
NASA Astrophysics Data System (ADS)
Lingam, Kiran; Podila, Ramakrishna; Qian, Haijun; Serkiz, Steve; Rao, Apparao M.
2013-03-01
For a practical realization of graphene-based logic devices, opening of a band gap in graphene is crucial and has proved challenging. To this end, several synthesis techniques including unzipping of carbon nanotubes, chemical vapor deposition and other bottom-up fabrication techniques have been pursued for the bulk production of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). However, only a limited progress has been made towards a fundamental understanding of the electronic and optical properties of GQDs. In particular, the origin of strong photoluminescence (PL) in GQDs, which has been attributed to the presence of emissive surface traps and/or the edge states in GQD, remains inconclusive to date. Here, we experimentally show that the PL is independent of the functional groups attached to the GQDs. Following a series of annealing experiments, we further show that the PL in GQDs originates from the edge states, and an edge-passivation subsequent to synthesis quenches PL. These results are consistent with comparative studies on other carbon nanostructures such as GNRs and carbon nano-onions.
Plate forming and break down pizza box
Pantisano, Frank; Devine, Scott M.
1992-01-01
A standard corrugated paper pizza box is provided with slit cuts cut through the top panel of the pizza box in a shape to form four circular serving plates with a beveled raised edge and cross slit cuts through the bottom panel of the pizza box separating the box into four essentially equal portions for easy disposal.
Vercoutere, T.L.; Mullins, H.T.; McDougall, K.; Thompson, J.B.
1987-01-01
Distribution, abundance, and diversity of terrigenous, authigenous, and biogenous material provide evidence of the effect of bottom currents and oxygen minimum zone (OMZ) on continental slope sedimentation offshore central California. Three major OMZ facies are identified, along the upper and lower edges of OMZ and one at its core.-from Authors
49 CFR 393.86 - Rear impact guards and rear end protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 571.223) in effect at the time the vehicle was manufactured. When the rear impact guard is installed... (49 CFR 571.224) in effect at the time the vehicle was manufactured. The requirements of paragraph (a... extremity of the vehicle. (3) Guard height. The vertical distance between the bottom edge of the horizontal...
49 CFR 393.86 - Rear impact guards and rear end protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 571.223) in effect at the time the vehicle was manufactured. When the rear impact guard is installed... (49 CFR 571.224) in effect at the time the vehicle was manufactured. The requirements of paragraph (a... extremity of the vehicle. (3) Guard height. The vertical distance between the bottom edge of the horizontal...
49 CFR 393.86 - Rear impact guards and rear end protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 571.223) in effect at the time the vehicle was manufactured. When the rear impact guard is installed... (49 CFR 571.224) in effect at the time the vehicle was manufactured. The requirements of paragraph (a... extremity of the vehicle. (3) Guard height. The vertical distance between the bottom edge of the horizontal...
49 CFR 393.86 - Rear impact guards and rear end protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 571.223) in effect at the time the vehicle was manufactured. When the rear impact guard is installed... (49 CFR 571.224) in effect at the time the vehicle was manufactured. The requirements of paragraph (a... extremity of the vehicle. (3) Guard height. The vertical distance between the bottom edge of the horizontal...
Living on the edge: roads and edge effects on small mammal populations.
Fuentes-Montemayor, Elisa; Cuarón, Alfredo D; Vázquez-Domínguez, Ella; Benítez-Malvido, Julieta; Valenzuela-Galván, David; Andresen, Ellen
2009-07-01
1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides insight into the effects that sharp road edges have on biological and social characteristics of small mammal populations, highlighting how such effects vary among species. Our findings have important conservation implications for these threatened species, but are also applicable in a broader context wherever there are abrupt edges caused by linear landscape features.
Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades
NASA Astrophysics Data System (ADS)
Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.
2018-04-01
Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.
Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades
NASA Astrophysics Data System (ADS)
Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.
2018-06-01
Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.
Turner, R Eugene; Rabalais, Nancy N; Justić, Dubravko
2017-01-01
We quantified trends in the 1985 to 2015 summer bottom-water temperature on the northern Gulf of Mexico (nGOM) continental shelf for data collected at 88 stations with depths ranging from 3 to 63 m. The analysis was supplemented with monthly data collected from 1963 to 1965 in the same area. The seasonal summer peak in average bottom-water temperature varied concurrently with air temperature, but with a 2- to 5-month lag. The summer bottom-water temperature declined gradually with depth from 30 oC at stations closest to the shore, to 20 oC at the offshore edge of the study area, and increased an average 0.051 oC y-1 between1963 and 2015. The bottom-water warming in summer for all stations was 1.9 times faster compared to the rise in local summer air temperatures, and 6.4 times faster than the concurrent increase in annual global ocean sea surface temperatures. The annual rise in average summer bottom-water temperatures on the subtropical nGOM continental shelf is comparable to the few published temperature trend estimates from colder environments. These recent changes in the heat storage on the nGOM continental shelf will affect oxygen and carbon cycling, spatial distribution of fish and shrimp, and overall species diversity.
COLD-WATER CORALS AND HYDROCHEMISTRY - is there a unifying link?
NASA Astrophysics Data System (ADS)
Flögel, Sascha; Rüggeberg, Andres; Mienis, Furu; Dullo, Wolf-Christian
2010-05-01
Physical and chemical parameters were measured in five different regions of the Northeast Atlantic with known occurrences of cold-water coral reefs and mounds and in the Mediterranean, where these corals form living carpets over existing morphologies. In this study we analyzed 282 bottom water samples regarding delta13CDIC, delta18O, and DIC. The hydrochemical data reveal characteristic patterns and differences for cold-water coral sites with living coral communities and ongoing reef and mound growth at the Irish and Norwegian sites. While the localities in the Mediterranean, in the Gulf of Cadiz, and off Mauritania show only patchy coral growth on mound-like reliefs and various substrates. The analysis of delta13C/delta18O reveals distinct clusters for the different regions and the respective bottom water masses bathing the delta18O, and especially between delta13CDIC and DIC shows that DIC is a parameter with high sensitivity to the mixing of bottom water masses. It varies distinctively between sites with living reefs/mounds and sites with restricted patchy growth or dead corals. Results suggest that DIC and delta13CDIC can provide additional insights into the mixing of bottom water masses. Prolific cold-water coral growth forming giant biogenic structures plot into a narrow geochemical window characterized by a variation of delta13CDIC between 0.45 and 0.79 per mille being associated with the water mass having a density of sigma-theta of 27.5±0.15 kg m-3.
Detection to the DepositFan Occurring in the Sun Moon Lake Using Geophysical Sonar Data
NASA Astrophysics Data System (ADS)
Mimi, L.
2014-12-01
Located in central Taiwan, the Sun Moon Lake is an U-shaped basin with the waters capacity for 138.68 × 106m³. The water is input through two underground tunnels from the Wu-Jie dam in the upstream of the Zhuo-shui river. Although the Wu-Jie dam has been trying to keep the tunnels transporting clean water into the lake, the water is still mixed with muds. The silty water brings the deposits accumulating outwards from positions of the tunnel outlets resulting in a deposit fan formed in the lake. To monitor how the fan is accumulated is then very important in terms of environmental issue, tourism and electric power resources. Institute of Oceanography, National Taiwan University therefore conducted projects to use the multi-beam echo sounders to collect bathymetric data, and used the Chirp sub-bottom profiler to explore silted pattern inside the deposit fan. With these data, underwater topographic maps were plotted to observe the shape and internal structure of the fan. Moreover, two sets of data obtained in 2006 and 2012 were used to estimate the siltation magnitude and pattern in the six years period.The multi-beam sounder is Resons Seabat 9001s model; it collects 60 values in each of the swaths positioned by the DGPS method.The sub-bottom profiler is the EdgeTech 3100P Chirp Sonar, its acoustic wave frequency is in 2 ~ 16kHz. The data give the siltation amount in the Sun Moon Lake was around 3× 106 m³, which gives annual siltation rate at 5× 105 m³. The leading edge of the deposit fan has been expanded westwards 2 km from the water outlet since the tunnel was built 70 years ago; however, outside the deposit fan, the siltation shows insignificant amount on the water bottom.In the past few years the siltation mainly occurs outside in the east side of lake, more closer to the water outlets, the terrain had been increased from 744 m to 746 m (748.5 meters is stranded level of the lake).Observing sub-bottom profiler data, we can clearly see the location of the paleo-hard- bottom of the lake before the siltation occurred. These sub-bottom profiles can be used to check or to analyze episodic deposition behavior in producing the deposit fan.
NASA Astrophysics Data System (ADS)
Kalita, Bitap Raj; Bhuyan, Pradip Kumar
2017-07-01
The vertical electron density profiles over Dibrugarh (27.5°N, 95°E, 43° dip) a low mid latitude station normally located at the northern edge of the EIA for the period of July 2010 till October 2015 are constructed from the measured bottom side profiles and ionosonde-GPS TEC assisted Topside Sounder Model (TSM) topside profiles. The bottom side density profiles are obtained by using POLAN on the manually scaled ionograms. The topside is constructed by the modified ionosonde assisted TSM model (TaP-TSM assisted by POLAN) which is integrated with POLAN for the first time. The reconstructed vertical profile is compared with the IRI predicted density profile and the electron density profile obtained from the COSMIC/FORMOSAT radio occultation measurements over Dibrugarh. The bottom side density profiles are fitted to the IRI bottom side function to obtain best-fit bottom side thickness parameter B0 and shape parameter B1. The temporal and solar activity variation of the B-parameters over Dibrugarh are investigated and compared to those predicted by IRI-2012 model with ABT-2009 option. The bottom side thickness parameter B0 predicted by the IRI model is found to be similar to the B0 measured over Dibrugarh in the night time and the forenoon hours. Differences are observed in the early morning and the afternoon period. The IRI doesn't reproduce the morning collapse of B0 and overestimates the B0 over Dibrugarh in the afternoon period, particularly in summer and equinox. The IRI model predictions are closest to the measured B0 in the winter of low solar activity. The B0 over Dibrugarh is found to increase by about 15% with solar activity during the period of study encompassing almost the first half of solar cycle 24 but solar activity effect was not observed in the B1 parameter. The topside profile obtained from TaP profiler is thicker than the IRI topside in equinox from afternoon to sunrise period but is similar to the IRI in summer daytime. The differences in the bottom side may be attributed to the non-inclusion of ground measurements from 90°E to 100°E longitude in the ABT-2009 model while differences in the topside could be due the non-uniform longitudinal distribution of topside sounder profiles data and the stronger fountain effect in this longitude.
An interactive method based on the live wire for segmentation of the breast in mammography images.
Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu
2014-01-01
In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.
ERIC Educational Resources Information Center
Williams, Lee Burdette
2010-01-01
On a college campus, educators and students live on the edge of tragedy. They walk that edge everyday, aware that the possibility of death is always one misstep away. One careless move by any of the hundreds or thousands of them walking that edge, and their whole community falls into a canyon of grief from which they will climb only after weeks,…
Contact Trees: Network Visualization beyond Nodes and Edges
Sallaberry, Arnaud; Fu, Yang-chih; Ho, Hwai-Chung; Ma, Kwan-Liu
2016-01-01
Node-Link diagrams make it possible to take a quick glance at how nodes (or actors) in a network are connected by edges (or ties). A conventional network diagram of a “contact tree” maps out a root and branches that represent the structure of nodes and edges, often without further specifying leaves or fruits that would have grown from small branches. By furnishing such a network structure with leaves and fruits, we reveal details about “contacts” in our ContactTrees upon which ties and relationships are constructed. Our elegant design employs a bottom-up approach that resembles a recent attempt to understand subjective well-being by means of a series of emotions. Such a bottom-up approach to social-network studies decomposes each tie into a series of interactions or contacts, which can help deepen our understanding of the complexity embedded in a network structure. Unlike previous network visualizations, ContactTrees highlight how relationships form and change based upon interactions among actors, as well as how relationships and networks vary by contact attributes. Based on a botanical tree metaphor, the design is easy to construct and the resulting tree-like visualization can display many properties at both tie and contact levels, thus recapturing a key ingredient missing from conventional techniques of network visualization. We demonstrate ContactTrees using data sets consisting of up to three waves of 3-month contact diaries over the 2004-2012 period, and discuss how this design can be applied to other types of datasets. PMID:26784350
South Africa as seen from STS-63 Discovery
NASA Technical Reports Server (NTRS)
1995-01-01
The southwest coast of southern Africa from St. Helena Bay (large bay at center), to Table Bay at Cape Town (bottom, with Robben Island near entrance). The pier at the naval base and fishing port of Saldhanaha Bay can be seen in the small bay (center). False Bay is cut off by the bottom edge of the frame. What NASA scientists think to be a phytoplankton bloom appears offshore in the cold upwelled water off the Atlantic coast. Farmland, especially that used for wine growing, is found near the coast occupying the Mediterranian-like climate of the Southwest Cape Province; but inland of the mountains of the Karroo Desert is home to sheep farmers and little agriculture.
NASA Astrophysics Data System (ADS)
Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Ma, Tzuhsuan; Shvets, Gennady
Electronic chiral edge states in Quantum Hall Effect systems has attracted a lot of attention in recent years because of its unique directionality and robustness against scattering from disorder. Its electromagnetic counterpart can be found in photonic crystals, which is a material with periodic dielectric constant. Here we present the experimental results demonstrating the unidirectional edge mode inside a bi-anisotropic meta-waveguide (BMW) structure. It is a parallel plate waveguide with metal rods placed in a hexagonal lattice. Half of the rods are attached to the top plate while the other half are attached to the bottom plate creating a domain wall. The edge mode is excited by two loop antennas placed perpendicular to each other within one wavelength, generating a rotating magnetic dipole that couples to the left or right-going mode. The transmission measurement are taken along the BMW boundary and shows high transmission only around the edge, thus confirming the presence of an edge mode. We also demonstrated that very high directivity can be achieved when the input amplitude and phase of the two loop antennas are tuned properly This work is funded by the ONR under Grants No. N00014130474 and N000141512134, and the Center for Nanophysics and Advanced Materials (CNAM).
1980-01-01
coated with carnauba wax . Samples were exposed for 30 test cycles. The samples were cemoved from the chamber, washed with tap water, then with distil...vertically with wax -coated hooks, the bottoms of the specimens being about 12 cm from the chamber floor. The backs and edges of all specimens were
90. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO ...
90. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO SUMP, LOWER RIGHT QUADRANT. DIAGONAL PIPE IN UPPER RIGHT IS AIR LINE TO AGITATORS. LAUNDER PARALLEL TO LEFT EDGE (FILLED WITH DEBRIS) RUNS FROM PRIMARY THICKENER No. 2 TO GOLD TANK No. 2. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
169. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO ...
169. PORTLAND FILTER FLOOR FROM SOUTHEAST. CYANIDE FEED TOWER TO SUMP, LOWER RIGHT QUADRANT. DIAGONAL PIPE IN UPPER RIGHT IS AIR LINE TO AGITATORS. LAUNDER PARALLEL TO LEFT EDGE (FILLED WITH DEBRIS) RUNS FROM PRIMARY THICKENER No. 2 TO GOLD TANK No. 2 - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
49 CFR 173.175 - Permeation devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...
49 CFR 173.175 - Permeation devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...
18th Annual School Construction Report, 2013
ERIC Educational Resources Information Center
Abramson, Paul
2013-01-01
The bottom line on school construction in 2012 is that total spending edged up slightly from the previous year, (to $12.9 billion from $12.2 billion), but the spending for new schools declined from $6.9 billion to $6.177 billion. The increase in overall spending was attributable to more spending for additions and a major increase in spending for…
40 CFR 761.347 - First level sampling-waste from existing piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... strength to reach from the top of the marker at the top of the pile to the farthest peripheral edge at the... device marked with zero straight down into the pile until it reaches the bottom of the pile or ground... extraction and analysis. If there is insufficient sample for a 19-liter sample from the composite sample...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillis, Jessica Mcdonnel
2016-02-18
The A-16-D tract consists of the easternmost portion of DP mesa and is bounded on the North by the canyon bottom of DP canyon and on the South by the edge of the initial slope into Los Alamos Canyon (see Figure 1).
Wentworth, Carl M.; Jachens, Robert C.; Williams, Robert A.; Tinsley, John C.; Hanson, Randall T.
2015-01-01
Maps and cross sections show the elevations of cycle boundaries and the underlying bedrock surface, the varying thicknesses of the cycles and of their fine tops and coarse bottoms, and the aggregate thickness of coarse layers in those bottom intervals. Coarse sediment is more abundant toward some parts of the basin margin and in the southern part of the basin. Cycle boundary surfaces are relatively smooth, and their shapes are consistent with having been intercycle topographic surfaces. The underlying bedrock surface has a relief of more than 1,200 feet and deepens toward the center of the basin and the west edge of the fault-bounded Evergreen Basin, which is concealed beneath the east side of the Quaternary basin. The absence of consistent abrupt changes in thicknesses or boundary elevations across the basin or in cross section indicates that the interior of the basin is largely unfaulted, with the Silver Creek strand of the San Andreas system at the west edge of the Evergreen Basin being the sole exception. The east and west margins of the Santa Clara Basin, in contrast, are marked by reverse and thrust fault systems.
Algorithms used in the Airborne Lidar Processing System (ALPS)
Nagle, David B.; Wright, C. Wayne
2016-05-23
The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.
Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)
Kiraly, Brian; Mannix, Andrew J.; Jacobberger, Robert M.; ...
2016-05-23
Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward such devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ~10 nm via atmospheric pressure chemical vapor deposition. In this work, we extend the growth of GNRs on Ge(001) to ultra-high vacuummore » conditions and realize GNRs narrower than 5 nm. Armchair graphene nanoribbons directed along the Ge <110> surface directions are achieved with excellent width control and relatively large bandgaps. As a result, the bandgap magnitude and electronic uniformity make these new materials excellent candidates for future developments in nanoelectronics.« less
Improved DESI-MS Performance using Edge Sampling and aRotational Sample Stage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Van Berkel, Gary J
2008-01-01
The position of the surface to be analyzed relative to the sampling orifice or capillary into the mass spectrometer has been known to dramatically affect the observed signal levels in desorption electrospray ionization mass spectrometry (DESIMS). In analyses of sample spots on planar surfaces, DESI-MS signal intensities as much as five times greater were routinely observed when the bottom of the sampling capillary was appropriately positioned beneath the surface plane ( edge sampling") compared to when the capillary just touched the surface. To take advantage of the optimum "edge sampling" geometry and to maximize the number of samples that couldmore » be analyzed in this configuration, a rotational sample stage was integrated into a typical DESI-MS setup. The rapid quantitative determination of caffeine in two diet sport drinks (Diet Turbo Tea, Speed Stack Grape) spiked with an isotopically labeled internal standard demonstrated the utility of this approach.« less
Imbibition of a textured surface decorated by short pillars with rounded edges.
Obara, Noriko; Okumura, Ko
2012-08-01
Imbibition of micropatterned surfaces can have broad technological and fundamental implications for areas ranging from biomedical devices and fuel transport to writing with ink. Despite rapidly growing interests aimed at various applications, a fundamental physical understanding of the imbibition dynamics is still in its infancy. Recently, two simple scaling regimes for the dynamics have been established for a textured surface decorated with long pillars whose top and bottom edges are sharp. Here, we study the imbibition dynamics of textured surfaces decorated by short pillars with rounded edges, to find a different scaling regime. Interestingly, this regime originates not from the balance of two effects but from the hybrid balance of three effects. Furthermore, this scaling law can be universal or independent of the details of the texture geometry. We envision that this potentially universal scaling regime might be ubiquitous and will be useful in the handling and transportation of a small amount of liquid.
Brea, Roberto J.; Hardy, Michael D.; Devaraj, Neal K.
2015-01-01
There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing “hybrid” artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology. PMID:26149747
Evaluation of double drop beads pavement edge lines.
DOT National Transportation Integrated Search
2009-08-01
This report presents an evaluation of Double Drop Bead (DDB) edge lines used on ALDOT-maintained highways. It compares DDB to three other pavement marking types in terms of service lives, life-cycle costs, and both dry-night retroreflectivity and wet...
Tip cap for a turbine rotor blade
Kimmel, Keith D
2014-03-25
A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin
2014-06-01
Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.
High-Resolution View of Fires and Smoke near Sydney, Australia
NASA Technical Reports Server (NTRS)
2002-01-01
Smoke obscures much of the landscape near Sydney, Australia, in the true-color image above (top). However, the areas with active fires are revealed by the false-color image (bottom), which was made using shortwave infrared data that are sensitive to heat and provide the ability to 'see' through smoke. In the bottom scene, the black areas show fresh burn scars, while greens show landscape untouched by fire. Apparently, the fire burned up to the edge of a road (the thin black line snaking from the lefthand side of the image and disappearing off the bottom) and was unable to jump across. The thick dark line along the bottom of the scene is a river. Both images were made using data acquired on December 28, 2001, by the Advanced Land Imager (ALI), flying aboard NASA's Earth Observing-1 (EO-1) satellite. For more images of the recent fires in Australia, read Smoke Blankets New South Wales, Australia, Fires Continue to Rage Near Sydney, Australia, and Severe Bush Fires Near Sydney, Australia. For more information about the effects of fire on the environment, read the Biomass Burning fact sheet. Images by Robert Simmon, based on data provided by Lawrence Ong, EO-1 Science Team
Transport phenomena in helical edge state interferometers: A Green's function approach
NASA Astrophysics Data System (ADS)
Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael
2013-10-01
We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.
Proposal of laser-driven automobile
NASA Astrophysics Data System (ADS)
Yabe, Takashi; Oozono, Hirokazu; Taniguchi, Kazumoto; Ohkubo, Tomomasa; Miyazaki, Sho; Uchida, Shigeaki; Baasandash, Choijil
2004-09-01
We propose an automobile driven by piston motion, which is driven by water-laser coupling. The automobile can load a solar-pumped fiber laser or can be driven by ground-based lasers. The vehicle is much useful for the use in other planet in which usual combustion engine cannot be used. The piston is in a closed system and then the water will not be exhausted into vacuum. In the preliminary experiment, we succeeded to drive the cylindrical piston of 0.2g (6mm in diameter) on top of water placed inside the acrylic pipe of 8 mm in inner diameter and the laser is incident from the bottom and focused onto the upper part of water by the lens (f=8mm) attached to the bottom edge.
NASA Astrophysics Data System (ADS)
Chang, Yu-Fan; Chiu, Yu-Chian; Chang, Hao-Wen; Wang, Yi-Siang; Shih, Yi-Lun; Wu, Chih-Hao; Liu, Yi-Lun; Lin, Yu-Sheng; Meng, Hsin-Fei; Chi, Yun; Huang, Heh-Lung; Tseng, Mei-Rurng; Lin, Hao-Wu; Zan, Hsiao-Wen; Horng, Sheng-Fu; Juang, Jenh-Yih
2013-09-01
We developed a general method based on fluorescence microscopy to characterize the interface dissolution in multi-layer organic light-emitting diodes (OLEDs) by blade coating. A sharp bi-layer edge was created before blade coating, with the bottom layer being insoluble and top layer soluble. After blade coating, fluorescence images showed that the edge of the top layer shifted when the layer dissolved completely, whereas the bottom layer's edge remained in place as a positioning mark. The dissolution depth was determined to be 15-20 nm when the emissive-layer host of 2,6-bis (3-(9H-carbazol-9-yl)phenyl) pyridine (26DCzPPy) was coated on the hole-transport layer of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine(NPB), which was consistent with a sudden drop in efficiency of orange OLEDs with layer thickness below 20 nm. Thus, the layer thickness of OLEDs was optimized to stay more than 20 nm for blade coating. For a two-color white OLED with the structure TCTA/26DCzPPy:PO-01-TB:FIrpic/TPBI, efficiency was 24 cd/A and 8.5 lm/W at 1000 cd/m2. For a three-color white OLED with Os(fptz)2(dhpm) added as the emitter, the efficiency was 12.3 cd/A and 3.7 lm/W at 1000 cd/m2. For a green device with the structure TCTA/26DCzPPy:Ir(mppy)3/TPBI, the efficiency was 41.9 cd/A and 23.4 lm/W at 1000 cd/m2.
Intraply Hybrid Composites Would Contain Control Strips
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Chi-Yu
1996-01-01
"Smart" structural components with sensors and/or actuators distributed throughout their volumes made of intraply hybrid composite materials, according to proposal. Strips of hybrid control material interspersed with strips of ordinary (passive) composite material in some layers, providing distributed control capability. For example, near and far edges of plate bent upward by commanding bottom control strips to expand and simultaneously commanding upper control strips to contract.
Rebuilding Our Schools from the Bottom Up
ERIC Educational Resources Information Center
Carnie, Fiona
2018-01-01
We live in a democracy and yet our schools are far from democratic. Decisions made by central government, implemented by headteachers and policed by Ofsted are rarely scrutinised or debated by those whose daily lives are significantly affected by them. Little surprise then that there is so much disenchantment on the part of teachers, disaffection…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, S.L.
1975-01-01
Bottom temperature and the condition of live corals in the vicinity of the discharge plume from the Hawaiian Electric Company Kahe Generating Station, Oahu, Hawaii, were monitored August--December 1973. Mortality to Pocillopora meandrina, the most thermally sensitive species of the area, was no greater under the conditions of maximum thermal enrichment near the living reef fringe in the discharge area (1--2 m depth) than in an area (4--5 m depth) more distant from the discharge. Sublethal coral damage was more pronounced near the discharge, but was mostly limited to loss of zooxanthellar pigment which was restored following yearly ambient temperaturemore » maxima. Although bottom temperatures in the discharge area continually varied 3$sup 0$--4$sup 0$C within minute periods during every low tide, live corals seldom encountered temperatures exceeding 31$sup 0$C. The limited damage that occurred to live corals indicates that upper absolute temperatures are more critical in producing coral damage than are short- term temperature shocks near upper lethal limits. (auth)« less
Climate change and the demographic demise of a hoarding bird living on the edge.
Waite, Thomas A; Strickland, Dan
2006-11-22
Population declines along the lower-latitude edge of a species' range may be diagnostic of climate change. We report evidence that climate change has contributed to deteriorating reproductive success in a rapidly declining population of the grey jay (Perisoreus canadensis) at the southern edge of its range. This non-migratory bird of boreal and subalpine forest lives on permanent territories, where it hoards enormous amounts of food for winter and then breeds very early, under still-wintry conditions. We hypothesized that warmer autumns have increased the perishability of hoards and compromised subsequent breeding attempts. Our analysis confirmed that warm autumns, especially when followed by cold late winters, have led to delayed breeding and reduced reproductive success. Our findings uniquely show that weather months before the breeding season impact the timing and success of breeding. Warm autumns apparently represent hostile conditions for this species, because it relies on cold storage. Our study population may be especially vulnerable, because it is situated at the southern edge of the range, where the potential for hoard rot is most pronounced. This population's demise may signal a climate-driven range contraction through local extinctions along the trailing edge.
NASA Technical Reports Server (NTRS)
Reed, M. A.
1974-01-01
The need for an obstacle detection system on the Mars roving vehicle was assumed, and a practical scheme was investigated and simulated. The principal sensing device on this vehicle was taken to be a laser range finder. Both existing and original algorithms, ending with thresholding operations, were used to obtain the outlines of obstacles from the raw data of this laser scan. A theoretical analysis was carried out to show how proper value of threshold may be chosen. Computer simulations considered various mid-range boulders, for which the scheme was quite successful. The extension to other types of obstacles, such as craters, was considered. The special problems of bottom edge detection and scanning procedure are discussed.
Ortega, Jason M.; Sabari, Kambiz
2006-03-07
An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.
Method of making dished ion thruster grids
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1975-01-01
A pair of flat grid blanks are clamped together at their edges with an impervious metal sheet on top. All of the blanks and sheets are dished simultaneously by forcing fluid to inflate an elastic sheet which contacts the bottom grid blank. A second impervious metal sheet is inserted between the two grid blanks if the grids have high percentage open areas. The dished grids are stress relieved simultaneously.
The NORDA (Naval Ocean Research and Development Activity) Review.
1986-03-01
H 1/3). sea ice edge. sounders with bottom pressure gauges , conductivity- and surface wind speed is now being actively pursued in temperature-depth...actively pursuing these fiscal year. After gauging the status of naval electronic possibilities in the United States, Canada, and Japan for charting...the in situ using specimens collected on Leg 101 of the Ocean Drill - conductivity measurements to identify infrequent, but ing Project. Additional
1981-10-14
STS002-09-390 (12-14 Nov. 1981) --- Honshu Island, Japan, and its snow-covered Fuji-San or Fuji-Yama volcano are the features of this 70mm frame. The volcano peak is 12,400 feet tall. The western suburbs of Tokyo are at right edge of the photograph. Isu Peninsula is at the bottom, separating the Suruga and Sagami Bay. Other large cities include Yokohama, Kozu, Shizuoka, Namazu and Odawara. Photo credit: NASA
Quantifying Discretization Effects on Brain Trauma Simulations
2016-01-01
arbitrarily formed meshes can propagate error when resolving interactions among the skull , cerebrospinal fluid, and brain. We compared Lagrangian, pure...embedded methods from top to bottom. ......3 Fig. 2 Loading node-set for Eulerian rotational problem. The dark shaded area around the skull is the area to...and top inner edges of the skull . The example shown is a Lagrangian rotational model. The red and green materials represent the brain and skull
NIMS Spectral Maps of Jupiter Great Red Spot
1998-03-26
The Near-Infrared Mapping Spectrometer (NIMS) instrument looks at Jupiter's Great Red Spot, in these views from June 26, 1996. NIMS studies infrared wavelengths of light that our eye cannot see. These maps are at four different infrared wavelengths, each one picked to reveal something different about the atmosphere. The top image is a false color map of a wavelength that is at the red edge of our ability to see. It shows the shapes of features that we would see with our eyes. The second map is of ammonia ice, red showing where the most ice is, blue where none exists. The differences between this and the first image are due to the amount and size of ammonia ice crystals. The third map down is from a wavelength that shows cloud heights, with the highest clouds in red, and the lowest in blue. The bottom map uses a wavelength that shows the hot Jupiter shining through the clouds. Red represents the thinnest clouds, and blue is thickest where it is more difficult to see below. Comparing the bottom two images, note that the highest clouds are in the center of the Great Red Spot, while there are relatively few clouds around the edges. http://photojournal.jpl.nasa.gov/catalog/PIA00501
Brief notes on habitat geology and clay pipe habitat on Stellwagen Bank
Valentine, Page C.; Dorsey, Eleanor M.; Pederson, Judith
1998-01-01
In our studies of sea floor habitats, my colleagues and I use both biological and geological approaches. We call our studies “habitat geology,” a term coined by a biologist friend of mine. We view it as the study of sea floor materials and biological and geological processes that influence where species live. Some of the factors that we consider are the following:composition of the sea bed, which ranges from mud to sand, gravel, bedrock, and shell beds;shape and steepness of the bottom;roughness of the bottom, which is enhanced by the presence of cobbles, boulders, sand waves and ripples, burrows into the bottom, and species that extend above the bottom;bottom currents generated by storm waves and tides, which can move sediment and expose or cover habitats; andthe way in which the sea bed is utilized by species.In addition, we take into account the impact of sea bed disturbance by bottom fishing trawls and dredges. Habitats characterized by attached and burrowing species that protrude above the sea bed appear to be most vulnerable to disturbance.
ERIC Educational Resources Information Center
Betiang, Liwhu
2010-01-01
About 60% of Nigerians live in rural areas with poor access roads and health facilities, near-absent communication media, unemployment, alienation and disempowerment by the political leadership. This scenario has excluded the rural Nigerian from meaningful participation in development action. A bottom-up participatory approach to…
Madelung and Hubbard interactions in polaron band model of doped organic semiconductors
Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.
2016-01-01
The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355
NASA Technical Reports Server (NTRS)
1980-01-01
Voyager 1 has found a 15th moon orbiting Saturn, visible near the bottom of this picture taken on Nov. 6, 1980, when the spacecraft was still 8 million kilometers (5 million miles) from Saturn. Voyager imaging team scientists discovered the moon Nov. 7, 1980, in the first of several programmed searches for new satellites of Saturn. The unique location of the 15th satellite, just 800 kilometers (500 miles) outside the outer edge of the A-ring, is especially significant in that this small body, approximately 100 kilometers (50 miles) in diameter, may be responsible for defining the outer edge of Saturn's bright ring system. The orbital period of the new satellite is approximately 14 hours, 20 minutes, the shortest orbit of any of Saturn's known satellites. The very narrow F-ring, approximately 4,000 kilometers (2,500 miles) outside the outer edge of the A-ring, is seen prominently in this picture. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.
Ultracompact bottom-up photonic crystal lasers on silicon-on-insulator.
Lee, Wook-Jae; Kim, Hyunseok; You, Jong-Bum; Huffaker, Diana L
2017-08-25
Compact on-chip light sources lie at the heart of practical nanophotonic devices since chip-scale photonic circuits have been regarded as the next generation computing tools. In this work, we demonstrate room-temperature lasing in 7 × 7 InGaAs/InGaP core-shell nanopillar array photonic crystals with an ultracompact footprint of 2300 × 2300 nm 2 , which are monolithically grown on silicon-on-insulator substrates. A strong lateral confinement is achieved by a photonic band-edge mode, which is leading to a strong light-matter interaction in the 7 × 7 nanopillar array, and by choosing an appropriate thickness of a silicon-on-insulator layer the band-edge mode can be trapped vertically in the nanopillars. The nanopillar array band-edge lasers exhibit single-mode operation, where the mode frequency is sensitive to the diameter of the nanopillars. Our demonstration represents an important first step towards developing practical and monolithic III-V photonic components on a silicon platform.
Susan L. Brantley; William H. McDowell; William E. Dietrich; Timothy S. White; Praveen Kumar; Suzanne P. Anderson; Jon Chorover; Kathleen Ann Lohse; Roger C. Bales; Daniel D. Richter; Gordon Grant; Jérôme Gaillardet
2017-01-01
The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earthâs...
Depreciating and stating the value of hospital buildings what you need to know.
Holmes, John R; Felsenthal, David
2009-10-01
Healthcare financial executives of not-for-profit hospitals may be overdepreciating and understating the value of the hospital building on their financial statements. Changing the remaining lives of assets and their depreciation will help enhance the bottom line for many organizations. Ensuring that they are correctly stating the investment value of their assets is one way CFOs can have a positive impact on their organization's bottom line in a tough economy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb –1 of proton-proton collisions at √s = 13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both stronglymore » and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500–1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Lastly, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980–1200 GeV are excluded depending on the mass of the next-to-lightest neutralino.« less
Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu
2015-06-28
The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2018-03-13
Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb –1 of proton-proton collisions at √s = 13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both stronglymore » and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500–1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Lastly, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980–1200 GeV are excluded depending on the mass of the next-to-lightest neutralino.« less
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Khalil, S.; Mohamed, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Rurua, L.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2018-03-01
Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb-1 of proton-proton collisions at √{s}=13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500-1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980-1200 GeV are excluded depending on the mass of the next-to-lightest neutralino. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
2018-03-13
Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fbmore » $$^{-1}$$ of proton-proton collisions at $$\\sqrt{s} = $$ 13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500-1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980-1200 GeV are excluded depending on the mass of the next-to-lightest neutralino.« less
Localized surface plasmon resonance of nanotriangle dimers at different relative positions
NASA Astrophysics Data System (ADS)
Ren, Yatao; Qi, Hong; Chen, Qin; Wang, Shenling; Ruan, Liming
2017-09-01
The investigation of nanoparticle's optical properties is crucial for their biological and therapeutic applications. In the present work, a promising type of gold nanoparticle, the triangular prism which was reported to have multipolar surface plasmon peaks, was studied. The Plasmon ruler effect of nanotriangle dimers was observed and investigated for the first time. Well-defined trends of the extinction spectra maxima, which have a linear correlation with the triangle edge length, for lower order extinction corresponding to in-plane mode, were observed. On this basis, the optical property of nanotriangle dimers with different arrangements, including two nanotriangles aligned side-by-side, bottom-to-bottom, and in line, were studied. For the side-by-side arrangement, an additional peak was generated on the red shift side of the peak corresponding to dipole mode. When the distance between two prisms was scaled by the triangular side length, the relative plasmon shift can be approximated as an exponential function of the relative offset distance. Moreover, for dimers with nanotriangles arranged in line, there was a global blue shift of the extinction spectra with the approaching of two particles, including the higher order mode extinction. An interesting phenomenon was found for dimers with two nanotriangles aligned bottom-to-bottom. The resonance band split into two bands with the decreasing of the offset distance.
Photographic evaluation of the impacts of bottom fishing on benthic epifauna
Collie, J.S.; Escanero, G.A.; Valentine, P.C.
2000-01-01
The gravel sediment habitat on the northern edge of Georges Bank (East coast of North America) is an important nursery area for juvenile fish, and the site of a productive scallop fishery. During two cruises to this area in 1994 we made photographic transects at sites of varying depths that experience varying degrees of disturbance from otter trawling and scallop dredging. Differences between sites were quantified by analyzing videos and still photographs of the sea bottom. Videos were analyzed for sediment types and organism abundance. In the still photos, the percentages of the bottom covered by bushy, plant-like organisms and colonial worm tubes (Filograna implexa) were determined, as was the presence/absence of encrusting bryozoa. Non-colonial organisms were also identified as specifically as possible and sediment type was quantified. Significant differences between disturbed and undisturbed areas were found for the variables measured in the still photos; colonial epifaunal species were conspicuously less abundant at disturbed sites. Results from the videos and still photos were generally consistent although less detail was visible in the videos. Emergent colonial epifauna provide a complex habitat for shrimp, polychaetes, brittle stars and small fish at undisturbed sites. Bottom fishing removes this epifauna, thereby reducing the complexity and species diversity of the benthic community. (C) 2000 International Council for the Exploration of the Sea.
Earth Observations taken by Expedition 41 crewmember
2014-10-01
ISS041-E-057060 (1 Oct. 2014) --- One of the Expedition 41 crew members aboard the International Space Station, flying at an altitude of 220 nautical miles, photographed this night panorama of parts of Europe on Oct. 1, 2014. Kiev, Ukraine is seen near the right edge of the photo in the vertical center. Lights of Constanta, Romania can be seen just below the Russian Progress 56 cargo vehicle docked to the orbital outpost at the top of the frame. The Black Sea is to the left of the Soyuz TMA-13M docked to the station on the left side of the scene. The Sea of Azov is at the right of the bottom portion the Soyuz. Mariupol is near bottom center; and Donetsk, although it appears as a (bottom-most) tiny smudge on the right side of the image, has a population of just under five million. Krasnodar, Russia is in the bottom left corner. Part of Greece is in the top of the image near the solar panel of the Progress, with Thessaloniki and Sofia among the many bright lights. Part of Turkey is in upper left of the land mass visible. Pre-dawn light coming through the atmosphere gives the station hardware a bluish color.
ITOS to EDGE "Bridge" Software for Morpheus Lunar/Martian Vehicle
NASA Technical Reports Server (NTRS)
Hirsh, Robert; Fuchs, Jordan
2012-01-01
My project Involved Improving upon existing software and writing new software for the Project Morpheus Team. Specifically, I created and updated Integrated Test and Operations Systems (ITOS) user Interfaces for on-board Interaction with the vehicle during archive playback as well as live streaming data. These Interfaces are an integral part of the testing and operations for the Morpheus vehicle providing any and all information from the vehicle to evaluate instruments and insure coherence and control of the vehicle during Morpheus missions. I also created a "bridge" program for Interfacing "live" telemetry data with the Engineering DOUG Graphics Engine (EDGE) software for a graphical (standalone or VR dome) view of live Morpheus nights or archive replays, providing graphical representation of vehicle night and movement during subsequent tests and in real missions.
NASA Astrophysics Data System (ADS)
Michel, Sylvain; Avouac, Jean-Philippe; Lapusta, Nadia; Jiang, Junle
2017-08-01
Megathrust earthquakes tend to be confined to fault areas locked in the interseismic period and often rupture them only partially. For example, during the 2015 M7.8 Gorkha earthquake, Nepal, a slip pulse propagating along strike unzipped the bottom edge of the locked portion of the Main Himalayan Thrust (MHT). The lower edge of the rupture produced dominant high-frequency (>1 Hz) radiation of seismic waves. We show that similar partial ruptures occur spontaneously in a simple dynamic model of earthquake sequences. The fault is governed by standard laboratory-based rate-and-state friction with the aging law and contains one homogenous velocity-weakening (VW) region embedded in a velocity-strengthening (VS) area. Our simulations incorporate inertial wave-mediated effects during seismic ruptures (they are thus fully dynamic) and account for all phases of the seismic cycle in a self-consistent way. Earthquakes nucleate at the edge of the VW area and partial ruptures tend to stay confined within this zone of higher prestress, producing pulse-like ruptures that propagate along strike. The amplitude of the high-frequency sources is enhanced in the zone of higher, heterogeneous stress at the edge of the VW area.
NASA Astrophysics Data System (ADS)
Michel, S. G. R. M.; Avouac, J. P.; Lapusta, N.; Jiang, J.
2017-12-01
Megathrust earthquakes tend to be confined to fault areas locked in the interseismic period and often rupture them only partially. For example, during the 2015 M7.8 Gorkha earthquake, Nepal, a slip pulse propagating along strike unzipped the bottom edge of the locked portion of the Main Himalayan Thrust (MHT). The lower edge of the rupture produced dominant high-frequency (>1 Hz) radiation of seismic waves. We show that similar partial ruptures occur spontaneously in a simple dynamic model of earthquake sequences. The fault is governed by standard laboratory-based rate-and-state friction with the ageing law and contains one homogenous velocity-weakening (VW) region embedded in a velocity-strengthening (VS) area. Our simulations incorporate inertial wave-mediated effects during seismic ruptures (they are thus fully dynamic) and account for all phases of the seismic cycle in a self-consistent way. Earthquakes nucleate at the edge of the VW area and partial ruptures tend to stay confined within this zone of higher prestress, producing pulse-like ruptures that propagate along strike. The amplitude of the high-frequency sources is enhanced in the zone of higher, heterogeneous stress at the edge of the VW area.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Massolo, Serena; Bergamasco, Andrea; Castagno, Pasquale; Budillon, Giorgio
2010-05-01
Data from three Italian CLIMA project cruises between 1997 and 2003 were used to obtain sections of the hydrographic and chemical properties of the main water masses across the shelf break off Cape Adare (western Ross Sea, Antarctica). Dissolved oxygen, nitrate and phosphate data were combined on the basis of the Redfield ratio to obtain the quasi-conservative tracers NO (9[NO 3]+[O 2]), PO (135[PO 4]+[O 2]) and phosphate star PO4* ( PO4*=[PO 4]+[O 2]/175-1.95). In 1997 and 2003 the presence of the High Salinity Shelf Water at the bottom depth near the sill was traced by both physical and chemical measurements. In 2001 the Modified Shelf Water, characterized by warmer temperature and by a lower dissolved oxygen content than High Salinity Shelf Water, was observed at the shelf edge. The distribution of the chemical tracers together with the hydrographic observations showed recently formed Antarctic Bottom Water on the continental slope during all of the cruises. These observations were confirmed by the extended optimum multiparameter analysis. The calculated thickness of the new Antarctic Bottom Water, as well as the tracer content, were variable in time and in space. The estimated volume of the new Antarctic Bottom Water and the export of dissolved oxygen and nutrient associated with the overflowing water were different over the examined period. In particular, a lower (˜55%) export was evidenced in 2001 compared to 1997.
Local relative density modulates failure and strength in vertically aligned carbon nanotubes.
Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Needleman, Alan; Bedewy, Mostafa; Hart, A John; Greer, Julia R
2013-10-22
Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response.
System for loading slab-gel holders for electrophoresis separation
Anderson, Norman G.; Anderson, Norman L.
1979-01-01
A slab-gel loading system includes a prismatic chamber for filling a plurality of slab-gel holders simultaneously. Each slab-gel holder comprises a pair of spaced apart plates defining an intermediate volume for gel containment. The holders are vertically positioned in the chamber with their major surfaces parallel to the chamber end walls. A liquid inlet is provided at the corner between the bottom and a side wall of the chamber for distributing a polymerizable monomer solution or a coagulable colloidal solution into each of the holders. The chamber is rotatably supported so that filling can begin with the corner having the liquid inlet directed downwardly such that the solution is gently funneled upwardly, without mixing, along the diverging side and bottom surfaces. As filling proceeds, the chamber is gradually rotated to position the bottom wall in a horizontal mode. The liquid filling means includes a plastic envelope with a septum dividing it into two compartments for intermixing two solutions of different density and thereby providing a liquid flow having a density gradient. The resulting gels have a density gradient between opposite edges for subsequent use in electrophoresis separations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
...-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic... the South Atlantic Region and the FMP for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the... Aquariums to collect, with certain conditions, various species of reef fish and live rock in Federal waters...
Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks.
Furukawa, Yuki; Ishiwata, Takumi; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki
2012-10-15
Sweet cube o' mine: Bottom-up control of gel particles has been regarded as a great challenge. By employing internal cross-linking of cyclodextrin metal-organic frameworks, cubic sugar gels were formed with sharp edges that reflect the shape of the crystals. This enabled the fabrication of shape- and size-controlled polymer gels from porous crystals (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Earth Observations taken by Expedition 30 crewmember
2012-01-29
ISS030-E-055791 (29 Jan. 2012) --- This Jan. 29 panorama of much of the East Coast, photographed by one of the Expedition 30 crew members aboard the International Space Station, provides a look generally northeastward: Philadelphia-New York City-Boston corridor (bottom-center); western Lake Ontario shoreline with Toronto (left edge); Montreal (near center). An optical illusion in the photo makes the atmospheric limb and light activity from Aurora Borealis appear “intertwined.”
NASA Astrophysics Data System (ADS)
Sadeghi, S.; Emami, M. R.
2018-04-01
This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.
Rigid shape matching by segmentation averaging.
Wang, Hongzhi; Oliensis, John
2010-04-01
We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.
Turbine blade with spar and shell
Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL
2012-04-24
A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.
ERIC Educational Resources Information Center
Fry, Richard
2016-01-01
Broad demographic shifts in marital status, educational attainment and employment have transformed the way young adults in the U.S. are living. This Pew Research Center analysis of census data highlights the implications of these changes for the most basic element of their lives -- where they call home. In 2014, for the first time in more than 130…
Living technology: exploiting life's principles in technology.
Bedau, Mark A; McCaskill, John S; Packard, Norman H; Rasmussen, Steen
2010-01-01
The concept of living technology-that is, technology that is based on the powerful core features of life-is explained and illustrated with examples from artificial life software, reconfigurable and evolvable hardware, autonomously self-reproducing robots, chemical protocells, and hybrid electronic-chemical systems. We define primary (secondary) living technology according as key material components and core systems are not (are) derived from living organisms. Primary living technology is currently emerging, distinctive, and potentially powerful, motivating this review. We trace living technology's connections with artificial life (soft, hard, and wet), synthetic biology (top-down and bottom-up), and the convergence of nano-, bio-, information, and cognitive (NBIC) technologies. We end with a brief look at the social and ethical questions generated by the prospect of living technology.
Living on the edge of asthma: A grounded theory exploration.
Shaw, Michele R; Oneal, Gail
2014-10-01
Most asthma-related emergency department (ED) visits and hospitalizations for asthma are preventable. Our purpose was to develop a grounded theory to guide interventions to reduce unnecessary hospitalizations and ED visits. Grounded theory inquiry guided interviews of 20 participants, including 13 parents and 7 children. Living on the edge of asthma was the emergent theory. Categories included: balancing, losing control, seeking control, and transforming. The theory provides the means for nurses to understand the dynamic process that families undergo in trying to prevent and then deal with and learn from an acute asthma attack requiring hospitalization or an ED visit. © 2014, Wiley Periodicals, Inc.
Nicole L. Constantine; Tyler A. Campbell; William M. Baughman; Timothy B. Harrington; Brian R. Chapman; Karl V. Miller
2005-01-01
We characterized small mammal communities in three loblolly pine (Pinus taeda) stands in the Lower Coastal Plain of South Carolina during June 1998-Aug. 2000 to investigate influence of corridor edges on small mammal distribution. We live-trapped small mammals in three regenerating stands following clearcutting. Harvested stands were bisected by...
NASA Astrophysics Data System (ADS)
Regály, Zs.; Juhász, A.; Nehéz, D.
2017-12-01
Recent submillimeter observations show nonaxisymmetric brightness distributions with a horseshoe-like morphology for more than a dozen transition disks. The most-accepted explanation for the observed asymmetries is the accumulation of dust in large-scale vortices. Protoplanetary disks’ vortices can form by the excitation of Rossby wave instability in the vicinity of a steep pressure gradient, which can develop at the edges of a giant planet–carved gap or at the edges of an accretionally inactive zone. We studied the formation and evolution of vortices formed in these two distinct scenarios by means of two-dimensional locally isothermal hydrodynamic simulations. We found that the vortex formed at the edge of a planetary gap is short-lived, unless the disk is nearly inviscid. In contrast, the vortex formed at the outer edge of a dead zone is long-lived. The vortex morphology can be significantly different in the two scenarios: the vortex radial and azimuthal extensions are ∼1.5 and ∼3.5 times larger for the dead-zone edge compared to gap models. In some particular cases, the vortex aspect ratios can be similar in the two scenarios; however, the vortex azimuthal extensions can be used to distinguish the vortex formation mechanisms. We calculated predictions for vortex observability in the submillimeter continuum with ALMA. We found that the azimuthal and radial extent of the brightness asymmetry correlates with the vortex formation process within the limitations of α-viscosity prescription.
First description of a Lophelia pertusa reef complex in Atlantic Canada
NASA Astrophysics Data System (ADS)
Buhl-Mortensen, Pål; Gordon, Don C.; Buhl-Mortensen, Lene; Kulka, Dave W.
2017-08-01
For the first time, we describe a cold-water coral reef complex in Atlantic Canada, discovered at the shelf break, in the mouth of the Laurentian Channel. The study is based on underwater video and sidescan sonar. The reef complex covered an area of approximately 490×1300 m, at 280-400 m depth. It consisted of several small mounds (< 3 m high) where the scleractinian Lophelia pertusa occurred as live colonies, dead blocks and skeletal rubble. On the mounds, a total of 67 live colonies occurred within 14 patches at 300-320 m depth. Most of these (67%) were small (< 20 cm high). Dead coral (rubble and blocks), dominated (88% of all coral observations). Extensive signs of damage by bottom-fishing gear were observed: broken and tilted coral colonies, over-turned boulders and lost fishing gear. Fisheries observer data indicated that the reef complex was subjected to heavy otter trawling annually between 1980 and 2000. In June 2004, a 15 km2 conservation area excluding all bottom-fishing was established. Current bottom fisheries outside the closure include otter trawling for redfish and anchored longlines for halibut. Vessel monitoring system data indicate that the closure is generally respected by the fishing industry.
Historical harvests reduce neighboring old-growth basal area across a forest landscape.
Bell, David M; Spies, Thomas A; Pabst, Robert
2017-07-01
While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.
View of the launch of STS 51-A shuttle Discovery
NASA Technical Reports Server (NTRS)
1984-01-01
View across the water of the launch of STS 51-A shuttle Discovery. The orbiter is just clearing the launch pad (90032); closer view of the Shuttle Discovery just clearing the launch pad. Photo was taken from across the river, with trees and shrubs forming the bottom edge of the view (90033); Low angle view of the rapidly climbing Discovery, still attached to its two solid rocket boosters and an external fuel tank (90034).
MTR CAISSONS WERE DRILLED INTO BEDROCK. IN CENTER OF VIEW, ...
MTR CAISSONS WERE DRILLED INTO BEDROCK. IN CENTER OF VIEW, CONCRETE FLOWS FROM TRUCK INTO DRUM, WHICH IS LOWERED INTO CAISSON AND RELEASED AT BOTTOM OF HOLE. BEYOND, TRUCK-MOUNTED DRILLING RIG DRILLS HOLE FOR ANOTHER CAISSON NEAR EDGE OF EXCAVATION. MATERIAL REMOVED FROM HOLE IS CARRIED BY CONVEYOR TO WAITING TRUCK. INL NEGATIVE NO. 307. Unknown Photographer, 6/1950. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Bottom-up photonic crystal approach with top-down defect and heterostructure fine-tuning.
Ding, Tao; Song, Kai; Clays, Koen; Tung, Chen-Ho
2010-03-16
We combine the most efficient (chemical) approach toward three-dimensional photonic crystals with the most convenient (physical) technique for creating non-close-packed crystalline structures. Self-assembly of colloidal particles in artificial opals is followed by a carefully tuned plasma etching treatment. By covering the resulting top layer of more open structure with original dense opal, embedded defect layers and heterostructures can be conveniently designed for advanced photonic band gap and band edge engineering.
Computational Modeling and Design of Actively-Cooled Microvascular Materials
2012-06-14
the oscillations of the microchannel for exchanging the heat between the top and bottom edges become ineffective for reducing the temperature of the...Miniature loop heat pipes for electronics cooling, Appl. Therm. Eng. 23 (9) (2003) 1125–1135. [11] X. Wei, Y. Joshi, M.K. Patterson, Experimental and...systems ( MEMS ) [10–12]. In many of these applications, biomimicry has been used as an inspiration for the design of the microvascular sys- tem, while
NASA Astrophysics Data System (ADS)
Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.
2016-04-01
Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.
A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells
Huang, Lawrence; Helmke, Brian P.
2011-01-01
Spatial asymmetry of actin edge ruffling contributes to the process of cell polarization and directional migration, but mechanisms by which external cues control actin polymerization near cell edges remain unclear. We designed a quantitative image analysis strategy to measure the spatiotemporal distribution of actin edge ruffling. Time-lapse images of endothelial cells (ECs) expressing mRFP-actin were segmented using an active contour method. In intensity line profiles oriented normal to the cell edge, peak detection identified the angular distribution of polymerized actin within 1 µm of the cell edge, which was localized to lamellipodia and edge ruffles. Edge features associated with filopodia and peripheral stress fibers were removed. Circular statistical analysis enabled detection of cell polarity, indicated by a unimodal distribution of edge ruffles. To demonstrate the approach, we detected a rapid, nondirectional increase in edge ruffling in serum-stimulated ECs and a change in constitutive ruffling orientation in quiescent, nonpolarized ECs. Error analysis using simulated test images demonstrate robustness of the method to variations in image noise levels, edge ruffle arc length, and edge intensity gradient. These quantitative measurements of edge ruffling dynamics enable investigation at the cellular length scale of the underlying molecular mechanisms regulating actin assembly and cell polarization. PMID:21643526
NASA Astrophysics Data System (ADS)
Jolliff, J.; Jarosz, E.; Penko, A.; Smith, T.
2017-12-01
The "Lafourche Trough" is a mud/silt -dominated, elongate seafloor depression located between transgressive sandy shoals approximately 50 km south of Cocodrie, Louisiana. These irregular bathymetric features are relicts of the abandoned Lafourche delta complex that still have an impact upon coupled sediment-hydrodynamic processes occurring today. Repeated optical and physical oceanographic surveys conducted during the spring of 2015 and winter 2017 reveal persistent bottom nepheloid layers (BNLs) characterized by extreme optical turbidity (beam attenuation 10 m-1, 532 nm). The manifestation and persistence of cohesive sediment BNLs in this area appears to result from a complex interplay between tidal currents, bathymetry, and frontal dynamics along the edge of the Mississippi River plume. Numerical experiments were performed using the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS), an integrated air-sea-wave operational forecasting tool, that includes a simplified numerical sediment resuspension and transport scheme in order to simulate the nepheloid layer observations through the trough. The model results suggest that the wave-current bottom boundary layer is a critical factor in BNL development, and thusly, without wave model integration into COAMPS the system struggles to replicate the observations. Future modeling work will need to explore the potential suppression of physical mixing due to density perturbations along the BNL to fluid mud continuum within the bottom boundary layer.
NASA Astrophysics Data System (ADS)
Nesterova, Olga; Tregubova, Valentina; Semal, Victoria; Vasenev, Ivan
2017-04-01
The nature and distribution of organic carbon in marine waters depends on: 1) biological productivity and revenue of the autochthonous organic matter to the bottom; 2) sediment grain-size composition and conditions of dumping, which in turn depends of hydrothermic regime, topography, speed River mist and received major erosion products; 3) living conditions of the benthos (the quantity consumed of OM, gas regime of habitats, physiological capacity of heterotrophs). Autochthonous OM of phytoplankton plays a dominant role in the processes of formation of humus in aquatic conditions. Bottom sediments at different distance from the shoreline to depths from 0.5 up to 480 m of the Sea of Japan, which are formed in various conditions of facies, were selected as the objects of study. There is no clear relationships to the amount of organic matter in bottom sediments on the characteristics of the distribution and nature of living matter in the oceans and seas. This is because the process of sedimentation and fossilization of organic matter on the seabed and the ocean floor depends on many factors (currents, depth). Humus of studied bottom sediments in composition can be attributed mainly to the humic type. Nonhydrolyzing rest is 70-90%. This is characteristic of bottom sediments formed in facial types of small bays, internal coastal shelf bights and the underwater slope. At a fraction of the carbon of humic acids in organic matter, ranging from 4 to 80% of the amount of humic and fulvic acids. Fulvic acids content is much less. This is due to more favourable conservation situation of humic acids in precipitation with high content of organic matter, whereas fulvic acids in aquatic environments are more labile and almost not dumped. Despite the fact humic acids are not the most stable component (s), however, with increased content of humic acids, the mobility of organic matter and removing it from the bottom sediments are reduced. Internal shelf facies of the Great Peter Bay is the most diverse on the content of the various components of the bottom sediments humus. This is because modern processes of sedimentations and humus formation are active in this zone. The greatest concentration of organic matter in conjunction with the submarine and coastal slope at depths of more than 120 m. Slight variations parameters that characterize the composition of humus, are notable for all bottom sediments, as well as the marine environment, largely cancels the General conditions of humus formation around the basin of the Sea of Japan. Organic substance moving in the water colomn and transforms. Only sustainable to mineralization of organic substance reaches the bottom.
Creation of forest edges has a global impact on forest vertebrates.
Pfeifer, M; Lefebvre, V; Peres, C A; Banks-Leite, C; Wearn, O R; Marsh, C J; Butchart, S H M; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D'Cruze, N; Faria, D; Hadley, A; Harris, S M; Klingbeil, B T; Kormann, U; Lens, L; Medina-Rangel, G F; Morante-Filho, J C; Olivier, P; Peters, S L; Pidgeon, A; Ribeiro, D B; Scherber, C; Schneider-Maunoury, L; Struebig, M; Urbina-Cardona, N; Watling, J I; Willig, M R; Wood, E M; Ewers, R M
2017-11-09
Forest edges influence more than half of the world's forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.
Creation of forest edges has a global impact on forest vertebrates
NASA Astrophysics Data System (ADS)
Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.
2017-11-01
Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.
Analysis of interlaminar stresses in thick composite laminates with and without edge delamination
NASA Technical Reports Server (NTRS)
Whitcomb, J. D.; Raju, I. S.
1984-01-01
The effect of laminate thickness on the interlaminar stresses in rectangular quasi-isotropic laminates under uniform axial strain was studied. Laminates from 8-ply to infinitely thick were analyzed. Thick laminates were synthesized by stacking (45/0/-45/90) ply groups, rather than grouping like plies. Laminates with and without delaminations were studied. In laminates without delaminations, the free-edge interlaminar normal stress distribution in the outer ply groups was insensitive to total laminate thickness. The interlaminar normal stress distribution for the interior ply groups was nearly the same as for an infinitely thick laminate. In contrast, the free-edge inter-laminar shear stress distribution was nearly the same for inner and outer ply groups and was insensitive to laminate thickness. In laminates with delaminations those delaminations near the top and bottom surfaces of a thick laminate have much larger total strain-energy-release rates (G sub t) and mode I-to-total (G sub t/G sub t) ratios than delaminations deep in the interior. Therefore, delaminations can be expected to grow more easily near the surfaces of a laminate than in the interior.
NASA Astrophysics Data System (ADS)
Li, Liang; Yang, Lin'an; Zhang, Jincheng; Hao, Yue
2013-09-01
This paper reports an efficient method to improve the crystal quality of GaN Gunn diode with AlGaN hot electron injecting layer (HEI). An evident reduction of screw dislocation and edge dislocation densities is achieved by the strain management and the enhanced lateral growth in high temperature grown AlGaN HEI layer. Compared with the top hot electron injecting layer (THEI) structure, the bottom hot electron injecting layer (BHEI) structure enhances the crystal quality of transit region due to the growth sequence modulation of HEI layer. A high Hall mobility of 2934 cm2/Vs at 77 K, a nearly flat downtrend of Hall mobility at the temperature ranging from 300 to 573 K, a low intensity of ratio of yellow luminescence band to band edge emission, a narrow band edge emission line-width, and a smooth surface morphology are observed for the BHEI structural epitaxy of Gunn diode, which indicates that AlGaN BHEI structure is a promising candidate for fabrication of GaN Gunn diodes in terahertz regime.
Mechanically driven centrifugal pyrolyzer
Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL
2012-03-06
An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.
String stabilized ribbon growth a method for seeding same
Sachs, Emanuel M.
1987-08-25
This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.
NASA Technical Reports Server (NTRS)
Schmid, F.
1981-01-01
The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.
1996-01-20
STS072-737-012 (11-20 Jan. 1996) --- The astronauts photographed this view of Java, an Indonesian island. Java lies between the Java Sea at top and the Indian Ocean at bottom (north is located at top center). A line of volcanoes on the southern edge of the island, trending from central to eastern areas, is highlighted by a ring of clouds. Off the southern coast of Java is the Java Trench where the Australian plate, to the south, is diving under the Eurasia plate to the north. According to anthropologists, Java has one of the highest populations in Indonesia because the soil is enriched by volcanic ash. Merapi volcano, at left edge, second volcano to the right, rises to 9,550 feet and erupts frequently. Madura Island, partially obscured by clouds, can be seen on the upper eastern end of Java.
Dynamic relationship between ocean bottom pressure and bathymetry around northern part of Hikurangi
NASA Astrophysics Data System (ADS)
Muramoto, T.; Inazu, D.; Ito, Y.; Hino, R.; Suzuki, S.
2017-12-01
In recent years, observation using ocean bottom pressure recorders for the purpose of the evaluation of sea floor crustal deformation is in great vogue. The observation network set up for the observation of sea floor is densely spaced compared with the instrument network for the observation of ocean. Therefore, it has the characteristic that it can observe phenomena on a local scale. In this study, by using these in situ data, we discuss ocean phenomena on a local scale. In this study, we use a high-resolution ocean model (Inazu Ocean Model) driven by surface air pressure and surface wind vector published by the Japan Meteorological Agency. We perform a hindcast experiment for ocean bottom pressure anomaly from April 2013 to June 2017. Then, we compare these results with in situ data. In this study, we use observed pressure records which were recorded by autonomous type instrument spanning a period from April 2013 to June 2017 off the coast of North Island in New Zealand. Consequently, we found this model can simulate not only the amplitude but also phase of non-tidal oceanic variation of East Cape Current (ECC) off the coast of North Island of New Zealand. Then, we calculate cross-correlation coefficient between the data at the OBP sites. We revealed that the ocean bottom pressure shows different behavior on the west side from the east side of edge of the continental shelf. This result implies that the submarine slope induces a dynamic effect and contributes to the seasonal variation of ocean bottom pressure. In addition, we calculate the velocity of the surface current in this area using our model, and consider the relationship between it and ocean bottom pressure variation. Taken together, we can say that the barotropic flow in the direction of south-west extends to the bottom of the sea in this area. Therefore, the existence of local cross-isobath currents is suggested. Our result indicates bathymetry has dynamic effect to ocean circulation on local scale and at the same time the surface ocean circulation contributes to ocean bottom pressure considerably.
Roose, L.D.
1984-07-03
The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again. 4 figs.
Roose, Lars D.
1984-01-01
The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.
Roose, L.D.
1982-08-25
The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.
NASA Astrophysics Data System (ADS)
Sugahara, Kazuchika; Nakagawa, Takao; Hirase, Ryuji; Katagiri, Toshifumi; Inada, Yuhi; Yamao, Takeshi; Hotta, Shu
2018-04-01
We synthesized a novel small-molecule organic semiconductor, which is soluble in organic solvents at room temperature under normal pressure. We demonstrated that its high-quality crystalline films can be directly grown on substrates using various solution techniques such as solution casting, slow evaporation, and edge casting. We applied crystals to FETs with a bottom- or top-contact configuration, revealing that the carrier mobility ranged from ˜10-4 to ˜10-2 cm2 V-1 s-1.
Astronaut Rhea Seddon works on flyswatter-like snagging device
NASA Technical Reports Server (NTRS)
1985-01-01
Astronaut Rhea Seddon begins works on flyswatter-like snagging device to be used as an extension to the remote manipulator system (RMS) arm on Discovery for an attempt to trip a lever on the troubled Syncom-IV satellite. She is seated on the floor of the aft flight deck with a pair of scissors in her mouth. She is using an exacto knife to cut the extension out of plastic. Her jacket is floating in the bottom right edge of the frame.
Island of Hawaii, Hawaiian Archipelago
NASA Technical Reports Server (NTRS)
1983-01-01
This single photo covers almost all of the big island of Hawaii (19.5N, 155.5E) in the Hawaiian Archipelago. The active Kilauea Volcano and lava flow is under clouds and hardly visible at the lower right edge but the Mauna Loa volcano crater and its older lava flow is at the bottom center. The Kona Coast, that produces the only coffee grown in the United States, is to the left. Mauna Kea is the extinct volcano and lava flow in the right center.
Brännström, Helene; Bäckman, Margit; Santamäki Fischer, Regina
2013-05-01
In order to maintain one's state of health whilst growing older, the ability to walk is essential. The aim of this study was to illuminate the meanings of the lived experience of living in an ageing body and using a walker in daily life. Narrative interviews were performed with seven older persons aged 79-95 years. The transcribed text was analysed using a phenomenological hermeneutic method. The key finding of the study was that the lived experience of living in an ageing body and using a walker in daily life was interpreted as 'walking on the edge' based on the themes 'Being vulnerable and dependent' and 'Being confident and independent'. The results highlight the importance of reflecting on this phenomenon as a health care professional while meeting the care needs of older persons who use walkers. Nurses need to consider the walker as a personal and valued possession of the individual and handle the walker in agreement with the older person, placing the walker close at hand with the brakes locked to give secure support. © 2012 Blackwell Publishing Ltd.
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
Note On The Ross Sea Shelf Water Downflow Processes (antarctica)
NASA Astrophysics Data System (ADS)
Bergamasco, A.; Defendi, V.; Spezie, G.; Budillon, G.; Carniel, S.
In the framework of the CLIMA Project of the Italian National Program for Research in Antarctica, three different experimental data sets were acquired along the continental shelf break; two of them (in 1997 and 2001) close to Cape Adare, the 1998 one in the middle of the Ross Sea (i.e. 75 S, 177 W). The investigations were chosen in order to explore the downslope flow of the bottom waters produced in the Ross Sea, namely the High Salinity Shelf Water (HSSW, the densest water mass of the southern ocean coming from its formation site in the polynya region in Terra Nova bay), and the Ice Shelf Water (ISW, originated below the Ross Ice Shelf and outflowing northward). Both bottom waters spill over the shelf edge and mix with the Circumpolar Deep Water (CDW) contributing to the formation of the Antarctic Bottom Waters (AABW). Interpreting temperature, salinity and density maps in terms of cascading processes, both HSSW and ISW overflows are evidenced during, respectively, 1997 and 1998. During the 2001 acquisition there is no presence of HSSW along the shelf break, nevertheless distribution captures the evidence of a downslope flow process.
Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L
2017-02-01
Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.
ERIC Educational Resources Information Center
Kronick, Robert F.
2005-01-01
This book is about children who are living dangerously close to the edge, the edge of delinquency, mental illness, and poverty. Beginning with a discussion of the role of Joy Dryfoos in the development of comprehensive schools, this work is based on the Full Service Schools program which began in 1998 in three elementary inner-city schools in…
ERIC Educational Resources Information Center
Ruddell, Natalie
2017-01-01
Purpose: The purpose of this phenomenological study was to describe the perceptions of current and former Leading Edge Certified (LEC) elementary school teachers regarding instructional technology practices that facilitate students' development of critical thinking, collaboration, communication, and creativity (4Cs) in one-to-one computer…
Benefits of curved serrations on broadband trailing-edge noise reduction
NASA Astrophysics Data System (ADS)
Avallone, F.; van der Velden, W. C. P.; Ragni, D.
2017-07-01
Far-field noise and flow field over a novel curved trailing-edge serration (named as iron-shaped serration) are investigated. Spectra of the far-field broadband noise, directivity plots and the flow-field over the iron-shaped serration are obtained from numerical computations performed using a compressible Lattice-Boltzmann solver. The new design is compared to a conventional trailing-edge serration with a triangular geometry. Both serration geometries were retrofitted to a NACA 0018 airfoil at zero degree angle of attack. The iron-shaped geometry is found to reduce far-field broadband noise of approximately 2 dB more than the conventional sawtooth serration for chord-based Strouhal numbers Stc<15. At higher frequencies, the far-field broadband noise for the two serration geometries has comparable intensity. Near-wall velocity distribution and surface pressure fluctuations show that their intensity and spectra are independent on the serration geometry, but a function of the streamwise location. It is found that the larger noise reduction achieved by the iron-shaped trailing-edge serration is due to the mitigation of the scattered noise at the root. This effect is obtained by mitigating the interaction between the two sides of the serration, by delaying toward the tip both the outward (i.e., the tendency of the flow to deviate from the centerline to the edge of the serration) and the downward (i.e., the tendency of the flow to merge between the upper and bottom side of the serration) flow motions present at the root of the sawtooth.
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.
Kiguwa, Peace
2015-11-01
This paper explores the meanings attached to gay sexuality through the self-labelling practices of a group of young gay-identified students in focus group and individual interviews in Johannesburg, South Africa. These meanings include constructs of the dynamics surrounding safe sex negotiation and risk related to "top-bottom" subject positioning as well as the erotics of power and desire that are imbued in these practices and positioning. Using performativity theory as a theoretical tool of analysis, I argue that constructs of "top-bottom" subjectivities can be seen to meet certain erotic needs for LGBTI youth, including reasons related to physical safety for LGBTI people living in dangerous spaces. The performance of "bottom" identities in sexual intimacy and behaviour is further deployed in the expression and performance of power that the participants construct as erotic. The implications for sexual health intervention include understanding the gendered performance influences of sexual behaviour including safe sex, exploring creative ways that practices of sexual health can be engaged with this population group in a way that accommodates the erotic pleasure interfaced with sexual identity identifications and performances of "bottom" identities. Copyright © 2015 Elsevier Inc. All rights reserved.
Rapid Assessment of Stony Coral Richness and Condition on Saba Bank, Netherlands Antilles
McKenna, Sheila A.; Etnoyer, Peter
2010-01-01
The benthic habitats of Saba Bank (17°25′N, 63°30′W) are at risk from maritime traffic, especially oil tankers (e.g., anchoring). To mitigate this risk, information is needed on the biodiversity and location of habitats to develop a zone use plan. A rapid survey to document the biodiversity of macro-algae, sponges, corals and fishes was conducted. Here we report on the richness and condition of stony coral species at 18 select sites, and we test for the effects of bottom type, depth, and distance from platform edge. Species richness was visually assessed by roving scuba diver with voucher specimens of each species collected. Coral tissue was examined for bleaching and diseases. Thirty-three coral species were documented. There were no significant differences in coral composition among bottom types or depth classes (ANOSIM, P>0.05). There was a significant difference between sites (ANOSIM, P<0.05) near and far from the platform edge. The number of coral species observed ranged from zero and one in algal dominated habitats to 23 at a reef habitat on the southern edge of the Bank. Five reef sites had stands of Acropora cervicornis, a critically endangered species on the IUCN redlist. Bleaching was evident at 82% of the sites assessed with 43 colonies bleached. Only three coral colonies were observed to have disease. Combining our findings with that of other studies, a total of 43 species have been documented from Saba Bank. The coral assemblage on the bank is representative and typical of those found elsewhere in the Caribbean. Although our findings will help develop effective protection, more information is needed on Saba Bank to create a comprehensive zone use plan. Nevertheless, immediate action is warranted to protect the diverse coral reef habitats documented here, especially those containing A. cervicornis. PMID:20505771
The influence of seagrass on shell layers and Florida Bay mudbanks
Prager, E.J.; Halley, R.B.
1999-01-01
Aerial photography indicates that sometime since the early 1970's, an emergent ridge of shell debris developed on a mudbank north of Calusa Key in Florida Bay. Coarse shell deposits on and within the Bay's shallow mudbanks are believed to be the product of transport during major storm events and subsequent winnowing. However, shell material from the ridge contains nuclear bomb 14C, supporting formation within the past 30 years and the last major hurricanes to influence Florida Bay were Donna and Betsy (1960 and 1965). Results from this study suggest that the Calusa ridge and other coarse shell deposits in Florida Bay can result from, 1) periodic seagrass mortality and wave-induced transport during frequent winter cold fronts and/or 2) mollusc blooms and subsequent burial. A survey of bottom types indicates that dense to intermediate beds of seagrass, mainly Thalassia testudinum (turtle grass), occur within the shallow basins of western Florida Bay and along the margins of Bay mudbanks. Wave measurements and modeling indicate that Thalassia along mudbank margins can reduce incoming wave-energy by over 80%. Seagrass beds also host particularly dense populations of molluscs from periodic 'blooms' and are believed to be the major source of coarse sediments in the Bay. Thus, if bank-edge seagrass dies, sediments, including shell debris, become exposed and subject to greatly increased wave energy. Modeling indicates that winds typical of winter cold fronts in South Florida can produce near-bottom velocities and shear stress at a grass-free bank edge which are sufficient to transport coarse carbonate grains. Shell layers found at depth in mudbank cores can also be explained by previous episodes of sediment accretion over mollusc-rich seagrass beds or grass bed mortality at the edge of a mudbank and shell transport during cold front passage. The latter implies that mortality of marginal seagrass beds has occurred throughout the history of Florida Bay and that the historical influence of hurricanes on sedimentation in the Bay may have been overestimated.
NASA Astrophysics Data System (ADS)
Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.
2016-03-01
Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.
Naegleria fowleri: contact-dependent secretion of electrondense granules (EDG).
Chávez-Munguía, Bibiana; Villatoro, Lizbeth Salazar; Omaña-Molina, Maritza; Rodríguez-Monroy, Marco Aurelio; Segovia-Gamboa, Norma; Martínez-Palomo, Adolfo
2014-07-01
The free living amoeba Naegleria fowleri is pathogenic to humans but also to other mammalians. These amoebae may invade the nasal mucosa and migrate into the brain causing cerebral hemorrhagic necrosis, a rapidly fatal infection. Knowledge of the cytolytic mechanism involved in the destruction of brain tissues by Naegleria trophozoites is limited. In other amoebic species, such as Entamoeba histolytica, we have previously reported the possible lytic role of small cytoplasmic components endowed with proteolytic activities, known as electrondense granules (EDG). Using transmission electron microscopy we now report that EDG, seldom found in long term cultured N. fowleri, are present in abundance in trophozoites recovered from experimental mice brain lesions. Numerous EDG were also observed in amoebae incubated with collagen substrates or cultured epithelial cells. SDS-PAGE assays of concentrated supernatants of these trophozoites, containing EDG, revealed proteolytic activities. These results suggest that EDG may have a clear role in the cytopathic mechanisms of this pathogenic amoeba. Copyright © 2014 Elsevier Inc. All rights reserved.
Method and apparatus for spatially uniform electropolishing and electrolytic etching
Mayer, Steven T.; Contolini, Robert J.; Bernhardt, Anthony F.
1992-01-01
In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.
Method and apparatus for spatially uniform electropolishing and electrolytic etching
Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.
1992-03-17
In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.
Piatkowski, Piotr; Cohen, Boiko; Ponseca, Carlito S; Salado, Manuel; Kazim, Samrana; Ahmad, Shahzada; Sundström, Villy; Douhal, Abderrazzak
2016-01-07
We report on studies of the formamidinium lead triiodide (FAPbI3) perovskite film using time-resolved terahertz (THz) spectroscopy (TRTS) and flash photolysis to explore charge carriers generation, migration, and recombination. The TRTS results show that upon femtosecond excitation above the absorption edge, the initial high photoconductivity (∼75 cm(2) V(-1) s(-1)) remains constant at least up to 8 ns, which corresponds to a diffusion length of 25 μm. Pumping below the absorption edge results in a mobility of 40 cm(2) V(-1) s(-1) suggesting lower mobility of charge carriers located at the bottom of the conduction band or shallow sub-bandgap states. Furthermore, analysis of the THz kinetics reveals rising components of <1 and 20 ps, reflecting dissociation of excitons having different binding energies. Flash photolysis experiments indicate that trapped charge carriers persist for milliseconds.
Earth observations taken from Space Shuttle Columbia during STS-80 mission
1996-12-03
STS080-742-070 (19 Nov.-7 Dec. 1996) --- A view of the Tongue of the Ocean in the Bahama Islands east of Florida. The lines leading from the flat bottom of the Great Bahama Bank, leading into the Tongue, are caused by rapid transfer of ocean water caused by both temperature changes in the water and hurricanes that periodically cross the area. The water is about 30 feet deep on the Great Bahama Bank, and nearly a mile deep in the tongue. To the left is the Exuma Sound, over a mile deep, and a series of islands along its edge with Great Exuma Island the easiest to see. Green Cay, the small dot lower left, leaving a wake to the southeast of light colored coral. The deep blue area to the top right center is the southeastern edge of the Great Bahama Bank.
Laboratory glassware rack for seismic safety
NASA Technical Reports Server (NTRS)
Cohen, M. M. (Inventor)
1985-01-01
A rack for laboratory bottles and jars for chemicals and medicines has been designed to provide the maximum strength and security to the glassware in the event of a significant earthquake. The rack preferably is rectangular and may be made of a variety of chemically resistant materials including polypropylene, polycarbonate, and stainless steel. It comprises a first plurality of parallel vertical walls, and a second plurality of parallel vertical walls, perpendicular to the first. These intersecting vertical walls comprise a self-supporting structure without a bottom which sits on four legs. The top surface of the rack is formed by the top edges of all the vertical walls, which are not parallel but are skewed in three dimensions. These top edges form a grid matrix having a number of intersections of the vertical walls which define a number of rectangular compartments having varying widths and lengths and varying heights.
Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer
NASA Astrophysics Data System (ADS)
Kicin, S.; Cambel, V.; Kuliffayová, M.; Gregušová, D.; Kováčová, E.; Novák, J.; Kostič, I.; Förster, A.
2002-01-01
We present a wet-chemical-etching method developed for the preparation of GaAs four-sided pyramid-shaped mesas. The method uses a fast lateral etching of AlAs interlayer that influences the cross-sectional profiles of etched structures. We have tested the method using H3PO4:H2O2:H2O etchant for the (100) GaAs patterning. The sidewalls of the prepared pyramidal structures together with the (100) bottom facet formed the cross-sectional angles 25° and 42° for mask edges parallel, resp. perpendicular to {011} cleavage planes. For mask edges turned in 45° according to the cleavage planes, 42° cross-sectional angles were obtained. Using the method, symmetric and more than 10-μm-high GaAs "Egyptian" pyramids with smooth tilted facets were prepared.
Newton, Robert G.
1977-01-01
The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough.
Reducing the substrate dependent scanner leveling effect in low-k1 contact printing
NASA Astrophysics Data System (ADS)
Chang, C. S.; Tseng, C. F.; Huang, C. H.; Yang, Elvis; Yang, T. H.; Chen, K. C.
2015-03-01
As the scaling down of design rule for high-density memory device, the small depth of focus (DoF) budget may be deteriorated by focus leveling errors, which arises in unpredicted reflectivity from multilayer structures on the topographic wafer. The leveling sensors of ASML scanner use near infrared (NIR) range wavelength which can penetrate through most of films using in semiconductor fabrication such as photo-resist, bottom anti reflective coating (BARC) and dielectric materials. Consequently, the reflected light from underlying substructures would disturb leveling sensors from accurate leveling. The different pattern densities and layout characteristics between array and periphery of a memory chip are expected to result in different leveling signals. Furthermore, the process dependent variations between wafer central and edge areas are also considered to yield different leveling performances during wafer exposure. In this study, lower blind contact immunity was observed for peripheral contacts comparing to the array contacts especially around wafer edge region. In order to overcome this problem, a series of investigations have been carried out. The wafer edge leveling optimization through circuit dependent focus edge clearance (CDFEC) option doesn't get improvement. Air gauge improved process leveling (AGILE) function of ASML immersion scanner doesn't show improved result either. The ILD uniformity improvement and step height treatments around wafer edge such as edge exclusion of film deposition and bevel etching are also ineffective to mitigate the blind contact problem of peripheral patterns. Altering the etch hard-mask stack is finally found to be an effective approach to alleviate the issue. For instance, through either containing high temperature deposition advanced patterning film (APF) in the hard-mask or inserting higher opaque film such as amorphous Si in between the hard-mask stack.
Gay, Frederick B.; Frimpter, Michael H.
1985-01-01
Polychlorinated biphenyls (PCB's) are sorbed to the fine-grained stream-bottom sediments along the Housatonic River from Pittsfield, Massachusetts, southward to the Massachusetts-Connecticut boundary. The highest PCB concentrations, up to 140,000 micrograms per kilogram, were found in samples of bottom material from a reach of the river between Pittsfield and Woods Pond Dam in Lee, Massachusetts. Sediments in Woods Pond have been estimated to contain about 11,000 pounds of PCB's. Approximately 490 pounds per year of PCB's have also been estimated to move past the Housatonic River gaging station at Great Barrington. The distribution of hydraulic heads, water temperatures, and concentrations of dissolved oxygen, ammonia, nitrate, iron, and manganese in ground water shows that industrial water-supply wells in a sand and gravel aquifer adjacent to a stretch of the river called Woods Pond have been inducing ground-water recharge through the PCB-contaminated bottom sediments of the pond since late 1956. These data indicate that, at one location along the shore of the pond, the upper 40 feet of the aquifer contains water derived from induced infiltration. However, this induced recharge has not moved PCB's from the bottom sediments into a vertical section of the aquifer located 5 feet downgradient from the edge of Woods Pond. Samples taken at selected intervals in this section showed that no PCB's sorbed to the aquifer material or dissolved in the ground water within the detection limits of the chemical analyses.
NASA Astrophysics Data System (ADS)
Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.
2017-09-01
The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is novel as it is the first skill assessment of a regional ocean circulation model in bottom fields at high spatial and temporal scales in the Northwest Atlantic Shelf region.
Ant-lepidopteran associations along African forest edges
NASA Astrophysics Data System (ADS)
Dejean, Alain; Azémar, Frédéric; Libert, Michel; Compin, Arthur; Hérault, Bruno; Orivel, Jérôme; Bouyer, Thierry; Corbara, Bruno
2017-02-01
Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.
Li, Jingchun; Ó Foighil, Diarmaid; Middelfart, Peter
2012-01-01
Background Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. Methodology/Principal Findings Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host’s bioturbation. Conclusions/Significance The formation of commensal associations by galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host’s burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily. PMID:22905116
Khaw, Kay-Tee; Bingham, Sheila; Welch, Ailsa; Luben, Robert; O'Brien, Eoin; Wareham, Nicholas; Day, Nicholas
2004-11-01
Abundant evidence indicates that a high sodium intake is causally related to high blood pressure, but debate over recommendations to reduce dietary sodium in the general population continues. A key issue is whether differences in usual sodium intake within the range feasible in free-living populations have clinical or public health relevance. We examined the relation between blood pressure and urinary sodium as a marker of dietary intake. This was a study of 23104 community-living adults aged 45-79 y. Mean systolic and diastolic blood pressure increased as the ratio of urinary sodium to creatinine increased (as estimated from a casual urine sample), with differences of 7.2 mm Hg for systolic blood pressure and 3.0 mm Hg for diastolic blood pressure (P < 0.0001) between the top and bottom quintiles. This trend was independent of age, body mass index, urinary potassium:creatinine, and smoking and was consistent by sex and history of hypertension. The prevalence of those with systolic blood pressure >/= 160 mm Hg halved from 12% in the top quintile to 6% in the bottom quintile; the odds ratio for having systolic blood pressure >/= 160 mm Hg was 2.48 (95% CI: 1.90, 3.22) for men and 2.67 (95% CI: 2.08, 3.43) for women in the top compared with the bottom quintile of urinary sodium. Estimated mean sodium intakes in the lowest and highest quintiles were approximately 80 and 220 mmol/d, respectively. Within the usual range found in a free-living population, differences in urinary sodium, an indicator of dietary sodium intake, are associated with blood pressure differences of clinical and public health relevance. Our findings reinforce recommendations to lower average sodium intakes in the general population.
Yang, Sunny Y; Amor, Souheila; Laguerre, Aurélien; Wong, Judy M Y; Monchaud, David
2017-05-01
The development of quadruplex-directed molecular diagnostic and therapy rely on mechanistic insights gained at both cellular and tissue levels by fluorescence imaging. This technique is based on fluorescent reporters that label cellular DNA and RNA quadruplexes to spatiotemporally address their complex cell biology. The photophysical characteristics of quadruplex probes usually dictate the modality of cell imaging by governing the selection of the light source (lamp, LED, laser), the optical light filters and the detection modality. Here, we report the characterizations of prototype from a new generation of quadruplex dye termed G4-REP (for quadruplex-specific red-edge probe) that provides fluorescence responses regardless of the excitation wavelength and modality (owing to the versatility gained through the red-edge effect), thus allowing for diverse applications and most imaging facilities. This is demonstrated by cell images (and associated quantifications) collected through confocal and multiphoton microscopy as well as through real-time live-cell imaging system over extended period, monitoring both non-cancerous and cancerous human cell lines. Our results promote a new way of designing versatile, efficient and convenient quadruplex-reporting dyes for tracking these higher-order nucleic acid structures in living human cells. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.
Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions
NASA Astrophysics Data System (ADS)
Gomez, Guillermo Andres
The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion jet-in-crossflow trajectory correlations, a unique Dual Planar Laser Induced Fluorescence (Dual-PLIF) method was applied for the first time on emulsions at elevated pressure conditions. From the Dual-PLIF results, qualitative observations provided insight into the unique dispersion of oil and water concentrations within a cross-sectional plane down stream of the jet-in-crossflow injection.
Bend Faulting at the Edge of a Flat Slab: The 2017 Mw7.1 Puebla-Morelos, Mexico Earthquake
NASA Astrophysics Data System (ADS)
Melgar, Diego; Pérez-Campos, Xyoli; Ramirez-Guzman, Leonardo; Spica, Zack; Espíndola, Victor Hugo; Hammond, William C.; Cabral-Cano, Enrique
2018-03-01
We present results of a slip model from joint inversion of strong motion and static Global Positioning System data for the Mw7.1 Puebla-Morelos earthquake. We find that the earthquake nucleates at the bottom of the oceanic crust or within the oceanic mantle with most of the moment release occurring within the oceanic mantle. Given its location at the edge of the flat slab, the earthquake is likely the result of bending stresses occurring at the transition from flat slab subduction to steeply dipping subduction. The event strikes obliquely to the slab, we find a good agreement between the seafloor fabric offshore the source region and the strike of the earthquake. We argue that the event likely reactivated a fault first created during seafloor formation. We hypothesize that large bending-related events at the edge of the flat slab are more likely in areas of low misalignment between the seafloor fabric and the slab strike where reactivation of preexisting structures is favored. This hypothesis predicts decreased likelihood of bending-related events northwest of the 2017 source region but also suggests that they should be more likely southeast of the 2017 source region.
1979-07-06
P-21735 BW This Jupiter image taken by Voyager 2 shows an area from 10° N. Lat. to 34° S. Lat. in a region west of the Great Red Spot. At the top of the picture, equatorial plumes are seen. These features move along the edge of the equatorial zone. The remainder of the equatorial region is characterized by diffuse clouds. The region west of the Great Red Spot is seen as a disturbed wave-like pattern. Similiar flows are seen to the west of the white oval at bottom.
ERIC Educational Resources Information Center
Boutwell, Clinton E.
1997-01-01
America's corporate executives consider a huge world-class workforce superfluous. Corporate restructuring's bottom line was the massive shedding of workers, a reduction in future job opportunities, and a concomitant plunge in income, benefits, and living standards for millions. Experts predict that only 20% of well-trained college graduates will…
Synthetic biology engineering of biofilms as nanomaterials factories.
Nguyen, Peter Q
2017-06-15
Bottom-up fabrication of nanoscale materials has been a significant focus in materials science for expanding our technological frontiers. This assembly concept, however, is old news to biology - all living organisms fabricate themselves using bottom-up principles through a vast self-organizing system of incredibly complex biomolecules, a marvelous dynamic that we are still attempting to unravel. Can we use what we have gleaned from biology thus far to illuminate alternative strategies for designer nanomaterial manufacturing? In the present review article, new synthetic biology efforts toward using bacterial biofilms as platforms for the synthesis and secretion of programmable nanomaterials are described. Particular focus is given to self-assembling functional amyloids found in bacterial biofilms as re-engineerable modular nanomolecular components. Potential applications and existing challenges for this technology are also explored. This novel approach for repurposing biofilm systems will enable future technologies for using engineered living systems to grow artificial nanomaterials. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling
NASA Astrophysics Data System (ADS)
Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng
2016-03-01
Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5nr09236a
Field Testing and Load Rating Report, Bridge S-1090
2008-05-01
alignment to the road- way. The steel beams are rolled sections with cover plates welded to the bottom flange. Shear stud connectors were specified...live-load and superimposed dead-loads. In this case, there was no wearing surface on the bridge, and all dead-loads were applied to the...and live-load at Section G_Standard MCap 1021.9 kN-m Superimposed dead-load applied to composite model— wearing surface and railing DW 0.0 kN-m
Improvement of resist profile roughness in bilayer resist process
NASA Astrophysics Data System (ADS)
Jeong, Chang-Young; Ryu, Sang-Wook; Park, Ki-Yeop; Lee, Won-Kyu; Lee, Seung-Woog; Lee, Dai-Hoon
2000-06-01
The bi-layer resist (BLR) process, which first accomplish imaging on a thin top layer and transfer it down to a thick organic layer, is one of newly emerging patterning techniques in silicon processing. In this work, we studied the lithographic performance of the BLR process adopting FK- SPTM (Fujifilm Olin Co.) as top layer material and various organic material as bottom layer. Generally, considerable advantages of planarization, reduced substrate reflection, improved process latitude, and of enhanced resolution are achieved. However, the resolution and the process latitude are highly affected by surface interaction between the top resist and the bottom material. Moreover, the BLR process has a sidewall roughness problem related to the material factors of the resist and the degraded aerial image contrast, which can affect the reliability of the device. We found that thermal curing treatment applied after development with the consideration of the glass transition temperature are very effective in reducing the line edge roughness. More smooth and steep patterning is achieved by the thermal treatment. The linewidth controllability is below 10 nm and the k1 value is reduced from 0.5 down to 0.32 in this process. The reactive ion etching adopting O2 gas demonstrated selectivity of the top resist over bottom material more than 15:1, together with residue-free and vertical wall profile.
Castelblanco-Martínez, Delma Nataly; Morales-Vela, Benjamin; Slone, Daniel H.; Padilla-Saldívar, Janneth Adriana; Reid, James P.; Hernández-Arana, Héctor Abuid
2015-01-01
Diving or respiratory behavior in aquatic mammals can be used as an indicator of physiological activity and consequently, to infer behavioral patterns. Five Antillean manatees, Trichechus manatus manatus, were captured in Chetumal Bay and tagged with GPS tracking devices. The radios were equipped with a micropower saltwater sensor (SWS), which records the times when the tag assembly was submerged. The information was analyzed to establish individual fine-scale behaviors. For each fix, we established the following variables: distance (D), sampling interval (T), movement rate (D/T), number of dives (N), and total diving duration (TDD). We used logic criteria and simple scatterplots to distinguish between behavioral categories: ‘Travelling’ (D/T ≥ 3 km/h), ‘Surface’ (↓TDD, ↓N), ‘Bottom feeding’ (↑TDD, ↑N) and ‘Bottom resting’ (↑TDD, ↓N). Habitat categories were qualitatively assigned: Lagoon, Channels, Caye shore, City shore, Channel edge, and Open areas. The instrumented individuals displayed a daily rhythm of bottom activities, with surfacing activities more frequent during the night and early in the morning. More investigation into those cycles and other individual fine-scale behaviors related to their proximity to concentrations of human activity would be informative
Rapid habituation by mosquito larvae to predator kairomones.
Roberts, Derek
2014-12-01
Larvae of some species of mosquitoes have been shown to respond to water-borne kairomones from predators by reducing bottom-feeding and replacing it with surface filter-feeding, which uses less movement and is thus less likely to attract a predator. However, if no predator attack takes place, then it would be more efficient to use a risk allocation strategy of habituating their response depending on the predator and the overall risk. The larvae of Culiseta longiareolata Macquart live in temporary rain-filled pools, where they are exposed to a high level of predation. Within one hour, they responded to kairomones from dragonfly or damselfly nymphs, or to the fish Aphanius, by significantly reducing bottom-feeding activity. Continued exposure to the predator kairomones resulted in habituation of their response to damselflies, a slower habituation to fish, but no habituation to dragonflies even after 30 h. In contrast, the larvae of Culex quinquefasciatus Say normally live in highly polluted and thus anaerobic water, where the predation risk will be much lower. They also showed a significant reduction in bottom-feeding after 1 h of exposure to predator kairomones but had completely habituated this response within 6 h of continuous exposure. Some species of mosquito larvae can thus show a very rapid habituation to predator kairomones, while others only habituate slowly depending on the predator and overall predation risk. © 2014 The Society for Vector Ecology.
Adsorption Processes of Lead Ions on the Mixture Surface of Bentonite and Bottom Sediments.
Hegedűsová, Alžbeta; Hegedűs, Ondrej; Tóth, Tomáš; Vollmannová, Alena; Andrejiová, Alena; Šlosár, Miroslav; Mezeyová, Ivana; Pernyeszi, Tímea
2016-12-01
The adsorption of contaminants plays an important role in the process of their elimination from a polluted environment. This work describes the issue of loading environment with lead Pb(II) and the resulting negative impact it has on plants and living organisms. It also focuses on bentonite as a natural adsorbent and on the adsorption process of Pb(II) ions on the mixture of bentonite and bottom sediment from the water reservoir in Kolíňany (SR). The equilibrium and kinetic experimental data were evaluated using Langmuir isotherm kinetic pseudo-first and pseudo-second-order rate equations the intraparticle and surface diffusion models. Langmuir isotherm model was successfully used to characterize the lead ions adsorption equilibrium on the mixture of bentonite and bottom sediment. The pseudo second-order model, the intraparticle and surface (film) diffusion models could be simultaneously fitted the experimental kinetic data.
The Bottom Line Is... Children.
ERIC Educational Resources Information Center
Philadelphia Citizens for Children and Youth, PA.
Noting that the last decade has seen population shifts, economic and governmental changes, and different family and work patterns that have influenced the lives of children and their families of southeastern Pennsylvania, this report presents information on the current situation for children and families in the five counties of southeastern…
15 CFR 922.164 - Additional activity regulations by Sanctuary area.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., breaking, cutting, spearing or similarly injuring any coral or other marine invertebrate, or any plant... injuring any coral, marine invertebrate, fish, bottom formation, algae, seagrass or other living or dead organism, including shells, or attempting any of these activities. However, fish, invertebrates, and marine...
2008-09-01
2 X Components: 1 Y Components: 1 Product MBR Geographic Coordinates Number of Coordinates: 4 Coordinate: 1 Latitude...bottom (other than live coral) bldgs., docks, etc.) 4. linear reef- B. SHORELINE -INTERTIDAL modifiers 5. pinnacle reef- c. submerged vegetation- sand
Gate tunable parallel double quantum dots in InAs double-nanowire devices
NASA Astrophysics Data System (ADS)
Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.
2017-12-01
We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.
NASA Astrophysics Data System (ADS)
Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama
2007-02-01
Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.
Flores, Claudia; ten Brink, Uri S.; McGuire, Jeffrey J.; Collins, John A.
2017-01-01
Earthquake data from two short-period ocean-bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.
Microfluidic devices connected to fused-silica capillaries with minimal dead volume.
Bings, N H; Wang, C; Skinner, C D; Colyer, C L; Thibault, P; Harrison, D J
1999-08-01
Fused-silica capillaries have been connected to microfluidic devices for capillary electrophoresis by drilling into the edge of the device using 200-μm tungsten carbide drills. The standard pointed drill bits create a hole with a conical-shaped bottom that leads to a geometric dead volume of 0.7 nL at the junction, and significant band broadening when used with 0.2-nL sample plugs. The plate numbers obtained on the fused-silica capillary connected to the chip were about 16-25% of the predicted numbers. The conical area was removed with a flat-tipped drill bit and the band broadening was substantially eliminated (on average 98% of the predicted plate numbers were observed). All measurements were made while the device was operating with an electrospray from the end of the capillary. The effective dead volume of the flat-bottom connection is minimal and allows microfluidic devices to be connected to a wide variety of external detectors.
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Opportunity dragged one of its wheels back and forth across the sandy soil at Meridiani Planum to create a hole (bottom of image) measuring approximately 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep. The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of this trench later today for clues to its mineral composition and history. Scientists chose this particular site for digging because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun. The rock outcrop lining the inner edge of the small crater encircling the rover and lander can be seen on the horizon. This fish-eye image was taken by the rover's hazard-avoidance camera.
Resource distribution influences positive edge effects in a seagrass fish.
Macreadie, Peter I; Hindell, Jeremy S; Keough, Michael J; Jenkins, Gregory P; Connolly, Rod M
2010-07-01
According to conceptual models, the distribution of resources plays a critical role in determining how organisms distribute themselves near habitat edges. These models are frequently used to achieve a mechanistic understanding of edge effects, but because they are based predominantly on correlative studies, there is need for a demonstration of causality, which is best done through experimentation. Using artificial seagrass habitat as an experimental system, we determined a likely mechanism underpinning edge effects in a seagrass fish. To test for edge effects, we measured fish abundance at edges (0-0.5 m) and interiors (0.5-1 m) of two patch configurations: continuous (single, continuous 9-m2 patches) and patchy (four discrete 1-m2 patches within a 9-m2 area). In continuous configurations, pipefish (Stigmatopora argus) were three times more abundant at edges than interiors (positive edge effect), but in patchy configurations there was no difference. The lack of edge effect in patchy configurations might be because patchy seagrass consisted entirely of edge habitat. We then used two approaches to test whether observed edge effects in continuous configurations were caused by increased availability of food at edges. First, we estimated the abundance of the major prey of pipefish, small crustaceans, across continuous seagrass configurations. Crustacean abundances were highest at seagrass edges, where they were 16% greater than in patch interiors. Second, we supplemented interiors of continuous treatment patches with live crustaceans, while control patches were supplemented with seawater. After five hours of supplementation, numbers of pipefish were similar between edges and interiors of treatment patches, while the strong edge effects were maintained in controls. This indicated that fish were moving from patch edges to interiors in response to food supplementation. These approaches strongly suggest that a numerically dominant fish species is more abundant at seagrass edges due to greater food availability, and provide experimental support for the resource distribution model as an explanation for edge effects.
Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea
Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.
2014-01-01
We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.
Effects of beach morphology and waves on onshore larval transport
NASA Astrophysics Data System (ADS)
Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.
2015-12-01
Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.
Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology
NASA Astrophysics Data System (ADS)
Pocorni, Jetro; Powell, John; Deichsel, Eckard; Frostevarg, Jan; Kaplan, Alexander F. H.
2017-01-01
In this paper the morphology of the laser cut front generated by fibre lasers was investigated by observation of the 'frozen' cut front, additionally high speed imaging (HSI) was employed to study the fluid dynamics on the cut front while cutting. During laser cutting the morphology and flow properties of the melt film on the cut front affect cut quality parameters such as cut edge roughness and dross (residual melt attached to the bottom of the cut edge). HSI observation of melt flow down a laser cutting front using standard cutting parameters is experimentally problematic because the cut front is narrow and surrounded by the kerf walls. To compensate for this, artificial parameters are usually chosen to obtain wide cut fronts which are unrepresentative of the actual industrial process. This paper presents a new experimental cutting geometry which permits HSI of the laser cut front using standard, commercial parameters. These results suggest that the cut front produced when cutting medium section (10 mm thick) stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered by a thin layer of liquid. HSI observation and theoretical analysis reveal that under these conditions the humps move down the cut front at an average speed of approximately 0.4 m/s while the covering liquid flows at an average speed of approximately 1.1 m/s, with an average melt depth at the bottom of the cut zone of approximately 0.17 mm.
A downslope propagating thermal front over the continental slope
NASA Astrophysics Data System (ADS)
van Haren, Hans; Hosegood, Phil J.
2017-04-01
In the ocean, internal frontal bores above sloping topography have many appearances, depending on the local density stratification, and on the angle and source of generation of the carrier wave. However, their common characteristics are a backward breaking wave, strong sediment resuspension, and relatively cool (denser) water moving more or less upslope underneath warm (less dense) water. In this paper, we present a rare example of a downslope moving front of cold water moving over near-bottom warm water. Large backscatter is observed in the downslope moving front's trailing edge, rather than the leading edge as is common in upslope moving fronts. Time series observations have been made during a fortnight in summer, using a 101 m long array of high-resolution temperature sensors moored with an acoustic Doppler current profiler at 396 m depth in near-homogeneous waters, near a small canyon in the continental slope off the Malin shelf (West-Scotland, UK). Occurring between fronts that propagate upslope with tidal periodicity, the rare downslope propagating one resembles a gravity current and includes strong convective turbulence coming from the interior rather than the more usual frictionally generated turbulence arising from interaction with the seabed. Its turbulence is 3-10 times larger than that of more common upslope propagating fronts. As the main turbulence is in the interior with a thin stratified layer close to the bottom, little sediment is resuspended by a downslope propagating front. The downslope propagating front is suggested to be generated by oblique propagation of internal (tidal) waves and flow over a nearby upstream promontory.
NIMS Spectral Maps of Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
1996-01-01
The Near-Infrared Mapping Spectrometer (NIMS) instrument looks at Jupiter's Great Red Spot, in these views from June 26, 1996. NIMS studies infrared wavelengths of light that our eye cannot see. These maps are at four different infrared wavelengths, each one picked to reveal something different about the atmosphere.
The top image is a false color map of a wavelength that is at the red edge of our ability to see. It shows the shapes of features that we would see with our eyes.The second map is of ammonia ice, red showing where the most ice is, blue where none exists. The differences between this and the first image are due to the amount and size of ammonia ice crystals.The third map down is from a wavelength that shows cloud heights, with the highest clouds in red, and the lowest in blue.The bottom map uses a wavelength that shows the hot Jupiter shining through the clouds. Red represents the thinnest clouds, and blue is thickest where it is more difficult to see below. Comparing the bottom two images, note that the highest clouds are in the center of the Great Red Spot, while there are relatively few clouds around the edges.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John
2016-06-01
The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.
50 CFR 622.223 - Prohibited species.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.223 Prohibited species. (a... fishes in the EEZ is responsible for the limit applicable to that vessel. (b) Prohibited coral. South...
50 CFR 622.223 - Prohibited species.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.223 Prohibited species. (a... fishes in the EEZ is responsible for the limit applicable to that vessel. (b) Prohibited coral. South...
50 CFR 622.48 - Adjustment of management measures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of the applicable FMPs, the RA may establish or modify the following items: (a) Caribbean coral reef... (maintaining fish in whole condition, use as bait). (k) South Atlantic coral, coral reefs, and live/hard bottom... conservation districts. (b) Caribbean reef fish. Fishery management units (FMUs), quotas, trip limits, bag...
50 CFR 622.48 - Adjustment of management measures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of the applicable FMPs, the RA may establish or modify the following items: (a) Caribbean coral reef..., and essential fish habitat HAPCs or Coral HAPCs. (d) Gulf reef fish. (1) For a species or species..., coral reefs, and live/hard bottom habitats. Definitions of essential fish habitat and essential fish...
15 CFR 922.164 - Additional activity regulations by Sanctuary area.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., breaking, cutting, spearing or similarly injuring any coral or other marine invertebrate, or any plant... injuring any coral, marine invertebrate, fish, bottom formation, algae, seagrass or other living or dead...) Except for catch and release fishing by trolling in the Conch Reef, Alligator Reef, Sombrero Reef, and...
Bottom Up Succession Planning Works Better.
ERIC Educational Resources Information Center
Stevens, Paul
Most succession planning practices are based on the premise that ambitious people have and want only one career direction--upwardly mobile. However, employees have 10 career direction options at any stage of their working lives. A minority want the career action requiring promotion. Employers with a comprehensive career planning support program…
NASA Astrophysics Data System (ADS)
Currin, C.; Davis, J.
2017-12-01
A decade of research and monitoring of Living Shoreline sites in North Carolina identifies both resilient and vulnerable features of this approach to estuarine shoreline stabilization. We used a wave energy model to calculate representative wave energy along 1500 miles of estuarine shoreline, and observed a linear, negative relationship between wind-wave energy and the width of fringing salt marshes. Proximity to navigation channels (boat wakes) further reduced fringing marsh width. These results provide guidance for Living Shoreline design alternatives. Surface elevation tables (SETs) deployed at the lower edge of both natural fringing marshes and `Living Shoreline' marsh-sill sites demonstrated that while natural marshes were losing surface elevation at an average rate of 6 mm y-1, marsh surface elevation at Living Shoreline sites increased at an average of 3 mm y-1. Marsh vegetation at the lower edge of natural sites exhibited a decline in biomass, while Living Shoreline sites exhibited an increase in upper marsh species and an extension of lower marsh into previous mudflat habitat. These changes provide Living Shoreline (marsh-sill) sites with added resilience to sea level rise, though decreased inundation alters the delivery of other ecosystem services (fish habitat, nutrient cycling). North Carolina lagoonal estuaries have low suspended sediment supply and low topography, and modeling predicts that landward transgression is the primary means by which salt marsh acreage can be maintained under moderate to high sea level rise scenarios. In this region, bank erosion can be important source of sediment to wetland habitats. Further, the association of built infrastructure with Living Shoreline sites portends a future scenario of coastal squeeze, as marsh migration landward will be inhibited.
HUBBLE'S TOP TEN GRAVITATIONAL LENSES
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368+6212 is a blue arc in the Hubble Deep Field (HDF). [Bottom Right] - HST 18078+4600 is a blue arc caused by the gravitational potential of a small group of 4 galaxies. Credit: Kavan Ratnatunga (Carnegie Mellon Univ.) and NASA
NASA Astrophysics Data System (ADS)
McPhee, M. V.
2016-02-01
As the Arctic and Subarctic regions warm, Pacific salmon (Oncorhynchus spp.) are expected to expand their range northward during ice-free periods in the Bering and Chukchi seas. The oscillating control hypothesis, which describes energetic differences of primary consumers between ice-associated and pelagic production phases, provides a framework for understanding how juvenile salmon might respond to changing conditions at the northern edge of their marine range. Additionally, relationships between growth/condition and temperature, salinity and bottom depth will help identify marine habitats supporting growth at the Arctic-Subarctic interface. In this study, we used survey data from NOAA and Arctic Ecosystem Integrated Survey project to 1) compare growth and condition of juvenile pink (O. gorbuscha) and chum (O. keta) salmon in the NE Bering Sea between warm and cool spring phases, and 2) describe relationships between summer environmental conditions and juvenile salmon growth and condition from 2006 - 2010. Chum and pink salmon were shorter, and chum salmon exhibited greater energy density, in years with cool springs; however, no other aspects of size and condition differed significantly between phases. Over all years, longer and more energy dense individuals of both species were caught at stations with greater bottom depths and in cooler sea-surface temperatures. We found little evidence that chlorophyll-a explained much of the variation in size or condition. We used insulin-like growth factor-1 (IGF-1) concentration as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found juvenile salmon exhibited higher IGF-1 concentrations in 2010-2012 than in 2009. IGF-1 concentrations tended to increase with SST in chum salmon and with bottom depth (a proxy for distance from shore) in pink salmon, but more years of data are needed to adequately describe the relationship of IGF with environmental conditions. This study, although descriptive in nature, provides a starting point for developing a mechanistic understanding of how Pacific salmon will respond to warming at the Arctic-Subarctic interface.
Ludewigt, Bernhard; Bercovitz, John; Nyman, Mark; Chu, William
1995-01-01
A method is disclosed for selecting the minimum width of individual leaves of a multileaf adjustable collimator having sawtooth top and bottom surfaces between adjacent leaves of a first stack of leaves and sawtooth end edges which are capable of intermeshing with the corresponding sawtooth end edges of leaves in a second stack of leaves of the collimator. The minimum width of individual leaves in the collimator, each having a sawtooth configuration in the surface facing another leaf in the same stack and a sawtooth end edge, is selected to comprise the sum of the penetration depth or range of the particular type of radiation comprising the beam in the particular material used for forming the leaf; plus the total path length across all the air gaps in the area of the joint at the edges between two leaves defined between lines drawn across the peaks of adjacent sawtooth edges; plus at least one half of the length or period of a single sawtooth. To accomplish this, in accordance with the method of the invention, the penetration depth of the particular type of radiation in the particular material to be used for the collimator leaf is first measured. Then the distance or gap between adjoining or abutting leaves is selected, and the ratio of this distance to the height of the sawteeth is selected. Finally the number of air gaps through which the radiation will pass between sawteeth is determined by selecting the number of sawteeth to be formed in the joint. The measurement and/or selection of these parameters will permit one to determine the minimum width of the leaf which is required to prevent passage of the beam through the sawtooth joint.
Does vegetation prevent wave erosion of salt marsh edges?
Feagin, R A; Lozada-Bernard, S M; Ravens, T M; Möller, I; Yeager, K M; Baird, A H
2009-06-23
This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.
Does vegetation prevent wave erosion of salt marsh edges?
Feagin, R. A.; Lozada-Bernard, S. M.; Ravens, T. M.; Möller, I.; Yeager, K. M.; Baird, A. H.
2009-01-01
This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves. PMID:19509340
Mechanisms of collective cell movement lacking a leading or free front edge in vivo.
Uechi, Hiroyuki; Kuranaga, Erina
2017-08-01
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
2017-10-10
action. MATERIALS AND METHODS Subjects Subjects used in the study include male Fischer 344 (CDF®) rats weighing 280-300 grams obtained from...PBS before being transferred to a flat bottom 96-well plate. Absorbance was then read at 450nm on a Biotek microplate reader. Live/Dead Staining of...incubation, live/dead staining of the scaffolds was imaged on a confocal microscope (Nikon). AMP Cell Differentiation To determine whether AMP
NASA Astrophysics Data System (ADS)
Bellomo, Nicola; Outada, Nisrine
2017-07-01
Cultural framework: Our comment looks at the general framework given by the interactions between the so-called ;soft; and ;hard; sciences. Specifically, it looks at the development of a mathematics for living systems. Our comment aims at showing how the interesting survey [11] can contribute to the aforementioned challenging task.
NASA Technical Reports Server (NTRS)
Sato, T.; Walker, R. J.; Ashour-Abdalla, M.
1984-01-01
The energy conversion processes occurring in three-dimensional driven reconnection is analyzed. In particular, the energy conversion processes during localized reconnection in a taillike magnetic configuration are studied. It is found that three-dimensional driven reconnection is a powerful energy converter which transforms magnetic energy into plasma bulk flow and thermal energy. Three-dimensional driven reconnection is an even more powerful energy converter than two-dimensional reconnection, because in the three-dimensional case, plasmas were drawn into the reconnection region from the sides as well as from the top and bottom. Field-aligned currents are generated by three-dimensional driven reconnection. The physical mechanism responsible for these currents which flow from the tail toward the ionosphere on the dawnside of the reconnection region and from the ionosphere toward the tail on the duskside is identified. The field-aligned currents form as the neutral sheet current is diverted through the slow shocks which form on the outer edge of the reconnected field lines (outer edge of the plasma sheet).
NASA Astrophysics Data System (ADS)
Carter, F. W.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Kutepova, V.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-04-01
We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.
Wilner, L.B.
1960-05-24
Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.
NASA Technical Reports Server (NTRS)
Smith, C. W.; Bhateley, I. C.
1976-01-01
Two techniques for extending the range of applicability of the basic vortex-lattice method are discussed. The first improves the computation of aerodynamic forces on thin, low-aspect-ratio wings of arbitrary planforms at subsonic Mach numbers by including the effects of leading-edge and tip vortex separation, characteristic of this type wing, through use of the well-known suction-analogy method of E. C. Polhamus. Comparisons with experimental data for a variety of planforms are presented. The second consists of the use of the vortex-lattice method to predict pressure distributions over thick multi-element wings (wings with leading- and trailing-edge devices). A method of laying out the lattice is described which gives accurate pressures on the top and part of the bottom surface of the wing. Limited comparisons between the result predicted by this method, the conventional lattice arrangement method, experimental data, and 2-D potential flow analysis techniques are presented.
Yukawa unification in an SO(10) SUSY GUT: SUSY on the edge
NASA Astrophysics Data System (ADS)
Poh, Zijie; Raby, Stuart
2015-07-01
In this paper we analyze Yukawa unification in a three family SO(10) SUSY GUT. We perform a global χ2 analysis and show that supersymmetry (SUSY) effects do not decouple even though the universal scalar mass parameter at the grand unified theory (GUT) scale, m16, is found to lie between 15 and 30 TeV with the best fit given for m16≈25 TeV . Note, SUSY effects do not decouple since stops and bottoms have mass of order 5 TeV, due to renormalization group running from MGUT. The model has many testable predictions. Gauginos are the lightest sparticles and the light Higgs boson is very much standard model-like. The model is consistent with flavor and C P observables with the BR (μ →e γ ) close to the experimental upper bound. With such a large value of m16 we clearly cannot be considered "natural" SUSY nor are we "split" SUSY. We are thus in the region in between or "SUSY on the edge."
Drilling of CFRP and GFRP composite laminates using one shot solid carbide step drill K44
NASA Astrophysics Data System (ADS)
Nagaraja, R.; Rangaswamy, T.
2018-04-01
Drilling is a very common machining operation to install fasteners for assembly of laminates Drilling of Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) composite laminate materials are different from that of convention materials that causes excessive tool wear and edge delamination. This paper reports on the tool geometry, cutting speed and feed rate. In this work two composite materials CFRP-G926 and Glass-7781 composite materials of varying thickness are drilled to investigate the effect of feed rate, and cutting speed. The study mainly focused on drilling laminates specimen of varying thickness 9 mm, 9.6 mm and 12 mm by using a single shot solid carbide step drill K44. The drilling is performed from lower to higher feed rate and cutting speed to investigate the hole quality, bottom top edge delamination, fiber breakages and local cracks. The work performed shows that a proper combination of tool geometry, cutting speed and feed rate can help to reduce the occurrence of delamination.
1989-08-25
P-34764 Voyager 2 obtained this high resolution color image of Neptune's large satellite Triton during its close flyby. Approximately a dozen individual images were combined to produce this comprehensive view of the Neptune-facing hemisphere of Triton. Fine detail is provided by high resolution, clear-filter images, with color information added from lower resolution frames. The large south polar cap at the bottom of the image is highly refective and slightly pink in color , and may consist of a slowly evaporating layer of nitrogen ice deposited during the previous winter. From the ragged edge of the polar cap northward the satellite's face is generously darker and redder in color. This coloring may be produced by the action of ultraviolet light and magnetospheric radiation upon methane in the atmosphere and surface. Running across this darker region , approximately parallel to the edge of the polar cap, is a band of brighter white material that is almost bluish in color. The underlying topography in this bright band is similiar, however to that in the darker, redder regions surrounding it.
29 CFR 1915.135 - Powder actuated fastening tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...
29 CFR 1915.135 - Powder actuated fastening tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...
29 CFR 1915.135 - Powder actuated fastening tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...
29 CFR 1915.135 - Powder actuated fastening tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...
TUBEWALL: a passive solar thermo-siphoning, field-fabricated, water storage wall system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, F.; Hemker, P.
1980-01-01
The basic component of TUBEWALL is a water-filled thin-wall cylindrical tube with an insulating foam vertical partition insert that divides the inside of the tube into a thin collector water compartment (solar side) and a larger storage water compartment (room side). The two compartments are connected at the top and bottom by means of circulation holes in the foam partition. When the sun strikes the solar side of the tube, the thin layer of collector water is heated, thermosiphons through the top opening in the partition into the larger storage compartment on the room side, and is replaced with coolmore » water drawn from the bottom of the storage through the bottom hole in the partition. Night back-siphonage is prevented by a thin flap valve over the top circulation hole. The tubes may by used between wall studs having a low-cost fiberglass/tedlar double glazing. The tubes can be covered on the room side with drywall and heat transferred to the living space by indirect radiation, and either natural air convection through top and bottom vent slots or by fan. Alternatively, the tubes can be left exposed for direct radiation.« less
EVA 4 activity on Flight Day 7 to service the Hubble Space Telescope
1997-02-17
STS082-711-067 (11-21 Feb. 1997) --- Astronaut Gregory J. Harbaugh, mission specialist, floats horizontally in the cargo bay of the Earth-orbiting Space Shuttle Discovery, backdropped against its giant temporary passenger, the Hubble Space Telescope (HST). Harbaugh, sharing this space walking activity with astronaut Joseph R. Tanner (out of frame), is actually recognizable through his helmet visor in the 70mm frame. He is near the Second Axial Carrier (SAC), Axial Scientific Instrument Protection Enclosure (ASIPE). STS-82 marked the first flight of the exit airlock, partially visible at bottom edge of photo.
Orienete Province, eastern end of Cuba as seen from Gemini 7 spacecraft
1965-12-05
S65-63826 (5 Dec. 1965) --- Oriente Province, eastern end of Cuba, as seen from the National Aeronautics and Space Administration's Gemini-7 spacecraft during its 14th revolution of Earth. Guantanamo Bay is in the center of the picture on the southern coast of Cuba. Santiago de Cuba is located about one inch from the bottom edge of the picture, or about three inches westward down the coast from Guantanamo. This photograph was taken with a modified 70mm Hasselblad camera, using Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA
BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTH. THE ...
BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTH. THE SUCTION (INTAKE) HOSE IS SEEN AT THE LEFT RESTING ON THE FILTER BED SURFACE; THE DISCHARGE HOSE IS AT THE RIGHT, RUNNING FROM THE BOTTOM OF THE CENTRAL VERTICAL AXLE TO THE CENTRIFUGAL PUMP. FROM THE PUMP WATER IS DISCHARGED THROUGH THE HORIZONTAL PIPE LOCATED UNDER THE EDGE OF PLATFORM DECK INTO THE WASTE-WATER TROUGH (NOT SEEN IN THIS VIEW). - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ
Method and apparatus for tensile testing of metal foil
NASA Technical Reports Server (NTRS)
Wade, O. W. (Inventor)
1976-01-01
A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box.
The Design and Operation of Suborbital Low Cost and Low Risk Vehicle to the Edge of Space (SOLVES)
NASA Astrophysics Data System (ADS)
Ridzuan Zakaria, Norul; Nasrun, Nasri; Rashidy Zulkifi, Mohd; Izmir Yamin, Mohd; Othman, Jamaludin; Rafidi Zakaria, Norul
2013-09-01
Inclusive in the planning of Spaceport Malaysia are 2 local suborbital vehicles development. One of the vehicles is called SOLVES or Suborbital Low Cost and Low Risk Vehicle to the Edge of Space. The emphasis on the design and operation of SOLVES is green and robotic technology, where both green technology and robotic technology are used to protect the environment and enhance safety. As SOLVES climbs, its center of gravity stabilizes and remains at the bottom as its propellant being used until it depletes, due to the position of the vehicle's passenger cabin and its engines at its lower end. It will reach 80km from sea level generally known as "the edge of space" due to its momentum although its propellant will be depleted at a lower altitude. As the suborbital vehicle descends tail first, its wings automatically extend and rotate at horizontal axes perpendicular to the fuselage. These naturally and passively rotating wings ensure controlled low velocity and stable descend of the vehicle. The passenger cabin also rotates automatically at a steady low speed at the centerline of its fuselage as it descends, caused naturally by the lift force, enabling its passengers a surrounding 360 degrees view. SOLVES is steered automatically to its landing point by an electrical propulsion system with a vectoring nozzle. The electrical propulsion minimizes space and weight and is free of pollution and noise. Its electrical power comes from a battery aided by power generated by the naturally rotating wings. When the vehicle lands, it is in the safest mode as its propellant is depleted and its center of gravity remains at the bottom of its cabin. The cabin, being located at the bottom of the fuselage, enables very convenient, rapid and safe entry and exit of its passengers. SOLVES will be a robotic suborbital vehicle with green technology. The vehicle will carry 4 passengers and each passenger will be trained to land the vehicle manually if the fully automated landing system fails and therefore it will be engineered for simple operation by trained passengers. However, for certification by aviation authorities the vehicle may be operational with 3 passengers and a pilot. A specific operation considered for SOLVES is navaloperation where the suborbital vehicle will be operating from a seaborne spaceport, probably a superyacht with spacepad for the vertical launching and landing of the vehicle. Such naval operation enables the vehicle to fly above exotic locations reachable by sea. SOLVES is also planned for further development into reusable rocket booster to carry small suborbiter to 160km from sea level, enables the passengers aboard the suborbiter to experience longer zero gravity time and more effective suborbital flight.
ERIC Educational Resources Information Center
Jones, Susan
2014-01-01
This article presents data from a British Academy-funded study of the everyday literacy practices of three families living on a predominantly white working-class council housing estate on the edge of a Midlands city. The study explored, as one participant succinctly put it, "how people read and write and they don't even notice". This…
A Hydrographic and CFC Survey on the Adelie Land Shelf
NASA Astrophysics Data System (ADS)
Warner, M. J.; Rintoul, S. R.; Tilbrook, B.; Bullister, J. L.; Sonnerup, R. E.
2008-12-01
During 16 Dec 07 - 27 Jan 08, a hydrographic survey of the Antarctic shelf adjacent to Adelie Land was carried out as part of the joint Australian programs - Climate of Antarctica and the Southern Ocean (CASO) and Collaborative East Antarctic Marine Census (CEAMARC) - from aboard the RSV Aurora Australis. Over 80 CTD stations were occupied on the shelf or adjacent slope in the region between 139° 13' E and 145° E. In addition to hydrographic parameters, dissolved oxygen and nutrients, CFCs, dissolved inorganic carbon, and total alkalinity were measured at nearly all of these stations. Several features of the CFC distributions stand out in this formation region of Adelie Land Bottom Water (ALBW) and appear to be related to the bathymetry of the shelf. There are two depressions in this region, both deeper than 800 m - one on the western edge of the study region and the other adjacent to the Mertz Glacial Tongue on the eastern side of the study region. Throughout most of the study area, the presence of Highly-Modified Circumpolar Deep Water (HMCDW) is reflected in mid-depth CFC concentration minima. However, HMCDW is not present in the shallower region between the depressions. Beneath the HMCDW, CFC concentrations generally increase towards the seafloor. The bottom water CFC concentrations below 600 m in the easternmost of these basins are 5-10% higher than those of the westernmost depression. The bottom water dissolved oxygen concentrations are also higher by approximately 15 μmol kg-1 in bottom waters of the eastern depression. The circulation in the eastern depression is cyclonic and bottom waters can flow out of the basin through a trough in the shelf break near 143° E. Waters with high CFC concentrations were detected on the downslope side of the trough - indicating that ALBW was being supplied to the deep Australia-Antarctic Basin even during summer. The data from this expedition will be compared to previous CFC measurements from this region over the past decade.
NASA Astrophysics Data System (ADS)
Miramontes Garcia, Elda; Cattaneo, Antonio; Jouet, Gwenael; Thereau, Estelle; Thomas, Yannick; Rovere, Marzia; Cauquil, Eric; Trincardi, Fabio
2016-04-01
The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7-0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.
Atmospheric Carbon Tetrachloride: Mysterious Emissions Gap Almost Closed
NASA Astrophysics Data System (ADS)
Liang, Q.; Newman, P. A.; Reimann, S.
2016-12-01
Carbon tetrachloride (CCl4) is a major ozone-depleting substance and its production and consumption is controlled under the Montreal Protocol for emissive uses. The most recent WMO/UNEP Scientific Assessment of Ozone Depletion [WMO, 2014] estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg yr-1, based on country-by-country reports to UNEP, vs. a global top-down emissions estimate of 57 Gg yr-1, based on atmospheric measurements. To understand the gap between the top-down and bottom-up emissions estimates, a CCl4 activity was formed under the auspices of the Stratosphere-Troposphere Processes And their Role in Climate (SPARC) project. Several new findings were brought forward by the SPARC CCl4 activity. CCl4 is destroyed in the stratosphere, oceans, and soils. The total lifetime estimate has been increased from 26 to 33 years. The new 33-year total lifetime lowers the top-down emissions estimate to 40 (25-55) Gg yr-1. In addition, a persistent hemispheric difference implies substantial ongoing Northern Hemisphere emissions, yielding an independent emissions estimate of 30 Gg yr-1. The combination of these two yields an emissions estimate of 35 Gg yr-1. Regional estimates have been made for Australia, North America, East Asia, and Western Europe. The sum of these estimates results in emissions of 21 Gg yr-1, albeit this does not include all regions of the world. Four bottom-up CCl4 emissions pathways have been identified, i.e., fugitive, unreported non-feedstock, unreported inadvertent, and legacy emissions. The new industrial bottom-up emissions estimate includes emissions from chloromethanes plants (13 Gg yr-1) and feedstock fugitive emissions (2 Gg yr-1). When combined with legacy emissions and unreported inadvertent emissions ( 10 Gg yr-1), the total global emissions are 20±5 Gg yr-1. While the new bottom-up value is still less than the aggregated top-down values, these estimates reconcile the CCl4 budget discrepancy when considered at the edges of their uncertainties.
NASA Astrophysics Data System (ADS)
Park, Keecheol; Park, Jongyoun; Nam, Jaebok
2011-08-01
Due to the application of thinner sheet steels, the stamped panels in the forming process, generally, are severely distorted. The wavy shape of embossed panel finally converted to residual stress embedded in the panel at final forming (edge L-bending) and it is known as the cause of twisting and oil canning of spring backed panel. Another important source of stamped shape deviation is the curvature of blank. The effects of blank curvature on the shape defects (panel curvature and twisting) after stamping were investigated from defective panel analysis, model experiment and stamping simulation. And the effect of tool conditions (BHF and bead height change) on spring backed shape of real TV bottom chassis were studied. The initial curvature of blank was remained in the flat area of stamped panels as width directional curvature. It converted from length direction curvature of blank. The curvature of initial blank reduced the wavy shape after local emboss forming, but twisting after edge L-bending was increased at large blank curvature cases. The effects of emboss forming conditions, the forming heights and blank holding force were studied and it was found that the wavy shape of stamped sheet was rapidly changed although the forming conditions altered very small amount.
Ice friction of flared ice hockey skate blades.
Federolf, Peter A; Mills, Robert; Nigg, Benno
2008-09-01
In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.
HUBBLE CAPTURES DETAILED IMAGE OF URANUS' ATMOSPHERE
NASA Technical Reports Server (NTRS)
2002-01-01
Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere. Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail. The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere. Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal. This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA
NASA Astrophysics Data System (ADS)
Badji, Rabia; Charvis, Philippe; Bracene, Rabah; Galve, Audrey; Badsi, Madjid; Ribodetti, Alessandra; Benaissa, Zahia; Klingelhoefer, Frauke; Medaouri, Mourad; Beslier, Marie-Odile
2015-02-01
For the first time, a deep seismic data set acquired in the frame of the Algerian-French SPIRAL program provides new insights regarding the origin of the westernmost Algerian margin and basin. We performed a tomographic inversion of traveltimes along a 100-km-long wide-angle seismic profile shot over 40 ocean bottom seismometers offshore Mostaganem (Northwestern Algeria). The resulting velocity model and multichannel seismic reflection profiles show a thin (3-4 km thick) oceanic crust. The narrow ocean-continent transition (less than 10 km wide) is bounded by vertical faults and surmounted by a narrow almost continuous basin filled with Miocene to Quaternary sediments. This fault system, as well as the faults organized in a negative-flower structure on the continent side, marks a major strike-slip fault system. The extremely sharp variation of the Moho depth (up to 45 ± 3°) beneath the continental border underscores the absence of continental extension in this area. All these features support the hypothesis that this part of the margin from Oran to Tenes, trending N65-N70°E, is a fossil subduction-transform edge propagator fault, vestige of the propagation of the edge of the Gibraltar subduction zone during the westward migration of the Alborán domain.
Far-field tsunami magnitude determined from ocean-bottom pressure gauge data around Japan
NASA Astrophysics Data System (ADS)
Baba, T.; Hirata, K.; Kaneda, Y.
2003-12-01
\\hspace*{3mm}Tsunami magnitude is the most fundamental parameter to scale tsunamigenic earthquakes. According to Abe (1979), the tsunami magnitude, Mt, is empirically related to the crest to trough amplitude, H, of the far-field tsunami wave in meters (Mt = logH + 9.1). Here we investigate the far-field tsunami magnitude using ocean-bottom pressure gauge data. The recent ocean-bottom pressure measurements provide more precise tsunami data with a high signal-to-noise ratio. \\hspace*{3mm}Japan Marine Science and Technology Center is monitoring ocean bottom pressure fluctuations using two submarine cables of depths of 1500 - 2400 m. These geophysical observatory systems are located off Cape Muroto, Southwest Japan, and off Hokkaido, Northern Japan. The ocean-bottom pressure data recorded with the Muroto and Hokkaido systems have been collected continuously since March, 1997 and October, 1999, respectively. \\hspace*{3mm}Over the period from March 1997 to June 2003, we have observed four far-field tsunami signals, generated by earthquakes, on ocean-bottom pressure records. These far-field tsunamis were generated by the 1998 Papua New Guinea eq. (Mw 7.0), 1999 Vanuatu eq. (Mw 7.2), 2001 Peru eq. (Mw 8.4) and 2002 Papua New Guinea eq. (Mw 7.6). Maximum amplitude of about 30 mm was recorded by the tsunami from the 2001 Peru earthquake. \\hspace*{3mm}Direct application of the Abe's empirical relation to ocean-bottom pressure gauge data underestimates tsunami magnitudes by about an order of magnitude. This is because the Abe's empirical relation was derived only from tsunami amplitudes with coastal tide gauges where tsunami is amplified by the shoaling of topography and the reflection at the coastline. However, these effects do not work for offshore tsunami in deep oceans. In general, amplification due to shoaling near the coastline is governed by the Green's Law, in which the tsunami amplitude is proportional to h-1/4, where h is the water depth. Wave amplitude also is doubled by reflection at the fixed edge (coastline). Hence, we introduce a water-depth term and a reflection coefficient of 2 in the original Abe_fs empirical relation to correct tsunami amplitude for open oceans and obtain Mt = log(2H/h-1/4) + 9.1, where h is the depth of the ocean bottom pressure gage. The modified empirical relation produces tsunami magnitudes close to those determined using tide gauges.
Particle Data Group - Downloads
Particle Data Group HOME: pdgLive Summary Tables Reviews, Tables, Plots Particle Listings Errata ; inverted mass hierarchy Page 10 of Leptons Summary Table, Neutrino Mixing: Leptons Summary Tables (page 10 . Pages 3 and 63 of Mesons Summary Tables: Bottom Mesons Summary Tables (page 3) Mesons Summary Tables
Living in Our World: A Digital Bridge in Progress
ERIC Educational Resources Information Center
Clark, Jim; Alchediak, Jim; Rabinowitz, Julie Dumont
2005-01-01
These are the times that try practitioners' educational bottom lines. Thomas Paine, an American revolutionary and pamphleteer of the eighteenth century, found that the revolution through which his writings steered America's colonial ancestors put both their souls and his on trial. However, even after being vilified by his former countrymen, this…
Defect sensitive etching of hexagonal boron nitride single crystals
NASA Astrophysics Data System (ADS)
Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam
2017-12-01
Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.
Sitting biomechanics, part II: optimal car driver's seat and optimal driver's spinal model.
Harrison, D D; Harrison, S O; Croft, A C; Harrison, D E; Troyanovich, S J
2000-01-01
Driving has been associated with signs and symptoms caused by vibrations. Sitting causes the pelvis to rotate backwards and the lumbar lordosis to reduce. Lumbar support and armrests reduce disc pressure and electromyographically recorded values. However, the ideal driver's seat and an optimal seated spinal model have not been described. To determine an optimal automobile seat and an ideal spinal model of a driver. Information was obtained from peer-reviewed scientific journals and texts, automotive engineering reports, and the National Library of Medicine. Driving predisposes vehicle operators to low-back pain and degeneration. The optimal seat would have an adjustable seat back incline of 100 degrees from horizontal, a changeable depth of seat back to front edge of seat bottom, adjustable height, an adjustable seat bottom incline, firm (dense) foam in the seat bottom cushion, horizontally and vertically adjustable lumbar support, adjustable bilateral arm rests, adjustable head restraint with lordosis pad, seat shock absorbers to dampen frequencies in the 1 to 20 Hz range, and linear front-back travel of the seat enabling drivers of all sizes to reach the pedals. The lumbar support should be pulsating in depth to reduce static load. The seat back should be damped to reduce rebounding of the torso in rear-end impacts. The optimal driver's spinal model would be the average Harrison model in a 10 degrees posterior inclining seat back angle.
Surgeon General Outlines Opioid Plan | NIH MedlinePlus the Magazine
... staff, Dr. Adams said the opioid epidemic is cutting too many American lives short. “Ninety-one Americans ... public health data and reporting Providing support for cutting-edge research on pain and addiction Advancing the ...
3 CFR 8807 - Proclamation 8807 of May 1, 2012. National Building Safety Month, 2012
Code of Federal Regulations, 2013 CFR
2013-01-01
... and standards, they help save lives and prevent disruption in the wake of disaster. Resilient..., withstand, and recover from disasters. We are drawing upon cutting edge science and technology to establish...
A biosensor generated via high throughput screening quantifies cell edge Src dynamics
Gulyani, Akash; Vitriol, Eric; Allen, Richard; Wu, Jianrong; Gremyachinskiy, Dmitriy; Lewis, Steven; Dewar, Brian; Graves, Lee M.; Kay, Brian K.; Kuhlman, Brian; Elston, Tim; Hahn, Klaus M.
2011-01-01
Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge. PMID:21666688
Living beyond the edge: Higgs inflation and vacuum metastability
Bezrukov, Fedor; Rubio, Javier; Shaposhnikov, Mikhail
2015-10-13
The measurements of the Higgs mass and top Yukawa coupling indicate that we live in a very special universe, at the edge of the absolute stability of the electroweak vacuum. If fully stable, the Standard Model (SM) can be extended all the way up to the inflationary scale and the Higgs field, nonminimally coupled to gravity with strength ξ, can be responsible for inflation. We show that the successful Higgs inflation scenario can also take place if the SM vacuum is not absolutely stable. This conclusion is based on two effects that were overlooked previously. The first one is associatedmore » with the effective renormalization of the SM couplings at the energy scale M P/ξ, where M P is the Planck scale. Lastly, the second one is a symmetry restoration after inflation due to high temperature effects that leads to the (temporary) disappearance of the vacuum at Planck values of the Higgs field.« less
Geologic and Site Survey Setting for JIP Gulf of Mexico Gas Hydrate Drilling
NASA Astrophysics Data System (ADS)
Hutchinson, D. R.; Snyder, F.; Hart, P. E.; Ruppel, C. D.; Pohlman, J.; Wood, W. T.; Coffin, R. B.; Edwards, K. M.
2005-12-01
The JIP Gulf of Mexico drilling program targeted two contrasting geologic settings to understand natural gas hydrates: a salt-withdrawal minibasin and a mound/seep site, both at mid-slope water depths of about 1300 m. The minibasin site (lease block Keathley Canyon 151) contains a Bottom Simulating Reflection (BSR) that deepens from 260 m below the sea floor near the edge of the basin to 500 mbsf towards the center of the basin. Drilling was conducted at a site in which the BSR is about 415 mbsf. Seismic stratigraphy of the minibasin consists of continuous laminated sequences of variable thicknesses alternating with more massive units of discontinuous reflections. These sequences represent uniform hemipelagic deposition, which drapes the basin, and turbidite deposition, which pinches out along the basin edges. The BSR crosses several of these sequences. A map of amplitude values at the BSR shows a strong banding pattern indicative of the layering, with the highest amplitudes interpreted to be trapped gas in the coarser-grained units. Prior to drilling, piston-core data indicated extensive shallow mass wasting near the edges of the minibasin. Heat flow data indicated thermal gradients that in general predicted a BSR deeper than observed in the seismic data. Full-waveform inversion of 3D multichannel data indicated a probable thick zone of low-saturation hydrate immediately above the BSR. There is little coherent seismic stratigraphy at the mound/seep site in the Mississippi Canyon (lease blocks Atwater Valley 13/14), as the canyon fill is dominated by a complex mix of turbidite and mass-wasting deposits. Hints of a possible BSR that is warped upwards beneath the mound can be seen in both 3D and 2D multichannel seismic data, but it cannot be traced laterally away from the mound with any certainty. A seismic pull-down pseudo-structure beneath the mound suggests the presence of a free-gas low-velocity zone at shallow depths. Pore-water analyses from shallow piston cores and closely-spaced heat-flow data indicate the mound is a site of probable fluid venting. A transect of bottom photographs crosses a possible mud flow and numerous bacterial mats, consistent with features seen in fluid venting at other sites in the Gulf. Prestack inversion of the multichannel data did not predict significant gas hydrate at the site on the edge of the mound. However, at the control site off the mound, predictions were more favorable for low hydrate saturations in the deeper part of the drill hole.
Continental shelf sediment dynamics in the Anthropocene: A global shift
NASA Astrophysics Data System (ADS)
Oberle, Ferdinand K. J.; Puig, Pere; Martin, Jacobo
2017-04-01
Recent technological advances in remote sensing and deep marine sampling have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.
NASA Astrophysics Data System (ADS)
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin
2016-09-01
Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.
NASA Astrophysics Data System (ADS)
Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa
1997-12-01
Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.
Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.
Kok, Peter; de Lange, Floris P
2014-07-07
An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tegowski, J.; Zajfert, G.
2014-12-01
Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).
NASA Astrophysics Data System (ADS)
Correa, T. B.; Grasmueck, M.; Eberli, G.; Viggiano, D. A.; Rosenberg, A.; Reed, J. K.
2007-12-01
To improve the understanding of the Florida-Bahamas deep-water coral mound ecosystem, Autonomous Underwater Vehicle (AUV) surveys were conducted on five coral mound fields throughout the Straits of Florida (three sites at the base of slope of Great Bahama Bank (GBB), one in the middle of the Straits (MS) and one at the base of the Miami Terrace (MT)) in water depths of 590 to 860 m. The AUV provides high-resolution bathymetric maps, sub-bottom profiles and oceanographic data. The AUV survey sites were subsequently groundtruthed via sample collection and video transects, using the Johnson Sealink submersible. Contrary to previous surveys, we found a high diversity in coral mound morphology between sites separated by 15 to 80 km. The MT site is characterized by sinusoidal coral mound ridges, while the MS site contains densely clustered small coral mounds. Meanwhile, mounds of the GBB region are better developed, with some individual mounds reaching up to 90 m in height. Benthic coverage of live corals also differs between sites; the GBB sites are characterized by mounds densely covered by large thickets of live corals, while small thickets of mostly dead corals dominate the MT and MS sites. Several environmental factors may explain these differences. For example, bottom current patterns change between sites. The MT and the MS sites have a unidirectional regime (southward or northward flow, respectively), whereas the GBB sites have a tidal current regime. Sedimentation patterns as depicted by sub-bottom profiles also vary between the sites; coral mounds in the GBB area appear to receive higher sediment input, which can significantly enhance mound growth rates as the reef framework baffles and traps mobile sediments. However, coral mounds that cannot keep-up with the sedimentation rate are buried. Therefore, in the high sedimentation areas of GBB, flourishing live coral mounds are limited to elevated positions (i.e. plateaus, ridges crests) where sediment accumulation is lessened. Corals in these raised locations also benefit from increased exposure to nutrient-rich tidal currents, supporting a denser live coral coverage. Sub-bottom profiles of the MT site show undulating coral ridges developed on top of a relatively flat sub-surface, indicating that antecedent topography is not the only factor determining mound distribution. The integrated AUV data suggest that variable environmental factors, such as sedimentation and current patterns, contribute to the high diversity between coral mound sites of the Straits of Florida. Environmental conditions change over distances of only a few kilometers creating localized and diverse deep-water coral habitats. The deepwater fauna adapts to the local oceanographic and geological conditions. This results in an unexpectedly high abundance of deep-water coral communities with diverse expressions.
NASA Astrophysics Data System (ADS)
Jiang, M.; Pan, C.; Barbero, L.; Hu, C.; Reed, J.; Salisbury, J.; Wanninkhof, R. H.
2016-02-01
Abundant and diverse cold-water corals and associated fish communities can be found in the deep waters of the Florida Straits. Preliminary evidence suggests that corals in these deep coral habitats are living under sub-optimal conditions with the ambient aragonite saturation state (Ω) being only marginally above 1. Yet little is known regarding the temporal variability of carbonate chemistry parameters and their dynamic drivers in these critical habitats. In this presentation, we addressed this issue by using a recently developed circulation model and in situ data collected during two research cruises: the second Florida Shelf Edge Exploration Expedition (FloSEE2) in September 2011 and the second Gulf of Mexico East Coast Carbon Cruise (GOMECC2) in July 2012, both supported by NOAA. A numerical simulation was carried out for 2011-2012. In particular, we focused on two contrasting habitats: Pourtalès Terrace (200-450m) and Miami Terrace (270-600m) in the Florida Straits. The results suggest that there is strong weekly to seasonal variability in the bottom water properties including temperature, salinity, total CO2 and total alkalinity on the upper slope of the Straits. In particular, the minimum saturation state over Pourtalès Terrace can be as low as 1.5 whereas even at the top of Miami Terrace, Ω can be very close to 1. Further analysis suggests that the variability of water properties in the upper slope is largely driven by the large-scale transport, and upwelling of cold and CO2-rich deep waters due to meandering of Florida Current, and/or associated meso-scale eddies. In contrast, the water properties at the bottom of the slope are very stable but with much lower aragonite saturation state. The roles of local biochemical processes including the potentially elevated productivity and export driven by meso-scale eddies are yet to be explored. We further project that the aragonite saturation state in deep waters of the Florida Straits may be further decreased to around or below 1 in 2050 under the IPCC RCP 8.5 scenario.
NASA Astrophysics Data System (ADS)
Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.
2012-06-01
The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand. Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.
van Roekel, Hendrik W H; Rosier, Bas J H M; Meijer, Lenny H H; Hilbers, Peter A J; Markvoort, Albert J; Huck, Wilhelm T S; de Greef, Tom F A
2015-11-07
Living cells are able to produce a wide variety of biological responses when subjected to biochemical stimuli. It has become apparent that these biological responses are regulated by complex chemical reaction networks (CRNs). Unravelling the function of these circuits is a key topic of both systems biology and synthetic biology. Recent progress at the interface of chemistry and biology together with the realisation that current experimental tools are insufficient to quantitatively understand the molecular logic of pathways inside living cells has triggered renewed interest in the bottom-up development of CRNs. This builds upon earlier work of physical chemists who extensively studied inorganic CRNs and showed how a system of chemical reactions can give rise to complex spatiotemporal responses such as oscillations and pattern formation. Using purified biochemical components, in vitro synthetic biologists have started to engineer simplified model systems with the goal of mimicking biological responses of intracellular circuits. Emulation and reconstruction of system-level properties of intracellular networks using simplified circuits are able to reveal key design principles and molecular programs that underlie the biological function of interest. In this Tutorial Review, we present an accessible overview of this emerging field starting with key studies on inorganic CRNs followed by a discussion of recent work involving purified biochemical components. Finally, we review recent work showing the versatility of programmable biochemical reaction networks (BRNs) in analytical and diagnostic applications.
Al-Delaimy, Wael K; Larsen, Catherine Wood; Pezzoli, Keith
2014-09-15
Living near landfills is a known health hazard prompting recognition of environmental injustice. The study aim was to compare self-reported symptoms of ill health among residents of four neighborhoods, living in haphazardly constructed settlements surrounded by illegal dumpsites in Tijuana, Mexico. One adult from each of 388 households located in Los Laureles Canyon were interviewed about demographics, health status, and symptoms. Distance from each residence to both the nearest dumpsite and the canyon bottom was assessed. The neighborhoods were selected from locations within the canyon, and varied with respect to proximity to dump sites. Residents of San Bernardo reported significantly higher frequencies of ill-health symptoms than the other neighborhoods, including extreme fatigue (OR 3.01 (95% CI 1.6-5.5)), skin problems/irritations (OR 2.73 (95% CI 1.3-5.9)), stomach discomfort (OR 2.47 (1.3-4.8)), eye irritation/tears (OR 2.02 (1.2-3.6)), and confusion/difficulty concentrating (OR 2.39 (1.2-4.8)). Proximity to dumpsites did not explain these results, that varied only slightly when adjusted for distance to nearest dumpsite or distance to the canyon bottom. Because San Bernardo has no paved roads, we hypothesize that dust and the toxicants it carries is a possible explanation for this difference. Studies are needed to further document this association and sources of toxicants.
Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mu; Pothen, Alex; Hovland, Paul
We prove the equivalence of two different Hessian evaluation algorithms in AD. The first is the Edge Pushing algorithm of Gower and Mello, which may be viewed as a second order Reverse mode algorithm for computing the Hessian. In earlier work, we have derived the Edge Pushing algorithm by exploiting a Reverse mode invariant based on the concept of live variables in compiler theory. The second algorithm is based on eliminating vertices in a computational graph of the gradient, in which intermediate variables are successively eliminated from the graph, and the weights of the edges are updated suitably. We provemore » that if the vertices are eliminated in a reverse topological order while preserving symmetry in the computational graph of the gradient, then the Vertex Elimination algorithm and the Edge Pushing algorithm perform identical computations. In this sense, the two algorithms are equivalent. This insight that unifies two seemingly disparate approaches to Hessian computations could lead to improved algorithms and implementations for computing Hessians. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974690.ch11« less
Notch sensitivity jeopardizes titanium locking plate fatigue strength.
Tseng, Wo-Jan; Chao, Ching-Kong; Wang, Chun-Chin; Lin, Jinn
2016-12-01
Notch sensitivity may compromise titanium-alloy plate fatigue strength. However, no studies providing head-to-head comparisons of stainless-steel or titanium-alloy locking plates exist. Custom-designed identically structured locking plates were made from stainless steel (F138 and F1314) or titanium alloy. Three screw-hole designs were compared: threaded screw-holes with angle edges (type I); threaded screw-holes with chamfered edges (type II); and non-threaded screw-holes with chamfered edges (type III). The plates' bending stiffness, bending strength, and fatigue life, were investigated. The stress concentration at the screw threads was assessed using finite element analyses (FEA). The titanium plates had higher bending strength than the F1314 and F138 plates (2.95:1.56:1) in static loading tests. For all metals, the type-III plate fatigue life was highest, followed by type-II and type-I. The type-III titanium plates had longer fatigue lives than their F138 counterparts, but the type-I and type-II titanium plates had significantly shorter fatigue lives. All F1314 plate types had longer fatigue lives than the type-III titanium plates. The FEA showed minimal stress difference (0.4%) between types II and III, but the stress for types II and III was lower (11.9% and 12.4%) than that for type I. The screw threads did not cause stress concentration in the locking plates in FEA, but may have jeopardized the fatigue strength, especially in the notch-sensitive titanium plates. Improvement to the locking plate design is necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gullies at the Edge of Hale Crater, Mars
2009-09-02
This image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter shows gullies near the edge of Hale crater on southern Mars. The view covers an area about 1 kilometer (0.6 mile) across and was taken on Aug. 3, 2009. Martian gullies carved into hill slopes and the walls of impact craters were discovered several years ago. Scientists are excited to study these features because, on Earth, they usually form through the action of liquid water -- long thought to be absent on the Martian surface. Whether liquid water carves gullies under today's cold and dry conditions on Mars is a major question that planetary scientists are trying to answer. The gullies pictured here are examples of what a typical Martian gully looks like. You can see wide V-shaped channels running downhill (from top to bottom) where the material that carved the gully flowed. At the bottom of the channel this material empties out onto a fan-shaped mound. The fans from each gully overlap one other in complicated ways. At the tops of the channels, large amphitheater-shaped alcoves are carved in the rock. The material removed from these alcoves likely flowed downhill to the aprons through the gullies. The terrain in this image is at 36.5 degrees south latitude, 322.7 degrees east longitude. Gullies at this site are especially interesting because scientists recently discovered actively changing examples at similar locations. Images separated by several years showed changes in the appearance of some of these gullies. Today, planetary scientists are using the HiRISE camera to examine gullies such as the one in this image for change that might provide a clue about whether liquid water occurs on the surface of Mars. http://photojournal.jpl.nasa.gov/catalog/PIA12194
Taravaud, Alexandre; Ali, Myriam; Lafosse, Bernard; Nicolas, Valérie; Féliers, Cédric; Thibert, Sylvie; Lévi, Yves; Loiseau, Philippe M; Pomel, Sébastien
2018-08-15
Free-living amoebae (FLA) are ubiquitous organisms present in various natural and artificial environments, such as drinking water storage towers (DWST). Some FLA, such as Acanthamoeba sp., Naegleria fowleri, and Balamuthia mandrillaris, can cause severe infections at ocular or cerebral level in addition to being potential reservoirs of other pathogens. In this work, the abundance and diversity of FLA was evaluated in two sampling campaigns: one performed over five seasons in three DWST at three different levels (surface, middle and bottom) in water and biofilm using microscopy and PCR, and one based on the kinetics analysis in phase contrast and confocal microscopy of biofilm samples collected every two weeks during a 3-month period at the surface and at the bottom of a DWST. In the seasonal study, the FLA were detected in each DWST water in densities of ~20 to 25amoebaeL -1 . A seasonal variation of amoeba distribution was observed in water samples, with maximal densities in summer at ~30amoebaeL -1 and minimal densities in winter at ~16amoebaeL -1 . The FLA belonging to the genus Acanthamoeba were detected in two spring sampling campaigns, suggesting a possible seasonal appearance of this potentially pathogenic amoeba. Interestingly, a 1 log increase of amoebae density was observed in biofilm samples collected at the surface of all DWST compared to the middle and the bottom where FLA were at 0.1-0.2amoebae/cm 2 . In the kinetics study, an increase of amoebae density, total cell density, and biofilm thickness was observed as a function of time at the surface of the DWST, but not at the bottom. To our knowledge, this study describes for the first time a marked higher FLA density in biofilms collected at upper water levels in DWST, constituting a potential source of pathogenic micro-organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Jupiter Storm of the High North
2017-08-03
A dynamic storm at the southern edge of Jupiter's northern polar region dominates this Jovian cloudscape, courtesy of NASA's Juno spacecraft. This storm is a long-lived anticyclonic oval named North North Temperate Little Red Spot 1 (NN-LRS-1); it has been tracked at least since 1993, and may be older still. An anticyclone is a weather phenomenon where winds around the storm flow in the direction opposite to that of the flow around a region of low pressure. It is the third largest anticyclonic oval on the planet, typically around 3,700 miles (6,000 kilometers) long. The color varies between red and off-white (as it is now), but this JunoCam image shows that it still has a pale reddish core within the radius of maximum wind speeds. Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager. The image has been rotated so that the top of the image is actually the equatorial regions while the bottom of the image is of the northern polar regions of the planet. The image was taken on July 10, 2017 at 6:42 p.m. PDT (9:42 p.m. EDT), as the Juno spacecraft performed its seventh close flyby of Jupiter. At the time the image was taken, the spacecraft was about 7,111 miles (11,444 kilometers) from the tops of the clouds of the planet at a latitude of 44.5 degrees. https://photojournal.jpl.nasa.gov/catalog/PIA21776
Opportunity Trenches Martian Soil
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Opportunity dragged one of its wheels back and forth across the sandy soil at Meridiani Planum to create a hole (bottom left corner) approximately 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep. The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of this trench later today for clues to its mineral composition and history. Scientists chose this particular site for digging because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun. Opportunity's lander is in the center of the image, and to the left is the rock outcrop lining the inner edge of the small crater that encircles the rover and lander. This mosaic image is made up of data from the rover's navigation and hazard-avoidance cameras.
Earth Observations taken by the Expedition 16 Crew
2008-02-26
ISS016-E-030337 (26 Feb. 2008) --- Fucine Lake, central Italy is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. The light tan oval in this image is the floor of a lake in central Italy that has been drained by a tunnel dug through the surrounding hills. Numerous rectangular fields can be seen on this former lake bottom--now one of the most fertile regions of Italy. The existence of a former lake explains the name of the area. The town of Avezzano (bottom left), near the drainage outlet of the basin, lies 80 kilometers east of Rome. The "circumference road" can be detected tracking around the edge of the lake; it roughly follows the boundary between green, vegetated fields around the basin and tan fallow fields within. This recent photograph shows a dusting of snow along mountain ridges to the south (image upper and lower right). The basin of Fucine Lake has no natural outlet. Consequently the level of the original lake fluctuated widely with any higher-than-average rainfall.
Chamber for Growing and Observing Fungi
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Molina, Thomas C.
2005-01-01
A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.
50 CFR 622.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region SAFMC South Atlantic.5 FMP for Coral and Coral reefs of the Gulf of Mexico GMFMC Gulf. FMP for Corals and Reef... CFMC Caribbean. FMP for the Red Drum Fishery of the Gulf of Mexico GMFMC Gulf.1 FMP for the Reef Fish...
50 CFR 622.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region SAFMC South Atlantic.5 FMP for Coral and Coral reefs of the Gulf of Mexico GMFMC Gulf. FMP for Corals and Reef... CFMC Caribbean. FMP for the Red Drum Fishery of the Gulf of Mexico GMFMC Gulf.1 FMP for the Reef Fish...
50 CFR 622.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-10-01
.../SAFMC Gulf 1, Mid-Atlantic 1 and South Atlantic 1, FMP for Coral and Coral Reefs of the Gulf of Mexico GMFMC Gulf. FMP for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region SAFMC South Atlantic5. FMP for Corals and Reef Associated Plants and Invertebrates of Puerto Rico and the U.S...
Indiana Developmental School Counseling Idea Book.
ERIC Educational Resources Information Center
Indiana State Dept. of Education, Indianapolis.
This book is intended to present guidance curriculum activities which address students' needs in the areas of learning to live, learning to learn, and learning to work. The activities are divided into four developmental levels: K-5, grades 6-8, grades 9-12, and K-12. At the bottom of each entry the name of the contributing school counselor, school…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... Farallon Islands. Living reefs of corals, sponges and a myriad of other invertebrates cover hard bottom areas and these sessile invertebrate communities are washed with food rich water from the north. These invertebrate reefs also provide structure and habitat for many species of juvenile and adult rockfish that...
Winterfat decline and halogeton spread in the Great Basin
Stanley G. Kitchen; Gary L. Jorgensen
2001-01-01
Winterfat (Ceratoides lanata) is a long-lived shrub with excellent drought tolerance and good to moderate tolerance for herbivory. It often occurs as near monocultures in deep finetextured soils of alluvial fans and valley bottoms. Winterfat communities are second only to those of shadscale (Atriplex confertifolia) in dominance of the 16 million ha of salt-desert...
The Human Lives behind the Labels: The Global Sweatshop, Nike, and the Race to the Bottom.
ERIC Educational Resources Information Center
Bigelow, Bill
1997-01-01
The importance of discovering invisible social realities, of looking behind masks presented by everyday consumer goods (like T-shirts and soccer balls), inspired an Oregon high school teacher's efforts to teach about global sweatshops and child labor in poor countries. By examining loopholes in Nike's "code of conduct," students…
Interpretation of the Seattle uplift, Washington, as a passive-roof duplex
Brocher, T.M.; Blakely, R.J.; Wells, R.E.
2004-01-01
We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive-roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short-wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene. Ages from offset soils in trenches across the fault scarps and from abruptly raised shorelines indicate that the splay, roof, and floor thrusts of the Seattle and Tacoma faults ruptured about 1100 years ago.
Frontal dynamics at the edge of the Columbia River plume
NASA Astrophysics Data System (ADS)
Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba
2018-02-01
In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.
Bottom friction. A practical approach to modelling coastal oceanography
NASA Astrophysics Data System (ADS)
Bolanos, Rodolfo; Jensen, Palle; Kofoed-Hansen, Henrik; Tornsfeldt Sørensen, Jacob
2017-04-01
Coastal processes imply the interaction of the atmosphere, the sea, the coastline and the bottom. The spatial gradients in this area are normally large, induced by orographic and bathymetric features. Although nowadays it is possible to obtain high-resolution bathymetry, the details of the seabed, e.g. sediment type, presence of biological material and living organisms are not available. Additionally, these properties as well as bathymetry can also be highly dynamic. These bottom characteristics are very important to describe the boundary layer of currents and waves and control to a large degree the dissipation of flows. The bottom friction is thus typically a calibration parameter in numerical modelling of coastal processes. In this work, we assess this process and put it into context of other physical processes uncertainties influencing wind-waves and currents in the coastal areas. A case study in the North Sea is used, particularly the west coast of Denmark, where water depth of less than 30 m cover a wide fringe along the coast, where several offshore wind farm developments are being carried out. We use the hydrodynamic model MIKE 21 HD and the spectral wave model MIKE 21 SW to simulate atmosphere and tidal induced flows and the wind wave generation and propagation. Both models represent state of the art and have been developed for flexible meshes, ideal for coastal oceanography as they can better represent coastlines and allow a variable spatial resolution within the domain. Sensitivity tests to bottom friction formulations are carried out into context of other processes (e.g. model forcing uncertainties, wind and wave interactions, wind drag coefficient). Additionally, a map of varying bottom properties is generated based on a literature survey to explore the impact of the spatial variability. Assessment of different approaches is made in order to establish a best practice regarding bottom friction and coastal oceanographic modelling. Its contribution is also assessed during storm conditions, where its most evident impact is expected as waves are affected by the bottom processes in larger areas, making bottom dissipation more efficient. We use available waves and current measurements in the North Sea (e.g. Ekofisk, Fino platforms and some other coastal stations at the west coast of Denmark) to quantify the importance of processes influencing waves and currents in the coastal zone and putting it in the context of the importance of bottom friction and other processes uncertainties.
NASA Astrophysics Data System (ADS)
Niebauer, H. J.; Alexander, Vera; Henrichs, Susan
1990-12-01
At the edge of the melting sea ice pack in the Bering Sea in spring, physical, biological, and chemical oceanographic processes combine to generate a short-lived, intense phytoplankton bloom that is associated with the retreating ice edge. The bloom begins a week or so before the first of May triggered by insolation and by the low-salinity meltwater stratification in the presence of high nitrate concentrations (˜ > 25 μM). Meltwater (salinity) stratification delineates ice edge blooms from open water blooms where temperature gradients generate the stratification. Five cross-ice sections of temperature, salinity, σt, chlorophyll, and nitrate are presented as a time series from April 27 to May 5 illustrating the bloom. Evidence of two separate but concurrent blooms in the ice edge zone are presented. In addition, meteorological and oceanographic conditions were observed that should have been conducive to ice edge up welling. While significant ice and water movement occurred, upwelling was not observed. Finally, the Bering Sea ice edge spring bloom is compared with other ice edge systems in both hemispheres, showing that initial Bering Sea nitrate concentrations are among the highest observed but quickly become limiting owing to the rapid build up of phytoplankton populations. This primary production is not coupled to the pelagic Zooplankton because Zooplankton are largely absent on account of the cold temperatures. Observed maximum chlorophyll concentrations in the bloom are several times greater than those observed in other systems.
Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction
NASA Technical Reports Server (NTRS)
Poplawski, Joseph V.; Zaretsky, Erwin V.; Peters, Steven M.
2000-01-01
Four roller profiles used in cylindrical roller bearing design and manufacture were analyzed using both a closed form solution and finite element analysis (FEA) for stress and life. The roller profiles analyzed were flat, tapered end, aerospace, and fully crowned loaded against a flat raceway. Four rolling-element bearing life models were chosen for this analysis and compared. These were those of Weibull, Lundberg and Palmgren, Ioannides and Harris, and Zaretsky. The flat roller profile without edge loading has the longest predicted life. However, edge loading can reduce life by as much as 98 percent. The end tapered profile produced the highest lives but not significantly different than the aerospace profile. The fully crowned profile produces the lowest lives. The resultant predicted life at each stress condition not only depends on the life equation used but also on the Weibull slope assumed. For Weibull slopes of 1.5 and 2, both Lundberg-Palmgren and Iaonnides-Harris equations predict lower lives than the ANSI/ABMAJISO standards. Based upon the Hertz stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to 6.6. This value is inconsistent with that experienced in the field.
Are Scots pine forest edges particularly prone to drought-induced mortality?
NASA Astrophysics Data System (ADS)
Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette
2018-02-01
Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.
Io's Sodium Cloud (Clear Filter and Green-Yellow Filter with Intensity Contours)
NASA Technical Reports Server (NTRS)
1997-01-01
This picture contains two images of Jupiter's moon Io and its surrounding sky. The original frame was exposed twice, once through a clear filter and once through a green-yellow filter. The camera pointed in slightly different directions for the two exposures, placing a clear filter image of Io in the top half of the frame, and a green-yellow filter image of Io in the bottom half of the frame. This picture shows the entire original frame with the addition of intensity contours and false color. East is to the right.
Most of Io's visible surface is in shadow, though part of a white crescent can be seen on its western side. This crescent is being illuminated mostly by 'Jupitershine' (i.e., sunlight reflected off Jupiter). Near Io's eastern equatorial edge is a burst of white light which shows up best in the lower image. This sunlight being scattered by the plume of the volcano Prometheus. Prometheus lies just beyond the visible edge of the moon on Io's far side. Its plume extends about 100 kilometers above the surface, and is being hit by sunlight just a little east of Io's eastern edge.The sky is full of diffuse light, some of which is scattered light from Prometheus' plume and Io's lit crescent (particularly in the half of the frame dominated by the clear filter). However, much of the diffuse emission comes from Io's Sodium Cloud: sodium atoms within Io's extensive material halo are scattering sunlight into both the clear and green-yellow filters at a wavelength of about 589 nanometers.The intensity contours help to illustrate that: (i) significant diffuse emission is present all the way to the eastern edge of the frame (indeed, the Sodium Cloud is known to extend far beyond that edge); (ii) the diffuse emission exhibits a directional feature at about four o'clock relative to Io's center (similar features have been seen in the Sodium Cloud at greater distances from Io).The upper image of Io exhibits a roundish white spot in the bottom half of Io's shadowed side. This corresponds to thermal emission from the volcano Pele. The lower image bears a much smaller trace of this emission because the clear filter is far more sensitive than the green-yellow filter to those relatively long wavelengths where thermal emission is strongest.This image was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft. Galileo was then in Jupiter's shadow, and located about 2.3 million kilometers (about 32 Jovian radii) from both Jupiter and Io.The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.The Life of a Sponge in a Sandy Lagoon.
Ilan, M; Abelson, A
1995-12-01
Infaunal soft-bottom invertebrates benefit from the presence of sediment, but sedimentation is potentially harmful for hard-bottom dwellers. Most sponges live on hard bottom, but on coral reefs in the Red Sea, the species Biemna ehrenbergi (Keller, 1889) is found exclusively in soft-bottom lagoons, usually in the shallowest part. This location is a sink environment, which increases the deposition of particulate organic matter. Most of the sponge body is covered by sediment, but the chimney-like siphons protrude from the sediment surface. The sponge is attached to the buried beach-rock, which reduces the risk of dislodgment during storms. Dye injected above and into the sediment revealed, for the first time, a sponge pumping interstitial water (rich with particles and nutrients) into its aquiferous system. Visual examination of plastic replicas of the aquiferous system and electron microscopical analysis of sponge tissue revealed that the transcellular ostia are mostly located on the buried surface of the sponge. The oscula, however, are located on top of the siphons; their elevated position and their ability to close combine to prevent the filtering system outflow from clogging. The transcellular ostia presumably remain open due to cellular mobility. The sponge maintains a large population of bacteriocytes, which contains bacteria of several different species. Some of these bacteria disintegrate, and may be consumed by the sponge.
1997-01-01
This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.
NASA Astrophysics Data System (ADS)
Umling, N. E.; Thunell, R.
2016-12-01
Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.
User's manual for semi-circular compact range reflector code
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1986-01-01
A computer code was developed to analyze a semi-circular paraboloidal reflector antenna with a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the antenna or its individual components at a given distance from the center of the paraboloid. Thus, it is very effective in computing the size of the sweet spot for RCS or antenna measurement. The operation of the code is described. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.
Overall evaluation of LANDSAT (ERTS) follow on imagery for cartographic application
NASA Technical Reports Server (NTRS)
Colvocoresses, A. P. (Principal Investigator)
1977-01-01
The author has identified the following significant results. LANDSAT imagery can be operationally applied to the revision of nautical charts. The imagery depicts shallow seas in a form that permits accurate planimetric image mapping of features to 20 meters of depth where the conditions of water clarity and bottom reflection are suitable. LANDSAT data also provide an excellent simulation of the earth's surface, for such applications as aeronautical charting and radar image correlation in aircraft and aircraft simulators. Radiometric enhancement, particularly edge enhancement, a technique only marginally successful with aerial photographs has proved to be high value when applied to LANDSAT data.
Succession planning in hospitals and the association with organizational performance.
Kim, Tae Hyun
2012-01-01
Effective succession planning is the heart of leadership development and an essential business strategy because it enhances the ability to achieve orderly transitions and maintain productivity levels. The results of this study are consistent with previous studies that exhibit a positive association of previous years' performance with internal succession planning. The key to successful succession planning lies in building a solid foundation of profitability. Having successors ready to fill key vacancies helps improve operational condition and the bottom line, and thus, gives a competitive edge in the market. Preparing successors for leadership may determine which organizations simply survive and which thrive and lead their markets down the road.
Earth observation taken by the Expedition 29 crew
2011-11-16
ISS029-E-042846 (16 Nov. 2011) --- Parts of the U.S. and Mexico are seen in this image photographed by one of the Expedition 29 crew members from the International Space Station as it flew above the Pacific Ocean on Nov. 16, 2011. The Salton Sea is in the center of the frame, with the Gulf of Cortez, Mexico's Baja California and the Colorado River in the upper right quadrant. The Los Angeles Basin and Santa Catalina and San Clemente islands are at the bottom center edge of the image. Lake Mead and the Las Vegas area of Nevada even made it into the frame in the upper left quadrant.
Viking Lander's Buried Footpad #3
NASA Technical Reports Server (NTRS)
1976-01-01
One of Viking l's three feet, which should be visible in this view, lies buried beneath a cover of loose Martian soil. This picture, taken Sunday (August 1), is the first to show the buried footpad #3. If not buried, the edge of the foot would be seen extending across the picture about midway between top and bottom. The foot sank about five inches, and fine-grained soil slumped into the depression and over the foot. The cracked nature of the surface near the slump area and the small, steep cliff at left indicates that the material is weakly cohesive. The surface material here is very similar mechanically to lunar soil.
Martínez-Ortega, Cristina; Santos, Eduardo SA; Gil, Diego
2014-01-01
Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low-light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes. PMID:25614788
Habitat heterogeneity hypothesis and edge effects in model metacommunities.
Hamm, Michaela; Drossel, Barbara
2017-08-07
Spatial heterogeneity is an inherent property of any living environment and is expected to favour biodiversity due to a broader niche space. Furthermore, edges between different habitats can provide additional possibilities for species coexistence. Using computer simulations, this study examines metacommunities consisting of several trophic levels in heterogeneous environments in order to explore the above hypotheses on a community level. We model heterogeneous landscapes by using two different sized resource pools and evaluate the combined effect of dispersal and heterogeneity on local and regional species diversity. This diversity is obtained by running population dynamics and evaluating the robustness (i.e., the fraction of surviving species). The main results for regional robustness are in agreement with the habitat heterogeneity hypothesis, as the largest robustness is found in heterogeneous systems with intermediate dispersal rates. This robustness is larger than in homogeneous systems with the same total amount of resources. We study the edge effect by arranging the two types of resources in two homogeneous blocks. Different edge responses in diversity are observed, depending on dispersal strength. Local robustness is highest for edge habitats that contain the smaller amount of resource in combination with intermediate dispersal. The results show that dispersal is relevant to correctly identify edge responses on community level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-01-01
... economy forward and improved the lives of our people, from the industrial innovations of the nineteenth century to today’s cutting-edge science. Progress in our Nation’s health care system is no different, and...
Popenoe, P.; Manheim, F.T.
2001-01-01
The Charleston Bump is a structural and topographic high on the northern Blake Plateau that overlies a seaward offset of the edge of continental crust. The feature causes the bottom to shoal and deflects the Gulf Stream offshore, causing an intensification of bottom currents. The area has been swept by strong currents since late Cretaceous time, but the strongest currents have occurred in the Neogene (last ???25 million years). Nondepositional conditions prevail at present, but erosion of the bottom is checked where the bottom is armored by a hard surficial layer of phosphorite pavement. The phosphorite pavements were formed by re-cementation of eroded residues of phosphorite-rich sediments of early-Neogene age. In some places there are multiple pavements separated by poorly lithified sediments. Submersible observations indicate that the south, or current-facing flank of the Charleston Bump has several deep (>100 m) scour depressions, the southern flanks of which form cliffs characterized by ledges and overhangs. In other areas discrete layers of older Paleogene rocks have been partly eroded away, leaving cliff-like steps of 5 m or more relief. Conglomeratic phosphorite pavement layers up to 1 m thick armor most of the bottom. Where breached by scour, these pavements form both low-relief ledges and rock piles. These features form a reef-like environment of caves and overhangs utilized by wreckfish Polyprion americanus and barrelfish Hyperoglyphe perciformis as shelter from the current and as staging areas to prey on passing schools of squid. Wreckfish and other large fish were often localized in rugged bottom habitat, including caves and other shelter areas. We observed wreckfish darting from shelters to feed on passing schools of squid. Present and past observations, are consistent with the concept that impingement of the Gulf Stream at the Charleston Bump compresses midwater fauna from much thicker water layers, providing food for a flourishing big-fish fauna. During our dives we noted currents often exceeding 1 knot, and ranging to 2.4 knots. Evidence of fossil, manganese-iron-encrusted megaripples suggest even greater current regimes in the past. Investigation of the site of an earlier report of possible freshwater discharge failed to find any evidence of a closed sinkhole or freshwater discharge. Rather, we concluded that the apparent loss of buoyancy experienced by the submarine was probably caused by downward-directed eddy currents generated by currents sweeping across the pavement/void interface of a more than 100-m high cliff 3 km south of the reported location.
Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun
2017-12-01
Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.
NASA Astrophysics Data System (ADS)
Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung
2016-06-01
We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.
Mixing on the Heard Island Plateau during HEOBI
NASA Astrophysics Data System (ADS)
Robertson, R.
2016-12-01
On the plateau near Heard and McDonald Islands, the water column was nearly always well mixed. Typically, temperature differences between the surface and the bottom, 100-200 m, were less than 0.2oC and often less that 0.1oC. Surface stratification developed through insolation and deep primarily through a combination of upwelling from canyons and over the edge of the plateau and tidal advection. This stratification was primarily removed by a combination of wind and tidal mixing. Persistent winds of 30 knots mixed the upper 20-50 m. Strong wind events, 40-60 knots, mixed the water column to 100-200 m depth, which over the plateau, was often the entire water column. Benthic tidal friction mixed the bottom 30-50 m. Although the water column was unstratified at the two plume sites intensively investigated, tidal velocities were baroclinic, probably due to topographic controls. Tidal advection changed the bottom temperatures by 0.5oC within 8 hours, more than doubling the prior stratification. Wind mixing quickly homogenized the water column, resulting in the surface often showing the deeper upwelling and advective events. Although acoustic plumes with bubbles were observed in the water column, there was no evidence of geothermal vents or geothermal influence on temperatures. Mixing by bubbles rising in the water column was indistinguishable from the wind and tidal mixing, although the strongest upward vertical velocities were observed at the sites of these acoustic/bubble plumes.
Effect of Changes in Living Conditions on Well-Being: A Prospective Top-Down Bottom-Up Model
ERIC Educational Resources Information Center
Nakazato, Naoki; Schimmack, Ulrich; Oishi, Shigehiro
2011-01-01
Using the German Socio-Economic Panel, we examined life-satisfaction and housing satisfaction before and after moving (N = 3,658 participants from 2,162 households) with univariate and bivariate two-intercept two-slope latent growth models. The main findings were (a) a strong and persistent increase in average levels of housing satisfaction, (b)…
Feeding the Body: Six Superintendents Detail Their Regimens for Attending to Their Physical Wellness
ERIC Educational Resources Information Center
School Administrator, 2005
2005-01-01
Amidst the hustle and bustle and stress and strain of their professional lives, public school leaders often put their own physical well-being at the bottom of the priority list. What they forget is how important physical health is to their overall health and effectiveness as leaders. The author invited five veteran school system leaders to…
Mortality Burden and Socioeconomic Status in India
Po, June Y. T.; Subramanian, S. V.
2011-01-01
Background The dimensions along which mortality is patterned in India remains unclear. We examined the specific contribution of social castes, household income, assets, and monthly per capita consumption to mortality differentials in India. Methods and Findings Cross-sectional data on 217 363 individuals from 41 554 households from the 2004–2005 India Human Development Survey was analyzed using multiple logistic regressions. Mortality differentials across social castes were attenuated after adjusting for household economic factors such as income and assets. Individuals living in the lowest income and assets quintiles had an increased risk of mortality with odds ratio (OR) of 1.66 (95% CI = 1.23–2.24) in the bottom income quintile and OR of 2.94 (95% CI = 1.66–5.22) in the bottom asset quintile. Counter-intuitively, individuals living in households with lowest monthly consumption per capita had significantly lower probability of death (OR = 0.27, 95% CI = 0.20–0.38). Conclusions Mortality burden in India is largely patterned on economic dimensions as opposed to caste dimensions, though caste may play an important role in predicting economic opportunities. PMID:21347373
Spitzer Finds Clarity in the Inner Milky Way
NASA Technical Reports Server (NTRS)
2008-01-01
More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way. As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane. In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy. The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy. This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer. The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array camera to see light from newborn stars, old stars and polycyclic aromatic hydrocarbons. A second group, the Multiband Imaging Photometer for Spitzer Galactic Plane Survey team (MIPSGAL), imaged dust in the inner galaxy with Spitzer's multiband imaging photometer.Living on the Edge: Re-shaping the Interface of Synthetic Biology and Nanotechnology.
Wu, Shang-Jung; Boghossian, Ardemis A
2016-11-30
A new team of researchers at EPFL is taking an 'anti-disciplinary' approach to creating optical devices. These devices take advantage of the synergy in tuning both nano- and bio-material properties, coupling the advantages of two growing, albeit traditionally distinct, fields. With applications spanning from biosensing and microarray assays to living photovoltaics, the Laboratory of NanoBiotechnology (LNB) is uncovering an unexplored space for the next generation of chemical analytics and light-harvesting technologies.
Twelve essential tools for living the life of whole person health care.
Schlitz, Marilyn; Valentina, Elizabeth
2013-01-01
The integration of body, mind, and spirit has become a key dimension of health education and disease prevention and treatment; however, our health care system remains primarily disease centered. Finding simple steps to help each of us find our own balance can improve our lives, our work, and our relationships. On the basis of interviews with health care experts at the leading edge of the new model of medicine, this article identifies simple tools to improve the health of patients and caregivers.
DOE R&D Accomplishments Database
Hofstadter, R.
1987-09-01
The aim was the development of an angiographic method and appropriate equipment for imaging with x-rays the coronary arteries in a non-invasive manner. Successive steps involved studies with phantoms, live animals and finally with human subjects. Clinical evaluation of human coronary arteries remains a goal of this and a continuing project, and steps along the way to such an achievement are in process. Transvenous injection of a dye using the method of iodine dichromography near 33.2 keV, the K-edge of iodine, forms the basis of the method
Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2
NASA Astrophysics Data System (ADS)
Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro
1990-11-01
The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.
Al-Delaimy, Wael K.; Wood Larsen, Catherine; Pezzoli, Keith
2014-01-01
Living near landfills is a known health hazard prompting recognition of environmental injustice. The study aim was to compare self-reported symptoms of ill health among residents of four neighborhoods, living in haphazardly constructed settlements surrounded by illegal dumpsites in Tijuana, Mexico. One adult from each of 388 households located in Los Laureles Canyon were interviewed about demographics, health status, and symptoms. Distance from each residence to both the nearest dumpsite and the canyon bottom was assessed. The neighborhoods were selected from locations within the canyon, and varied with respect to proximity to dump sites. Residents of San Bernardo reported significantly higher frequencies of ill-health symptoms than the other neighborhoods, including extreme fatigue (OR 3.01 (95% CI 1.6–5.5)), skin problems/irritations (OR 2.73 (95% CI 1.3–5.9)), stomach discomfort (OR 2.47 (1.3–4.8)), eye irritation/tears (OR 2.02 (1.2–3.6)), and confusion/difficulty concentrating (OR 2.39 (1.2–4.8)). Proximity to dumpsites did not explain these results, that varied only slightly when adjusted for distance to nearest dumpsite or distance to the canyon bottom. Because San Bernardo has no paved roads, we hypothesize that dust and the toxicants it carries is a possible explanation for this difference. Studies are needed to further document this association and sources of toxicants. PMID:25226411
Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan
2009-10-01
The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.
NASA Astrophysics Data System (ADS)
Belibassakis, K. A.; Athanassoulis, G. A.
2005-05-01
The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol. 389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets of small and uniform thickness, lying over variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized by a continuous depth function of the form h( {x,y}) {=} h( x ), attaining constant, but possibly different, values in the semi-infinite regions x {<} a and x {>} b. We consider the scattering problem of harmonic, obliquely incident, surface waves, under the combined effects of variable bathymetry and a floating elastic plate, extending from x {=} a to x {=} b and {-} infty {<} y{<}infty . Under the assumption of small-amplitude incident waves and small plate deflections, the hydroelastic problem is formulated within the context of linearized water-wave and thin-elastic-plate theory. The problem is reformulated as a transition problem in a bounded domain, for which an equivalent, Luke-type (unconstrained), variational principle is given. In order to consistently treat the wave field beneath the elastic floating plate, down to the sloping bottom boundary, a complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction of the Neumann bottom-boundary condition on a general topography. By introducing this expansion into the variational principle, an equivalent coupled-mode system of horizontal equations in the plate region (a {≤} x {≤} b) is derived. Boundary conditions are also provided by the variational principle, ensuring the complete matching of the wave field at the vertical interfaces (x{=}a and x{=}b), and the requirements that the edges of the plate are free of moment and shear force. Numerical results concerning floating structures lying over flat, shoaling and corrugated seabeds are presented and compared, and the effects of wave direction, bottom slope and bottom corrugations on the hydroelastic response are presented and discussed. The present method can be easily extended to the fully three-dimensional hydroelastic problem, including bodies or structures characterized by variable thickness (draught), flexural rigidity and mass distributions.
Influence of matrix type on tree community assemblages along tropical dry forest edges.
Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel
2014-05-01
• Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.
Microwell Arrays for Studying Many Individual Cells
NASA Technical Reports Server (NTRS)
Folch, Albert; Kosar, Turgut Fettah
2009-01-01
"Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.
Reimnitz, E.; Marincovich, L.; McCormick, M.; Briggs, W.M.
1992-01-01
No evidence was seen for entrainment by bottom adfreezing, bluff slumping, river flooding, dragging ice keels, or significant eolian transport from land to sea. Muddy sediment with pebbles and cobbles, algae with holdfasts, ostracodes with appendages, and well-preserved mollusks and sea urchins were collected from two sites in a 50 km long stretch of turbid ice. These materials indicate that suspension freezing reaching to a water depth of 25-30 m during the previous fall was responsible for entrainment. This mechanism requires rapid ice formation in open, shallow water during a freezing storm, when the ocean becomes supercooled, and frazil and anchor ice attach to and ultimately lift sediment and living organisms to the sea surface. -from Authors
Modeling shared resources with generalized synchronization within a Petri net bottom-up approach.
Ferrarini, L; Trioni, M
1996-01-01
This paper proposes a simple and effective way to represent shared resources in manufacturing systems within a Petri net model previously developed. Such a model relies on the bottom-up and modular approach to synthesis and analysis. The designer may define elementary tasks and then connect them with one another with three kinds of connections: self-loops, inhibitor arcs and simple synchronizations. A theoretical framework has been established for the analysis of liveness and reversibility of such models. The generalized synchronization, here formalized, represents an extension of the simple synchronization, allowing the merging of suitable subnets among elementary tasks. It is proved that under suitable, but not restrictive, hypotheses the generalized synchronization may be substituted for a simple one, thus being compatible with all the developed theoretical body.
"The Chemicals Project": Connecting General Chemistry to Students' Lives
NASA Astrophysics Data System (ADS)
Stout, Roland
2000-10-01
"The Chemicals Project" described here strives to bring freshman chemistry alive for students by emphasizing its connection to the real world and to their own lives and experiences. Its major assignments deal with chemical phobias, recognizing the chemicals found in everyday life and chemical hazards (using Material Data Safety Sheets). The project is described in a cooperative learning format, employs portfolio grading, and includes a significant writing component. Ways of linking this project with the course lecture and student evaluations of the project are described. The bottom line: pre- and post-testing shows that it works. The Chemicals Project brings chemistry alive for students.
Wang, Na; Xu, Wen Qiang; Xu, Hua Jun; Feng, Yi Xing; Li, Chao Fan
2017-07-18
The southern margin desert of Junggar Basin in the central arid region of Asia was selec-ted as the study area. To gain insight into the distribution characteristic of stable carbon isotope and the relationship between the change of soil carbon and the distance to oasis of soil organic carbon (SOC) and soil inorganic carbon (SIC), three belt transects were set according to the distance between the desert and the oasis in edge, middle and hinterland of the desert respectively, and collected the soil profile samples with depth of 2 m. The results indicated that the SOC content reduced with the soil depth, and the variation with the distance to oasis was the edge> the middle> the hinterland. The δ 13 C value of SOC varied in the range of -21.92‰ to -17.41‰, and decreased with the depth; the range in the middle and hinterland was -25.20‰ to -19.30‰, and increased then declined with the depth. Therefore, we could infer that the C3 plants played a dominant role in the central of desert, and had experienced the succession from C3 plants to C4 plants. The average content of SIC was 38.98 g·kg -1 in the edge of desert, which was about 6.01 folds as large as the content in the hinterland. This indicated that a large number of SIC with 0-2 m depth were clustered in the edge of the desert. The δ 13 C value of SIC increased first then decreased with the soil depth, and enriched in the bottom layer, which was mainly affected by the original carbonate content and soil carbon dioxide.
Space Radar Image of Kiluchevskoi, Volcano, Russia
1999-05-01
This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA01765
Bas-relief map using texture analysis with application to live enhancement of ultrasound images.
Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing
2015-05-01
For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Negredo, A. M.; Rodríguez-González, J.; Fullea, J.; Van Hunen, J.
2017-12-01
The close location between many hotspots and the edges of cratonic lithosphere has led to the hypothesis that these hotspots could be explained by small-scale mantle convection at the edge of cratons (Edge Driven Convection, EDC). The Canary Volcanic Province hotspot represents a paradigmatic example of this situation due to its close location to the NW edge of the African Craton. Geochemical evidence, prominent low seismic velocity anomalies in the upper and lower mantle, and the rough NE-SW age-progression of volcanic centers consistently point out to a deep-seated mantle plume as the origin of the Canary Volcanic Province. It has been hypothesized that the plume material could be affected by upper mantle convection caused by the thermal contrast between thin oceanic lithosphere and thick (cold) African craton. Deflection of upwelling blobs due to convection currents would be responsible for the broader and more irregular pattern of volcanism in the Canary Province compared to the Madeira Province. In this study we design a model setup inspired on this scenario to investigate the consequences of possible interaction between ascending mantle plumes and EDC. The Finite Element code ASPECT is used to solve convection in a 2D box. The compositional field and melt fraction distribution are also computed. Free slip along all boundaries and constant temperature at top and bottom boundaries are assumed. The initial temperature distribution assumes a small long-wavelength perturbation. The viscosity structure is based on a thick cratonic lithosphere progressively varying to a thin, or initially inexistent, oceanic lithosphere. The effects of assuming different rheologies, as well as steep or gradual changes in lithospheric thickness are tested. Modelling results show that a very thin oceanic lithosphere (< 30 km) is needed to generate partial melting by EDC. In this case partial melting can occur as far as 700 km away from the edge of the craton. The size of EDC cells is relatively small (diameter about 300 km) for lithosphere/asthenosphere viscosity contrasts of 1000. In contrast, models assuming temperature-dependent viscosity and large viscosity variations evolve to large-scale (upper mantle) convection cells, with upwelling of hot material being enhanced by cold downwellings at the edge of cratonic lithosphere.
Marketing the Uniqueness of Small Towns. Revised.
ERIC Educational Resources Information Center
Dunn, Douglas; Hogg, David H.
The key to marketing a town is determining and promoting the town's "differential advantage" or uniqueness that would make people want to visit or live there. Exercises to help communities gain important insights into the town's competitive edge include a brainstorming session with knowledgeable community members, a visitor…
As we looked out over the water, sounds of laughter from distant kayakers could be heard over the soft ripples that lapped the eroded edge of salt marsh. From this view, it was easy to understand that Sengekontacket Pond—the same pond where Jaws was filmed 41 years ago&mdas...
Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou
2007-03-01
Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.
75 FR 34064 - Manufactured Home Construction and Safety Standards, Test Procedures for Roof Trusses
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... dead load, or to 1.75 times the uplift load, minus the dead load in the upright position. [See Figure... 1/32-inch. Dead load must be applied to the top and bottom chord, and live load must be applied to... procedure. (i) Dead load. Measure and record initial elevation of the truss or trusses in the test position...
78 FR 4060 - Manufactured Home Construction and Safety Standards, Test Procedures for Roof Trusses
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... of the truss or trusses in the test position at no load. Apply to the top and bottom chords of the... increments until dead load plus the live load is reached. Measure and record the deflections no sooner than... conditions are met: (A) The maximum deflection between no load and dead load must be L/ 480 or less for...
ERIC Educational Resources Information Center
Lamm, Alexa J.; Israel, Glenn D.; Harder, Amy
2011-01-01
Extension has enhanced the lives of U.S. citizens through adult education in a myriad of ways. However, as budgets get tighter, accountability becomes increasingly more important. Over the years, Extension has reported low level impacts rather than the long-term successes that those working within the system know are occurring. Without enhanced…
Flame interactions and burning characteristics of two live leaf samples
Brent M. Pickett; Carl Isackson; Rebecca Wunder; Thomas H. Fletcher; Bret W. Butler; David R. Weise
2009-01-01
Combustion experiments were performed over a flat-flame burner that provided the heat source for multiple leaf samples. Interactions of the combustion behavior between two leaf samples were studied. Two leaves were placed in the path of the flat-flame burner, with the top leaf 2.5 cm above the bottom leaf. Local gas and particle temperatures, as well as local oxygen...
NASA Astrophysics Data System (ADS)
Koho, K. A.; Reichart, G.-J.
2012-04-01
The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.
Geophysical Data from Offshore of the Chandeleur Islands, Eastern Mississippi Delta
Baldwin, Wayne E.; Pendleton, Elizabeth A.; Twichell, David C.
2009-01-01
This report contains the geophysical and geospatial data that were collected during two cruises on the R/V Acadiana along the eastern, offshore side of the Chandeleur Islands in 2006 and 2007. Data were acquired with the following equipment: a Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonar; a Klein 3000 dual-frequency sidescan sonar; and an EdgeTech 512i chirp sub-bottom profiling system. The long-term goal of this mapping effort is to produce high-quality, high-resolution geologic maps and geophysical interpretations that can be utilized to investigate the impact of Hurricane Katrina, identify sand resources within the region, and make predictions regarding the future evolution of this coastal system.
Out-of-plane three-stable-state ferroelectric switching: Finding the missing middle states
NASA Astrophysics Data System (ADS)
Lee, Jin Hong; Chu, Kanghyun; Kim, Kwang-Eun; Seidel, Jan; Yang, Chan-Ho
2016-03-01
By realizing a nonvolatile third intermediate ferroelectric state through anisotropic misfit strain, we demonstrate electrical switching among three stable out-of-plane polarizations in bismuth ferrite thin films grown on (110) pc-oriented gadolinium scandate substrates (where pc stands for pseudocubic) by the use of an asymmetric external electric field at the step edge of a bottom electrode. We employ phenomenological Landau theory, in conjunction with electrical poling experiments using piezoresponse force microscopy, to understand the role of anisotropic misfit strain and an in-plane electric field in stabilization of multiple ferroelectric states and their competition. Our finding provides a useful insight into multistep ferroelectric switching in rhombohedral ferroelectrics.
Technique for microswitch manufacture
NASA Technical Reports Server (NTRS)
Kitamura, T.; Kiyoyama, S.
1983-01-01
A five-step technique for microswitch manufacture is described: (1) A clad board is inlaid with a precious metal and the board is pressed. (2) One end of the fixed contact containing a precious metal inlay section is curved, and this edge of the precious metal inlay section becomes a fixed contact. (3) Inserts are formed in the unit body and terminal strips are placed through the top and bottom of the base and held. (4) The unit body is held by the base and the sequential contact strips are cut off. (5) Movable stripes are attached to the support of the terminal strips on the movable side and movable contacts are placed opposite the fixed contacts.
DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING NORTHEAST TOWARD ...
DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING NORTHEAST TOWARD THE REAR OF THE STRUCTURE. THE WHEELS AT THE TOP OF THE TRAM BUCKETS RODE OFF THE STATIONARY CABLES ONTO THE TRACK SUPPORTED BY THE "C" IRONS SUSPENDED FROM THE TOP TIMBERS, CLEARLY SEEN AT THE TOP OF THE FRAME. THE ANCHOR POINTS FOR THE TWO STATIONARY CABLES ARE AT BOTTOM CENTER, JUST BELOW THE CABLE WHEEL. THE MAIN CABLE WHEEL IS IN THE DISTANCE AT CENTER LEFT. THE ORE CHUTES COMING FROM THE ORE BIN ARE AT LEFT CENTER EDGE. TRAM BUCKETS WERE CHARGED HERE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
1985-10-01
elements with BOTTON faces. 5. Thin plates may only intersect each other at the edges or corners. 6. Double points must be assigned TOP and BOTTOM sets...10 ExPONEP4T 1.7 INCNE) 1.7B.CZC (NONE) 11 YIELDC FOR IKEV PROTONS .9C-CC! INCNE) N.-’O S(ONE) 12 AX oC/ aw FRa PROTONS ..zz0=2 KEY ±.Z:-CCZ...AEV 13 PHCTOCURPE~t Z.90-C:S Aw ..Z 1.91-,cE 1/"’sZ I& SURFACE RESISTIVITY -i.Z.C *0 OH*PS -6.d5-C1! v-Sic is SPACE DISCHARGE POT’L I.3IC*CC; VCLTS 1.Z
Device for reducing vehicle aerodynamic resistance
Graham, Sean C.
2006-08-22
A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.
NASA Technical Reports Server (NTRS)
Moore, Alvah S., Jr.; Mauldin, L. ED, III; Stump, Charles W.; Reagan, John A.; Fabert, Milton G.
1989-01-01
The calibration of the Halogen Occultation Experiment (HALOE) sun sensor is described. This system consists of two energy-balancing silicon detectors which provide coarse azimuth and elevation control signals and a silicon photodiode array which provides top and bottom solar edge data for fine elevation control. All three detectors were calibrated on a mountaintop near Tucson, Ariz., using the Langley plot technique. The conventional Langley plot technique was modified to allow calibration of the two coarse detectors, which operate wideband. A brief description of the test setup is given. The HALOE instrument is a gas correlation radiometer that is now being developed for the Upper Atmospheric Research Satellite.
Eye Safety in Dentistry and Associated Liability.
Arsenault, Peter; Tayebi, Amad
2016-01-01
The first objective of this article is to expressan experimental-work-supported opinion ofits authors regarding the inadequacy of thepresent dental mask and regular eyewearcombination for protecting dental care practitioners. Its second objective is to suggestamending OSHA Standard 1910.133(a)(1) tomandate effective eye protection for dentalcare practitioners by requiring the use ofeffective means for closing the bottom gapsbetween the lower rims of the lenses of theprotective eyewear and the upper edge ofthe mask worn by the practitioner.The various types and sources of dentalpractice eye occupational hazards and thepossible entry routes of dental debris towarddental practitioners'eyes are discussed.Experimental work, confirming theinadequacy of the present dental mask andeyewear combination for protecting dentalcare practitioners, is presented.
Buckling and stretching of thin viscous sheets
NASA Astrophysics Data System (ADS)
O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich
2016-11-01
Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.
Functionalization of graphene nanoribbons
NASA Astrophysics Data System (ADS)
Genorio, Bostjan; Znidarsic, Andrej
2014-03-01
Graphene nanoribbon (GNR) is a recently discovered carbon allotrope, which can be described as a stripe of graphene. Pseudo-one-dimensionality exerts additional confinement on the electrons resulting in the formation of a band gap relevant for electronic devices. Due to distinct physical and chemical properties it is a promising material for several applications. To expand the range of potential applications and to improve processability, chemical functionalization of GNRs is required. This review aims to provide a concise and systematic coverage of recent work in chemical functionalization of GNRs. We will focus on longitudinal carbon nanotube unzipping, functionalization with aryl diazonium salts, non-covalent functionalization, bottom-up synthesis and one pot carbon nanotube unzipping with in situ edge functionalization.
Orban, Mathias; Besler, Christian; Braun, Daniel; Nabauer, Michael; Zimmer, Marion; Orban, Martin; Noack, Thilo; Mehilli, Julinda; Hagl, Christian; Seeburger, Joerg; Borger, Michael; Linke, Axel; Thiele, Holger; Massberg, Steffen; Ender, Joerg; Lurz, Philipp; Hausleiter, Jörg
2018-06-01
Severe tricuspid regurgitation (TR) is common in patients with right-sided heart failure (HF) and causes substantial morbidity and mortality. Treatment options beyond medical therapy are limited for high-risk patients. Transcatheter edge-to-edge tricuspid valve (TV) repair showed procedural safety and short-term efficacy. Impact on mid-term outcome is unclear. This dual-centre observational study evaluates the mid-term safety, efficacy and clinical outcome after edge-to-edge TV repair for severe TR in patients with HF. Overall, 50 patients with right-sided HF and severe TR were treated with the transcatheter edge-to-edge repair technique; 14 patients were treated for isolated TR and 36 patients for combined mitral regurgitation (MR) and TR. At 6-month follow-up (available for 98% of patients), a persistent reduction of at least one echocardiographic TR grade was achieved in 90% of patients and New York Heart Association class improved in 79% of patients. The 6-minute walk distance increased by 44% (+84 m, P < 0.001), the median N-terminal pro-B-type natriuretic peptide decreased by 30% (from 3625 to 2526 pg/mL, P = 0.002), and the quality of life score improved by 16% (decrease of 6 points in the Minnesota Living with Heart Failure Questionnaire score, P = 0.056). The improvements were comparable in patients undergoing isolated TR or combined MR and TR treatment. During follow-up, 8 patients died, 14 were hospitalized for worsening of HF, 2 underwent TV surgery, and 2 received a second TV clip procedure. Transcatheter edge-to-edge TV repair for severe TR is safe and effective in reducing TR. It appears to be associated with improved clinical outcome in the majority of patients. © 2018 The Authors. European Journal of Heart Failure © 2018 European Society of Cardiology.
Milici, Mathias; Deng, Zhi-Luo; Tomasch, Jürgen; Decelle, Johan; Wos-Oxley, Melissa L.; Wang, Hui; Jáuregui, Ruy; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H.; Wurst, Mascha; Pieper, Dietmar H.; Simon, Meinhard; Wagner-Döbler, Irene
2016-01-01
We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S–47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone. PMID:27199970
Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil
NASA Astrophysics Data System (ADS)
Loureiro, A.; Schnürle, P.; Klingelhöfer, F.; Afilhado, A.; Pinheiro, J.; Evain, M.; Gallais, F.; Dias, N. A.; Rabineau, M.; Baltzer, A.; Benabdellouahed, M.; Soares, J.; Fuck, R.; Cupertino, J. A.; Viana, A.; Matias, L.; Moulin, M.; Aslanian, D.; Vinicius Aparecido Gomes de Lima, M.; Morvan, L.; Mazé, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Barros Junior, P.; Biari, Y.; Corela, C.; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Le Piver, D.; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.; Salsa Team
2018-07-01
Twelve combined wide-angle refraction and coincident multi-channel seismic profiles were acquired in the Jequitinhonha-Camamu-Almada, Jacuípe, and Sergipe-Alagoas basins, NE Brazil, during the SALSA experiment in 2014. Profiles SL11 and SL12 image the Jequitinhonha basin, perpendicularly to the coast, with 15 and 11 four-channel ocean-bottom seismometers, respectively. Profile SL10 runs parallel to the coast, crossing profiles SL11 and SL12, imaging the proximal Jequitinhonha and Almada basins with 17 ocean-bottom seismometers. Forward modelling, combined with pre-stack depth migration to increase the horizontal resolution of the velocity models, indicates that sediment thickness varies between 3.3 km and 6.2 km in the distal basin. Crustal thickness at the western edge of the profiles is of around 20 km, with velocity gradients indicating a continental origin. It decreases to less than 5 km in the distal basin, with high seismic velocities and gradients, not compatible with normal oceanic crust nor exhumed upper mantle. Typical oceanic crust is never imaged along these about 200 km-long profiles and we propose that the transitional crust in the Jequitinhonha basin is a made of exhumed lower continental crust.
Method of lining a vertical mine shaft with concrete
Eklund, James D.; Halter, Joseph M.; Rasmussen, Donald E.; Sullivan, Robert G.; Moffat, Robert B.
1981-01-01
The apparatus includes a cylindrical retainer form spaced inwardly of the wall of the shaft by the desired thickness of the liner to be poured and having overlapping edges which seal against concrete flow but permit the form to be contracted to a smaller circumference after the liner has hardened and is self-supporting. A curb ring extends downwardly and outwardly toward the shaft wall from the bottom of the retainer form to define the bottom surface of each poured liner section. An inflatable toroid forms a seal between the curb ring and the shaft wall. A form support gripper ring having gripper shoes laterally extendable under hydraulic power to engage the shaft wall supports the retainer form, curb ring and liner until the newly poured liner section becomes self-supporting. Adjusting hydraulic cylinders permit the curb ring and retainer form to be properly aligned relative to the form support gripper ring. After a liner section is self-supporting, an advancing system advances the retainer form, curb ring and form support gripper ring toward a shaft boring machine above which the liner is being formed. The advancing system also provides correct horizontal alignment of the form support gripper ring.
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture.
Kim, Hyun You; Hybertsen, Mark S; Liu, Ping
2017-01-11
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. Here, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, we are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. The ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.
Small-scale lacustrine drifts in Lake Champlain, Vermont
Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas
2012-01-01
High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.
Aging and Developmental Disabilities. Feature Issue.
ERIC Educational Resources Information Center
Anderson, Deborah, Ed.; And Others
1993-01-01
This feature issue of a bulletin on community integration points out the challenge of making service systems more familiar with and responsive to the needs of older adults with developmental disabilities and their families. It includes articles with the following titles and authors: "Living on the Edge" (Arthur Campbell, Jr.); "Aging and…
ERIC Educational Resources Information Center
Criswell, Chad
2012-01-01
There was a time, not so long ago, when having a website for a teacher's music program was considered cutting-edge. But today, over 40 years after the birth of the Internet, everyone lives in an age of instant information. New online services and Internet technologies have changed more than just the interaction between teacher, student, and…
USDA-ARS?s Scientific Manuscript database
Swarming motility is a flagella-driven multicellular behavior that allows bacteria to colonize new niches and escape competition. Here, we investigated the spatial distribution and evolution of ‘social cheaters’ in swarming colonies of Pseudomonas protegens Pf-5. Lipopeptide surfactants in the orfam...
ERIC Educational Resources Information Center
Kinloch, Valerie, Ed.
2011-01-01
Urban Literacies showcases cutting-edge perspectives on urban education and language and literacy by respected junior and senior scholars, researchers, and teacher educators. The authors explore--through various theoretical orientations and diverse methodologies--meanings of urban education in the lives of students and their families across three…
NASA Astrophysics Data System (ADS)
Dickson, Mark E.; Pentney, Rachael
2012-05-01
Few high-resolution measurements of process-form interactions have been taken on rock coasts, but recent studies in California have shown that portable seismometers enable useful proxy measurements of wave-energy delivery to cliffs. Here we describe measurements over 20 days of high frequency ground motion of cliffs formed in sedimentary (flysch) rocks at Okakari Point, north of Auckland, New Zealand. Three sensors were located in a shore-normal array inland from the cliff top and a fourth sensor was bolted to a ledge 2 m above the cliff toe. The nearshore wave field in front of the cliff and shore platform was monitored using a shore-normal array of 5 wave gauges. The instrumentation provided measurements of wave-energy delivery and consequent ground motion, including the first observations of motion at the top and bottom of cliffs. Results showed that horizontal ground motion is dominant at the cliff top, whereas vertical motion is dominant at the cliff toe. Power spectra show that several high frequency peaks occur in data from the cliff toe, whereas a single, broader peak frequency occurs at the cliff top resulting from signal modification as seismic waves pass through tens of metres of cliff rock. A 100 m wide shore platform at the cliff toe fundamentally controls the patterns of observed energy delivery. The shore platform is nearly horizontal, elevated close to high water level, and abruptly plunges into water > 10 m deep at its seaward edge. As expected, the magnitude of ground motion at all sensors is greatest during larger waves. Measurements further show that ground motion, both at the bottom and top of the cliff, is strongest at low tide and weakest at high tide. This observation is opposite to that noted at Santa Cruz, where ground motion was greatest at high tide. At Okakari Point the most significant high frequency ground motions occur at low tide when waves are forced to break (sometimes violently) against the seaward edge of the shore platform. Four distinctive frequency peaks between 1 and 50 Hz increase in magnitude as tidal stage drops, implying that wave breaking against the outside edge of the shore platform represents an important source of vibration. A detailed understanding of the energy source (e.g. short duration shock pressures) and rock resonance is not provided by this study. However, quantifying the spatial and temporal patterns of energy delivery places strong emphasis on the important role of shore platform geometry in filtering wave-energy delivery to the cliff. During the 20-day experiment most wave energy was delivered to the outside edge of the shore platform, not the cliff toe. The geomorphic role of high-frequency shaking from wave impacts remains to be clearly demonstrated, but if wave impacts are capable of eroding rock then the data from this study imply that under present conditions the outside edge of the shore platform may be subject to higher erosion rates than the cliff toe. It is possible that the shore platform is currently being destroyed rather than created, but a longer programme of measurements is required to test this notion.
Convective patterns under the Indo-Atlantic << box >> [rapid communication
NASA Astrophysics Data System (ADS)
Davaille, Anne; Stutzmann, Eléonore; Silveira, Graça; Besse, Jean; Courtillot, Vincent
2005-11-01
Using fluid mechanics, we reinterpret the mantle images obtained from global and regional tomography together with geochemical, geological and paleomagnetic observations, and attempt to unravel the pattern of convection in the Indo-Atlantic "box" and its temporal evolution over the last 260 Myr. The « box » presently contains a) a broad slow seismic anomaly at the CMB which has a shape similar to Pangea 250 Myr ago, and which divides into several branches higher in the lower mantle, b) a "superswell" centered on the western edge of South Africa, c) at least 6 "primary hotspots" with long tracks related to traps, and d) numerous smaller hotspots. In the last 260 Myr, this mantle box has undergone 10 trap events, 7 of them related to continental breakup. Several of these past events are spatially correlated with present-day seismic anomalies and/or upwellings. Laboratory experiments show that superswells, long-lived hotspot tracks and traps may represent three evolutionary stages of the same phenomenon, i.e. episodic destabilization of a hot, chemically heterogeneous thermal boundary layer, close to the bottom of the mantle. When scaled to the Earth's mantle, its recurrence time is on the order of 100-200 Myr. At any given time, the Indo-Atlantic box should contain 3 to 9 of these instabilities at different stages of their development, in agreement with observations. The return flow of the downwelling slabs, although confined to two main « boxes » (Indo-Atlantic and Pacific) by subduction zone geometry, may therefore not be passive, but rather take the form of active thermochemical instabilities.
NASA Astrophysics Data System (ADS)
Cartes, J. E.; Fanelli, E.; López-Pérez, C.; Lebrato, M.
2013-03-01
Changes in the composition and biomass distribution of deep-living zooplankton over wide gradients of depth (400-2300 m) and longitude (~ 180 km) have been analyzed in the Balearic Basin (western Mediterranean), seeking the environmental variables responsible for these changes. Zooplankton tends to aggregate at different levels of the water column (forming Deep Scattering Layers, DSL) and in the Benthic Boundary Layer (BBL). Macrozooplankton biomass and composition were analyzed along a transect performed in July 2010 in midwater (between ~ 350 and 450 m) and near the bottom (at ~ 5-200 mab), over soundings of 450-2263 m, including the top of Valencia Seamount (at ~ 40° 25' N-02° 42' E, 1076 m). Zooplankton changed significantly in composition at the mesoscale (~ 180 km) in both the DSL and the BBL. Siphonophores and calanoid copepods were the most dominant deep zooplankton taxa, calanoids reaching higher abundance in the BBL (1761-5177 individuals/1000 m3) than in the DSL (1568-1743 individuals/1000 m3). There was a significant increase in near-bottom zooplankton biomass over the middle slope, at 1000-1300 m, linked to an increase in scyphozoans and siphonophores (Lensia spp. and Abylopsis tetragona) with peaks of 1.5-2.0 gWW/1000 m3. The peak of near-bottom zooplankton at 1000-1300 m coincided with the lowest temperatures (13.08 °C) and maximum O2 concentration (4.40 ml/l) near the bottom and below 1000 m with higher records in near-bottom turbidity. Gelatinous zooplankton are the main prey in the diet of the demersal fish Alepocephalus rostratus in the western Mediterranean, fish responsible for the peak of megafauna biomass reported at around 1200-1400 m in the deep Mediterranean and at similar depths in other oceanic areas (e.g. the NW Atlantic). We suggest that deep-sea environmental conditions can govern peaks of near-bottom zooplankton, as well as influence the structure of the demersal fish community.
NASA Astrophysics Data System (ADS)
Erdem, Z.; Schönfeld, J.; Glock, N.
2015-12-01
Benthic foraminifera have been used as proxies for the prevailing conditions at the sediment-water interface. Their distribution patterns are thought to facilitate reconstruction of past environmental conditions. Variations of bottom water oxygenation can be traced by the downcore distribution of benthic foraminifera and some of their morphological characters. Being one of the strongest and most pronounced OMZs in today's world oceans, the Peruvian OMZ is a key area to study such variations in relation with changing climate. Spatial changes or an extension of the OMZ through time and space are investigated using sediment cores from the lower OMZ boundary. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum (LGM) to investigate changes in bottom-water oxygen and redox conditions. The recent distributions of benthic foraminiferal assemblages provide background data for an interpretation of the past conditions. Living benthic foraminiferal faunas from the Peruvian margin are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations and a decreasing trend in bottom water oxygen conditions since the LGM. In addition, changes in bottom-water oxygen and nitrate concentrations are reconstructed for the same time intervals by the pore density in tests of Planulina limbata and Bolivina spissa (Glock et al., 2011), respectively. The pore densities also indicate a trend of higher oxygen and nitrate concentrations in the LGM compared to the Holocene. Combination of both proxies provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin. Glock et al., 2011: Environmental influences on the pore density of Bolivina spissa (Cushman), Journal of Foraminiferal Research, v. 41, no. 1, p. 22-32. Mallon et al., 2012: The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone, in ANOXIA, pp.305-322.
Water reservoir maintained by cell growth fuels the spreading of a bacterial swarm
Wu, Yilin; Berg, Howard C.
2012-01-01
Flagellated bacteria can swim across moist surfaces within a thin layer of fluid, a means for surface colonization known as swarming. This fluid spreads with the swarm, but how it does so is unclear. We used micron-sized air bubbles to study the motion of this fluid within swarms of Escherichia coli. The bubbles moved diffusively, with drift. Bubbles starting at the swarm edge drifted inward for the first 5 s and then moved outward. Bubbles starting 30 μm from the swarm edge moved inward for the first 20 s, wandered around in place for the next 40 s, and then moved outward. Bubbles starting at 200 or 300 μm from the edge moved outward or wandered around in place, respectively. So the general trend was inward near the outer edge of the swarm and outward farther inside, with flows converging on a region about 100 μm from the swarm edge. We measured cellular metabolic activities with cells expressing a short-lived GFP and cell densities with cells labeled with a membrane fluorescent dye. The fluorescence plots were similar, with peaks about 80 μm from the swarm edge and slopes that mimicked the particle drift rates. These plots suggest that net fluid flow is driven by cell growth. Fluid depth is largest in the multilayered region between approximately 30 and 200 μm from the swarm edge, where fluid agitation is more vigorous. This water reservoir travels with the swarm, fueling its spreading. Intercellular communication is not required; cells need only grow. PMID:22371567
Water reservoir maintained by cell growth fuels the spreading of a bacterial swarm.
Wu, Yilin; Berg, Howard C
2012-03-13
Flagellated bacteria can swim across moist surfaces within a thin layer of fluid, a means for surface colonization known as swarming. This fluid spreads with the swarm, but how it does so is unclear. We used micron-sized air bubbles to study the motion of this fluid within swarms of Escherichia coli. The bubbles moved diffusively, with drift. Bubbles starting at the swarm edge drifted inward for the first 5 s and then moved outward. Bubbles starting 30 μm from the swarm edge moved inward for the first 20 s, wandered around in place for the next 40 s, and then moved outward. Bubbles starting at 200 or 300 μm from the edge moved outward or wandered around in place, respectively. So the general trend was inward near the outer edge of the swarm and outward farther inside, with flows converging on a region about 100 μm from the swarm edge. We measured cellular metabolic activities with cells expressing a short-lived GFP and cell densities with cells labeled with a membrane fluorescent dye. The fluorescence plots were similar, with peaks about 80 μm from the swarm edge and slopes that mimicked the particle drift rates. These plots suggest that net fluid flow is driven by cell growth. Fluid depth is largest in the multilayered region between approximately 30 and 200 μm from the swarm edge, where fluid agitation is more vigorous. This water reservoir travels with the swarm, fueling its spreading. Intercellular communication is not required; cells need only grow.
Design of a backlighting structure for very large-area luminaries
NASA Astrophysics Data System (ADS)
Carraro, L.; Mäyrä, A.; Simonetta, M.; Benetti, G.; Tramonte, A.; Benedetti, M.; Randone, E. M.; Ylisaukko-Oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.
2017-02-01
A novel approach for RGB semiconductor LED-based backlighting system is developed to satisfy the requirements of the Project LUMENTILE funded by the European Commission, whose scope is to develop a luminous electronic tile that is foreseen to be manufactured in millions of square meters each year. This unconventionally large-area surface of uniform, high-brightness illumination requires a specific optical design to keep a low production cost, while maintaining high optical extraction efficiency and a reduced thickness of the structure, as imposed by architectural design constraints. The proposed solution is based on a light-guiding layer to be illuminated by LEDs in edge configuration, or in a planar arrangement. The light guiding slab is finished with a reflective top interface and a diffusive or reflective bottom interface/layer. Patterning is used for both the top interface (punctual removal of reflection and generation of a light scattering centers) and for the bottom layer (using dark/bright printed pattern). Computer-based optimization algorithms based on ray-tracing are used to find optimal solutions in terms of uniformity of illumination of the top surface and overall light extraction efficiency. Through a closed-loop optimization process, that assesses the illumination uniformity of the top surface, the algorithm generates the desired optimized top and bottom patterns, depending on the number of LED sources used, their geometry, and the thickness of the guiding layer. Specific low-cost technologies to realize the patterning are discussed, with the goal of keeping the production cost of these very large-area luminaries below the value of 100$/sqm.
Response of amphipod assemblages to desalination brine discharge: Impact and recovery
NASA Astrophysics Data System (ADS)
de-la-Ossa-Carretero, J. A.; Del-Pilar-Ruso, Y.; Loya-Fernández, A.; Ferrero-Vicente, L. M.; Marco-Méndez, C.; Martinez-Garcia, E.; Sánchez-Lizaso, J. L.
2016-04-01
Desalination has become an important industry whose dense, high-salinity effluent has an impact on marine communities. Without adequate dilution, brine remains on the bottom increasing bottom salinity and affecting benthic communities. Amphipods showed high sensitivity to increased salinity produced by desalination brine discharge. A decrease in abundance and diversity of amphipods was detected at the station closest to the outfall, where salinity values reached 53. This salinity was later reduced by including a diffuser at the end of the pipeline. Six months after diffuser installation, amphipod abundance increased. During the first stage of this recovery, species such as Photis longipes recovered their abundance, others such as Microdeutopus versiculatus displayed opportunistic patterns, while others needed more time for recovery, e.g. Harpinia pectinata. These differences may be dependent on the organism living habits.
ERIC Educational Resources Information Center
Goens, George A.
2011-01-01
People live in two worlds. The first is the external world of competition, ego, ambition and power. Here they chase the brass ring of success through control and standardized procedures designed to stave off failure. In this context, leaders face politics, conflicting expectations and bottom-line metrics. But in quiet moments of solitude, these…
The day of reckoning: Does human ultrasociality continue?
Ristau, Carolyn A
2016-01-01
To counter human ultrasociality, alternative communities can arise (ongoing), and, unlike insects, lower echelons can unite and rebel. Examples include movements such as: "Black Lives Matter," "Fight for $15," "Occupy," and the "Village Movement." To strengthen ultrasociality, a surplus bottom echelon can be reduced: for example, by means such as imprisoning Blacks, deporting immigrants, wars, and the Holocaust. Alternatively, a new structure could be created, for example, ISIL (even more ultrasocial?).
NASA Technical Reports Server (NTRS)
2002-01-01
Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Insurgency in Greater Baluchistan: A CNA Small Group Discussion, March 29, 2013
2013-06-01
Insurgency in Greater Baluchistan A CNA Small Group Discussion March 29, 2013 Cleared for public release DCP-2013-U-004988-Final... Baluchistan , one of the most remote and least developed areas of southwest Asia, stretches north from Karachi in Pakistan, along the arid and... Baluchistan and the implications for U.S. interests and regional stability. Bottom line up front Successive generations of ethnic Baluch living along
Orihuela, Gabriela; Terborgh, John; Ceballos, Natalia; Glander, Kenneth
2014-01-01
Predators are a ubiquitous presence in most natural environments. Opportunities to contrast the behaviour of a species in the presence and absence of predators are thus rare. Here we report on the behaviour of howler monkey groups living under radically different conditions on two land-bridge islands in Lago Guri, Venezuela. One group of 6 adults inhabited a 190-ha island (Danto) where they were exposed to multiple potential predators. This group, the control, occupied a home range of 23 ha and contested access to food resources with neighbouring groups in typical fashion. The second group, containing 6 adults, was isolated on a remote, predator-free 0.6 ha islet (Iguana) offering limited food resources. Howlers living on the large island moved, fed and rested in a coherent group, frequently engaged in affiliative activities, rarely displayed agonistic behaviour and maintained intergroup spacing through howling. In contrast, the howlers on Iguana showed repulsion, as individuals spent most of their time spaced widely around the perimeter of the island. Iguana howlers rarely engaged in affiliative behaviour, often chased or fought with one another and were not observed to howl. These behaviors are interpreted as adjustments to the unrelenting deprivation associated with bottom-up limitation in a predator-free environment.
Control of intracellular ionic concentrations by mid-infrared laser irradiation
NASA Astrophysics Data System (ADS)
Takebe, G.; Yamauchi, T.; Shimizu, Y.; Dougakiuchi, T.
2018-02-01
We successfully induced intracellular ion concentration changes in live culture cells using mid-infrared laser irradiation. The laser used for irradiation was a quantum cascade laser with a wavelength of 6.1 micrometers. We tuned the power of the laser to be between 30 to 60 mW at the sample. Cell lines, namely HeLa and Chinese hamster ovary cell lines, were used. They were cultured on specially fabricated silicon-bottom dishes. Live cells were stained using ion-sensitive dyes such as Calcium Green-1. The mid-infrared light was incident on the cell samples from the bottom of the dish through the silicon plate, and fluorescence imaging of the ion concentrations was performed using an upright fluorescence microscope placed on top of the sample stage. The mid-infrared lasers were operated in the continuous wave mode and light irradiations onto the cells were temporally controlled using a mechanical shutter in a periodical on-and-off pattern in the second timescale. The cells showed oscillations in their ionic concentration, which was synchronized with the periodical mid-infrared irradiation, and the threshold power needed for evoking the ion concentration change was dependent on the cell types and ion species. These results demonstrated that mid-infrared light directly changed the ionic response within cells and had the ability to change cell functions.
Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy.
NASA Astrophysics Data System (ADS)
Clemence, Caulle; Meryem, Mojtahid; Karoliina, Koho; Andy, Gooday; Gert-Jan, Reichart; Gerhard, Schmiedl; Frans, Jorissen
2014-05-01
Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy. C. Caulle1, M. Mojtahid1, K. Koho2,3, A. Gooday4, G. J. Reichart2,3, G. Schmiedl5, F. Jorissen1 1UMR CNRS 6112 LPG-BIAF, University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 2Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 3Royal Netherland Institute for Sea Research (Royal NIOZ), Landsdiep 4, 1797 SZ 't Horntje (Texel) 4Southampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, UK 5Department of Geosciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany The thermohaline circulation oxygenates the deep ocean sediment and therefore enables aerobic life on the sea-floor. In the past, interruption of this deep water formation occurred several times causing hypoxic to anoxic conditions on the sea-floor leading to major ecological turnover. A better understanding of the interaction between climate and bottom water oxygenation is therefore essential in order to predict future oceanic responses. Presently, permanent (stable over decadal timescale) low-oxygen conditions occur naturally at mid-water depths in the northern Indian Ocean (Arabian Sea). Oxygen Minimum Zones (OMZ) are key areas to understand the hypoxic-anoxic events and their impact on the benthic ecosystem. In this context, a good knowledge of the ecology and life cycle adaptations of the benthic foraminiferal assemblages living in these low oxygen areas is essential. A series of multicores were recovered from three transects showing an oxygen gradient across the OMZ: the Murray Ridge, the Oman margin and the Indian margin. The stations located at the same depths showed slightly different oxygen concentrations and large differences in organic matter content. These differences are mainly related to the geographic location in the Arabian Sea. We investigated at these stations live and dead benthic foraminiferal faunas. At each location, faunal diversity seems to be controlled by bottom-water oxygen content; limited diversity corresponding to low oxygen content. Foraminiferal abundances reflect organic matter quantity and quality; higher organic matter quality and quantity are related to higher foraminiferal abundances. When comparing the three study areas, similar foraminiferal species (live and dead) are observed suggesting that benthic foraminifera from the Arabian Sea predominantly respond to bottom-water oxygenation. Based on these observations, we aim to develop a paleo-oxygenation proxy based on live, dead and fossil faunas resulting from both our study and previous studies in the Arabian Sea.
A top-down approach for approximate data anonymisation
NASA Astrophysics Data System (ADS)
Li, JianQiang; Yang, Ji-Jiang; Zhao, Yu; Liu, Bo
2013-08-01
Data sharing in today's information society poses a threat to individual privacy and organisational confidentiality. k-anonymity is a widely adopted model to prevent the owner of a record being re-identified. By generalising and/or suppressing certain portions of the released dataset, it guarantees that no records can be uniquely distinguished from at least other k-1 records. A key requirement for the k-anonymity problem is to minimise the information loss resulting from data modifications. This article proposes a top-down approach to solve this problem. It first considers each record as a vertex and the similarity between two records as the edge weight to construct a complete weighted graph. Then, an edge cutting algorithm is designed to divide the complete graph into multiple trees/components. The Large Components with size bigger than 2k-1 are subsequently split to guarantee that each resulting component has the vertex number between k and 2k-1. Finally, the generalisation operation is applied on the vertices in each component (i.e. equivalence class) to make sure all the records inside have identical quasi-identifier values. We prove that the proposed approach has polynomial running time and theoretical performance guarantee O(k). The empirical experiments show that our approach results in substantial improvements over the baseline heuristic algorithms, as well as the bottom-up approach with the same approximate bound O(k). Comparing to the baseline bottom-up O(logk)-approximation algorithm, when the required k is smaller than 50, the adopted top-down strategy makes our approach achieve similar performance in terms of information loss while spending much less computing time. It demonstrates that our approach would be a best choice for the k-anonymity problem when both the data utility and runtime need to be considered, especially when k is set to certain value smaller than 50 and the record set is big enough to make the runtime have to be taken into account.
Deng, Wenping; Zhang, Kui; Busov, Victor; Wei, Hairong
2017-01-01
Present knowledge indicates a multilayered hierarchical gene regulatory network (ML-hGRN) often operates above a biological pathway. Although the ML-hGRN is very important for understanding how a pathway is regulated, there is almost no computational algorithm for directly constructing ML-hGRNs. A backward elimination random forest (BWERF) algorithm was developed for constructing the ML-hGRN operating above a biological pathway. For each pathway gene, the BWERF used a random forest model to calculate the importance values of all transcription factors (TFs) to this pathway gene recursively with a portion (e.g. 1/10) of least important TFs being excluded in each round of modeling, during which, the importance values of all TFs to the pathway gene were updated and ranked until only one TF was remained in the list. The above procedure, termed BWERF. After that, the importance values of a TF to all pathway genes were aggregated and fitted to a Gaussian mixture model to determine the TF retention for the regulatory layer immediately above the pathway layer. The acquired TFs at the secondary layer were then set to be the new bottom layer to infer the next upper layer, and this process was repeated until a ML-hGRN with the expected layers was obtained. BWERF improved the accuracy for constructing ML-hGRNs because it used backward elimination to exclude the noise genes, and aggregated the individual importance values for determining the TFs retention. We validated the BWERF by using it for constructing ML-hGRNs operating above mouse pluripotency maintenance pathway and Arabidopsis lignocellulosic pathway. Compared to GENIE3, BWERF showed an improvement in recognizing authentic TFs regulating a pathway. Compared to the bottom-up Gaussian graphical model algorithm we developed for constructing ML-hGRNs, the BWERF can construct ML-hGRNs with significantly reduced edges that enable biologists to choose the implicit edges for experimental validation.
Inner Milky Way Raging with Star Formation
NASA Technical Reports Server (NTRS)
2008-01-01
More than 444,580 frames from NASA's Spitzer Space Telescope were stitched together to create this portrait of the raging star-formation occurring in the inner Milky Way. As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane. In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). Together, these panels represent more than 50 percent of our entire Milky Way galaxy. The red haze that permeates the picture comes from organic molecules called polycyclic aromatic hydrocarbons, which are illuminated by light from massive baby stars. On Earth, these molecules are found in automobile exhaust, or charred barbeque grills anywhere carbon molecules are burned incompletely. The patches of black are dense, obscuring dust clouds impenetrable by even Spitzer's super-sensitive infrared eyes. Bright arcs of white throughout the image are massive stellar incubators. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy. This picture was taken with Spitzer's infrared array camera, as part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. This is a four-color composite where blue is 3.6-micron light, green is 4.5 microns, orange is 5.8 microns and red is 8.0 microns.Oberle, Ferdinand; Puig, Pere; Martin, Jacobo; Micallef, Aaron; Krastel, Sebastian; Savini, Alessandra
2018-01-01
Unlike the major anthropogenic changes that terrestrial and coastal habitats underwent during the last centuries such as deforestation, river engineering, agricultural practices or urbanism, those occurring underwater are veiled from our eyes and have continued nearly unnoticed. Only recent advances in remote sensing and deep marine sampling technologies have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention among the scientific community, policy makers and the general public due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.
Jothi, Raja; Balaji, S; Wuster, Arthur; Grochow, Joshua A; Gsponer, Jörg; Przytycka, Teresa M; Aravind, L; Babu, M Madan
2009-01-01
Although several studies have provided important insights into the general principles of biological networks, the link between network organization and the genome-scale dynamics of the underlying entities (genes, mRNAs, and proteins) and its role in systems behavior remain unclear. Here we show that transcription factor (TF) dynamics and regulatory network organization are tightly linked. By classifying TFs in the yeast regulatory network into three hierarchical layers (top, core, and bottom) and integrating diverse genome-scale datasets, we find that the TFs have static and dynamic properties that are similar within a layer and different across layers. At the protein level, the top-layer TFs are relatively abundant, long-lived, and noisy compared with the core- and bottom-layer TFs. Although variability in expression of top-layer TFs might confer a selective advantage, as this permits at least some members in a clonal cell population to initiate a response to changing conditions, tight regulation of the core- and bottom-layer TFs may minimize noise propagation and ensure fidelity in regulation. We propose that the interplay between network organization and TF dynamics could permit differential utilization of the same underlying network by distinct members of a clonal cell population.
HUBBLE VIEWS OF THREE STELLAR JETS
NASA Technical Reports Server (NTRS)
2002-01-01
These NASA Hubble Space Telescope views of gaseous jets from three newly forming stars show a new level of detail in the star formation process, and are helping to solve decade-old questions about the secrets of star birth. Jets are a common 'exhaust product' of the dynamics of star formation. They are blasted away from a disk of gas and dust falling onto an embryonic star. [upper left] - This view of a protostellar object called HH-30 reveals an edge-on disk of dust encircling a newly forming star. Light from the forming star illuminates the top and bottom surfaces of the disk, making them visible, while the star itself is hidden behind the densest parts of the disk. The reddish jet emanates from the inner region of the disk, and possibly directly from the star itself. Hubble's detailed view shows, for the first time, that the jet expands for several billion miles from the star, but then stays confined to a narrow beam. The protostar is 450 light-years away in the constellation Taurus. Credit: C. Burrows (STScI and ESA), the WFPC 2 Investigation Definition Team, and NASA [upper right] - This view of a different and more distant jet in object HH-34 shows a remarkable beaded structure. Once thought to be a hydrodynamic effect (similar to shock diamonds in a jet aircraft exhaust), this structure is actually produced by a machine-gun-like blast of 'bullets' of dense gas ejected from the star at speeds of one-half million miles per hour. This structure suggests the star goes through episodic 'fits' of construction where chunks of material fall onto the star from a surrounding disk. The protostar is 1,500 light- years away and in the vicinity of the Orion Nebula, a nearby star birth region. Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition Team, and NASA [bottom] - This view of a three trillion mile-long jet called HH-47 reveals a very complicated jet pattern that indicates the star (hidden inside a dust cloud near the left edge of the image) might be wobbling, possibly caused by the gravitational pull of a companion star. Hubble's detailed view shows that the jet has burrowed a cavity through the dense gas cloud and now travels at high speed into interstellar space. Shock waves form when the jet collides with interstellar gas, causing the jet to glow. The white filaments on the left reflect light from the obscured newborn star. The HH-47 system is 1,500 light-years away, and lies at the edge of the Gum Nebula, possibly an ancient supernova remnant which can be seen from Earth's southern hemisphere. Credit: J. Morse/STScI, and NASA The scale in the bottom left corner of each picture represents 93 billion miles, or 1,000 times the distance between Earth and the Sun. All images were taken with the Wide Field Planetary Camera 2 in visible light. The HH designation stands for 'Herbig-Haro' object -- the name for bright patches of nebulosity which appear to be moving away from associated protostars.
Very large dune formation along the Ebro outer continental shelf (Western Mediterranean)
NASA Astrophysics Data System (ADS)
Lo Iacono, Claudio; Guillén, Jorge; Puig, Pere; Ribó, Marta; Ballesteros, Maria; Palanques, Albert; Farrán, Marcelli; Acosta, Juan
2010-05-01
Large and very large subaqueous dunes have been observed in a number of outer shelf regions around the world, tipically developing on fossil sand bodies and ridges. Dunes observed on outer shelves usually display large dimensions with maximum wavelength reaching up to 500 m and heights up to 20 m. Forcing mechanisms able to induce their formation have been described as strong bottom currents related to tidal variations and water masses flowing under geostrophic conditions, generally controlled and enhanced by local geomorphologic configurations. In this study, such bed features have been recognized, mapped and measured around the Columbretes Islands (Ebro continental shelf - Western Mediterranean) with the aim to reconstruct which are the potential forcing processes that could generate them in relation to the local settings of the area. Swath-bathymetry around the Columbretes Islands was collected using 30 kHz and 180 kHz Multi Beam echo-sounders for a 50-400 m water depth range. Bathymetric data revealed the presence of three main relict sand bodies along the outer shelf, for a 80-116 m depth range, above which asymmetrical, slightly asymmetrical and symmetrical large and very large 2D and 3D subaqueous dunes were observed. Dunes range from 150 to 760 m in wavelength and from tens of cm to 6 m in height. These bedforms are composed of sandy sediments, presumably coming from the degraded relict sand bodies on which they developed, mixed to the fine fractions coming from the recent draping holocenic sediments. The orientation of the dunes is SSW and progressively turns to W directions moving towards the southernmost sector of the area, following the trend of the shelf-edge. Observed dunes display a strong asymmetric profile for those occurring along the shelf-edge (Symmetry Index (SI): 2.6) and lose progressively their asymmetry towards the inner portion of the shelf (SI: 0.5), being 0.6 the minimum SI value to classify the dunes as asymmetric. The subaqueous dunes observed along the studied region are amongst the largest ever recognized on an outer shelf setting. Morphologic characters and the orientation towards SW and W directions suggest the Liguro-Provenzal-Catalan geostrophic current as the primary forcing factor in their formation. Contemporary hydrodynamic measurement at the Ebro continental shelf-edge show that near-bottom wave action is negligible in this area, whereas maximum shear stresses induced by currents are able to resuspend fine sand particles and prevent the relict transgressive deposits from being covered by mud. However, recorded nearbottom currents generate shear stresses below the critical value for transport the relict coarse sands found in the study area and form large bedforms. The comparison of successive bathymetric images and the relation wavelength/height suggest that the described very large dunes are inactive features over long periods, as observed in similar environments along several continental margins. Thus, the morphological configuration of the Columbretes outer shelf must have played a crucial role in enhancing the southward flowing bottom currents during energetic hydrodynamic events, giving them the potential to generate such bedforms.
Worker Training: Competing in the New International Economy.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
Workers' skills are critical to U.S. industrial productivity and competitiveness and to maintaining living standards. Training is the key. Good training pays--for workers whose skills are upgraded, for companies seeking a competitive edge, and for the nation in overall productivity. However, workers in other countries are better trained than most…
Your Competitive Edge: The Art of Interpersonal Communication
ERIC Educational Resources Information Center
Montgomery, Judy K.
2006-01-01
In our professional lives in schools, hospitals, private practices, and universities, speech-language pathologists often pride ourselves on being communication experts--but are we? We may know how to diagnose and treat a wide range of communication disabilities, but can we effectively get our message across to our colleagues and families? Raymond…
Greystone: A Family Lives Here
ERIC Educational Resources Information Center
Education Canada, 2009
2009-01-01
This article features Greystone Centennial Middle School, one of two middle schools in Parkland School Division, on the western edge of Edmonton, Alberta. About 500 students attend the school, which encompasses Grades 5-9. It's organized into two "loops": (1) a three-year loop (Grades 5-7); and (2) a two-year loop (Grades 8 and 9). The…
Organizational Change at the Edge of Chaos: A Complexity Theory Perspective of Autopoietic Systems
ERIC Educational Resources Information Center
Susini, Domenico, III.
2010-01-01
This qualitative phenomenological study includes explorations of organizational change phenomena from the vantage point of complexity theory as experienced through the lived experiences of eight senior level managers and executives based in Northern N.J. who have experienced crisis situations in their organizations. Concepts from the natural…
An International Inquiry: Stories of Poverty--Poverty Stories
ERIC Educational Resources Information Center
Ciuffetelli Parker, Darlene; Craig, Cheryl J.
2017-01-01
This article features an international inquiry of two high-poverty urban schools, one Canadian and one American. The article examines poverty in terms of "small stories" that educators and students live and tell, often on the edges, unheard and unaccounted for in grand narratives. It also expands the story constellations approach to…
Folded inflatable protective device and method for making same
Behr, V.L.; Nelsen, J.M.; Gwinn, K.W.
1998-10-20
An apparatus and method are disclosed for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line. 22 figs.
Folded inflatable protective device and method for making same
Behr, Vance L.; Nelsen, James M.; Gwinn, Kenneth W.
1998-01-01
An apparatus and method for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line.
Computer design synthesis of a below knee-Syme prosthesis
NASA Technical Reports Server (NTRS)
Elangovan, P. T.; Ghista, D. N.; Alwar, R. S.
1979-01-01
A detailed design synthesis analysis of the BK Syme prosthesis is provided, to determine the socket's cutout orientation size and shape, cutout fillet shape, socket wall thickness distribution and the reinforced fiber distribution in the socket wall, for a minimally stressed structurally safe lightweight prosthesis. For analysis purposes, the most adverse socket loading is obtained at the push-off stage of gait; this loading is idealized as an axial in-plane loading on the bottom edge of the circular cylindrical socket shell whose top edge is considered fixed. Finite element stress analysis of the socket shell (with uniform and graded wall thickness) are performed for various orientations of the cutout and for various types of corner fillets. A lateral cutout with a streamline fillet is recommended. The wall material (i.e., thickness) distribution is determined so as to minimize the stresses, while ensuring that the wall material's stress limits are not exceeded. For such a maximally stressed lightweight socket shell, the panels in the neighborhood of the cutout are checked to ensure that they do not buckle under their acquired stresses. A fiber-reinforced laminated composite socket shell is also analyzed in order to recommend optimum variables in orientations and densities of reinforcing fibers.
Optimisation of active suspension control inputs for improved vehicle ride performance
NASA Astrophysics Data System (ADS)
Čorić, Mirko; Deur, Joško; Xu, Li; Tseng, H. Eric; Hrovat, Davor
2016-07-01
A collocation-type control variable optimisation method is used in the paper to analyse to which extent the fully active suspension (FAS) can improve the vehicle ride comfort while preserving the wheel holding ability. The method is first applied for a cosine-shaped bump road disturbance of different heights, and for both quarter-car and full 10 degree-of-freedom vehicle models. A nonlinear anti-wheel hop constraint is considered, and the influence of bump preview time period is analysed. The analysis is then extended to the case of square- or cosine-shaped pothole with different lengths, and the quarter-car model. In this case, the cost function is extended with FAS energy consumption and wheel damage resilience costs. The FAS action is found to be such to provide a wheel hop over the pothole, in order to avoid or minimise the damage at the pothole trailing edge. In the case of long pothole, when the FAS cannot provide the wheel hop, the wheel is travelling over the pothole bottom and then hops over the pothole trailing edge. The numerical optimisation results are accompanied by a simplified algebraic analysis.
Spontaneous De-Icing Phenomena on Extremely Cold Surfaces
NASA Astrophysics Data System (ADS)
Song, Dong; Choi, Chang-Hwan
2017-11-01
Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.
Chalk, Annabel; Page, Sean
2016-03-01
There is increasing interest in developing dementia supportive communities world wide. Dementia RED (Respect Empathy Dignity) is a unique example from North Wales which is based on the twin concepts of people living with dementia as citizens in their community and developing 'bottom up' rather than 'top down' approaches to dementia supportive communities. Most people with dementia prefer to live at home thus making community connectivity key to maintaining healthy relationships and wellbeing. For those living with dementia, the community plays a pivotal role in providing value, meaning, purpose and acceptance. Building dementia supportive communities helps to raise awareness about dementia in the community through engagement and from identifying champions in the locality to voice issues. Dementia RED is an initiative and service which helps to develop such a philosophy in creating a dementia supportive community. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adersberger, M.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanisch, S.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2016-09-01
A search for heavy long-lived charged R-hadrons is reported using a data sample corresponding to 3.2 fb-1 of proton-proton collisions at √{ s} = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.
Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska
Reimnitz, E.; Toimil, L.; Barnes, P.
1978-01-01
Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom processes. A proposed ice zonation, including zones of (1) bottom-fast ice, (2) floating fast ice, (3) stamukhi, and (4) seasonal pack ice, emphasizes ice interaction with the shelf surface and differs from previous zonation. Certain aspects of the results reported here are directly applicable to planned offshore developments in the Prudhoe Bay oil field. Properly placed artificial structures similar to offshore shoals should be able to withstand the forces of the ice, serve to modify the observed ice zonation, and might be used to make the environment less hostile to human activities. ?? 1978.
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1972-01-01
Edge and surface modification of niobium alloys prior to coating with Si-20Cr-20Fe and slurry composition modification were investigated to improve performance in a 1370 C, ambient pressure, slow-cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe coated Cb-752 and FS-85 to 57 and 41 cycles, respectively (50 and 20 percent improvements in weight parity life, respectively).
Live Site Demonstrations - Massachusetts Military Reservation
2014-09-26
from the ESTCP. It has three mutually orthogonal transmit loops in the Z, Y , and X directions and contains seven triaxial receiver antennas inside...It has three mutually orthogonal transmit loops in the Z, Y , and X directions and contains seven triaxial receiver antennas inside the Z (bottom...met if the modeled X, Y locations of the IVS seed items are within 15 centimeters (cm) of the actual locations, if the depth (Z direction ) is within
Report to the U.S. Congress on the National Oceanographic Partnership Program
2006-03-01
community types that can be associated with hard bottom in areas that may or may not also be associated with living chemosynthetic megafauna (most all hard...species congregate in areas of the sharpest physical gradients , key forcing mechanisms causing variability in the temporal phasing and distribution of...thoroughly the performance by conducting a demonstration experiment at a field site that has strong vertical and horizontal nutrient gradients and
XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots
NASA Astrophysics Data System (ADS)
Demchenko, I. N.; Chernyshova, M.; He, X.; Minikayev, R.; Syryanyy, Y.; Derkachova, A.; Derkachov, G.; Stolte, W. C.; Piskorska-Hommel, E.; Reszka, A.; Liang, H.
2013-04-01
The presented investigations aimed at development of inexpensive method for synthesized materials suitable for utilization of solar energy. This important issue was addressed by focusing, mainly, on electronic local structure studies with supporting x-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of colloidal galena nano-particles (NPs) and quantum dots (QDs) synthesized using wet chemistry under microwave irradiation. Performed x-ray absorption near edge structure (XANES) analysis revealed an evidence of quantum confinement for the sample with QDs, where the bottom of the conduction band was shifted to higher energy. The QDs were found to be passivated with oxides at the surface. Existence of sulfate/sulfite and thiosulfate species in pure PbS and QDs, respectively, was identified.
January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS
Owen, S.; Segall, P.; Lisowski, M.; Miklius, Asta; Murray, M.; Bevis, M.; Foster, J.
2000-01-01
A continuous Global Positioning System (GPS) network on Kilauea Volcano captured the most recent fissure eruption in Kilauea's East Rift Zone (ERZ) in unprecedented spatial and temporal detail. The short eruption drained the lava pond at Pu'u O' o, leading to a two month long pause in its on-going eruption. Models of the GPS data indicate that the intrusion's bottom edge extended to only 2.4 km. Continuous GPS data reveal rift opening 8 hours prior to the eruption. Absence of precursory summit inflation rules out magma storage overpressurization as the eruption's cause. We infer that stresses in the shallow rift created by the continued deep rift dilation and slip on the south flank decollement caused the rift intrusion.
Multi-layer carbon-based coatings for field emission
Sullivan, John P.; Friedmann, Thomas A.
1998-01-01
A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.
Mexico, Arizona, Gulf of California as seen from Apollo 6 unmanned spacecraft
1968-04-04
AS06-02-1436 (4 April 1968) --- View of the mouth of the Colorado River and the Gulf of California in northwestern Mexico as photographed from the unmanned Apollo 6 (Spacecraft 020/Saturn 502) space mission. Altitude of the spacecraft at the time picture was taken was 120 nautical miles. NORTH IS TOWARD LEFT SIDE OF PICTURE. At bottom edge of photograph is Baja California. In the upper left corner is the Mexican state of Sonora showing the Sonoran Desert and the Pinacate Mountains. This photograph was made three hours and seven minutes after liftoff using Eastman Kodak SO-121 high resolution aerial Ektachrome film (exposure setting was f/5.6 at 1/500 second) in a J.A. Maurer model 2200 camera.
Sétamou, Mamoudou; Bartels, David W
2015-01-01
The spatial niche occupation of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908, was evaluated to determine its field colonization and food resource exploitation strategies in citrus groves. Mature grapefruit and sweet orange groves were surveyed as part of an area-wide program in 2009-2010 to determine D. citri population densities and between-tree distribution. In both cultivars, significantly more psyllids were found on perimeter trees throughout the study period suggesting a strong edge effect in D. citri distribution in the groves. D. citri densities and infestation levels gradually declined from the edge to the center of grove. Higher numbers of D. citri were recorded on trees located on the east and south sides of the groves than those on the west and north sides. Citrus groves located at the outer edge of the study with at least one side non-surrounded to other citrus groves harbored significantly more D. citri than groves located within the block cluster and entirely surrounded by other groves. In detailed field studies during 2012, infestation of D. citri started from border trees in the grove where possibly one generation is completed before inner trees become infested. In addition, psyllid densities decreased significantly with increasing distance from the grove edge. Using the selection index, D citri exhibited a strong niche occupation preference for border trees.
2015-01-01
The spatial niche occupation of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908, was evaluated to determine its field colonization and food resource exploitation strategies in citrus groves. Mature grapefruit and sweet orange groves were surveyed as part of an area-wide program in 2009–2010 to determine D. citri population densities and between-tree distribution. In both cultivars, significantly more psyllids were found on perimeter trees throughout the study period suggesting a strong edge effect in D. citri distribution in the groves. D. citri densities and infestation levels gradually declined from the edge to the center of grove. Higher numbers of D. citri were recorded on trees located on the east and south sides of the groves than those on the west and north sides. Citrus groves located at the outer edge of the study with at least one side non-surrounded to other citrus groves harbored significantly more D. citri than groves located within the block cluster and entirely surrounded by other groves. In detailed field studies during 2012, infestation of D. citri started from border trees in the grove where possibly one generation is completed before inner trees become infested. In addition, psyllid densities decreased significantly with increasing distance from the grove edge. Using the selection index, D citri exhibited a strong niche occupation preference for border trees. PMID:26193111
Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.
2016-01-01
Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-02-10
The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb -1 of data collected in proton–proton collisions at √s=8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio intomore » long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.« less
ERIC Educational Resources Information Center
Roopnarine, Jaipaul L., Ed.; Brown, Janet, Ed.
Little is known about the development and function of families in major Caribbean communities, an area composed of diverse ethnic and political groups, the majority of whom live on the edge of poverty. This edited book provides an interdisciplinary examination of Caribbean families, each chapter detailing studies dealing with family structures and…
The Case for Comparative Institutional Assessment of Higher-Order Thinking Skills
ERIC Educational Resources Information Center
Benjamin, Roger
2008-01-01
Times of threshold change, such as the transformation from the industrial era to the knowledge economy of today, produce pressures to redesign the institutions people live with to respond to, or better, shape this change. In America's knowledge economy, there is broad agreement that the only way to preserve the nation's economic edge will be…
Lifetimes and Legacies: Temporalities of Sociotechnical Change in a Long-Lived System
ERIC Educational Resources Information Center
Cohn, Marisa Leavitt
2013-01-01
In studying technological change, we often seek to understand the dynamics of how technologies and practice shape each other over time, examining sites of innovation, adaptation, and appropriation, of making and re-making systems anew. However less attention has been given to how formerly cutting-edge technologies become old, how people work…
"My Past Is a Double Edge Sword": Temporality and Reflexivity in Mature Learners
ERIC Educational Resources Information Center
Stevenson, Jacqueline; Clegg, Sue
2013-01-01
This paper discusses the ways in which mature students orientate themselves towards the future in making decisions to access higher education (HE). Their narratives connect their past, often difficult, educational and personal lives to their future aspirations and to their current experiences in further education (FE) and HE. The research was part…
Andrew T. Smith; John D. Nagy; Connie Millar
2016-01-01
The behavioral ecology of the American pika (Ochotona princeps) was investigated at a relatively hot south-facing, low-elevation site in the Mono Craters, California, a habitat quite different from the upper montane regions more typically inhabited by this species and where most prior investigations have been conducted. Mono Craters pikas exhibited...
"Living on the Edge": A Case of School Reform Working for Disadvantaged Young Adolescents
ERIC Educational Resources Information Center
Smyth, John; McInerney, Peter
2007-01-01
This paper describes an instance of a disadvantaged (urban) Australian government school that realized it had little alternative but to try new approaches; "old ways" were not working. The paper describes an ensemble of school reform practices, philosophies and strategies that give young adolescents genuine ownership of their learning.…
High Performance Work Organization: Improving Oregon's Competitiveness in the Global Economy.
ERIC Educational Resources Information Center
Lohman, Tami
Because of increasing competition resulting from globalization of the economy, Oregonians have, in the past 8 years, experienced declines in income and standard of living despite the creation of 300,000 new jobs in the state. Many experts have stated that work organization and management style are the key to gaining the competitive edge in an…
Changing Workloads of Primary School Teachers: "I Seem to Live on the Edge of Chaos"
ERIC Educational Resources Information Center
Bridges, Sue; Searle, Annette
2011-01-01
The roles and workloads of teachers have been widely noted as changing considerably over recent decades. In this 2009 replication of a 1992 study, 379 New Zealand primary school educators are surveyed regarding their workloads, how these changed and their perceived sustainability. It investigates how respondents believe that educational reforms…
NASA Astrophysics Data System (ADS)
Langone, Leonardo; Asioli, Alessandra; Tateo, Fabio; Giglio, Federico; Ridente, Domenico; Summa, Vito; Carraro, Anna; Luigia Giannossi, Maria; Piva, Andrea; Trincardi, Fabio
2010-05-01
The Antarctic area produces bottom waters that ventilate the vast majority of the deep basins in the rest of the world ocean. The rate of formation in the source area and the strength of these cold bottom waters are key factors affecting the Global Thermohaline Circulation during modern and past climate conditions. The western Ross Sea is considered a formation site for a particularly salty variety of AABW as well as an important area of off-shelf transfer of water as plumes entraining in Lower CDW and as rapid downhill cascades. The results here presented were obtained within the frame of the PNRA project 4.8. Among the goals of the project, the main is to detect a qualitative signal of possible changes in the rate of bottom water production during the Late Pleistocene-Holocene by integrating data on foraminifera assemblages with sediment geochemistry (bulk mineralogy, Total Organic Carbon, biogenic silica, C and N stable isotopes) and IRD. A gravity core was collected at 2377m water depth off Drygalski Basin on the slope adjacent the western continental shelf of the Ross Sea, along the pathway of bottom water spreading. The chronology is based on the best fitting of twelve control points selected among twenty-two 14C AMS datings performed on the bulk organic carbon and 210Pb excess data. The trend of the parameters allows the following observations: 1) two main intervals (15-10 and 7.5-6 cab kyr BP) mark a subsequent enhanced nutrient supply. Indeed, δ15N variations depend on the utilization degree of nitrates, in turn reflecting productivity/nutrient supply changes. The concurrent increase of OC and biogenic silica suggests an increase of the nutrient availability. As the Upper CDW is a water mass rich in nutrients we interpret these intervals as characterized by a higher efficiency in the Upper CDW upwelling; 2) around 7.5-7kyr BP (part of the Middle Holocene Climatic Optimum) the IRD content drops, suggesting the reduction of iceberg production or a change of the iceberg path. Within this general context, an oscillatory trend is present from 15 kyr BP to present time. Two hypotheses are proposed: a) minima in foraminifera concentrations reflect relatively stronger dissolution, weaker bottom currents (minima in dry density) and lower nutrient supply (lighter values of δ15N). These intervals may reflect a lower rate of bottom water formation; the intervals corresponding to maxima in foraminifers concentration should indicate better preservation, higher benthic productivity and/or better oxygenation at bottom, stronger bottom currents (maxima in dry density) and relatively higher nutrient supply reflecting a relatively higher rate of bottom water formation. b) alternatively, minima in foraminifers, corresponding to minima in %OC and to reversal of 14C (relative increase of older carbon), reflect dilution in the sediment because of rapid accumulation of fine sediment re-suspended at the shelf edge by the cascading currents. Therefore, the minima represent higher rate of bottom water formation. The comparison of the D/H ratio in ice-cores from the Ross Sea sector with the core AS05-10 record indicates that the foraminifers minima always correspond to colder condition. This scenario also correlates to the record reported in literature on the slope off Wilkes-Adelie Land. At last, a condensed/hiatus interval at ca. 3.5-4 kyr BP does not seems to mark a major change in the general pattern of our variables, apart from biogenic silica and sheets silicates showing an increase of the oscillation amplitude. Nevertheless, this feature is coeval to the base of the Neoglacial and it is time-equivalent to the beginning of major changes in the Antarctic environment.
NASA Astrophysics Data System (ADS)
Yarce, J.; Sheehan, A. F.; Nakai, J. S.; Todd, E. K.; Schwartz, S. Y.; Mochizuki, K.
2016-12-01
The Hikurangi margin off the north island of New Zealand is the target of the "Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip" (HOBITSS) experiment, which successfully recorded a slow slip event in 2014. In the HOBITSS experiment 10 broadband and 5 short period ocean bottom seismometers along with 24 absolute pressure gauges where deployed for one year (May 2014 to June 2015) offshore the east coast of the North Island of New Zealand, near Gisborne. A catalog of local earthquakes is being constructed using STA/LTA detection, event association, and manual picking of P and S wave arrivals from both HOBITSS and GeoNet data. Our examination of initial hypocenters from the first 10 weeks of data yields 849 local earthquakes with a concentration of epicenters offshore over the forearc basin and deformed accretionary wedge. A bimodal distribution of hypocenter depths is identified with peaks at 10 and 35 km. Deeper events (between 50 and 80 km) are found to the west of our seismometer array, presumably on the interface of the subducted Pacific plate beneath the Australian plate. On the eastern edge of the array, on the incoming Pacific plate, seismicity is scarce with shallow hypocenters. For the one-year period, GEONET reports 2109 earthquakes, while our 15 weeks of manual picking has resulted in 1400 events, which suggests an increase of detections of a factor of 2-3 due to the offshore array. Epicentral location and depth results will be explored using different location algorithms such as Bayesloc and Nonlinloc with regionally appropriate local velocity models. The results presented here will be combined with others to build a more complete picture of the relationship between fast (earthquake) and slow slip.
NASA Astrophysics Data System (ADS)
Boss, Stephen K.
1996-11-01
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise.
NASA Astrophysics Data System (ADS)
Davis, Kristen Alexis
The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August 2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that for reef communities exposed to continental shelf and slope processes, internal waves may play an important role in cross-shelf transport and mass transfer to benthic organisms and may be essential to modeling key biological processes, the connectivity of coral populations, or designing and managing marine reserves and fisheries.
Burst temperature from conditional analysis in Texas Helimak and TCABR tokamak
NASA Astrophysics Data System (ADS)
Pereira, F. A. C.; Hernandez, W. A.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.
2018-04-01
The procedure to estimate the average local temperature, density, and plasma potential by conditionally selecting points of the Langmuir probe characteristic curve is revised and applied to the study of intermittent bursts in the Texas Helimak and TCABR tokamak. The improvements made allow us to distinguish the burst temperature from the turbulent background and to study burst propagation. Thus, in Texas Helimak, we identify important differences with respect to the burst temperature measured in the top and the bottom regions of the machine. While in the bottom region the burst temperatures are almost equal to the background, the bursts in the top region are hotter than the background with the temperature peak clearly shifted with respect to the density one. On the other hand, in the TCABR tokamak, we found that there is a temperature peak simultaneously with the density one. Moreover, the radial profile of bursts in the top region of Helimak and in the edge and scrape-off layer regions of TCABR shows that in both machines, there are spatial regions where the relative difference between the burst and the background temperatures is significant: up to 25% in Texas Helimak and around 50% in TCABR. However, in Texas Helimak, there are also regions where these temperatures are almost the same.
Light emitting diode package element with internal meniscus for bubble free lens placement
Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen
2010-09-28
A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less
Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture
Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping
2016-12-05
The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less
2015-07-10
This image of Pluto was taken by New Horizons' Long Range Reconnaissance Imager (LORRI) at 4:18 UT on July 9, 2015, from a range of 3.9 million miles (6.3 million kilometers). It reveals new details on the surface of Pluto, including complex patterns in the transition between the very dark equatorial band (nicknamed "the whale"), which occupies the lower part of the image, and the brighter northern terrain. The bright arc at the bottom of the disk shows that there is more bright terrain beyond the southern margin of the "whale." The side of Pluto that will be studied in great detail during the close encounter on July 14 is now rotating off the visible disk on the right hand side, and will not be seen again until shortly before closest approach. Three consecutive images were combined and sharpened, using a process called deconvolution, to create this view. Deconvolution enhances real detail but can also generate spurious features, including the bright edge seen on the upper and left margins of the disk (though the bright margin on the bottom of the disk is real). The wireframe globe shows the orientation of Pluto in the image: thicker lines indicate the equator and the prime meridian (the direction facing Charon). Central longitude on Pluto is 86°. http://photojournal.jpl.nasa.gov/catalog/PIA19705
Yunus, Rozan Mohamad; Endo, Hiroko; Tsuji, Masaharu; Ago, Hiroki
2015-10-14
Heterostructures of two-dimensional (2D) layered materials have attracted growing interest due to their unique properties and possible applications in electronics, photonics, and energy. Reduction of the dimensionality from 2D to one-dimensional (1D), such as graphene nanoribbons (GNRs), is also interesting due to the electron confinement effect and unique edge effects. Here, we demonstrate a bottom-up approach to grow vertical heterostructures of MoS2 and GNRs by a two-step chemical vapor deposition (CVD) method. Single-layer GNRs were first grown by ambient pressure CVD on an epitaxial Cu(100) film, followed by the second CVD process to grow MoS2 over the GNRs. The MoS2 layer was found to grow preferentially on the GNR surface, while the coverage could be further tuned by adjusting the growth conditions. The MoS2/GNR nanostructures show clear photosensitivity to visible light with an optical response much higher than that of a 2D MoS2/graphene heterostructure. The ability to grow a novel 1D heterostructure of layered materials by a bottom-up CVD approach will open up a new avenue to expand the dimensionality of the material synthesis and applications.
DipTest: A litmus test for E. coli detection in water.
Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb; Mitra, Sushanta K
2017-01-01
We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source.
DipTest: A litmus test for E. coli detection in water
Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb
2017-01-01
We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source. PMID:28877199
NASA Astrophysics Data System (ADS)
Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli
2015-04-01
A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide accumulates in a specific tissue called target tissue. This tissue (bone, flesh, stomach, and organs) controls the overall elimination rate of the nuclide in the organism. The model prediction for the coastal area around the FDNPP agree well with observations. In addition the effects from the Chernobyl accident on the Baltic Sea are modelled and these results also are in good agreement with available data. These results demonstrate the importance of the benthic food chain in long-term transfer of radionuclides from high polluted bottom sediments to the marine organisms. The developed model can be applied for different regions of the World Ocean.
Refined modeling of Seattle basin amplification
NASA Astrophysics Data System (ADS)
Vidale, J. E.; Wirth, E. A.; Frankel, A. D.; Baker, B.; Thompson, M.; Han, J.; Nasser, M.; Stephenson, W. J.
2016-12-01
The Seattle Basin has long been recognized to modulate shaking in western Washington earthquakes (e.g., Frankel, 2007 USGS OFR). The amplification of shaking in such deep sedimentary basins is a challenge to estimate and incorporate into mitigation plans. This project aims to (1) study the influence of basin edges on trapping and amplifying seismic waves, and (2) using the latest earthquake data to refine our models of basin structure. To interrogate the influence of basin edges on ground motion, we use the numerical codes SpecFEM3D and Disfd (finite-difference code from Pengcheng Liu), and an update of the basin model of Stephenson et al. (2007), to calculate synthetic ground motions at frequencies up to 1 Hz. The figure below, for example, shows the amplification relative to a simple 1/r amplitude decay for four sources around of the Seattle Basin (red dots), with an EW-striking 45°-dipping thrust mechanism at 10 km depth. We test the difficulty of simulating motions in the presence of slow materials near the basin edge. Running SpecFEM3D with attenuation is about a third as fast as the finite difference code, and cannot represent sub-element structure (e.g., slow surficial materials) in comparable detail to the finer FD grid, but has the advantages of being able to incorporate topography and water. Modeling 1 Hz energy in the presence of shear wave velocities with a floor of 600 m/s, factor of 2 to 3 velocity contrasts, and sharp basin edges is fraught, both in calculating synthetics and estimating real structure. We plan to incorporate interpretations of local recordings including basin-bottom S-to-P conversions, noise-correlation waveforms, and teleseismic-P-wave reverberations to refine the basin model. Our long-term goal is to reassess with greater accuracy and resolution the spatial pattern of hazard across the Seattle Basin, which includes several quite vulnerable neighborhoods.
Tungsten Carbide Grain Size Computation for WC-Co Dissimilar Welds
NASA Astrophysics Data System (ADS)
Zhou, Dongran; Cui, Haichao; Xu, Peiquan; Lu, Fenggui
2016-06-01
A "two-step" image processing method based on electron backscatter diffraction in scanning electron microscopy was used to compute the tungsten carbide (WC) grain size distribution for tungsten inert gas (TIG) welds and laser welds. Twenty-four images were collected on randomly set fields per sample located at the top, middle, and bottom of a cross-sectional micrograph. Each field contained 500 to 1500 WC grains. The images were recognized through clustering-based image segmentation and WC grain growth recognition. According to the WC grain size computation and experiments, a simple WC-WC interaction model was developed to explain the WC dissolution, grain growth, and aggregation in welded joints. The WC-WC interaction and blunt corners were characterized using scanning and transmission electron microscopy. The WC grain size distribution and the effects of heat input E on grain size distribution for the laser samples were discussed. The results indicate that (1) the grain size distribution follows a Gaussian distribution. Grain sizes at the top of the weld were larger than those near the middle and weld root because of power attenuation. (2) Significant WC grain growth occurred during welding as observed in the as-welded micrographs. The average grain size was 11.47 μm in the TIG samples, which was much larger than that in base metal 1 (BM1 2.13 μm). The grain size distribution curves for the TIG samples revealed a broad particle size distribution without fine grains. The average grain size (1.59 μm) in laser samples was larger than that in base metal 2 (BM2 1.01 μm). (3) WC-WC interaction exhibited complex plane, edge, and blunt corner characteristics during grain growth. A WC ( { 1 {bar{{1}}}00} ) to WC ( {0 1 1 {bar{{0}}}} ) edge disappeared and became a blunt plane WC ( { 10 1 {bar{{0}}}} ) , several grains with two- or three-sided planes and edges disappeared into a multi-edge, and a WC-WC merged.
Closeup view under the track at the center/pivot pier showing ...
Close-up view under the track at the center/pivot pier showing the system of distributing girders which transfer all the load of the swing span, both dead, live load, wind, etc., onto the circular drum, thence to the rim bearing 40 20-inch diameter wheels. Note: The track timber ties supported on the bottom truss chord of the swing span truss. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL
Bottom Currents and Abyssal Sedimentation Processes South of Iceland.
1980-06-01
infaunal burrowing activity are observed in various portions of the region. Discrete benthic organisms appear to -158- have adapted to various...cores (9 BC, 11 BC, and 12 BG; Figures 4.11, 4.12, 4.13). These may be due to gastropods whose shells are observed both in x-ray (Figure 4.12) and as...that the organisms present in the channel sediments are specifically adapted to live in regions in which episodic deposition and erosion may occur
Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf
Tomašových, Adam; Kidwell, Susan M.
2017-01-01
The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods (Laqueus) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. PMID:28592668
Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf.
Tomašových, Adam; Kidwell, Susan M
2017-06-14
The soft-sediment seafloor of the open continental shelf is among the least-known biomes on Earth, despite its high diversity and importance to fisheries and biogeochemical cycling. Abundant dead shells of epifaunal suspension-feeding terebratulid brachiopods ( Laqueus ) and scallops on the now-muddy mainland continental shelf of southern California reveal the recent, previously unsuspected extirpation of an extensive offshore shell-gravel ecosystem, evidently driven by anthropogenic siltation. Living populations of attached epifauna, which formerly existed in a middle- and outer-shelf mosaic with patches of trophically diverse muds, are restricted today to rocky seafloor along the shelf edge and to the sandier shelves of offshore islands. Geological age-dating of 190 dead brachiopod shells shows that (i) no shells have been produced on the mainland shelf within the last 100 years, (ii) their shell production declined steeply during the nineteenth century, and (iii) they had formerly been present continuously for at least 4 kyr. This loss, sufficiently rapid (less than or equal to 100 years) and thorough to represent an ecosystem collapse, coincides with intensification of alluvial-plain land use in the nineteenth century, particularly livestock grazing. Extirpation was complete by the start of twentieth-century urbanization, warming, bottom fishing and scientific surveys. The loss of this filter-feeding fauna and the new spatial homogeneity and dominance of deposit- and detritus-feeders would have altered ecosystem functioning by reducing habitat heterogeneity and seawater filtering. This discovery, attesting to the power of this geological approach to recent ecological transitions, also strongly increases the spatial scope attributable to the negative effects of siltation, and suggests that it has been under-recognized on continental shelves elsewhere as a legacy of coastal land use. © 2017 The Author(s).
Convective Patterns under the Indo-Atlantic box
NASA Astrophysics Data System (ADS)
Davaille, A.; Stutzmann, E.; Silveira, G.; Besse, J.; Courtillot, V.
2005-12-01
Using recent fluid mechanics results as a framework, we reinterpret the images of the Indo-Atlantic mantle obtained from global and regional tomography studies together with geochemical, geological and paleomagnetic observations to unravel the pattern of convection in the Indo-Atlantic box and its temporal evolution over the last 260 Myr. Seismic tomography sections at different depths show that the Earth's mantle seems to be divided in two boxes by the subducted plates, the Pacific and the Indo-Atlantic boxes. The latter presently contains a) a broad slow seismic anomaly at the CMB which has a similar shape to Pangea 250 Myr ago, and which divides into several branches higher in the lower mantle, b) one superswell centered on the western edge of South Africa, c) at least 6 primary hotspots with long tracks related to traps, and d) numerous smaller hotspots. Moreover, in the last 260 Myr, this mantle box has undergone 10 traps events, 7 of them related to continental break up. Several of these past events are spatially correlated with present-day seismic anomalies and/or upwellings, suggesting episodicity. Laboratory experiments show that superswells, long-lived hotspot tracks and traps may represent three evolutionnary stages of the same phenomenon, i.e. the episodic destabilization of a hot, chemically heterogeneous thermal boundary layer, close to the bottom of the mantle. When scaled to the Earth's mantle, the recurrence time of this phenomenon is on the order of 100-200 Myr. Also, at any given time, the Indo-Atlantic box should contain 3 to 9 of these instabilities at different stages of their development. This is in agreement with observations. The return flow of the downwelling slabs, although confined to two main boxes by subduction zone geometry, may therefore not be passive, but rather take the form of active thermochemical instabilities.
Ohwada, Kouichi; Nishimura, Masahiko; Wada, Minoru; Nomura, Hideaki; Shibata, Akira; Okamoto, Ken; Toyoda, Keita; Yoshida, Akihiro; Takada, Hideshige; Yamada, Mihoko
2003-01-01
Mesocosm facilities composed of 4 experimental and 2 reservoir tanks (1.5 m in diameter, 3.0 m in depth and 5 tons in capacity) made of FRP plastics, were constructed in the concrete fish rearing pond in the Fisheries Laboratory, The University of Tokyo. The water-soluble fraction of Rank A heavy residual oil was formed by mixing 500 g of the oil with 10 l of seawater, which was introduced to the 5000 l-capacity tanks. Experimental Run 4 was conducted from May 31 to June 7, 2000. Oil concentrations in the tanks were 4.5 microg/l called LOW, and 13.5 microg/l, called HIGH tank. Bacterial growth rates very quickly accelerated in the HIGH tank just after the loading of oil which corresponded with a high increase of bacterial cells in the same tank after 2 days. Later, bacterial numbers in HIGH tank rapidly decreased, corresponding with the rapid increase of heterotrophic nano-flagellates and virus numbers on the same day. Sediment traps were deployed at the bottom of the experimental tanks, and were periodically retrieved. These samples were observed both under light microscope and epi-fluorescent microscope with UV-excitation. It was observed that the main components of the vertical flux were amorphous suspended matter, mostly originating from dead phytoplankton and living diatoms. It was further observed from the pictures that vertical transport of oil emulsions were probably conducted after adsorption to amorphous suspended matter and living diatoms, and were settling in the sediment traps at the bottom of the tanks. This means that the main force which drives the soluble fraction of oil into bottom sediment would be vertical flux of such amorphous suspended particles and phytoplankton. Further incubation of the samples revealed that the oil emulsions were degraded by the activity of autochtonous bacteria in the sediment in aerobic condition.
Recruiting first generation college students into the Geosciences: Alaska's EDGE project
NASA Astrophysics Data System (ADS)
Prakash, A.; Connor, C.
2008-12-01
Funded in 2005-2008, by the National Science Foundation's Geoscience Education Division, the Experiential Discoveries in Geoscience Education (EDGE) project was designed to use glacier and watershed field experiences as venues for geospatial data collected by Alaska's grade 6-12 middle and high school teachers and their students. EDGE participants were trained in GIS and learned to analyze geospatial data to answer questions about the warming Alaska environment and to determine rates of ongoing glacier recession. Important emphasis of the program was the recruitment of Alaska Native students of Inupiat, Yup'ik, Athabascan, and Tlingit populations, living in both rural and urban areas around the state. Twelve of Alaska's 55 school districts have participated in the EDGE program. To engage EDGE students in the practice of scientific inquiry, each was required to carry out a semester scale research project using georeferenced data, guided by their EDGE teacher and mentor. Across Alaska students investigated several Earth systems processes including freezing conditions of lake ice; the changes in water quality in storm drains after rainfall events; movements of moose, bears, and bison across Alaskan landscapes; changes in permafrost depth in western Alaska; and the response of migrating waterfowl to these permafrost changes. Students correlated the substrate beneath their schools with known earthquake intensities; measured cutbank and coastal erosion on northern rivers and southeastern shorelines; tracked salmon infiltration of flooded logging roads; noted the changing behavior of eagles during late winter salmon runs; located good areas for the use of tidal power for energy production; tracked the extent and range of invasive plant species with warming; and the change of forests following deglaciation. Each cohort of EDGE students and teachers finished the program by attended a 3-day EDGE symposium at which students presented their research projects first in a practice sessions at the University and then in an actual competition in a Regional High School Science Fair at which they could qualify to compete at the Intel International Science and Engineering fair. Thirty-four teachers, 30 high school students (over 40 percent of whom were Alaska Native) and over 1000 middle school students (25 percent Alaska natives) participated in EDGE activities, increasing their knowledge of Earth science, GIS skills, and data management and analysis. More information on the EDGE project is available at www.edge.alaska.edu.
Enhanced neurorehabilitation techniques in the DVBIC Assisted Living Pilot Project.
Hoffman, Stuart W; Shesko, Kristina; Harrison, Catherine R
2010-01-01
Traumatic Brain Injury has been labeled the "silent epidemic" in our current wars. Both CBO and the RAND reports predict that the costs of these injuries will be both extensive and enduring. The projected costs are based not only upon the loss contribution of these warriors to our economy, but also the long-term medical and assistive care that will be needed to support these veterans for decades to come. Thus, the primary goal of the Assisted Living Pilot Project (ALPP) at the Defense and Veterans Brain Injury Center - Johnstown (DVBIC-J) is to promote the ability of the injured warrior to move from assisted living to living independently and to be self-supporting by providing a continuum of care. To accomplish this goal the DVBIC-J ALPP is providing full set of traditional services (physical, occupational, speech, psychological/cognitive, social/familial, vocational, and spiritual), along with "cutting-edge" rehabilitative treatment technologies. These cutting-edge therapies include transdisciplinary clinical consultations, interactive patient and family counseling, and telemedicine-teleconferencing for clinical evaluations and family/significant other care participation. These services will be available to those who require assisted living through their progression to community re-entry. The ALPP also serves as a vehicle for clinical trials to investigate the effects of an enriched environment (e.g., recreational therapies, massage, multisensory stimulation, etc.) on neurorehabilitation therapy, rural telemedicine for servicemembers with traumatic brain injury, and long-term outcome measures of those who have received neurorehabilitation services at the DVBIC-J site. DVBIC-J is also developing collaborative projects with universities and private industry to create an incubator for new rehabilitation technologies. The technologies that DVBIC-J will be focusing on will include assistive technologies (to assist cognitive, physical, and communicative impairments), virtual and augmented reality simulations (for both diagnosis and treatment of TBI and PTSD), and telecommunication technologies to improve rehabilitation services to those warriors that have returned to their homes in rural areas.
Watanabe, Toru; Mashiko, Takuma; Maftukhah, Rizki; Kaku, Nobuo; Pham, Dong Duy; Ito, Hiroaki
2017-02-01
This study aims at improving the performance of the cultivating system of rice for animal feed with circulated irrigation of treated municipal wastewater by applying a larger amount of wastewater, as well as adding a microbial fuel cell (MFC) to the system. The results of bench-scale experiments indicate that this modification has increased the rice yield, achieving the target for the rice cultivar used in the experiment. In addition, an assessment of protein content of the harvested rice showed that the value of the rice as animal fodder has improved. Compared with normal one-way irrigation, circulated irrigation significantly enhanced the plant growth and rice production. The direction of the irrigation (bottom-to-top or top-to-bottom) in the soil layer had no significant effect. This modified system demonstrated >96% for nitrogen removal from the treated wastewater used for the irrigation, with approximately 40% of the nitrogen being used for rice plant growth. The MFC installed in the system facilitated power generation comparable with that reported for normal paddy fields. The power generation appeared to be enhanced by bottom-to-top irrigation, which could provide organic-rich treated wastewater directly to the bacterial community living on the anode of the MFC set in the soil layer.
Arima, Kengo; Tamaoki, Daisuke; Mineyuki, Yoshinobu; Yasuhara, Hiroki; Nakai, Tomonori; Shimmen, Teruo; Yoshihisa, Tohru; Sonobe, Seiji
2018-06-19
In plant cytokinesis, actin is thought to be crucial in cell plate guidance to the cortical division zone (CDZ), but its organization and function are not fully understood. To elucidate actin organization during cytokinesis, we employed an experimental system, in which the mitotic apparatus is displaced and separated from the CDZ by centrifugation and observed using a global-local live imaging microscope that enabled us to record behavior of actin filaments in the CDZ and the whole cell division process in parallel. In this system, returning movement of the cytokinetic apparatus in cultured-tobacco BY-2 cells occurs, and there is an advantage to observe actin organization clearly during the cytokinetic phase because more space was available between the CDZ and the distantly formed phragmoplast. Actin cables were clearly observed between the CDZ and the phragmoplast in BY-2 cells expressing GFP-fimbrin after centrifugation. Both the CDZ and the edge of the expanding phragmoplast had actin bulges. Using live-cell imaging including the global-local live imaging microscopy, we found actin filaments started to accumulate at the actin-depleted zone when cell plate expansion started even in the cell whose cell plate failed to reach the CDZ. These results suggest that specific accumulation of actin filaments at the CDZ and the appearance of actin cables between the CDZ and the phragmoplast during cell plate formation play important roles in the guidance of cell plate edges to the CDZ.
ERIC Educational Resources Information Center
Gomillion, David L.
2017-01-01
ComprehensiveCare, a multi-specialty healthcare organization, struggles to implement Electronic Health Records. The first adoption failed outright because the customizations made the system unusable. The second attempted adoption has not officially failed yet, but the system fails to live up to the expectations. It lingers on the edge of…
Mobile Learning on Campus: Balancing on the Cutting Edge
ERIC Educational Resources Information Center
Raths, David
2010-01-01
As soon as the Illinois Institute of Technology (IIT) announced last May that it would be giving all 400 incoming freshmen Apple iPads, a lively debate broke out online at TUAW.com (The Unofficial Apple Weblog) between people who saw it as a marketing gimmick to attract students and others who believed it was an honest attempt to implement a new…
ERIC Educational Resources Information Center
Bell, Jo
2009-01-01
This article is based on research commissioned by the UK Government's Teenage Pregnancy Unit. The Living on the Edge (LOTE) study qualitatively explored factors that shape young people's experiences and attitudes towards sexual behaviour and young parenthood in three linked seaside and rural areas in England. It identifies embarrassment as a key…
An Interview with Joel McIntosh: Reflections on Gifted Education and the History of "JOAA"
ERIC Educational Resources Information Center
Siegle, Del; McCoach, D. Betsy
2011-01-01
This article presents an interview with Joel McIntosh, the publisher at Prufrock Press, whose publications reach more than 50,000 individuals and libraries. McIntosh started Prufrock in 1988 with a vision of making a powerful difference in the lives of gifted and talented children by striving to provide quality materials and cutting-edge research…
Paying Dearly for Privilege: Conceptions, Experiences and Temporalities of Vocation in Academic Life
ERIC Educational Resources Information Center
Barcan, Ruth
2018-01-01
This paper explores the forms of lived time that characterise a vocational relationship to academic work. Drawing on interviews and surveys with over 30 academics who have left the profession early or have given up looking for ongoing academic work, it paints a portrait of vocationalism as a double-edged sword. The research found that despite…
ERIC Educational Resources Information Center
Cauthen, Nancy K.; Lu, Hsien-Hen
Families with incomes between the official poverty level and the minimum economic security level face many of the same material hardships and financial pressures that officially poor families face, partly because as their income grows, they lose eligibility for public benefits. This report focuses on the role that public policies play in…
Sedimentary processes on the Atlantic Continental Slope of the United States
Knebel, H.J.
1984-01-01
Until recently, the sedimentary processes on the United States Atlantic Continental Slope were inferred mainly from descriptive studies based on the bathymetry and on widely spaced grab samples, bottom photographs, and seismic-reflection profiles. Over the past 6 years, however, much additional information has been collected on the bottom morphology, characteristics of shallow-subbottom strata, velocity of bottom currents, and transport of suspended and bottom sediments. A review of these new data provides a much clearer understanding of the kinds and relative importance of gravitational and hydrodynamic processes that affect the surface sediments. On the rugged slope between Georges Bank and Cape Lookout, N.C., these processes include: (1) small scale mass wasting within submarine canyons and peripheral gullies; (2) density flows within some submarine valleys; (3) sand spillover near the shelf break; (4) sediment creep on the upper slope; and (5) hemipelagic sedimentation on the middle and lower slope. The area between Georges Bank and Hudson Canyon is further distinguished by the relative abundance of large-scale slump scars and deposits on the open slope, the presence of ice-rafted debris, and the transport of sand within the heads of some submarine canyons. Between Cape Lookout and southern Florida, the slope divides into two physiographic units, and the topography is smooth and featureless. On the Florida-Hatteras Slope, offshelf sand spillover and sediment winnowing, related to Gulf Stream flow and possibly to storm-driven currents, are the major processes, whereas hemipelagic sedimentation is dominant over the offshore slope along the seaward edge of the Blake Plateau north of the Blake Spur. Slumping generally is absent south of Cape Lookout, although one large slump scarp (related to uplift over salt diapirs) has been identified east of Cape Romain. Future studies concerning sedimentary processes on the Atlantic slope need to resolve: (1) the ages and mechanisms of mass wasting; (2) the accumulation rates and thicknesses of hemipelagic sediments; and (3) the causes and variability of offshelf sand spillover, sediment winnowing, and canyon transport.
NASA Astrophysics Data System (ADS)
Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.
2013-04-01
To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon during one or two tidal cycles. A similar transport mechanism can occur in other submarine canyons along the eastern Canadian margin, as well in other canyoned regions elsewhere, where winter convection generally reaches the shelf-edge.
Performance of an autonomously deployable telemetered deep ocean seismic observatory
NASA Astrophysics Data System (ADS)
Berger, Jonathan; Laske, Gabe; Orcutt, John; Babcock, Jeffrey
2016-04-01
We describe a transformative technology that can provide near real-time telemetry of sensor data from the ocean bottom without a moored buoy or a cable to shore. The breakthrough technology that makes this system possible is an autonomous surface vehicle called a Wave Glider developed by Liquid Robotics, which harvests wave and solar energy for motive and electrical power. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, AIS ship detection receiver, weather station, and an Iridium satellite modem. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. We present results from several deployments of a prototype system that demonstrate the feasibility of this concept. The system comprises ocean bottom package (OBP) and an ocean surface gateway (OSG). Acoustic communications connect the OBP instruments with OSG while communications between the gateway and land are provided by the Iridium satellite constellation. The most recent deployment of the OBP was off the edge of the Patton Escarpment some 300 km west of San Diego in 4000 m of water. The OSG was launched about 30 km west of San Diego harbor and programmed to navigate to the site of the ocean bottom package. Arriving after 161 hours, the OSG then commenced holding station at the site for the next 68 days. Speeds over-the-ground varied with wind, wave, and surface current conditions but averaged 0.5 m/s while winds varied between 0 m/s and 17 m/s and wave heights between 0.2 m and 5.9 m. Over this period the median total data latency was 260 s and the data loss less that 0.2% when the wave glider was within 1.5 km of the central point. We have also tested a full-scale model of a towable ocean bottom package, which demonstrated that a wave glider could tow and navigate an autonomously deployable ocean bottom package. Taken together, these tests have demonstrated that the concept is viable for long-term deployment as a high-seas seismographic station. The next generation will incorporate a towable OBP and a keel mounted rather than towed acoustic modem on the OSG. The longevity of the bottom package will be limited by its energy supply but at least two years is feasible while telemetering 1 sps data streams continuously plus an average of 1 hour /day of 40 sps data-on-demand. Biofouling is likely to be the limiting factor on the length of operation of a single OSG but a relief unit can be dispatched from a convenient port to take over operations.
Kumari, Pratibha; Verma, Sanjay K; Mobin, Shaikh M
2018-01-11
The morphological alteration of lysosomes is a powerful indicator of various pathological disorders. In this regard, we have designed and synthesized a new water soluble fluorescent Schiff-base ligand (L-lyso) containing two hydroxyl groups. L-lyso exhibits excellent two-photon properties with tracking of lysosomes in live cells as well as in 3D tumor spheroids. Furthermore, it can label lysosomes for more than 3 days. Thus, L-lyso has an edge over the commercially available expensive LysoTracker probes and also over other reported probes in terms of its long-term imaging, water solubility and facile synthesis.
Gooday, Andrew J
2003-01-01
Foraminiferal research lies at the border between geology and biology. Benthic foraminifera are a major component of marine communities, highly sensitive to environmental influences, and the most abundant benthic organisms preserved in the deep-sea fossil record. These characteristics make them important tools for reconstructing ancient oceans. Much of the recent work concerns the search for palaeoceanographic proxies, particularly for the key parameters of surface primary productivity and bottom-water oxygenation. At small spatial scales, organic flux and pore-water oxygen profiles are believed to control the depths at which species live within the sediment (their 'microhabitats'). Epifaunal/shallow infaunal species require oxygen and labile food and prefer relatively oligotrophic settings. Some deep infaunal species can tolerate anoxia and are closely linked to redox fronts within the sediment; they consume more refractory organic matter, and flourish in relatively eutrophic environments. Food and oxygen availability are also key factors at large (i.e. regional) spatial scales. Organic flux to the sea floor, and its seasonality, strongly influences faunal densities, species compositions and diversity parameters. Species tend to be associated with higher or lower flux rates and the annual flux range of 2-3 g Corg m-2 appears to mark an important faunal boundary. The oxygen requirements of benthic foraminifera are not well understood. It has been proposed that species distributions reflect oxygen concentrations up to fairly high values (3 ml l-1 or more). Other evidence suggests that oxygen only begins to affect community parameters at concentrations < 0.5 ml l-1. Different species clearly have different thresholds, however, creating species successions along oxygen gradients. Other factors such as sediment type, hydrostatic pressure and attributes of bottom-water masses (particularly carbonate undersaturation and current flow) influence foraminiferal distributions, particularly on continental margins where strong seafloor environmental gradients exist. Epifaunal species living on elevated substrata are directly exposed to bottom-water masses and flourish where suspended food particles are advected by strong currents. Biological interactions, e.g. predation and competition, must also play a role, although this is poorly understood and difficult to quantify. Despite often clear qualitative links between environmental and faunal parameters, the development of quantitative foraminiferal proxies remains problematic. Many of these difficulties arise because species can tolerate a wide range of non-optimal conditions and do not exhibit simple relationships with particular parameters. Some progress has been made, however, in formulating proxies for organic fluxes and bottom-water oxygenation. Flux proxies are based on the Benthic Foraminiferal Accumulation Rate and multivariate analyses of species data. Oxygen proxies utilise the relative proportions of epifaunal (oxyphilic) and deep infaunal (low-oxygen tolerant) species. Yet many problems remain, particularly those concerning the calibration of proxies, the closely interwoven effects of oxygen and food availability, and the relationship between living assemblages and those preserved in the permanent sediment record.
Living macromolluscs from a paleo-reef region on the northeastern Venezuelan continental shelf
NASA Astrophysics Data System (ADS)
Buitrago, Joaquín; Capelo, Juan; Gutiérrez, Javier; Rada, Martín; Hernández, Ricardo; Grune, Sylvia
2006-02-01
Drowned reefs, fossil reefs or paleo-reefs, are important ecologically as areas of high biodiversity, foraging, shelter environment, and as areas supporting the spawning aggregations of economically important reef fish species. This is particularly significant when the structures are situated in a wide soft-bottom continental shelf. The presence of limestone structures, fossil reefs and pinnacles dating from circa 8 to 9 ka, to the north of the Paria Peninsula in north-eastern Venezuela, has been known to local fishermen for decades. Using echograms obtained during acoustic fisheries evaluations and the scarce previously available information, an improved location map of hard-bottom structures was made. Benthic samples to study macromolluscs were taken at depths between 54 and 93 m using an unmodified 2-m beam trawl. Four trawl samples were located over fossil reef areas while another four were situated in soft-bottom valleys between limestone structures. Fossil reefs in the area showed a highly patchy distribution. A total of 91 species from 43 Bivalvia, Gastropoda and Scaphopoda families were found, Gastropoda being the dominant class with 49 species. Paleo-reef-covered areas showed higher species richness and only 21% of the species found were common to both substrates. Gastropods Tonna maculosa and Polystira albida were the most abundant species and occurred in both substrate types. Bivalve life habits, a mixture of organism-substrate relationships, shell fixation, mobility and feeding type, differed significantly according to bottom type. Six species are recorded for the first time for eastern Venezuelan waters. Bottom heterogeneity plays an important role in marine ecosystems, providing shelter to fish populations and may be significant as breeding and nursery areas. Its presence in a region with biogeographical interest, situated in the confluence of three major provinces and with oceanographic conditions varying seasonally from upwelling dominated to Orinoco River discharges, makes this the area of interest and it should be evaluated as a possible Marine Protected Area.
Multi-layer carbon-based coatings for field emission
Sullivan, J.P.; Friedmann, T.A.
1998-10-13
A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.
GEMINI-7 - EARTH-SKY VIEW - MIDDLE-EAST AREA - OUTER SPACE
1965-12-08
S65-63849 (8 Dec. 1965) --- The eastern Mediterranean area as seen from the National Aeronautics and Space Administration's Gemini-7 spacecraft. The Nile Delta in Egypt is at bottom. The Suez Canal, Gulf of Suez and Red Sea are in the center of the photograph. The Sinai Peninsula is in the upper right corner of the picture. The body of water at the top edge of the photograph is the Gulf of Aqaba. The Dead Sea can be seen at top center. Israel, Palestine, Jordan and Syria are also at top center. The Island of Cyprus is at extreme left. Astronauts Frank Borman and James A. Lovell Jr. took this picture using a modified 70mm Hasselblad camera, with Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA
Curvature and bow of bulk GaN substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foronda, Humberto M.; Young, Erin C.; Robertson, Christian A.
2016-07-21
We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substratesmore » as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.« less