NASA Astrophysics Data System (ADS)
Pai Raikar, Vipul; Kwartowitz, David M.
2016-04-01
Degradation and injury of the rotator cuff is one of the most common diseases of the shoulder among the general population. In orthopedic injuries, rotator cuff disease is only second to back pain in terms of overall reduced quality of life for patients. Clinically, this disease is managed via pain and activity assessment and diagnostic imaging using ultrasound and MRI. Ultrasound has been shown to have good accuracy for identification and measurement of rotator cuff tears. In our previous work, we have developed novel, real-time techniques to biomechanically assess the condition of the rotator cuff based on Musculoskeletal Ultrasound. Of the rotator cuff tissues, supraspinatus is the first that sees degradation and is the most commonly affected. In our work, one of the challenges lies in effectively segmenting and characterizing the supraspinatus. We are exploring the possibility of using curvelet transform for improving techniques to segment tissue in ultrasound. Curvelets have been shown to give optimal multi-scale representation of edges in images. They are designed to represent edges and singularities along curves in images which makes them an attractive proposition for use in ultrasound segmentation. In this work, we present a novel approach to the possibility of using curvelet transforms for automatic edge and feature extraction for the supraspinatus.
NASA Astrophysics Data System (ADS)
Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.
2015-11-01
Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )<2 ) is routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) < 2. When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) < 2, external n = 1 kink mode activity does not appear to play a significant role in the disruption phenomenology observed.
NASA Astrophysics Data System (ADS)
Deschenes, Sylvain; Sheng, Yunlong; Chevrette, Paul C.
1998-03-01
3D object classification from 2D IR images is shown. The wavelet transform is used for edge detection. Edge tracking is used for removing noise effectively int he wavelet transform. The invariant Fourier descriptor is used to describe the contour curves. Invariance under out-of-plane rotation is achieved by the feature space trajectory neural network working as a classifier.
NASA Astrophysics Data System (ADS)
Jiang, Jie; Zhang, Shumei; Cao, Shixiang
2015-01-01
Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wan-song
Through using in-situ electron back-scattered diffraction and uniaxial tensile tests, this work mainly focuses on the deformation behavior of retained austenite (RA) in a low-carbon quenching and partitioning (Q&P) steel. In this paper, three different types of RA can be distinguished from different locations, respectively, RA grains at the triple edges, twinned austenite and RA grains positioned between martensite. The results have shown that grains at the triple edges and twinned austenite could transform easily with increasing strain, i.e. are less stable when compared with RA grains distributed between martensite that could resist a larger plastic deformation. Meanwhile, the strainmore » leads to rotations of RA grains distributed at the triple edges and between martensite. Moreover, RA grains with a similar orientation undergone similar rotations with the same true strain. These RA grains rotated along a specific slip plane and slip direction and the grain rotation is taken as a significant factor to improve the ductility of steel. In addition, grain sizes of RA decreased gradually with an increase of true strain and smaller (0–0.2 μm) grains were more capable of resisting the deformation. According to kernel average misorientation (KAM) analysis, it can be found that strain distribution is preferentially localized near martensite–austenite phase boundaries and in the interior of martensite. The average KAM values increased continuously with increasing true strain. - Highlights: •The in-situ and ex-situ tensile specimens differ to some extent in mechanical properties. •Retained austenite grains at the triple edges and twinned austenite transformed easily at the early stage of true strain. •Film-like retained austenite grains only rotated prior to the transformation during straining. •Retained austenite grains having with a similar orientation experienced similar rotations during the same true strain.« less
A high precision, compact electromechanical ground rotation sensor
NASA Astrophysics Data System (ADS)
Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.
2014-05-01
We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of {1}{ × 10^{-11}}textrm { m}/sqrt{textrm {Hz}}. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of {5.7}{ × 10^{-9}}textrm { rad}/sqrt{textrm {Hz}} at 10 mHz and {6.4}{ × 10^{-10}}textrm { rad}/sqrt{textrm {Hz}} at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Bardakov, R. N.
2018-02-01
By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2015-11-01
Low edge safety factor operation at a value less than two (q (a) = 1 /ttot (a) < 2) is routine on the Compact Toroidal Hybrid device. Presently, the operational space of this current carrying stellarator extends down to q (a) = 1 . 2 without significant n = 1 kink mode activity after the initial plasma current rise of the discharge. The disruption dynamics of these low q (a) plasmas depend upon the fraction of rotational transform produced by external stellarator coils to that generated by the plasma current. We observe that when about 10% of the total rotational transform is supplied by the stellarator coils, low q (a) disruptions are passively suppressed and avoided even though q (a) < 2 . When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, mode numbers of m / n = 3 / 2 and 4 / 3 observed by external magnetic sensors, and m / n = 1 / 1 activity observed by core soft x-ray emissivity measurements. Even though q (a) passes through and becomes much less than two, external n = 1 kink mode activity does not appear to play a significant role in the observed disruption phenomenology. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyu
2018-05-01
A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.
Characterization of topological phases of dimerized Kitaev chain via edge correlation functions
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu
2017-11-01
We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.
Shift-, rotation-, and scale-invariant shape recognition system using an optical Hough transform
NASA Astrophysics Data System (ADS)
Schmid, Volker R.; Bader, Gerhard; Lueder, Ernst H.
1998-02-01
We present a hybrid shape recognition system with an optical Hough transform processor. The features of the Hough space offer a separate cancellation of distortions caused by translations and rotations. Scale invariance is also provided by suitable normalization. The proposed system extends the capabilities of Hough transform based detection from only straight lines to areas bounded by edges. A very compact optical design is achieved by a microlens array processor accepting incoherent light as direct optical input and realizing the computationally expensive connections massively parallel. Our newly developed algorithm extracts rotation and translation invariant normalized patterns of bright spots on a 2D grid. A neural network classifier maps the 2D features via a nonlinear hidden layer onto the classification output vector. We propose initialization of the connection weights according to regions of activity specifically assigned to each neuron in the hidden layer using a competitive network. The presented system is designed for industry inspection applications. Presently we have demonstrated detection of six different machined parts in real-time. Our method yields very promising detection results of more than 96% correctly classified parts.
Topological crystalline magnets: Symmetry-protected topological phases of fermions
Watanabe, Haruki; Fu, Liang
2017-02-27
Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property ( RT) 2 = -1 of the edge state. Finally, an anisotropic response to the externalmore » magnetic field can be an experimental signature.« less
Topological crystalline magnets: Symmetry-protected topological phases of fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Haruki; Fu, Liang
Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property ( RT) 2 = -1 of the edge state. Finally, an anisotropic response to the externalmore » magnetic field can be an experimental signature.« less
Template match using local feature with view invariance
NASA Astrophysics Data System (ADS)
Lu, Cen; Zhou, Gang
2013-10-01
Matching the template image in the target image is the fundamental task in the field of computer vision. Aiming at the deficiency in the traditional image matching methods and inaccurate matching in scene image with rotation, illumination and view changing, a novel matching algorithm using local features are proposed in this paper. The local histograms of the edge pixels (LHoE) are extracted as the invariable feature to resist view and brightness changing. The merits of the LHoE is that the edge points have been little affected with view changing, and the LHoE can resist not only illumination variance but also the polution of noise. For the process of matching are excuded only on the edge points, the computation burden are highly reduced. Additionally, our approach is conceptually simple, easy to implement and do not need the training phase. The view changing can be considered as the combination of rotation, illumination and shear transformation. Experimental results on simulated and real data demonstrated that the proposed approach is superior to NCC(Normalized cross-correlation) and Histogram-based methods with view changing.
NASA Astrophysics Data System (ADS)
Schouten, H.; Smith, D. K.
2005-12-01
Magellan and Trinidad microplates developed at the Mesozoic triple junction between the Pacific, Phoenix and Farallon plates; the microplates were instrumental in the transition from a transform-ridge-transform to a ridge-ridge-ridge triple junction, which took several tens of millions of years. Contrasting qualitative models for the evolution of these microplates [e.g., Tamaki and Larson, 1988; Nakanishi et al., 1992] provide meager insight in the mechanics of microplate evolution and triple junction transformation. We propose a quantitative model for the evolution of Magellan and Trinidad microplates based on the edge-driven microplate kinematic principles [Schouten et al., 1993] that have provided successful quantitative solutions for the motions of Easter, Juan Fernandez, and Galapagos microplates. In these edge-driven solutions, two angular velocity vectors (describing motion between microplate and driving plates) are located on the microplate boundaries at the tip of rifts that propagate between microplate and driving plates. The rift propagation leaves pseudofaults on microplate and driving plates; the pseudofaults, which can be recognized in the seafloor topography, then become proxies for the trajectories of the angular velocity vectors from which a quantitative solution of microplate motion is derived. Using the estimated seafloor topography of the region and published marine magnetic anomaly lineations we propose the following scenario. The Magellan microplate rotated counterclockwise as evidenced by the fanning of magnetic lineations about the Magellan Trough and the rotation of the older Mid-Pac Mountains lineation set. The Trinidad microplate rotated clockwise relative to the Pacific plate to judge from the wedge-shaped region about the Trinidad trough that has its narrow tip on the Victoria fracture zone (recognized in the estimated seafloor topograpy). The clockwise motion of the Trinidad microplate was driven by Pacific-Phoenix motion; the counterclockwise motion of the Magellan microplate by Pacific-Farallon motion. Thus the Magellan trough opened between the counter-rotating Trinidad and Magellan microplates, similar to the opening of Hess Deep between two counter-rotating Galapagos microplates at the present Galapagos triple junction [Klein et al., 2005]. When the northeastward propagating rift between the Trindad microplate and the Phoenix plate and the southward propagating rift between the Magellan microplate and the Farallon plate broke through to the Phoenix-Farallon spreading center, a new ridge-ridge-ridge triple junction was established between the Pacific, Phoenix and Farallon plates and the Trinidad and Magellan microplates ceased rotating and were abandoned on the Pacific plate.
NASA Astrophysics Data System (ADS)
Haskey, Shaun; Grierson, Brian; Ashourvan, Arash; Battaglia, Devon; Chrystal, Colin; Burrell, Keith; Groebner, Richard; Degrassie, John; Stagner, Luke; Stoltzfus-Dueck, Timothy; Pablant, Novimir
2017-10-01
A new edge main-ion (D+) CER system and upgraded edge impurity system are revealing clear differences between the main-ion and dominant impurity (C6+) toroidal rotation from the pedestal top to the scrape off layer on DIII-D with implications for intrinsic rotation studies. A peaked co-current edge toroidal rotation is observed for the main ion species near the outboard midplane separatrix with values up to 140 km/s for low collisionality QH modes. In lower power (PNBI = 0.8MW) H-modes the edge rotation is still present but reduced to 50km/s. D+ and C6+ toroidal rotation differences are presented for a variety of scenarios covering a significant range of edge collisionality and Ti. Observations are compared with predictions from several models including collisionless ion orbit loss calculations and more complete modeling using the XGC0 code, which also predicts 140km/s edge rotation for low collisionality QH mode cases. Work supported by the U.S. DOE under DE-AC02-09CH11466, No. DE-FC02-04ER54698, and DE-FC02-95ER54309.
Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.
Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M
2009-04-17
For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.
Sun, Harold Huimin; Hanna, Dave; Zhang, Jizhong; Hu, Liangjun; Krivitzky, Eric M.; Larosiliere, Louis M.; Baines, Nicholas C.
2013-08-27
In one example, a turbocharger for an internal combustion engine is described. The turbocharger comprises a casing containing an impeller having a full blade coupled to a hub that rotates about an axis of rotation. The casing includes a bleed port and an injection port. The full blade includes a hub edge, a casing edge, and a first distribution of angles, each angle measured between the axis of rotation and a mean line at the hub edge at a meridional distance along the hub edge. The full blade includes a second distribution of angles, each angle measured between the axis of rotation and a mean line at the casing edge at a meridional distance along the casing edge. Further, various systems are described for affecting the aerodynamic properties of the compressor and turbine components in a way that may extend the operating range of the turbocharger.
Ashbaugh, Fred N.; Murry, Kenneth R.
1988-12-27
A boring tool and a method of operation are provided for boring two concentric holes of precision diameters and depths in a single operation. The boring tool includes an elongated tool body, a shank for attachment to a standard adjustable boring head which is used on a manual or numerical control milling machine and first and second diametrically opposed cutting edges formed for cutting in opposite directions. The diameter of the elongated tool body is substantially equal to the distance from the first cutting edge tip to the axis of rotation plus the distance from the second cutting edge tip to the axis of rotation. The axis of rotation of the tool is spaced from the tool centerline a distance substantially equal to one-half the distance from the second cutting edge tip to the axis of rotation minus one-half the distance from the first cutting edge tip to the axis of rotation. The method includes the step of inserting the boring tool into the boring head, adjusting the distance between the tool centerline and the tool axis of rotation as described above and boring the two concentric holes.
Rotatable crucible for rapid solidification process
NASA Technical Reports Server (NTRS)
Gaspar, Thomas (Inventor)
1990-01-01
This invention relates to an apparatus for producing filament, fiber, ribbon or film from a molten material, comprising a preferably heat extracting crucible which contains a pool of molten material at a selected horizontal level in the pool. The crucible has an opening extending from above the free surface level to a bottom edge of the opening, the bottom edge being sufficiently below the free surface level so that the molten material cannot form and hold a meniscus by surface tension between the edge and the level of the free surface and further comprises a heat extracting substrate laterally disposed with respect to the crucible and which rotates about an axis of rotation. The substrate is positioned adjacent the edge of the opening which confines the molten material and prevents it from overflowing downwardly out of the crucible. The invention features rotating means which includes a first drive means for tiltably rotating the crucible about an axis of rotation which is coaxial with the axis of rotation of the substrate, so the crucible edge can be maintained a predetermined constant distance from the substrate. The distance chosen is suitable for depositing molten material on the substrate and the apparatus also has a second drive means which is drivingly connected to the substrate for continuously moving the surface of the substrate upwardly past the edge and a melt front formed at the interface of the molten material and the substrate surface.
Non-resonant divertors for stellarators
NASA Astrophysics Data System (ADS)
Boozer, Allen; Punjabi, Alkesh
2017-10-01
The outermost confining magnetic surface in optimized stellarators has sharp edges, which resemble tokamak X-points. The plasma cross section has an even number of edges at the beginning but an odd number half way through the period. Magnetic field lines cannot cross sharp edges, but stellarator edges have a finite length and do not determine the rotational transform on the outermost confining surface. Just outside the last confining surface, surfaces formed by magnetic field lines have splits containing two adjacent magnetic flux tubes: one with entering and the other with an equal existing flux to the walls. The splits become wider with distance outside the outermost confining surface. These flux tubes form natural non-resonant stellarator divertors, which we are studying using maps. This work is supported by the US DOE Grants DE-FG02-95ER54333 to Columbia University and DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-.
Miniature Trailing Edge Effector for Aerodynamic Control
NASA Technical Reports Server (NTRS)
Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)
2008-01-01
Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.
Optimization of Kink Stability in High-Beta Quasi-axisymmetric Stellarators
NASA Astrophysics Data System (ADS)
Fu, G. Y.; Ku, L.-P.; Manickam, J.; Cooper, W. A.
1998-11-01
A key issue for design of Quasi-axisymmetric stellarators( A. Reiman et al, this conference.) (QAS) is the stability of external kink modes driven by pressure-induced bootstrap current. In this work, the 3D MHD stability code TERPSICHORE(W.A. Cooper, Phys. Plasmas 3), 275(1996). is used to calculate the stability of low-n external kink modes in a high-beta QAS. The kink stability is optimized by adjusting plasma boundary shape (i.e., external coil configuration) as well as plasma pressure and current profiles. For this purpose, the TERPSICHORE code has been implemented successfully in an optimizer which maximizes kink stability as well as quasi-symmetry. A key factor for kink stability is rotational transform profile. It is found that the edge magnetic shear is strongly stabilizing. The amount of the shear needed for complete stabilization increases with edge transform. It is also found that the plasma boundary shape plays an important role in the kink stability besides transform profile. The physics mechanisms for the kink stability are being studied by examining the contributions of individual terms in δ W of the energy principle: the field line bending term, the current-driven term, the pressure-driven term, and the vacuum term. Detailed results will be reported.
Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D
Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...
2016-09-30
A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge ExB rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. And at the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by ≤60%) and width (by ≤50%). We posit that themore » enhanced edge turbulence-driven transport, enabled by the lower edge ExB flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8≤ρ≤0.9) owing to increased ExB flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. Our findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.« less
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.
2016-07-01
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ⩽ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E × B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.
Likelihood of Entanglement when Materials are Dropped Vertically onto a Rotating PTO Knuckle.
Schwab, Charles V; Rempe, Isaac J
2017-11-20
Power take-off (PTO) is a common method of transferring power from a tractor to a towed piece of machinery. The PTO is also a well-documented cause of severe and often permanent disabling injuries to farm operators. The physical conditions that cause entanglements are not well established. Several studies have explored the parameters of PTO entanglements as materials have been drawn across a rotating PTO knuckle to test for entanglement probability. The objective of this study was to determine probability of entanglement when materials are dropped vertically onto a PTO knuckle spinning at 540 rpm. A total of 360 randomized trials were conducted with ten replications for each of the six positions (center of yoke, edge of yoke rotating downward, edge of yoke rotating upward, center of cross, edge of cross rotating downward, and edge of cross rotating upward) and six different materials (woven cotton athletic shoe lace, cotton workboot lace, leather workboot lace, cotton twine, denim strip, and Tyvek strip). Not a single entanglement was recorded. Dramatic high-speed video imagery authenticated the material's motion and path as it interacted with the rotating PTO knuckle. Copyright© by the American Society of Agricultural Engineers.
Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Osborne, T. H.; Solomon, W. M.; Barada, K.; Garofalo, A. M.; Groebner, R. J.; Luhmann, N. C.; McKee, G. R.; Muscatello, C. M.; Ono, M.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Staebler, G. M.; Tobias, B. J.; Yan, Z.; the DIII-D Team
2017-02-01
A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge E × B rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. At the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by ⩽60%) and width (by ⩽50%). We posit that the enhanced edge turbulence-driven transport, enabled by the lower edge E × B flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8 ⩽ ρ ⩽0.9) owing to increased E × B flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. These findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E; Stowell, Elbridge Z
1942-01-01
A chart is presented for the values of the coefficient in the formula for the critical compressive stress at which buckling may be expected to occur in flat rectangular plates supported along all edges and, in addition, elastically restrained against rotation along the unloaded edges. The mathematical derivations of the formulas required in the construction of the chart are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashbaugh, F.N.; Murry, K.R.
A method of boring two concentric holes of different depths is described utilizing an elongated boring tool having a tool axis of rotation, a longitudinally disposed tool centerline axis, and first and second transverse cutting edges at one end thereof extending across the boring tool, the second cutting edge being longitudinally rearwardly recessed with respect to the first cutting edge. The method consists of inserting the boring tool into an adjustable boring head, adjusting a distance B between the tool centerline axis and the tool axis of rotation such that the tool axis of rotation intersects a first boring areamore » of the first cutting edge; and boring the concentric holes having respectively larger and smaller diameters.« less
Effect of toroidal field ripple on plasma rotation in JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vries, P.; Salmi, A.; Parail, V.
Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude ( ) from an average value of M = 0.40 0.55 for operations at the standard JET ripple of = 0.08% to M = 0.25 0.40 for = 0.5% and M = 0.1 0.3 for = 1%. TF ripple effectsmore » should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes ( ~ 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.« less
Geometric correction method for 3d in-line X-ray phase contrast image reconstruction
2014-01-01
Background Mechanical system with imperfect or misalignment of X-ray phase contrast imaging (XPCI) components causes projection data misplaced, and thus result in the reconstructed slice images of computed tomography (CT) blurred or with edge artifacts. So the features of biological microstructures to be investigated are destroyed unexpectedly, and the spatial resolution of XPCI image is decreased. It makes data correction an essential pre-processing step for CT reconstruction of XPCI. Methods To remove unexpected blurs and edge artifacts, a mathematics model for in-line XPCI is built by considering primary geometric parameters which include a rotation angle and a shift variant in this paper. Optimal geometric parameters are achieved by finding the solution of a maximization problem. And an iterative approach is employed to solve the maximization problem by using a two-step scheme which includes performing a composite geometric transformation and then following a linear regression process. After applying the geometric transformation with optimal parameters to projection data, standard filtered back-projection algorithm is used to reconstruct CT slice images. Results Numerical experiments were carried out on both synthetic and real in-line XPCI datasets. Experimental results demonstrate that the proposed method improves CT image quality by removing both blurring and edge artifacts at the same time compared to existing correction methods. Conclusions The method proposed in this paper provides an effective projection data correction scheme and significantly improves the image quality by removing both blurring and edge artifacts at the same time for in-line XPCI. It is easy to implement and can also be extended to other XPCI techniques. PMID:25069768
Edge-driven microplate kinematics
Schouten, Hans; Klitgord, Kim D.; Gallo, David G.
1993-01-01
It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.
Chavan, Satishkumar S; Mahajan, Abhishek; Talbar, Sanjay N; Desai, Subhash; Thakur, Meenakshi; D'cruz, Anil
2017-02-01
Neurocysticercosis (NCC) is a parasite infection caused by the tapeworm Taenia solium in its larvae stage which affects the central nervous system of the human body (a definite host). It results in the formation of multiple lesions in the brain at different locations during its various stages. During diagnosis of such symptomatic patients, these lesions can be better visualized using a feature based fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This paper presents a novel approach to Multimodality Medical Image Fusion (MMIF) used for the analysis of the lesions for the diagnostic purpose and post treatment review of NCC. The MMIF presented here is a technique of combining CT and MRI data of the same patient into a new slice using a Nonsubsampled Rotated Complex Wavelet Transform (NSRCxWT). The forward NSRCxWT is applied on both the source modalities separately to extract the complementary and the edge related features. These features are then combined to form a composite spectral plane using average and maximum value selection fusion rules. The inverse transformation on this composite plane results into a new, visually better, and enriched fused image. The proposed technique is tested on the pilot study data sets of patients infected with NCC. The quality of these fused images is measured using objective and subjective evaluation metrics. Objective evaluation is performed by estimating the fusion parameters like entropy, fusion factor, image quality index, edge quality measure, mean structural similarity index measure, etc. The fused images are also evaluated for their visual quality using subjective analysis with the help of three expert radiologists. The experimental results on 43 image data sets of 17 patients are promising and superior when compared with the state of the art wavelet based fusion algorithms. The proposed algorithm can be a part of computer-aided detection and diagnosis (CADD) system which assists the radiologists in clinical practices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Automatic Detection of Frontal Face Midline by Chain-coded Merlin-Farber Hough Trasform
NASA Astrophysics Data System (ADS)
Okamoto, Daichi; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka
We propose a novel approach for detection of the facial midline (facial symmetry axis) from a frontal face image. The facial midline has several applications, for instance reducing computational cost required for facial feature extraction (FFE) and postoperative assessment for cosmetic or dental surgery. The proposed method detects the facial midline of a frontal face from an edge image as the symmetry axis using the Merlin-Faber Hough transformation. And a new performance improvement scheme for midline detection by MFHT is present. The main concept of the proposed scheme is suppression of redundant vote on the Hough parameter space by introducing chain code representation for the binary edge image. Experimental results on the image dataset containing 2409 images from FERET database indicate that the proposed algorithm can improve the accuracy of midline detection from 89.9% to 95.1 % for face images with different scales and rotation.
Helicons, magnetoplasma edge, and faraday rotation in solid state plasmas at microwave frequencies.
Furdyna, J K
1967-04-01
The effect of magnetic field on propagation of electromagnetic waves through free carrier plasmas in semiconductors is discussed. The Faraday configuration and the parameter ranges omega(c),omega(p) > omega and omega(c) > tau(-1) are specifically considered. Dispersion of helicon waves, propagation near the magnetoplasma edge (omega(p)(2) = omegaomega(c)), and the Faraday rotation are developed in terms of the one-electron Drude theory. Microwave transmission measurements at 35 Gc/s on n-type InSb are presented. Experiments near the magnetoplasma edge yield the value of the static dielectric constant of the InSb lattice K(l) = 19.3 +/- 0.8. Faraday rotation, observed beyond the edge, is found to be extremely large. Some practical possibilities for this effect are considered.
Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne
2018-01-01
The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.
Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.
2018-05-01
In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI < 4 MW. At higher NBI power, the experimental rotation is observed to saturate and even degrade compared to theory. TRANSP-NUBEAM simulations performed for the database show that for discharges with nominally balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.
Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong
2015-08-05
Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.
Design & fabrication of two seated aircraft with an advanced rotating leading edge wing
NASA Astrophysics Data System (ADS)
Al Ahmari, Saeed Abdullah Saeed
The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.
Experimental investigation of trailing edge noise from stationary and rotating airfoils
Zajamsek, Branko; Doolan, Con J.; Moreau, Danielle J.; Fischer, Jeoffrey; Prime, Zebb
2017-01-01
Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions. PMID:28599535
Experimental investigation of trailing edge noise from stationary and rotating airfoils.
Zajamsek, Branko; Doolan, Con J; Moreau, Danielle J; Fischer, Jeoffrey; Prime, Zebb
2017-05-01
Trailing edge noise from stationary and rotating NACA 0012 airfoils is characterised and compared with a noise prediction based on the semi-empirical Brooks, Pope, and Marcolini (BPM) model. The NACA 0012 is symmetrical airfoil with no camber and 12% thickness to chord length ratio. Acoustic measurements were conducted in an anechoic wind tunnel using a stationary NACA 0012 airfoil at 0° pitch angle. Airfoil self-noise emissions from rotating NACA 0012 airfoils mounted at 0° and 10° pitch angles on a rotor-rig are studied in an anechoic room. The measurements were carried out using microphone arrays for noise localisation and magnitude estimation using beamforming post-processing. Results show good agreement between peak radiating trailing edge noise emissions of stationary and rotating NACA 0012 airfoils in terms of the Strouhal number. Furthermore, it is shown that noise predictions based on the BPM model considering only two dimensional flow effects, are in good agreement with measurements for rotating airfoils, at these particular conditions.
Matsushima, Kyoji
2008-07-01
Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.
NASA Astrophysics Data System (ADS)
Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.
2015-11-01
A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.
Feng, Tian; Zhang, Zhongqiu; Ji, Zhiguang; Jia, Binbin; Li, Yawei
2017-01-01
It is well established that motor expertise is linked to superior mental rotation ability, but few studies have attempted to explain the factors that influence the stages of mental rotation in sport experts. Some authors have argued that athletes are faster in the perceptual and decision stages but not in the rotation stages of object-based transformations; however, stimuli related to sport have not been used to test mental rotation with egocentric transformations. Therefore, 24 adolescent elite divers and 23 adolescent nonathletes completed mental rotation tasks with object-based and egocentric transformations. The results showed faster reaction times (RTs) for the motor experts in tasks with both types of transformations (object-based cube, object-based body, and egocentric body). Additionally, the differences in favour of motor experts in the perceptual and decision stages were confirmed. Interestingly, motor experts also outperformed nonathletes in the rotation stages in the egocentric transformations. These findings are discussed against the background of the effects of sport expertise on mental rotation. PMID:29071008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickoren, D.R.
1990-02-27
This patent describes an impeller for pumping highly viscous liquids. It comprises: a substantially circular drive plate having first and second sides, a geometric center, and a marginal edge. The drive plate being adapted for rotation within a pump housing; a plurality of symmetrical, evenly spaced blades extending radially outwardly to present a tip. Each of the blades being connected only to the drive plate and extending substantially normal thereto to present a sharpened top edge opposite the drive plate. Each of the blades including a leading face corresponding to the direction of rotation of the impeller during operation andmore » a trailing face oriented away from a direction of rotation of the impeller during operation thereof. Each of the blades including winglet means secured to the leading face thereof and located intermediate aid top edge and the drive plate and positioned more proximate to the top edge than to the drive plate.« less
NASA Astrophysics Data System (ADS)
Palano, M.; Piromallo, C.; Chiarabba, C.
2017-01-01
Dense GPS observations can help Earth scientists to capture the surface imprint of mantle toroidal flow at slab edges. We document this process in the Calabrian subduction system, where the Ionian slab rollback took place during the past 30 Ma, following a stepwise process driven by migration of lithospheric tearing. We found rotation rates of 1.29°/Ma (counterclockwise) and 1.74°/Ma (clockwise), for poles located close to the northern and southern slab edges, respectively. These small-scale, opposite rotations occur along complex sets of active faults representing the present-day lithospheric expression of the tearing processes affecting the southeastward retreating Ionian slab at both edges. The observed rotations are likely still young and the process more immature at the northern tear, where it is unable to reorient mantle fabric and therefore is unseen by SKS splitting.
ELM-free and inter-ELM divertor heat flux broadening induced by edge harmonics oscillation in NSTX
Gan, K. F.; Ahn, J. -W.; Gray, T. K.; ...
2017-10-26
A new n =1 dominated edge harmonic oscillation (EHO) has been found in NSTX. The new EHO, rotating toroidally in the counter-current direction and the opposite direction of the neutral beam, was observed during certain inter-ELM and ELM-free periods of H-mode operation. This EHO is associated with a significant broadening of the integral heat flux width (more » $${{\\lambda}_{\\operatorname{int}}}$$ ) by up to 150%, and a decrease in the divertor peak heat flux by >60%. An EHO induced filament was also observed by the gas puff imaging diagnostic. The toroidal rotating filaments could change the edge magnetic topology resulting in toroidal rotating strike point splitting and heat flux broadening. Finally, experimental result of the counter current rotation of strike points splitting is consistent with the counter-current EHO.« less
Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team
2018-03-01
The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.; ...
2016-06-21
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less
NASA Astrophysics Data System (ADS)
Laura, P. A. A.; Avalos, D. R.
2008-05-01
The Rayleigh-Ritz variational method is applied to the determination of the first four frequency coefficients for small amplitude, transverse vibrations of circular plates with an eccentric, rectangular perforation that is elastically restrained against rotation and translation on both edges. Coordinate functions are used which identically satisfy the boundary conditions at the outer circular edge, while the restraining boundary conditions at the inner edge of the cutout are dealt with directly through the energetic terms in the functional expressions. The procedure seems to show very good numerical stability and convergence properties. As an added bonus, the method allows for increased flexibility in dealing with boundary conditions at the edge of the cutout.
On the leading edge vortex of thin wings
NASA Astrophysics Data System (ADS)
Arredondo, Abel; Viola, Ignazio Maria
2016-11-01
On thin wings, the sharp leading edge triggers laminar separation followed by reattachment, forming a Leading Edge Vortex (LEV). This flow feature is of paramount importance because, if periodically shed, it leads to large amplitude load fluctuations, while if stably attached to the wing, it can provide lift augmentation. We found that on asymmetric-spinnaker-type yacht sails, the LEV can be stable despite the relatively low sweep (30°). This finding, which was recently predicted numerically by Viola et al., has been confirmed through current flume tests on a 1:115th model scale sail. Forces were measured and Particle Image Velocimetry was performed on four horizontal sail sections at a Reynolds number of 1.7x104. Vortex detection revealed that the LEV becomes progressively larger and more stable towards the highest sections, where its axis has a smaller angle with respect to the freestream velocity. Mapping the sail section on a rotating cylinder through a Joukowski transformation, we quantified the lift augmentation provided by the LEV on each sail section. These results open up new sail design strategies based on the manipulation of the LEV and can be applicable to the wings of unmanned aerial vehicles and underwater vehicles. Project funded by Conacyt.
NASA Astrophysics Data System (ADS)
Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.
2016-08-01
The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.
Edge localized mode rotation and the nonlinear dynamics of filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, J. A.; Bécoulet, M.; Garbet, X.
2016-04-15
Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal,more » grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.« less
Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.
2015-11-01
In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.
Calculation of vortex lift effect for cambered wings by the suction analogy
NASA Technical Reports Server (NTRS)
Lan, C. E.; Chang, J. F.
1981-01-01
An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.
The Unruh effect for eccentric uniformly rotating observers
NASA Astrophysics Data System (ADS)
Ramezani-Aval, H.
It is common to use Galilean rotational transformation (GRT) to investigate the Unruh effect for uniformly rotating observers. However, the rotating observer in this subject is an eccentric observer while GRT is only valid for centrally rotating observers. Thus, the reliability of the results of applying GRT to the study of the Unruh effect might be considered as questionable. In this work, the rotational analog of the Unruh effect is investigated by employing two relativistic rotational transformations corresponding to the eccentric rotating observer, and it is shown that in both cases, the detector response function is nonzero. It is also shown that although consecutive Lorentz transformations cannot give a frame within which the canonical construction can be carried out, the expectation value of particle number operator in canonical approach will be zero if we use modified Franklin transformation. These conclusions reinforce the claim that correspondence between vacuum states defined via canonical field theory and a detector is broken for rotating observers. Some previous conclusions are commented on and some controversies are also discussed.
Energy functions for regularization algorithms
NASA Technical Reports Server (NTRS)
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
A model of attention-guided visual perception and recognition.
Rybak, I A; Gusakova, V I; Golovan, A V; Podladchikova, L N; Shevtsova, N A
1998-08-01
A model of visual perception and recognition is described. The model contains: (i) a low-level subsystem which performs both a fovea-like transformation and detection of primary features (edges), and (ii) a high-level subsystem which includes separated 'what' (sensory memory) and 'where' (motor memory) structures. Image recognition occurs during the execution of a 'behavioral recognition program' formed during the primary viewing of the image. The recognition program contains both programmed attention window movements (stored in the motor memory) and predicted image fragments (stored in the sensory memory) for each consecutive fixation. The model shows the ability to recognize complex images (e.g. faces) invariantly with respect to shift, rotation and scale.
Iris recognition using image moments and k-means algorithm.
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
Iris Recognition Using Image Moments and k-Means Algorithm
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%. PMID:24977221
Perception of Invariance Over Perspective Transformations in Five Month Old Infants.
ERIC Educational Resources Information Center
Gibson, Eleanor; And Others
This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…
NASA Astrophysics Data System (ADS)
Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin
2018-01-01
ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.
Ab initio study of edge effect on relative motion of walls in carbon nanotubes
NASA Astrophysics Data System (ADS)
Popov, Andrey M.; Lebedeva, Irina V.; Knizhnik, Andrey A.; Lozovik, Yurii E.; Potapkin, Boris V.
2013-01-01
Interwall interaction energies of double-walled nanotubes with long inner and short outer walls are calculated as functions of coordinates describing relative rotation and displacement of the walls using van der Waals corrected density functional theory. The magnitude of corrugation and the shape of the potential energy relief are found to be very sensitive to changes of the shorter wall length at subnanometer scale and atomic structure of the edges if at least one of the walls is chiral. Threshold forces required to start relative motion of the short walls and temperatures at which the transition between diffusive and free motion of the short walls takes place are estimated. The edges are also shown to provide a considerable contribution to the barrier to relative rotation of commensurate nonchiral walls. For such walls, temperatures of orientational melting, i.e., the crossover from rotational diffusion to free relative rotation, are estimated. The possibility to produce nanotube-based bolt/nut pairs and nanobearings is discussed.
Wang, Xuyi; Peng, Jianping; Li, De; Zhang, Linlin; Wang, Hui; Jiang, Leisheng; Chen, Xiaodong
2016-10-04
The success of Bernese periacetabular osteotomy depends significantly on how extent the acetabular fragment can be corrected to its optimal position. This study was undertaken to investigate whether correcting the acetabular fragment into the so-called radiological "normal" range is the best choice for all developmental dysplasia of the hip with different severities of dysplasia from the biomechanical view? If not, is there any correlation between the biomechanically optimal position of the acetabular fragment and the severity of dysplasia? Four finite element models with different severities of dysplasia were developed. The virtual periacetabular osteotomy was performed with the acetabular fragment rotated anterolaterally to incremental center-edge angles; then, the contact area and pressure and von Mises stress in the cartilage were calculated at different correction angles. The optimal position of the acetabular fragment for patients 1, 2, and 3 was when the acetabular fragment rotated 17° laterally (with the lateral center-edge angle of 36° and anterior center-edge angle of 58°; both were slightly larger than the "normal" range), 25° laterally following further 5° anterior rotation (with the lateral center-edge angle of 31° and anterior center-edge angle of 51°; both were within the "normal" range), and 30° laterally following further 10° anterior rotation (with the lateral center-edge angle of 25° and anterior center-edge angle of 40°; both were less than the "normal" range), respectively. The optimal corrective position of the acetabular fragment is severity dependent rather than within the radiological "normal" range for developmental dysplasia of the hip. We prudently proposed that the optimal correction center-edge angle of mild, moderate, and severe developmental dysplasia of the hip is slightly larger than the "normal" range, within the "normal" range, and less than the lower limit of the "normal" range, respectively.
Advanced tokamak research with integrated modeling in JT-60 Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, N.
2010-05-15
Researches on advanced tokamak (AT) have progressed with integrated modeling in JT-60 Upgrade [N. Oyama et al., Nucl. Fusion 49, 104007 (2009)]. Based on JT-60U experimental analyses and first principle simulations, new models were developed and integrated into core, rotation, edge/pedestal, and scrape-off-layer (SOL)/divertor codes. The integrated models clarified complex and autonomous features in AT. An integrated core model was implemented to take account of an anomalous radial transport of alpha particles caused by Alfven eigenmodes. It showed the reduction in the fusion gain by the anomalous radial transport and further escape of alpha particles. Integrated rotation model showed mechanismsmore » of rotation driven by the magnetic-field-ripple loss of fast ions and the charge separation due to fast-ion drift. An inward pinch model of high-Z impurity due to the atomic process was developed and indicated that the pinch velocity increases with the toroidal rotation. Integrated edge/pedestal model clarified causes of collisionality dependence of energy loss due to the edge localized mode and the enhancement of energy loss by steepening a core pressure gradient just inside the pedestal top. An ideal magnetohydrodynamics stability code was developed to take account of toroidal rotation and clarified a destabilizing effect of rotation on the pedestal. Integrated SOL/divertor model clarified a mechanism of X-point multifaceted asymmetric radiation from edge. A model of the SOL flow driven by core particle orbits which partially enter the SOL was developed by introducing the ion-orbit-induced flow to fluid equations.« less
Helical axis stellarator with noninterlocking planar coils
Reiman, A.; Boozer, A.H.
1984-03-06
The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.
Vortex leading edge flap assembly for supersonic airplanes
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C. (Inventor)
1997-01-01
A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.
ERIC Educational Resources Information Center
Baily, Supriya; Stribling, Stacia M.; McGowan, Chandra L.
2014-01-01
This article explores how teachers' perceptions of social justice issues are developed through experiential learning opportunities and maps their transformations in thinking onto the three levels of responsibility identified by Berger's "growing edge." The study looked at where teachers were on the growing edge and examples of how they…
A novel algorithm for osteoarthritis detection in Hough domain
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Poria, Nilanjan; Chakraborty, Rajanya; Pratiher, Sawon; Mukherjee, Sukanya; Panigrahi, Prasanta K.
2018-02-01
Background subtraction of knee MRI images has been performed, followed by edge detection through canny edge detector. In order to avoid the discontinuities among edges, Daubechies-4 (Db-4) discrete wavelet transform (DWT) methodology is applied for the smoothening of edges identified through canny edge detector. The approximation coefficients of Db-4, having highest energy is selected to get rid of discontinuities in edges. Hough transform is then applied to find imperfect knee locations, as a function of distance (r) and angle (θ). The final outcome of the linear Hough transform is a two-dimensional array i.e., the accumulator space (r, θ) where one dimension of this matrix is the quantized angle θ and the other dimension is the quantized distance r. A novel algorithm has been suggested such that any deviation from the healthy knee bone structure for diseases like osteoarthritis can clearly be depicted on the accumulator space.
Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J.H.; Kim, M.S.
The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching processmore » revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.« less
Extraction of linear features on SAR imagery
NASA Astrophysics Data System (ADS)
Liu, Junyi; Li, Deren; Mei, Xin
2006-10-01
Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.
Magnetic bucket for rotating unmagnetized plasma.
Katz, Noam; Collins, Cami; Wallace, John; Clark, Mike; Weisberg, David; Jara-Almonte, Jon; Reese, Ingrid; Wahl, Carl; Forest, Cary
2012-06-01
A new experiment is described which generates flow in unmagnetized plasma. Confinement is provided by a cage of permanent magnets, arranged to form an axisymmetric, high-order, multipolar magnetic field. This field configuration-sometimes called a "magnetic bucket"-has a vanishingly small field in the core of the experiment. Toroidal rotation is driven by J × B forces applied in the magnetized edge. The cross-field current that is required for this forcing flows from anodes to thermionic cathodes, which are inserted between the magnet rings. The rotation at the edge reaches 3 km/s and is viscously coupled to the unmagnetized core plasma. We describe the conditions necessary for rotation, as well as a 0-dimensional power balance used to understand plasma confinement in the experiment.
NASA Technical Reports Server (NTRS)
Aharonyan, P.
1980-01-01
Modifications to a 16 inch STC automated saw included: a programmable feed system; a crystal rotating system; and a STC dynatrack blade boring and control system. By controlling the plating operation and by grinding the cutting edge, 16 inch I.D. blades were produced with a cutting edge thickness of .22 mm. Crystal rotation mechanism was used to slice 100 mm diameter crystals with a 16 inch blade down to a thickness of .20 mm. Cutting rates with crystal rotation were generally slower than with standard plunge I.D. slicing techniques. Using programmed feeds and programmed rotation, maximum cutting rates were from 0.3 to 1.0 inches per minute.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones
2004-05-01
The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.
Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs
NASA Astrophysics Data System (ADS)
Snyder, P. B.
2004-11-01
Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).
Focusing optical waves with a rotationally symmetric sharp-edge aperture
NASA Astrophysics Data System (ADS)
Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang
2018-04-01
While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.
Turbine blade and non-integral platform with pin attachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Christian X; Eng, Darryl; Marra, John J
Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less
Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites
Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J.; Lee, Jooseop; Ruff, Jacob P. C.; Ko, J. Y. Peter; Brown, Craig M.; Harriger, Leland W.; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J.; Lee, Seung-Hun
2017-01-01
Long carrier lifetime is what makes hybrid organic–inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic–inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance. PMID:28673975
Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.
Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun
2017-07-18
Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.
Turbine blade and non-integral platform with pin attachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Christian Xavier; Eng, Darryl; Marra, John J.
2016-08-02
Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pinmore » attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.« less
Little, David A.
2013-04-16
A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.
Effect of Magnetic Islands on Divertors in Tokamaks and Stellarators
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Boozer, Allen
2017-10-01
Divertors are required for handling the plasma particle and heat exhausts on the walls in fusion plasmas. Relatively simple methods, models, and maps from field line Hamiltonian are developed to better understand the interaction of strong plasma shaping and magnetic islands on the size and behavior of the magnetic flux tubes that go from the plasma edge to the wall in non-axisymmetric system. This approach is applicable not only in tokamaks but also in stellarators. Stellarator diverters in which magnetic islands are dominant are called resonant and when shaping is dominant are called non-resonant. Optimized stellarators generally have sharp edges on their surface, but unlike the case for tokamaks these edges do not encircle the entire plasma, so they do not define an edge value for the rotational transform. The approach is used in the DIII-D tokamak. Computation results are consistent with the predictions of the models. Further simulations are being done to understand why the transition from an effective cubic to a linear increase in loss time and area of footprint occurs and whether this increase is discontinuous or not. This work is supported by the US DOE Grants DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and DE-FG02-95ER54333 to Columbia University. This research used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Mola Ebrahimi, S.; Arefi, H.; Rasti Veis, H.
2017-09-01
Our paper aims to present a new approach to identify and extract building footprints using aerial images and LiDAR data. Employing an edge detector algorithm, our method first extracts the outer boundary of buildings, and then by taking advantage of Hough transform and extracting the boundary of connected buildings in a building block, it extracts building footprints located in each block. The proposed method first recognizes the predominant leading orientation of a building block using Hough transform, and then rotates the block according to the inverted complement of the dominant line's angle. Therefore the block poses horizontally. Afterwards, by use of another Hough transform, vertical lines, which might be the building boundaries of interest, are extracted and the final building footprints within a block are obtained. The proposed algorithm is implemented and tested on the urban area of Zeebruges, Belgium(IEEE Contest,2015). The areas of extracted footprints are compared to the corresponding areas in the reference data and mean error is equal to 7.43 m2. Besides, qualitative and quantitative evaluations suggest that the proposed algorithm leads to acceptable results in automated precise extraction of building footprints.
Oh, Joo Han; McGarry, Michelle H; Jun, Bong Jae; Gupta, Akash; Chung, Kyung Chil; Hwang, James; Lee, Thay Q
2012-11-01
Complete repair in massive rotator cuff tear may not be possible, allowing for only partial repair. However, the effect of partial repair on glenohumeral biomechanics has not been evaluated. Therefore, the purpose of this study was to compare the rotational range of motion (ROM), glenohumeral kinematics, and gap formation at the repaired tendon edge following massive cuff tear and repair according to the degree of repair completion. Posterior fixation will restore the altered biomechanics of massive rotator cuff tear. Controlled laboratory study. Eight cadaveric shoulders were tested at 0°, 30°, and 60° of abduction in the scapular plane. Muscle loading was applied based on physiological muscle cross-sectional area ratios. Maximum internal (MaxIR) and external rotations (MaxER) were measured. Humeral head apex (HHA) position and gap formation at the repaired tendon edge were measured using a MicroScribe from MaxIR to MaxER in 30° increments. Testing was performed for intact, massive cuff tear, complete repair, and 4 types of partial repair. A repeated-measures analysis of variance was used to determine significant differences. Massive tear significantly increased ROM and shifted HHA superiorly in MaxIR at all abduction angles (P < .05). The complete repair restored ROM to intact (P < .05), while all partial repairs did not. Abnormal HHA elevation due to massive tear was restored by all repairs (P < .05). Release of the anterior single row alone and release of the marginal convergence significantly increased gap formation at the anterior tendon edge (P < .05). This study emphasizes the importance of anterior fixation in massive cuff tear to restore rotational range of motion and decrease gap formation at the repaired tendon edge and of posterior fixation to restore abnormal glenohumeral kinematics due to massive cuff tear. If complete repair of massive cuff tear is not possible, posterior cuff (infraspinatus) repair is necessary to restore abnormal glenohumeral kinematics, and margin convergence anteriorly is recommended to decrease gap formation of the repaired tendon edge, which may provide a better biomechanical environment for healing.
Evolution of Edge Pedestal Profiles Between ELMs
NASA Astrophysics Data System (ADS)
Floyd, J. P.; Stacey, W. M.; Groebner, R. J.
2012-10-01
The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).
(d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States
NASA Astrophysics Data System (ADS)
Song, Zhida; Fang, Zhong; Fang, Chen
2017-12-01
We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.
Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...
2017-06-14
New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E×B shear required for the EHO decreases linearly with pedestal collisionalitymore » $$\
Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.
Punys, Vytenis; Maknickas, Ramunas
2011-01-01
Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.
NASA Technical Reports Server (NTRS)
Squires, Becky
1993-01-01
The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.
Forward rotor vortex effects on counter rotating propeller noise
NASA Technical Reports Server (NTRS)
Laur, Michele; Squires, Becky; Nagel, Robert T.
1992-01-01
Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.
Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing
2017-06-01
Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.
Statistical Analysis to Develop a Three-Dimensional Surface Model of a Midsize-Male Foot
2013-10-31
alignment of the landmarks was conducted to remove differences in posture, particularly rotation about the...edge of long underwear cuff at midline of ankle 59 9 CuffInfEdge_MalleolusLateral Interior edge of long underwear cuff superior to lateral malleolus...60 0 CuffInfEdge_AnkleMidline_Posterior Posterior-inferior edge of long underwear cuff at midline of ankle 61 1 CuffInfEdge_MalleolusMedial Interior
O'Dwyer Lancaster-Jones, O; Williams, S; Jennings, L M; Thompson, J; Isaac, G H; Fisher, J; Al-Hajjar, M
2017-09-23
The aim of this study was to develop a preclinical in vitro method to predict the occurrence and severity of edge loading condition associated with the dynamic separation of the centres of the head and cup (in the absence of impingement) for variations in surgical positioning of the cup. Specifically, this study investigated the effect of both the variations in the medial-lateral translational mismatch between the centres of the femoral head and acetabular cup and the variations in the cup inclination angles on the occurrence and magnitude of the dynamic separation, the severity of edge loading, and the wear rate of ceramic-on-ceramic hip replacement bearings in a multi-station hip joint simulator during a walking gait cycle. An increased mismatch between the centres of rotation of the femoral head and acetabular cup resulted in an increased level of dynamic separation and an increase in the severity of edge loading condition which led to increased wear rate in ceramic-on-ceramic bearings. Additionally for a given translational mismatch, an increase in the cup inclination angle gave rise to increased dynamic separation, worst edge loading conditions, and increased wear. To reduce the occurrence and severity of edge loading, the relative positions (the mismatch) of the centres of rotation of the head and the cup should be considered alongside the rotational position of the acetabular cup. This study has considered the combination of mechanical and tribological factors for the first time in the medial-lateral axis only, involving one rotational angle (inclination) and one translational mismatch. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform
NASA Astrophysics Data System (ADS)
Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.
2017-12-01
In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.
Factors influencing perceived angular velocity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Calderone, Jack B.
1991-01-01
Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Validation of Kinetic-Turbulent-Neoclassical Theory for Edge Intrinsic Rotation in DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Ashourvan, Arash
2017-10-01
Recent experiments on DIII-D with low-torque neutral beam injection (NBI) have provided a validation of a new model of momentum generation in a wide range of conditions spanning L- and H-mode with direct ion and electron heating. A challenge in predicting the bulk rotation profile for ITER has been to capture the physics of momentum transport near the separatrix and steep gradient region. A recent theory has presented a model for edge momentum transport which predicts the value and direction of the main-ion intrinsic velocity at the pedestal-top, generated by the passing orbits in the inhomogeneous turbulent field. In this study, this model-predicted velocity is tested on DIII-D for a database of 44 low-torque NBI discharges comprised of bothL- and H-mode plasmas. For moderate NBI powers (PNBI<4 MW), model prediction agrees well with the experiments for both L- and H-mode. At higher NBI power the experimental rotation is observed to saturate and even degrade compared to theory. TRANSP-NUBEAM simulations performed for the database show that for discharges with nominally balanced - but high powered - NBI, the net injected torque through the edge can exceed 1 N.m in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Projecting to the ITER baseline scenario, this model predicts a value for the pedestal-top rotation (ρ 0.9) comparable to 4 kRad/s. Using the theory modeled - and now tested - velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER. Supported by the US DOE under DE-AC02-09CH11466 and DE-FC02-04ER54698.
Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.
Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong
2017-11-01
Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.
Domingo, Olwen; Hellmuth, Isabell; Jäschke, Andres; Kreutz, Christoph; Helm, Mark
2015-01-01
Propargyl groups are attractive functional groups for labeling purposes, as they allow CuAAC-mediated bioconjugation. Their size minimally exceeds that of a methyl group, the latter being frequent in natural nucleotide modifications. To understand under which circumstances propargyl-containing oligodeoxynucleotides preserve base pairing, we focused on the exocyclic amine of cytidine. Residues attached to the exocyclic N4 may orient away from or toward the Watson–Crick face, ensuing dramatic alteration of base pairing properties. ROESY-NMR experiments suggest a uniform orientation toward the Watson–Crick face of N4-propargyl residues in derivatives of both deoxycytidine and 5-methyl-deoxycytidine. In oligodeoxynucleotides, however, UV-melting indicated that N4-propargyl-deoxycytidine undergoes standard base pairing. This implies a rotation of the propargyl moiety toward the ‘CH’-edge as a result of base pairing on the Watson–Crick face. In oligonucleotides containing the corresponding 5-methyl-deoxycytidine derivative, dramatically reduced melting temperatures indicate impaired Watson–Crick base pairing. This was attributed to a steric clash of the propargyl moiety with the 5-methyl group, which prevents back rotation to the ‘CH’-edge, consequently preventing Watson–Crick geometry. Our results emphasize the tendency of an opposing nucleic acid strand to mechanically rotate single N4-substituents to make way for Watson–Crick base pairing, providing no steric hindrance is present on the ‘CH’-edge. PMID:25934805
Displacements and evolution of optical vortices in edge-diffracted Laguerre-Gaussian beams
NASA Astrophysics Data System (ADS)
Bekshaev, Aleksandr; Chernykh, Aleksey; Khoroshun, Anna; Mikhaylovskaya, Lidiya
2017-05-01
Based on the Kirchhoff-Fresnel approximation, we consider the behavior of optical vortices (OV) upon propagation of diffracted Laguerre-Gaussian (LG) beams with topological charge ∣m∣ = 1, 2. Under conditions of weak diffraction perturbation (i.e. the diffraction obstacle covers only the far transverse periphery of the incident LG beam), these OVs describe almost perfect 3D spirals within the diffracted beam body, which is an impressive demonstration of the helical nature of an OV beam. The far-field OV positions within the diffracted beam cross section depend on the wavefront curvature of the incident OV beam, so that the input wavefront curvature is transformed into the output azimuthal OV rotation. The results are expected to be useful in OV metrology and OV beam diagnostics.
Low Reynolds Number Wing Transients in Rotation and Translation
NASA Astrophysics Data System (ADS)
Jones, Anya; Schlueter, Kristy
2012-11-01
The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.
Principle and analysis of a rotational motion Fourier transform infrared spectrometer
NASA Astrophysics Data System (ADS)
Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning
2017-09-01
Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.
Resnick, Ilyse; Shipley, Thomas F
2013-05-01
The current study examines the spatial skills employed in different spatial reasoning tasks, by asking how science experts who are practiced in different types of visualizations perform on different spatial tasks. Specifically, the current study examines the varieties of mental transformations. We hypothesize that there may be two broad classes of mental transformations: rigid body mental transformations and non-rigid mental transformations. We focus on the disciplines of geology and organic chemistry because different types of transformations are central to the two disciplines: While geologists and organic chemists may both confront rotation in the practice of their profession, only geologists confront brittle transformations. A new instrument was developed to measure mental brittle transformation (visualizing breaking). Geologists and organic chemists performed similarly on a measure of mental rotation, while geologists outperformed organic chemists on the mental brittle transformation test. The differential pattern of skill on the two tests for the two groups of experts suggests that mental brittle transformation and mental rotation are different spatial skills. The roles of domain general cognitive resources (attentional control, spatial working memory, and perceptual filling in) and strategy in completing mental brittle transformation are discussed. The current study illustrates how ecological and interdisciplinary approaches complement traditional cognitive science to offer a comprehensive approach to understanding the nature of spatial thinking.
Neoclassical poloidal and toroidal rotation in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.B.; Diamond, P.H.; Groebner, R.J.
1991-08-01
Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less
Measurement of the edge plasma rotation on J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Z. F.; Luo, J.; Wang, Z. J.
2013-07-15
A multi-channel high resolution spectrometer was developed for the measurement of the edge plasma rotation on J-TEXT tokamak. With the design of two opposite viewing directions, the poloidal and toroidal rotations can be measured simultaneously, and velocity accuracy is up to 1 km/s. The photon flux was enhanced by utilizing combined optical fiber. With this design, the time resolution reaches 3 ms. An assistant software “Spectra Assist” was developed for implementing the spectrometer control and data analysis automatically. A multi-channel monochromatic analyzer is designed to get the location of chosen ions simultaneously through the inversion analysis. Some preliminary experimental resultsmore » about influence of plasma density, different magnetohydrodynamics behaviors, and applying of biased electrode are presented.« less
All-electric spin modulator based on a two-dimensional topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xianbo; Ai, Guoping; Liu, Ying
2016-01-18
We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less
A model for size- and rotation-invariant pattern processing in the visual system.
Reitboeck, H J; Altmann, J
1984-01-01
The mapping of retinal space onto the striate cortex of some mammals can be approximated by a log-polar function. It has been proposed that this mapping is of functional importance for scale- and rotation-invariant pattern recognition in the visual system. An exact log-polar transform converts centered scaling and rotation into translations. A subsequent translation-invariant transform, such as the absolute value of the Fourier transform, thus generates overall size- and rotation-invariance. In our model, the translation-invariance is realized via the R-transform. This transform can be executed by simple neural networks, and it does not require the complex computations of the Fourier transform, used in Mellin-transform size-invariance models. The logarithmic space distortion and differentiation in the first processing stage of the model is realized via "Mexican hat" filters whose diameter increases linearly with eccentricity, similar to the characteristics of the receptive fields of retinal ganglion cells. Except for some special cases, the model can explain object recognition independent of size, orientation and position. Some general problems of Mellin-type size-invariance models-that also apply to our model-are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinsky, B; Patel, R; Roeske, J
Purpose: To evaluate the inherent accuracy of using a surface guided radiotherapy system (SGRT) in the setup and monitoring of patients receiving stereotactic radiosurgery with an open-face SRS immobilization system. Methods: An anthropomorphic head phantom was set up using the Qfix Encompass SRS Immobilization System on a Varian Edge with OSMS and Varian TrueBeam with AlignRT. The phantom was positioned at 0° gantry and couch. A reference image was acquired using the SGRT system and an ROI was created over the mask opening. The couch and gantry were rotated to different combinations focusing on clinically used SRS gantry/couch combinations andmore » those blocking the SGRT cameras. Perceived surface deviation by the SGRT system from the reference image was recorded. A Winston-Lutz test was performed on couch angles tested and used to exclude couch walkout. The deviation magnitude was calculated using translational values and rotational raw values were recorded. Results: The maximum couch walkouts were: 0.4mm (Edge) and 0.5mm (TB). Solely rotating the gantry resulted in a median couch deviation of 0.2mm and range of 0.1–0.3mm for both linacs. Only rotating the couch (0° gantry) resulted in median deviations of 0.6mm and 0.5mm with ranges of 0.3–1.0mm and 0.3–0.7mm for the Edge and TB, respectively. Combining gantry and couch rotations, the median deviations were 0.7mm and 0.9mm with ranges of 0.3–1.1mm and 0.2–1.9mm for the Edge and TB, respectively. Including all combinations, rotation, roll, and pitch median deviations ranged from 0.1–0.3° with pitch demonstrating consistently higher values and a maximum deviation of 1.0° (both linacs). Conclusion: SGRT is a reliable monitoring tool, though taking into account system fluctuations, 1mm is too restrictive a site tolerance to use with the Qfix Encompass mask. Gantry rotation has little effect on system fluctuation even with camera blockage, whereas couch rotation has a larger effect.« less
NASA Astrophysics Data System (ADS)
Sam, Ashish Alex; Ghosh, Parthasarathi
2017-02-01
Turboexpanders in cryogenic refrigeration and liquefaction cycles, which is of radial inflow configuration, constitute stationary and rotating components like nozzle, a rotating wheel and a diffuser. The relative motion between the stationary and rotating components and the interactions of secondary flows and vortices at different stages make the turboexpander flow unsteady. Computational Fluid Dynamics (CFD) analysis of this flow is essential to identify the scope for improvement in efficiency. The trailing edge vortex formed due to the mixing of the pressure and suction side streams is an important phenomenon to analyse, as this leads to efficiency degradation of the machine. Additionally, there are mechanical vibrations and dynamic loading associated with. This flow non-uniformity at the exit should be suppressed as this may affect the pressure recovery process in the diffuser and thereby the turboexpander’s performance. The strength of this vortex depends upon the geometrical parameters like trailing edge shape, thickness etc. In this paper, transient CFD analyses of a cryogenic turboexpander designed for helium refrigeration and liquefaction cycles using Ansys CFX® were performed to investigate the effect of trailing edge thickness on the turboexpander performance and the performance characteristics and the flow patterns were compared to understand the flow characteristics in each case.
Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing
2016-10-01
The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.
Rotating flow of a nanofluid due to an exponentially stretching surface with suction
NASA Astrophysics Data System (ADS)
Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md
2017-08-01
An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.
NASA Astrophysics Data System (ADS)
Zhu, Kaicheng; Tang, Huiqin; Tang, Ying; Xia, Hui
2014-12-01
We proposed a scheme that converts a sine-Gaussian beam with an edge dislocation into a dark hollow beam with a vortex. Based on the gyrator transform (GT) relation, the closed-form field distribution of generalized sine-Gaussian beams passing through a GT system is derived; the intensity distribution and the corresponding phase distribution associated with the transforming generalized sine-Gaussian beams are analyzed. According to the numerical method, the distributions are graphically demonstrated and found that, for appropriate beam parameters and the GT angle, dark hollow vortex beams with topological charge 1 can be achieved using sine-Gaussian beams carrying an edge dislocation. Moreover, the orbital angular momentum content of a GT sine-Gaussian beam is analyzed. It is proved that the GT retains the odd- or even-order spiral harmonics structures of generalized sine-Gaussian beams in the transform process. In particular, it is wholly possible to convert an edge dislocation embedded in sine-Gaussian beams into a vortex with GT. The study also reveals that to obtain a dark hollow beam making use of GT of cos-Gaussian beams is impossible.
Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting
NASA Astrophysics Data System (ADS)
Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.
2018-03-01
The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.
Poster - Thur Eve - 77: Coordinate transformation from DICOM to DOSXYZnrc.
Zhan, L; Jiang, R; Osei, E K
2012-07-01
DICOM format is the de facto standard for communications between therapeutic and diagnostic modalities. A plan generated by a treatment planning system (TPS) is often exported to DICOM format. BEAMnrc/DOSXYZnrc is a widely used Monte Carlo (MC) package for beam and dose simulations in radiotherapy. It has its own definition for beam orientation, which is not in compliance with the one defined in DICOM standard. Dose simulations using TPS generated plans require transformation of beam orientations to DOSXYZnrc coordinate system (c.s.) after extracting the necessary parameters from DICOM RP files. The transformation is nontrivial. There have been two studies for the coordinate transformations. The transformation equation sets derived have been helpful to BEAMnrc/DOSXYZnrc users. However, both the transformation equation sets are complex mathematically and not easy to program. In this study, we derive a new set of transformation equations, which are more compact, better understandable, and easier for computational implementation. The derivation of polar angle θ and azimuthal angle φ is similar to the existing studies by applying a series of rotations to a vector in DICOM patient c.s. The derivation of beam rotation Φ col for DOSXYZnrc, however, is different. It is obtained by a direct combination of the actual collimator rotation with the projection of the couch rotation to the collimator rotating plane. Verification of the transformation has been performed using clinical plans created with Eclipse. The comparison between Eclipse and MC results show exact geometrical agreement for field placements, together with good agreement in dose distributions. © 2012 American Association of Physicists in Medicine.
Beam coordinate transformations from DICOM to DOSXYZnrc
NASA Astrophysics Data System (ADS)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
2012-12-01
Digital imaging and communications in medicine (DICOM) format is the de facto standard for communications between therapeutic and diagnostic modalities. A plan generated by a treatment planning system (TPS) is often exported in DICOM format. BEAMnrc/DOSXYZnrc is a widely used Monte Carlo (MC) package for modelling the Linac head and simulating dose delivery in radiotherapy. It has its own definition of beam orientation, which is not in compliance with the one defined in the DICOM standard. MC dose calculations using information from TPS generated plans require transformation of beam orientations to the DOSXYZnrc coordinate system (c.s.) and the transformation is non-trivial. There have been two studies on the coordinate transformations. The transformation equation sets derived have been helpful to BEAMnrc/DOSXYZnrc users. However, the transformation equation sets are complex mathematically and not easy to program. In this study, we derive a new set of transformation equations, which are more compact, easily understandable, and easier for computational implementation. The derivation of the polar angle θ and the azimuthal angle φ used by DOSXYZnrc is similar to the existing studies by applying a series of rotations to a vector in DICOM patient c.s. The derivation of the beam rotation ϕcol for DOSXYZnrc, however, is different. It is obtained by a direct combination of the actual collimator rotation with the projection of the couch rotation to the collimator rotating plane. Verification of the transformation has been performed using clinical plans. The comparisons between TPS and MC results show very good geometrical agreement for field placements, together with good agreement in dose distributions.
Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot
Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul
2016-01-01
This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance. PMID:27490549
Improved liquid-film electron stripper
Gavin, B.F.
1984-11-01
An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one side of the disc's periphery and with highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90/sup 0/ angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.
Gavin, Basil F.
1986-01-01
An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.
Retaining latch for a water pit gate
Beale, A.R.
1997-11-18
A retaining latch is described for use in a hazardous materials storage or handling facility to adjustably retain a water pit gate in a gate frame. A retaining latch is provided comprising a latch plate which is rotatably mounted to each end of the top of the gate and a recessed opening, formed in the gate frame, for engaging an edge of the latch plate. The latch plate is circular in profile with one side cut away or flat, such that the latch plate is D-shaped. The remaining circular edge of the latch plate comprises steps of successively reduced thickness. The stepped edge of the latch plate fits inside a recessed opening formed in the gate frame. As the latch plate is rotated, alternate steps of the latch plate are engaged by the recessed opening. When the latch plate is rotated such that the flat portion of the latch plate faces the recessed opening in the gate frame, there is no connection between the opening and the latch plate and the gate is unlatched from the gate frame. 4 figs.
Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun
2010-07-01
An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.
Band-edge enhancement of magneto-optical rotation in a 1-d polymer lattice
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, James; Mao, Guilin; Bishop, Aaron; Comeau, Kyle; Livingston, Ryan; Shakya, Bijayandra
2010-04-01
Faraday rotation, the rotation of the polarization of light propagating along an applied magnetic field, can be enhanced by modifying the dispersion relationship. We develop the theory and computational tools necessary to understand the enhancement measured in recent experiments conducted at YSU using a multilayer of polystyrene and PMMA prepared by the CLiPS NSF Center at CWRU.
Aquarium Portal Technique for PASTA Lesion Repair.
Meyer, Dominik C; Gerber, Christian; Familiari, Filippo
2017-10-01
The simultaneous arthroscopic exposure of the subacromial and intra-articular space of the shoulder is challenging in the presence of only partial-thickness rotator cuff tears. We present our experience and method of entering the joint through the opened rotator cuff interval from an anterosuperior portal between the coracoid process and anterior acromion. With moderate (approximately 30°) abduction and external rotation, the rotator interval opens readily, offering a view with the camera toward the anterior edge of the supraspinatus tendon. An anterior view on the anterior leading edge of the supraspinatus tendon is obtained, showing the subacromial space above and the glenohumeral space below the tendon, similar to the view in an aquarium. The rotator cuff can be elevated using a rod inserted intra-articularly from posterior, whereas anchors and other instruments may be inserted from lateral. This approach offers the advantages of full exposure of the posterior undersurface of the rotator cuff insertion; a convenient approximately 90° angle between the camera and instruments; and no need to change portals for anchor placement, tendon stitching, or suture handling. The objective of this Technical Note is to describe our arthroscopic repair approach (aquarium technique) to PASTA (partial articular supraspinatus tendon avulsion) lesions.
Sound source localization on an axial fan at different operating points
NASA Astrophysics Data System (ADS)
Zenger, Florian J.; Herold, Gert; Becker, Stefan; Sarradj, Ennes
2016-08-01
A generic fan with unskewed fan blades is investigated using a microphone array method. The relative motion of the fan with respect to the stationary microphone array is compensated by interpolating the microphone data to a virtual rotating array with the same rotational speed as the fan. Hence, beamforming algorithms with deconvolution, in this case CLEAN-SC, could be applied. Sound maps and integrated spectra of sub-components are evaluated for five operating points. At selected frequency bands, the presented method yields sound maps featuring a clear circular source pattern corresponding to the nine fan blades. Depending on the adjusted operating point, sound sources are located on the leading or trailing edges of the fan blades. Integrated spectra show that in most cases leading edge noise is dominant for the low-frequency part and trailing edge noise for the high-frequency part. The shift from leading to trailing edge noise is strongly dependent on the operating point and frequency range considered.
Translation and Rotation of Transformation Media under Electromagnetic Pulse
Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile
2016-01-01
It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through. PMID:27321246
Translation and Rotation of Transformation Media under Electromagnetic Pulse.
Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile
2016-06-20
It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell's equations, which recently has spawned a booming field called 'transformation optics'. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.
A robust color image watermarking algorithm against rotation attacks
NASA Astrophysics Data System (ADS)
Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min
2018-01-01
A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.
A three dimensional point cloud registration method based on rotation matrix eigenvalue
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhou, Xiang; Fei, Zixuan; Gao, Xiaofei; Jin, Rui
2017-09-01
We usually need to measure an object at multiple angles in the traditional optical three-dimensional measurement method, due to the reasons for the block, and then use point cloud registration methods to obtain a complete threedimensional shape of the object. The point cloud registration based on a turntable is essential to calculate the coordinate transformation matrix between the camera coordinate system and the turntable coordinate system. We usually calculate the transformation matrix by fitting the rotation center and the rotation axis normal of the turntable in the traditional method, which is limited by measuring the field of view. The range of exact feature points used for fitting the rotation center and the rotation axis normal is approximately distributed within an arc less than 120 degrees, resulting in a low fit accuracy. In this paper, we proposes a better method, based on the invariant eigenvalue principle of rotation matrix in the turntable coordinate system and the coordinate transformation matrix of the corresponding coordinate points. First of all, we control the rotation angle of the calibration plate with the turntable to calibrate the coordinate transformation matrix of the corresponding coordinate points by using the least squares method. And then we use the feature decomposition to calculate the coordinate transformation matrix of the camera coordinate system and the turntable coordinate system. Compared with the traditional previous method, it has a higher accuracy, better robustness and it is not affected by the camera field of view. In this method, the coincidence error of the corresponding points on the calibration plate after registration is less than 0.1mm.
Thomas precession, Wigner rotations and gauge transformations
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Son, D.
1987-01-01
The exact Lorentz kinematics of the Thomas precession is discussed in terms of Wigner's O(3)-like little group which describes rotations in the Lorentz frame in which the particle is at rest. A Lorentz-covariant form for the Thomas factor is derived. It is shown that this factor is a Lorentz-boosted rotation matrix, which becomes a gauge transformation in the infinite-momentum or zero-mass limit.
Sountsov, Pavel; Santucci, David M; Lisman, John E
2011-01-01
Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated.
Sountsov, Pavel; Santucci, David M.; Lisman, John E.
2011-01-01
Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated. PMID:22125522
Controlling the plasmonic surface waves of metallic nanowires by transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yichao; Yuan, Jun; Yin, Ge
2015-07-06
In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.
NASA Astrophysics Data System (ADS)
Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Ma, Tzuhsuan; Shvets, Gennady
Electronic chiral edge states in Quantum Hall Effect systems has attracted a lot of attention in recent years because of its unique directionality and robustness against scattering from disorder. Its electromagnetic counterpart can be found in photonic crystals, which is a material with periodic dielectric constant. Here we present the experimental results demonstrating the unidirectional edge mode inside a bi-anisotropic meta-waveguide (BMW) structure. It is a parallel plate waveguide with metal rods placed in a hexagonal lattice. Half of the rods are attached to the top plate while the other half are attached to the bottom plate creating a domain wall. The edge mode is excited by two loop antennas placed perpendicular to each other within one wavelength, generating a rotating magnetic dipole that couples to the left or right-going mode. The transmission measurement are taken along the BMW boundary and shows high transmission only around the edge, thus confirming the presence of an edge mode. We also demonstrated that very high directivity can be achieved when the input amplitude and phase of the two loop antennas are tuned properly This work is funded by the ONR under Grants No. N00014130474 and N000141512134, and the Center for Nanophysics and Advanced Materials (CNAM).
Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1991-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.
Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J
2018-01-30
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
NASA Astrophysics Data System (ADS)
Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-02-01
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
NASA Astrophysics Data System (ADS)
Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong
2016-01-01
Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oines, A; Oines, A; Kilian-Meneghin, J
2016-06-15
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Ego-rotation and object-rotation in major depressive disorder.
Chen, Jiu; Yang, Laiqi; Ma, Wentao; Wu, Xingqu; Zhang, Yan; Wei, Dunhong; Liu, Guangxiong; Deng, Zihe; Hua, Zhen; Jia, Ting
2013-08-30
Mental rotation (MR) performance provides a direct insight into a prototypical higher-level visuo-spatial cognitive operation. Previous studies suggest that progressive slowing with an increasing angle of orientation indicates a specific wing of object-based mental transformations in the psychomotor retardation that occurs in major depressive disorder (MDD). It is still not known, however, whether the ability of object-rotation is associated with the ability of ego-rotation in MDD. The present study was designed to investigate the level of impairment of mental transformation abilities in MDD. For this purpose we tested 33 MDD (aged 18-52 years, 16 women) and 30 healthy control subjects (15 women, age and education matched) by evaluating the performance of MDD subjects with regard to ego-rotation and object-rotation tasks. First, MDD subjects were significantly slower and made more errors than controls in mentally rotating hands and letters. Second, MDD and control subjects displayed the same pattern of response times to stimuli at various orientations in the letter task but not the hand task. Third, in particular, MDD subjects were significantly slower and made more errors during the mental transformation of hands than letters relative to control subjects and were significantly slower and made more errors in physiologically impossible angles than physiologically possible angles in the mental rotation hand task. In conclusion, MDD subjects present with more serious mental rotation deficits specific to the hand than the letter task. Importantly, deficits were more present during the mental transformation in outward rotation angles, thus suggesting that the mental imagery for hands and letters relies on different processing mechanisms which suggest a module that is more complex for the processing of human hands than for letters during mental rotation tasks. Our study emphasises the necessity of distinguishing different levels of impairment of action in MDD subjects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Semi-automated intra-operative fluoroscopy guidance for osteotomy and external-fixator.
Lin, Hong; Samchukov, Mikhail L; Birch, John G; Cherkashin, Alexander
2006-01-01
This paper outlines a semi-automated intra-operative fluoroscopy guidance and monitoring approach for osteotomy and external-fixator application in orthopedic surgery. Intra-operative Guidance module is one component of the "LegPerfect Suite" developed for assisting the surgical correction of lower extremity angular deformity. The Intra-operative Guidance module utilizes information from the preoperative surgical planning module as a guideline to overlay (register) its bone outline semi-automatically with the bone edge from the real-time fluoroscopic C-Arm X-Ray image in the operating room. In the registration process, scaling factor is obtained automatically through matching a fiducial template in the fluoroscopic image and a marker in the module. A triangle metal plate, placed on the operating table is used as fiducial template. The area of template image within the viewing area of the fluoroscopy machine is obtained by the image processing techniques such as edge detection and Hough transformation to extract the template from other objects in the fluoroscopy image. The area of fiducial template from fluoroscopic image is then compared with the area of the marker from the planning so as to obtain the scaling factor. After the scaling factor is obtained, the user can use simple operations by mouse to shift and rotate the preoperative planning to overlay the bone outline from planning with the bone edge from fluoroscopy image. In this way osteotomy levels and external fixator positioning on the limb can guided by the computerized preoperative plan.
Polarization Ratio Determination with Two Identical Linearly Polarized Antennas
2017-01-17
Fourier transform analysis of 21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be...deter- mined directly from a discrete Fourier transform (DFT) of (5). However, leakage between closely spaced DFT bins requires improving the... Fourier transform and a mechanical antenna rotation to separate the principal and opposite circular polarization components followed by a basis
Polarization splitter and polarization rotator designs based on transformation optics.
Kwon, Do-Hoon; Werner, Douglas H
2008-11-10
The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.
Three-dimensional flow visualization and vorticity dynamics in revolving wings
NASA Astrophysics Data System (ADS)
Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan
2013-01-01
We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-01-01
Summary Mosquitoes exhibit unique wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz) and with lower stroke amplitudes than any other insect group1. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects2, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report wing kinematics and solve the full Navier-Stokes equations using computational fluid dynamics with overset grids and validate our results with in vivo flow measurements. We show that, while familiar separated flow patterns are used by mosquitoes, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described flying animal. In total, there are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a novel form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half stroke, and are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well-suited to high-aspect ratio mosquito wings. PMID:28355184
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
NASA Astrophysics Data System (ADS)
Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.
2017-03-01
Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.
Edge coating apparatus with movable roller applicator for solar cell substrates
Pavani, Luca; Abas, Emmanuel
2012-12-04
A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.
Visual perception of axes of head rotation
Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.
2013-01-01
Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into the SCC frame. PMID:23919087
Extensional Tectonics of SW Anatolia In relation to Slab Edge Processes in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Kaymakci, N.; Özacar, A.; Langereis, C. G.; Ozkaptan, M.; Koç, A.; Uzel, B.; Gulyuz, E.; Sözbilir, H.
2017-12-01
The tectonics of SW Anatolia is expressed in terms of emplacement of Lycian Nappes during the Eocene to Middle Miocene and synconvergent extension as part of the Aegean-West Anatolian extensional tectonic regime. Recent studies identified that there is a tear in the northwards subducting African Oceanic lithosphere along the Pliny-Strabo Trenches (PST). Such tears are coined as Subduction Transform-Edge Propagator (STEP) faults developed high angle to trenches. Hypothetically, the evolution of a STEP fault is somewhat similar to strike-slip fault zones and resultant asymmetric role-back of the subducting slab leads to differential block rotations and back arc type extension on the overriding plate. Recent studies claimed that the tear along the PST propagated NE on-land and developed Fethiye-Burdur Fault/Shear Zone (FBFZ) in SW Turkey. We have conducted a rigorous paleomagnetic study containing more than 3000 samples collected from 88 locations and 11700 fault slip data sets from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene to test if FBFZ ever existed. The results show that there is slight (20°) counter-clockwise rotation distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, constructed paleostress configurations, along the so-called FBFZ and within the 300 km diameter of the proposed fault zone, indicated that almost all the faults that are parallel to subparallel to the zone are almost pure normal faults similar to earthquake focal mechanisms suggesting active extension in the region. It is important to note that we have not encountered any significant strike-slip motion parallel to so-called "FBFZ" to support presence and transcurrent nature of it. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking transfer faults, which are almost perpendicular to zone that accommodated extension and normal motion. We claim that the sinistral Fethiye Burdur Fault/shear (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault or a shear zone. This research is supported by TUBITAK - Grant Number 111Y239.
Modeling of ion orbit loss and intrinsic toroidal rotation with the COGENT code
NASA Astrophysics Data System (ADS)
Dorf, M.; Dorr, M.; Cohen, R.; Rognlien, T.; Hittinger, J.
2014-10-01
We discuss recent advances in cross-separatrix neoclassical transport simulations with COGENT, a continuum gyro-kinetic code being developed by the Edge Simulation Laboratory (ESL) collaboration. The COGENT code models the axisymmetric transport properties of edge plasmas including the effects of nonlinear (Fokker-Planck) collisions and a self-consistent electrostatic potential. Our recent work has focused on studies of ion orbit loss and the associated toroidal rotation driven by this mechanism. The results of the COGENT simulations are discussed and analyzed for the parameters of the DIII-D experiment. Work performed for USDOE at LLNL under Contract DE-AC52-07NA27344.
Mental Rotation in False Belief Understanding
ERIC Educational Resources Information Center
Xie, Jiushu; Cheung, Him; Shen, Manqiong; Wang, Ruiming
2018-01-01
This study examines the spontaneous use of embodied egocentric transformation (EET) in understanding false beliefs in the minds of others. EET involves the participants mentally transforming or rotating themselves into the orientation of an agent when trying to adopt his or her visuospatial perspective. We argue that psychological perspective…
Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.
2002-01-01
Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.
NASA Astrophysics Data System (ADS)
Mosher, Stephen G.; Audet, Pascal; L'Heureux, Ivan
2014-07-01
Tectonic plate reorganization at a subduction zone edge is a fundamental process that controls oceanic plate fragmentation and capture. However, the various factors responsible for these processes remain elusive. We characterize seismic anisotropy of the upper mantle in the Explorer region at the northern limit of the Cascadia subduction zone from teleseismic shear wave splitting measurements. Our results show that the mantle flow field beneath the Explorer slab is rotating anticlockwise from the convergence-parallel motion between the Juan de Fuca and the North America plates, re-aligning itself with the transcurrent motion between the Pacific and North America plates. We propose that oceanic microplate fragmentation is driven by slab stretching, thus reorganizing the mantle flow around the slab edge and further contributing to slab weakening and increase in buoyancy, eventually leading to cessation of subduction and microplate capture.
Improved DESI-MS Performance using Edge Sampling and aRotational Sample Stage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Van Berkel, Gary J
2008-01-01
The position of the surface to be analyzed relative to the sampling orifice or capillary into the mass spectrometer has been known to dramatically affect the observed signal levels in desorption electrospray ionization mass spectrometry (DESIMS). In analyses of sample spots on planar surfaces, DESI-MS signal intensities as much as five times greater were routinely observed when the bottom of the sampling capillary was appropriately positioned beneath the surface plane ( edge sampling") compared to when the capillary just touched the surface. To take advantage of the optimum "edge sampling" geometry and to maximize the number of samples that couldmore » be analyzed in this configuration, a rotational sample stage was integrated into a typical DESI-MS setup. The rapid quantitative determination of caffeine in two diet sport drinks (Diet Turbo Tea, Speed Stack Grape) spiked with an isotopically labeled internal standard demonstrated the utility of this approach.« less
Edge momentum transport by neutrals: an interpretive numerical framework
NASA Astrophysics Data System (ADS)
Omotani, J. T.; Newton, S. L.; Pusztai, I.; Viezzer, E.; Fülöp, T.; The ASDEX Upgrade Team
2017-06-01
Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6-2 \\text{N} \\text{m} are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.
Embodied mental rotation: a special link between egocentric transformation and the bodily self
Kaltner, Sandra; Riecke, Bernhard E.; Jansen, Petra
2014-01-01
This experiment investigated the influence of motor expertise on object-based versus egocentric transformations in a chronometric mental rotation task using images of either the own or another person’s body as stimulus material. According to the embodied cognition viewpoint, we hypothesized motor-experts to outperform non-motor experts specifically in the egocentric condition because of higher kinesthetic representation and motor simulations compared to object-based transformations. In line with this, we expected that images of the own body are solved faster than another person’s body stimuli. Results showed a benefit of motor expertise and representations of another person’s body, but only for the object-based transformation task. That is, this other-advantage diminishes in egocentric transformations. Since motor experts did not show any specific expertise in rotational movements, we concluded that using human bodies as stimulus material elicits embodied spatial transformations, which facilitates performance exclusively for egocentric transformations. Regarding stimulus material, the other-advantage ascribed to increased self-awareness-consciousness distracting attention-demanding resources, disappeared in the egocentric condition. This result may be due to the stronger link between the bodily self and motor representations compared to that emerging in object-based transformations. PMID:24917832
NASA Astrophysics Data System (ADS)
Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert
2016-04-01
The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction. One source of light for shading does show all morphologic features needed for description. Additionally, more details such as fault lines, overlaps and characteristic edges of complex shell structures are clearly detected by simply changing the illumination on the shaded digital surface model. In a further study, the potential of edge detection of the individual shells will be analyzed based on statistical analysis by keeping track of the local accumulative shading gradient. The results are compared to manually identified edges. In a following study phase, the detected edges will be improved by graph cut segmentation. We assume that this technique can lead to automatically extracted teaching set for object segmentation on a complex environment. The project is supported by the Austrian Science Fund (FWF P 25883-N29).
Jansen, Petra; Kaltner, Sandra
2014-01-01
In this study, mental rotation performance was assessed in both an object-based task, human figures and letters as stimuli, and in an egocentric-based task, a human figure as a stimulus, in 60 older persons between 60 and 71 years old (30 women, 30 men). Additionally all participants completed three motor tests measuring balance and mobility. The results show that the reaction time was slower for letters than for both human figure tasks and the mental rotation speed was faster over all for egocentric mental rotation tasks. Gender differences were found in the accuracy measurement, favoring males, and were independent of stimulus type, kind of transformation, and angular disparity. Furthermore, a regression analysis showed that the accuracy rate for object-based transformations with body stimuli could be predicted by gender and balance ability. This study showed that the mental rotation performance in older adults depends on stimulus type, kind of transformation, and gender and that performance partially relates to motor ability.
Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep
2017-04-01
Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Snyder, P. B.; Burrell, K. H.; Wilson, H. R.; Chu, M. S.; Fenstermacher, M. E.; Leonard, A. W.; Moyer, R. A.; Osborne, T. H.; Umansky, M.; West, W. P.; Xu, X. Q.
2007-08-01
Understanding the physics of the edge pedestal and edge localized modes (ELMs) is of great importance for ITER and the optimization of the tokamak concept. The peeling-ballooning model has quantitatively explained many observations, including ELM onset and pedestal constraints, in the standard H-mode regime. The ELITE code has been developed to efficiently evaluate peeling-ballooning stability for comparison with observation and predictions for future devices. We briefly review recent progress in the peeling-ballooning model, including experimental validation of ELM onset and pedestal height predictions, and nonlinear 3D simulations of ELM dynamics, which together lead to an emerging understanding of the physics of the onset and dynamics of ELMs in the standard intermediate to high collisionality regime. We also discuss new studies of the apparent power dependence of the pedestal, and studies of the impact of sheared toroidal flow. Recently, highly promising low collisionality regimes without ELMs have been discovered, including the quiescent H-mode (QH) and resonant magnetic perturbation (RMP) regimes. We present recent observations from the DIII-D tokamak of the density, shape and rotation dependence of QH discharges, and studies of the peeling-ballooning stability in this regime. We propose a model of the QH-mode in which the observed edge harmonic oscillation (EHO) is a saturated kink/peeling mode which is destabilized by current and rotation, and drives significant transport, allowing a near steady-state edge plasma. The model quantitatively predicts the observed density dependence and qualitatively predicts observed mode structure, rotation dependence and outer gap dependence. Low density RMP discharges are found to operate in a similar regime, but with the EHO replaced by an applied magnetic perturbation.
Characterization of the Atacama B-mode Search
NASA Astrophysics Data System (ADS)
Simon, S. M.; Raghunathan, S.; Appel, J. W.; Becker, D. T.; Campusano, L. E.; Cho, H. M.; Essinger-Hileman, T.; Ho, S. P.; Irwin, K. D.; Jarosik, N.; Kusaka, A.; Niemack, M. D.; Nixon, G. W.; Nolta, M. R.; Page, L. A.; Palma, G. A.; Parker, L. P.; Sievers, J. L.; Staggs, S. T.; Visnjic, K.
2014-07-01
The Atacama B-mode Search (ABS), which began observations in February of 2012, is a crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile. ABS is searching for the B-mode polarization spectrum of the cosmic microwave background (CMB) at large angular scales from multipole moments of ` ~ 50 ~ 500, a range that includes the primor- dial B-mode peak from inflationary gravity waves at ~ 100. The ABS focal plane consists of 240 pixels sensitive to 145 GHz, each containing two transition-edge sensor bolometers coupled to orthogonal polarizations with a planar ortho-mode transducer. An ambient-temperature con- tinuously rotating half-wave plate and 4 K optics make the ABS instrument unique. We discuss the characterization of the detector spectral responses with a Fourier transform spectrometer and demonstrate that the pointing model is adequate. We also present measurements of the beam from point sources and compare them with simulations.
Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges
Lemeshewsky, George P.; Schowengerdt, Robert A.
2000-01-01
Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.
Generation of dark hollow beams by using a fractional radial Hilbert transform system
NASA Astrophysics Data System (ADS)
Xie, Qiansen; Zhao, Daomu
2007-07-01
The radial Hilbert transform has been extend to the fractional field, which could be called the fractional radial Hilbert transform (FRHT). Using edge-enhancement characteristics of this transform, we convert a Gaussian light beam into a variety of dark hollow beams (DHBs). Based on the fact that a hard-edged aperture can be expanded approximately as a finite sum of complex Gaussian functions, the analytical expression of a Gaussian beam passing through a FRHT system has been derived. As a numerical example, the properties of the DHBs with different fractional orders are illustrated graphically. The calculation results obtained by use of the analytical method and the integral method are also compared.
Improved nine-node shell element MITC9i with reduced distortion sensitivity
NASA Astrophysics Data System (ADS)
Wisniewski, K.; Turska, E.
2017-11-01
The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell kinematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved transformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447-1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.
Propeller noise caused by blade tip radial forces
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1986-01-01
New experimental evidence which indicates the presence of leading edge and tip edge vortex flow on Prop-Fans is examined, and performance and noise consequences are addressed. It was shown that the tip edge vortex is a significant noise source, particularly for unswept Prop-Fan blades. Preliminary calculations revealed that the addition of the tip side edge source to single rotation Prop-Fans during take off conditions improved the agreement between experiment and theory at blade passing frequency. At high-speed conditions such as the Prop-Fan cruise point, the tip loading effect tends to cancel thickness noise.
Deterministic object tracking using Gaussian ringlet and directional edge features
NASA Astrophysics Data System (ADS)
Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.
2017-10-01
Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.
Characteristics of Low-q(a) Disruptions in the Compact Toroidal Hybrid
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Archmiller, M. C.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2014-10-01
Tokamak disruptions are dramatic events that lead to a sudden loss of plasma confinement. Disruptions that occur at low edge safety-factor, q (a) , limit the operation of tokamaks to q (a) >= 2 . The Compact Toroidal Hybrid (CTH) is a torsatron-tokamak hybrid with a helical field coil and vertical field coils to establish a stellartor equilibrium, while an ohmic coil induces plasma current. A feature of the CTH device is the ability to adjust the vacuum rotational transform, tvac (t =1/q ), by varying the ratio of current in the helical and toroidal field coils. The value of edge tvac can be varied from about 0.02 to 0.3 (qvac (a) ~ 50 to 3.3). Plasma discharges in CTH are routinely observed to operate with q (a) < 2 , and in some cases as low as q (a) ~ 1 . 1 . In CTH, low-q(a) disruptions are observed with a dominant m/n=3/2 precursor. The disruptivity of plasma discharges is over 80% when tvac (a) < 0 . 04 (qvac (a) < 25) and as tvac (a) is increased further, the disruptivity of the plasma discharges decreases. The disruptions are completely suppressed for tvac (a) > 0 . 07 (qvac (a) ~ 14) . This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Robust image region descriptor using local derivative ordinal binary pattern
NASA Astrophysics Data System (ADS)
Shang, Jun; Chen, Chuanbo; Pei, Xiaobing; Liang, Hu; Tang, He; Sarem, Mudar
2015-05-01
Binary image descriptors have received a lot of attention in recent years, since they provide numerous advantages, such as low memory footprint and efficient matching strategy. However, they utilize intermediate representations and are generally less discriminative than floating-point descriptors. We propose an image region descriptor, namely local derivative ordinal binary pattern, for object recognition and image categorization. In order to preserve more local contrast and edge information, we quantize the intensity differences between the central pixels and their neighbors of the detected local affine covariant regions in an adaptive way. These differences are then sorted and mapped into binary codes and histogrammed with a weight of the sum of the absolute value of the differences. Furthermore, the gray level of the central pixel is quantized to further improve the discriminative ability. Finally, we combine them to form a joint histogram to represent the features of the image. We observe that our descriptor preserves more local brightness and edge information than traditional binary descriptors. Also, our descriptor is robust to rotation, illumination variations, and other geometric transformations. We conduct extensive experiments on the standard ETHZ and Kentucky datasets for object recognition and PASCAL for image classification. The experimental results show that our descriptor outperforms existing state-of-the-art methods.
Advances in understanding quiescent H-mode plasmas in DIII-Da)
NASA Astrophysics Data System (ADS)
Burrell, K. H.; West, W. P.; Doyle, E. J.; Austin, M. E.; Casper, T. A.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Hyatt, A. W.; Jayakumar, R. J.; Kaplan, D. H.; Lao, L. L.; Leonard, A. W.; Makowski, M. A.; McKee, G. R.; Osborne, T. H.; Snyder, P. B.; Solomon, W. M.; Thomas, D. M.; Rhodes, T. L.; Strait, E. J.; Wade, M. R.; Wang, G.; Zeng, L.
2005-05-01
Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasing power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of ν* and βT bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.
Advances in understanding quiescent H-mode plasmas in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, K.H.; West, W.P.; Gohil, P.
2005-05-15
Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasingmore » power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of {nu}{sub *} and {beta}{sub T} bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.« less
Local phase space and edge modes for diffeomorphism-invariant theories
NASA Astrophysics Data System (ADS)
Speranza, Antony J.
2018-02-01
We discuss an approach to characterizing local degrees of freedom of a subregion in diffeomorphism-invariant theories using the extended phase space of Donnelly and Freidel [36]. Such a characterization is important for defining local observables and entanglement entropy in gravitational theories. Traditional phase space constructions for subregions are not invariant with respect to diffeomorphisms that act at the boundary. The extended phase space remedies this problem by introducing edge mode fields at the boundary whose transformations under diffeomorphisms render the extended symplectic structure fully gauge invariant. In this work, we present a general construction for the edge mode symplectic structure. We show that the new fields satisfy a surface symmetry algebra generated by the Noether charges associated with the edge mode fields. For surface-preserving symmetries, the algebra is universal for all diffeomorphism-invariant theories, comprised of diffeomorphisms of the boundary, SL(2, ℝ) transformations of the normal plane, and, in some cases, normal shearing transformations. We also show that if boundary conditions are chosen such that surface translations are symmetries, the algebra acquires a central extension.
NASA Astrophysics Data System (ADS)
Kamada, Y.; Yoshida, M.; Sakamoto, Y.; Koide, Y.; Oyama, N.; Urano, H.; Kamiya, K.; Suzuki, T.; Isayama, A.; JT-60 Team
2009-09-01
To understand key physics processes determining radial profiles of the kinetic plasma parameters in the advanced tokamak operation scenarios, correlations between the edge transport barrier (ETB) and the internal transport barrier (ITB) have been studied in the JT-60U tokamak device. It has been found that the edge pedestal poloidal beta, βp-ped, increases almost linearly with the total poloidal beta, βp-tot, over a wide range of the plasma current for type I ELMing H-mode plasmas, and this dependence becomes stronger with increasing triangularity. This dependence is not due to the profile stiffness, since the dependence is the same regardless of the existence of ITB. As the stored energy inside the ITB-foot radius (WITB) increases, the total thermal stored energy (Wth) increases and then the pedestal stored energy (Wped) increases. On the other hand, as Wped increases, the ELM penetration expands more inwards and finally reaches the ITB-foot radius. At this situation, the ITB-foot radius cannot move outwards because of the erosion by ELMs. Then the fractions of WITB/Wth and Wped/Wth become almost constant. It has also been found that the type I ELM expels/decreases the edge toroidal momentum larger than the edge ion thermal energy. The ELM penetration for the toroidal rotation tends to be deeper than that for the ion temperature and can exceed the ITB-foot radius. The ELM penetration is deeper for CO-rotating plasmas than CTR rotating plasmas. In both cases, the ELM penetration is deeper in the order of the toroidal rotation (Vt), the ion temperature (Ti) and then the electron temperature (Te). The L-H transition also changes the Vt profile more significantly than the Ti profile. At the L-H transition, the pedestal Vt shifts into the CTR-direction deeply and suddenly without a change in Ti, and then the pedestal Vt grows further together with a growth of the pedestal Ti in a slower timescale. Such changes in Vt by ELMs and L-H transitions may affect degradation/evolution of ITBs.
Theoretical prediction of a rotating magnon wave packet in ferromagnets.
Matsumoto, Ryo; Murakami, Shuichi
2011-05-13
We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.
Rotary Transformer Seals Power In
NASA Technical Reports Server (NTRS)
Studer, P. A.; Paulkovich, J.
1982-01-01
Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.
On the physics of the pressure and temperature gradients in the edge of tokamak plasmas
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2018-04-01
An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.
A discrete polar Stockwell transform for enhanced characterization of tissue structure using MRI.
Pridham, Glen; Steenwijk, Martijn D; Geurts, Jeroen J G; Zhang, Yunyan
2018-05-02
The purpose of this study was to present an effective algorithm for computing the discrete polar Stockwell transform (PST), investigate its unique multiscale and multi-orientation features, and explore potentially new applications including denoising and tissue segmentation. We investigated PST responses using both synthetic and MR images. Moreover, we compared the features of PST with both Gabor and Morlet wavelet transforms, and compared the PST with two wavelet approaches for denoising using MRI. Using a synthetic image, we also tested the edge effect of PST through signal-padding. Then, we constructed a partially supervised classifier using radial, marginal PST spectra of T2-weighted MRI, acquired from postmortem brains with multiple sclerosis. The classification involved three histology-verified tissue types: normal appearing white matter (NAWM), lesion, or other, along with 5-fold cross-validation. The PST generated a series of images with varying orientations or rotation-invariant scales. Radial frequencies highlighted image structures of different size, and angular frequencies enhanced structures by orientation. Signal-padding helped suppress boundary artifacts but required attention to incidental artifacts. In comparison, the Gabor transform produced more redundant images and the wavelet spectra appeared less spatially smooth than the PST. In addition, the PST demonstrated lower root-mean-square errors than other transforms in denoising and achieved a 93% accuracy for NAWM pixels (296/317), and 88% accuracy for lesion pixels (165/188) in MRI segmentation. The PST is a unique local spectral density-assessing tool which is sensitive to both structure orientations and scales. This may facilitate multiple new applications including advanced characterization of tissue structure in standard MRI. © 2018 International Society for Magnetic Resonance in Medicine.
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex
Singleton, Neal; Agius, Lewis; Andrews, Stephen
2017-01-01
Various radiographic measurements that describe humeral head coverage by the acromion and the effect on rotator cuff pathology have been reported. This study aimed to describe and validate a new radiographic measurement, the acromiohumeral centre edge angle (ACEA). We compared the ACEA on computed tomography (CT) and plain X-ray to determine whether X-ray is accurate for measuring this angle. We then compared the results from this control population with 107 patients with acute rotator cuff tears. We compared functional outcomes in rotator cuff tear patients to determine whether the ACEA has any effect on outcome after surgery. An intra- and inter-observer variability analysis was performed and we compared the ACEA to the acromial index (AI) on rotation X-rays. The ACEA was comparable on CT and plain X-ray and was most accurate when true anteroposterior glenohumeral X-rays were used (15.94° vs. 15.87° on CT, p = 0.476). The ACEA showed high intra- and inter-observer reproducibility and was unchanged on internal and external rotation X-rays (20.48 vs. 20.47, p = 0.842), whereas the AI was significantly different (0.74 vs. 0.70, p < 0.001). The ACEA was significantly higher in our rotator cuff tear patients than the control population (23.9° vs. 16.6°, p < 0.001), although a higher ACEA was not associated with poorer outcomes. The ACEA is a valid measurement for describing humeral head coverage by the acromion and can be accurately measured on plain radiographs with good reproducibility. It is unaffected by shoulder rotation and was significantly higher in patients with acute rotator cuff tears.
Mikhailova, E S; Slavutskaya, A V; Gerasimenko, N Yu
2012-08-30
The gender differences in accuracy, reaction time (RT) and amplitude of the early P1 and N1 components of ERPs during recognition of previously memorized objects after their spatial transformation were examined. We used three levels of the spatial transformation: a displacement of object details in radial direction, and a displacement in combination with rotation of the details by ±0° to 45° and ±45° to 90°. The accuracy and the RT data showed a similarity of task performance in males and females. The effect of rotation was significantly greater than the effect of simple displacement, and the accuracy decreased, and the RT increased with the rotation angle in both genders. At the same time we found significant sex differences in the early stage of visual processing. In males the P1 peak amplitude at the P3/P4 sites increased significantly during the recognition of spatially transformed objects, and the wider the angle of rotation the greater the P1 peak amplitude. In contrast, in females the P1 peak amplitude did not depend on the rotation of figure details. The N1 amplitude revealed no gender differences, although the object transformation evoked somewhat greater changes in the N1 at the O1/O2 sites in females compared to males. This new fact that only males demonstrated the sensitivity of early perceptual stage to the transformation of objects adds information about the neurobiological basis of different strategies in the visual processing used by each gender. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Studies on dynamic behavior of rotating mirrors
NASA Astrophysics Data System (ADS)
Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie
2005-02-01
A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.
NASA Astrophysics Data System (ADS)
Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel
2017-10-01
In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.
Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri.
Jacob, C; Nouzières, F; Duret, S; Bové, J M; Renaudin, J
1997-01-01
The helical mollicute Spiroplasma citri, when growing on low-agar medium, forms fuzzy colonies with occasional surrounding satellite colonies due to the ability of the spiroplasmal cells to move through the agar matrix. In liquid medium, these helical organisms flex, twist, and rotate rapidly. By using Tn4001 insertion mutagenesis, a motility mutant was isolated on the basis of its nondiffuse, sharp-edged colonies. Dark-field microscopy observations revealed that the organism flexed at a low frequency and had lost the ability to rotate about the helix axis. In this mutant, the transposon was shown to be inserted into an open reading frame encoding a putative polypeptide of 409 amino acids for which no significant homology with known proteins was found. The corresponding gene, named scm1, was recovered from the wild-type strain and introduced into the motility mutant by using the S. citri oriC plasmid pBOT1 as the vector. The appearance of fuzzy colonies and the observation that spiroplasma cells displayed rotatory and flexional movements showed the motile phenotype to be restored in the spiroplasmal transformants. The functional complementation of the motility mutant proves the scm1 gene product to be involved in the motility mechanism of S. citri. PMID:9244268
On transformation between international celestial and terrestrial reference systems
NASA Astrophysics Data System (ADS)
Bretagnon, P.; Brumberg, V. A.
2003-09-01
Based on the current IAU hierarchy of the relativistic reference systems, practical formulae for the transformation between barycentric (BCRS) and geocentric (GCRS) celestial reference systems are derived. BCRS is used to refer to ICRS, International Celestial Reference System. This transformation is given in four versions, dependent on the time arguments used for BCRS (TCB or TDB) and for GCRS (TCG or TT). All quantities involved in these formulae have been tabulated with the use of the VSOP theories (IMCCE theories of motion of the major planets). In particular, these formulae may be applied to account for the indirect relativistic third-body perturbations in motion of Earth's satellites and Earth's rotation problem. We propose to use the SMART theory (IMCCE theory of Earth's rotation) in constructing the Newtonian three-dimensional spatial rotation transformation between GCRS and ITRS, the International Terrestrial Reference System. This transformation is compared with two other versions involving extra angular variables currently used by IERS, the International Earth Rotation Service. It is shown that the comparison of these three forms of the same transformation may be greatly simplified by using the proposed composite rotation formula. Tables 1-20 of Appendix B containing the initial terms of the VSOP-based series for the BCRS<->GCRS transformation are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/387. The work on ICRS<->GCRS transformation with the use of VSOP theories was done in February-March 2002 during the stay of the second author in IMCCE. The authors hoped to complete the second part concerning GCRS<->ITRS transformation with the use of SMART theory in September 2002 during the visit of the first author to IAA. The grave disease of Pierre Bretagnon which tragically resulted in his death on November 17, 2002, did not permit us to complete this work. The aim to improve SMART theory by taking into account the indirect relativistic third-body perturbations as indicated in the paper also remains unachieved. The second author is publishing this paper in memoriam of
A computational parametric study on edge loading in ceramic-on-ceramic total hip joint replacements.
Liu, Feng; Feng, Li; Wang, Junyuan
2018-07-01
Edge loading in ceramic-on-ceramic total hip joint replacement is an adverse condition that occurs as the result of a direct contact between the head and the cup rim. It has been associated with translational mismatch in the centres of rotation of the cup and head, and found to cause severe wear and early failure of the implants. Edge loading has been considered in particular in relation to dynamic separation of the cup and head centres during a gait cycle. Research has been carried out both experimentally and computationally to understand the mechanism including the influence of bearing component positioning on the occurrence and severity of edge loading. However, it is experimentally difficult to measure both the load magnitude and duration of edge loading as it occurs as a short impact within the tight space of hip joints. Computationally, a dynamic contact model, for example, developed using the MSC ADAMS software for a multi-body dynamics simulation can be particularly useful for calculating the loads and characterising the edge loading. The aim of the present study was to further develop the computational model, and improve the predictions of contact force and the understanding of mechanism in order to provide guidance on design and surgical factors to avoid or to reduce edge loading and wear. The results have shown that edge loading can be avoided for a low range of translational mismatch in the centres of rotation of the cup and head during gait at the level of approximately 1.0 mm for a cup at 45° inclination, keeping a correct cup inclination at 45° is important to reduce the edge loading severity, and edge loading can be avoided for a certain range of translational mismatch of the cup and head centres with an increased swing phase load. Copyright © 2018 Elsevier Ltd. All rights reserved.
Edge-Driven Block Rotations Interpreted From New GPS Results: Papua New Guinea
NASA Astrophysics Data System (ADS)
Wallace, L.
2001-12-01
An ongoing discussion in plate tectonics involves whether microplate motions are driven by plate edge forces or by flow at the base of the lithosphere. We present results from a GPS network of 40 sites spanning much of the mainland of Papua New Guinea (PNG). Most of the sites are concentrated in the region of the active Finisterre arc-continent collision and have been observed on multiple campaigns from 1993-2001. Significant portions of the Ramu-Markham fault are locked, which has implications for seismic hazard assessment in the Markham Valley region. Additionally, we find that out-of-sequence thrusting is important in emplacement of the Finisterre arc terrane onto the PNG mainland. Site velocities derived from these GPS data have helped to delineate the major tectonic blocks in the region. We model site velocities by simultaneously dealing with rigid block rotation and elastic strain. We find that the mainland of PNG consists of four distinct tectonic plates: the Australian, South Bismarck and Woodlark plates (in agreement with previous studies), and a previously unrecognized New Guinea Highlands plate. The relative rotation poles for at least two of these plate pairs plot on their respective boundaries, indicating that microplate motion in PNG may be dominantly edge-driven, as predicted for this region by Schouten and Benes (1993).
Apparatus for connecting aligned abutted tubes
Williams, R.E.
1984-11-29
An apparatus for connecting abutted tubes and for maintaining their rotary alignment during connection. The apparatus comprises first and second tubes, a rotation prevention element, a collar and a retainer. Each tube has inside and outside walls, and first and second ends, each end having an inside and outside edge. The first tube has portions defining a first plurality of cavities located at the outside edge of its first end. An external threaded portion is on the outside wall of the first tube and next to the first plurality of cavities. The second tube has portions defining a second plurality of cavities located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that an orifice is formed whenever first and second tube cavities substantially overlap. A rotation prevension element is placed in the orifice to prevent rotation of the first and second tubes. A collar with an internal threaded portion is slidably disposed about the second tube. The internal threaded portion engages the external threaded portion of the first tube to connect the tubes. A lip connected to the collar prevents separation of the collar from the second tube.
Orienting members in a preselected rotary alignment
Williams, Ray E.
1987-01-01
An apparatus for orienting members and for maintaining their rotary alignment during orienting members. The apparatus comprises first and second cylindrical elements, a rotation prevention element, a collar and a retainer. Each element has an outside wall, and first and second ends, each end having an outside edge. The first element has portions defining a first plurality of notches located at the outside edge of its first end. An external threaded portion is on the outside wall of the first element and next to the first plurality of notches. The second element has portions defining a second plurality of notches located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that a cavity is formed whenever first and second tube notches substantially overlap. A rotation prevention element is placed in the cavity to prevent rotation of the first and second elements. A collar with an internal threaded portion is slidably disposed about the second element. The internal threaded portion engages the external threaded portion of the first element to connect the elements. A lip connected to the collar prevents separation of the collar from the second element.
Flow Structure on a Flapping Wing: Quasi-Steady Limit
NASA Astrophysics Data System (ADS)
Ozen, Cem; Rockwell, Donald
2011-11-01
The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.
Kemeny, Steven Frank; Clyne, Alisa Morss
2011-04-01
Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.
Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.
2014-10-01
Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.
NASA Astrophysics Data System (ADS)
Noel, James H.
Energy harvesters are scalable devices that generate microwatt to milliwatt power levels by scavenging energy from their ambient natural environment. Applications of such devices are numerous, ranging from wireless sensing to biomedical implants. A particular type of energy harvester is a device which converts the momentum of an incident fluid flow into electrical output by using flow-induced instabilities such as galloping, flutter, vortex shedding and wake galloping. Galloping flow energy harvesters (GFEHs), which represent the core of this thesis, consist of a prismatic tip body mounted on a long, thin cantilever beam fixed on a rigid base. When the bluff body is placed such that its leading edge faces a moving fluid, the flow separates at the edges of the leading face causing shear layers to develop behind the bluff face. The shear layer interacts with the surface area of the afterbody. An asymmetric condition in the shear layers causes a net lift which incites motion. This causes the beam to oscillate periodically at or near the natural frequency of the system. The periodic strain developed near the base of the oscillating beam is then transformed into electricity by attaching a piezoelectric layer to either side of the beam surface. This thesis focuses on characterizing the influence of the rotation of the beam tip on the response and output power of GFEHs. Previous modeling efforts of GFEHs usually adopt two simplifying assumptions. First, it is assumed that the tip rotation of the beam is arbitrarily small and hence can be neglected. Second, it is assumed that the quasi-steady assumption of the aerodynamic force can be adopted even in the presence of tip rotation. Although the validity of these two assumptions becomes debatable in the presence of finite tip rotations, which are common to occur in GFEHs, none the previous research studies have systematically addressed the influence of finite tip rotations on the validity of the quasi-steady assumption and the response of cantilevered flow energy harvesters. To this end, the first objective of this thesis is to investigate the influence of the tip rotation on the output power of energy harvesters under the quasi-steady assumption. It is shown that neglecting the tip rotation will cause significant over-prediction of the output power even for small tip rotations. This thesis further assesses the validity of the quasi-steady assumption of the aerodynamic force in the presence of tip rotations using extensive experiments. It is shown that the quasi-steady model fails to accurately predict the behavior of square and trapezoidal prisms mounted on a cantilever beam and undergoing galloping oscillations. In particular, it is shown that the quasi-steady model under-predicts the amplitude of oscillation because it fails to consider the effect of body rotation. Careful analysis of the experimental data indicates that, unlike the quasi-steady aerodynamic lift force which depends only on the angle of attack, the effective aerodynamic curve is a function of both the angle of attack and the upstream flow velocity when the effects of body rotation are included. Nonetheless, although the quasi-steady assumption fails, the remarkable result is that the overall structure of the aerodynamic model remains intact, permitting the use of aerodynamic force surfaces to capture the influence of tip rotation. The second objective of this thesis is to present an approach to optimize the geometry of the bluff body to improve the performance of flow energy harvesters. It is shown that attaching a splitter plate to the afterbody of the prism can improve the output power of the device by as much as 60% for some cases. By increasing the reattachment angle of the shear layer and producing additional flow recirculation bubbles, the extension of the body using the splitter plate increases the useful range of the galloping instability for energy harvesting.
Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes
NASA Astrophysics Data System (ADS)
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2016-10-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals
NASA Astrophysics Data System (ADS)
Levy, Miguel; Li, Rong
2006-09-01
Intermodal coupling in photonic band gap optical channels in magnetic garnet films is found to leverage the nonreciprocal polarization rotation. Forward fundamental-mode to high-order mode backscattering yields the largest rotations. The underlying mechanism is traced to the dependence of the grating-coupling constant on the modal refractive index and profile of the propagating beam. Large changes in polarization near the band edges are observed in first and second orders. Extreme sensitivity to linear birefringence exists in second order.
On the ρ ∗ scaling of intrinsic rotation in C-Mod plasmas with edge transport barriers
NASA Astrophysics Data System (ADS)
Rice, J. E.; Hughes, J. W.; Diamond, P. H.; Cao, N.; Chilenski, M. A.; Hubbard, A. E.; Irby, J. H.; Kosuga, Y.; Lin, Y.; Metcalf, I. W.; Reinke, M. L.; Tolman, E. A.; Victora, M. M.; Wolfe, S. M.; Wukitch, S. J.
2017-11-01
Changes in the core intrinsic toroidal rotation velocity following L- to H- and L- to I-mode transitions have been investigated in Alcator C-Mod tokamak plasmas. The magnitude of the co-current rotation increments is found to increase with the pedestal temperature gradient and q95 , and to decrease with toroidal magnetic field. These results are captured quantitatively by a model of fluctuation entropy balance which gives the Mach number Mi \\cong ρ _*/2 L_s/LT ∼ \
Rotary seal with enhanced lubrication and contaminant flushing
Dietle, Lannie L.
2000-01-01
A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.
González-Rosende, M Eugenia; Castillo, Encarna; Jennings, W Brian; Malone, John F
2017-02-07
By comparison with close contact interactions between benzene rings there is a paucity of experimental data available for attractive interactions involving aromatic heterocyclic rings, especially for small molecules in solution. Herein we describe aromatic heterocyclic and carbocyclic edge-to face interactions and conformational stereodynamics of N-1,2-diphenylethyl imines bearing a phenyl group and either a 2-pyridyl, 3-pyridyl, 2-thiophene or 2-furanyl moiety on the imino carbon. X-ray crystal structures have been determined for two compounds. Slow rotation about the phenyl-imino bond in the E-isomers and around the heterocycle-imino bond in the Z-isomers of the pyridyl compounds was observed at low temperatures by NMR. Abnormally large shielding of one ortho hydrogen indicates that both the imino phenyl and heterocycle rings can engage in an edge-to-face interaction with the N-terminal phenyl moiety in the appropriate isomer. Some rotational barriers around the phenyl-imino and heterocycle-imino bonds were measured.
Analytical and phenomenological studies of rotating turbulence
NASA Technical Reports Server (NTRS)
Mahalov, Alex; Zhou, YE
1995-01-01
A framework, which combines mathematical analysis, closure theory, and phenomenological treatment, is developed to study the spectral transfer process and reduction of dimensionality in turbulent flows that are subject to rotation. First, we outline a mathematical procedure that is particularly appropriate for problems with two disparate time scales. The approach which is based on the Green's method leads to the Poincare velocity variables and the Poincare transformation when applied to rotating turbulence. The effects of the rotation are now reflected in the modifications to the convolution of a nonlinear term. The Poincare transformed equations are used to obtain a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit when the non-dimensional parameter mu is identical to Omega(t) approaches infinity (Omega is the rotation rate and t is the time). The 'split' of the energy transfer in both direct and inverse directions is established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM) closure to the Poincare transformed Euler/Navier-Stokes equations. This closure leads to expressions for the spectral energy transfer. In particular, an unique triple velocity decorrelation time is derived with an explicit dependence on the rotation rate. This provides an important input for applying the phenomenological treatment of Zhou. In order to characterize the relative strength of rotation, another non-dimensional number, a spectral Rossby number, which is defined as the ratio of rotation and turbulence time scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are deduced.
Logo recognition using alpha-rooted phase correlation in the radon transform domain
NASA Astrophysics Data System (ADS)
DelMarco, Stephen
2009-08-01
Alpha-rooted phase correlation (ARPC) is a recently-developed variant of classical phase correlation that includes a Fourier domain image enhancement operation. ARPC combines classical phase correlation with alpha-rooting to provide tunable image enhancement. The alpha-rooting parameters may be adjusted to provide a tradeoff between height and width of the ARPC main lobe. A high narrow main lobe peak provides high matching accuracy for aligned images, but reduced matching performance for misaligned logos. A lower, wider peak trades matching accuracy on aligned logos, for improved matching performance on misaligned imagery. Previously, we developed ARPC and used it in the spatial domain for logo recognition as part of an overall automated document analysis problem. However, spatial domain ARPC performance can be sensitive to logo misalignments, including rotational misalignment. In this paper we use ARPC as a match metric in the radon transform domain for logo recognition. In the radon transform domain, rotational misalignments correspond to translations in the radon transform angle parameter. These translations are captured by ARPC, thereby producing rotation-invariant logo matching. In the paper, we first present an overview of ARPC, and then describe the logo matching algorithm. We present numerical performance results demonstrating matching tolerance to rotational misalignments. We demonstrate robustness of the radon transform domain rotation estimation to noise. We present logo verification and recognition performance results using the proposed approach on a public domain logo database. We compare performance results to performance obtained using spatial domain ARPC, and state-of-the-art SURF features, for logos in salt-and-pepper noise.
Erlikhman, Gennady; Kellman, Philip J.
2016-01-01
Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved by the visual system. PMID:27445886
Three-dimensional unstructured grid refinement and optimization using edge-swapping
NASA Technical Reports Server (NTRS)
Gandhi, Amar; Barth, Timothy
1993-01-01
This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.
Implicit transfer of spatial structure in visuomotor sequence learning.
Tanaka, Kanji; Watanabe, Katsumi
2014-11-01
Implicit learning and transfer in sequence learning are essential in daily life. Here, we investigated the implicit transfer of visuomotor sequences following a spatial transformation. In the two experiments, participants used trial and error to learn a sequence consisting of several button presses, known as the m×n task (Hikosaka et al., 1995). After this learning session, participants learned another sequence in which the button configuration was spatially transformed in one of the following ways: mirrored, rotated, and random arrangement. Our results showed that even when participants were unaware of the transformation rules, accuracy of transfer session in the mirrored and rotated groups was higher than that in the random group (i.e., implicit transfer occurred). Both those who noticed the transformation rules and those who did not (i.e., explicit and implicit transfer instances, respectively) showed faster performance in the mirrored sequences than in the rotated sequences. Taken together, the present results suggest that people can use their implicit visuomotor knowledge to spatially transform sequences and that implicit transfers are modulated by a transformation cost, similar to that in explicit transfer. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abadjieva, Emilia; Abadjiev, Valentin
2017-06-01
The science that study the processes of motions transformation upon a preliminary defined law between non-coplanar axes (in general case) axes of rotations or axis of rotation and direction of rectilinear translation by three-link mechanisms, equipped with high kinematic joints, can be treated as an independent branch of Applied Mechanics. It deals with mechanical behaviour of these multibody systems in relation to the kinematic and geometric characteristics of the elements of the high kinematic joints, which form them. The object of study here is the process of regular transformation of rotation into translation. The developed mathematical model is subjected to the defined task for studying the sliding velocity vector function at the contact point from the surfaces elements of arbitrary high kinematic joints. The main kinematic characteristics of the studied type motions transformation (kinematic cylinders on level, kinematic relative helices (helical conoids) and kinematic pitch configurations) are defined on the bases of the realized analysis. These features expand the theoretical knowledge, which is the objective of the gearing theory. They also complement the system of kinematic and geometric primitives, that form the mathematical model for synthesis of spatial rack mechanisms.
NASA Astrophysics Data System (ADS)
Pardeshi, Irsha
Efficient and effective cooling of the trailing edges of gas-turbine vanes and blades is challenging because there is very little space to work with. In this study, CFD simulations based on steady RANS closed by the shear-stress transport turbulence model were performed to study the flow and heat transfer in an L-shaped duct for the trailing edge under two operating conditions. One operating condition, referred to as the laboratory condition, where experimental measurements were made, has a Reynolds number at the duct inlet of ReD = 15,000, coolant inlet temperature of Tinlet = 300 K, wall temperature of Twall = 335 K, a back pressure of Pb = 1 atm. When rotating, the angular speed was O = 1,000 rpm. The other condition, referred to as the engine-relevant condition, has Re D = 150,000 at the duct inlet, Tinlet = 673 K, Twall = 1,173 K, and Pb = 25 atm. When rotating, O was 3,600 rpm. The objective is to understand the nature of the flow and heat transfer in an L-shaped cooling passage for the trailing edge that has a combination of ribs and pin fins under rotating and non-rotating conditions with focus on how pin fins and ribs distribute the flow throughout the passage and to understand what features of the flow and heat transfer can or cannot be extrapolated from the laboratory to the engine-relevant operating conditions. When there is no rotation, results obtained show that for both operating conditions, the pin fins minimized the size of the separation bubble when the flow exits the inlet duct into the expanded portion of the L-shaped duct. The size of the separation bubble at the tip of the L-shaped duct created by the adverse pressure gradient is quite large for the laboratory condition and relatively small for the engine condition. Each rib was found to create two sets of recirculating flows, one just upstream of the rib because of the adverse pressure gradient induced by the rib and one just downstream of the rib because of flow separation from a sharp edge. These recirculating flows spiral from the ribs towards the exit of the L-shaped duct, and the spiraling brings cool fluid from the middle of the passage to the walls. Each pin fin was found to induce a pair of counter-rotating separated regions behind it and has horse-shoe vortices that wrap around it next to the top and bottom walls. The heat transfer is highest just upstream of the each rib, around the pin fins, and when the cooling fluid impinges on walls, and very low in the separated region next to the tip. When there is rotation, Coriolis force creates a pair of counter-rotating vortices that bring the cooler fluid to the trailing wall in the inlet duct. Thus, the trailing wall has higher heat transfer than the leading wall. In the inlet duct, centrifugal buoyancy causes a massive flow separation on the leading wall. In the expanded portion of the L-shaped duct, the centrifugal-buoyancy-induced separation on the leading wall is limited to the region with the ribs, and the separation degenerates into a series of smaller spiraling separation bubbles, one between every set of consecutive ribs. On the leading and trailing walls, the ribs and the pin fins induce the same kind of flows as they did under non-rotating conditions. Because of centrifugal-buoyancy-induced flow separation on the leading face, the heat transfer on the leading wall is 10-15% lower than that on the trailing wall, which is not significant. The adverse effects of centrifugal buoyancy were mitigated because the separation bubbles between the ribs are spiraling from the side wall to the trailing-edge exit and are constantly supplied by new coolant. The heat transfer on the side and back walls is higher near the trailing wall because centrifugal buoyancy directed most of the coolant flow towards the trailing wall. The size of the separation bubble at the tip of the L-shaped duct essentially disappeared when there is rotation for both the lab and engine-relevant conditions.
High-Performance Wireless Telemetry
NASA Technical Reports Server (NTRS)
Griebeler, Elmer; Nawash, Nuha; Buckley, James
2011-01-01
Prior technology for machinery data acquisition used slip rings, FM radio communication, or non-real-time digital communication. Slip rings are often noisy, require much space that may not be available, and require access to the shaft, which may not be possible. FM radio is not accurate or stable, and is limited in the number of channels, often with channel crosstalk, and intermittent as the shaft rotates. Non-real-time digital communication is very popular, but complex, with long development time, and objections from users who need continuous waveforms from many channels. This innovation extends the amount of information conveyed from a rotating machine to a data acquisition system while keeping the development time short and keeping the rotating electronics simple, compact, stable, and rugged. The data are all real time. The product of the number of channels, times the bit resolution, times the update rate, gives a data rate higher than available by older methods. The telemetry system consists of a data-receiving rack that supplies magnetically coupled power to a rotating instrument amplifier ring in the machine being monitored. The ring digitizes the data and magnetically couples the data back to the rack, where it is made available. The transformer is generally a ring positioned around the axis of rotation with one side of the transformer free to rotate and the other side held stationary. The windings are laid in the ring; this gives the data immunity to any rotation that may occur. A medium-frequency sine-wave power source in a rack supplies power through a cable to a rotating ring transformer that passes the power on to a rotating set of electronics. The electronics power a set of up to 40 sensors and provides instrument amplifiers for the sensors. The outputs from the amplifiers are filtered and multiplexed into a serial ADC. The output from the ADC is connected to another rotating ring transformer that conveys the serial data from the rotating section to the stationary section. From there, a cable conveys the serial data to the remote rack, where it is reconditioned to logic level specifications, de-serialized, and converted back to analog. In the rotating electronics are code generators to indicate the beginning of files for data synchronization.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Mulcay, W.
1979-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1981-01-01
Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.
Dewey, John F
2015-04-13
In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Dewey, John F.
2015-01-01
In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142
Angular rate optimal design for the rotary strapdown inertial navigation system.
Yu, Fei; Sun, Qian
2014-04-22
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Osborne, T. H.; Barada, K.; Ferraro, N. M.; Garofalo, A. M.; Groebner, R. J.; McKee, G. R.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; The DIII-D Team
2017-08-01
New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E × B shear required for the EHO decreases linearly with pedestal collisionality ν \\text{e}\\ast , which is favorable for operating QH-mode in machines with low collisionality and low rotation such as ITER. In addition, the QH-mode regime in DIII-D has recently been found to bifurcate into a new ‘wide-pedestal’ state at low torque in double-null shaped plasmas, characterized by increased pedestal height, width and thermal energy confinement (Burrell 2016 Phys. Plasmas 23 056103, Chen 2017 Nucl. Fusion 57 022007). This potentially provides an alternate path for achieving high performance ELM-stable operation at low torque, in addition to the low-torque QH-mode sustained with applied 3D fields. Multi-branch low-k and intermediate-k turbulences are observed in the ‘wide-pedestal’. New experiments support the hypothesis that the decreased edge E × B shear enables destabilization of broadband turbulence, which relaxes edge pressure gradients, improves peeling-ballooning stability and allows a wider and thus higher pedestal. The ability to accurately predict the critical E × B shear for EHO and maintain high performance QH-mode at low torque is an essential requirement for projecting QH-mode operation to ITER and future machines.
Burrell, Keith H.; Barada, Kshitish; Chen, Xi; ...
2016-03-11
Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, Keith H.; Barada, Kshitish; Chen, Xi
Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less
Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.
2015-03-01
In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.
Edge magnetism of Heisenberg model on honeycomb lattice.
Huang, Wen-Min; Hikihara, Toshiya; Lee, Yen-Chen; Lin, Hsiu-Hau
2017-03-07
Edge magnetism in graphene sparks intense theoretical and experimental interests. In the previous study, we demonstrated the existence of collective excitations at the zigzag edge of the honeycomb lattice with long-ranged Néel order. By employing the Schwinger-boson approach, we show that the edge magnons remain robust even when the long-ranged order is destroyed by spin fluctuations. Furthermore, in the effective field-theory limit, the dynamics of the edge magnon is captured by the one-dimensional relativistic Klein-Gordon equation. It is intriguing that the boundary field theory for the edge magnon is tied up with its bulk counterpart. By performing density-matrix renormalization group calculations, we show that the robustness may be attributed to the closeness between the ground state and the Néel state. The existence of edge magnon is not limited to the honeycomb structure, as demonstrated in the rotated-square lattice with zigzag edges as well. The universal behavior indicates that the edge magnons may attribute to the uncompensated edges and can be detected in many two-dimensional materials.
Three-dimensional contour edge detection algorithm
NASA Astrophysics Data System (ADS)
Wang, Yizhou; Ong, Sim Heng; Kassim, Ashraf A.; Foong, Kelvin W. C.
2000-06-01
This paper presents a novel algorithm for automatically extracting 3D contour edges, which are points of maximum surface curvature in a surface range image. The 3D image data are represented as a surface polygon mesh. The algorithm transforms the range data, obtained by scanning a dental plaster cast, into a 2D gray scale image by linearly converting the z-value of each vertex to a gray value. The Canny operator is applied to the median-filtered image to obtain the edge pixels and their orientations. A vertex in the 3D object corresponding to the detected edge pixel and its neighbors in the direction of the edge gradient are further analyzed with respect to their n-curvatures to extract the real 3D contour edges. This algorithm provides a fast method of reducing and sorting the unwieldy data inherent in the surface mesh representation. It employs powerful 2D algorithms to extract features from the transformed 3D models and refers to the 3D model for further analysis of selected data. This approach substantially reduces the computational burden without losing accuracy. It is also easily extended to detect 3D landmarks and other geometrical features, thus making it applicable to a wide range of applications.
Analytical observations on the aerodynamics of a delta wing with leading edge flaps
NASA Technical Reports Server (NTRS)
Oh, S.; Tavella, D.
1986-01-01
The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.
The 3-D unstructured mesh generation using local transformations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
1993-01-01
The topics are presented in viewgraph form and include the following: 3D combinatorial edge swapping; 3D incremental triangulation via local transformations; a new approach to multigrid for unstructured meshes; surface mesh generation using local transforms; volume triangulations; viscous mesh generation; and future directions.
Destruction of Invariant Surfaces and Magnetic Coordinates for Perturbed Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.R. Hudson
2003-11-20
Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates are based on the robust, noble-irrational rotational-transform surfaces, whose existence is determined by an application of Greene's residue criterion. A simple method to locate these surfaces is described. Sequences of surfaces with rotational-transform converging to low order rationals maximize the region of straight-field-line coordinates.
Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks
2016-06-01
Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.
NONUNIFORM FOURIER TRANSFORMS FOR RIGID-BODY AND MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS
BAJAJ, CHANDRAJIT; BAUER, BENEDIKT; BETTADAPURA, RADHAKRISHNA; VOLLRATH, ANTJE
2013-01-01
The task of evaluating correlations is central to computational structural biology. The rigid-body correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes the correlation between a pair of input scalar-valued functions representing molecular structures. Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier transform to achieve a speedup either with respect to the sought translation or rotation. We present PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous solutions, ours achieves a combination of translational and rotational speedups without requiring equispaced grids. PFcorr can be straightforwardly applied to a variety of problems in protein structure prediction and refinement that involve correlations under rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant. PMID:24379643
SUPERNOVAE POWERED BY MAGNETARS THAT TRANSFORM INTO BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, Takashi J.; Metzger, Brian D.; Blinnikov, Sergei I., E-mail: takashi.moriya@nao.ac.jp
2016-12-10
Rapidly rotating, strongly magnetized neutron stars (NSs; magnetars) can release their enormous rotational energy via magnetic spin-down, providing a power source for bright transients such as superluminous supernovae (SNe). On the other hand, particularly massive (so-called supramassive) NSs require a minimum rotation rate to support their mass against gravitational collapse, below which the NS collapses to a black hole (BH). We model the light curves (LCs) of SNe powered with magnetars that transform into BHs. Although the peak luminosities can reach high values in the range of superluminous SNe, their post maximum LCs can decline very rapidly because of the suddenmore » loss of the central energy input. Early BH transformation also enhances the shock breakout signal from the magnetar-driven bubble relative to the main SN peak. Our synthetic LCs of SNe powered by magnetars transforming to BHs are consistent with those of some rapidly evolving bright transients recently reported by Arcavi et al.« less
Hierarchical clustering of EMD based interest points for road sign detection
NASA Astrophysics Data System (ADS)
Khan, Jesmin; Bhuiyan, Sharif; Adhami, Reza
2014-04-01
This paper presents an automatic road traffic signs detection and recognition system based on hierarchical clustering of interest points and joint transform correlation. The proposed algorithm consists of the three following stages: interest points detection, clustering of those points and similarity search. At the first stage, good discriminative, rotation and scale invariant interest points are selected from the image edges based on the 1-D empirical mode decomposition (EMD). We propose a two-step unsupervised clustering technique, which is adaptive and based on two criterion. In this context, the detected points are initially clustered based on the stable local features related to the brightness and color, which are extracted using Gabor filter. Then points belonging to each partition are reclustered depending on the dispersion of the points in the initial cluster using position feature. This two-step hierarchical clustering yields the possible candidate road signs or the region of interests (ROIs). Finally, a fringe-adjusted joint transform correlation (JTC) technique is used for matching the unknown signs with the existing known reference road signs stored in the database. The presented framework provides a novel way to detect a road sign from the natural scenes and the results demonstrate the efficacy of the proposed technique, which yields a very low false hit rate.
Temporal Variation of the Rotation of the Solar Mean Magnetic Field
NASA Astrophysics Data System (ADS)
Xie, J. L.; Shi, X. J.; Xu, J. C.
2017-04-01
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.
Animation Strategies for Smooth Transformations Between Discrete Lods of 3d Building Models
NASA Astrophysics Data System (ADS)
Kada, Martin; Wichmann, Andreas; Filippovska, Yevgeniya; Hermes, Tobias
2016-06-01
The cartographic 3D visualization of urban areas has experienced tremendous progress over the last years. An increasing number of applications operate interactively in real-time and thus require advanced techniques to improve the quality and time response of dynamic scenes. The main focus of this article concentrates on the discussion of strategies for smooth transformation between two discrete levels of detail (LOD) of 3D building models that are represented as restricted triangle meshes. Because the operation order determines the geometrical and topological properties of the transformation process as well as its visual perception by a human viewer, three different strategies are proposed and subsequently analyzed. The simplest one orders transformation operations by the length of the edges to be collapsed, while the other two strategies introduce a general transformation direction in the form of a moving plane. This plane either pushes the nodes that need to be removed, e.g. during the transformation of a detailed LOD model to a coarser one, towards the main building body, or triggers the edge collapse operations used as transformation paths for the cartographic generalization.
NASA Astrophysics Data System (ADS)
Kruglova, T. V.
2004-01-01
The detailed spectroscope information about highly excited molecules and radicals such us as H+3, H2, HI, H2O, CH2 is needed for a number of applications in the field of laser physics, astrophysics and chemistry. Studies of highly excited molecular vibration-rotation states face several problems connected with slowly convergence or even divergences of perturbation expansions. The physical reason for a perturbation expansion divergence is the large amplitude motion and strong vibration-rotation coupling. In this case one needs to use the special method of series summation. There were a number of papers devoted to this problem: papers 1-10 in the reference list are only example of studies on this topic. The present report is aimed at the application of GET method (Generalized Euler Transformation) to the diatomic molecule. Energy levels of a diatomic molecule is usually represented as Dunham series on rotational J(J+1) and vibrational (V+1/2) quantum numbers (within the perturbation approach). However, perturbation theory is not applicable for highly excited vibration-rotation states because the perturbation expansion in this case becomes divergent. As a consequence one need to use special method for the series summation. The Generalized Euler Transformation (GET) is known to be efficient method for summing of slowly convergent series, it was already used for solving of several quantum problems Refs.13 and 14. In this report the results of Euler transformation of diatomic molecule Dunham series are presented. It is shown that Dunham power series can be represented of functional series that is equivalent to its partial summation. It is also shown that transformed series has the butter convergent properties, than the initial series.
NASA Astrophysics Data System (ADS)
Van Hinsbergen, D. J. J.; Maffione, M.; Koornneef, L.; Guilmette, C.
2016-12-01
The Neotethyan realm hosts a prominent belt of Cretaceous supra-subduction zone ophiolites from Turkey and Cyprus in the west, to Oman in the east. Associated crustal and metamorphic sole ages tightly cluster at 95-90 Ma, interpreted to shortly post-date subduction initiation in an intra-oceanic setting along transform faults or ridge segments (or ridge-parallel oceanic detachments). This subduction episode ended when the Arabian-African continental lithosphere arrived in the trench in the late Cretaceous and the leading edge of the overriding oceanic lithosphere obducted as ophiolites, including the famous Semail ophiolite of Oman. This catastrophic subduction initiation phase is assumed to be as response to some far-field trigger. Here, we analyzed whether the Semail ophiolite was generated at an E-W trending Neotethyan ridge or at a N-S trending transform. Therefore we paleomagnetically analyzed 10 localities in sheeted dyke sections of the Semail ophiolite that trend parallel to the obduction front of the ophiolite taken to reflect the paleo-trench. We demonstrate that the sheeted dyke sections, and thus also the trench, had an initial N-S strike, indicating that subduction below the Semail ophiolite probably initiated along a N-S striking transform plate boundary between the Indian and Arabian plate rather than at a Neotethyan mid-ocean ridge. Sometime before 83 Ma, India broke away from Madagascar, and underwent a counterclockwise rotation relative to Africa/Arabia around an Euler pole just north of Madagascar, likely triggered by the arrival of the Morondova mantle plume, the associated large igneous province formed since at least 91 Ma. Numerical models have shown that plume push was a likely driver for the inception of India-Madagascar spreading and associated Indian rotation. North of the associated Euler pole, E-W convergence India-Arabia must have occurred during India-Madagascar break-up. This has already been related to 96-90 Ma subduction initiation below the Waziristan ophiolite of Pakistan. Our new results suggest that subduction initiation below the Semail ophiolite is directly related to this plume-triggered break-up. We speculate that also the synchronous subduction initiation farther west in the Neotethys, towards Cyprus and Turkey, may have been triggered by this mechanism.
Accurately estimating PSF with straight lines detected by Hough transform
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Xu, Liangpeng; Fan, Chunxiao; Li, Yong
2018-04-01
This paper presents an approach to estimating point spread function (PSF) from low resolution (LR) images. Existing techniques usually rely on accurate detection of ending points of the profile normal to edges. In practice however, it is often a great challenge to accurately localize profiles of edges from a LR image, which hence leads to a poor PSF estimation of the lens taking the LR image. For precisely estimating the PSF, this paper proposes firstly estimating a 1-D PSF kernel with straight lines, and then robustly obtaining the 2-D PSF from the 1-D kernel by least squares techniques and random sample consensus. Canny operator is applied to the LR image for obtaining edges and then Hough transform is utilized to extract straight lines of all orientations. Estimating 1-D PSF kernel with straight lines effectively alleviates the influence of the inaccurate edge detection on PSF estimation. The proposed method is investigated on both natural and synthetic images for estimating PSF. Experimental results show that the proposed method outperforms the state-ofthe- art and does not rely on accurate edge detection.
Tasseled cap transformation for HJ multispectral remote sensing data
NASA Astrophysics Data System (ADS)
Han, Ling; Han, Xiaoyong
2015-12-01
The tasseled cap transformation of remote sensing data has been widely used in environment, agriculture, forest and ecology. Tasseled cap transformation coefficients matrix of HJ multi-spectrum data has been established through Givens rotation matrix to rotate principal component transform vector to whiteness, greenness and blueness direction of ground object basing on 24 scenes year-round HJ multispectral remote sensing data. The whiteness component enhances the brightness difference of ground object, and the greenness component preserves more detailed information of vegetation change while enhances the vegetation characteristic, and the blueness component significantly enhances factory with blue plastic house roof around the town and also can enhance brightness of water. Tasseled cap transformation coefficients matrix of HJ will enhance the application effect of HJ multispectral remote sensing data in their application fields.
Realization of a thermal cloak-concentrator using a metamaterial transformer.
Liu, Ding-Peng; Chen, Po-Jung; Huang, Hsin-Haou
2018-02-06
By combining rotating squares with auxetic properties, we developed a metamaterial transformer capable of realizing metamaterials with tunable functionalities. We investigated the use of a metamaterial transformer-based thermal cloak-concentrator that can change from a cloak to a concentrator when the device configuration is transformed. We established that the proposed dual-functional metamaterial can either thermally protect a region (cloak) or focus heat flux in a small region (concentrator). The dual functionality was verified by finite element simulations and validated by experiments with a specimen composed of copper, epoxy, and rotating squares. This work provides an effective and efficient method for controlling the gradient of heat, in addition to providing a reference for other thermal metamaterials to possess such controllable functionalities by adapting the concept of a metamaterial transformer.
Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2010-07-01
An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.
Design study of a high power rotary transformer
NASA Technical Reports Server (NTRS)
Weinberger, S. M.
1982-01-01
A design study was made on a rotary transformer for transferring electrical power across a rotating spacecraft interface. The analysis was performed for a 100 KW, 20 KHz unit having a ""pancake'' geometry. The rotary transformer had a radial (vertical) gap and consisted of 4-25 KW modules. It was assumed that the power conditioning comprised of a Schwarz resonant circuit with a 20 KHz switching frequency. The rotary transformer, mechanical and structural design, heat rejection system and drive mechanism which provide a complete power transfer device were examined. The rotary transformer losses, efficiency, weight and size were compared with an axial (axial symmetric) gap transformer having the same performance requirements and input characteristics which was designed as part of a previous program. The ""pancake'' geometry results in a heavier rotary transformer primarily because of inefficient use of the core material. It is shown that the radial gap rotary transformer is a feasible approach for the transfer of electrical power across a rotating interface and can be implemented using presently available technology.
A Fourier transform method for Vsin i estimations under nonlinear Limb-Darkening laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levenhagen, R. S., E-mail: ronaldo.levenhagen@gmail.com
Star rotation offers us a large horizon for the study of many important physical issues pertaining to stellar evolution. Currently, four methods are widely used to infer rotation velocities, namely those related to line width calibrations, on the fitting of synthetic spectra, interferometry, and on Fourier transforms (FTs) of line profiles. Almost all of the estimations of stellar projected rotation velocities using the Fourier method in the literature have been addressed with the use of linear limb-darkening (LD) approximations during the evaluation of rotation profiles and their cosine FTs, which in certain cases, lead to discrepant velocity estimates. In thismore » work, we introduce new mathematical expressions of rotation profiles and their Fourier cosine transforms assuming three nonlinear LD laws—quadratic, square-root, and logarithmic—and study their applications with and without gravity-darkening (GD) and geometrical flattening (GF) effects. Through an analysis of He I models in the visible range accounting for both limb and GD, we find out that, for classical models without rotationally driven effects, all the Vsin i values are too close to each other. On the other hand, taking into account GD and GF, the Vsin i obtained with the linear law result in Vsin i values that are systematically smaller than those obtained with the other laws. As a rule of thumb, we apply these expressions to the FT method to evaluate the projected rotation velocity of the emission B-type star Achernar (α Eri).« less
Moving visual scenes influence the apparent direction of gravity.
NASA Technical Reports Server (NTRS)
Dichgans, J.; Held, R.; Young, L. R.; Brandt, T.
1972-01-01
It is shown that an observer viewing a wide-angled display rotating about its line of sight develops a feeling that his body is tilted and has the illusion that a vertical straight edge is tilted in a direction opposite to that of rotation. Experiments on subjects who monocularly viewed rotating disks with various settings within restricted fields of view are described to substantiate these findings. Displacement of the perceived vertical increased to a maximum of average 15 deg when the stimulus speed increased to 30 deg per sec.
Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers
NASA Astrophysics Data System (ADS)
Wen, Xinhua; Qiu, Chunyin; Lu, Jiuyang; He, Hailong; Ke, Manzhu; Liu, Zhengyou
2018-03-01
The artificial crystals for classical waves provide a good platform to explore the topological physics proposed originally in condensed matter systems. In this paper, acoustic Dirac degeneracy is realized by simply rotating the scatterers in sonic crystals, where the degeneracy is induced accidentally by modulating the scattering strength among the scatterers during the rotation process. This gives a flexible way to create a topological phase transition in acoustic systems. Edge states are further observed along the interface separating the two topologically distinct gapped sonic crystals.
Coordinate transformation by minimizing correlations between parameters
NASA Technical Reports Server (NTRS)
Kumar, M.
1972-01-01
This investigation was to determine the transformation parameters (three rotations, three translations and a scale factor) between two Cartesian coordinate systems from sets of coordinates given in both systems. The objective was the determination of well separated transformation parameters with reduced correlations between each other, a problem especially relevant when the sets of coordinates are not well distributed. The above objective is achieved by preliminarily determining the three rotational parameters and the scale factor from the respective direction cosines and chord distances (these being independent of the translation parameters) between the common points, and then computing all the seven parameters from a solution in which the rotations and the scale factor are entered as weighted constraints according to their variances and covariances obtained in the preliminary solutions. Numerical tests involving two geodetic reference systems were performed to evaluate the effectiveness of this approach.
Optical image encryption using multilevel Arnold transform and noninterferometric imaging
NASA Astrophysics Data System (ADS)
Chen, Wen; Chen, Xudong
2011-11-01
Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.
Hershberger, W A; Stewart, M R; Laughlin, N K
1976-05-01
Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.
Advances in Molecular Rotational Spectroscopy for Applied Science
NASA Astrophysics Data System (ADS)
Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.
2017-06-01
Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Farge, Marie; Lehmann, Fritz-Olaf; Sesterhenn, Jörn
2018-02-01
High resolution direct numerical simulations of rotating and flapping bumblebee wings are presented and their aerodynamics is studied focusing on the role of leading edge vortices and the associated helicity production. We first study the flow generated by only one rotating bumblebee wing in circular motion with 45◦ angle of attack. We then consider a model bumblebee flying in a numerical wind tunnel, which is tethered and has rigid wings flapping with a prescribed generic motion. The inflow condition of the wind varies from laminar to strongly turbulent regimes. Massively parallel simulations show that inflow turbulence does not significantly alter the wings’ leading edge vortex, which enhances lift production. Finally, we focus on studying the helicity of the generated vortices and analyze their contribution at different scales using orthogonal wavelets.
Stacey, Weston M.; Grierson, Brian A.
2014-05-08
Here, a low-confinement mode discharge which optimizes the capability of the new main-ion chargeexchange-recombination spectroscopy system on DIII-D to measure deuterium toroidal velocity is interpretted in comparison with the predictions of neoclassical theory, with an emphasis on the plasma edge region. The observed peaking in the deuterium toroidal velocity near the separatrix is shown to be consistent with intrinsic co-rotation due to ion orbit loss. In general, the standard neoclassical toroidal and poloidal momentum transport rates are found to be smaller than those inferred from experiment, but a comparison has not yet been made with the more recent extended neoclassicalmore » theory that calculates the effects of poloidal asymmetries using an elongated flux surface representation.« less
Fan Stagger Angle for Dirt Rejection
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)
2015-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.
NASA Astrophysics Data System (ADS)
Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka
2016-02-01
The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.
Sealing Assembly for Sealing a Port and the Like
NASA Technical Reports Server (NTRS)
Haas, Jon W. (Inventor); Haupt, Charles W. (Inventor)
2000-01-01
The sealing assembly for a port of a valve or the like is disclosed. In detail, the sealing assembly includes the port having a circular shaped end with a circular shaped knife-edge thereon. The sealing assembly further includes a hollow cap having a closed first end with an aperture therethrough and an open second end. The cap further includes internal threads adapted to mate with the external threads of the port. A gasket is mounted within the cap having flat first and second principle sides and made of a deformable metal, the first principle side of the gasket for mounting against the circular shaped knife edge of the port. A plunger having a circular shaped disc portion is adapted to fit within the hollow cap and is engagable with the first principle surface of the gasket and includes a shaft portion extending out of the aperture. The cap and shaft of the plunger include external wrenching flats. Thus when the cap is screwed onto the port and the plunger is prevented from rotating by a wrench mounted on the wrenching flats of the shaft portion of the plunger, the gasket is forced into engagement with the knife edge in pure compression and no rotation of the gasket occurs causing the knife edge to locally deform the gasket sealing of the port.
Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
The diagnosed mobile limiters of the TJ-II stellarator for plasma boundary studies
NASA Astrophysics Data System (ADS)
de la Cal, E.; Tabarés, F. L.; Tafalla, D.; Cortés, I. García.; Hidalgo, C.; López-Fraguas, A.
TJ-II is a medium size (major radius R=1.5 m, average plasma radius a <0.25 m, on axis magnetic field B=1 T) helical axis stellarator. The main characteristic is its magnetic configuration flexibility, due to the separate control of the different magnetic field coils. The two diagnosed mobile limiters are installed to reduce thermal loads on the thin protection plates of the contacting plasma-chamber regions and to study the plasma edge. First diagnostics are a set of thermocouples, Langmuir probes, H α-detectors and a CCD video camera with different filters (atomic lines of HeI, H α and near IR) looking at the limiter. A method of passive spectroscopy is proposed to map the electron temperature and density over the whole limiter surface by analysing the emission of helium recycling neutrals. It is expected from previous results of other stellarators, that the boundary magnetic topology will have a strong influence on the plasma-wall interaction. The mobile limiters can control the last closed magnetic surface and diagnose the plasma boundary. A qualitative different plasma edge scenario is foreseen between the limiter and the natural island divertor configuration (rational rotational transform inside the limiter radius). Plasma-wall interaction in TJ-II shows very specific features and the optimisation of the plasma edge topology can influence strongly the core plasma parameters. In particular, impurity screening will be a challenge due to the large power density which will be available in future (up to 2 MW NBI for 0.5 s). A safe operation for future high β-plasmas is also required and the mobile limiters should help to remove a fraction of the conductive/convective power.
NASA Astrophysics Data System (ADS)
Mo, Yibo
In situ X-ray absorption (XAS), surface enhanced Raman spectroscopy (SERS) and rotating ring disk electrode techniques have been employed for the characterization of materials of relevance to electrochemical energy storage and electrocatalysis. In particular, analysis of in situ Ir LIII-edge extended X-ray absorption fine structure (EXAFS) of IrO2 films electrodeposited on Au substrates yielded Ir-O bond lengths decreasing in the sequence 2.02, 1.97 and 1.93 A, for Ir3+, Ir4+ and Ir5+ sites, respectively. Although features consistent with the presence of crystalline IrO2 in the highly hydrated films were found from in situ SERS, the lack of intense shells in the FT of the EXAFS function beyond the nearest oxygen neighbors indicates that the films by and large do not display long range order. In similar studies, the Fourier transform of the k3-weighted Ru K-edge EXAFS of electrodeposited RuO2 films recorded in situ were characterized by two shells attributed to Ru-O and Ru-Ru interactions at 1.94(1) and 3.12(2) A, in agreement with results obtained ex situ for Ru4+ in hydrous RuO2, whereas films in the reduced state yielded a single Ru-O interaction shell at 2.02(1) A. Extensions of these in situ XAS to the study of electrocatalysts for the nitrite reduction made it possible to identify and characterize the electronic and structural properties of a nitrosyl iron porphyrin adduct adsorbed on an electrode surface via the analysis of Fe K-edge XAS data. The effects of Se and S ad-atoms on the electrocatalytic activity of Pt electrodes have been examined using RRDE techniques. In acid, within a rather narrow range of coverages, both S- and Se-modified Pt surfaces promote the 2-electron reduction of dioxygen to hydrogen peroxide at ca. 100% faradaic efficiency over a wide potential region. Also developed were methods for immobilizing unsupported dispersed high area Pt particles a glassy carbon (GC) disk of a rotating Pt(ring)/GC(disk) electrode assembly allowing electrochemical measurements to be performed under forced convection with only minimal losses of Pt from the surface.
ERIC Educational Resources Information Center
Kambilombilo, Dennis; Sakala, Whyson
2015-01-01
The study was conducted to investigate the challenges in-service mathematics student teachers face in transformational geometry; reflection and rotation. The Van Hiele Theory of levels of Thought was used as the theoretical framework for this study. A case study was undertaken using a written test. The research was carried on second and third…
An analytical parametric study of the broadband noise from axial-flow fans
NASA Technical Reports Server (NTRS)
Chou, Shau-Tak; George, Albert R.
1987-01-01
The rotating dipole analysis of Ffowcs Williams and Hawkings (1969) is used to predict the far field noise radiation due to various rotor broadband noise mechanisms. Consideration is given to inflow turbulence noise, attached boundary layer/trailing-edge interaction noise, tip-vortex formation noise, and trailing-edge thickness noise. The parametric dependence of broadband noise from unducted axial-flow fans on several critical variables is studied theoretically. The angle of attack of the rotor blades, which is related to the rotor performance, is shown to be important to the trailing-edge noise and to the tip-vortex formation noise.
Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L
2004-06-11
A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Mei, Chuh
1988-01-01
The large deflection random response of symmetrically laminated cross-ply rectangular thin plates subjected to random excitation is studied. The out-of-plane boundary conditions are such that all the edges are rigidly supported against translation, but elastically restrained against rotation. The plate is also assumed to have a small initial imperfection. The assumed membrane boundary conditions are such that all the edges are free from normal and tangential forces in the plane of the plate. Mean-square deflections and mean-square strains are determined for a three-layered cross-ply laminate.
Design of the DEMO Fusion Reactor Following ITER.
Garabedian, Paul R; McFadden, Geoffrey B
2009-01-01
Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task.
Design of the DEMO Fusion Reactor Following ITER
Garabedian, Paul R.; McFadden, Geoffrey B.
2009-01-01
Runs of the NSTAB nonlinear stability code show there are many three-dimensional (3D) solutions of the advanced tokamak problem subject to axially symmetric boundary conditions. These numerical simulations based on mathematical equations in conservation form predict that the ITER international tokamak project will encounter persistent disruptions and edge localized mode (ELMS) crashes. Test particle runs of the TRAN transport code suggest that for quasineutrality to prevail in tokamaks a certain minimum level of 3D asymmetry of the magnetic spectrum is required which is comparable to that found in quasiaxially symmetric (QAS) stellarators. The computational theory suggests that a QAS stellarator with two field periods and proportions like those of ITER is a good candidate for a fusion reactor. For a demonstration reactor (DEMO) we seek an experiment that combines the best features of ITER, with a system of QAS coils providing external rotational transform, which is a measure of the poloidal field. We have discovered a configuration with unusually good quasisymmetry that is ideal for this task. PMID:27504224
Assigning Main Orientation to an EOH Descriptor on Multispectral Images.
Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang
2015-07-01
This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.
NASA Astrophysics Data System (ADS)
Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas
2002-01-01
Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.
Acquisition and generalization of visuomotor transformations by nonhuman primates.
Paz, Rony; Nathan, Chen; Boraud, Thomas; Bergman, Hagai; Vaadia, Eilon
2005-02-01
The kinematics of straight reaching movements can be specified vectorially by the direction of the movement and its extent. To explore the representation in the brain of these two properties, psychophysical studies have examined learning of visuomotor transformations of either rotation or gain and their generalization. However, the neuronal substrates of such complex learning are only beginning to be addressed. As an initial step in ensuring the validity of such investigations, it must be shown that monkeys indeed learn and generalize visuomotor transformations in the same manner as humans. Here, we analyze trajectories and velocities of movements as monkeys adapt to either rotational or gain transformations. We used rotations with different signs and magnitudes, and gains with different signs, and analyzed transfer of learning to untrained movements. The results show that monkeys can adapt to both types of transformation with a time course that resembles human learning. Analysis of the aftereffects reveals that rotation is learned locally and generalizes poorly to untrained directions, whereas gain is learned more globally and can be transferred to other amplitudes. The results lend additional support to the hypothesis that reaching movements are learned locally but can be easily rescaled to other magnitudes by scaling the peak velocity. The findings also indicate that reaching movements in monkeys are planned and executed very similarly to those in humans. This validates the underlying presumption that neuronal recordings in primates can help elucidate the mechanisms of motor learning in particular and motor planning in general.
Mental Rotation of Dynamic, Three-Dimensional Stimuli by 3-Month-Old Infants
ERIC Educational Resources Information Center
Moore, David S.; Johnson, Scott P.
2011-01-01
Mental rotation involves transforming a mental image of an object so as to accurately predict how the object would look if it were rotated in space. This study examined mental rotation in male and female 3-month-olds, using the stimuli and paradigm developed by Moore and Johnson (2008). Infants were habituated to a video of a three-dimensional…
Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System
Yu, Fei; Sun, Qian
2014-01-01
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle lengthmore » for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Liu, Xiaojun; Christensen, Johan
2017-12-01
Topologically protected wave engineering in artificially structured media resides at the frontier of ongoing metamaterials research, which is inspired by quantum mechanics. Acoustic analogs of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation by means of robust edge mode excitations through analogies drawn to exotic quantum states. A variety of artificial acoustic systems hosting topological edge states have been proposed analogous to the quantum Hall effect, topological insulators, and Floquet topological insulators in electronic systems. However, those systems were characterized by a fixed geometry and a very narrow frequency response, which severely hinders the exploration and design of useful applications. Here we establish acoustic multipolar pseudospin states as an engineering degree of freedom in time-reversal invariant flow-free phononic crystals and develop reconfigurable topological insulators through rotation of their meta-atoms and reshaping of the metamolecules. Specifically, we show how rotation forms man-made snowflakelike molecules, whose topological phase mimics pseudospin-down (pseudospin-up) dipolar and quadrupolar states, which are responsible for a plethora of robust edge confined properties and topological controlled refraction disobeying Snell's law.
Current Noise from a Magnetic Moment in a Helical Edge
NASA Astrophysics Data System (ADS)
Väyrynen, Jukka I.; Glazman, Leonid I.
2017-03-01
We calculate the two-terminal current noise generated by a magnetic moment coupled to a helical edge of a two-dimensional topological insulator. When the system is symmetric with respect to in-plane spin rotation, the noise is dominated by the Nyquist component even in the presence of a voltage bias V . The corresponding noise spectrum S (V ,ω ) is determined by a modified fluctuation-dissipation theorem with the differential conductance G (V ,ω ) in place of the linear one. The differential noise ∂S /∂V , commonly measured in experiments, is strongly dependent on frequency on a small scale τK-1≪T set by the Korringa relaxation rate of the local moment. This is in stark contrast to the case of conventional mesoscopic conductors where ∂S /∂V is frequency independent and defined by the shot noise. In a helical edge, a violation of the spin-rotation symmetry leads to the shot noise, which becomes important only at a high bias. Uncharacteristically for a fermion system, this noise in the backscattered current is super-Poissonian.
Litzenberg, Dale W; Gallagher, Ian; Masi, Kathryn J; Lee, Choonik; Prisciandaro, Joann I; Hamstra, Daniel A; Ritter, Timothy; Lam, Kwok L
2013-08-01
To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.
Canonical Transformations of Kepler Trajectories
ERIC Educational Resources Information Center
Mostowski, Jan
2010-01-01
In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these…
A transformation-aware perceptual image metric
NASA Astrophysics Data System (ADS)
Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter
2015-03-01
Predicting human visual perception has several applications such as compression, rendering, editing and retargeting. Current approaches however, ignore the fact that the human visual system compensates for geometric transformations, e. g., we see that an image and a rotated copy are identical. Instead, they will report a large, false-positive difference. At the same time, if the transformations become too strong or too spatially incoherent, comparing two images indeed gets increasingly difficult. Between these two extrema, we propose a system to quantify the effect of transformations, not only on the perception of image differences, but also on saliency. To this end, we first fit local homographies to a given optical flow field and then convert this field into a field of elementary transformations such as translation, rotation, scaling, and perspective. We conduct a perceptual experiment quantifying the increase of difficulty when compensating for elementary transformations. Transformation entropy is proposed as a novel measure of complexity in a flow field. This representation is then used for applications, such as comparison of non-aligned images, where transformations cause threshold elevation, and detection of salient transformations.
Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei
2012-11-01
Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantifying Discretization Effects on Brain Trauma Simulations
2016-01-01
arbitrarily formed meshes can propagate error when resolving interactions among the skull , cerebrospinal fluid, and brain. We compared Lagrangian, pure...embedded methods from top to bottom. ......3 Fig. 2 Loading node-set for Eulerian rotational problem. The dark shaded area around the skull is the area to...and top inner edges of the skull . The example shown is a Lagrangian rotational model. The red and green materials represent the brain and skull
Fluid-Structure interaction analysis and performance evaluation of a membrane blade
NASA Astrophysics Data System (ADS)
Saeedi, M.; Wüchner, R.; Bletzinger, K.-U.
2016-09-01
Examining the potential of a membrane blade concept is the goal of the current work. In the sailwing concept the surface of the wing, or the blade in this case, is made from pre-tensioned membranes which meet at the pre-tensioned edge cable at the trailing edge. Because of the dependency between membrane deformation and applied aerodynamic load, two-way coupled fluid-structure interaction analysis is necessary for evaluation of the aerodynamic performance of such a configuration. The in-house finite element based structural solver, CARAT++, is coupled with OpenFOAM in order to tackle the multi-physics problem. The main aerodynamic characteristics of the membrane blade including lift coefficient, drag coefficient and lift to drag ratio are compared with its rigid counterpart. A single non-rotating NREL phase VI blade is studied here as a first step towards analyzing the concept for the rotating case. Compared with the rigid blade, the membrane blade has a higher slope of the lift curve. For higher angles of attack, lift and drag coefficients as well as the lift to drag ratio is higher for the membrane blade. A single non-rotating blade is studied here as a first step towards analyzing the concept for the rotating case.
Rotor with Flattened Exit Pressure Profile
NASA Technical Reports Server (NTRS)
Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)
2015-01-01
A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.
Flow shear stabilization of rotating plasmas due to the Coriolis effect.
Haverkort, J W; de Blank, H J
2012-07-01
A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating cylindrical plasma, this Coriolis-pressure effect is canceled by the centrifugal effect responsible for the magnetorotational instability. In a magnetically confined toroidal plasma, a large aspect ratio expansion shows that only half of the effect is canceled. This analytical result is confirmed by numerical computations. When the plasma rotates faster toroidally in the core than near the edge, the effect can contribute to the formation of transport barriers by stabilizing MHD instabilities.
Rotation of single live mammalian cells using dynamic holographic optical tweezers
NASA Astrophysics Data System (ADS)
Bin Cao; Kelbauskas, Laimonas; Chan, Samantha; Shetty, Rishabh M.; Smith, Dean; Meldrum, Deirdre R.
2017-05-01
We report on a method for rotating single mammalian cells about an axis perpendicular to the optical system axis through the imaging plane using dynamic holographic optical tweezers (HOTs). Two optical traps are created on the opposite edges of a mammalian cell and are continuously transitioned through the imaging plane along the circumference of the cell in opposite directions, thus providing the torque to rotate the cell in a controlled fashion. The method enables a complete 360° rotation of live single mammalian cells with spherical or near-to spherical shape in 3D space, and represents a useful tool suitable for the single cell analysis field, including tomographic imaging.
Spinning BTZ black hole versus Kerr black hole: A closer look
NASA Astrophysics Data System (ADS)
Kim, Hongsu
1999-03-01
By applying Newman's algorithm, the AdS3 rotating black hole solution is ``derived'' from the nonrotating black hole solution of Bañados, Teitelboim, and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution originally given by BTZ is given in kind of ``unfamiliar'' coordinates which are related to each other by a transformation of time coordinate alone. The relative physical meaning between these two time coordinates is carefully studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating BTZ solution are newly found via Newman's algorithm, the transformation to Kerr-Schild-type coordinates is looked for. Indeed, such a transformation is found to exist. In these Kerr-Schild-type coordinates, a truly maximal extension of its global structure by analytically continuing to an ``antigravity universe'' region is carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavin, B.F.
1986-12-02
This patent describes an improved liquid-film electron stripper for high intensity heavy ion beams comprising: at least one rotatable disc mounted in a housing, means for rotating the disc, a liquid reservoir operatively connected to the housing, means for directing liquid from the reservoir onto the rotatable disc for forming a film of liquid as liquid is spun from the disc, the disc being configured to define a sharp edge located at one side of the periphery of the disc, and configured to include a flat, smooth radially outer section located adjacent the sharp edge, the liquid being directed ontomore » the flat, smooth section of the disc, the means for directing liquid onto the disc including a nozzle positioned with respect to the disc so that liquid from the nozzle impinges at about a 90/sup 0/ angle with respect to the flat, smooth surface of the disc, and liquid film terminator means located in spaced relation to the disc and approximately perpendicular to a formed liquid film, the terminator means comprising at least one ribbon of material secured to the housing.« less
Analytic Reflected Lightcurves for Exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-04-01
The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.
Diffraction effects in mechanically chopped laser pulses
NASA Astrophysics Data System (ADS)
Gambhir, Samridhi; Singh, Mandip
2018-06-01
A mechanical beam chopper consists of a rotating disc of regularly spaced wide slits which allow light to pass through them. A continuous light beam, after passing through the rotating disc, is switched-on and switched-off periodically, and a series of optical pulses are produced. The intensity of each pulse is expected to rise and fall smoothly with time. However, a careful study has revealed that the edges of mechanically chopped laser light pulses consist of periodic intensity undulations which can be detected with a photo detector. In this paper, it is shown that the intensity undulations in mechanically chopped laser pulses are produced by diffraction of light from the rotating disc, and a detailed explanation is given of the intensity undulations in mechanically chopped laser pulses. An experiment presented in this paper provides an efficient method to capture a one dimensional diffraction profile of light from a straight sharp-edge in the time domain. In addition, the experiment accurately measures wavelengths of three different laser beams from the undulations in mechanically chopped laser light pulses.
Neptune's small dark spot (D2)
NASA Technical Reports Server (NTRS)
1999-01-01
This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the V-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Visuomotor Transformation in the Fly Gaze Stabilization System
Huston, Stephen J; Krapp, Holger G
2008-01-01
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that—like the tangential cells—NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information. PMID:18651791
Rate-distortion analysis of directional wavelets.
Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza
2012-02-01
The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE
Living on the Future Edge: Windows on Tomorrow
ERIC Educational Resources Information Center
Jukes, Ian; McCain, Ted; Crockett, Lee
2010-01-01
"Living on the Future Edge" challenges school leaders to rethink longstanding paradigms and transform pedagogy for tomorrow's learners. Apple Computer, Inc. co-founder Steve Wozniak's foreword underscores the overwhelming need to adjust traditional instruction to fit today's high-tech world. The book explores this new landscape and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlaic, S.; Kimouche, A.; Coraux, J.
Using low-energy electron microscopy, we study Co intercalation under graphene grown on Ir(111). Depending on the rotational domain of graphene on which it is deposited, Co is found intercalated at different locations. While intercalated Co is observed preferentially at the substrate step edges below certain rotational domains, it is mostly found close to wrinkles below other domains. These results indicate that curved regions (near substrate atomic steps and wrinkles) of the graphene sheet facilitate Co intercalation and suggest that the strength of the graphene/Ir interaction determines which pathway is energetically more favorable.
Numerical simulation of VAWT on the effects of rotation cylinder
NASA Astrophysics Data System (ADS)
Xing, Shuda; Cao, Yang; Ren, Fuji
2017-06-01
Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.
Characterization of the Micro Textures in a Friction Stir Weld
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C.
2004-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. The Dynamically-Recrystallized-Zone (DXZ) of a polished and etched FSW cross-section exhibits contrasting bands (the "onion-ring" structure), the origins of which are unclear. An orientation image mapping (OIM) study suggests that the corresponding bands may correspond respectively to a "straight-through" current of metal bypassing the pin tool in a single rotation or less and a "maelstrom" current rotating a number of times around the pin tool.
Mechanically driven centrifugal pyrolyzer
Linck, Martin Brendan [Mount Prospect, IL; Bush, Phillip Vann [Bartlett, IL
2012-03-06
An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.
Field-Line Localized Destabilization of Ballooning Modes in Three-Dimensional Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willensdorfer, M.; Cote, T. B.; Hegna, C. C.
2017-08-25
Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n ¼ 2 error field and during a moderate level of edge localized mode mitigation. The observed ballooning modes are localized to the field lines which experience one of the two zero crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium.more » This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.« less
A method to measure the presampling MTF in digital radiography using Wiener deconvolution
NASA Astrophysics Data System (ADS)
Zhou, Zhongxing; Zhu, Qingzhen; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Li, Guohui
2013-03-01
We developed a novel method for determining the presampling modulation transfer function (MTF) of digital radiography systems from slanted edge images based on Wiener deconvolution. The degraded supersampled edge spread function (ESF) was obtained from simulated slanted edge images with known MTF in the presence of poisson noise, and its corresponding ideal ESF without degration was constructed according to its central edge position. To meet the requirements of the absolute integrable condition of Fourier transformation, the origianl ESFs were mirrored to construct the symmetric pattern of ESFs. Then based on Wiener deconvolution technique, the supersampled line spread function (LSF) could be acquired from the symmetric pattern of degraded supersampled ESFs in the presence of ideal symmetric ESFs and system noise. The MTF is then the normalized magnitude of the Fourier transform of the LSF. The determined MTF showed a strong agreement with the theoritical true MTF when appropriated Wiener parameter was chosen. The effects of Wiener parameter value and the width of square-like wave peak in symmetric ESFs were illustrated and discussed. In conclusion, an accurate and simple method to measure the presampling MTF was established using Wiener deconvolution technique according to slanted edge images.
The research of edge extraction and target recognition based on inherent feature of objects
NASA Astrophysics Data System (ADS)
Xie, Yu-chan; Lin, Yu-chi; Huang, Yin-guo
2008-03-01
Current research on computer vision often needs specific techniques for particular problems. Little use has been made of high-level aspects of computer vision, such as three-dimensional (3D) object recognition, that are appropriate for large classes of problems and situations. In particular, high-level vision often focuses mainly on the extraction of symbolic descriptions, and pays little attention to the speed of processing. In order to extract and recognize target intelligently and rapidly, in this paper we developed a new 3D target recognition method based on inherent feature of objects in which cuboid was taken as model. On the basis of analysis cuboid nature contour and greyhound distributing characteristics, overall fuzzy evaluating technique was utilized to recognize and segment the target. Then Hough transform was used to extract and match model's main edges, we reconstruct aim edges by stereo technology in the end. There are three major contributions in this paper. Firstly, the corresponding relations between the parameters of cuboid model's straight edges lines in an image field and in the transform field were summed up. By those, the aimless computations and searches in Hough transform processing can be reduced greatly and the efficiency is improved. Secondly, as the priori knowledge about cuboids contour's geometry character known already, the intersections of the component extracted edges are taken, and assess the geometry of candidate edges matches based on the intersections, rather than the extracted edges. Therefore the outlines are enhanced and the noise is depressed. Finally, a 3-D target recognition method is proposed. Compared with other recognition methods, this new method has a quick response time and can be achieved with high-level computer vision. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in object tracking, port AGV, robots fields. The results of simulation experiments and theory analyzing demonstrate that the proposed method could suppress noise effectively, extracted target edges robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.
NASA Astrophysics Data System (ADS)
Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.
2017-08-01
The boundary layer flow and heat transfer in rotating nanofluid over a stretching sheet using Buongiorno model and thermophysical properties of nanoliquids is studied. Four types of nanoparticles, namely silver (Ag), copper (Cu), alumina (Al2O3) and titania (TiO2) are used in our analysis with water as the base fluid (Prandtl number, Pr = 6.2). The nonlinear partial differential equations are transformed into ordinary differential equations by using the similarity transformation. The numerical solutions of these equation is obtained using shooting method in Maple software. The numerical results is concentrated on the effects of nanoparticle volume fraction φ, Brownian motion Nb, thermophoresis Nt, rotation Ω and suction S parameters on the skin friction coefficient and heat transfer rate. Dual solutions are observed in a certain range of the rotating parameter.
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.
1993-01-01
Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.
Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
2001-01-01
Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…
Tools and Setups for Experiments with AC and Rotating Magnetic Fields
ERIC Educational Resources Information Center
Ponikvar, D.
2010-01-01
A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, K. H.; Chen, X.; Garofalo, A. M.
Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamakmore » energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less
First order coupled dynamic model of flexible space structures with time-varying configurations
NASA Astrophysics Data System (ADS)
Wang, Jie; Li, Dongxu; Jiang, Jianping
2017-03-01
This paper proposes a first order coupled dynamic modeling method for flexible space structures with time-varying configurations for the purpose of deriving the characteristics of the system. The model considers the first time derivative of the coordinate transformation matrix between the platform's body frame and the appendage's floating frame. As a result it can accurately predict characteristics of the system even if flexible appendages rotate with complex trajectory relative to the rigid part. In general, flexible appendages are fixed on the rigid platform or forced to rotate with a slow angular velocity. So only the zero order of the transformation matrix is considered in conventional models. However, due to neglecting of time-varying terms of the transformation matrix, these models introduce severe error when appendages, like antennas, for example, rotate with a fast speed relative to the platform. The first order coupled dynamic model for flexible space structures proposed in this paper resolve this problem by introducing the first time derivative of the transformation matrix. As a numerical example, a central core with a rotating solar panel is considered and the results are compared with those given by the conventional model. It has been shown that the first order terms are of great importance on the attitude of the rigid body and dynamic response of the flexible appendage.
Golla-Schindler, Ute; Benner, Gerd; Orchowski, Alexander; Kaiser, Ute
2014-06-01
It is demonstrated that energy-filtered transmission electron microscope enables following of in situ changes of the Ca-L2,3 edge which can originate from variations in both local symmetry and bond lengths. Low accelerating voltages of 20 and 40 kV slow down radiation damage effects and enable study of the start and finish of phase transformations. We observed electron beam-induced phase transformation of single crystalline calcite (CaCO3) to polycrystalline calcium oxide (CaO) which occurs in different stages. The coordination of Ca in calcite is close to an octahedral one streched along the <111> direction. Changes during phase transformation to an octahedral coordination of Ca in CaO go along with a bond length increase by 5 pm, where oxygen is preserved as a binding partner. Electron loss near-edge structure of the Ca-L2,3 edge show four separated peaks, which all shift toward lower energies during phase transformation at the same time the energy level splitting increases. We suggest that these changes can be mainly addressed to the change of the bond length on the order of picometers. An important pre-condition for such studies is stability of the energy drift in the range of meV over at least 1 h, which is achieved with the sub-Ångström low-voltage transmission electron microscope I prototype microscope.
NASA Technical Reports Server (NTRS)
Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh
1992-01-01
A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.
The effects of leading edge modifications on the post-stall characteristics of wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Barlow, J. B.; Saini, J. K.; Anderson, J. D., Jr.; Jones, E.
1980-01-01
An investigation of the effects of leading edge modifications on the post-stall characteristics of two rectangular planform wings in a series of low speed wind tunnel tests is presented. Abrupt discontinuities in the leading edge shape of the wings were produced by placing a nose glove over a portion of the span or by deflecting sections of a segmented leading edge flap. Six component balance data, oil flow visualization photographs, and pressure distribution measurements were obtained, and tests made to study the development of flow separation at stall on small scale planform wing models. Results of oil flow visualization tests at and beyond stall showed the formation of counter-rotating swirl patterns on the upper surface of the '2-D' and '3-D' wings, and results of a numerical lifting line technique applied to wings with leading edge modifications are included.
Burst Testing of Triaxial Braided Composite Tubes
NASA Technical Reports Server (NTRS)
Salem, J. A.; Bail, J. L.; Wilmoth, N. G.; Ghosn, L. J.; Kohlman, L. W.; Roberts, G. D.; Martin, R. E.
2014-01-01
Applications using triaxial braided composites are limited by the materials transverse strength which is determined by the delamination capacity of unconstrained, free-edge tows. However, structural applications such as cylindrical tubes can be designed to minimize free edge effects and thus the strength with and without edge stresses is relevant to the design process. The transverse strength of triaxial braided composites without edge effects was determined by internally pressurizing tubes. In the absence of edge effects, the axial and transverse strength were comparable. In addition, notched specimens, which minimize the effect of unconstrained tow ends, were tested in a variety of geometries. Although the commonly tested notch geometries exhibited similar axial and transverse net section failure strength, significant dependence on notch configuration was observed. In the absence of unconstrained tows, failure ensues as a result of bias tow rotation, splitting, and fracture at cross-over regions.
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.
Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu
2016-09-01
Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.
A proposed mechanism for rapid adaptation to spectrally distorted speech.
Azadpour, Mahan; Balaban, Evan
2015-07-01
The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual "inverse-transform" that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of "perceptual filling-in" mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation.
Three-dimensional analysis of scoliosis surgery using stereophotogrammetry
NASA Astrophysics Data System (ADS)
Jang, Stanley B.; Booth, Kellogg S.; Reilly, Chris W.; Sawatzky, Bonita J.; Tredwell, Stephen J.
1994-04-01
A new stereophotogrammetric analysis and 3D visualization allow accurate assessment of the scoliotic spine during instrumentation. Stereophoto pairs taken at each stage of the operation and robust statistical techniques are used to compute 3D transformations of the vertebrae between stages. These determine rotation, translation, goodness of fit, and overall spinal contour. A polygonal model of the spine using commercial 3D modeling package is used to produce an animation sequence of the transformation. The visualization have provided some important observation. Correction of the scoliosis is achieved largely through vertebral translation and coronal plane rotation, contrary to claims that large axial rotations are required. The animations provide valuable qualitative information for surgeons assessing the results of scoliotic correction.
Apparatus and methods for cooling and sealing rotary helical screw compressors
Fresco, A.N.
1997-08-05
In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor center lines or alternatively the channel paths coincide with the helical path of the rotor edges. 14 figs.
Apparatus and methods for cooling and sealing rotary helical screw compressors
Fresco, Anthony N.
1997-01-01
In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor centerlines or alternatively the channel paths coincide with the helical path of the rotor edges.
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
Making a georeferenced mosaic of historical map series using constrained polynomial fit
NASA Astrophysics Data System (ADS)
Molnár, G.
2009-04-01
Present day GIS software packages make it possible to handle several hundreds of rasterised map sheets. For proper usage of such datasets we usually have two requirements: First these map sheets should be georeferenced, secondly these georeferenced maps should fit properly together, without overlap and short. Both requirements can be fulfilled easily, if the geodetic background for the map series is accurate, and the projection of the map series is known. In this case the individual map sheets should be georeferenced in the projected coordinate system of the map series. This means every individual map sheets are georeferenced using overprinted coordinate grid or image corner projected coordinates as ground control points (GCPs). If after this georeferencing procedure the map sheets do not fit together (for example because of using different projection for every map sheet, as it is in the case of Third Military Survey) a common projection can be chosen, and all the georeferenced maps should be transformed to this common projection using a map-to-map transformation. If the geodetic background is not so strong, ie. there are distortions inside the map sheets, a polynomial (linear quadratic or cubic) polynomial fit can be used for georeferencing the map sheets. Finding identical surface objects (as GCPs) on the historical map and on a present day cartographic map, let us to determine a transformation between raw image coordinates (x,y) and the projected coordinates (Easting, Northing, E,N). This means, for all the map sheets, several GCPs should be found, (for linear, quadratic of cubic transformations at least 3, 5 or 10 respectively) and every map sheets should be transformed to a present day coordinate system individually using these GCPs. The disadvantage of this method is that, after the transformation, the individual transformed map sheets not necessarily fit together properly any more. To overcome this problem neither the reverse order of procedure helps: if we make the mosaic first (eg. graphically) and we try the polynomial fit of this mosaic afterwards, neither using this can we reduce the error of internal inaccuracy of the map-sheets. We can overcome this problem by calculating the transformation parameters of polynomial fit with constrains (Mikhail, 1976). The constrain is that the common edge of two neighboring map-sheets should be transformed identically, ie. the right edge of the left image and the left edge of the right image should fit together after the transformation. This condition should fulfill for all the internal (not only the vertical, but also for the horizontal) edges of the mosaic. Constrains are expressed as a relationship between parameters: The parameters of the polynomial transformation should fulfill not only the least squares adjustment criteria but also the constrain: the transformed coordinates should be identical on the image edges. (With the example mentioned above, for image points of the rightmost column of the left image the transformed coordinates should be the same a for the image points of the leftmost column of the right image, and these transformed coordinates can depend on the line number image coordinate of the raster point.) The normal equation system can be calculated with Lagrange-multipliers. The resulting set of parameters for all map-sheets should be applied on the transformation of the images. This parameter set can not been directly applied in GIS software for the transformation. The simplest solution applying this parameters is ‘simulating' GCPs for every image, and applying these simulated GCPs for the georeferencing of the individual map sheets. This method is applied on a set of map-sheets of the First military Survey of the Habsburg Empire with acceptable results. Reference: Mikhail, E. M.: Observations and Least Squares. IEP—A Dun-Donnelley Publisher, New York, 1976. 497 pp.
Measurement of the complete core plasma flow across the LOC-SOC transition at ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Lebschy, A.; McDermott, R. M.; Angioni, C.; Geiger, B.; Prisiazhniuk, D.; Cavedon, M.; Conway, G. D.; Dux, R.; Dunne, M. G.; Kappatou, A.; Pütterich, T.; Stroth, U.; Viezzer, E.; the ASDEX Upgrade Team
2018-02-01
A newly installed core charge exchange recombination spectroscopy (CXRS) diagnostic at ASDEX Upgrade (AUG) enables the evaluation of the core poloidal rotation (upol ) through the inboard-outboard asymmetry of the toroidal rotation with an accuracy of 0.5 to 1 km s-1 . Using this technique, the total plasma flow has been measured in Ohmic L-mode plasmas across the transition from the linear to saturated ohmic confinement (LOC-SOC) regimes. The core poloidal rotation of the plasma around mid-radius is found to be always in the ion diamagnetic direction, in disagreement with neoclassical (NC) predictions. The edge rotation is found to be electron-directed and consistent with NC codes. This measurement provides as well the missing ingredient to evaluate the core E×B velocity (uE×B ) from data only, which can then be compared to measurements of the perpendicular velocity of the turbulent fluctuations (u\\perp ) to gain information on the turbulent phase velocity (vph ). The non neoclassical upol from CXRS leads to good agreement between uE×B and u\\perp indicating that vph is small and at similar values as found with gyrokinetic simulations. Moreover, the data shows a shift of vph in the ion-diamagnetic direction at the edge after the transition from LOC to SOC consistent with a change in the dominant turbulence regime. The upgrade of the core CXRS system provides as well a deeper insight into the intrinsic rotation. This paper shows that the reversal of the core toroidal rotation occurs clearly after the LOC-SOC transition and concomitant with the peaking of the electron density.
Fujiwara, Yasushi; Izumi, Bunichiro; Fujiwara, Masami; Nakanishi, Kazuyoshi; Tanaka, Nobuhiro; Adachi, Nobuo; Manabe, Hideki
2017-04-01
C2 radiculopathy is known to cause occipito-cervical pain, but their pathology is unclear because of its rarity and unique anatomy. In this paper, we investigated the mechanism of C2 radiculopathy that underwent microscopic cervical foraminotomies (MCF). Three cases with C2 radiculopathy treated by MCF were investigated retrospectively. The mean follow-up period was 24 months. Pre-operative symptoms, imaging studies including para-sagittal CT and MRI, rotational dynamic CT, and intraoperative findings were investigated. There were 1 male and 2 females. The age of patients were ranged from 50 to 79 years. All cases had intractable occipito-cervical pain elicited by the cervical rotation. C2 nerve root block was temporally effective. There was unilateral spondylosis in symptomatic side without obvious atlatoaxial instability. Para-sagittal MRI and CT showed severe foraminal stenosis at C1-C2 due to the bony spur derived from the lateral atlanto-axial joints. In one case, dynamic rotational CT showed that the symptomatic foramen became narrower on rotational position. MCF was performed in all cases, and the C2 nerve root was impinged between the inferior edge of the C1 posterior arch and bony spur from the C1-C2 joint. After surgery, occipito-cervical pain disappeared. This study demonstrated that mechanical impingement of the C2 nerve root is one of the causes of occipito-cervical pain and it was successfully treated by microscopic resection of the inferior edge of the C1 posterior arch. Para-sagittal CT and MRI, rotational dynamic CT, and nerve root block were effective for diagnosis.
Far-infrared rotational emission by carbon monoxide
NASA Technical Reports Server (NTRS)
Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.
1981-01-01
Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines 10 to the 4th power/cu cm n(H2), 100 K T 2000 K, and J 50. An approximate analytic expression for the emissitivities which is valid over most of this region is obtained. Population inversions in the lower rotational levels occur for densities n(H2) approximately 10 (to the 3rd to 5th power)/cu cm and temperatures T approximately 50 K. Interstellar shocks observed edge on are a potential source of millimeter wave CO maser emission. The CO rotational cooling function suggested by Hollenbach and McKee (1979) is verified, and accurate numerical values given. Application of these results to other linear molecules should be straightforward.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX
2009-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX
2011-11-15
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
Yang, Tao; Gao, Wei
2018-01-01
Fault diagnosis is critical to ensure the safety and reliable operation of rotating machinery. Most methods used in fault diagnosis of rotating machinery extract a few feature values from vibration signals for fault diagnosis, which is a dimensionality reduction from the original signal and may omit some important fault messages in the original signal. Thus, a novel diagnosis method is proposed involving the use of a convolutional neural network (CNN) to directly classify the continuous wavelet transform scalogram (CWTS), which is a time-frequency domain transform of the original signal and can contain most of the information of the vibration signals. In this method, CWTS is formed by discomposing vibration signals of rotating machinery in different scales using wavelet transform. Then the CNN is trained to diagnose faults, with CWTS as the input. A series of experiments is conducted on the rotor experiment platform using this method. The results indicate that the proposed method can diagnose the faults accurately. To verify the universality of this method, the trained CNN was also used to perform fault diagnosis for another piece of rotor equipment, and a good result was achieved. PMID:29734704
Deblurring for spatial and temporal varying motion with optical computing
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Xue, Dongfeng; Hui, Zhao
2016-05-01
A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.
A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network.
Guo, Sheng; Yang, Tao; Gao, Wei; Zhang, Chen
2018-05-04
Fault diagnosis is critical to ensure the safety and reliable operation of rotating machinery. Most methods used in fault diagnosis of rotating machinery extract a few feature values from vibration signals for fault diagnosis, which is a dimensionality reduction from the original signal and may omit some important fault messages in the original signal. Thus, a novel diagnosis method is proposed involving the use of a convolutional neural network (CNN) to directly classify the continuous wavelet transform scalogram (CWTS), which is a time-frequency domain transform of the original signal and can contain most of the information of the vibration signals. In this method, CWTS is formed by discomposing vibration signals of rotating machinery in different scales using wavelet transform. Then the CNN is trained to diagnose faults, with CWTS as the input. A series of experiments is conducted on the rotor experiment platform using this method. The results indicate that the proposed method can diagnose the faults accurately. To verify the universality of this method, the trained CNN was also used to perform fault diagnosis for another piece of rotor equipment, and a good result was achieved.
NASA Astrophysics Data System (ADS)
Man'ko, V. I.; Markovich, L. A.
2018-02-01
Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.
Kaltner, Sandra; Jansen, Petra
2017-01-01
This erratum reports an error in “Developmental changes in mental rotation: A dissociation between object-based and egocentric transformations” by Sandra Kaltner & Petra Jansen (Advances in Cognitive Psychology, 12, 67-78. doi: 10.5709/acp-0187-y). The error addresses the fact, that regarding developmental changes in object-based and egocentric transformations, there is only a difference found in children. The incorrect version found changes only in the adult group, but not within children or older adults. PMID:29201259
Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy
NASA Astrophysics Data System (ADS)
Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.
1988-06-01
The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.
Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.
Mendlovic, D; Ozaktas, H M; Lohmann, A W
1994-09-10
Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.
2014-10-16
Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency
Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe2
2018-01-01
Studying the atomic structure of intrinsic defects in two-dimensional transition-metal dichalcogenides is difficult since they damage quickly under the intense electron irradiation in transmission electron microscopy (TEM). However, this can also lead to insights into the creation of defects and their atom-scale dynamics. We first show that MoTe2 monolayers without protection indeed quickly degrade during scanning TEM (STEM) imaging, and discuss the observed atomic-level dynamics, including a transformation from the 1H phase into 1T′, 3-fold rotationally symmetric defects, and the migration of line defects between two 1H grains with a 60° misorientation. We then analyze the atomic structure of MoTe2 encapsulated between two graphene sheets to mitigate damage, finding the as-prepared material to contain an unexpectedly large concentration of defects. These include similar point defects (or quantum dots, QDs) as those created in the nonencapsulated material and two different types of line defects (or quantum wires, QWs) that can be transformed from one to the other under electron irradiation. Our density functional theory simulations indicate that the QDs and QWs embedded in MoTe2 introduce new midgap states into the semiconducting material and may thus be used to control its electronic and optical properties. Finally, the edge of the encapsulated material appears amorphous, possibly due to the pressure caused by the encapsulation. PMID:29503509
Exploring Algorithms for Stellar Light Curves With TESS
NASA Astrophysics Data System (ADS)
Buzasi, Derek
2018-01-01
The Kepler and K2 missions have produced tens of thousands of stellar light curves, which have been used to measure rotation periods, characterize photometric activity levels, and explore phenomena such as differential rotation. The quasi-periodic nature of rotational light curves, combined with the potential presence of additional periodicities not due to rotation, complicates the analysis of these time series and makes characterization of uncertainties difficult. A variety of algorithms have been used for the extraction of rotational signals, including autocorrelation functions, discrete Fourier transforms, Lomb-Scargle periodograms, wavelet transforms, and the Hilbert-Huang transform. In addition, in the case of K2 a number of different pipelines have been used to produce initial detrended light curves from the raw image frames.In the near future, TESS photometry, particularly that deriving from the full-frame images, will dramatically further expand the number of such light curves, but details of the pipeline to be used to produce photometry from the FFIs remain under development. K2 data offers us an opportunity to explore the utility of different reduction and analysis tool combinations applied to these astrophysically important tasks. In this work, we apply a wide range of algorithms to light curves produced by a number of popular K2 pipeline products to better understand the advantages and limitations of each approach and provide guidance for the most reliable and most efficient analysis of TESS stellar data.
Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate
NASA Astrophysics Data System (ADS)
Koffi, Moise
The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary layer. Therefore the cooling is enhanced using flexible models by 30 percent. However, the huge size of the elephant pinna combined with its large surface to volume ratio and blood perfusion plays a key role in the enhancement of the animal's heat dissipation.
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Reena Benjamin, J; Jayasree, T
2018-02-01
In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
Particle orbits in a force-balanced, wave-driven, rotating torus
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
NASA Technical Reports Server (NTRS)
Hoots, F. R.; Fitzpatrick, P. M.
1979-01-01
The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.
Particle orbits in a force-balanced, wave-driven, rotating torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Fisch, N. J.
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less
Particle orbits in a force-balanced, wave-driven, rotating torus
NASA Astrophysics Data System (ADS)
Ochs, I. E.; Fisch, N. J.
2017-09-01
A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.
Tool use and the effect of action on the imagination.
Schwartz, D L; Holton, D L
2000-11-01
Three studies examined the claim that hand movements can facilitate imagery for object rotations but that this facilitation depends on people's model of the situation. In Experiment 1, physically turning a block without vision reduced mental rotation times compared with imagining the same rotation without bodily movement. In Experiment 2, pulling a string from a spool facilitated participants' mental rotation of an object sitting on the spool. In Experiment 3, depending on participants' model of the spool, the exact same pulling movement facilitated or interfered with the exact same imagery transformation. Results of Experiments 2 and 3 indicate that the geometric characteristics of an action do not specify the trajectory of an imagery transformation. Instead, they point to people's ability to model the tools that mediate between motor activity and its environmental consequences and to transfer tool knowledge to a new situation.
Vibration characteristics and optimization for panel elastically supported in mobile phone
NASA Astrophysics Data System (ADS)
Kaito, Y.; Honda, S.; Narita, Y.
2016-09-01
In recent years, usage of smartphones and tablet terminals have spread around the world. These devices using touchscreen as a user interface are currently mainstream. Also, in order to let information of input or output surely know to users, there are some types of equipment having vibrational function in touchscreen. Here, the material of touchscreen consists of glass and the glass panel is fixed to a mobile phone's body by adhesive tapes along the edge of the panel. However, due to the difficulty of design of vibration, it needs investigation with a vast number of manufacturing prototypes. Moreover, the vibration characteristic of panels is not enough regarding intensity and a tactile impression. Therefore, in this study, the authors consider the vibration characteristic of glass panel elastically fixed by adhesive tapes along edges. First, they show modeling of adhesive tapes along edges of panel by using translational and rotational springs. Second, they show formulating vibration characteristic by using an energy method. Third, they optimize spring constants of translational and rotational springs by using Genetic Algorithm(GA) from the obtained expression. Finally, they consider natural frequencies and eigenmodes which were acquired from experiments and simulations.
Rotary-To-Axial Motion Converter For Valve
NASA Technical Reports Server (NTRS)
Reinicke, Robert H.; Mohtar, Rafic
1991-01-01
Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.
PIRIA: a general tool for indexing, search, and retrieval of multimedia content
NASA Astrophysics Data System (ADS)
Joint, Magali; Moellic, Pierre-Alain; Hede, P.; Adam, P.
2004-05-01
The Internet is a continuously expanding source of multimedia content and information. There are many products in development to search, retrieve, and understand multimedia content. But most of the current image search/retrieval engines, rely on a image database manually pre-indexed with keywords. Computers are still powerless to understand the semantic meaning of still or animated image content. Piria (Program for the Indexing and Research of Images by Affinity), the search engine we have developed brings this possibility closer to reality. Piria is a novel search engine that uses the query by example method. A user query is submitted to the system, which then returns a list of images ranked by similarity, obtained by a metric distance that operates on every indexed image signature. These indexed images are compared according to several different classifiers, not only Keywords, but also Form, Color and Texture, taking into account geometric transformations and variance like rotation, symmetry, mirroring, etc. Form - Edges extracted by an efficient segmentation algorithm. Color - Histogram, semantic color segmentation and spatial color relationship. Texture - Texture wavelets and local edge patterns. If required, Piria is also able to fuse results from multiple classifiers with a new classification of index categories: Single Indexer Single Call (SISC), Single Indexer Multiple Call (SIMC), Multiple Indexers Single Call (MISC) or Multiple Indexers Multiple Call (MIMC). Commercial and industrial applications will be explored and discussed as well as current and future development.
NASA Astrophysics Data System (ADS)
Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.
2018-02-01
The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.
Experimental and numerical investigation of centrifugal pumps with asymmetric inflow conditions
NASA Astrophysics Data System (ADS)
Mittag, Sten; Gabi, Martin
2015-11-01
Most of the times pumps operate off best point states. Reasons are changes of operating conditions, modifications, pollution and wearout or erosion. As consequences non-rotational symmetric flows, transient operational conditions, increased risk of cavitation, decrease of efficiency and unpredictable wearout can appear. Especially construction components of centrifugal pumps, in particular intake elbows, contribute to this matter. Intake elbows causes additional losses and secondary flows, hence non-rotational velocity distributions as intake profile to the centrifugal pump. As a result the impeller vanes experience permanent changes of the intake flow angle and with it transient flow conditions in the blade channels. This paper presents the first results of a project, experimentally and numerically investigating the consequences of non-rotational inflow to leading edge flow conditions of a centrifugal pump. Therefore two pumpintake- elbow systems are compared, by only altering the intake elbow geometry: a common single bended 90° elbow and a numerically optimized elbow (improved regarding rotational symmetric inflow conditions and friction coefficient). The experiments are carried out, using time resolved stereoscopic PIV on a full acrylic pump with refractions index matched (RIM) working fluid. This allows transient investigations of the flow field simultaneously for all blade leading edges. Additional CFD results are validated and used to further support the investigation i.e. for comparing an analog pump system with ideal inflow conditions.
NASA Astrophysics Data System (ADS)
Aktharuzzaman, Md; Sarker, Md. Samad; Safa, Wasiul; Sharah, Nahreen; Salam, Md. Abdus
2017-12-01
Magnus effect is a phenomenon where pressure difference is created according to Bernoulli's effect due to induced velocity changes caused by a rotating object in a fluid. Using this concept, the idea of delaying boundary layer separation on airfoil by providing moving surface boundary layer control has been developed. In order to analyze the influence of Magnus effect on the aerodynamic performance of an airfoil, there is no alternative of developing an experimental setup. This paper aims to develop such an experimental setup which will be capable of analyzing the influence of Magnus effect on both symmetric and asymmetric airfoils by placing a cylinder at the leading edge. To provide arrangements for a rotating cylinder at the leading edge of airfoil, necessary modifications and additions have been done in the test section of an AF100 subsonic wind tunnel.
The shape of dark matter haloes - IV. The structure of stellar discs in edge-on galaxies
NASA Astrophysics Data System (ADS)
Peters, S. P. C.; de Geyter, G.; van der Kruit, P. C.; Freeman, K. C.
2017-01-01
We present optical and near-infrared archival observations of eight edge-on galaxies. These observations are used to model the stellar content of each galaxy using the FITSKIRT software package. Using FITSKIRT, we can self-consistently model a galaxy in each band simultaneously while treating for dust. This allows us to measure accurately both the scalelength and scaleheight of the stellar disc, plus the shape parameters of the bulge. By combining these data with the previously reported integrated magnitudes of each galaxy, we can infer their true luminosities. We have successfully modelled seven out of the eight galaxies in our sample. We find that stellar discs can be modelled correctly, but we have not been able to model the stellar bulge reliably. Our sample consists for the most part of slowly rotating galaxies and we find that the average dust layer is much thicker than is reported for faster rotating galaxies.
Cutting-Edge Technologies and Social Media Use in Higher Education
ERIC Educational Resources Information Center
Benson, Vladlena, Ed.; Morgan, Stephanie
2014-01-01
The inclusion of social media in higher education has transformed the way instructors teach and students learn. In order to effectively reach their students in this networked world, teachers must learn to utilize the latest technologies in their classrooms. "Cutting-Edge Technologies and Social Media Use in Higher Education" brings…
Researches on Position Detection for Vacuum Switch Electrode
NASA Astrophysics Data System (ADS)
Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan
2018-03-01
Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.
Luo, Yu; Lei, Dang Yuan; Maier, Stefan A; Pendry, John B
2012-07-24
The sharpness of corners/edges can have a large effect on the optical responses of metallic nanostructures. Here we deploy the theory of transformation optics to analytically investigate a variety of blunt plasmonic structures, including overlapping nanowire dimers and crescent-shaped nanocylinders. These systems are shown to support several discrete optical modes, whose energy and line width can be controlled by tuning the nanoparticle geometry. In particular, the necessary conditions are highlighted respectively for the broadband light absorption effect and the invisibility dips that appear in the radiative spectrum. More detailed discussions are provided especially with respect to the structures with asymmetric edge rounding. These structures can support additional subradiant modes, whose interference with the neighboring dipolar modes results in a rapid change of the scattering cross-section, similar to the phenomenon observed in plasmonic Fano resonances. Finite element numerical calculations are also performed to validate the analytical predictions. The physical insights into blunt nanostructures presented in this work may be of great interest for the design of broadband light-harvesting devices, invisible and noninvasive biosensors, and slowing-light devices.
Fourier transform inequalities for phylogenetic trees.
Matsen, Frederick A
2009-01-01
Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.
Barenholtz, Elan; Tarr, Michael J
2008-06-01
A single biological object, such as a hand, can assume multiple, very different shapes, due to the articulation of its parts. Yet we are able to recognize all of these shapes as examples of the same object. How is this invariance to pose achieved? Here, we present evidence that the visual system maintains a model of object transformation that is based on rigid, convex parts articulating at extrema of negative curvature, i.e., part boundaries. We compared similarity judgments in a task in which subjects had to decide which of the two transformed versions of a 'base' shape-one a 'biologically valid' articulation and one a geometrically similar but 'biologically invalid' articulation-was more similar to the base shape. Two types of comparisons were made: in the figure/ground-reversal, the invalid articulation consisted of exactly the same contour transformation as the valid one with reversed figural polarity. In the axis-of-rotation reversal, the valid articulation consisted of a part rotated around its concave part boundaries, while the invalid articulation consisted of the same part rotated around the endpoints on the opposite side of the part. In two separate 2AFC similarity experiments-one in which the base and transformed shapes were presented simultaneously and one in which they were presented sequentially-subjects were more likely to match the base shape to a transform when it corresponded to a legitimate articulation. These results suggest that the visual system maintains expectations about the way objects will transform, based on their static geometry.
Leemann, Beat T.; Yourd, Roland B.
1984-01-01
A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.
Leemann, B.T.; Yourd, R.B.
1982-03-09
A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.
NASA Technical Reports Server (NTRS)
Lan, C. E.; Chang, J. F.
1981-01-01
A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method.
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-07-18
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes.
Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming
2013-01-01
Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409
NASA Astrophysics Data System (ADS)
Ramachandra Rao, Ch. V. S.
1983-11-01
The rotational Hamiltonian of an asymmetric-top molecule in its standard form, containing terms up to eighth degree in the components of the total angular momentum, is transformed by a unitary transformation with parameters Spqr to a reduced Hamiltonian so as to avoid the indeterminacies inherent in fitting the complete Hamiltonian to observed energy levels. Expressions are given for the nine determinable combinations of octic constants Θ' i ( i = 1 to 9) which are invariant under the unitary transformation. A method of reduction suitable for energy calculations by matrix diagonalization is considered. The relations between the coefficients of the transformed Hamiltonian, for suitable choice of the parameters Spqr, and those of the reduced Hamiltonian are given. This enables the determination of the nine octic constants Θ' i in terms of the experimental constants.
Underwater object classification using scattering transform of sonar signals
NASA Astrophysics Data System (ADS)
Saito, Naoki; Weber, David S.
2017-08-01
In this paper, we apply the scattering transform (ST)-a nonlinear map based off of a convolutional neural network (CNN)-to classification of underwater objects using sonar signals. The ST formalizes the observation that the filters learned by a CNN have wavelet-like structure. We achieve effective binary classification both on a real dataset of Unexploded Ordinance (UXOs), as well as synthetically generated examples. We also explore the effects on the waveforms with respect to changes in the object domain (e.g., translation, rotation, and acoustic impedance, etc.), and examine the consequences coming from theoretical results for the scattering transform. We show that the scattering transform is capable of excellent classification on both the synthetic and real problems, thanks to having more quasi-invariance properties that are well-suited to translation and rotation of the object.
A Real-Time System for Lane Detection Based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Xiao, Jing; Li, Shutao; Sun, Bin
2016-12-01
This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.
NASA Astrophysics Data System (ADS)
Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia
2017-07-01
The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.
NASA Astrophysics Data System (ADS)
Taillebot, V.; Lexcellent, C.; Vacher, P.
2012-03-01
The thermomechanical behavior of shape memory alloys is now well mastered. However, a hindrance to their sustainable use is the lack of knowledge of their fracture behavior. With the aim of filling this partial gap, fracture tests on edge-cracked specimens in NiTi have been made. Particular attention was paid to determine the phase transformation zones in the vicinity of the crack tip. In one hand, experimental kinematic fields are observed using digital image correlation showing strain localization around the crack tip. In the other hand, an analytical prediction, based on a modified equivalent stress criterion and taking into account the asymmetric behavior of shape memory alloys in tension-compression, provides shape and size of transformation outset zones. Experimental results are relatively in agreement with our analytical modeling.
Simplified modelling and analysis of a rotating Euler-Bernoulli beam with a single cracked edge
NASA Astrophysics Data System (ADS)
Yashar, Ahmed; Ferguson, Neil; Ghandchi-Tehrani, Maryam
2018-04-01
The natural frequencies and mode shapes of the flapwise and chordwise vibrations of a rotating cracked Euler-Bernoulli beam are investigated using a simplified method. This approach is based on obtaining the lateral deflection of the cracked rotating beam by subtracting the potential energy of a rotating massless spring, which represents the crack, from the total potential energy of the intact rotating beam. With this new method, it is assumed that the admissible function which satisfies the geometric boundary conditions of an intact beam is valid even in the presence of a crack. Furthermore, the centrifugal stiffness due to rotation is considered as an additional stiffness, which is obtained from the rotational speed and the geometry of the beam. Finally, the Rayleigh-Ritz method is utilised to solve the eigenvalue problem. The validity of the results is confirmed at different rotational speeds, crack depth and location by comparison with solid and beam finite element model simulations. Furthermore, the mode shapes are compared with those obtained from finite element models using a Modal Assurance Criterion (MAC).
Validation of theoretical models of intrinsic torque in DIII-D
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Wang, W. X.; Battaglia, D. J.; Chrystal, C.; Solomon, W. M.; Degrassie, J. S.; Staebler, G. M.; Boedo, J. A.
2016-10-01
Plasma rotation experiments in DIII-D are validating models of main-ion intrinsic rotation by testing Reynolds stress induced toroidal flow in the plasma core and intrinsic rotation induced by ion orbit losses in the plasma edge. In the core of dominantly electron heated plasmas with Te=Ti, the main-ion intrinsic toroidal rotation undergoes a reversal that correlates with the critical gradient for ITG turbulence. Residual stress arising from zonal-flow ExB shear and turbulence intensity gradient produce residual stress and counter-current intrinsic torque, which is balanced by momentum diffusion, creating the hollow profile. Quantitative agreement is obtained for the first time between the measured main-ion toroidal rotation and the rotation profile predicted by nonlinear GTS gyrokinetic simulations. At the plasma boundary, new main-ion CER measurements show a co-current rotation layer and this is tested against ion orbit loss models as the source of bulk plasma rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.
Observation of Pure Rotational Spectra of SiCCN by Fourier-Transform Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Umeki, Hiroya; Nakajima, Masakazu; Endo, Yasuki
2014-06-01
Pure rotational spectra of SiCCN ( ˜{X} 2Π3/2) have been observed using Fourier-transform microwave (FTMW) spectroscopy in the frequency region 13 to 35 GHz. The SiCCN radical was produced in a supersonic jet by discharging a mixture gas, 0.2% SiCl4 and 0.2% CH3CN diluted in Ar. The effective rotational constant Beff,3/2, the centrifugal distortion constant D, and the hyperfine coupling constants, a + (b + c)/2 and eQq0, were determined with a standard deviation of the fit to be 6 kHz. Determined B and eQq0 are consistent with those derived from ab initio calculations. Λ-type doublings were not resolved for the observed spectra.
Analytic reflected light curves for exoplanets
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Cowan, Nicolas B.
2018-07-01
The disc-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motions coupled with an inhomogeneous albedo map. We have previously derived analytic reflected light curves for spherical harmonic albedo maps in the special case of a synchronously rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard). In this paper, we present analytic reflected light curves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_ l^m-maps). In particular, we use Wigner D-matrices to express an harmonic light curve for an arbitrary viewing geometry as a non-linear combination of harmonic light curves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected light curves, as well as fast calculation of light curves for mapping exoplanets based on time-resolved photometry. To these ends, we make available Exoplanet Analytic Reflected Lightcurves, a simple open-source code that allows rapid computation of reflected light curves.
Power turbine ventilation system
NASA Technical Reports Server (NTRS)
Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)
1991-01-01
Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskey, S. R.; Grierson, B. A.; Stagner, L.
Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the D α spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (Cmore » 6+) and main-ion (D +) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D + temperature can be half the value of the C 6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. Furthermore, these measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.« less
On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs
NASA Astrophysics Data System (ADS)
Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.
2016-05-01
The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.
Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study
NASA Astrophysics Data System (ADS)
Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John; Thompson, Mark
2017-06-01
This computational study analyzes the effect of variation of the radius of gyration (rg), expressed as the Rossby number Ro=rg/C , with C the chord, on the aerodynamics of a rotating wing at a Reynolds number of 1400. The wing is represented as an aspect-ratio-unity rectangular flat plate aligned at 45 ∘ . This plate is accelerated near impulsively to a constant rotational velocity and the flow is allowed to develop. Flow structures are analyzed and force coefficients evaluated. Trends in velocity field degradation with increasing Ro are consistent with previous experimental studies. At low Ro the flow structure generated initially is mostly retained with a strong laminar leading-edge vortex (LEV) and tip vortex (TV). As both Ro and travel distance increase, the flow structure degrades such that at high Ro it begins to resemble that of a translating wing. Additionally, the present study has shown the following. (i) At low Ro the LEV and TV structure is laminar and steady; as Ro increases this structure breaks down, and the location at which it breaks down shifts closer to the wing root. (ii) For moderate Ro of 1.4 and higher, the LEV is no longer steady but enters a shedding regime fed by the leading-edge shear layer. (iii) At the lowest Ro of 0.7 the lift force rises during start-up and then stabilizes, consistent with the flow structure being retained, while for higher Ro a force peak occurs after the initial acceleration is complete, followed by a reduction in lift which appears to correspond to shedding of excess leading-edge vorticity generated during start-up. (iv) All rotating wings produced greater lift than a translating wing, this increase varied from ˜65 % at the lowest Ro=0.7 down to ˜5 % for the highest Ro examined of 9.1.
ERIC Educational Resources Information Center
Krüger, Markus; Kaiser, Marlen; Mahler, Kristin; Bartels, Wolfgang; Krist, Horst
2014-01-01
Until now, a successful application of the mental rotation paradigm was restricted to children 5?years or older. By contrast, recent findings suggest that even infants can perform mental rotation. Unlike the methods used in infant studies (looking time), our new research paradigm allows for the measurement and interpretation of reaction times.…
Tuszewski, M; Smirnov, A; Thompson, M C; Korepanov, S; Akhmetov, T; Ivanov, A; Voskoboynikov, R; Schmitz, L; Barnes, D; Binderbauer, M W; Brown, R; Bui, D Q; Clary, R; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Garate, E; Glass, F J; Gota, H; Guo, H Y; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Longman, A; Hollins, M; Li, X L; Luo, Y; Mendoza, R; Mok, Y; Necas, A; Primavera, S; Ruskov, E; Schroeder, J H; Sevier, L; Sibley, A; Song, Y; Sun, X; Trask, E; Van Drie, A D; Walters, J K; Wyman, M D
2012-06-22
Field reversed configurations (FRCs) with high confinement are obtained in the C-2 device by combining plasma gun edge biasing and neutral beam injection. The plasma gun creates an inward radial electric field that counters the usual FRC spin-up. The n = 2 rotational instability is stabilized without applying quadrupole magnetic fields. The FRCs are nearly axisymmetric, which enables fast ion confinement. The plasma gun also produces E × B shear in the FRC edge layer, which may explain the observed improved particle transport. The FRC confinement times are improved by factors 2 to 4, and the plasma lifetimes are extended from 1 to up to 4 ms.
NASA Astrophysics Data System (ADS)
Rowlett, Hugh; Forsyth, Donald W.
1984-07-01
New air gun reflection profiles, 3.5-kHz reflection profiles, and microearthquake data recorded by an array of ocean bottom seismographs form the basis for this study of the transition from a spreading center to a major transform fault. Disturbances of the thick, normally flat-lying, turbidite deposits provide indications of recent vertical motions. At the western intersection of the fracture zone with the median valley there is a depression in the sediments that represents the southerly extension of the median valley into the fracture zone valley. The depression is terminated abruptly on the south by the active transform fault, which acts as a locus for vertical as well as horizontal displacement. Flat-lying, undisturbed sediments terminate abruptly at the fault. The western boundary of the depression is much broader and is characterized by a series of slumplike steps. To the west, there is little or no evidence for uplift or tilting of sediments which might indicate vertical recovery of the crust as it spreads away from the depression. This suggests that uplift and recovery out of the depression is episodic in nature and has been inactive over the last million years along the western boundary. To the east there is clear evidence of uplift and tilting of sedimentary layers. A basement ridge emerging from the sediments is currently being uplifted and rotated in a manner analogous to processes responsible for the creation and cancellation of median valley relief. The transition between the spreading center and the transform fault appears to take place within 1-2 km. The width of the transform fault just east of the depression is less than a kilometer. Microearthquakes were located and displayed by new methods that directly account for nonlinearities associated with small arrays. Microearthquakes located by three or more ocean bottom seismometers show that the greatest seismic activity occurs along the eastern walls of the median valley, at the basement ridge, in the eastern portion of the depression and in the crestal mountains. Very little activity is associated with the western edge of the transform depression and the trace of the transform fault.
2009-09-01
non-uniform, stationary rotation / non- Distribution A: Approved for public release; distribution is unlimited. 8 stationary rotation , mass...Cayley spectral transformation as a means of rotating the basin of convergence of the Arnoldi algorithm. Instead of doing the inversion of the large...pair of counter rotating streamwise vortices embedded in uniform shear flow. Consistently with earlier work by the same group, the main present finding
Observation of topological edge states of acoustic metamaterials at subwavelength scale
NASA Astrophysics Data System (ADS)
Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie
2018-05-01
Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.
1989-08-17
August 17 to 19, 1989 Range : 11.5 million km (7.1 million mi.) to 7.9 million km (4.9 million mi.) Four black and white images of Neptune's largest satellite, Triton, show it's rotation between the first (upper left) image and the last (lower right). Resolution improves from about 200 km (124 miles) to 150 km (93 miles) per line pair. Triton's south pole lies in the dark area near the bottom of the disk. Dark spots, roughly 1,000 km (620 miles) across, occur near the equator, and show Triton rotation between images. The rotation appears to be synchronous with Triton's 5.88-day orbital period (i.e., Triton rotates on its axis in the same time it revolves around Neptune.) The spots' constant rotation rate and their visibility near the edge of the disk suggest the spots are surface features. Whatever atmosphere is present on Triton appears transparent enough that Voyager 2's cameras can see through it.
NASA Astrophysics Data System (ADS)
Carlson, C. W.; Pluhar, C. J.; Glen, J. M.; Farner, M. J.
2012-12-01
Accommodating ~20-25% of the dextral-motion between the Pacific and North American plates the Walker Lane is represented as an elongate, NW oriented, region of active tectonics positioned between the northwesterly-translating Sierra Nevada microplate and the east-west extension of the Basin and Range. This region of transtension is being variably accommodated on regional-scale systems of predominantly strike-slip faulting. At the western edge of the central Walker Lane (ca. 38°-39°N latitude) is a region of crustal-scale blocks bounded by wedge-shaped depositional-basins and normal-fault systems, here defined as the west-central Walker Lane (WCWL). Devoid of obvious strike-slip faulting, the presence of tectonic-block vertical-axis rotations in the WCWL represents unrecognized components of dextral-shearing and/or changes of strain-accommodation over time. We use paleomagnetic reference directions for Eureka Valley Tuff (EVT) members of the late Miocene Stanislaus Group as spatial and temporal markers for documentation of tectonic-block vertical-axis rotations near Bridgeport, CA. Study-site rotations revealed discrete rotational domains of mean vertical-axis rotation ranging from ~10°-30° with heterogeneous regional distribution. Additionally, the highest measured magnitudes of vertical-axis rotation (~50°-60° CW) define a 'Region of High Strain' that includes the wedge-shaped Bridgeport Valley (Basin). This study revealed previously-unrecognized tectonic rotation of reference direction sites from prior studies for two (By-Day and Upper) of the three members of the EVT, resulting in under-estimates of regional strain accommodation by these studies. Mean remanent directions and virtual geomagnetic poles utilized in our study yielded a recalculated reference direction for the By-Day member of: Dec.=353.2°; Inc.= 43.7°; α95=10.1, in agreement with new measurements in the stable Sierra Nevada. This recalculated direction confirmed the presence of previously unrecognized reference site rotations, and provided an additional reference direction for determining vertical-axis rotation magnitudes. We present a kinematic model based on mean rotation magnitudes of ~30° CW for the Sweetwater Mountains and Bodie Hills that accounts for rotational-strain accommodation of dextral shear in the WCWL since the late Miocene. This model considers rotational magnitudes, paleostrain indicators, edge-effects, and strain-accommodating structures of rotating crustal blocks to represent changes in regional strain accommodation over time. The results and models presented here elucidate the complicated and evolving nature of the WCWL, and further understanding of variations in strain accommodation for the Walker Lane.
Dimensionless size scaling of intrinsic rotation in DIII-D
deGrassie, John S.; Solomon, Wayne M.; Rice, J. E.; ...
2016-08-01
A dimensionless empirical scaling for intrinsic toroidal rotation is given; M A ~β Nρ*, where M A is the toroidal velocity divided by the Alfvén velocity, β N the usual normalized β value, and ρ* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D, and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. Furthermore, this scaling establishes the basic magnitude of themore » intrinsic toroidal rotation and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed.« less
Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.
Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A
2014-04-01
Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J.
2011-12-01
Oceanic propagating rifts create migrating transform fault zones on the seafloor that leave a wake of deformed and rotated crustal blocks between abandoned transform fault stands. Faulting and rotation kinematics in these areas are inferred from bathymetric lineaments and earthquake focal mechanisms, but the details of crustal deformation associated with migrating oceanic transforms is inhibited by limited seafloor exposures and access. A similar propagating rift and migrating transform system occurs in thick oceanic-like crust of Northern Iceland, providing an additional perspective on kinematics of these systems. The Tjörnes Fracture Zone (TFZ) in Northern Iceland is a broad region of deformation thought to have formed ~7 Ma. Right-lateral motion is accommodated mostly on two WNW-trending seismically active fault zones, the Grímsey Seismic Zone and the Húsavík-Flatey Fault (HFF), spaced ~40 km apart. Both are primarily offshore; however, deformation south of the HFF is partly exposed on land over an area of >10 km (N/S) and >25 km (E/W) on the peninsula of Flateyjarskagi. Previous work has shown that average lava flow orientations progressively change from 160°/12° SW (~20 km south from HFF), to 183°/25° NW (~12 km S of HFF), and 212°/33° NW (~6 km S of HFF). Dike orientations also progressively change from 010°/85° SE (parallel to the Northern Rift Zone), clockwise to 110°/75° SW (nearly parallel to the HFF) near the HFF. Pervasive strike-slip faulting is evident along the HFF as well as on isolated faults to the south. Between these, NNE-striking left-lateral, oblique-slip faults occur near the HFF but appear to decrease in occurrence to the south. These relationships have been interpreted as either the result of transform shear deformation (secondary features) or construction in a stress field that varies as the transform is approached (primary features). Paleomagnetic data from across the area can test these hypotheses. Mean paleomagnetic remanence directions of normal polarity lavas from two areas ~6 and ~12 km south of the HFF both have easterly declinations and moderate positive inclinations, with nearly antipodal reverse directions. Dikes sampled in the area ~6 km south of HFF reveal remanence directions indistinguishable from those of the lavas at the 95% confidence level. After tilt correction, the mean remanence directions for the area ~6km south of the HFF are statistically distinct from the expected Geocentric Axial Dipole (GAD) direction suggesting an additional ~40° or more of vertical-axis rotation. Tilt-corrected remanence directions of lavas ~12 km south of the HFF are nearly coincident with the GAD suggesting little additional rotation. Geological field relations and fault-slip data imply a two-stage reconstruction involving tilting followed by approximately vertical-axis rotations. The deformation within the TFZ may be analogous to that of migrating oceanic transform faults, transform faults associated with propagating rifts, and microplates.
Rotation invariant features for wear particle classification
NASA Astrophysics Data System (ADS)
Arof, Hamzah; Deravi, Farzin
1997-09-01
This paper investigates the ability of a set of rotation invariant features to classify images of wear particles found in used lubricating oil of machinery. The rotation invariant attribute of the features is derived from the property of the magnitudes of Fourier transform coefficients that do not change with spatial shift of the input elements. By analyzing individual circular neighborhoods centered at every pixel in an image, local and global texture characteristics of an image can be described. A number of input sequences are formed by the intensities of pixels on concentric rings of various radii measured from the center of each neighborhood. Fourier transforming the sequences would generate coefficients whose magnitudes are invariant to rotation. Rotation invariant features extracted from these coefficients were utilized to classify wear particle images that were obtained from a number of different particles captured at different orientations. In an experiment involving images of 6 classes, the circular neighborhood features obtained a 91% recognition rate which compares favorably to a 76% rate achieved by features of a 6 by 6 co-occurrence matrix.
Transformation-aware perceptual image metric
NASA Astrophysics Data System (ADS)
Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter
2016-09-01
Predicting human visual perception has several applications such as compression, rendering, editing, and retargeting. Current approaches, however, ignore the fact that the human visual system compensates for geometric transformations, e.g., we see that an image and a rotated copy are identical. Instead, they will report a large, false-positive difference. At the same time, if the transformations become too strong or too spatially incoherent, comparing two images gets increasingly difficult. Between these two extrema, we propose a system to quantify the effect of transformations, not only on the perception of image differences but also on saliency and motion parallax. To this end, we first fit local homographies to a given optical flow field, and then convert this field into a field of elementary transformations, such as translation, rotation, scaling, and perspective. We conduct a perceptual experiment quantifying the increase of difficulty when compensating for elementary transformations. Transformation entropy is proposed as a measure of complexity in a flow field. This representation is then used for applications, such as comparison of nonaligned images, where transformations cause threshold elevation, detection of salient transformations, and a model of perceived motion parallax. Applications of our approach are a perceptual level-of-detail for real-time rendering and viewpoint selection based on perceived motion parallax.
Cetera, Maureen; Ramirez-San Juan, Guillermina R.; Oakes, Patrick W.; Lewellyn, Lindsay; Fairchild, Michael J.; Tanentzapf, Guy; Gardel, Margaret L.; Horne-Badovinac, Sally
2014-01-01
Tissues use numerous mechanisms to change shape during development. The Drosophila egg chamber is an organ-like structure that elongates to form an elliptical egg. During elongation the follicular epithelial cells undergo a collective migration that causes the egg chamber to rotate within its surrounding basement membrane. Rotation coincides with the formation of a “molecular corset”, in which actin bundles in the epithelium and fibrils in the basement membrane are all aligned perpendicular to the elongation axis. Here we show that rotation plays a critical role in building the actin-based component of the corset. Rotation begins shortly after egg chamber formation and requires lamellipodial protrusions at each follicle cell’s leading edge. During early stages, rotation is necessary for tissue-level actin bundle alignment, but it becomes dispensable after the basement membrane is polarized. This work highlights how collective cell migration can be used to build a polarized tissue organization for organ morphogenesis. PMID:25413675
Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D
Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...
2015-09-04
In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less
Rotation Capacity of Bolted Flush End-Plate Stiffened Beam-to-Column Connection
NASA Astrophysics Data System (ADS)
Ostrowski, Krzysztof; Kozłowski, Aleksander
2017-06-01
One of the flexibility parameters of semi-rigid joints is rotation capacity. Plastic rotation capacity is especially important in plastic design of framed structures. Current design codes, including Eurocode 3, do not posses procedures enabling designers to obtain value of rotation capacity. In the paper the calculation procedure of the rotation capacity for stiffened bolted flush end-plate beam-to-column connections has been proposed. Theory of experiment design was applied with the use of Hartley's PS/DS-P:Ha3 plan. The analysis was performed with the use of finite element method (ANSYS), based on the numerical experiment plan. The determination of maximal rotation angle was carried out with the use of regression analysis. The main variables analyzed in parametric study were: pitch of the bolt "w" (120-180 mm), the distance between the bolt axis and the beam upper edge cg1 (50-90 mm) and the thickness of the end-plate tp (10-20 mm). Power function was proposed to describe available rotation capacity of the joint. Influence of the particular components on the rotation capacity was also investigated. In the paper a general procedure for determination of rotation capacity was proposed.
Distributed ISAR Subimage Fusion of Nonuniform Rotating Target Based on Matching Fourier Transform.
Li, Yuanyuan; Fu, Yaowen; Zhang, Wenpeng
2018-06-04
In real applications, the image quality of the conventional monostatic Inverse Synthetic Aperture Radar (ISAR) for the maneuvering target is subject to the strong fluctuation of Radar Cross Section (RCS), as the target aspect varies enormously. Meanwhile, the maneuvering target introduces nonuniform rotation after translation motion compensation which degrades the imaging performance of the conventional Fourier Transform (FT)-based method in the cross-range dimension. In this paper, a method which combines the distributed ISAR technique and the Matching Fourier Transform (MFT) is proposed to overcome these problems. Firstly, according to the characteristics of the distributed ISAR, the multiple channel echoes of the nonuniform rotation target from different observation angles can be acquired. Then, by applying the MFT to the echo of each channel, the defocused problem of nonuniform rotation target which is inevitable by using the FT-based imaging method can be avoided. Finally, after preprocessing, scaling and rotation of all subimages, the noncoherent fusion image containing all the RCS information in all channels can be obtained. The accumulation coefficients of all subimages are calculated adaptively according to the their image qualities. Simulation and experimental data are used to validate the effectiveness of the proposed approach, and fusion image with improved recognizability can be obtained. Therefore, by using the distributed ISAR technique and MFT, subimages of high-maneuvering target from different observation angles can be obtained. Meanwhile, by employing the adaptive subimage fusion method, the RCS fluctuation can be alleviated and more recognizable final image can be obtained.
Facilities & Technology: The Transformation of "Campus." APPA Thought Leaders Series 2015
ERIC Educational Resources Information Center
APPA: Association of Higher Education Facilities Officers, 2015
2015-01-01
The 2015 Thought Leaders symposium focused on the topic of "Facilities & Technology: The Transformation of 'Campus.'" Educational institutions that master new technologies will have an edge in the increasingly competitive higher education landscape. This report discusses the factors related to integrating technology and the campus…
Tapered structure construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Eric D.; Takata, Rosalind K.; Slocum, Alexander H.
Feeding stock used to form a tapered structure into a curving device such that each point on the stock undergoes rotational motion about a peak location of the tapered structure; and the stock meets a predecessor portion of stock along one or more adjacent edges.
MC-1 LOX Pump Rotating Cavitation: Issue and Investigation
NASA Technical Reports Server (NTRS)
VanHooser, Katherine; Turner, J. (Technical Monitor)
2001-01-01
Leading edge tip deformation was noted on the LOX inducer from the component test unit at disassembly. The damage was in a location similar to a previous Fastrac water flow inducer failure. A team was formed to investigate the anomaly.
(2+1)-dimensional spacetimes containing closed timelike curves
NASA Astrophysics Data System (ADS)
Headrick, Matthew P.; Gott, J. Richard, III
1994-12-01
We investigate the global geometries of (2+1)-dimensional spacetimes as characterized by the transformations undergone by tangent spaces upon parallel transport around closed curves. We critically discuss the use of the term ``total energy-momentum'' as a label for such parallel-transport transformations, pointing out several problems with it. We then investigate parallel-transport transformations in the known (2+1)-dimensional spacetimes containing closed timelike curves (CTC's), and introduce a few new such spacetimes. Using the more specific concept of the holonomy of a closed curve, applicable in simply connected spacetimes, we emphasize that Gott's two-particle CTC-containing spacetime does not have a tachyonic geometry. Finally, we prove the following modified version of Kabat's conjecture: if a CTC is deformable to spacelike or null infinity while remaining a CTC, then its parallel-transport transformation cannot be a rotation; therefore its holonomy, if defined, cannot be a rotation other than through a multiple of 2π.
Orbital Magnetization of Quantum Spin Hall Insulator Nanoparticles.
Potasz, P; Fernández-Rossier, J
2015-09-09
Both spin and orbital degrees of freedom contribute to the magnetic moment of isolated atoms. However, when inserted in crystals, atomic orbital moments are quenched because of the lack of rotational symmetry that protects them when isolated. Thus, the dominant contribution to the magnetization of magnetic materials comes from electronic spin. Here we show that nanoislands of quantum spin Hall insulators can host robust orbital edge magnetism whenever their highest occupied Kramers doublet is singly occupied, upgrading the spin edge current into a charge current. The resulting orbital magnetization scales linearly with size, outweighing the spin contribution for islands of a few nm in size. This linear scaling is specific of the Dirac edge states and very different from Schrodinger electrons in quantum rings. By modeling Bi(111) flakes, whose edge states have been recently observed, we show that orbital magnetization is robust with respect to disorder, thermal agitation, shape of the island, and crystallographic direction of the edges, reflecting its topological protection.
Helicopter rotor trailing edge noise. [noise prediction
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amier, R. K.
1981-01-01
A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.
NASA Astrophysics Data System (ADS)
Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone; Dotti, Massimo; Moustakas, Leonidas A.
2017-02-01
A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N-body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f gas, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs (f gas ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless (f gas = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f gas ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone
A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N -body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f {sub gas}, in the disk of the progenitor dwarf. Our numerical experimentsmore » incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs ( f {sub gas} ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless ( f {sub gas} = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f {sub gas} ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...
2017-03-01
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system
NASA Astrophysics Data System (ADS)
Andrei, Luca; Andreini, Antonio; Bonanni, Leonardo; Facchini, Bruno
2012-06-01
The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating arm holding both the PMMA TE model and the instrumentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermo-chromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pressure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; moreover several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steady-state RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. Low-Reynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an in-house developed pressure based solver exploiting the k-ω SST turbulence model implemented in the framework of the open-source finite volume discretization toolbox OpenFOAM®. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of detailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.
Triple probe interrogation of spokes in a HiPIMS discharge
NASA Astrophysics Data System (ADS)
Lockwood Estrin, F.; Karkari, S. K.; Bradley, J. W.
2017-07-01
Using a triple probe situated above the racetrack and inside the magnetic trap of a magnetron, rotating spoke-like structures have been clearly identified in a single HiPIMS pulse as periodic modulations of the electron temperature T e, electron density n e, ion saturation current I isat, floating potential V f and plasma potential V p. The spokes rotate in the E × B direction with a velocity of ~8.8 km s-1. Defining the spoke shape from the footprint of the ion current, they deliver to flush-mounted probes embedded in the target, each spoke can be characterised by a dense but cool leading edge (n e ~ 2.0 × 1019 m-3, T e ~ 2.1 eV) and a relatively hotter but more rarefied trailing edge (n e ~ 1 × 1019 m-3, T e ~ 3.9 eV). Measurements of V p show a potential hump towards the rear of the spoke, separated from regions of the highest density, with plasma potentials up to 8 V more positive than the inter-spoke regions. Azimuthal electric fields of ~1 kV m-1 associated with these structures are calculated. Transforming the triple probe time-traces to functions of the azimuthal angle θ and assuming a Gaussian radial profile for the plasma parameters, 2D spatial maps of n e, T e and V p have been constructed as well as the target ion current density J p from the embedded probes. The phase relationship between T e, V p and n e can be clearly seen using this representation with n e leading T e and V p with a phase shift between them of ~50°. Regions of maximum ion current to the target, delivered by individual spokes, coincide with the overlap of regions of high n e and T e measured above the target at a height of 15 mm. Ions created at elevated positions above the target in the observed dense region will take several micro-seconds to reach that surface, so contributing to the target ion current in the following spokes.
Experimental study on the crack detection with optimized spatial wavelet analysis and windowing
NASA Astrophysics Data System (ADS)
Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine
2018-05-01
In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.
NASA Astrophysics Data System (ADS)
Ermilov, A. S.; Zobov, V. E.
2007-12-01
To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.
Accomplishing Transformative Research in a Challenging Fiscal Environment
NASA Astrophysics Data System (ADS)
Mitchell, E. J.; Paxton, L. J.; Bust, G.
2014-12-01
The shift in funding is forcing scientists to promise transformative research for a pittance. To accomplish this, researchers need to transform their methodology to include societal buy-in, use of commercial off-the-shelf (COTS) technology, and cross-discipline platform usage. As the cutting edge of research expands to view the system on the global scale with extremely fine resolution, fiscally reasonable budgets present a challenge to be met. Consider how do we measure a specific variable over 45-degrees of latitude in an isolated and hostile region of Earth - the total electron count over the South Pole? This work examines this transformative research using hosted payloads on buoys, balloons, and unmanned aerial vehicles (UAVs). We will show cutting edge research occurring simultaneous with education and public outreach, offering societal buy-in through interactive websites and student-built hosted payloads. These interactions provide a vision to the public and a new database to the scientists. The use of COTS technology and cross-discipline (oceanography and space) platforms keep the cost low. We will discuss a general methodology for accomplishing transformative research in a challenging fiscal environment through integration of COTS technology, assimilative and first principle models, and observing systems simulation experiments (OSSEs).
Analysis of a Circular Composite Disk Subjected to Edge Rotations and Hydrostatic Pressure
NASA Technical Reports Server (NTRS)
Oliver, Stanley T.
2004-01-01
The structural analysis results for a graphite/epoxy quasi-isotropic circular plate subjected to a forced rotation at the boundary and pressure is presented. The analysis is to support a specialized material characterization test for composite cryogenic tanks. Finite element models were used to ensure panel integrity and determine the pressure necessary to achieve a predetermined equal biaxial strain value. The displacement results due to the forced rotation at the boundary led to a detailed study of the bending stiffness matrix [D]. The variation of the bending stiffness terms as a function of angular position is presented graphically, as well as, an illustrative technique of considering the laminate as an I-beam.
Far-infrared rotational emission by carbon monoxide
NASA Technical Reports Server (NTRS)
Mckee, C. F.; Storey, J. W. V.; Watson, D. M.; Green, S.
1982-01-01
Accurate theoretical collisional excitation rates are used to determine the emissivities of CO rotational lines for an H2 molecule content of at least 10,000/cu cm, temperature in the range 100-3000 K, and J not more than 60 under the assumption that the lines are optically thin. An approximate analytic expression for the emissivities which is valid in this region is obtained. Population inversions in the lower rotational levels occur for densities of molecular H2 around 1000-100,000/cu cm and temperatures T not more than about 50 K provided photon trapping is unimportant. Interstellar shocks observed edge-on are a potential source of weak millimeter-wave CO maser emission.
Synchronization of coupled active rotators by common noise
NASA Astrophysics Data System (ADS)
Dolmatova, Anastasiya V.; Goldobin, Denis S.; Pikovsky, Arkady
2017-12-01
We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law.
Suppression of turbulent particle flux during biased rotation in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.
2005-10-01
The edge plasma in LAPD is rotated through the application of a bias voltage (typically 100V-200V) between the plasma source cathode and the vacuum vessel wall. Without bias, cross-field turbulent particle transport causes the density profile to extend well past the cathode edge, with a fairly gentle gradient (Ln˜10 cm). As the bias voltage is applied and increased past a threshold value, the measured density profile steepens dramatically (Ln˜2 cm) at a radius near the peak of the flow shear. Turbulent transport flux measurements in this region show that the flux is reduced and then suppressed completely as the threshold is approached. As the bias voltage is increased further, the measured turbulent transport flux reverses direction. The amplitude of the density and azimuthal electric field fluctuations is observed to decrease during biased rotation, the product of the amplitudes decreasing by a factor of 5. However the dominant change appears in the cross-phase, which is altered dramatically, leading to the observed suppression and reversal of the turbulent flux. Detailed two-dimensional turbulent correlation measurements have been performed using the high repetition rate (1 Hz) and high reproducibility of LAPD plasmas. In unbiased plasmas, the correlation is localized to around 5 cm radially and a slightly smaller distance azimuthally (ρs˜0.5-1 cm). During biased rotation, a dramatic increase in the azimuthal correlation is observed, however there is little change in the radial correlation length.
Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2017-08-01
In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by 90° such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are 4 π fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271-285, 2012a). As an example, we obtained 2190× 2190 coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.
NASA Technical Reports Server (NTRS)
2001-01-01
Bands of eastward and westward winds on Jupiter appear as concentric rotating circles in this movie composed of Cassini spacecraft images that have been re-projected as if the viewer were looking down at Jupiter's north pole and the planet were flattened.
The sequence covers 70 days, from October 1 to December 9, 2000. Cassini's narrow-angle camera captured the images of Jupiter's atmosphere in the near-infrared region of the spectrum.What is surprising in this view is the coherent nature of the high-latitude flows, despite the very chaotic, mottled and non-banded appearance of the planet's polar regions. This is the first extended movie sequence to show the coherence and longevity of winds near the pole and the features blown around the planet by them.There are thousands of spots, each an active storm similar to the size to the largest of storms on Earth. Large terrestrial storms usually last only a week before they dissolve and are replaced by other storms. But many of the Jovian storms seen here, while occasionally changing latitude or merging with each other, persist for the entire 70 days. Until now, the lifetime of the high-latitude features was unknown. Their longevity is a mystery of Jovian weather.Cassini collected images of Jupiter for months before and after it passed the planet on December 30, 2000. Six or more images of the planet in each of several spectral filters were taken at evenly spaced intervals over the course of Jupiter's 10-hour rotation period. The entire sequence was repeated generally every other Jupiter rotation, yielding views of every sector of the planet at least once every 20 hours.The images used for the movie shown here were taken every 20 hours through a filter centered at a wavelength of 756 nanometers, where there are almost no absorptions in the planet's atmosphere. The images covering each rotation were mosaiced together to form a cylindrical map extending from 75 degrees north to 75 degrees south in latitude and covering 360 degrees in longitude. The movie consists of 84 such maps, spanning 70 Earth days in time or 168 Jupiter rotations.Transforming the cylindrical maps into polar stereographic projections produces a movie of what Jupiter would look like if viewed from the pole. Jupiter's alternating eastward and westward jet streams flow in concentric rings around the pole, with equatorial motions visible in the corners. The dark features flowing counterclockwise near the equator are'hot spots' where cloud cover is relatively thin.The high-latitude movements call into question one notion concerning wind circulation on Jupiter. The model in question suggests that Jupiter'a alternating bands of east-west winds are the exposed edges of deeper rotating cylinders that extend north-south through the planet. However, the east-west winds that the movie shows in polar regions don't fit that model. The cylinders whose edges would form those bands would have to go through the innermost portion of the planet, where the cylinders' different rotations could not be maintained. Jupiter's wind pattern may involve a mix of rotation-on-cylinders near the equator and some other circulation mechanism near the poles.For more information, see the Cassini Project home page, http://www.jpl.nasa.gov/cassini/ and the Cassini Imaging Team home page, http://ciclops.lpl.arizona.edu/ciclops/ .Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.Trailing Edge Noise Prediction Based on a New Acoustic Formulation
NASA Technical Reports Server (NTRS)
Casper, J.; Farassat, F.
2002-01-01
A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experiment. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, using both analytical and experimental data on the airfoil surface. The results are compared to analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.
Mechanisms of collective cell movement lacking a leading or free front edge in vivo.
Uechi, Hiroyuki; Kuranaga, Erina
2017-08-01
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Broadband Trailing Edge Noise Predictions in the Time Domain. Revised
NASA Technical Reports Server (NTRS)
Casper, Jay; Farassat, Fereidoun
2003-01-01
A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.
Rudiments of curvelet with applications
NASA Astrophysics Data System (ADS)
Zahra, Noor e.
2012-07-01
Curvelet transform is now a days a favored tool for image processing. Edges are an important part of an image and usually they are not straight lines. Curvelet prove to be very efficient in representing curve like edges. In this chapter application of curvelet is shown with some examples like seismic wave analysis, oil exploration, fingerprint identification and biomedical images like mammography and MRI.
Non-rigid ultrasound image registration using generalized relaxation labeling process
NASA Astrophysics Data System (ADS)
Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun
2013-03-01
This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.
13. Detail view of drum screen short shaft gears, journal ...
13. Detail view of drum screen short shaft gears, journal bearing, rotation drive chain, upper sprocket gear, and drum screen edge in background, facing southeast (downstream) from drum screen cover. - Congdon Canal, Fish Screen, Naches River, Yakima, Yakima County, WA
Effect of Pylon Wake with and Without Pylon Blowing on Propeller Thrust
NASA Technical Reports Server (NTRS)
Gentry, Garl L., Jr.; Booth, Earl R., Jr.; Takallu, M. A.
1990-01-01
Pylon trailing edge blowing was investigated as a means of alleviating the effects of the pylon wake on a pusher arrangement of an advanced single-rotation turboprop. Measurements were made of steady-state propeller thrust and pylon wake pressures and turbulence levels with and without blowing. Results show that the pylon trailing edge blowing practically eliminated the pylon wake, significantly reduced the pylon wake turbulence, and had a relatively small effect on the steady-state propeller thrust. The data are presented with a minimum of analysis.
An ideal clamping analysis for a cross-ply laminate
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.
1988-01-01
Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.
Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies
NASA Astrophysics Data System (ADS)
Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.
2011-06-01
A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein
Optoelectronic associative memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor)
1993-01-01
An associative optical memory including an input spatial light modulator (SLM) in the form of an edge enhanced liquid crystal light valve (LCLV) and a pair of memory SLM's in the form of liquid crystal televisions (LCTV's) forms a matrix array of an input image which is cross correlated with a matrix array of stored images. The correlation product is detected and nonlinearly amplified to illuminate a replica of the stored image array to select the stored image correlating with the input image. The LCLV is edge enhanced by reducing the bias frequency and voltage and rotating its orientation. The edge enhancement and nonlinearity of the photodetection improves the orthogonality of the stored image. The illumination of the replicate stored image provides a clean stored image, uncontaminated by the image comparison process.
Shaping of Rack Cutter Original Profile for Fine-module Ratchet Teeth Cutting
NASA Astrophysics Data System (ADS)
Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.
2018-05-01
The design models and the process of shaping the cutting edges of the rack cutter for cutting fine-module ratchet teeth are considered in the article. The use of fine-module ratchet teeth can reduce the noise and impact loads during operation of the freewheel mechanisms. Mathematical dependencies for calculating the coordinates determining the geometric position of the points of the front and back edges of the cutting profile of the rack cutter, the workpiece angle of rotation during cutting the ratchet teeth were obtained. When applying the developed method, the initial data are: the radii of the workpiece circumferences passing through the dedendum of the external and internal cut teeth; gradient angles of the front and back edges of the rail.
Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
An electronic pan/tilt/zoom camera system
NASA Technical Reports Server (NTRS)
Zimmermann, Steve; Martin, H. Lee
1991-01-01
A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.
Nonlinear calculation of the m=1 internal kink instability in current carrying stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakatani, M.
1978-02-01
Nonlinear properties of the m=1 internal kink mode are shown in a low beta current carrying stellarator. The effects of the external helical magnetic fields are considered through a rotational transform and the magnetic surface is assumed to be circular. Magnetic surfaces inside the iota sub eta + iota sub sigma = 1 surface shift and deform non-circularly, while magnetic surfaces outside the iota sub eta + iota sub sigma = 1 are not disturbed, where iota sub eta is a rotational transform due to helical magnetic fields and iota sub sigma is due to a plasma current. Many highermore » harmonics are excited after the fundamental mode saturates. When the external helical magnetic fields are lowered, the m=1 tearing mode similar to that in a low beta Tokamak grows and magnetic islands appear near the iota sub eta + iota sub sigma = 1 surface. For adequate helical magnetic fields, the current carrying stellarator becomes stable against both the m=1 internal kink mode and the m=1 internal kink mode and the m=1 tearing mode, without lowering the rotational transform.« less
Low torque hydrodynamic lip geometry for rotary seals
Dietle, Lannie L.; Schroeder, John E.
2015-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Rotational control of computer generated holograms.
Preece, Daryl; Rubinsztein-Dunlop, Halina
2017-11-15
We develop a basis for three-dimensional rotation of arbitrary light fields created by computer generated holograms. By adding an extra phase function into the kinoform, any light field or holographic image can be tilted in the focal plane with minimized distortion. We present two different approaches to rotate an arbitrary hologram: the Scheimpflug method and a novel coordinate transformation method. Experimental results are presented to demonstrate the validity of both proposed methods.
Howell, Stephen M; Hodapp, Esther E; Vernace, Joseph V; Hull, Maury L; Meade, Thomas D
2013-10-01
Tibiofemoral contact kinematics or knee implant motions have a direct influence on patient function and implant longevity and should be evaluated for any new alignment technique such as kinematically aligned total knee arthroplasty (TKA). Edge loading of the tibial liner and external rotation (reverse of normal) and adduction of the tibial component on the femoral component are undesirable contact kinematics that should be minimized. Accordingly, this study determined whether the overall prevalence of undesirable contact kinematics during standing, mid kneeling near 90 degrees and full kneeling with kinematically aligned TKA are minimal and not different between groups of consecutive patients treated by different surgeons. Three surgeons were asked to perform cemented, kinematically aligned TKA with patient-specific guides in a consecutive series of patients with their preferred cruciate-retaining (CR) implant. In vivo tibiofemoral contact positions were obtained using a 3- to 2-dimensional image registration technique in 69 subjects (Vanguard CR-TKA N = 22, and Triathlon CR-TKA N = 47). Anterior or posterior edge loading of the tibial liner was not observed. The overall prevalence of external rotation of the tibial component on the femoral component of 6 % was low and not different between surgeons (n.s.). The overall prevalence of adduction of the tibial component on the femoral component of 4 % was low and not different between surgeons (n.s.). Kinematically aligned TKA minimized the undesirable contact kinematics of edge loading of the tibial liner, and external rotation and adduction of the tibial component on the femoral component during standing and kneeling, which suggests an optimistic prognosis for durable long-term function. III.
NASA Astrophysics Data System (ADS)
Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Arkad'ev, D. A.; Temkin, S. G.; Senina, N. A.
2016-12-01
Fatigue test results of the rotating steel blades of the fourth stage of the K-25-0.6 low pressure cylinder Geo steam turbine manufactured in the Kaluga Turbine Plant (hereinafter, KTP) with the ion-plasma coating were presented. Coating formation was carried out at the National Research University (MPEI) on the Gefest vacuum pilot plant by the magnetron sputtering method. Characteristics of the obtained coating were analyzed with the use of the scientific-research equipment of the National Research University (MPEI). Fatigue tests of the rotating blades and determination of the fatigue strength of the material with the ion-plasma coating were carried out on the electrodynamic vibration machines VEDS-400A in the KTP structural laboratory. The following characteristics were obtained after tests: Ti-TiN composition, 10-11 μm thickness, 1200 HV 0.05 microhardness. Fatigue tests showed that destruction, regardless of availability or nonavailability of the coating, took place by cross-section in the root zone both on the leading and trailing edges of the blade, i.e., in the most stressed zones. It was found out that the maximum stresses during tests were revealed in the root section along the trailing edge on the blade pressure side, and the less stresses were on the leading edge. Fatigue strength of the working blades after coating formation increased by 12% minimum. Results of the fatigue tests prove the previously obtained data concerning 10-12% increase of the fatigue strength of the blade steel with the ion-plasma coating and allow claiming that the process of their formation exerts the positive influence on the fatigue characteristics of the blade materials.
Language study on Spliced Semigraph using Folding techniques
NASA Astrophysics Data System (ADS)
Thiagarajan, K.; Padmashree, J.
2018-04-01
In this paper, we proposed algorithm to identify cut vertices and cut edges for n-Cut Spliced Semigraph and splicing the n-Cut Spliced Semigraph using cut vertices else cut edges or combination of cut vertex and cut edge and applying sequence of folding to the spliced semigraph to obtain the semigraph quadruple η(S)=(2, 1, 1, 1). We observed that the splicing and folding using both cut vertices and cut edges is applicable only for n-Cut Spliced Semigraph where n > 2. Also, we transformed the spliced semigraph into tree structure and studied the language for the semigraph with n+2 vertices and n+1 semivertices using Depth First Edge Sequence algorithm and obtain the language structure with sequence of alphabet ‘a’ and ‘b’.
Influence of Biochar on C and N Transformation in Soil and Their Impact on Greenhouse Gas Emissions
NASA Astrophysics Data System (ADS)
Chintala, R.; Schumacher, T. E.; Kumar, S.; Clay, D. E.; Malo, D. D.
2014-12-01
The capacity of pyrogenic biochar to mitigate soil surface exchange of greenhouse gases (GHG) is dependent on the influence of biochar on physiochemical transformations of C and N in soils. Incorporated biochar amendments are hypothesized to interfere with transformations of C and N as a result of the unique recalcitrant chemical structure and surface complexity of biochars. The nature of interference by biochar with C and N transformations are assumed to be dynamic not only due to their highly variable amphilicity inherited from feedstock source and controlled pyrolytic processing parameters but also to variation in soil factors. Experiments comprised of laboratory and field studies were designed to gain insight into the priming effect of incorporated non-native biochar materials on the transformations of C and N species in the soil. Molecular structure and surface functionality of plant based biochar materials produced from carbon optimized gasification of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were studied in the laboratory using NMR and SEM-EdX. Biochar materials were found to be highly hydrophobic (low H/C values) with high aromaticity. The surface morphology of all the biochar materials was highly heterogeneous and pore size ranged from 1-22µm with the faces and edges of ordered sheets. In the field study, all the three biochar types were applied at a 1% (w/w) rate to a Maddock soil (Sandy, Mixed, Frigid Entic Hapludolls) located in an eroded upper landscape position and a Brookings soil (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) located in a depositional landscape position. The crop rotation is a corn (Zea mays L.) followed by soybean (Glycine max L.). The priming effect of biochars on the transformations of C and N is determined by measuring the changes in soil C (total organic carbon, microbial biomass C, hydrolyzable C, and δ 13C) and N pools (microbial biomass N, inorganic N, and δ 15N). Greenhouse gas fluxes (CO2, CH4, and N2O) were measured and correlation studies will be conducted to determine the relationship with the interference effect of biochars on C and N transformation in soil. Initial data shows that biochar has an impact especially on CO2, and N2O emissions.
Prasad, Dilip K; Rajan, Deepu; Rachmawati, Lily; Rajabally, Eshan; Quek, Chai
2016-12-01
This paper addresses the problem of horizon detection, a fundamental process in numerous object detection algorithms, in a maritime environment. The maritime environment is characterized by the absence of fixed features, the presence of numerous linear features in dynamically changing objects and background and constantly varying illumination, rendering the typically simple problem of detecting the horizon a challenging one. We present a novel method called multi-scale consistence of weighted edge Radon transform, abbreviated as MuSCoWERT. It detects the long linear features consistent over multiple scales using multi-scale median filtering of the image followed by Radon transform on a weighted edge map and computing the histogram of the detected linear features. We show that MuSCoWERT has excellent performance, better than seven other contemporary methods, for 84 challenging maritime videos, containing over 33,000 frames, and captured using visible range and near-infrared range sensors mounted onboard, onshore, or on floating buoys. It has a median error of about 2 pixels (less than 0.2%) from the center of the actual horizon and a median angular error of less than 0.4 deg. We are also sharing a new challenging horizon detection dataset of 65 videos of visible, infrared cameras for onshore and onboard ship camera placement.
Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam
2013-01-01
Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness. PMID:23867746
Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam
2013-07-17
Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.
NASA Astrophysics Data System (ADS)
Badji, Rabia; Charvis, Philippe; Bracene, Rabah; Galve, Audrey; Badsi, Madjid; Ribodetti, Alessandra; Benaissa, Zahia; Klingelhoefer, Frauke; Medaouri, Mourad; Beslier, Marie-Odile
2015-02-01
For the first time, a deep seismic data set acquired in the frame of the Algerian-French SPIRAL program provides new insights regarding the origin of the westernmost Algerian margin and basin. We performed a tomographic inversion of traveltimes along a 100-km-long wide-angle seismic profile shot over 40 ocean bottom seismometers offshore Mostaganem (Northwestern Algeria). The resulting velocity model and multichannel seismic reflection profiles show a thin (3-4 km thick) oceanic crust. The narrow ocean-continent transition (less than 10 km wide) is bounded by vertical faults and surmounted by a narrow almost continuous basin filled with Miocene to Quaternary sediments. This fault system, as well as the faults organized in a negative-flower structure on the continent side, marks a major strike-slip fault system. The extremely sharp variation of the Moho depth (up to 45 ± 3°) beneath the continental border underscores the absence of continental extension in this area. All these features support the hypothesis that this part of the margin from Oran to Tenes, trending N65-N70°E, is a fossil subduction-transform edge propagator fault, vestige of the propagation of the edge of the Gibraltar subduction zone during the westward migration of the Alborán domain.
NASA Astrophysics Data System (ADS)
Amiri-Simkooei, A. R.
2018-01-01
Three-dimensional (3D) coordinate transformations, generally consisting of origin shifts, axes rotations, scale changes, and skew parameters, are widely used in many geomatics applications. Although in some geodetic applications simplified transformation models are used based on the assumption of small transformation parameters, in other fields of applications such parameters are indeed large. The algorithms of two recent papers on the weighted total least-squares (WTLS) problem are used for the 3D coordinate transformation. The methodology can be applied to the case when the transformation parameters are generally large of which no approximate values of the parameters are required. Direct linearization of the rotation and scale parameters is thus not required. The WTLS formulation is employed to take into consideration errors in both the start and target systems on the estimation of the transformation parameters. Two of the well-known 3D transformation methods, namely affine (12, 9, and 8 parameters) and similarity (7 and 6 parameters) transformations, can be handled using the WTLS theory subject to hard constraints. Because the method can be formulated by the standard least-squares theory with constraints, the covariance matrix of the transformation parameters can directly be provided. The above characteristics of the 3D coordinate transformation are implemented in the presence of different variance components, which are estimated using the least squares variance component estimation. In particular, the estimability of the variance components is investigated. The efficacy of the proposed formulation is verified on two real data sets.
Multiple Motor Learning Strategies in Visuomotor Rotation
Saijo, Naoki; Gomi, Hiroaki
2010-01-01
Background When exposed to a continuous directional discrepancy between movements of a visible hand cursor and the actual hand (visuomotor rotation), subjects adapt their reaching movements so that the cursor is brought to the target. Abrupt removal of the discrepancy after training induces reaching error in the direction opposite to the original discrepancy, which is called an aftereffect. Previous studies have shown that training with gradually increasing visuomotor rotation results in a larger aftereffect than with a suddenly increasing one. Although the aftereffect difference implies a difference in the learning process, it is still unclear whether the learned visuomotor transformations are qualitatively different between the training conditions. Methodology/Principal Findings We examined the qualitative changes in the visuomotor transformation after the learning of the sudden and gradual visuomotor rotations. The learning of the sudden rotation led to a significant increase of the reaction time for arm movement initiation and then the reaching error decreased, indicating that the learning is associated with an increase of computational load in motor preparation (planning). In contrast, the learning of the gradual rotation did not change the reaction time but resulted in an increase of the gain of feedback control, suggesting that the online adjustment of the reaching contributes to the learning of the gradual rotation. When the online cursor feedback was eliminated during the learning of the gradual rotation, the reaction time increased, indicating that additional computations are involved in the learning of the gradual rotation. Conclusions/Significance The results suggest that the change in the motor planning and online feedback adjustment of the movement are involved in the learning of the visuomotor rotation. The contributions of those computations to the learning are flexibly modulated according to the visual environment. Such multiple learning strategies would be required for reaching adaptation within a short training period. PMID:20195373
Application of the Analog Method to Modelling Heat Waves: A Case Study with Power Transformers
2017-04-21
UNCLASSIFIED Massachusetts Institute of Technology Lincoln Laboratory APPLICATION OF THE ANALOG METHOD TO MODELLING HEAT WAVES: A CASE STUDY WITH...18 2 Calibration and validation statistics with the use of five atmospheric vari- ables to construct analogue diagnostics for JJA of transformer T2...electrical grid as a series of nodes (transformers) and edges (transmission lines) so that basic mathematical anal- ysis can be performed. The mathematics
Volcanism in slab tear faults is larger than in island-arcs and back-arcs.
Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido
2017-11-13
Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.
[An improved medical image fusion algorithm and quality evaluation].
Chen, Meiling; Tao, Ling; Qian, Zhiyu
2009-08-01
Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.
Nascimento, Daniel R; DePrince, A Eugene
2017-07-06
An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.
NASA Astrophysics Data System (ADS)
Moon, Sunghwan
2017-06-01
A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform.
Single image super resolution algorithm based on edge interpolation in NSCT domain
NASA Astrophysics Data System (ADS)
Zhang, Mengqun; Zhang, Wei; He, Xinyu
2017-11-01
In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.
NASA Astrophysics Data System (ADS)
Amalia, A.; Rachmawati, D.; Lestari, I. A.; Mourisa, C.
2018-03-01
Colposcopy has been used primarily to diagnose pre-cancer and cancerous lesions because this procedure gives an exaggerated view of the tissues of the vagina and the cervix. But, the poor quality of colposcopy image sometimes makes physician challenging to recognize and analyze it. Generally, Implementation of image processing to identify cervical cancer have to implement a complex classification or clustering method. In this study, we wanted to prove that by only applying the identification of edge detection in the colposcopy image, identification of cervical cancer can be determined. In this study, we implement and comparing two edge detection operator which are isotropic and canny operator. Research methodology in this paper composed by image processing, training, and testing stages. In the image processing step, colposcopy image transformed by nth root power transformation to get better detection result and continued with edge detection process. Training is a process of labelling all dataset image with cervical cancer stage. This process involved pathology doctor as an expert in diagnosing the colposcopy image as a reference. Testing is a process of deciding cancer stage classification by comparing the similarity image of colposcopy results in the testing stage with the image of the results of the training process. We used 30 images as a dataset. The result gets same accuracy which is 80% for both Canny or Isotropic operator. Average running time for Canny operator implementation is 0.3619206 ms while Isotropic get 1.49136262 ms. The result showed that Canny operator is better than isotropic operator because Canny operator generates a more precise edge with a fast time instead.
NASA Astrophysics Data System (ADS)
Dong, Jian; Kudo, Hiroyuki
2017-03-01
Compressed sensing (CS) is attracting growing concerns in sparse-view computed tomography (CT) image reconstruction. The most standard approach of CS is total variation (TV) minimization. However, images reconstructed by TV usually suffer from distortions, especially in reconstruction of practical CT images, in forms of patchy artifacts, improper serrate edges and loss of image textures. Most existing CS approaches including TV achieve image quality improvement by applying linear transforms to object image, but linear transforms usually fail to take discontinuities into account, such as edges and image textures, which is considered to be the key reason for image distortions. Actually, discussions on nonlinear filter based image processing has a long history, leading us to clarify that the nonlinear filters yield better results compared to linear filters in image processing task such as denoising. Median root prior was first utilized by Alenius as nonlinear transform in CT image reconstruction, with significant gains obtained. Subsequently, Zhang developed the application of nonlocal means-based CS. A fact is gradually becoming clear that the nonlinear transform based CS has superiority in improving image quality compared with the linear transform based CS. However, it has not been clearly concluded in any previous paper within the scope of our knowledge. In this work, we investigated the image quality differences between the conventional TV minimization and nonlinear sparsifying transform based CS, as well as image quality differences among different nonlinear sparisying transform based CSs in sparse-view CT image reconstruction. Additionally, we accelerated the implementation of nonlinear sparsifying transform based CS algorithm.
Coriolis effect on dynamic stall in a vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Tsai, Hsieh-Chen; Colonius, Tim
2013-11-01
The immersed boundary method is used to simulate the flow around a two-dimensional rotating NACA 0018 airfoil at moderate (sub-scale) Reynolds number in order to investigate separated flow occurring on a vertical-axis wind turbine (VAWT). The influence of dynamic stall on the forces is characterized as a function of tip-speed ratio. The influence of the Coriolis effect is also investigated by comparing the rotating airfoil to one undergoing a surging and pitching motion that produces an equivalent speed and angle-of-attack variation over the cycle. While the Coriolis force produces only small differences in the averaged forces, it plays an important role during dynamic stall. Due to the fact that the Coriolis force deflects the fluid and propagates the vortices differently, the wake-capturing phenomenon of the trailing edge vortex is observed in the flow around the rotating airfoil during a certain range of azimuthal angle. This wake-capturing of the trailing edge vortex leads to a large decrease in lift. However, because of the phase difference between each wake-capturing, there are only small differences in the average forces. The simulations are also compared to results from companion water-tunnel experiments at Caltech. This project is supported by the Gordon and Betty Moore Foundation.
NASA Astrophysics Data System (ADS)
Haskey, S. R.; Grierson, B. A.; Stagner, L.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Ashourvan, A.; Pablant, N. A.
2017-10-01
Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D [J.L. Luxon, Nucl. Fusion 42 (2002) 614] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the Dα spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (C6+) and main-ion (D+) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D+ temperature can be half the value of the C6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. These measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.
Haskey, S. R.; Grierson, B. A.; Stagner, L.; ...
2017-10-25
Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the D α spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (Cmore » 6+) and main-ion (D +) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D + temperature can be half the value of the C 6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. Furthermore, these measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.« less
NASA Astrophysics Data System (ADS)
Carroll, Brandon; Finneran, Ian; Blake, Geoffrey
2014-06-01
We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.
NASA Astrophysics Data System (ADS)
Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team
2017-12-01
Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.
Nazikian, R; Paz-Soldan, C; Callen, J D; deGrassie, J S; Eldon, D; Evans, T E; Ferraro, N M; Grierson, B A; Groebner, R J; Haskey, S R; Hegna, C C; King, J D; Logan, N C; McKee, G R; Moyer, R A; Okabayashi, M; Orlov, D M; Osborne, T H; Park, J-K; Rhodes, T L; Shafer, M W; Snyder, P B; Solomon, W M; Strait, E J; Wade, M R
2015-03-13
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.
Manual adjustable probe tool for friction stir welding
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter A. (Inventor); Ding, Jeff (Inventor)
2000-01-01
A friction stir welding tool is provided generally comprising three parts: a rotatable welding tool body (22) that has an outer threaded surface (32) and a probe (24) extending from a distal end of the body, a shoulder (26), which has a threaded inner surface (40) and a bore (36) at a distal end of the shoulder, and a jam nut (28), which has a threaded inner surface (42). The shoulder is threaded onto the tool body such that the probe extends from the shoulder through the bore by a preferred length. The jam nut is then threaded onto the tool body to secure the shoulder. The tool is operatively connected to a drive motor for rotating the tool body. The shoulder may include a knife edge projecting from the distal end (38) thereof adjacent the bore. The knife edge inhibits the weld material from migrating along the probe to intrude inside the shoulder, where it may prevent separation of the tool body and the shoulder when readjustment of the tool is necessary.
NASA Technical Reports Server (NTRS)
Wuerker, R. F.; Kobayashi, R. J.; Heflinger, L. O.; Ware, T. C.
1974-01-01
Two holographic interblade row flow visualization systems were designed to determine the three-dimensional shock patterns and velocity distributions within the rotating blade row of a transonic fan rotor, utilizing the techniques of pulsed laser transmission holography. Both single- and double-exposure bright field holograms and dark field scattered-light holograms were successfully recorded. Two plastic windows were installed in the rotor tip casing and outer casing forward of the rotor to view the rotor blade passage. The viewing angle allowed detailed investigation of the leading edge shocks and shocks in the midspan damper area; limited details of the trailing edge shocks also were visible. A technique was devised for interpreting the reconstructed holograms by constructing three dimensional models that allowed identification of the major shock systems. The models compared favorably with theoretical predictions and results of the overall and blade element data. Most of the holograms were made using the rapid double-pulse technique.
Nazikian, Raffi; Paz-Soldan, Carlos; Callen, James D.; ...
2015-03-12
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal which reduces the perpendicular electron flow to near zero. These events occur simultaneously with an increase in the inner wall magnetic response. These observations are consistent strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulationsmore » using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearing-like structures as the plasma transitions out of ELM suppression.« less
Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation
NASA Astrophysics Data System (ADS)
Lim, Tae W.
2015-06-01
A modeling process to simulate point cloud range data that a lidar (light detection and ranging) sensor produces is presented in this paper in order to support the development of non-cooperative pose (relative attitude and position) estimation approaches which will help improve proximity operation capabilities between two adjacent vehicles. The algorithms in the modeling process were based on the homogeneous transformation, which has been employed extensively in robotics and computer graphics, as well as in recently developed pose estimation algorithms. Using a flash lidar in a laboratory testing environment, point cloud data of a test article was simulated and compared against the measured point cloud data. The simulated and measured data sets match closely, validating the modeling process. The modeling capability enables close examination of the characteristics of point cloud images of an object as it undergoes various translational and rotational motions. Relevant characteristics that will be crucial in non-cooperative pose estimation were identified such as shift, shadowing, perspective projection, jagged edges, and differential point cloud density. These characteristics will have to be considered in developing effective non-cooperative pose estimation algorithms. The modeling capability will allow extensive non-cooperative pose estimation performance simulations prior to field testing, saving development cost and providing performance metrics of the pose estimation concepts and algorithms under evaluation. The modeling process also provides "truth" pose of the test objects with respect to the sensor frame so that the pose estimation error can be quantified.
Pohit, M; Sharma, J
2015-05-10
Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.
Rotation-invariant neural pattern recognition system with application to coin recognition.
Fukumi, M; Omatu, S; Takeda, F; Kosaka, T
1992-01-01
In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.
NASA Astrophysics Data System (ADS)
Acharya, Nilankush; Das, Kalidas; Kundu, Prabir Kumar
2018-04-01
In this piece of writing, we have demonstrated the rotating flow of carbon nanotube passing over a stretching sheet. Two types of carbon nanotube, i.e. single-wall carbon nanotube (SWCNT) and multi-wall carbon nanotube, (MWCNT) have been employed to illustrate the fine points of the flow. Suitable transformations have been consumed to construct its non-dimensional appearance from the partial ones. Transformed forms of equations have been sketched out by RK-4 procedure. Outcomes of the key flow factors on velocity along with temperature outline have been exemplified through tables and graphs, and scrutinized from the sensible judgement. Our investigation authenticates that the temperature of the fluid enhances owing to the improvisation of rotation parameter. Nusselt number goes down with the authority of magnetic parameter.
Adaptation to spectrally-rotated speech.
Green, Tim; Rosen, Stuart; Faulkner, Andrew; Paterson, Ruth
2013-08-01
Much recent interest surrounds listeners' abilities to adapt to various transformations that distort speech. An extreme example is spectral rotation, in which the spectrum of low-pass filtered speech is inverted around a center frequency (2 kHz here). Spectral shape and its dynamics are completely altered, rendering speech virtually unintelligible initially. However, intonation, rhythm, and contrasts in periodicity and aperiodicity are largely unaffected. Four normal hearing adults underwent 6 h of training with spectrally-rotated speech using Continuous Discourse Tracking. They and an untrained control group completed pre- and post-training speech perception tests, for which talkers differed from the training talker. Significantly improved recognition of spectrally-rotated sentences was observed for trained, but not untrained, participants. However, there were no significant improvements in the identification of medial vowels in /bVd/ syllables or intervocalic consonants. Additional tests were performed with speech materials manipulated so as to isolate the contribution of various speech features. These showed that preserving intonational contrasts did not contribute to the comprehension of spectrally-rotated speech after training, and suggested that improvements involved adaptation to altered spectral shape and dynamics, rather than just learning to focus on speech features relatively unaffected by the transformation.
HIGH-RESOLUTION FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF METHYL- AND DIMETHYLNAPTHALENES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnitzler, Elijah G.; Zenchyzen, Brandi L. M.; Jäger, Wolfgang, E-mail: wolfgang.jaeger@ualberta.ca
High-resolution pure rotational spectra of four alkylnaphthalenes were measured in the range of 6–15 GHz using a molecular-beam Fourier-transform microwave spectrometer. Both a- and b-type transitions were observed for 1-methylnaphthalene (1-MN), 1,2-dimethylnaphthalene (1,2-DMN), and 1,3-dimethylnaphthalene (1,3-DMN); only a-type transitions were observed for 2-methylnaphthalene (2-MN). Geometry optimization and vibrational analysis calculations at the B3LYP/6-311++G(d,p) level of theory aided in the assignments of the spectra and the characterization of the structures. Differences between the experimental and predicted rotational constants are small, and they can be attributed in part to low-lying out-of-plane vibrations, which distort the alkylnaphthalenes out of their equilibrium geometries. Splittingsmore » of rotational lines due to methyl internal rotation were observed in the spectra of 2-MN, 1,2-DMN, and 1,3-DMN, and allowed for the determination of the barriers to methyl internal rotation, which are compared to values from density functional theory calculations. All four species are moderately polar, so they are candidate species for detection by radio astronomy, by targeting the transition frequencies reported here.« less
A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation
NASA Technical Reports Server (NTRS)
Crivelli, Luis A.; Felippa, Carlos A.
1992-01-01
A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.
Reducing Coal Dust With Water Jets
NASA Technical Reports Server (NTRS)
Gangal, M. D.; Lewis, E. V.
1985-01-01
Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.
NASA Astrophysics Data System (ADS)
Campbell, B. D.; Higgins, S. R.
2008-12-01
Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.
Mental transformations of spatial stimuli in humans and in monkeys: rotation vs. translocation.
Nekovarova, Tereza; Nedvidek, Jan; Klement, Daniel; Rokyta, Richard; Bures, Jan
2013-03-01
We studied the ability of monkeys and humans to orient in one spatial frame ("response frame") according to abstract spatial stimuli presented in another spatial frame ("stimulus frame"). The stimuli were designed as simple maps of the "response space". We studied how the transformations of these stimuli affected the performance. The subjects were trained to choose a particular position in the response frame - either on a touch screen (monkeys) or on a keyboard (humans) - according to schematic spatial stimuli presented on the stimulus screen. The monkeys responded by touching one of four circles shown in corners of a rectangle displayed on the touch screen. The correct position was signaled by the stimulus ("map") presented on the stimulus screen. The map was a complementary rectangle, but only with one circle shown ("pointer"). The position of this circle indicated the correct position in the response frame. In the first experiment we only manipulated stimuli presented on the computer screen. The "map" was originally shown in the same position and orientation as the "response pattern" but later the position and the rotation of the map on the screen were changing. Such transformations of the stimuli allow us to study the mental operations that the animals performed and how particular mental transformations mutually differed. In the second experiment we tested whether the monkeys relied more on stimuli presented on the screen or on the surrounding stable environment and objects. We compared the performance of animals in tasks with rotated virtual maps in a stable surrounding environment with the performance in tasks where we rotated the surrounding frame (computer monitor), whereas the stimuli on the screen remained stable. In the third experiment we tested human subjects in analogous tests to compare the ability and cognitive strategies of monkeys and humans in this task. We showed that the mental strategies that monkeys used for orientation in one spatial frame according to the map presented in the other spatial frame depended on the type of stimulus manipulation. We demonstrated that for monkeys there was a difference between solving "mental rotation" and "mental translocation" in this experimental design. We showed that humans were able both to mentally rotate and translocate the displayed stimuli. However, the mental rotation was more difficult than mental translocation also for them. These experiments help us to understand how the monkeys perceive the abstract spatial information, create the representation of space and how they transform the information about the position obtained from one spatial frame into another. The comparison between humans and monkeys allows us to study this cognitive ability in phylogeny. Copyright © 2012 Elsevier B.V. All rights reserved.
Invariant 2D object recognition using the wavelet transform and structured neural networks
NASA Astrophysics Data System (ADS)
Khalil, Mahmoud I.; Bayoumi, Mohamed M.
1999-03-01
This paper applies the dyadic wavelet transform and the structured neural networks approach to recognize 2D objects under translation, rotation, and scale transformation. Experimental results are presented and compared with traditional methods. The experimental results showed that this refined technique successfully classified the objects and outperformed some traditional methods especially in the presence of noise.
Dang, Jing-Shuang; Wang, Wei-Wei; Zheng, Jia-Jia; Nagase, Shigeru; Zhao, Xiang
2017-10-05
Although the existence of Stone-Wales (5-7) defect at graphene edge has been clarified experimentally, theoretical study on the formation mechanism is still imperfect. In particular, the regioselectivity of multistep reactions at edge (self-reconstruction and growth with foreign carbon feedstock) is essential to understand the kinetic behavior of reactive boundaries but investigations are still lacking. Herein, by using finite-sized models, multistep reconstructions and carbon dimer additions of a bared zigzag edge are introduced using density functional theory calculations. The zigzag to 5-7 transformation is proved as a site-selective process to generate alternating 5-7 pairs sequentially and the first step with largest barrier is suggested as the rate-determining step. Conversely, successive C 2 insertions on the active edge are calculated to elucidate the formation of 5-7 edge during graphene growth. A metastable intermediate with a triple sequentially fused pentagon fragment is proved as the key structure for 5-7 edge formation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ma, Hua; Qu, Shao-Bo; Xu, Zhuo; Zhang, Jie-Qiu; Wang, Jia-Fu
2009-01-01
By using the coordinate transformation method, we have deduced the material parameter equation for rotating elliptical spherical cloaks and carried out simulation as well. The results indicate that the rotating elliptical spherical cloaking shell, which is made of meta-materials whose permittivity and permeability are governed by the equation deduced in this paper, can achieve perfect invisibility by excluding electromagnetic fields from the internal region without disturbing any external field.
Rotational Fourier tracking of diffusing polygons.
Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G
2011-11-01
We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven
The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less
Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code
Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven; ...
2016-01-13
The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1990-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.
Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks
Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho
2015-01-01
Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952
Faraday rotation in Hg1 - xMnxTe at 1.3 and 1.55 µm
NASA Astrophysics Data System (ADS)
Dillon, J. F., Jr.; Furdyna, J. K.; Debska, U.; Mycielski, A.
1990-05-01
The large Faraday rotations of Mn-containing diluted magnetic semiconductors have led to their consideration for use in magneto-optical isolators. With such applications in mind, we have examined the magneto-optical properties of Hg1-xMnxTe (x=0.26, 0.31, and 0.36). The samples are polished plates cut from single-crystal boules. The compositions were chosen to have their band edges in the vicinity of wavelengths of interest for fiber optical communications, 1.3 and 1.55 μm. Faraday rotation at 295, 77, and 1.7 K, as well as the absorption coefficient at 295 K, have been measured for these alloys and the data compared with the theoretical predictions. The measured rotations at the wavelengths of interest here are about 100-fold larger than those of other high-rotation paramagnetic materials, such as Tb3Al5O10 and various rare-earth glasses. However, the specific rotations available in reasonable fields (say, 3000 Oe) are about tenfold lower than those reported for Bi-doped ferrimagnetic garnets.
Pattern formation and three-dimensional instability in rotating flows
NASA Astrophysics Data System (ADS)
Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.
1997-03-01
A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.
Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cramp, R. G. J.; Gibson, S.; Lazerson, S. A.; Chapman, I. T.; Kirk, A.
2016-08-01
The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It is demonstrated that the off harmonics rotate in the opposite direction to the main harmonic. This is an important topic for future research to control and optimize ITER appropriately. High confinement mode (H-mode) is favourable for the economics of a potential fusion power plant and its use is planned in ITER. However, the high pressure gradient at the edge of the plasma can trigger periodic eruptions called edge localized modes (ELMs). ELMs have the potential to shorten the life of the divertor in ITER (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549) and so methods for mitigating or suppressing ELMs in ITER will be important. Non-axisymmetric RMP coils will be installed in ITER for ELM control. Sampling theory is used to show that there will be significant a {{n}\\text{coils}}-{{n}\\text{rmp}} harmonic sideband. There are nine coils toroidally in ITER so {{n}\\text{coils}}=9 . This results in a significant n = 6 component to the {{n}\\text{rmp}}=3 applied field and a significant n = 5 component to the {{n}\\text{rmp}}=4 applied field. Although the vacuum field has similar amplitudes of these harmonics the plasma response to the various harmonics dictates the final equilibrium. Magnetic perturbations with toroidal mode number n = 3 and n = 4 are applied to a 15 MA, {{q}95}≈ 3 burning ITER plasma. We use a three-dimensional ideal magnetohydrodynamic model (VMEC) to calculate ITER equilibria with applied RMPs and to determine growth rates of infinite n ballooning modes (COBRA). The {{n}\\text{rmp}}=4 case shows little change in ballooning mode growth rate as the RMP is rotated, however there is a change with rotation for the {{n}\\text{rmp}}=3 case.
Tubing cutter for tight spaces
NASA Technical Reports Server (NTRS)
Girala, A. S.
1980-01-01
Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.
Sharpening ball-nose mill cutters
NASA Technical Reports Server (NTRS)
Burch, C. F.
1977-01-01
Economical attachment allows faster, more precise grinding. Vibrationless and rigid relation between grinding wheel and cutter allows for extremely high finish and accurate grinding. Leveling device levels flutes with respect to toolholder rotation that generates ball-nose radius. Constant relief around entire profile of cutting edge produces longer tool life.
Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge st...
USDA-ARS?s Scientific Manuscript database
Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integr...
133. SOUTH SIDE OF TRANSFORMER ROOM (212), LSB (BLDG. 751), ...
133. SOUTH SIDE OF TRANSFORMER ROOM (212), LSB (BLDG. 751), WITH MECHANICAL AND ELECTRICAL ROOM (210) AND LANDLINE INSTRUMENTATION ROOM (206) VISIBLE THROUGH OPEN DOORS. POWER PANEL A, FACING WEST, AT LEFT EDGE OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Interplay between bulk and edge-bound topological defects in a square micromagnet
Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.; ...
2018-01-22
A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less
Interplay between bulk and edge-bound topological defects in a square micromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.
A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less
NASA Astrophysics Data System (ADS)
Boedo, J. A.; Degrassie, J. S.; Grierson, B. A.; Rudakov, D. A.
2015-11-01
Recent measurements at DIII-D edge plasmas at the outer midplane show that, in the absence of external torque, the edge and near-SOL plasma flow is largely dominated by the intrinsic source of rotation most likely due to thermal ion loss. We also show that when NBI heating is present, the core momentum competes with the edge intrinsic momentum and can overwhelm it, in short, NBI-heated discharges at high power tend to determine edge and near SOL flows. Experiments performed in the DIII-D tokamak with OH heated, ECH-heated and NBI-heated discharges are diagnosed for core plasma flow with CER and edge/SOL plasma flow with Mach probes. We have changed the amount of NBI, OH and ECH heating while scanning the discharge collisionality. We have compared the experimental measurements to two complementary thermal ion loss theories that explain most of the observed features, including a scaling with Ti. One theory considers passing and trapped particles that are lost via a loss cone purely due to drifts and the other considers turbulence-enhanced loss of passing particles. Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917 and DE-AC02-09CH111466.
NASA Astrophysics Data System (ADS)
Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan
2018-01-01
In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.
Imagining physically impossible self-rotations: geometry is more important than gravity.
Creem, S H; Wraga, M; Proffitt, D R
2001-08-01
Previous studies found that it is easier for observers to spatially update displays during imagined self-rotation versus array rotation. The present study examined whether either the physics of gravity or the geometric relationship between the viewer and array guided this self-rotation advantage. Experiments 1-3 preserved a real or imagined orthogonal relationship between the viewer and the array, requiring a rotation in the observer's transverse plane. Despite imagined self-rotations that defied gravity, a viewer advantage remained. Without this orthogonal relationship (Experiment 4), the viewer advantage was lost. We suggest that efficient transformation of the egocentric reference frame relies on the representation of body-environment relations that allow rotation around the observer's principal axis. This efficiency persists across different and conflicting physical and imagined postures.
Imagining physically impossible self-rotations: geometry is more important than gravity
NASA Technical Reports Server (NTRS)
Creem, S. H.; Wraga, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2001-01-01
Previous studies found that it is easier for observers to spatially update displays during imagined self-rotation versus array rotation. The present study examined whether either the physics of gravity or the geometric relationship between the viewer and array guided this self-rotation advantage. Experiments 1-3 preserved a real or imagined orthogonal relationship between the viewer and the array, requiring a rotation in the observer's transverse plane. Despite imagined self-rotations that defied gravity, a viewer advantage remained. Without this orthogonal relationship (Experiment 4), the viewer advantage was lost. We suggest that efficient transformation of the egocentric reference frame relies on the representation of body-environment relations that allow rotation around the observer's principal axis. This efficiency persists across different and conflicting physical and imagined postures.
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
The crack detection algorithm of pavement image based on edge information
NASA Astrophysics Data System (ADS)
Yang, Chunde; Geng, Mingyue
2018-05-01
As the images of pavement cracks are affected by a large amount of complicated noises, such as uneven illumination and water stains, the detected cracks are discontinuous and the main body information at the edge of the cracks is easily lost. In order to solve the problem, a crack detection algorithm in pavement image based on edge information is proposed. Firstly, the image is pre-processed by the nonlinear gray-scale transform function and reconstruction filter to enhance the linear characteristic of the crack. At the same time, an adaptive thresholding method is designed to coarsely extract the cracks edge according to the gray-scale gradient feature and obtain the crack gradient information map. Secondly, the candidate edge points are obtained according to the gradient information, and the edge is detected based on the single pixel percolation processing, which is improved by using the local difference between pixels in the fixed region. Finally, complete crack is obtained by filling the crack edge. Experimental results show that the proposed method can accurately detect pavement cracks and preserve edge information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toloba, E.; Guhathakurta, P.; Boselli, A.
2015-02-01
We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotatorsmore » do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.« less
A novel algorithm for notch detection
NASA Astrophysics Data System (ADS)
Acosta, C.; Salazar, D.; Morales, D.
2013-06-01
It is common knowledge that DFM guidelines require revisions to design data. These guidelines impose the need for corrections inserted into areas within the design data flow. At times, this requires rather drastic modifications to the data, both during the layer derivation or DRC phase, and especially within the RET phase. For example, OPC. During such data transformations, several polygon geometry changes are introduced, which can substantially increase shot count, geometry complexity, and eventually conversion to mask writer machine formats. In this resulting complex data, it may happen that notches are found that do not significantly contribute to the final manufacturing results, but do in fact contribute to the complexity of the surrounding geometry, and are therefore undesirable. Additionally, there are cases in which the overall figure count can be reduced with minimum impact in the quality of the corrected data, if notches are detected and corrected. Case in point, there are other cases where data quality could be improved if specific valley notches are filled in, or peak notches are cut out. Such cases generally satisfy specific geometrical restrictions in order to be valid candidates for notch correction. Traditional notch detection has been done for rectilinear data (Manhattan-style) and only in axis-parallel directions. The traditional approaches employ dimensional measurement algorithms that measure edge distances along the outside of polygons. These approaches are in general adaptations, and therefore ill-fitted for generalized detection of notches with strange shapes and in strange rotations. This paper covers a novel algorithm developed for the CATS MRCC tool that finds both valley and/or peak notches that are candidates for removal. The algorithm is generalized and invariant to data rotation, so that it can find notches in data rotated in any angle. It includes parameters to control the dimensions of detected notches, as well as algorithm tolerances and data reach.
NASA Astrophysics Data System (ADS)
Sugimoto, Koh-ichi; Hojo, Tomohiko; Mizuno, Yuta
2018-02-01
The effects of fine particle peening conditions on the rotational bending fatigue strength of a vacuum-carburized transformation-induced plasticity-aided martensitic steel with a chemical composition of 0.20 pct C, 1.49 pct Si, 1.50 pct Mn, 0.99 pct Cr, 0.02 pct Mo, and 0.05 pct Nb were investigated for the fabrication of automotive drivetrain parts. The maximum fatigue limit, resulting from high hardness and compressive residual stress in the surface-hardened layer caused by the severe plastic deformation and the strain-induced martensite transformation of the retained austenite during fine particle peening, was obtained by fine particle peening at an arc height of 0.21 mm (N). The high fatigue limit was also a result of the increased martensite fraction and the active plastic relaxation via the strain-induced martensite transformation during fatigue deformation, as well as preferential crack initiation on the surface or at the subsurface.
NASA Technical Reports Server (NTRS)
Alkire, K.
1984-01-01
A nonlinear analysis which is necessary to adequately model elastic helicopter rotor blades experiencing moderately large deformations was examined. The analysis must be based on an appropriate description of the blade's deformation geometry including elastic bending and twist. Built-in pretwist angles complicate the deformation process ant its definition. Relationships between the twist variables associated with different rotation sequences and corresponding forms of the transformation matrix are lasted. Relationships between the twist variables associated with first, the pretwist combined with the deformation twist are included. Many of the corresponding forms of the transformation matrix for the two cases are listed. It is shown that twist variables connected with the combined twist treatment are related to those where the pretwist is applied initially. A method to determine the relationships and some results are outlined. A procedure to evaluate the transformation matrix that eliminates the Eulerlike sequence altogether is demonstrated. The resulting form of the transformation matrix is unaffected by rotation sequence or pretwist treatment.
[Contribution of MRI to the preoperative evaluation of rotator cuff tears].
Gagey, N; Desmoineaux, P; Gagey, O; Idy-Peretti, I; Mazas, F
1991-01-01
The authors report a series of 38 patients who had been examined by MRI and then operated for a rotator cuff syndrome. The correlation between the description of the cuff lesions after MRI and the surgical observations were excellent for 37 patients. In one case MRI showed a false image of tear of the supra spinatus m. on its anterior edge. This was due to a bad knowledge of the anatomy of the muscle and tendon and to a poor orientation of the frontal cut plane. This study was completed with MRI and anatomic study of 12 non embalmed cadaveric shoulders. The results showed that MRI was very sensitive (0.93) and specific (0.94) for the diagnosis of rotator cuff tears. MRI allowed also to show partial tears of the tendons of the rotator cuff. The authors propose a MRI classification of cuff lesions which permits to establish a good surgical planning.
Counter-rotating microplates at the Galapagos triple junction.
Klein, Emily M; Smith, Deborah K; Williams, Clare M; Schouten, Hans
2005-02-24
An 'incipient' spreading centre east of (and orthogonal to) the East Pacific Rise at 2 degrees 40' N has been identified as forming a portion of the northern boundary of the Galapagos microplate. This spreading centre was described as a slowly diverging, westward propagating rift, tapering towards the East Pacific Rise. Here we present evidence that the 'incipient rift' has also rifted towards the east and opens anticlockwise about a pivot at its eastern end. The 'incipient rift' then bounds a second microplate, north of the clockwise-rotating Galapagos microplate. The Galapagos triple junction region, in the eastern equatorial Pacific Ocean, thus consists of two counter-rotating microplates partly separated by the Hess Deep rift. Our kinematic solution for microplate motion relative to the major plates indicates that the two counter-rotating microplates may be treated as rigid blocks driven by drag on the microplates' edges3.
Identity physics experiment on internal transport barriers in JT-60U and JET
NASA Astrophysics Data System (ADS)
de Vries, P. C.; Sakamoto, Y.; Litaudon, X.; Beurskens, M. N. A.; Brix, M.; Crombé, K.; Fujita, T.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Joffrin, E.; Mantica, P.; Matsunaga, G.; Oyama, N.; Parail, V.; Salmi, A.; Shinohara, K.; Strintzi, D.; Suzuki, T.; Takechi, M.; Takenaga, H.; Tala, T.; Tsalas, M.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; EFDA contributors, JET; JT-60 Team
2009-12-01
A series of experiments have been carried out in 2008 at JT-60U and JET to find common characteristics and explain differences between internal transport barriers (ITBs). The identity experiments succeeded in matching the profiles of most dimensionless parameters at the time ITBs were triggered. Thereafter the q-profile development deviated due to differences in non-inductive current density profile, affecting the ITB. Furthermore, the ITBs in JET were more strongly influenced by the H-mode pedestal or edge localized modes. It was found to be difficult to match the plasma rotation characteristics in both devices. However, the wide range of Mach numbers obtained in these experiments shows that the rotation has little effect on the triggering of ITBs in plasmas with reversed magnetic shear. On the other hand the toroidal rotation and more specifically the rotational shear had an impact on the subsequent growth and allowed the formation of strong ITBs.
Magneto-optical microcavity with Au plasmonic layer
NASA Astrophysics Data System (ADS)
Mikhailova, T. V.; Lyashko, S. D.; Tomilin, S. V.; Karavainikov, A. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Berzhansky, V. N.
2017-11-01
Optical and Faraday rotation spectra of magneto-optical microcavity coated with Au plasmonic layer of gradient thickness were investigated theoretically and experimentally. It was shown that the Tamm plasmon-polaritons mode forms near the long-wavelength edge of photonic band gap. The presence of Au coating of thickness of 90.4 nm increase the Faraday rotation at Tamm plasmon-polaritons and cavity resonances in 1.3 and 7 times, respectively. By transfer matrix method it were found that the incorporation of SiO2 buffer layer with a thickness in the range from 155 to 180 nm between microcavity and Au coating leads to the strong coupling between cavity mode and Tamm plasmon-polaritons. In this case, one or two resonances arise in the vicinity of the cavity mode depending on the thickness of plasmonic layer. The Faraday rotation for coupled mode in twice less than the value of rotation for single cavity mode.
Invariant object recognition based on the generalized discrete radon transform
NASA Astrophysics Data System (ADS)
Easley, Glenn R.; Colonna, Flavia
2004-04-01
We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.
Laser sealed vacuum insulation window
Benson, David K.; Tracy, C. Edwin
1987-01-01
A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.
Laser sealed vacuum insulating window
Benson, D.K.; Tracy, C.E.
1985-08-19
A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.
The Flow Field on Hydrofoils with Leading Edge Protuberances
NASA Astrophysics Data System (ADS)
Custodio, Derrick; Henoch, Charles; Johari, Hamid
2008-11-01
The agility of the humpback whale has been attributed to the use of its pectoral flippers, on which protuberances are present along the leading edge. The forces and moments on hydrofoils with leading edge protuberances were measured in a water tunnel and were compared to a baseline NACA 63(4)-021 hydrofoil revealing significant performance differences. Three protuberance amplitudes and two spanwise wavelengths, closely resembling the morphology found in nature, were examined. Qualitative flow visualization techniques were used to examine flow patterns surrounding the hydrofoils, and Particle Image Velocimetry (PIV) was used to quantify these patterns. Flow visualizations have revealed counter-rotating vortices stemming from the shoulders of the protuberances. These streamwise vortices are a result of the spanwise pressure gradient brought about by the varying leading edge curvature. PIV was used to quantify the strength of these vortices as a function of angle of attack and leading edge geometry. At low angles of attack, these vortices are symmetric with respect to the protuberances; however, the symmetry is lost at high angles of attack. The loss of symmetry can be correlated with the separation point location on the hydrofoil.
NASA Astrophysics Data System (ADS)
Hamann, Madeleine M.; Alford, Matthew H.; Mickett, John B.
2018-04-01
The generation, propagation, and dissipation of nonlinear internal waves (NLIW) in sheared background currents is examined using 7 days of shipboard microstructure surveys and two moorings on the continental shelf offshore of Washington state. Surveys near the hypothesized generation region show semi-diurnal (D2) energy flux is onshore and that the ratio of energy flux to group speed times energy (F/cgE) increases sharply at the shelf break, suggesting that the incident D2 internal tide is partially reflected and partially transmitted. NLIW appear at an inshore mooring at the leading edge of the onshore phase of the baroclinic tide, consistent with nonlinear transformation of the shoaling internal tide as their generation mechanism. Of the D2 energy flux observed at the eastern extent of the generation region (133 ± 18 Wm-1), approximately 30% goes into the NLIW observed inshore (36 ± 11 Wm-1). Inshore of the moorings, 7 waves are tracked into shallow (30-40 m) water, where a vertically sheared, southward current becomes strong. As train-like waves propagate onshore, wave amplitudes of 25-30 m and energies of 5 MJ decrease to 12 m and 10 kJ, respectively. The observed direction of propagation rotates from 30° N of E to ˜30° S of E in the strongly sheared region. Linear ray tracing using the Taylor-Goldstein equation to incorporate parallel shear effects accounts for only a small portion of the observed rotation, suggesting that three-dimensionality of the wave crests and the background currents is important here.
A New Shape Description Method Using Angular Radial Transform
NASA Astrophysics Data System (ADS)
Lee, Jong-Min; Kim, Whoi-Yul
Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.
STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël
2014-05-20
Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotationmore » rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.« less
Kinematics of Laying an Automated Weapon System
2017-07-19
mathematical transformation is required to move the firing solution from its reference frame to a reference frame that is meaningful to the weapon system. This...Procedures 2 Conventions and Variable Definitions 2 Rotation Matrices 5 Transformation of a Vector 5 Conversion Between Cartestian and Spherical...Coordinate Systems 6 Transformation of Earth Referenced Lay to Platform Reference Frame 6 Results and Discussions 7 Conclusions 8 Bibliography 9
Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition
NASA Technical Reports Server (NTRS)
Amador, Jose J (Inventor)
2007-01-01
A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.
Grid systems for Earth radiation budget experiment applications
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1981-01-01
Spatial coordinate transformations are developed for several global grid systems of interest to the Earth Radiation Budget Experiment. The grid boxes are defined in terms of a regional identifier and longitude-latitude indexes. The transformations associate longitude with a particular grid box. The reverse transformations identify the center location of a given grid box. Transformations are given to relate the rotating (Earth-based) grid systems to solar position expressed in an inertial (nonrotating) coordinate system. The FORTRAN implementations of the transformations are given, along with sample input and output.
Stress intensity factors in a hollow cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Delale, F.
1980-01-01
An exact formulation of the plane elasticity problem for a hollow cylinder or a disk containing a radial crack is given. The crack may be an external edge crack, an internal edge crack, or an embedded crack. It is assumed that on the crack surfaces the shear traction is zero and the normal traction is an arbitrary function of r. For various crack geometries and radius ratios, the numerical results are obtained for a uniform crack surface pressure, for a uniform pressure acting on the inside wall of the cylinder, and for a rotating disk.
Stress intensity factors in a hollow cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
In this paper, an exact formulation of the plane elasticity problem for a hollow cylinder or a disk containing a radial crack is given. The crack may be an external edge crack, an internal edge crack, or an embedded crack. It is assumed that on the crack surfaces the shear traction is zero, and the normal traction is an arbitrary function of radius. For various crack geometries and radius ratios, the numerical results are obtained for a uniform crack surface pressure, for a uniform pressure acting on the inside wall of the cylinder, and for a rotating disk.
Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.
Kim, Eunsook; Yamamoto, Satoshi
2004-02-15
The pure rotational spectrum of the ethyl radical (C2H5) has been detected for the first time with the Fourier transform millimeter-wave spectrometer. The ethyl radical is produced by discharging the C2H5I gas diluted in Ar. The 1(01)-0(00) rotational transition of the ethyl radical is observed in the frequency range from 43,680 to 43,780 MHz. The observed spectrum shows a very complicated pattern of the fine and hyperfine structures of a doublet radical with the nuclear spins of five protons. The fine and hyperfine components are assigned with the aid of measurements of the Zeeman splittings. As a result, the 22 lines are ascribed to the transitions in the ground vibronic state (A2"). The rotational constant, the spin-rotation interaction constant, and hyperfine interaction constants are determined by the least-squares fit. The Fermi contact term of the alpha-proton is determined to be -64.1654 MHz in the gas phase, indicating that the structure of the -CH2 is essentially planar. The present rotational spectroscopic study further supports that the methyl group of the ethyl radical can be regarded as a nearly free internal rotor with a low energy barrier. A few unassigned lines still remain, which may be vibrational satellites of the internal rotation mode. Copyright 2004 American Institute of Physics
Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter
2015-02-01
Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.
Image gathering and digital restoration for fidelity and visual quality
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1991-01-01
The fidelity and resolution of the traditional Wiener restorations given in the prevalent digital processing literature can be significantly improved when the transformations between the continuous and discrete representations in image gathering and display are accounted for. However, the visual quality of these improved restorations also is more sensitive to the defects caused by aliasing artifacts, colored noise, and ringing near sharp edges. In this paper, these visual defects are characterized, and methods for suppressing them are presented. It is demonstrated how the visual quality of fidelity-maximized images can be improved when (1) the image-gathering system is specifically designed to enhance the performance of the image-restoration algorithm, and (2) the Wiener filter is combined with interactive Gaussian smoothing, synthetic high edge enhancement, and nonlinear tone-scale transformation. The nonlinear transformation is used primarily to enhance the spatial details that are often obscurred when the normally wide dynamic range of natural radiance fields is compressed into the relatively narrow dynamic range of film and other displays.
NASA Astrophysics Data System (ADS)
Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.
2014-05-01
Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.
Astigmatism error modification for absolute shape reconstruction using Fourier transform method
NASA Astrophysics Data System (ADS)
He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun
2014-12-01
A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.
A Ka-band chirped-pulse Fourier transform microwave spectrometer
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.
2012-10-01
The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.
NASA Astrophysics Data System (ADS)
Oldani, M.; Bauder, A.; Pierre, G.
1986-06-01
Rotational and rovibrational transitions of silane- 28Si in the {ν 2}/{ν 4} dyad have been observed directly with a pulsed microwave Fourier transform spectrometer operating in the 8- to 18-GHz frequency range. Seventeen transitions of the types ν4 ← ν4, ν2 ← ν2, ν2 ← ν4, and ν4 ← ν2 have been observed and assigned. The transitions are generally weaker than those of the vibrational ground state and weaker than the corresponding transitions of methane- d4. The observed microwave transitions have been analyzed in combination with previous high-resolution infrared measurements (G. Pierre, A. Valentin, and L. Henry, Canad. J. Phys. (1986), in press) in a least-squares fit of the vibration-rotation constants t s,s'Ω(K,n Γ) of the {ν 2}/{ν 4}- dyad Hamiltonian.
Scattering transform and LSPTSVM based fault diagnosis of rotating machinery
NASA Astrophysics Data System (ADS)
Ma, Shangjun; Cheng, Bo; Shang, Zhaowei; Liu, Geng
2018-05-01
This paper proposes an algorithm for fault diagnosis of rotating machinery to overcome the shortcomings of classical techniques which are noise sensitive in feature extraction and time consuming for training. Based on the scattering transform and the least squares recursive projection twin support vector machine (LSPTSVM), the method has the advantages of high efficiency and insensitivity for noise signal. Using the energy of the scattering coefficients in each sub-band, the features of the vibration signals are obtained. Then, an LSPTSVM classifier is used for fault diagnosis. The new method is compared with other common methods including the proximal support vector machine, the standard support vector machine and multi-scale theory by using fault data for two systems, a motor bearing and a gear box. The results show that the new method proposed in this study is more effective for fault diagnosis of rotating machinery.
NASA Astrophysics Data System (ADS)
Dawadi, Mahesh B.; Twagirayezu, Sylvestre; Perry, David S.; Billinghurst, Brant E.
2015-09-01
The high-resolution rotationally resolved Fourier-transform infrared spectrum of the NO2 in-plane rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. About 1773 transitions reaching the upper state levels m‧ = 0; Ka‧ ⩽ 7;J‧ ⩽ 50 have been assigned using an automated ground-state combination difference program together with the traditional Loomis-Wood approach. These data from the lowest torsional state, m‧ = 0, were fit using the six-fold torsion-rotation program developed by Ilyushin et al. (2010). The analysis reveals that the rotational energy level structure in the upper vibrational state is similar to that of the ground vibrational state, but the sign and magnitude of high-order constants are significantly changed suggesting the presence of multiple perturbations.
USDA-ARS?s Scientific Manuscript database
Off-target drift of chemical from agricultural spraying can damage sensitive crops, destroy beneficial insects, and intrude on human and domestic animal habitats, threatening environmental quality. Reduction of drift from aerial application can be facilitated at the edge of a field by offsetting spr...
NASA Astrophysics Data System (ADS)
Foster, A. L.; Klofas, J. M.; Hein, J. R.; Koschinsky, A.; Bargar, J.; Dunham, R. E.; Conrad, T. A.
2011-12-01
Marine ferromanganese crusts and nodules ("Fe-Mn crusts") are considered a potential mineral resource due to their accumulation of several economically-important elements at concentrations above mean crustal abundances. They are typically composed of intergrown Fe oxyhydroxide and Mn oxide; thicker (older) crusts can also contain carbonate fluorapatite. We used X-ray absorption fine-structure (XAFS) spectroscopy, a molecular-scale structure probe, to determine the speciation of several elements (Te, Bi, Mo, Zr, Pt) in Fe-Mn crusts. As a first step in analysis of this dataset, we have conducted principal component analysis (PCA) of Te K-edge and Mo K-edge, k3-weighted XAFS spectra. The sample set consisted of 12 homogenized, ground Fe-Mn crust samples from 8 locations in the global ocean. One sample was subjected to a chemical leach to selectively remove Mn oxides and the elements associated with it. The samples in the study set contain 50-205 mg/kg Te (average = 88) and 97-802 mg/kg Mo (average = 567). PCAs of background-subtracted, normalized Te K-edge and Mo K-edge XAFS spectra were performed on a data matrix of 12 rows x 122 columns (rows = samples; columns = Te or Mo fluorescence value at each energy step) and results were visualized without rotation. The number of significant components was assessed by the Malinowski indicator function and ability of the components to reconstruct the features (minus noise) of all sample spectra. Two components were significant by these criteria for both Te and Mo PCAs and described a total of 74 and 75% of the total variance, respectively. Reconstruction of potential model compounds by the principal components derived from PCAs on the sample set ("target transformation") provides a means of ranking models in terms of their utility for subsequent linear-combination, least-squares (LCLS) fits (the next step of data analysis). Synthetic end-member models of Te4+, Te6+, and Mo adsorbed to Fe(III) oxyhydroxide and Mn oxide were tested. Te6+ sorbed to Fe oxyhydroxide and Mo sorbed to Fe oxyhydroxide were identified as the best models for Te and Mo PCAs, respectively. However, in the case of Mo, least-squares fits contradicted these results, indicating that about 80% of Mo in crust samples was associated with Mn oxides. Ultimately it was discovered that the sample from which Mn oxide had been leached was skewing the results in the Mo PCA but not in the Te PCA. When the leached sample was removed and the Mo PCA repeated (n = 11), target transformation indicated that Mo sorbed to Mn oxide was indeed the best model for the set. Our results indicate that Te and Mo are strongly partitioned into different phases in these Fe-Mn crusts, and emphasize the importance of evaluating outliers and their effects on PCA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean Patrick
A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less
Kearney, Sean Patrick
2014-07-01
A simple spectral focusing scheme for bandwidth optimization of gas-phase rotational coherent anti-Stokes Raman scattering (CARS) spectra is presented. The method is useful when femtosecond pump/Stokes preparation of the Raman coherence is utilized. The approach is of practical utility when working with laser pulses that are not strictly transform limited, or when windows or other sources of pulse chirp may be present in the experiment. A delay between the femtosecond preparation pulses is introduced to shift the maximum Raman preparation away from zero frequency and toward the Stokes or anti-Stokes side of the spectrum with no loss in total preparationmore » bandwidth. Shifts of 100 cm -1 or more are attainable and allow for enhanced detection of high-energy (150-300 cm -1) rotational Raman transitions at near transform-limited optimum sensitivity. A simple theoretical treatment for the case of identical pump and Stokes pulses with linear frequency chirp is presented. The approach is then demonstrated experimentally for typical levels of transform-limited laser performance obtained our laboratory with nonresonant CARS in argon and Raman-resonant spectra from a lean H 2/air flat flame.« less