Sample records for edge weighted graph

  1. A nonlinear merging protocol for consensus in multi-agent systems on signed and weighted graphs

    NASA Astrophysics Data System (ADS)

    Feng, Shasha; Wang, Li; Li, Yijia; Sun, Shiwen; Xia, Chengyi

    2018-01-01

    In this paper, we investigate the multi-agent consensus for networks with undirected graphs which are not connected, especially for the signed graph in which some edge weights are positive and some edges have negative weights, and the negative-weight graph whose edge weights are negative. We propose a novel nonlinear merging consensus protocol to drive the states of all agents to converge to the same state zero which is not dependent upon the initial states of agents. If the undirected graph whose edge weights are positive is connected, then the states of all agents converge to the same state more quickly when compared to most other protocols. While the undirected graph whose edge weights might be positive or negative is unconnected, the states of all agents can still converge to the same state zero under the premise that the undirected graph can be divided into several connected subgraphs with more than one node. Furthermore, we also discuss the impact of parameter r presented in our protocol. Current results can further deepen the understanding of consensus processes for multi-agent systems.

  2. Unwinding the hairball graph: Pruning algorithms for weighted complex networks

    NASA Astrophysics Data System (ADS)

    Dianati, Navid

    2016-01-01

    Empirical networks of weighted dyadic relations often contain "noisy" edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation and derive two significance filters from it: the marginal likelihood filter (MLF) and the global likelihood filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights, whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.

  3. Total edge irregularity strength of (n,t)-kite graph

    NASA Astrophysics Data System (ADS)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  4. Enhancing Community Detection By Affinity-based Edge Weighting Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Andy; Sanders, Geoffrey; Henson, Van

    Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is idealmore » for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.« less

  5. On the Total Edge Irregularity Strength of Generalized Butterfly Graph

    NASA Astrophysics Data System (ADS)

    Dwi Wahyuna, Hafidhyah; Indriati, Diari

    2018-04-01

    Let G(V, E) be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ: V(G) ∪ E(G) → {1, 2, …, k} of a graph G is a total k-labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by wt(uv), is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by tes(G), is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BFn , obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has 2n + 1 vertices and 4n ‑ 2 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BFn , for n > 2. The result is tes(B{F}n)=\\lceil \\frac{4n}{3}\\rceil .

  6. Controlling bi-partite entanglement in multi-qubit systems

    NASA Astrophysics Data System (ADS)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  7. A Weighted Configuration Model and Inhomogeneous Epidemics

    NASA Astrophysics Data System (ADS)

    Britton, Tom; Deijfen, Maria; Liljeros, Fredrik

    2011-12-01

    A random graph model with prescribed degree distribution and degree dependent edge weights is introduced. Each vertex is independently equipped with a random number of half-edges and each half-edge is assigned an integer valued weight according to a distribution that is allowed to depend on the degree of its vertex. Half-edges with the same weight are then paired randomly to create edges. An expression for the threshold for the appearance of a giant component in the resulting graph is derived using results on multi-type branching processes. The same technique also gives an expression for the basic reproduction number for an epidemic on the graph where the probability that a certain edge is used for transmission is a function of the edge weight (reflecting how closely `connected' the corresponding vertices are). It is demonstrated that, if vertices with large degree tend to have large (small) weights on their edges and if the transmission probability increases with the edge weight, then it is easier (harder) for the epidemic to take off compared to a randomized epidemic with the same degree and weight distribution. A recipe for calculating the probability of a large outbreak in the epidemic and the size of such an outbreak is also given. Finally, the model is fitted to three empirical weighted networks of importance for the spread of contagious diseases and it is shown that R 0 can be substantially over- or underestimated if the correlation between degree and weight is not taken into account.

  8. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  9. Benchmarking Measures of Network Controllability on Canonical Graph Models

    NASA Astrophysics Data System (ADS)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical underpinnings of the relationship between graph topology and control, as well as efforts to design networks with specific control profiles.

  10. Optimal Clustering in Graphs with Weighted Edges: A Unified Approach to the Threshold Problem.

    ERIC Educational Resources Information Center

    Goetschel, Roy; Voxman, William

    1987-01-01

    Relations on a finite set V are viewed as weighted graphs. Using the language of graph theory, two methods of partitioning V are examined: selecting threshold values and applying them to a maximal weighted spanning forest, and using a parametric linear program to obtain a most adhesive partition. (Author/EM)

  11. Efficient Approximation Algorithms for Weighted $b$-Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.

    2016-01-01

    We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for themore » problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.« less

  12. Edge Antimagic Total Labeling on Two Copies of Path

    NASA Astrophysics Data System (ADS)

    Nurdin; Abrar, A. M.; Bhayangkara, A. R. M.; Muliani; Samsir, A. U.; Nahdi, M. R. An

    2018-03-01

    A graph G = (V(G), E(G)) denotes the vertex set and the edge set, respectively. A (p,q)-graph G is a graph such that |V(G) | = p and |E(G) | = q. Graph of order p and size q is called (a,d)-edge-anti magic total if there exists a bijection f : V(G) U E(G)→ {1,2,..., p + q} such that the edge weights w(u,v) = f(u) + f(uv) + f(v) form an arithmetic sequence {a, a + d, a + 2d,...,a + (q - 1)d} with the first term a and common difference d. Two copies of path is disjoint union of two path graph with same order (Pn ∪Pn ) denoted by 2Pn . In this paper we construct the (a,d)-edge-anti magic total labeling in two copies of path for some differences d.

  13. Evolutionary dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.

    2005-01-01

    Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.

  14. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  15. Graph Design via Convex Optimization: Online and Distributed Perspectives

    NASA Astrophysics Data System (ADS)

    Meng, De

    Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.

  16. Quantification of Graph Complexity Based on the Edge Weight Distribution Balance: Application to Brain Networks.

    PubMed

    Gomez-Pilar, Javier; Poza, Jesús; Bachiller, Alejandro; Gómez, Carlos; Núñez, Pablo; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto

    2018-02-01

    The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the 'information' (calculated by means of Shannon entropy) and the 'order' of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size [Formula: see text] is close to zero for [Formula: see text]. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.

  17. Architecture Aware Partitioning Algorithms

    DTIC Science & Technology

    2006-01-19

    follows: Given a graph G = (V, E ), where V is the set of vertices, n = |V | is the number of vertices, and E is the set of edges in the graph, partition the...communication link l(pi, pj) is associated with a graph edge weight e ∗(pi, pj) that represents the communication cost per unit of communication between...one that is local for each one. For our model we assume that communication in either direction across a given link is the same, therefore e ∗(pi, pj

  18. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.

    PubMed

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-02-27

    This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  19. Separation of ion types in tandem mass spectrometry data interpretation -- a graph-theoretic approach.

    PubMed

    Yan, Bo; Pan, Chongle; Olman, Victor N; Hettich, Robert L; Xu, Ying

    2004-01-01

    Mass spectrometry is one of the most popular analytical techniques for identification of individual proteins in a protein mixture, one of the basic problems in proteomics. It identifies a protein through identifying its unique mass spectral pattern. While the problem is theoretically solvable, it remains a challenging problem computationally. One of the key challenges comes from the difficulty in distinguishing the N- and C-terminus ions, mostly b- and y-ions respectively. In this paper, we present a graph algorithm for solving the problem of separating bfrom y-ions in a set of mass spectra. We represent each spectral peak as a node and consider two types of edges: a type-1 edge connects two peaks possibly of the same ion types and a type-2 edge connects two peaks possibly of different ion types, predicted based on local information. The ion-separation problem is then formulated and solved as a graph partition problem, which is to partition the graph into three subgraphs, namely b-, y-ions and others respectively, so to maximize the total weight of type-1 edges while minimizing the total weight of type-2 edges within each subgraph. We have developed a dynamic programming algorithm for rigorously solving this graph partition problem and implemented it as a computer program PRIME. We have tested PRIME on 18 data sets of high accurate FT-ICR tandem mass spectra and found that it achieved ~90% accuracy for separation of b- and y- ions.

  20. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  1. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory

    PubMed Central

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-01-01

    This paper attempted to provide a method to calculate progressive failure of the cohesive-frictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, E1E2E3E1E2E3. The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight E3 repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution. PMID:28772596

  2. Graph traversals, genes, and matroids: An efficient case of the travelling salesman problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusfield, D.; Stelling, P.; Wang, Lusheng

    1996-12-31

    In this paper the authors consider graph traversal problems that arise from a particular technology for DNA sequencing - sequencing by hybridization (SBH). They first explain the connection of the graph problems to SBH and then focus on the traversal problems. They describe a practical polynomial time solution to the Travelling Salesman Problem in a rich class of directed graphs (including edge weighted binary de Bruijn graphs), and provide a bounded-error approximation algorithm for the maximum weight TSP in a superset of those directed graphs. The authors also establish the existence of a matroid structure defined on the set ofmore » Euler and Hamilton paths in the restricted class of graphs. 8 refs., 5 figs.« less

  3. CEREBRA: a 3-D visualization tool for brain network extracted from fMRI data.

    PubMed

    Nasir, Baris; Yarman Vural, Fatos T

    2016-08-01

    In this paper, we introduce a new tool, CEREBRA, to visualize the 3D network of human brain, extracted from the fMRI data. The tool aims to analyze the brain connectivity by representing the selected voxels as the nodes of the network. The edge weights among the voxels are estimated by considering the relationships among the voxel time series. The tool enables the researchers to observe the active brain regions and the interactions among them by using graph theoretic measures, such as, the edge weight and node degree distributions. CEREBRA provides an interactive interface with basic display and editing options for the researchers to study their hypotheses about the connectivity of the brain network. CEREBRA interactively simplifies the network by selecting the active voxels and the most correlated edge weights. The researchers may remove the voxels and edges by using local and global thresholds selected on the window. The built-in graph reduction algorithms are then eliminate the irrelevant regions, voxels and edges and display various properties of the network. The toolbox is capable of space-time representation of the voxel time series and estimated arc weights by using the animated heat maps.

  4. Short paths in expander graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinberg, J.; Rubinfeld, R.

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less

  5. Some cycle-supermagic labelings of the calendula graphs

    NASA Astrophysics Data System (ADS)

    Pradipta, T. R.; Salman, A. N. M.

    2018-01-01

    In this paper, we introduce a calendula graph, denoted by Clm,n . It is a graph constructed from a cycle on m vertices Cm and m copies of Cn which are Cn1 , Cn2 , ⋯, Cnm and grafting the i-th edge of Cm to an edge of in Cni for each i ∈ {1,2,⋯,m}. A graph G = (V, E) admits a Cn -covering, if every edge e ∈ E(G) belongs to a subgraph of G isomorphic to Cn . The graph G is called cycle-magic, if there exists a total labeling ϕ: V ∪ E → {1,2,…,|V|+|E|} such that for every subgraph Cn ‧ = (V‧,E‧) of G isomorphic to Cn has the same weight. In this case, the weight of Cn , denoted by ϕ(Cn ’), is defined as ∑ v∈V(C’n ) ϕ(v) + ∑ e∈E(C’n ) ϕ(e). Furthermore, G is called cycle-supermagic, if ϕ:V→{1,2,…,|V|}. In this paper, we provide some cycle-supermagic labelings of calendula graphs. In order to prove it, we develop a technique, to make a partition of a multiset into m sub-multisets with the same cardinality such that the sum of all elements of each sub-multiset is same. The technique is called an m-balanced multiset.

  6. Faster quantum walk search on a weighted graph

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2015-09-01

    A randomly walking quantum particle evolving by Schrödinger's equation searches for a unique marked vertex on the "simplex of complete graphs" in time Θ (N3 /4) . We give a weighted version of this graph that preserves vertex transitivity, and we show that the time to search on it can be reduced to nearly Θ (√{N }) . To prove this, we introduce two extensions to degenerate perturbation theory: an adjustment that distinguishes the weights of the edges and a method to determine how precisely the jumping rate of the quantum walk must be chosen.

  7. Fuzzy α-minimum spanning tree problem: definition and solutions

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan

    2016-04-01

    In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.

  8. Evaluation of BLAST-based edge-weighting metrics used for homology inference with the Markov Clustering algorithm.

    PubMed

    Gibbons, Theodore R; Mount, Stephen M; Cooper, Endymion D; Delwiche, Charles F

    2015-07-10

    Clustering protein sequences according to inferred homology is a fundamental step in the analysis of many large data sets. Since the publication of the Markov Clustering (MCL) algorithm in 2002, it has been the centerpiece of several popular applications. Each of these approaches generates an undirected graph that represents sequences as nodes connected to each other by edges weighted with a BLAST-based metric. MCL is then used to infer clusters of homologous proteins by analyzing these graphs. The various approaches differ only by how they weight the edges, yet there has been very little direct examination of the relative performance of alternative edge-weighting metrics. This study compares the performance of four BLAST-based edge-weighting metrics: the bit score, bit score ratio (BSR), bit score over anchored length (BAL), and negative common log of the expectation value (NLE). Performance is tested using the Extended CEGMA KOGs (ECK) database, which we introduce here. All metrics performed similarly when analyzing full-length sequences, but dramatic differences emerged as progressively larger fractions of the test sequences were split into fragments. The BSR and BAL successfully rescued subsets of clusters by strengthening certain types of alignments between fragmented sequences, but also shifted the largest correct scores down near the range of scores generated from spurious alignments. This penalty outweighed the benefits in most test cases, and was greatly exacerbated by increasing the MCL inflation parameter, making these metrics less robust than the bit score or the more popular NLE. Notably, the bit score performed as well or better than the other three metrics in all scenarios. The results provide a strong case for use of the bit score, which appears to offer equivalent or superior performance to the more popular NLE. The insight that MCL-based clustering methods can be improved using a more tractable edge-weighting metric will greatly simplify future implementations. We demonstrate this with our own minimalist Python implementation: Porthos, which uses only standard libraries and can process a graph with 25 m + edges connecting the 60 k + KOG sequences in half a minute using less than half a gigabyte of memory.

  9. TreeNetViz: revealing patterns of networks over tree structures.

    PubMed

    Gou, Liang; Zhang, Xiaolong Luke

    2011-12-01

    Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE

  10. Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate.

    PubMed

    Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan

    2009-01-01

    We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.

  11. Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mu; Pothen, Alex; Hovland, Paul

    We prove the equivalence of two different Hessian evaluation algorithms in AD. The first is the Edge Pushing algorithm of Gower and Mello, which may be viewed as a second order Reverse mode algorithm for computing the Hessian. In earlier work, we have derived the Edge Pushing algorithm by exploiting a Reverse mode invariant based on the concept of live variables in compiler theory. The second algorithm is based on eliminating vertices in a computational graph of the gradient, in which intermediate variables are successively eliminated from the graph, and the weights of the edges are updated suitably. We provemore » that if the vertices are eliminated in a reverse topological order while preserving symmetry in the computational graph of the gradient, then the Vertex Elimination algorithm and the Edge Pushing algorithm perform identical computations. In this sense, the two algorithms are equivalent. This insight that unifies two seemingly disparate approaches to Hessian computations could lead to improved algorithms and implementations for computing Hessians. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974690.ch11« less

  12. Clustering in complex directed networks

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio

    2007-08-01

    Many empirical networks display an inherent tendency to cluster, i.e., to form circles of connected nodes. This feature is typically measured by the clustering coefficient (CC). The CC, originally introduced for binary, undirected graphs, has been recently generalized to weighted, undirected networks. Here we extend the CC to the case of (binary and weighted) directed networks and we compute its expected value for random graphs. We distinguish between CCs that count all directed triangles in the graph (independently of the direction of their edges) and CCs that only consider particular types of directed triangles (e.g., cycles). The main concepts are illustrated by employing empirical data on world-trade flows.

  13. The Construction of {P}_{2}\\vartriangleright H-antimagic graph using smaller edge-antimagic vertex labeling

    NASA Astrophysics Data System (ADS)

    Prihandini, Rafiantika M.; Agustin, I. H.; Dafik

    2018-04-01

    In this paper we use simple and non trivial graph. If there exist a bijective function g:V(G) \\cup E(G)\\to \\{1,2,\\ldots,|V(G)|+|E(G)|\\}, such that for all subgraphs {P}2\\vartriangleright H of G isomorphic to H, then graph G is called an (a, b)-{P}2\\vartriangleright H-antimagic total graph. Furthermore, we can consider the total {P}2\\vartriangleright H-weights W({P}2\\vartriangleright H)={\\sum }v\\in V({P2\\vartriangleright H)}f(v)+{\\sum }e\\in E({P2\\vartriangleright H)}f(e) which should form an arithmetic sequence {a, a + d, a + 2d, …, a + (n ‑ 1)d}, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a, b)-{P}2\\vartriangleright H antimagic total labeling for graph operation of comb product namely of G=L\\vartriangleright H, where L is a (b, d*)-edge antimagic vertex labeling graph and H is a connected graph.

  14. Hybrid coexpression link similarity graph clustering for mining biological modules from multiple gene expression datasets.

    PubMed

    Salem, Saeed; Ozcaglar, Cagri

    2014-01-01

    Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways.

  15. On the mixing time of geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan

    In this paper, we study the mixing time of random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Wemore » specifically study the mixing times of random walks on 2-dimensional GTGs near the connectivity threshold. We provide a set of criteria on the distribution of vertex weights that guarantees that the mixing time is {Theta}(n log n).« less

  16. On the total irregularity strength of caterpillar with each internal vertex has degree three

    NASA Astrophysics Data System (ADS)

    Indriati, Diari; Rosyida, Isnaini; Widodo

    2018-04-01

    Let G be a simple, connected and undirected graph with vertex set V and edge set E. A total k-labeling f:V \\cup E\\to \\{1,2,\\ldots,k\\} is defined as totally irregular total k-labeling if the weights of any two different both vertices and edges are distinct. The weight of vertex x is defined as wt(x)=f(x)+{\\sum }xy\\in Ef(xy), while the weight of edge xy is wt(xy)=f(x)+f(xy)+f(y). A minimum k for which G has totally irregular total k-labeling is mentioned as total irregularity strength of G and denoted by ts(G). This paper contains investigation of totally irregular total k-labeling and determination of their total irregularity strengths for caterpillar graphs with each internal vertex between two stars has degree three. The results are ts({S}n,3,n)=\\lceil \\frac{2n}{2}\\rceil, ts({S}n,3,3,n)=\\lceil \\frac{2n+1}{2}\\rceil and ts({S}n,3,3,3,n)=\\lceil \\frac{2n+2}{2}\\rceil for n > 4:

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minghai; Duan, Mojie; Fan, Jue

    The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation ofmore » free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.« less

  18. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks

    PubMed Central

    Colon-Perez, Luis M.; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R.; Price, Catherine; Mareci, Thomas H.

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime. PMID:26173147

  19. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks.

    PubMed

    Colon-Perez, Luis M; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R; Price, Catherine; Mareci, Thomas H

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime.

  20. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    PubMed

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of streamline tractography algorithms or the assumption of a noise distribution. Moreover, the BootGraph can be applied to common DTI data sets without further modifications and shows a high repeatability. Thus, it is very well suited for longitudinal studies and meta-studies based on DTI. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Hybrid coexpression link similarity graph clustering for mining biological modules from multiple gene expression datasets

    PubMed Central

    2014-01-01

    Background Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. Results We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways. PMID:25221624

  2. Subspace Clustering via Learning an Adaptive Low-Rank Graph.

    PubMed

    Yin, Ming; Xie, Shengli; Wu, Zongze; Zhang, Yun; Gao, Junbin

    2018-08-01

    By using a sparse representation or low-rank representation of data, the graph-based subspace clustering has recently attracted considerable attention in computer vision, given its capability and efficiency in clustering data. However, the graph weights built using the representation coefficients are not the exact ones as the traditional definition is in a deterministic way. The two steps of representation and clustering are conducted in an independent manner, thus an overall optimal result cannot be guaranteed. Furthermore, it is unclear how the clustering performance will be affected by using this graph. For example, the graph parameters, i.e., the weights on edges, have to be artificially pre-specified while it is very difficult to choose the optimum. To this end, in this paper, a novel subspace clustering via learning an adaptive low-rank graph affinity matrix is proposed, where the affinity matrix and the representation coefficients are learned in a unified framework. As such, the pre-computed graph regularizer is effectively obviated and better performance can be achieved. Experimental results on several famous databases demonstrate that the proposed method performs better against the state-of-the-art approaches, in clustering.

  3. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    NASA Astrophysics Data System (ADS)

    Davies, E. Brian; Exner, Pavel; Lipovský, Jiří

    2010-11-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  4. Weighted Distances in Scale-Free Configuration Models

    NASA Astrophysics Data System (ADS)

    Adriaans, Erwin; Komjáthy, Júlia

    2018-01-01

    In this paper we study first-passage percolation in the configuration model with empirical degree distribution that follows a power-law with exponent τ \\in (2,3) . We assign independent and identically distributed (i.i.d.) weights to the edges of the graph. We investigate the weighted distance (the length of the shortest weighted path) between two uniformly chosen vertices, called typical distances. When the underlying age-dependent branching process approximating the local neighborhoods of vertices is found to produce infinitely many individuals in finite time—called explosive branching process—Baroni, Hofstad and the second author showed in Baroni et al. (J Appl Probab 54(1):146-164, 2017) that typical distances converge in distribution to a bounded random variable. The order of magnitude of typical distances remained open for the τ \\in (2,3) case when the underlying branching process is not explosive. We close this gap by determining the first order of magnitude of typical distances in this regime for arbitrary, not necessary continuous edge-weight distributions that produce a non-explosive age-dependent branching process with infinite mean power-law offspring distributions. This sequence tends to infinity with the amount of vertices, and, by choosing an appropriate weight distribution, can be tuned to be any growing function that is O(log log n) , where n is the number of vertices in the graph. We show that the result remains valid for the the erased configuration model as well, where we delete loops and any second and further edges between two vertices.

  5. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.

    PubMed

    Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.

  6. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing

    PubMed Central

    2015-01-01

    We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102

  7. A memory-efficient data structure representing exact-match overlap graphs with application for next-generation DNA assembly.

    PubMed

    Dinh, Hieu; Rajasekaran, Sanguthevar

    2011-07-15

    Exact-match overlap graphs have been broadly used in the context of DNA assembly and the shortest super string problem where the number of strings n ranges from thousands to billions. The length ℓ of the strings is from 25 to 1000, depending on the DNA sequencing technologies. However, many DNA assemblers using overlap graphs suffer from the need for too much time and space in constructing the graphs. It is nearly impossible for these DNA assemblers to handle the huge amount of data produced by the next-generation sequencing technologies where the number n of strings could be several billions. If the overlap graph is explicitly stored, it would require Ω(n(2)) memory, which could be prohibitive in practice when n is greater than a hundred million. In this article, we propose a novel data structure using which the overlap graph can be compactly stored. This data structure requires only linear time to construct and and linear memory to store. For a given set of input strings (also called reads), we can informally define an exact-match overlap graph as follows. Each read is represented as a node in the graph and there is an edge between two nodes if the corresponding reads overlap sufficiently. A formal description follows. The maximal exact-match overlap of two strings x and y, denoted by ov(max)(x, y), is the longest string which is a suffix of x and a prefix of y. The exact-match overlap graph of n given strings of length ℓ is an edge-weighted graph in which each vertex is associated with a string and there is an edge (x, y) of weight ω=ℓ-|ov(max)(x, y)| if and only if ω ≤ λ, where |ov(max)(x, y)| is the length of ov(max)(x, y) and λ is a given threshold. In this article, we show that the exact-match overlap graphs can be represented by a compact data structure that can be stored using at most (2λ-1)(2⌈logn⌉+⌈logλ⌉)n bits with a guarantee that the basic operation of accessing an edge takes O(log λ) time. We also propose two algorithms for constructing the data structure for the exact-match overlap graph. The first algorithm runs in O(λℓnlogn) worse-case time and requires O(λ) extra memory. The second one runs in O(λℓn) time and requires O(n) extra memory. Our experimental results on a huge amount of simulated data from sequence assembly show that the data structure can be constructed efficiently in time and memory. Our DNA sequence assembler that incorporates the data structure is freely available on the web at http://www.engr.uconn.edu/~htd06001/assembler/leap.zip

  8. Minimum nonuniform graph partitioning with unrelated weights

    NASA Astrophysics Data System (ADS)

    Makarychev, K. S.; Makarychev, Yu S.

    2017-12-01

    We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.

  9. Efficient dynamic graph construction for inductive semi-supervised learning.

    PubMed

    Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y

    2017-10-01

    Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. New Methods of Spectral-Density Based Graph Construction and Their Application to Hyperspectral Image Analysis

    NASA Astrophysics Data System (ADS)

    Stevens, Jeffrey

    The past decade has seen the emergence of many hyperspectral image (HSI) analysis algorithms based on graph theory and derived manifold-coordinates. Yet, despite the growing number of algorithms, there has been limited study of the graphs constructed from spectral data themselves. Which graphs are appropriate for various HSI analyses--and why? This research aims to begin addressing these questions as the performance of graph-based techniques is inextricably tied to the graphical model constructed from the spectral data. We begin with a literature review providing a survey of spectral graph construction techniques currently used by the hyperspectral community, starting with simple constructs demonstrating basic concepts and then incrementally adding components to derive more complex approaches. Throughout this development, we discuss algorithm advantages and disadvantages for different types of hyperspectral analysis. A focus is provided on techniques influenced by spectral density through which the concept of community structure arises. Through the use of simulated and real HSI data, we demonstrate density-based edge allocation produces more uniform nearest neighbor lists than non-density based techniques through increasing the number of intracluster edges, facilitating higher k-nearest neighbor (k-NN) classification performance. Imposing the common mutuality constraint to symmetrify adjacency matrices is demonstrated to be beneficial in most circumstances, especially in rural (less cluttered) scenes. Many complex adaptive edge-reweighting techniques are shown to slightly degrade nearest-neighbor list characteristics. Analysis suggests this condition is possibly attributable to the validity of characterizing spectral density by a single variable representing data scale for each pixel. Additionally, it is shown that imposing mutuality hurts the performance of adaptive edge-allocation techniques or any technique that aims to assign a low number of edges (<10) to any pixel. A simple k bias addresses this problem. Many of the adaptive edge-reweighting techniques are based on the concept of codensity, so we explore codensity properties as they relate to density-based edge reweighting. We find that codensity may not be the best estimator of local scale due to variations in cluster density, so we introduce and compare two inherently density-weighted graph construction techniques from the data mining literature: shared nearest neighbors (SNN) and mutual proximity (MP). MP and SNN are not reliant upon a codensity measure, hence are not susceptible to its shortcomings. Neither has been used for hyperspectral analyses, so this presents the first study of these techniques on HSI data. We demonstrate MP and SNN can offer better performance, but in general none of the reweighting techniques improve the quality of these spectral graphs in our neighborhood structure tests. As such, these complex adaptive edge-reweighting techniques may need to be modified to increase their effectiveness. During this investigation, we probe deeper into properties of high-dimensional data and introduce the concept of concentration of measure (CoM)--the degradation in the efficacy of many common distance measures with increasing dimensionality--as it relates to spectral graph construction. CoM exists in pairwise distances between HSI pixels, but not to the degree experienced in random data of the same extrinsic dimension; a characteristic we demonstrate is due to the rich correlation and cluster structure present in HSI data. CoM can lead to hubness--a condition wherein some nodes have short distances (high similarities) to an exceptionally large number of nodes. We study hub presence in 49 HSI datasets of varying resolutions, altitudes, and spectral bands to demonstrate hubness effects are negligible in a k-NN classification example (generalized counting scenarios), but we note its impact on methods that use edge weights to derive manifold coordinates or splitting clusters based on spectral graph theory requires more investigation. Many of these new graph-related quantities can be exploited to demonstrate new techniques for HSI classification and anomaly detection. We present an initial exploration into this relatively new and exciting field based on an enhanced Schroedinger Eigenmap classification example and compare results to the current state-of-the-art approach. We produce equivalent results, but demonstrate different types of misclassifications, opening the door to combine the best of both approaches to achieve truly superior performance. A separate less mature hubness-assisted anomaly detector (HAAD) is also presented.

  11. On the local edge antimagicness of m-splitting graphs

    NASA Astrophysics Data System (ADS)

    Albirri, E. R.; Dafik; Slamin; Agustin, I. H.; Alfarisi, R.

    2018-04-01

    Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v‧ in every vertex v‧ such that v‧ adjacent to v in graph G. An m-splitting graph is a graph which has m v‧-vertices, denoted by mSpl(G). A local edge antimagic coloring in G = (V, E) graph is a bijection f:V (G)\\to \\{1,2,3,\\ldots,|V(G)|\\} in which for any two adjacent edges e 1 and e 2 satisfies w({e}1)\

  12. Generalized minimum dominating set and application in automatic text summarization

    NASA Astrophysics Data System (ADS)

    Xu, Yi-Zhi; Zhou, Hai-Jun

    2016-03-01

    For a graph formed by vertices and weighted edges, a generalized minimum dominating set (MDS) is a vertex set of smallest cardinality such that the summed weight of edges from each outside vertex to vertices in this set is equal to or larger than certain threshold value. This generalized MDS problem reduces to the conventional MDS problem in the limiting case of all the edge weights being equal to the threshold value. We treat the generalized MDS problem in the present paper by a replica-symmetric spin glass theory and derive a set of belief-propagation equations. As a practical application we consider the problem of extracting a set of sentences that best summarize a given input text document. We carry out a preliminary test of the statistical physics-inspired method to this automatic text summarization problem.

  13. Alternative construction of graceful symmetric trees

    NASA Astrophysics Data System (ADS)

    Sandy, I. P.; Rizal, A.; Manurung, E. N.; Sugeng, K. A.

    2018-04-01

    Graceful labeling is one of the interesting topics in graph theory. Let G = (V, E) be a tree. The injective mapping f:V\\to \\{0,1,\\ldots,|E|\\} is called graceful if the weight of edge w(xy)=|f(x)-f(y)| are all different for every edge xy. The famous conjecture in this area is all trees are graceful. In this paper we give alternative construction of graceful labeling on symmetric tree using adjacency matrix.

  14. Orbit-product representation and correction of Gaussian belief propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K; Chertkov, Michael; Chernyak, Vladimir

    We present a new interpretation of Gaussian belief propagation (GaBP) based on the 'zeta function' representation of the determinant as a product over orbits of a graph. We show that GaBP captures back-tracking orbits of the graph and consider how to correct this estimate by accounting for non-backtracking orbits. We show that the product over non-backtracking orbits may be interpreted as the determinant of the non-backtracking adjacency matrix of the graph with edge weights based on the solution of GaBP. An efficient method is proposed to compute a truncated correction factor including all non-backtracking orbits up to a specified length.

  15. On face antimagic labeling of double duplication of graphs

    NASA Astrophysics Data System (ADS)

    Shobana, L.; Kuppan, R.

    2018-04-01

    A Labeling of a plane graph G is called d-antimagic if every numbers, the set of s-sided face weights is Ws={as,as+d,as+2d,...,as+(fs-1)d} for some integers as and d (as>0,d≥0),where fs is the number of s-sided faces. We allow differentsets ws of different s.In this paper, we proved the existence of face antimagic labeling of types (1,0,0),(1,0,1),(1,1,0),(0,1,1) and (1,1,1) of double duplication of all vertices by edges of a cycle graph Cn: n≥3 and a tree of order n.

  16. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  17. Dynamics of subway networks based on vehicles operation timetable

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  18. Salient object detection: manifold-based similarity adaptation approach

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Ren, Yongfeng; Yan, Yunyang; Gao, Shangbing

    2014-11-01

    A saliency detection algorithm based on manifold-based similarity adaptation is proposed. The proposed algorithm is divided into three steps. First, we segment an input image into superpixels, which are represented as the nodes in a graph. Second, a new similarity measurement is used in the proposed algorithm. The weight matrix of the graph, which indicates the similarities between the nodes, uses a similarity-based method. It also captures the manifold structure of the image patches, in which the graph edges are determined in a data adaptive manner in terms of both similarity and manifold structure. Then, we use local reconstruction method as a diffusion method to obtain the saliency maps. The objective function in the proposed method is based on local reconstruction, with which estimated weights capture the manifold structure. Experiments on four bench-mark databases demonstrate the accuracy and robustness of the proposed method.

  19. Social inertia and diversity in collaboration networks

    NASA Astrophysics Data System (ADS)

    Ramasco, J. J.

    2007-04-01

    Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.

  20. Continuum Limit of Total Variation on Point Clouds

    NASA Astrophysics Data System (ADS)

    García Trillos, Nicolás; Slepčev, Dejan

    2016-04-01

    We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.

  1. On the total rainbow connection of the wheel related graphs

    NASA Astrophysics Data System (ADS)

    Hasan, M. S.; Slamin; Dafik; Agustin, I. H.; Alfarisi, R.

    2018-04-01

    Let G = (V(G), E(G)) be a nontrivial connected graph with an edge coloring c : E(G) → {1, 2, …, l}, l ɛ N, with the condition that the adjacent edges may be colored by the same colors. A path P in G is called rainbow path if no two edges of P are colored the same. The smallest number of colors that are needed to make G rainbow edge-connected is called the rainbow edge-connection of G, denoted by rc(G). A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The smallest number of colors that are needed to make G rainbow vertex-connected is called the rainbow vertex-connection of G, denoted by rvc(G). A total-colored path is total-rainbow if edges and internal vertices have distinct colours. The minimum number of colour required to color the edges and vertices of G is called the total rainbow connection number of G, denoted by trc(G). In this paper, we determine the total rainbow connection number of some wheel related graphs such as gear graph, antiweb-gear graph, infinite class of convex polytopes, sunflower graph, and closed-sunflower graph.

  2. The Approximability of Partial Vertex Covers in Trees.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtchyan, Vahan; Parekh, Ojas D.; Segev, Danny

    Motivated by applications in risk management of computational systems, we focus our attention on a special case of the partial vertex cover problem, where the underlying graph is assumed to be a tree. Here, we consider four possible versions of this setting, depending on whether vertices and edges are weighted or not. Two of these versions, where edges are assumed to be unweighted, are known to be polynomial-time solvable (Gandhi, Khuller, and Srinivasan, 2004). However, the computational complexity of this problem with weighted edges, and possibly with weighted vertices, has not been determined yet. The main contribution of this papermore » is to resolve these questions, by fully characterizing which variants of partial vertex cover remain intractable in trees, and which can be efficiently solved. In particular, we propose a pseudo-polynomial DP-based algorithm for the most general case of having weights on both edges and vertices, which is proven to be NPhard. This algorithm provides a polynomial-time solution method when weights are limited to edges, and combined with additional scaling ideas, leads to an FPTAS for the general case. A secondary contribution of this work is to propose a novel way of using centroid decompositions in trees, which could be useful in other settings as well.« less

  3. Quantifying loopy network architectures.

    PubMed

    Katifori, Eleni; Magnasco, Marcelo O

    2012-01-01

    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of approaches have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  4. Finding minimum-quotient cuts in planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.K.; Phillips, C.A.

    Given a graph G = (V, E) where each vertex v {element_of} V is assigned a weight w(v) and each edge e {element_of} E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and {bar S} is c(S, {bar S})/min{l_brace}w(S), w(S){r_brace}, where c(S, {bar S}) is the sum of the costs of the edges crossing the cut and w(S) and w({bar S}) are the sum of the weights of the vertices in S and {bar S}, respectively. The problem of finding a cut whose quotient is minimum for a graph hasmore » in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,{bar S}) minimizing c(S,{bar S}) subject to the constraint bW {le} w(S) {le} (1 {minus} b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b {le} {1/2}. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao`s algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao`s most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less

  5. Finding minimum-quotient cuts in planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.K.; Phillips, C.A.

    Given a graph G = (V, E) where each vertex v [element of] V is assigned a weight w(v) and each edge e [element of] E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and [bar S] is c(S, [bar S])/min[l brace]w(S), w(S)[r brace], where c(S, [bar S]) is the sum of the costs of the edges crossing the cut and w(S) and w([bar S]) are the sum of the weights of the vertices in S and [bar S], respectively. The problem of finding a cut whose quotient is minimummore » for a graph has in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,[bar S]) minimizing c(S,[bar S]) subject to the constraint bW [le] w(S) [le] (1 [minus] b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b [le] [1/2]. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao's algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao's most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less

  6. On Edge Exchangeable Random Graphs

    NASA Astrophysics Data System (ADS)

    Janson, Svante

    2017-06-01

    We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).

  7. Layered data association using graph-theoretic formulation with applications to tennis ball tracking in monocular sequences.

    PubMed

    Yan, Fei; Christmas, William; Kittler, Josef

    2008-10-01

    In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.

  8. Coloring geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less

  9. Modeling surgical tool selection patterns as a "traveling salesman problem" for optimizing a modular surgical tool system.

    PubMed

    Nelson, Carl A; Miller, David J; Oleynikov, Dmitry

    2008-01-01

    As modular systems come into the forefront of robotic telesurgery, streamlining the process of selecting surgical tools becomes an important consideration. This paper presents a method for optimal queuing of tools in modular surgical tool systems, based on patterns in tool-use sequences, in order to minimize time spent changing tools. The solution approach is to model the set of tools as a graph, with tool-change frequency expressed as edge weights in the graph, and to solve the Traveling Salesman Problem for the graph. In a set of simulations, this method has shown superior performance at optimizing tool arrangements for streamlining surgical procedures.

  10. The braingraph.org database of high resolution structural connectomes and the brain graph tools.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2017-10-01

    Based on the data of the NIH-funded Human Connectome Project, we have computed structural connectomes of 426 human subjects in five different resolutions of 83, 129, 234, 463 and 1015 nodes and several edge weights. The graphs are given in anatomically annotated GraphML format that facilitates better further processing and visualization. For 96 subjects, the anatomically classified sub-graphs can also be accessed, formed from the vertices corresponding to distinct lobes or even smaller regions of interests of the brain. For example, one can easily download and study the connectomes, restricted to the frontal lobes or just to the left precuneus of 96 subjects using the data. Partially directed connectomes of 423 subjects are also available for download. We also present a GitHub-deposited set of tools, called the Brain Graph Tools, for several processing tasks of the connectomes on the site http://braingraph.org.

  11. Affinity learning with diffusion on tensor product graph.

    PubMed

    Yang, Xingwei; Prasad, Lakshman; Latecki, Longin Jan

    2013-01-01

    In many applications, we are given a finite set of data points sampled from a data manifold and represented as a graph with edge weights determined by pairwise similarities of the samples. Often the pairwise similarities (which are also called affinities) are unreliable due to noise or due to intrinsic difficulties in estimating similarity values of the samples. As observed in several recent approaches, more reliable similarities can be obtained if the original similarities are diffused in the context of other data points, where the context of each point is a set of points most similar to it. Compared to the existing methods, our approach differs in two main aspects. First, instead of diffusing the similarity information on the original graph, we propose to utilize the tensor product graph (TPG) obtained by the tensor product of the original graph with itself. Since TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities. However, it comes at the price of higher order computational complexity and storage requirement. The key contribution of the proposed approach is that the information propagation on TPG can be computed with the same computational complexity and the same amount of storage as the propagation on the original graph. We prove that a graph diffusion process on TPG is equivalent to a novel iterative algorithm on the original graph, which is guaranteed to converge. After its convergence we obtain new edge weights that can be interpreted as new, learned affinities. We stress that the affinities are learned in an unsupervised setting. We illustrate the benefits of the proposed approach for data manifolds composed of shapes, images, and image patches on two very different tasks of image retrieval and image segmentation. With learned affinities, we achieve the bull's eye retrieval score of 99.99 percent on the MPEG-7 shape dataset, which is much higher than the state-of-the-art algorithms. When the data- points are image patches, the NCut with the learned affinities not only significantly outperforms the NCut with the original affinities, but it also outperforms state-of-the-art image segmentation methods.

  12. On Super Edge-magic Total Labeling of Modified Watermill Graph

    NASA Astrophysics Data System (ADS)

    Nurdin; Ungko, T. S.; Gormantara, J.; Abdullah, A.; Aulyah, S.; Nikita

    2018-03-01

    An edge-magic total labeling on a graph G is one-to-one map from V(G) ∪ E(G) onto the set of integers 1,2, ...,ν + e, where ν = |V(G)| and e = |E(G)|, with the property that, given any edge uv, f(u) + f(u, ν}) + f(ν) = k for every u,v ∈ V(G), and k is called magic valuation. An edge-magic total labeling f is called super edge-magic total if f(v(G)) = {1,2 ...,|V(G)|} and f(E(G)) = {|V(G)| + 1, |V(G)| + 2,... |V(G) + E(G)|}. In this paper we investigate edge-magic total labeling of a new graph called modified Watermill graph. Furthermore, the magic valuation of the modified Watermill graph WM(n) is k=\\frac{1}{2}(21n+3), for n odd, n ≥ 3.

  13. Graph-Based Object Class Discovery

    NASA Astrophysics Data System (ADS)

    Xia, Shengping; Hancock, Edwin R.

    We are interested in the problem of discovering the set of object classes present in a database of images using a weakly supervised graph-based framework. Rather than making use of the ”Bag-of-Features (BoF)” approach widely used in current work on object recognition, we represent each image by a graph using a group of selected local invariant features. Using local feature matching and iterative Procrustes alignment, we perform graph matching and compute a similarity measure. Borrowing the idea of query expansion , we develop a similarity propagation based graph clustering (SPGC) method. Using this method class specific clusters of the graphs can be obtained. Such a cluster can be generally represented by using a higher level graph model whose vertices are the clustered graphs, and the edge weights are determined by the pairwise similarity measure. Experiments are performed on a dataset, in which the number of images increases from 1 to 50K and the number of objects increases from 1 to over 500. Some objects have been discovered with total recall and a precision 1 in a single cluster.

  14. Label Information Guided Graph Construction for Semi-Supervised Learning.

    PubMed

    Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi

    2017-09-01

    In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

  15. Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing.

    PubMed

    Sun, Peng; Guo, Jiong; Baumbach, Jan

    2012-07-17

    The explosion of biological data has largely influenced the focus of today’s biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.

  16. Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing.

    PubMed

    Sun, Peng; Guo, Jiong; Baumbach, Jan

    2012-06-01

    The explosion of biological data has largely influenced the focus of today's biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.

  17. Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph

    NASA Astrophysics Data System (ADS)

    Xue, Xiaofeng

    2017-11-01

    In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.

  18. On cordial labeling of double duplication for some families of graph

    NASA Astrophysics Data System (ADS)

    Shobana, L.; Remigius Perpetua Mary, F.

    2018-04-01

    Let G (V, E) be a simple undirected graph where V,E are its vertex set and edge set respectively. Consider a labeling where f bea function from the vertices of G to {0, 1} and for each edge xy assign the label|f(x)-f(y)|. Then f is called cordial of G if the number of vertices labeled 0 and the number of vertices labeled 1 differs by at most 1 and the number of edges labeled 0 and the number of edges labeled 1 differs by at most 1. In this paper we proved the existence of cordial labeling for double duplication of path graph Pn: n≥2, cycle graph Cn: n≥3 except for n≡2 (mod 4), wheel graph Wn:n≥5 except for n≥3 (mod 4), flower graph Fn: n≥5 and bistar graph Bm,n: m,n≥2.

  19. Real-time community detection in full social networks on a laptop

    PubMed Central

    Chamberlain, Benjamin Paul; Levy-Kramer, Josh; Humby, Clive

    2018-01-01

    For a broad range of research and practical applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As global social networks (e.g., Facebook and Twitter) are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present an approach for analyzing full social networks on a standard laptop, allowing for interactive exploration of the communities in the locality of a set of user specified query vertices. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates the edge weights between vertices in a derived graph. Local communities can be constructed by selecting vertices that are connected to the query vertices with high edge weights in the derived graph. This compression is robust to noise and allows for interactive queries of local communities in real-time, which we define to be less than the average human reaction time of 0.25s. We achieve single-machine real-time performance by compressing the neighborhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetize their data, helping them to continue to provide free services that are valued by billions of people globally. PMID:29342158

  20. Small Worldness in Dense and Weighted Connectomes

    NASA Astrophysics Data System (ADS)

    Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas

    2016-05-01

    The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.

  1. Relevancy in Problem Solving: A Computational Framework

    ERIC Educational Resources Information Center

    Kwisthout, Johan

    2012-01-01

    When computer scientists discuss the computational complexity of, for example, finding the shortest path from building A to building B in some town or city, their starting point typically is a formal description of the problem at hand, e.g., a graph with weights on every edge where buildings correspond to vertices, routes between buildings to…

  2. Dimer geometry, amoebae and a vortex dimer model

    NASA Astrophysics Data System (ADS)

    Nash, Charles; O'Connor, Denjoe

    2017-09-01

    We present a geometrical approach and introduce a connection for dimer problems on bipartite and non-bipartite graphs. In the bipartite case the connection is flat but has non-trivial {Z}2 holonomy round certain curves. This holonomy has the universality property that it does not change as the number of vertices in the fundamental domain of the graph is increased. It is argued that the K-theory of the torus, with or without punctures, is the appropriate underlying invariant. In the non-bipartite case the connection has non-zero curvature as well as non-zero Chern number. The curvature does not require the introduction of a magnetic field. The phase diagram of these models is captured by what is known as an amoeba. We introduce a dimer model with negative edge weights which correspond to vortices. The amoebae for various models are studied with particular emphasis on the case of negative edge weights. Vortices give rise to new kinds of amoebae with certain singular structures which we investigate. On the amoeba of the vortex full hexagonal lattice we find the partition function corresponds to that of a massless Dirac doublet.

  3. Computing the Edge-Neighbour-Scattering Number of Graphs

    NASA Astrophysics Data System (ADS)

    Wei, Zongtian; Qi, Nannan; Yue, Xiaokui

    2013-11-01

    A set of edges X is subverted from a graph G by removing the closed neighbourhood N[X] from G. We denote the survival subgraph by G=X. An edge-subversion strategy X is called an edge-cut strategy of G if G=X is disconnected, a single vertex, or empty. The edge-neighbour-scattering number of a graph G is defined as ENS(G) = max{ω(G/X)-|X| : X is an edge-cut strategy of G}, where w(G=X) is the number of components of G=X. This parameter can be used to measure the vulnerability of networks when some edges are failed, especially spy networks and virus-infected networks. In this paper, we prove that the problem of computing the edge-neighbour-scattering number of a graph is NP-complete and give some upper and lower bounds for this parameter.

  4. Diameter-Constrained Steiner Tree

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Lin, Guohui; Xue, Guoliang

    Given an edge-weighted undirected graph G = (V,E,c,w), where each edge e ∈ E has a cost c(e) and a weight w(e), a set S ⊆ V of terminals and a positive constant D 0, we seek a minimum cost Steiner tree where all terminals appear as leaves and its diameter is bounded by D 0. Note that the diameter of a tree represents the maximum weight of path connecting two different leaves in the tree. Such problem is called the minimum cost diameter-constrained Steiner tree problem. This problem is NP-hard even when the topology of Steiner tree is fixed. In present paper we focus on this restricted version and present a fully polynomial time approximation scheme (FPTAS) for computing a minimum cost diameter-constrained Steiner tree under a fixed topology.

  5. Simple graph models of information spread in finite populations

    PubMed Central

    Voorhees, Burton; Ryder, Bergerud

    2015-01-01

    We consider several classes of simple graphs as potential models for information diffusion in a structured population. These include biases cycles, dual circular flows, partial bipartite graphs and what we call ‘single-link’ graphs. In addition to fixation probabilities, we study structure parameters for these graphs, including eigenvalues of the Laplacian, conductances, communicability and expected hitting times. In several cases, values of these parameters are related, most strongly so for partial bipartite graphs. A measure of directional bias in cycles and circular flows arises from the non-zero eigenvalues of the antisymmetric part of the Laplacian and another measure is found for cycles as the value of the transition probability for which hitting times going in either direction of the cycle are equal. A generalization of circular flow graphs is used to illustrate the possibility of tuning edge weights to match pre-specified values for graph parameters; in particular, we show that generalizations of circular flows can be tuned to have fixation probabilities equal to the Moran probability for a complete graph by tuning vertex temperature profiles. Finally, single-link graphs are introduced as an example of a graph involving a bottleneck in the connection between two components and these are compared to the partial bipartite graphs. PMID:26064661

  6. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.

  7. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  8. Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer Programs

    NASA Astrophysics Data System (ADS)

    Chekuri, Chandra; Ene, Alina; Korula, Nitish

    We consider the unsplittable flow problem (UFP) and the closely related column-restricted packing integer programs (CPIPs). In UFP we are given an edge-capacitated graph G = (V,E) and k request pairs R 1, ..., R k , where each R i consists of a source-destination pair (s i ,t i ), a demand d i and a weight w i . The goal is to find a maximum weight subset of requests that can be routed unsplittably in G. Most previous work on UFP has focused on the no-bottleneck case in which the maximum demand of the requests is at most the smallest edge capacity. Inspired by the recent work of Bansal et al. [3] on UFP on a path without the above assumption, we consider UFP on paths as well as trees. We give a simple O(logn) approximation for UFP on trees when all weights are identical; this yields an O(log2 n) approximation for the weighted case. These are the first non-trivial approximations for UFP on trees. We develop an LP relaxation for UFP on paths that has an integrality gap of O(log2 n); previously there was no relaxation with o(n) gap. We also consider UFP in general graphs and CPIPs without the no-bottleneck assumption and obtain new and useful results.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visweswara Sathanur, Arun; Choudhury, Sutanay; Joslyn, Cliff A.

    Property graphs can be used to represent heterogeneous networks with attributed vertices and edges. Given one property graph, simulating another graph with same or greater size with identical statistical properties with respect to the attributes and connectivity is critical for privacy preservation and benchmarking purposes. In this work we tackle the problem of capturing the statistical dependence of the edge connectivity on the vertex labels and using the same distribution to regenerate property graphs of the same or expanded size in a scalable manner. However, accurate simulation becomes a challenge when the attributes do not completely explain the network structure.more » We propose the Property Graph Model (PGM) approach that uses an attribute (or label) augmentation strategy to mitigate the problem and preserve the graph connectivity as measured via degree distribution, vertex label distributions and edge connectivity. Our proposed algorithm is scalable with a linear complexity in the number of edges in the target graph. We illustrate the efficacy of the PGM approach in regenerating and expanding the datasets by leveraging two distinct illustrations.« less

  10. Edge compression techniques for visualization of dense directed graphs.

    PubMed

    Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher

    2013-12-01

    We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.

  11. A local search for a graph clustering problem

    NASA Astrophysics Data System (ADS)

    Navrotskaya, Anna; Il'ev, Victor

    2016-10-01

    In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.

  12. Network meta-analysis, electrical networks and graph theory.

    PubMed

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Constructing compact and effective graphs for recommender systems via node and edge aggregations

    DOE PAGES

    Lee, Sangkeun; Kahng, Minsuk; Lee, Sang-goo

    2014-12-10

    Exploiting graphs for recommender systems has great potential to flexibly incorporate heterogeneous information for producing better recommendation results. As our baseline approach, we first introduce a naive graph-based recommendation method, which operates with a heterogeneous log-metadata graph constructed from user log and content metadata databases. Although the na ve graph-based recommendation method is simple, it allows us to take advantages of heterogeneous information and shows promising flexibility and recommendation accuracy. However, it often leads to extensive processing time due to the sheer size of the graphs constructed from entire user log and content metadata databases. In this paper, we proposemore » node and edge aggregation approaches to constructing compact and e ective graphs called Factor-Item bipartite graphs by aggregating nodes and edges of a log-metadata graph. Furthermore, experimental results using real world datasets indicate that our approach can significantly reduce the size of graphs exploited for recommender systems without sacrificing the recommendation quality.« less

  14. A Visual Analytics Paradigm Enabling Trillion-Edge Graph Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak C.; Haglin, David J.; Gillen, David S.

    We present a visual analytics paradigm and a system prototype for exploring web-scale graphs. A web-scale graph is described as a graph with ~one trillion edges and ~50 billion vertices. While there is an aggressive R&D effort in processing and exploring web-scale graphs among internet vendors such as Facebook and Google, visualizing a graph of that scale still remains an underexplored R&D area. The paper describes a nontraditional peek-and-filter strategy that facilitates the exploration of a graph database of unprecedented size for visualization and analytics. We demonstrate that our system prototype can 1) preprocess a graph with ~25 billion edgesmore » in less than two hours and 2) support database query and visualization on the processed graph database afterward. Based on our computational performance results, we argue that we most likely will achieve the one trillion edge mark (a computational performance improvement of 40 times) for graph visual analytics in the near future.« less

  15. Method and tool for network vulnerability analysis

    DOEpatents

    Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM

    2006-03-14

    A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."

  16. Super (a,d)-H-antimagic covering of möbius ladder graph

    NASA Astrophysics Data System (ADS)

    Indriyani, Novia; Sri Martini, Titin

    2018-04-01

    Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H 1, H 2, …, Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ :V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\}. The H‑-weights for all subgraphs H‑ isomorphic to H ω ({H}^{\\prime })={\\sum }v\\in V({H^{\\prime })}ξ (v)+{\\sum }e\\in E({H^{\\prime })}ξ (e). The weights of subgraphs constitutes an arithmatic progression {a, a + d, …, a + (t ‑ 1)d} where a and d are positive integers and t is the number of subgraphs G isomorphic to H. If ξ (V(G))=\\{1,2,\\ldots,|V(G)|\\} then ξ is called super (a, d)-H-antimagic covering. The research provides super (a, d)-H-antimagic covering with d = {1, 3} of Möbius ladder graph Mn for n > 5 and n is odd.

  17. An algorithm for finding a similar subgraph of all Hamiltonian cycles

    NASA Astrophysics Data System (ADS)

    Wafdan, R.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.

  18. Dynamic graph cuts for efficient inference in Markov Random Fields.

    PubMed

    Kohli, Pushmeet; Torr, Philip H S

    2007-12-01

    Abstract-In this paper we present a fast new fully dynamic algorithm for the st-mincut/max-flow problem. We show how this algorithm can be used to efficiently compute MAP solutions for certain dynamically changing MRF models in computer vision such as image segmentation. Specifically, given the solution of the max-flow problem on a graph, the dynamic algorithm efficiently computes the maximum flow in a modified version of the graph. The time taken by it is roughly proportional to the total amount of change in the edge weights of the graph. Our experiments show that, when the number of changes in the graph is small, the dynamic algorithm is significantly faster than the best known static graph cut algorithm. We test the performance of our algorithm on one particular problem: the object-background segmentation problem for video. It should be noted that the application of our algorithm is not limited to the above problem, the algorithm is generic and can be used to yield similar improvements in many other cases that involve dynamic change.

  19. Edge length dynamics on graphs with applications to p-adic AdS/CFT

    DOE PAGES

    Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian; ...

    2017-06-30

    We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less

  20. Edge length dynamics on graphs with applications to p-adic AdS/CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian

    We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less

  1. Network community-detection enhancement by proper weighting

    NASA Astrophysics Data System (ADS)

    Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin

    2011-04-01

    In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.

  2. Memory and other properties of multiple test procedures generated by entangled graphs.

    PubMed

    Maurer, Willi; Bretz, Frank

    2013-05-10

    Methods for addressing multiplicity in clinical trials have attracted much attention during the past 20 years. They include the investigation of new classes of multiple test procedures, such as fixed sequence, fallback and gatekeeping procedures. More recently, sequentially rejective graphical test procedures have been introduced to construct and visualize complex multiple test strategies. These methods propagate the local significance level of a rejected null hypothesis to not-yet rejected hypotheses. In the graph defining the test procedure, hypotheses together with their local significance levels are represented by weighted vertices and the propagation rule by weighted directed edges. An algorithm provides the rules for updating the local significance levels and the transition weights after rejecting an individual hypothesis. These graphical procedures have no memory in the sense that the origin of the propagated significance level is ignored in subsequent iterations. However, in some clinical trial applications, memory is desirable to reflect the underlying dependence structure of the study objectives. In such cases, it would allow the further propagation of significance levels to be dependent on their origin and thus reflect the grouped parent-descendant structures of the hypotheses. We will give examples of such situations and show how to induce memory and other properties by convex combination of several individual graphs. The resulting entangled graphs provide an intuitive way to represent the underlying relative importance relationships between the hypotheses, are as easy to perform as the original individual graphs, remain sequentially rejective and control the familywise error rate in the strong sense. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Exploring and Making Sense of Large Graphs

    DTIC Science & Technology

    2015-08-01

    and bold) are n × n ; vectors (lower-case bold) are n × 1 column vectors, and scalars (in lower-case plain font) typically correspond to strength of...graph is often denoted as |V| or n . Edges or Links: A finite set E of lines between objects in a graph. The edges represent relationships between the...Adjacency matrix of a simple, unweighted and undirected graph. Adjacency matrix: The adjacency matrix of a graph G is an n × n matrix A, whose element aij

  4. Searches over graphs representing geospatial-temporal remote sensing data

    DOEpatents

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  5. Distance Domination Number of Graphs Resulting from Edge Comb Product

    NASA Astrophysics Data System (ADS)

    Slamin; Dafik; Angger Waspodo, Gembong

    2018-05-01

    Let G be a simple, finite and connected graph with a vertex-set V (G) and an edge-set E(G). For an integer 1 ≤ k ≤ diam (G), a distance k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of V (G)\\S is at distance at most k from some vertex of S. The k-domination number of G, denoted by γk (G), is the minimum cardinality of a k-dominating set of G. In this paper, we determine the exact value of k-domination number of graphs resulting from an edge comb product of two graphs G 1 and G 2, where G 1 is a wheel, a friendship graph, or a triangular book and G 2 is a cycle.

  6. Distance Magic-Type and Distance Antimagic-Type Labelings of Graphs

    NASA Astrophysics Data System (ADS)

    Freyberg, Bryan J.

    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection l from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G = ( V,E) of order n is a bijection l from V to the set {1,2,...,n} with induced weight function [special characters omitted]. such that l(xi) = i and the sequence of weights w(x 1),w(x2),...,w (xn) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d ) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i + 1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n.. In Chapter 2 we provide general constructions for every d for large classes of both n and k, providing breadfth and depth to the catalog of known H(n,k,d)'s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G = (V,E) of order n there exists an orientation of the edges of G and a companion bijection from V to Gamma with the property that there is an element mu of Gamma (called the magic constant) such that [special characters omitted] where w(x) is the weight of vertex x, we say that G is orientable Gamma -distance magic. In addition to introducing the concept, we provide numerous results on orientable Zn-distance magic graphs, where Zn is the cyclic group of order n.. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work.

  7. Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    PubMed Central

    Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine

    2011-01-01

    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123

  8. Biomine: predicting links between biological entities using network models of heterogeneous databases.

    PubMed

    Eronen, Lauri; Toivonen, Hannu

    2012-06-06

    Biological databases contain large amounts of data concerning the functions and associations of genes and proteins. Integration of data from several such databases into a single repository can aid the discovery of previously unknown connections spanning multiple types of relationships and databases. Biomine is a system that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. We present Biomine and evaluate its performance in link prediction, where the goal is to predict pairs of nodes that will be connected in the future, based on current data. In particular, we formulate protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph. We consider and experiment with several such measures, and perform a parameter optimization procedure where different edge types are weighted to optimize link prediction accuracy. We also propose a novel method for disease-gene prioritization, defined as finding a subset of candidate genes that cluster together in the graph. We experimentally evaluate Biomine by predicting future annotations in the source databases and prioritizing lists of putative disease genes. The experimental results show that Biomine has strong potential for predicting links when a set of selected candidate links is available. The predictions obtained using the entire Biomine dataset are shown to clearly outperform ones obtained using any single source of data alone, when different types of links are suitably weighted. In the gene prioritization task, an established reference set of disease-associated genes is useful, but the results show that under favorable conditions, Biomine can also perform well when no such information is available.The Biomine system is a proof of concept. Its current version contains 1.1 million entities and 8.1 million relations between them, with focus on human genetics. Some of its functionalities are available in a public query interface at http://biomine.cs.helsinki.fi, allowing searching for and visualizing connections between given biological entities.

  9. A method for independent component graph analysis of resting-state fMRI.

    PubMed

    Ribeiro de Paula, Demetrius; Ziegler, Erik; Abeyasinghe, Pubuditha M; Das, Tushar K; Cavaliere, Carlo; Aiello, Marco; Heine, Lizette; di Perri, Carol; Demertzi, Athena; Noirhomme, Quentin; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Stender, Johan; Gomez, Francisco; Tshibanda, Jean-Flory L; Laureys, Steven; Owen, Adrian M; Soddu, Andrea

    2017-03-01

    Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network "neuronal" properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength.

  10. The Time Window Vehicle Routing Problem Considering Closed Route

    NASA Astrophysics Data System (ADS)

    Irsa Syahputri, Nenna; Mawengkang, Herman

    2017-12-01

    The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model

  11. Preserving Differential Privacy in Degree-Correlation based Graph Generation

    PubMed Central

    Wang, Yue; Wu, Xintao

    2014-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987

  12. Localization in random bipartite graphs: Numerical and empirical study

    NASA Astrophysics Data System (ADS)

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  13. Localization in random bipartite graphs: Numerical and empirical study.

    PubMed

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  14. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.

    PubMed

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A

    2016-08-25

    There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.

  15. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purvine, Emilie AH; Monson, Kyle E.; Jurrus, Elizabeth R.

    There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of maximum flow-minimum cut graph analysis. The interaction energy graph, a graph in which verticesmore » (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.« less

  16. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory

    PubMed Central

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.

    2016-01-01

    There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174

  17. An Adiabatic Quantum Algorithm for Determining Gracefulness of a Graph

    NASA Astrophysics Data System (ADS)

    Hosseini, Sayed Mohammad; Davoudi Darareh, Mahdi; Janbaz, Shahrooz; Zaghian, Ali

    2017-07-01

    Graph labelling is one of the noticed contexts in combinatorics and graph theory. Graceful labelling for a graph G with e edges, is to label the vertices of G with 0, 1, ℒ, e such that, if we specify to each edge the difference value between its two ends, then any of 1, 2, ℒ, e appears exactly once as an edge label. For a given graph, there are still few efficient classical algorithms that determine either it is graceful or not, even for trees - as a well-known class of graphs. In this paper, we introduce an adiabatic quantum algorithm, which for a graceful graph G finds a graceful labelling. Also, this algorithm can determine if G is not graceful. Numerical simulations of the algorithm reveal that its time complexity has a polynomial behaviour with the problem size up to the range of 15 qubits. A general sufficient condition for a combinatorial optimization problem to have a satisfying adiabatic solution is also derived.

  18. Ising Critical Behavior of Inhomogeneous Curie-Weiss Models and Annealed Random Graphs

    NASA Astrophysics Data System (ADS)

    Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa

    2016-11-01

    We study the critical behavior for inhomogeneous versions of the Curie-Weiss model, where the coupling constant {J_{ij}(β)} for the edge {ij} on the complete graph is given by {J_{ij}(β)=β w_iw_j/( {sum_{kin[N]}w_k})}. We call the product form of these couplings the rank-1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature {β} replaced by {sinh(β)} ] from the annealed Ising model on the generalized random graph. We assume that the vertex weights {(w_i)_{iin[N]}} are regular, in the sense that their empirical distribution converges and the second moment converges as well. We identify the critical temperatures and exponents for these models, as well as a non-classical limit theorem for the total spin at the critical point. These depend sensitively on the number of finite moments of the weight distribution. When the fourth moment of the weight distribution converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss model, so that the inhomogeneity is weak. When the fourth moment of the weights converges to infinity, and the weights satisfy an asymptotic power law with exponent {τ} with {τin(3,5)}, then the critical exponents depend sensitively on {τ}. In addition, at criticality, the total spin {S_N} satisfies that {S_N/N^{(τ-2)/(τ-1)}} converges in law to some limiting random variable whose distribution we explicitly characterize.

  19. Representation of activity in images using geospatial temporal graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  20. Spectral identification of topological domains

    PubMed Central

    Chen, Jie; Hero, Alfred O.; Rajapakse, Indika

    2016-01-01

    Motivation: Topological domains have been proposed as the backbone of interphase chromosome structure. They are regions of high local contact frequency separated by sharp boundaries. Genes within a domain often have correlated transcription. In this paper, we present a computational efficient spectral algorithm to identify topological domains from chromosome conformation data (Hi-C data). We consider the genome as a weighted graph with vertices defined by loci on a chromosome and the edge weights given by interaction frequency between two loci. Laplacian-based graph segmentation is then applied iteratively to obtain the domains at the given compactness level. Comparison with algorithms in the literature shows the advantage of the proposed strategy. Results: An efficient algorithm is presented to identify topological domains from the Hi-C matrix. Availability and Implementation: The Matlab source code and illustrative examples are available at http://bionetworks.ccmb.med.umich.edu/ Contact: indikar@med.umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153657

  1. Parallel Algorithms for Switching Edges in Heterogeneous Graphs.

    PubMed

    Bhuiyan, Hasanuzzaman; Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-06-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors.

  2. Loops in hierarchical channel networks

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Magnasco, Marcelo

    2012-02-01

    Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.

  3. Local Neighbourhoods for First-Passage Percolation on the Configuration Model

    NASA Astrophysics Data System (ADS)

    Dereich, Steffen; Ortgiese, Marcel

    2018-04-01

    We consider first-passage percolation on the configuration model. Once the network has been generated each edge is assigned an i.i.d. weight modeling the passage time of a message along this edge. Then independently two vertices are chosen uniformly at random, a sender and a recipient, and all edges along the geodesic connecting the two vertices are coloured in red (in the case that both vertices are in the same component). In this article we prove local limit theorems for the coloured graph around the recipient in the spirit of Benjamini and Schramm. We consider the explosive regime, in which case the random distances are of finite order, and the Malthusian regime, in which case the random distances are of logarithmic order.

  4. Computing Strongly Connected Components in the Streaming Model

    NASA Astrophysics Data System (ADS)

    Laura, Luigi; Santaroni, Federico

    In this paper we present the first algorithm to compute the Strongly Connected Components of a graph in the datastream model (W-Stream), where the graph is represented by a stream of edges and we are allowed to produce intermediate output streams. The algorithm is simple, effective, and can be implemented with few lines of code: it looks at each edge in the stream, and selects the appropriate action with respect to a tree T, representing the graph connectivity seen so far. We analyze the theoretical properties of the algorithm: correctness, memory occupation (O(n logn)), per item processing time (bounded by the current height of T), and number of passes (bounded by the maximal height of T). We conclude by presenting a brief experimental evaluation of the algorithm against massive synthetic and real graphs that confirms its effectiveness: with graphs with up to 100M nodes and 4G edges, only few passes are needed, and millions of edges per second are processed.

  5. Super local edge antimagic total coloring of {P}_{n}\\vartriangleright H

    NASA Astrophysics Data System (ADS)

    Yuli Kurniawati, Elsa; Hesti Agustin, Ika; Dafik; Alfarisi, Ridho

    2018-04-01

    In this paper, we consider that all graphs are finite, simple and connected. Let G(V, E) be a graph of vertex set V and edge set E. A bijection f:V(G)\\to \\{1,2,3,\\ldots,|V(G)|\\} is called a local edge antimagic labeling if for any two adjacent edges e 1 and e 2, w({e}1)\

  6. On P2 ⋄ Pn -supermagic labeling of edge corona product of cycle and path graph

    NASA Astrophysics Data System (ADS)

    Yulianto, R.; Martini, Titin S.

    2018-04-01

    A simple graph G = (V, E) admits a H-covering, where H is subgraph of G, if every edge in E belongs to a subgraph of G isomorphic to H. Graph G is H-magic if there is a total labeling f:V(G)\\cup E(G)\\to 1,2,\\ldots,|V(G)|+|E(G)|, such that each subgraph {H}{\\prime }=({V}{\\prime },{E}{\\prime }) of G isomorphic to H and satisfying f{({H}{\\prime })}=def{\\sum }\\upsilon \\in {V{\\prime }}f(\\upsilon )+{\\sum }e\\in {E{\\prime }}f(e)=m(f) where m(f) is a constant magic sum. Additionaly, G admits H-supermagic if f(V)=1,2,\\ldots,|V|. The edge corona {C}n \\diamond {P}n of Cn and Pn is defined as the graph obtained by taking one copy of Cn and n copies of Pn , and then joining two end-vertices of the i-th edge of Cn to every vertex in the i-th copy of Pn . This research aim is to find H-supermagic covering on an edge corona product of cycle and path graph {C}n \\diamond {P}n where H is {P}2 \\diamond {P}n. We use k-balanced multiset to solve our reserarch. Here, we find that an edge corona product of cycle and path graph {C}n \\diamond {P}n is {P}2 \\diamond {P}n supermagic for n > 3.

  7. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    PubMed

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  8. Edge connectivity and the spectral gap of combinatorial and quantum graphs

    NASA Astrophysics Data System (ADS)

    Berkolaiko, Gregory; Kennedy, James B.; Kurasov, Pavel; Mugnolo, Delio

    2017-09-01

    We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Lévy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are ‘asymptotically correct’, i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.

  9. Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.

    PubMed

    Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T

    2013-01-01

    Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.

  10. Overview and extensions of a system for routing directed graphs on SIMD architectures

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl

    1988-01-01

    Many problems can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from adjacent vertices. A method is given for parallelizing such problems on an SIMD machine model that uses only nearest neighbor connections for communication, and has no facility for local indirect addressing. Each vertex of the graph will be assigned to a processor in the machine. Rules for a labeling are introduced that support the use of a simple algorithm for movement of data along the edges of the graph. Additional algorithms are defined for addition and deletion of edges. Modifying or adding a new edge takes the same time as parallel traversal. This combination of architecture and algorithms defines a system that is relatively simple to build and can do fast graph processing. All edges can be traversed in parallel in time O(T), where T is empirically proportional to the average path length in the embedding times the average degree of the graph. Additionally, researchers present an extension to the above method which allows for enhanced performance by allowing some broadcasting capabilities.

  11. Graph-based real-time fault diagnostics

    NASA Technical Reports Server (NTRS)

    Padalkar, S.; Karsai, G.; Sztipanovits, J.

    1988-01-01

    A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.

  12. Evolution of cooperation in a finite homogeneous graph.

    PubMed

    Taylor, Peter D; Day, Troy; Wild, Geoff

    2007-05-24

    Recent theoretical studies of selection in finite structured populations have worked with one of two measures of selective advantage of an allele: fixation probability and inclusive fitness. Each approach has its own analytical strengths, but given certain assumptions they provide equivalent results. In most instances the structure of the population can be specified by a network of nodes connected by edges (that is, a graph), and much of the work here has focused on a continuous-time model of evolution, first described by ref. 11. Working in this context, we provide an inclusive fitness analysis to derive a surprisingly simple analytical condition for the selective advantage of a cooperative allele in any graph for which the structure satisfies a general symmetry condition ('bi-transitivity'). Our results hold for a broad class of population structures, including most of those analysed previously, as well as some for which a direct calculation of fixation probability has appeared intractable. Notably, under some forms of population regulation, the ability of a cooperative allele to invade is seen to be independent of the nature of population structure (and in particular of how game partnerships are specified) and is identical to that for an unstructured population. For other types of population regulation our results reveal that cooperation can invade if players choose partners along relatively 'high-weight' edges.

  13. Network reconstruction via graph blending

    NASA Astrophysics Data System (ADS)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  14. INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P

    2012-10-01

    It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms wemore » have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.« less

  15. Brain Network Analysis: Separating Cost from Topology Using Cost-Integration

    PubMed Central

    Ginestet, Cedric E.; Nichols, Thomas E.; Bullmore, Ed T.; Simmons, Andrew

    2011-01-01

    A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i) differences in weighted costs and (ii) differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration. PMID:21829437

  16. Spectral analysis and slow spreading dynamics on complex networks.

    PubMed

    Odor, Géza

    2013-09-01

    The susceptible-infected-susceptible (SIS) model is one of the simplest memoryless systems for describing information or epidemic spreading phenomena with competing creation and spontaneous annihilation reactions. The effect of quenched disorder on the dynamical behavior has recently been compared to quenched mean-field (QMF) approximations in scale-free networks. QMF can take into account topological heterogeneity and clustering effects of the activity in the steady state by spectral decomposition analysis of the adjacency matrix. Therefore, it can provide predictions on possible rare-region effects, thus on the occurrence of slow dynamics. I compare QMF results of SIS with simulations on various large dimensional graphs. In particular, I show that for Erdős-Rényi graphs this method predicts correctly the occurrence of rare-region effects. It also provides a good estimate for the epidemic threshold in case of percolating graphs. Griffiths Phases emerge if the graph is fragmented or if we apply a strong, exponentially suppressing weighting scheme on the edges. The latter model describes the connection time distributions in the face-to-face experiments. In case of a generalized Barabási-Albert type of network with aging connections, strong rare-region effects and numerical evidence for Griffiths Phase dynamics are shown. The dynamical simulation results agree well with the predictions of the spectral analysis applied for the weighted adjacency matrices.

  17. Topic Model for Graph Mining.

    PubMed

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  18. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-05-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  19. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-06-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  20. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

    PubMed Central

    Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

    2009-01-01

    Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

  1. High-performance analysis of filtered semantic graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluc, Aydin; Fox, Armando; Gilbert, John R.

    2012-01-01

    High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less

  2. Encoding phylogenetic trees in terms of weighted quartets.

    PubMed

    Grünewald, Stefan; Huber, Katharina T; Moulton, Vincent; Semple, Charles

    2008-04-01

    One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.

  3. A topo-graph model for indistinct target boundary definition from anatomical images.

    PubMed

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael

    2018-06-01

    It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Chinese Mainland Movie Network

    NASA Astrophysics Data System (ADS)

    Liu, Ai-Fen; Xue, Yu-Hua; He, Da-Ren

    2008-03-01

    We propose describing a large kind of cooperation-competition networks by bipartite graphs and their unipartite projections. In the graphs the topological structure describe the cooperation-competition configuration of the basic elements, and the vertex weight describe their different roles in cooperation or results of competition. This complex network description may be helpful for finding and understanding common properties of cooperation-competition systems. In order to show an example, we performed an empirical investigation on the movie cooperation-competition network within recent 80 years in the Chinese mainland. In the net the movies are defined as nodes, and two nodes are connected by a link if a common main movie actor performs in them. The edge represents the competition relationship between two movies for more audience among a special audience colony. We obtained the statistical properties, such as the degree distribution, act degree distribution, act size distribution, and distribution of the total node weight, and explored the influence factors of Chinese mainland movie competition intensity.

  5. On the location of spectral edges in \\ {Z}-periodic media

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Kuchment, Peter; Winn, Brian

    2010-11-01

    Periodic second-order ordinary differential operators on \\ {R} are known to have the edges of their spectra to occur only at the spectra of periodic and anti-periodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice \\ {Z}), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. This paper is dedicated to the memory of P Duclos.

  6. The first eigenvalue of the p-Laplacian on quantum graphs

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Leandro M.; Rossi, Julio D.

    2016-12-01

    We study the first eigenvalue of the p-Laplacian (with 1

  7. What can we learn from the network approach in finance?

    NASA Astrophysics Data System (ADS)

    Janos, Kertesz

    2005-03-01

    Correlations between variations of stock prices reveal information about relationships between companies. Different methods of analysis have been applied to such data in order to uncover the taxonomy of the market. We use Mantegna's miminum spanning tree (MST) method for daily data in a dynamic way: By introducing a moving window we study the temporal changes in the structure of the network defined by this ``asset tree.'' The MST is scale free with a significantly changing exponent of the degree distribution for crash periods, which demonstrates the restructuring of the network due to the enhancement of correlations. This approach is compared to that based on what we call ``asset graphs:'' We start from an empty graph with no edges where the vertices correspond to stocks and then, one by one, we insert edges between the vertices according to the rank of their correlation strength. We study the properties of the creatred (weighted) networks, such as topologically different growth types, number and size of clusters and clustering coefficient. Furthermore, we define new tools like subgraph intensity and coherence to describe the role of the weights. We also investigate the time shifted cross correlation functions for high frequency data and find a characteristic time delay in many cases representing that some stocks lead the price changes while others follow them. These data can be used to construct a directed network of influence.

  8. A graph signal filtering-based approach for detection of different edge types on airborne lidar data

    NASA Astrophysics Data System (ADS)

    Bayram, Eda; Vural, Elif; Alatan, Aydin

    2017-10-01

    Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.

  9. Co-clustering directed graphs to discover asymmetries and directional communities

    PubMed Central

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-01-01

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim. To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction. PMID:27791058

  10. Co-clustering directed graphs to discover asymmetries and directional communities.

    PubMed

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-10-21

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

  11. Solving Graph Laplacian Systems Through Recursive Bisections and Two-Grid Preconditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, Colin; Vassilevski, Panayot S.

    2016-02-18

    We present a parallelizable direct method for computing the solution to graph Laplacian-based linear systems derived from graphs that can be hierarchically bipartitioned with small edge cuts. For a graph of size n with constant-size edge cuts, our method decomposes a graph Laplacian in time O(n log n), and then uses that decomposition to perform a linear solve in time O(n log n). We then use the developed technique to design a preconditioner for graph Laplacians that do not have this property. Finally, we augment this preconditioner with a two-grid method that accounts for much of the preconditioner's weaknesses. Wemore » present an analysis of this method, as well as a general theorem for the condition number of a general class of two-grid support graph-based preconditioners. Numerical experiments illustrate the performance of the studied methods.« less

  12. Edge grouping combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2007-10-01

    This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.

  13. Eigenvalue asymptotics for the damped wave equation on metric graphs

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Lipovský, Jiří

    2017-09-01

    We consider the linear damped wave equation on finite metric graphs and analyse its spectral properties with an emphasis on the asymptotic behaviour of eigenvalues. In the case of equilateral graphs and standard coupling conditions we show that there is only a finite number of high-frequency abscissas, whose location is solely determined by the averages of the damping terms on each edge. We further describe some of the possible behaviour when the edge lengths are no longer necessarily equal but remain commensurate.

  14. Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion

    NASA Astrophysics Data System (ADS)

    Jiang, San; Jiang, Wanshou

    2017-10-01

    The primary contribution of this paper is an efficient Structure from Motion (SfM) solution for oblique unmanned aerial vehicle (UAV) images. First, an algorithm, considering spatial relationship constraints between image footprints, is designed for match pair selection with the assistance of UAV flight control data and oblique camera mounting angles. Second, a topological connection network (TCN), represented by an undirected weighted graph, is constructed from initial match pairs, which encodes the overlap areas and intersection angles into edge weights. Then, an algorithm, termed MST-Expansion, is proposed to extract the match graph from the TCN, where the TCN is first simplified by a maximum spanning tree (MST). By further analysis of the local structure in the MST, expansion operations are performed on the vertices of the MST for match graph enhancement, which is achieved by introducing critical connections in the expansion directions. Finally, guided by the match graph, an efficient SfM is proposed. Under extensive analysis and comparison, its performance is verified by using three oblique UAV datasets captured with different multi-camera systems. Experimental results demonstrate that the efficiency of image matching is improved, with speedup ratios ranging from 19 to 35, and competitive orientation accuracy is achieved from both relative bundle adjustment (BA) without GCPs (Ground Control Points) and absolute BA with GCPs. At the same time, images in the three datasets are successfully oriented. For the orientation of oblique UAV images, the proposed method can be a more efficient solution.

  15. Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.

    PubMed

    Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu

    2017-01-01

    The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.

  16. Real-time endovascular guidewire position simulation using shortest path algorithms.

    PubMed

    Schafer, Sebastian; Singh, Vikas; Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Hoffmann, Kenneth R

    2009-11-01

    Treatment of vascular disease often involves endovascular interventions which use the vascular system for delivering treatment devices via a previously inserted guidewire to the diseased site. Previous studies show relative reproducibility of guidewire position after insertion, indicating that the guidewire position is constrained and could be represented by an energy minimization approach. Such representation would support the surgeon's decision process in guidewire selection. In this paper, we determine the guidewire position using a k-level graph based on 3D vessel information. Guidewire properties are incorporated into the graph as edge weights given by the local bending energy related to the local bending angle. The optimal path through this weighted directed graph is determined using a shortest path algorithm. Volumetric data of two different internal carotid artery phantoms (Ø 3.5-4.6 mm) was acquired. Two guidewires (Ø 0.33 mm) of different material properties (stainless steel, plastic-coated steel core) were inserted into the phantoms. The average RMS distance between actual and simulated guidewire positions varies from 0.9 mm (plastic coated) to 1.3 mm (stainless steel); the computation time to determine the position was <2s. The results indicate that the proposed technique yields reproducible and accurate guidewire positions within a short, clinically relevant time frame. These calculated positions may be useful in facilitating neurovascular interventions.

  17. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks.

    PubMed

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-12-15

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady.

  18. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks

    PubMed Central

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-01-01

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady. PMID:26694394

  19. Using Betweenness Centrality to Identify Manifold Shortcuts

    PubMed Central

    Cukierski, William J.; Foran, David J.

    2010-01-01

    High-dimensional data presents a challenge to tasks of pattern recognition and machine learning. Dimensionality reduction (DR) methods remove the unwanted variance and make these tasks tractable. Several nonlinear DR methods, such as the well known ISOMAP algorithm, rely on a neighborhood graph to compute geodesic distances between data points. These graphs can contain unwanted edges which connect disparate regions of one or more manifolds. This topological sensitivity is well known [1], [2], [3], yet handling high-dimensional, noisy data in the absence of a priori manifold knowledge, remains an open and difficult problem. This work introduces a divisive, edge-removal method based on graph betweenness centrality which can robustly identify manifold-shorting edges. The problem of graph construction in high dimension is discussed and the proposed algorithm is fit into the ISOMAP workflow. ROC analysis is performed and the performance is tested on synthetic and real datasets. PMID:20607142

  20. Z3 -vertex magic total labeling and Z3 -edge magic total labelingfor the extended duplicate graph of quadrilateral snake

    NASA Astrophysics Data System (ADS)

    Indira, P.; Selvam, B.; Thirusangu, K.

    2018-04-01

    Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.

  1. Approximation algorithms for the min-power symmetric connectivity problem

    NASA Astrophysics Data System (ADS)

    Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad

    2016-10-01

    We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.

  2. Parallel Algorithms for Switching Edges in Heterogeneous Graphs☆

    PubMed Central

    Khan, Maleq; Chen, Jiangzhuo; Marathe, Madhav

    2017-01-01

    An edge switch is an operation on a graph (or network) where two edges are selected randomly and one of their end vertices are swapped with each other. Edge switch operations have important applications in graph theory and network analysis, such as in generating random networks with a given degree sequence, modeling and analyzing dynamic networks, and in studying various dynamic phenomena over a network. The recent growth of real-world networks motivates the need for efficient parallel algorithms. The dependencies among successive edge switch operations and the requirement to keep the graph simple (i.e., no self-loops or parallel edges) as the edges are switched lead to significant challenges in designing a parallel algorithm. Addressing these challenges requires complex synchronization and communication among the processors leading to difficulties in achieving a good speedup by parallelization. In this paper, we present distributed memory parallel algorithms for switching edges in massive networks. These algorithms provide good speedup and scale well to a large number of processors. A harmonic mean speedup of 73.25 is achieved on eight different networks with 1024 processors. One of the steps in our edge switch algorithms requires the computation of multinomial random variables in parallel. This paper presents the first non-trivial parallel algorithm for the problem, achieving a speedup of 925 using 1024 processors. PMID:28757680

  3. Genus Ranges of 4-Regular Rigid Vertex Graphs

    PubMed Central

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2016-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2n vertices (n > 1), we prove that all intervals [a, b] for all a < b ≤ n, and singletons [h, h] for some h ≤ n, are realized as genus ranges. For graphs with 2n − 1 vertices (n ≥ 1), we prove that all intervals [a, b] for all a < b ≤ n except [0, n], and [h, h] for some h ≤ n, are realized as genus ranges. We also provide constructions of graphs that realize these ranges. PMID:27807395

  4. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  5. SpectralNET--an application for spectral graph analysis and visualization.

    PubMed

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-10-19

    Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.

  6. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in jobmore » queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.« less

  7. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.

    PubMed

    Kerepesi, Csaba; Varga, Bálint; Szalkai, Balázs; Grolmusz, Vince

    2018-04-23

    In the applications of the graph theory, it is unusual that one considers numerous, pairwise different graphs on the very same set of vertices. In the case of human braingraphs or connectomes, however, this is the standard situation: the nodes correspond to anatomically identified cerebral regions, and two vertices are connected by an edge if a diffusion MRI-based workflow identifies a fiber of axons, running between the two regions, corresponding to the two vertices. Therefore, if we examine the braingraphs of n subjects, then we have n graphs on the very same, anatomically identified vertex set. It is a natural idea to describe the k-frequently appearing edges in these graphs: the edges that are present between the same two vertices in at least k out of the n graphs. Based on the NIH-funded large Human Connectome Project's public data release, we have reported the construction of the Budapest Reference Connectome Server http://www.connectome.pitgroup.org that generates and visualizes these k-frequently appearing edges. We call the graphs of the k-frequently appearing edges "k-consensus connectomes" since an edge could be included only if it is present in at least k graphs out of n. Considering the whole human brain, we have reported a surprising property of these consensus connectomes earlier. In the present work we are focusing on the frontal lobe of the brain, and we report here a similarly surprising dynamical property of the consensus connectomes when k is gradually changed from k = n to k = 1: the connections between the nodes of the frontal lobe are seemingly emanating from those nodes that were connected to sub-cortical structures of the dorsal striatum: the caudate nucleus, and the putamen. We hypothesize that this dynamic behavior copies the axonal fiber development of the frontal lobe. An animation of the phenomenon is presented at https://youtu.be/wBciB2eW6_8. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. BiCluE - Exact and heuristic algorithms for weighted bi-cluster editing of biomedical data

    PubMed Central

    2013-01-01

    Background The explosion of biological data has dramatically reformed today's biology research. The biggest challenge to biologists and bioinformaticians is the integration and analysis of large quantity of data to provide meaningful insights. One major problem is the combined analysis of data from different types. Bi-cluster editing, as a special case of clustering, which partitions two different types of data simultaneously, might be used for several biomedical scenarios. However, the underlying algorithmic problem is NP-hard. Results Here we contribute with BiCluE, a software package designed to solve the weighted bi-cluster editing problem. It implements (1) an exact algorithm based on fixed-parameter tractability and (2) a polynomial-time greedy heuristics based on solving the hardest part, edge deletions, first. We evaluated its performance on artificial graphs. Afterwards we exemplarily applied our implementation on real world biomedical data, GWAS data in this case. BiCluE generally works on any kind of data types that can be modeled as (weighted or unweighted) bipartite graphs. Conclusions To our knowledge, this is the first software package solving the weighted bi-cluster editing problem. BiCluE as well as the supplementary results are available online at http://biclue.mpi-inf.mpg.de. PMID:24565035

  9. Graph Drawing Aesthetics-Created by Users, Not Algorithms.

    PubMed

    Purchase, H C; Pilcher, C; Plimmer, B

    2012-01-01

    Prior empirical work on layout aesthetics for graph drawing algorithms has concentrated on the interpretation of existing graph drawings. We report on experiments which focus on the creation and layout of graph drawings: participants were asked to draw graphs based on adjacency lists, and to lay them out "nicely." Two interaction methods were used for creating the drawings: a sketch interface which allows for easy, natural hand movements, and a formal point-and-click interface similar to a typical graph editing system. We find, in common with many other studies, that removing edge crossings is the most significant aesthetic, but also discover that aligning nodes and edges to an underlying grid is important. We observe that the aesthetics favored by participants during creation of a graph drawing are often not evident in the final product and that the participants did not make a clear distinction between the processes of creation and layout. Our results suggest that graph drawing systems should integrate automatic layout with the user's manual editing process, and provide facilities to support grid-based graph creation.

  10. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.

    PubMed

    Nagoor Gani, A; Latha, S R

    2016-01-01

    A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.

  11. Cycle/Cocycle Oblique Projections on Oriented Graphs

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo

    2015-01-01

    It is well known that the edge vector space of an oriented graph can be decomposed in terms of cycles and cocycles (alias cuts, or bonds), and that a basis for the cycle and the cocycle spaces can be generated by adding and removing edges to an arbitrarily chosen spanning tree. In this paper, we show that the edge vector space can also be decomposed in terms of cycles and the generating edges of cocycles (called cochords), or of cocycles and the generating edges of cycles (called chords). From this observation follows a construction in terms of oblique complementary projection operators. We employ this algebraic construction to prove several properties of unweighted Kirchhoff-Symanzik matrices, encoding the mutual superposition between cycles and cocycles. In particular, we prove that dual matrices of planar graphs have the same spectrum (up to multiplicities). We briefly comment on how this construction provides a refined formalization of Kirchhoff's mesh analysis of electrical circuits, which has lately been applied to generic thermodynamic networks.

  12. Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs

    DTIC Science & Technology

    2014-06-01

    comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree

  13. QSPR modeling: graph connectivity indices versus line graph connectivity indices

    PubMed

    Basak; Nikolic; Trinajstic; Amic; Beslo

    2000-07-01

    Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models based on connectivity indices with optimum exponents have better statistical characteristics than the models based on connectivity indices with the standard value of the exponent. The comparison between models based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case (boiling points of nonanes) a better model was obtained with the use of line graphs.

  14. Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation

    DOE PAGES

    Barker, Andrew T.; Lee, Chak S.; Vassilevski, Panayot S.

    2017-10-26

    Here, we consider coarsening procedures for graph Laplacian problems written in a mixed saddle-point form. In that form, in addition to the original (vertex) degrees of freedom (dofs), we also have edge degrees of freedom. We extend previously developed aggregation-based coarsening procedures applied to both sets of dofs to now allow more than one coarse vertex dof per aggregate. Those dofs are selected as certain eigenvectors of local graph Laplacians associated with each aggregate. Additionally, we coarsen the edge dofs by using traces of the discrete gradients of the already constructed coarse vertex dofs. These traces are defined on themore » interface edges that connect any two adjacent aggregates. The overall procedure is a modification of the spectral upscaling procedure developed in for the mixed finite element discretization of diffusion type PDEs which has the important property of maintaining inf-sup stability on coarse levels and having provable approximation properties. We consider applications to partitioning a general graph and to a finite volume discretization interpreted as a graph Laplacian, developing consistent and accurate coarse-scale models of a fine-scale problem.« less

  15. Linear Algebra and Sequential Importance Sampling for Network Reliability

    DTIC Science & Technology

    2011-12-01

    first test case is an Erdős- Renyi graph with 100 vertices and 150 edges. Figure 1 depicts the relative variance of the three Algorithms: Algorithm TOP...e va ria nc e Figure 1: Relative variance of various algorithms on Erdős Renyi graph, 100 vertices 250 edges. Key: Solid = TOP-DOWN algorithm

  16. Hierarchical graphs for rule-based modeling of biochemical systems

    PubMed Central

    2011-01-01

    Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models, such as the BioNetGen language (BNGL). Thus, the proposed use of hierarchical graphs should promote clarity and better understanding of rule-based models. PMID:21288338

  17. Visual graph query formulation and exploration: a new perspective on information retrieval at the edge

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng

    2016-05-01

    Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.

  18. Super (a, d)-Cycle-Antimagic Total Labeling on Triangular Ladder Graph and Generalized Jahangir Graph

    NASA Astrophysics Data System (ADS)

    Roswitha, Mania; Amanda, Anna; Sri Martini, Titin; Winarno, Bowo

    2017-06-01

    Let G(V (G), E(G)) be a finite simple graph with |V (G)| = G and |E(G)| = eG . Let H be a subgraph of G. The graph G is said to be (a, d)-H-antimagic covering if every edge in G belongs to at least one of the subgraphs G isomorphic to H and there is a bijective function ξ : V ∪ E → {1, 2, …,νG + eG } such that all subgraphs H‧ isomorphic to H, the H‧ -weights w(H‧)=∑v∈V(H‧)ξ(v)+∑e∈E(H‧)ξ(e) constitutes an arithmetic progression {a, a + d, a + 2d, …, a + (t - 1)d}, where a and d are positive integers and t is the number of subgraphs G isomorphic to H. Such a labeling is called super if the vertices contain the smallest possible labels. This research provides super (a, d)-C 3-antimagic total labelng on triangular ladder TLn for n ≥ 2 and super (a, d)-C s+2-antimagic total labeling on generalized Jahangir Jk,s for k ≥ 2 and s ≥ 2.

  19. Entropy, complexity, and Markov diagrams for random walk cancer models.

    PubMed

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  20. Pedestrian Pathfinding in Urban Environments: Preliminary Results

    NASA Astrophysics Data System (ADS)

    López-Pazos, G.; Balado, J.; Díaz-Vilariño, L.; Arias, P.; Scaioni, M.

    2017-12-01

    With the rise of urban population, many initiatives are focused upon the smart city concept, in which mobility of citizens arises as one of the main components. Updated and detailed spatial information of outdoor environments is needed to accurate path planning for pedestrians, especially for people with reduced mobility, in which physical barriers should be considered. This work presents a methodology to use point clouds to direct path planning. The starting point is a classified point cloud in which ground elements have been previously classified as roads, sidewalks, crosswalks, curbs and stairs. The remaining points compose the obstacle class. The methodology starts by individualizing ground elements and simplifying them into representative points, which are used as nodes in the graph creation. The region of influence of obstacles is used to refine the graph. Edges of the graph are weighted according to distance between nodes and according to their accessibility for wheelchairs. As a result, we obtain a very accurate graph representing the as-built environment. The methodology has been tested in a couple of real case studies and Dijkstra algorithm was used to pathfinding. The resulting paths represent the optimal according to motor skills and safety.

  1. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  2. Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's.

    PubMed

    Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2015-01-01

    Deep graph-theoretic ideas in the context with the graph of the World Wide Web led to the definition of Google's PageRank and the subsequent rise of the most popular search engine to date. Brain graphs, or connectomes, are being widely explored today. We believe that non-trivial graph theoretic concepts, similarly as it happened in the case of the World Wide Web, will lead to discoveries enlightening the structural and also the functional details of the animal and human brains. When scientists examine large networks of tens or hundreds of millions of vertices, only fast algorithms can be applied because of the size constraints. In the case of diffusion MRI-based structural human brain imaging, the effective vertex number of the connectomes, or brain graphs derived from the data is on the scale of several hundred today. That size facilitates applying strict mathematical graph algorithms even for some hard-to-compute (or NP-hard) quantities like vertex cover or balanced minimum cut. In the present work we have examined brain graphs, computed from the data of the Human Connectome Project, recorded from male and female subjects between ages 22 and 35. Significant differences were found between the male and female structural brain graphs: we show that the average female connectome has more edges, is a better expander graph, has larger minimal bisection width, and has more spanning trees than the average male connectome. Since the average female brain weighs less than the brain of males, these properties show that the female brain has better graph theoretical properties, in a sense, than the brain of males. It is known that the female brain has a smaller gray matter/white matter ratio than males, that is, a larger white matter/gray matter ratio than the brain of males; this observation is in line with our findings concerning the number of edges, since the white matter consists of myelinated axons, which, in turn, roughly correspond to the connections in the brain graph. We have also found that the minimum bisection width, normalized with the edge number, is also significantly larger in the right and the left hemispheres in females: therefore, the differing bisection widths are independent from the difference in the number of edges.

  3. Graph Theoretical Analysis Reveals: Women’s Brains Are Better Connected than Men’s

    PubMed Central

    Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2015-01-01

    Deep graph-theoretic ideas in the context with the graph of the World Wide Web led to the definition of Google’s PageRank and the subsequent rise of the most popular search engine to date. Brain graphs, or connectomes, are being widely explored today. We believe that non-trivial graph theoretic concepts, similarly as it happened in the case of the World Wide Web, will lead to discoveries enlightening the structural and also the functional details of the animal and human brains. When scientists examine large networks of tens or hundreds of millions of vertices, only fast algorithms can be applied because of the size constraints. In the case of diffusion MRI-based structural human brain imaging, the effective vertex number of the connectomes, or brain graphs derived from the data is on the scale of several hundred today. That size facilitates applying strict mathematical graph algorithms even for some hard-to-compute (or NP-hard) quantities like vertex cover or balanced minimum cut. In the present work we have examined brain graphs, computed from the data of the Human Connectome Project, recorded from male and female subjects between ages 22 and 35. Significant differences were found between the male and female structural brain graphs: we show that the average female connectome has more edges, is a better expander graph, has larger minimal bisection width, and has more spanning trees than the average male connectome. Since the average female brain weighs less than the brain of males, these properties show that the female brain has better graph theoretical properties, in a sense, than the brain of males. It is known that the female brain has a smaller gray matter/white matter ratio than males, that is, a larger white matter/gray matter ratio than the brain of males; this observation is in line with our findings concerning the number of edges, since the white matter consists of myelinated axons, which, in turn, roughly correspond to the connections in the brain graph. We have also found that the minimum bisection width, normalized with the edge number, is also significantly larger in the right and the left hemispheres in females: therefore, the differing bisection widths are independent from the difference in the number of edges. PMID:26132764

  4. Weights and topology: a study of the effects of graph construction on 3D image segmentation.

    PubMed

    Grady, Leo; Jolly, Marie-Pierre

    2008-01-01

    Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.

  5. Well-Covered Graphs: A Survey

    DTIC Science & Technology

    1991-01-01

    critical G’s/# G’s -) 0 as IV(G)I -- oo? References [B1] C. Berge, Regularizable graphs, Ann. Discrete Math ., 3, 1978, 11-19. [B2] _ _, Some common...Springer-Verlag, Berlin, 1980, 108-123. [B3] _ _, Some common properties for regularizable graphs, edge-critical graphs, and B-graphs, Ann. Discrete Math ., 12...graphs - an extension of the K6nig-Egervgiry theorem, Discrete Math ., 27, 1979, 23-33. [ER] M.N Ellingham and G.F. Royle, Well-covered cubic graphs

  6. An auxiliary graph based dynamic traffic grooming algorithm in spatial division multiplexing enabled elastic optical networks with multi-core fibers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie

    2017-03-01

    A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.

  7. Basin Hopping Graph: a computational framework to characterize RNA folding landscapes

    PubMed Central

    Kucharík, Marcel; Hofacker, Ivo L.; Stadler, Peter F.; Qin, Jing

    2014-01-01

    Motivation: RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis of the folding free energy landscape, however, can provide the relevant information. Results: We introduce the Basin Hopping Graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect basins when the direct transitions between them are ‘energetically favorable’. Edge weights endcode the corresponding saddle heights and thus measure the difficulties of these favorable transitions. BHGs can be approximated accurately and efficiently for RNA molecules well beyond the length range accessible to enumerative algorithms. Availability and implementation: The algorithms described here are implemented in C++ as standalone programs. Its source code and supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html. Contact: qin@bioinf.uni-leipzig.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24648041

  8. A new method of content based medical image retrieval and its applications to CT imaging sign retrieval.

    PubMed

    Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu

    2017-02-01

    This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.

    PubMed

    Itoh, Takayuki; Klein, Karsten

    2015-01-01

    Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagberg, Aric; Swart, Pieter; S Chult, Daniel

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distributionmore » and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.« less

  11. Image flows and one-liner graphical image representation.

    PubMed

    Makhervaks, Vadim; Barequet, Gill; Bruckstein, Alfred

    2002-10-01

    This paper introduces a novel graphical image representation consisting of a single curve-the one-liner. The first step of the algorithm involves the detection and ranking of image edges. A new edge exploration technique is used to perform both tasks simultaneously. This process is based on image flows. It uses a gradient vector field and a new operator to explore image edges. Estimation of the derivatives of the image is performed by using local Taylor expansions in conjunction with a weighted least-squares method. This process finds all the possible image edges without any pruning, and collects information that allows the edges found to be prioritized. This enables the most important edges to be selected to form a skeleton of the representation sought. The next step connects the selected edges into one continuous curve-the one-liner. It orders the selected edges and determines the curves connecting them. These two problems are solved separately. Since the abstract graph setting of the first problem is NP-complete, we reduce it to a variant of the traveling salesman problem and compute an approximate solution to it. We solve the second problem by using Dijkstra's shortest-path algorithm. The full software implementation for the entire one-liner determination process is available.

  12. A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.

    PubMed

    Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong

    2017-07-01

    Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.

  13. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods

    PubMed Central

    Phillips, David J.; McGlaughlin, Alec; Ruth, David; Jager, Leah R.; Soldan, Anja

    2015-01-01

    Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least 3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated by the Randić index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randić index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD. PMID:25984446

  14. Eigenvalues of the Laplacian of a graph

    NASA Technical Reports Server (NTRS)

    Anderson, W. N., Jr.; Morley, T. D.

    1971-01-01

    Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.

  15. On the structure of critical energy levels for the cubic focusing NLS on star graphs

    NASA Astrophysics Data System (ADS)

    Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2012-05-01

    We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L2-norm. We moreover show that the only stationary state with prescribed L2-norm is indeed a saddle point.

  16. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.

    PubMed

    Kamisetty, Hetunandan; Bailey-Kellogg, Chris; Pandurangan, Gopal

    2006-01-15

    Backbone resonance assignment is a critical bottleneck in studies of protein structure, dynamics and interactions by nuclear magnetic resonance (NMR) spectroscopy. A minimalist approach to assignment, which we call 'contact-based', seeks to dramatically reduce experimental time and expense by replacing the standard suite of through-bond experiments with the through-space (nuclear Overhauser enhancement spectroscopy, NOESY) experiment. In the contact-based approach, spectral data are represented in a graph with vertices for putative residues (of unknown relation to the primary sequence) and edges for hypothesized NOESY interactions, such that observed spectral peaks could be explained if the residues were 'close enough'. Due to experimental ambiguity, several incorrect edges can be hypothesized for each spectral peak. An assignment is derived by identifying consistent patterns of edges (e.g. for alpha-helices and beta-sheets) within a graph and by mapping the vertices to the primary sequence. The key algorithmic challenge is to be able to uncover these patterns even when they are obscured by significant noise. This paper develops, analyzes and applies a novel algorithm for the identification of polytopes representing consistent patterns of edges in a corrupted NOESY graph. Our randomized algorithm aggregates simplices into polytopes and fixes inconsistencies with simple local modifications, called rotations, that maintain most of the structure already uncovered. In characterizing the effects of experimental noise, we employ an NMR-specific random graph model in proving that our algorithm gives optimal performance in expected polynomial time, even when the input graph is significantly corrupted. We confirm this analysis in simulation studies with graphs corrupted by up to 500% noise. Finally, we demonstrate the practical application of the algorithm on several experimental beta-sheet datasets. Our approach is able to eliminate a large majority of noise edges and to uncover large consistent sets of interactions. Our algorithm has been implemented in the platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  17. Exploring biological interaction networks with tailored weighted quasi-bicliques

    PubMed Central

    2012-01-01

    Background Biological networks provide fundamental insights into the functional characterization of genes and their products, the characterization of DNA-protein interactions, the identification of regulatory mechanisms, and other biological tasks. Due to the experimental and biological complexity, their computational exploitation faces many algorithmic challenges. Results We introduce novel weighted quasi-biclique problems to identify functional modules in biological networks when represented by bipartite graphs. In difference to previous quasi-biclique problems, we include biological interaction levels by using edge-weighted quasi-bicliques. While we prove that our problems are NP-hard, we also describe IP formulations to compute exact solutions for moderately sized networks. Conclusions We verify the effectiveness of our IP solutions using both simulation and empirical data. The simulation shows high quasi-biclique recall rates, and the empirical data corroborate the abilities of our weighted quasi-bicliques in extracting features and recovering missing interactions from biological networks. PMID:22759421

  18. Visualizing Ecosystem Energy Flow in Complex Food Web Networks: A Comparison of Three Alaskan Large Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Kearney, K.; Aydin, K.

    2016-02-01

    Oceanic food webs are often depicted as network graphs, with the major organisms or functional groups displayed as nodes and the fluxes of between them as the edges. However, the large number of nodes and edges and high connectance of many management-oriented food webs coupled with graph layout algorithms poorly-suited to certain desired characteristics of food web visualizations often lead to hopelessly tangled diagrams that convey little information other than, "It's complex." Here, I combine several new graph visualization techniques- including a new node layout alorithm based on a trophic similarity (quantification of shared predator and prey) and trophic level, divided edge bundling for edge routing, and intelligent automated placement of labels- to create a much clearer visualization of the important fluxes through a food web. The technique will be used to highlight the differences in energy flow within three Alaskan Large Marine Ecosystems (the Bering Sea, Gulf of Alaska, and Aleutian Islands) that include very similar functional groups but unique energy pathways.

  19. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    NASA Astrophysics Data System (ADS)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  20. Poor textural image tie point matching via graph theory

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Chen, Shiyu; Yuan, Wei; Cai, Yang

    2017-07-01

    Feature matching aims to find corresponding points to serve as tie points between images. Robust matching is still a challenging task when input images are characterized by low contrast or contain repetitive patterns, occlusions, or homogeneous textures. In this paper, a novel feature matching algorithm based on graph theory is proposed. This algorithm integrates both geometric and radiometric constraints into an edge-weighted (EW) affinity tensor. Tie points are then obtained by high-order graph matching. Four pairs of poor textural images covering forests, deserts, bare lands, and urban areas are tested. For comparison, three state-of-the-art matching techniques, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), and features from accelerated segment test (FAST), are also used. The experimental results show that the matching recall obtained by SIFT, SURF, and FAST varies from 0 to 35% in different types of poor textures. However, through the integration of both geometry and radiometry and the EW strategy, the recall obtained by the proposed algorithm is better than 50% in all four image pairs. The better matching recall improves the number of correct matches, dispersion, and positional accuracy.

  1. Spectral stability of shifted states on star graphs

    NASA Astrophysics Data System (ADS)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  2. Using Combinatorica/Mathematica for Student Projects in Random Graph Theory

    ERIC Educational Resources Information Center

    Pfaff, Thomas J.; Zaret, Michele

    2006-01-01

    We give an example of a student project that experimentally explores a topic in random graph theory. We use the "Combinatorica" package in "Mathematica" to estimate the minimum number of edges needed in a random graph to have a 50 percent chance that the graph is connected. We provide the "Mathematica" code and compare it to the known theoretical…

  3. Proving Program Termination With Matrix Weighted Digraphs

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron

    2015-01-01

    Program termination analysis is an important task in logic and computer science. While determining if a program terminates is known to be undecidable in general, there has been a significant amount of attention given to finding sufficient and computationally practical conditions to prove termination. One such method takes a program and builds from it a matrix weighted digraph. These are directed graphs whose edges are labeled by square matrices with entries in {-1,0,1}, equipped with a nonstandard matrix multiplication. Certain properties of this digraph are known to imply the termination of the related program. In particular, termination of the program can be determined from the weights of the circuits in the digraph. In this talk, the motivation for addressing termination and how matrix weighted digraphs arise will be briefly discussed. The remainder of the talk will describe an efficient method for bounding the weights of a finite set of the circuits in a matrix weighted digraph, which allows termination of the related program to be deduced.

  4. Network topology mapper

    DOEpatents

    Quist, Daniel A [Los Alamos, NM; Gavrilov, Eugene M [Los Alamos, NM; Fisk, Michael E [Jemez, NM

    2008-01-15

    A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.

  5. Complexity and approximability for a problem of intersecting of proximity graphs with minimum number of equal disks

    NASA Astrophysics Data System (ADS)

    Kobylkin, Konstantin

    2016-10-01

    Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.

  6. On the local vertex antimagic total coloring of some families tree

    NASA Astrophysics Data System (ADS)

    Febriani Putri, Desi; Dafik; Hesti Agustin, Ika; Alfarisi, Ridho

    2018-04-01

    Let G(V, E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f:V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\} if for any two adjacent vertices v 1 and v 2, w({v}1)\

  7. Graph Coloring Used to Model Traffic Lights.

    ERIC Educational Resources Information Center

    Williams, John

    1992-01-01

    Two scheduling problems, one involving setting up an examination schedule and the other describing traffic light problems, are modeled as colorings of graphs consisting of a set of vertices and edges. The chromatic number, the least number of colors necessary for coloring a graph, is employed in the solutions. (MDH)

  8. Entropy, complexity, and Markov diagrams for random walk cancer models

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-01-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357

  9. Improving the Accuracy of Attribute Extraction using the Relatedness between Attribute Values

    NASA Astrophysics Data System (ADS)

    Bollegala, Danushka; Tani, Naoki; Ishizuka, Mitsuru

    Extracting attribute-values related to entities from web texts is an important step in numerous web related tasks such as information retrieval, information extraction, and entity disambiguation (namesake disambiguation). For example, for a search query that contains a personal name, we can not only return documents that contain that personal name, but if we have attribute-values such as the organization for which that person works, we can also suggest documents that contain information related to that organization, thereby improving the user's search experience. Despite numerous potential applications of attribute extraction, it remains a challenging task due to the inherent noise in web data -- often a single web page contains multiple entities and attributes. We propose a graph-based approach to select the correct attribute-values from a set of candidate attribute-values extracted for a particular entity. First, we build an undirected weighted graph in which, attribute-values are represented by nodes, and the edge that connects two nodes in the graph represents the degree of relatedness between the corresponding attribute-values. Next, we find the maximum spanning tree of this graph that connects exactly one attribute-value for each attribute-type. The proposed method outperforms previously proposed attribute extraction methods on a dataset that contains 5000 web pages.

  10. Method for concurrent execution of primitive operations by dynamically assigning operations based upon computational marked graph and availability of data

    NASA Technical Reports Server (NTRS)

    Mielke, Roland V. (Inventor); Stoughton, John W. (Inventor)

    1990-01-01

    Computationally complex primitive operations of an algorithm are executed concurrently in a plurality of functional units under the control of an assignment manager. The algorithm is preferably defined as a computationally marked graph contianing data status edges (paths) corresponding to each of the data flow edges. The assignment manager assigns primitive operations to the functional units and monitors completion of the primitive operations to determine data availability using the computational marked graph of the algorithm. All data accessing of the primitive operations is performed by the functional units independently of the assignment manager.

  11. Optimizing the Router Configurations within a Nominal Air Force Base

    DTIC Science & Technology

    2009-09-01

    cardinality of V, and the size of G is the cardinality of E. For the purposes of this thesis, the vertices represent individual pieces of...edges with cardinality smaller than k leaves a connected graph. Given a connected graph G, if there is an edge e in G such that its removal results in...CDR Michael Herrera Naval Postgraduate School Monterey, California 4. Ray Elliott Naval Postgraduate School Monterey, California 5. Craig

  12. Combinatorial Statistics on Trees and Networks

    DTIC Science & Technology

    2010-09-29

    interaction graph is drawn from the Erdos- Renyi , G(n,p), where each edge is present independently with probability p. For this model we establish a double...special interest is the behavior of Gibbs sampling on the Erdos- Renyi random graph G{n, d/n), where each edge is chosen independently with...which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erdos- Renyi

  13. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the individual brain development. An animation on the phenomenon is available at https://youtu.be/yxlyudPaVUE. Based on this observation and the related hypothesis, we can assign directions to some of the edges of the connectome as follows: Let Gk + 1 denote the consensus connectome where each edge is present in at least k+1 graphs, and let Gk denote the consensus connectome where each edge is present in at least k graphs. Suppose that vertex v is not connected to any other vertices in Gk+1, and becomes connected to a vertex u in Gk, where u was connected to other vertices already in Gk+1. Then we direct this (v, u) edge from v to u.

  14. Network Reliability: The effect of local network structure on diffusive processes

    PubMed Central

    Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen

    2014-01-01

    This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321

  15. Modification of Prim’s algorithm on complete broadcasting graph

    NASA Astrophysics Data System (ADS)

    Dairina; Arif, Salmawaty; Munzir, Said; Halfiani, Vera; Ramli, Marwan

    2017-09-01

    Broadcasting is an information dissemination from one object to another object through communication between two objects in a network. Broadcasting for n objects can be solved by n - 1 communications and minimum time unit defined by ⌈2log n⌉ In this paper, weighted graph broadcasting is considered. The minimum weight of a complete broadcasting graph will be determined. Broadcasting graph is said to be complete if every vertex is connected. Thus to determine the minimum weight of complete broadcasting graph is equivalent to determine the minimum spanning tree of a complete graph. The Kruskal’s and Prim’s algorithm will be used to determine the minimum weight of a complete broadcasting graph regardless the minimum time unit ⌈2log n⌉ and modified Prim’s algorithm for the problems of the minimum time unit ⌈2log n⌉ is done. As an example case, here, the training of trainer problem is solved using these algorithms.

  16. Local Refinement of Analysis-Suitable T-splines

    DTIC Science & Technology

    2011-03-01

    3.2. The extension graph Intersecting T-junction extensions in an extended T-mesh Text can be visualized using an undirected graph . We call this graph ...the extension graph and denote it by E(Text). Each node in E corresponds to a single T-junction extension in Text. If two extensions in Text...intersect then an edge is drawn between the corresponding nodes in E. The extension graph for the extended T-mesh in Figure 7b is shown in Figure 8a. In this

  17. Wear Detection of Drill Bit by Image-based Technique

    NASA Astrophysics Data System (ADS)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  18. GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil

    2015-11-15

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less

  19. Evolving network simulation study. From regular lattice to scale free network

    NASA Astrophysics Data System (ADS)

    Makowiec, D.

    2005-12-01

    The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.

  20. Finding Statistically Significant Communities in Networks

    PubMed Central

    Lancichinetti, Andrea; Radicchi, Filippo; Ramasco, José J.; Fortunato, Santo

    2011-01-01

    Community structure is one of the main structural features of networks, revealing both their internal organization and the similarity of their elementary units. Despite the large variety of methods proposed to detect communities in graphs, there is a big need for multi-purpose techniques, able to handle different types of datasets and the subtleties of community structure. In this paper we present OSLOM (Order Statistics Local Optimization Method), the first method capable to detect clusters in networks accounting for edge directions, edge weights, overlapping communities, hierarchies and community dynamics. It is based on the local optimization of a fitness function expressing the statistical significance of clusters with respect to random fluctuations, which is estimated with tools of Extreme and Order Statistics. OSLOM can be used alone or as a refinement procedure of partitions/covers delivered by other techniques. We have also implemented sequential algorithms combining OSLOM with other fast techniques, so that the community structure of very large networks can be uncovered. Our method has a comparable performance as the best existing algorithms on artificial benchmark graphs. Several applications on real networks are shown as well. OSLOM is implemented in a freely available software (http://www.oslom.org), and we believe it will be a valuable tool in the analysis of networks. PMID:21559480

  1. A distributed query execution engine of big attributed graphs.

    PubMed

    Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif

    2016-01-01

    A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.

  2. Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey

    NASA Astrophysics Data System (ADS)

    Bianchini, Monica; Scarselli, Franco

    In graphical pattern recognition, each data is represented as an arrangement of elements, that encodes both the properties of each element and the relations among them. Hence, patterns are modelled as labelled graphs where, in general, labels can be attached to both nodes and edges. Artificial neural networks able to process graphs are a powerful tool for addressing a great variety of real-world problems, where the information is naturally organized in entities and relationships among entities and, in fact, they have been widely used in computer vision, f.i. in logo recognition, in similarity retrieval, and for object detection. In this chapter, we propose a survey of neural network models able to process structured information, with a particular focus on those architectures tailored to address image understanding applications. Starting from the original recursive model (RNNs), we subsequently present different ways to represent images - by trees, forests of trees, multiresolution trees, directed acyclic graphs with labelled edges, general graphs - and, correspondingly, neural network architectures appropriate to process such structures.

  3. Study of Double-Weighted Graph Model and Optimal Path Planning for Tourist Scenic Area Oriented Intelligent Tour Guide

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Long, Y.; Wi, X. L.

    2014-04-01

    When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.

  4. The asymptotics of large constrained graphs

    NASA Astrophysics Data System (ADS)

    Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2014-05-01

    We show, through local estimates and simulation, that if one constrains simple graphs by their densities ɛ of edges and τ of triangles, then asymptotically (in the number of vertices) for over 95% of the possible range of those densities there is a well-defined typical graph, and it has a very simple structure: the vertices are decomposed into two subsets V1 and V2 of fixed relative size c and 1 - c, and there are well-defined probabilities of edges, gjk, between vj ∈ Vj, and vk ∈ Vk. Furthermore the four parameters c, g11, g22 and g12 are smooth functions of (ɛ, τ) except at two smooth ‘phase transition’ curves.

  5. Convergence of spectra of graph-like thin manifolds

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Post, Olaf

    2005-05-01

    We consider a family of compact manifolds which shrinks with respect to an appropriate parameter to a graph. The main result is that the spectrum of the Laplace-Beltrami operator converges to the spectrum of the (differential) Laplacian on the graph with Kirchhoff boundary conditions at the vertices. On the other hand, if the shrinking at the vertex parts of the manifold is sufficiently slower comparing to that of the edge parts, the limiting spectrum corresponds to decoupled edges with Dirichlet boundary conditions at the endpoints. At the borderline between the two regimes we have a third possibility when the limiting spectrum can be described by a nontrivial coupling at the vertices.

  6. The TSP-approach to approximate solving the m-Cycles Cover Problem

    NASA Astrophysics Data System (ADS)

    Gimadi, Edward Kh.; Rykov, Ivan; Tsidulko, Oxana

    2016-10-01

    In the m-Cycles Cover problem it is required to find a collection of m vertex-disjoint cycles that covers all vertices of the graph and the total weight of edges in the cover is minimum (or maximum). The problem is a generalization of the Traveling salesmen problem. It is strongly NP-hard. We discuss a TSP-approach that gives polynomial approximate solutions for this problem. It transforms an approximation TSP algorithm into an approximation m-CCP algorithm. In this paper we present a number of successful transformations with proven performance guarantees for the obtained solutions.

  7. Integer Flows and Circuit Covers of Graphs and Signed Graphs

    NASA Astrophysics Data System (ADS)

    Cheng, Jian

    The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it contains an even factor H with. ∥E(H)∥ ≥ 4/7 (∥ E(G)∥+1)+ 1/7 ∥V2 (G)∥, where V2( G) is the set of vertices of degree two.

  8. Localization on Quantum Graphs with Random Vertex Couplings

    NASA Astrophysics Data System (ADS)

    Klopp, Frédéric; Pankrashkin, Konstantin

    2008-05-01

    We consider Schrödinger operators on a class of periodic quantum graphs with randomly distributed Kirchhoff coupling constants at all vertices. We obtain necessary conditions for localization on quantum graphs in terms of finite volume criteria for some energy-dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at the spectral edges.

  9. Large-scale Graph Computation on Just a PC

    DTIC Science & Technology

    2014-05-01

    edges for several vertices simultaneously). We compared the performance of GraphChi-DB to Neo4j using their Java API (we discuss MySQL comparison in the...75 4.7.6 Comparison to RDBMS ( MySQL ) . . . . . . . . . . . . . . . . . . . . . 75 4.7.7 Summary of the...Windows method, GraphChi. The C++ implementation has circa 8,000 lines of code. We have also de- veloped a Java -version of GraphChi, but it does not

  10. The investigation of social networks based on multi-component random graphs

    NASA Astrophysics Data System (ADS)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  11. GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen

    2015-09-30

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Chung Wong, Pak

    Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less

  13. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    PubMed Central

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  14. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    PubMed

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  15. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    PubMed Central

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  16. Topology polymorphism graph for lung tumor segmentation in PET-CT images.

    PubMed

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Eberl, Stefan; Yin, Yong; Feng, Dagan; Fulham, Michael

    2015-06-21

    Accurate lung tumor segmentation is problematic when the tumor boundary or edge, which reflects the advancing edge of the tumor, is difficult to discern on chest CT or PET. We propose a 'topo-poly' graph model to improve identification of the tumor extent. Our model incorporates an intensity graph and a topology graph. The intensity graph provides the joint PET-CT foreground similarity to differentiate the tumor from surrounding tissues. The topology graph is defined on the basis of contour tree to reflect the inclusion and exclusion relationship of regions. By taking into account different topology relations, the edges in our model exhibit topological polymorphism. These polymorphic edges in turn affect the energy cost when crossing different topology regions under a random walk framework, and hence contribute to appropriate tumor delineation. We validated our method on 40 patients with non-small cell lung cancer where the tumors were manually delineated by a clinical expert. The studies were separated into an 'isolated' group (n = 20) where the lung tumor was located in the lung parenchyma and away from associated structures / tissues in the thorax and a 'complex' group (n = 20) where the tumor abutted / involved a variety of adjacent structures and had heterogeneous FDG uptake. The methods were validated using Dice's similarity coefficient (DSC) to measure the spatial volume overlap and Hausdorff distance (HD) to compare shape similarity calculated as the maximum surface distance between the segmentation results and the manual delineations. Our method achieved an average DSC of 0.881 ± 0.046 and HD of 5.311 ± 3.022 mm for the isolated cases and DSC of 0.870 ± 0.038 and HD of 9.370 ± 3.169 mm for the complex cases. Student's t-test showed that our model outperformed the other methods (p-values <0.05).

  17. Self-organizing maps for learning the edit costs in graph matching.

    PubMed

    Neuhaus, Michel; Bunke, Horst

    2005-06-01

    Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.

  18. Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matulef, Kevin Michael

    The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewermore » resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.« less

  19. Relating zeta functions of discrete and quantum graphs

    NASA Astrophysics Data System (ADS)

    Harrison, Jonathan; Weyand, Tracy

    2018-02-01

    We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.

  20. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    PubMed Central

    Kim, Sang-Ha

    2017-01-01

    Face routing has been adopted in wireless sensor networks (WSNs) where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency. PMID:29053623

  1. A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.

    PubMed

    Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong

    2018-02-12

    Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Weighted graph cuts without eigenvectors a multilevel approach.

    PubMed

    Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian

    2007-11-01

    A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.

  3. A Novel Coarsening Method for Scalable and Efficient Mesh Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, A; Hysom, D; Gunney, B

    2010-12-02

    In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicatemore » that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick laying technique, which reduces the number of neighboring blocks each block needs to communicate. Contributions of this research are as follows: (1) We have developed a novel method that scales to a really large problem size while producing high quality mesh partitions; (2) We measured the performance and scalability of the proposed method on a machine of massive size using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning method is successfully applied to; and (3) We have shown that proposed method can reduce the number of edge cuts by as much as 65%.« less

  4. Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia.

    PubMed

    Alloza, Clara; Bastin, Mark E; Cox, Simon R; Gibson, Jude; Duff, Barbara; Semple, Scott I; Whalley, Heather C; Lawrie, Stephen M

    2017-12-01

    Schizophrenia is a complex disorder that may be the result of aberrant connections between specific brain regions rather than focal brain abnormalities. Here, we investigate the relationships between brain structural connectivity as described by network analysis, intelligence, symptoms, and polygenic risk scores (PGRS) for schizophrenia in a group of patients with schizophrenia and a group of healthy controls. Recently, researchers have shown an interest in the role of high centrality networks in the disorder. However, the importance of non-central networks still remains unclear. Thus, we specifically examined network-averaged fractional anisotropy (mean edge weight) in central and non-central subnetworks. Connections with the highest betweenness centrality within the average network (>75% of centrality values) were selected to represent the central subnetwork. The remaining connections were assigned to the non-central subnetwork. Additionally, we calculated graph theory measures from the average network (connections that occur in at least 2/3 of participants). Density, strength, global efficiency, and clustering coefficient were significantly lower in patients compared with healthy controls for the average network (p FDR  < 0.05). All metrics across networks were significantly associated with intelligence (p FDR  < 0.05). There was a tendency towards significance for a correlation between intelligence and PGRS for schizophrenia (r = -0.508, p = 0.052) that was significantly mediated by central and non-central mean edge weight and every graph metric from the average network. These results are consistent with the hypothesis that intelligence deficits are associated with a genetic risk for schizophrenia, which is mediated via the disruption of distributed brain networks. Hum Brain Mapp 38:5919-5930, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Dynamic graph of an oxy-fuel combustion system using autocatalytic set model

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Bakar, Sumarni Abu

    2017-08-01

    Evaporation process is one of the main processes besides combustion process in an oxy-combustion boiler system. An Autocatalytic Set (ASC) Model has successfully applied in developing graphical representation of the chemical reactions that occurs in the evaporation process in the system. Seventeen variables identified in the process are represented as nodes and the catalytic relationships are represented as edges in the graph. In addition, in this paper graph dynamics of ACS is further investigated. By using Dynamic Autocatalytic Set Graph Algorithm (DAGA), the adjacency matrix for each of the graphs and its relations to Perron-Frobenius Theorem is investigated. The dynamic graph obtained is further investigated where the connection of the graph to fuzzy graph Type 1 is established.

  6. Investigation of Spatial Data with Open Source Social Network Analysis and Geographic Information Systems Applications

    NASA Astrophysics Data System (ADS)

    Sabah, L.; Şimşek, M.

    2017-11-01

    Social networks are the real social experience of individuals in the online environment. In this environment, people use symbolic gestures and mimics, sharing thoughts and content. Social network analysis is the visualization of complex and large quantities of data to ensure that the overall picture appears. It is the understanding, development, quantitative and qualitative analysis of the relations in the social networks of Graph theory. Social networks are expressed in the form of nodes and edges. Nodes are people/organizations, and edges are relationships between nodes. Relations are directional, non-directional, weighted, and weightless. The purpose of this study is to examine the effects of social networks on the evaluation of person data with spatial coordinates. For this, the cluster size and the effect on the geographical area of the circle where the placements of the individual are influenced by the frequently used placeholder feature in the social networks have been studied.

  7. Robustness of mission plans for unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls, and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.

  8. Counterbalancing for serial order carryover effects in experimental condition orders.

    PubMed

    Brooks, Joseph L

    2012-12-01

    Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed for generating counterbalanced sequences for repeated-measures designs including those with multiple observations of each condition on one participant and self-adjacencies of conditions. Condition ordering is reframed as a graph theory problem. Experimental conditions are represented as vertices in a graph and directed edges between them represent temporal relationships between conditions. A counterbalanced trial order results from traversing an Euler circuit through such a graph in which each edge is traversed exactly once. This method can be generalized to counterbalance for higher order serial order carryover effects as well as to create intentional serial order biases. Modern graph theory provides tools for finding other types of paths through such graph representations, providing a tool for generating experimental condition sequences with useful properties. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    PubMed

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  10. From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction

    NASA Astrophysics Data System (ADS)

    de Tilière, Béatrice

    2013-04-01

    Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version {{G}} of this graph (Fisher in J Math Phys 7:1776-1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain {{G}_1}. Our main result consists in explicitly constructing CRSFs of {{G}_1} counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon's critical weight function (Kenyon in Invent Math 150(2):409-439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.

  11. Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, R; McCallen, S; Almaas, E

    2007-05-28

    Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motifmore » mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.« less

  12. On some labelings of triangular snake and central graph of triangular snake graph

    NASA Astrophysics Data System (ADS)

    Agasthi, P.; Parvathi, N.

    2018-04-01

    A Triangular snake Tn is obtained from a path u 1 u 2 … u n by joining ui and u i+1 to a new vertex wi for 1≤i≤n‑1. A Central graph of Triangular snake C(T n ) is obtained by subdividing each edge of Tn exactly once and joining all the non adjacent vertices of Tn . In this paper the ways to construct square sum, square difference, Root Mean square, strongly Multiplicative, Even Mean and Odd Mean labeling for Triangular Snake and Central graph of Triangular Snake graphs are reported.

  13. Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.

    PubMed

    Peng, Yong; Lu, Bao-Liang; Wang, Suhang

    2015-05-01

    Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Erdős-Rothschild problem on edge-colourings with forbidden monochromatic cliques

    NASA Astrophysics Data System (ADS)

    Pikhurko, Oleg; Staden, Katherine; Yilma, Zelealem B.

    2017-09-01

    Let $\\mathbf{k} := (k_1,\\dots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;\\mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,\\dots,s$ such that, for every $c \\in \\{1,\\dots,s\\}$, the edges of colour $c$ contain no clique of order $k_c$. Write $F(n;\\mathbf{k})$ to denote the maximum of $F(G;\\mathbf{k})$ over all graphs $G$ on $n$ vertices. This problem was first considered by Erd\\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every $\\mathbf{k}$ and $n$, there is a complete multipartite graph $G$ on $n$ vertices with $F(G;\\mathbf{k}) = F(n;\\mathbf{k})$. Also, for every $\\mathbf{k}$ we construct a finite optimisation problem whose maximum is equal to the limit of $\\log_2 F(n;\\mathbf{k})/{n\\choose 2}$ as $n$ tends to infinity. Our final result is a stability theorem for complete multipartite graphs $G$, describing the asymptotic structure of such $G$ with $F(G;\\mathbf{k}) = F(n;\\mathbf{k}) \\cdot 2^{o(n^2)}$ in terms of solutions to the optimisation problem.

  15. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    NASA Astrophysics Data System (ADS)

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing; Li, Xing; Li, Jun; Tan, Guotai; Zhu, Yimei; Zhu, Jing

    2018-04-01

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. Herein, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by a genus model from a higher dimension in the graph theory. Our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.

  16. Speech graphs provide a quantitative measure of thought disorder in psychosis.

    PubMed

    Mota, Natalia B; Vasconcelos, Nivaldo A P; Lemos, Nathalia; Pieretti, Ana C; Kinouchi, Osame; Cecchi, Guillermo A; Copelli, Mauro; Ribeiro, Sidarta

    2012-01-01

    Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes correspond to words and edges correspond to semantic and grammatical relationships. To quantify speech differences related to psychosis, interviews with schizophrenics, manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS) reached only 62.5% of sensitivity and specificity. The results demonstrate that alterations of the thought process manifested in the speech of psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on how it is said.

  17. GrouseFlocks: steerable exploration of graph hierarchy space.

    PubMed

    Archambault, Daniel; Munzner, Tamara; Auber, David

    2008-01-01

    Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.

  18. Visibility of quantum graph spectrum from the vertices

    NASA Astrophysics Data System (ADS)

    Kühn, Christian; Rohleder, Jonathan

    2018-03-01

    We investigate the relation between the eigenvalues of the Laplacian with Kirchhoff vertex conditions on a finite metric graph and a corresponding Titchmarsh-Weyl function (a parameter-dependent Neumann-to-Dirichlet map). We give a complete description of all real resonances, including multiplicities, in terms of the edge lengths and the connectivity of the graph, and apply it to characterize all eigenvalues which are visible for the Titchmarsh-Weyl function.

  19. Tractable Algorithms for Proximity Search on Large Graphs

    DTIC Science & Technology

    2010-07-01

    development in information retrieval, 2005. 5.1 164 A. K. Chandra, P. Raghavan, W. L. Ruzzo, and R. Smolensky. The electrical resistance of a graph captures...2007] show how to use hitting times for designing provably manipulation resistant reputation systems. Harmonic func- tions have been used for...commute times with electrical net- works (Doyle and Snell [1984]). Consider an undirected graph. Now think of each edge as a resistor with conductance

  20. SAGE: String-overlap Assembly of GEnomes.

    PubMed

    Ilie, Lucian; Haider, Bahlul; Molnar, Michael; Solis-Oba, Roberto

    2014-09-15

    De novo genome assembly of next-generation sequencing data is one of the most important current problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this area, better solutions are still very much needed. We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared favourably with those of existing leading assemblers. SAGE benefits from innovations in almost every aspect of the assembly process: error correction of input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction, contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an essential area of research in genomics.

  1. How to Build a Functional Connectomic Biomarker for Mild Cognitive Impairment From Source Reconstructed MEG Resting-State Activity: The Combination of ROI Representation and Connectivity Estimator Matters.

    PubMed

    Dimitriadis, Stavros I; López, María E; Bruña, Ricardo; Cuesta, Pablo; Marcos, Alberto; Maestú, Fernando; Pereda, Ernesto

    2018-01-01

    Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α 1 :α 2 and 94% for the iPLV in α 2 . Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.

  2. A path following algorithm for the graph matching problem.

    PubMed

    Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe

    2009-12-01

    We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.

  3. Alternative Parameterizations for Cluster Editing

    NASA Astrophysics Data System (ADS)

    Komusiewicz, Christian; Uhlmann, Johannes

    Given an undirected graph G and a nonnegative integer k, the NP-hard Cluster Editing problem asks whether G can be transformed into a disjoint union of cliques by applying at most k edge modifications. In the field of parameterized algorithmics, Cluster Editing has almost exclusively been studied parameterized by the solution size k. Contrastingly, in many real-world instances it can be observed that the parameter k is not really small. This observation motivates our investigation of parameterizations of Cluster Editing different from the solution size k. Our results are as follows. Cluster Editing is fixed-parameter tractable with respect to the parameter "size of a minimum cluster vertex deletion set of G", a typically much smaller parameter than k. Cluster Editing remains NP-hard on graphs with maximum degree six. A restricted but practically relevant version of Cluster Editing is fixed-parameter tractable with respect to the combined parameter "number of clusters in the target graph" and "maximum number of modified edges incident to any vertex in G". Many of our results also transfer to the NP-hard Cluster Deletion problem, where only edge deletions are allowed.

  4. Supermanifolds from Feynman graphs

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Rej, Abhijnan

    2008-08-01

    We generalize the computation of Feynman integrals of log divergent graphs in terms of the Kirchhoff polynomial to the case of graphs with both fermionic and bosonic edges, to which we assign a set of ordinary and Grassmann variables. This procedure gives a computation of the Feynman integrals in terms of a period on a supermanifold, for graphs admitting a basis of the first homology satisfying a condition generalizing the log divergence in this context. The analog in this setting of the graph hypersurfaces is a graph supermanifold given by the divisor of zeros and poles of the Berezinian of a matrix associated with the graph, inside a superprojective space. We introduce a Grothendieck group for supermanifolds and identify the subgroup generated by the graph supermanifolds. This can be seen as a general procedure for constructing interesting classes of supermanifolds with associated periods.

  5. Listing triangles in expected linear time on a class of power law graphs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann

    Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less

  6. FOCUSR: Feature Oriented Correspondence using Spectral Regularization–A Method for Precise Surface Matching

    PubMed Central

    Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R.; Cheriet, Farida

    2013-01-01

    Existing methods for surface matching are limited by the trade-off between precision and computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a sub-millimeter level) while performing at much greater speed than existing methods. PMID:23868776

  7. Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution

    NASA Astrophysics Data System (ADS)

    Staples, G. Stacey

    2017-12-01

    Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.

  8. Networks of genetic loci and the scientific literature

    NASA Astrophysics Data System (ADS)

    Semeiks, J. R.; Grate, L. R.; Mian, I. S.

    This work considers biological information graphs, networks in which nodes corre-spond to genetic loci (or "genes") and an (undirected) edge signifies that two genes are discussed in the same article(s) in the scientific literature ("documents"). Operations that utilize the topology of these graphs can assist researchers in the scientific discovery process. For example, a shortest path between two nodes defines an ordered series of genes and documents that can be used to explore the relationship(s) between genes of interest. This work (i) describes how topologies in which edges are likely to reflect genuine relationship(s) can be constructed from human-curated corpora of genes an-notated with documents (or vice versa), and (ii) illustrates the potential of biological information graphs in synthesizing knowledge in order to formulate new hypotheses and generate novel predictions for subsequent experimental study. In particular, the well-known LocusLink corpus is used to construct a biological information graph consisting of 10,297 nodes and 21,910 edges. The large-scale statistical properties of this gene-document network suggest that it is a new example of a power-law network. The segregation of genes on the basis of species and encoded protein molecular function indicate the presence of assortativity, the preference for nodes with similar attributes to be neighbors in a network. The practical utility of a gene-document network is illustrated by using measures such as shortest paths and centrality to analyze a subset of nodes corresponding to genes implicated in aging. Each release of a curated biomedical corpus defines a particular static graph. The topology of a gene-document network changes over time as curators add and/or remove nodes and/or edges. Such a dynamic, evolving corpus provides both the foundation for analyzing the growth and behavior of large complex networks and a substrate for examining trends in biological research.

  9. On the Kirchhoff Index of Graphs

    NASA Astrophysics Data System (ADS)

    Das, Kinkar C.

    2013-09-01

    Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ ... ≥ μn-1 > mn = 0. The Kirchhoff index of G is defined as [xxx] In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus-Gaddum-type result for the Kirchhoff index.

  10. Mathematical foundations of the GraphBLAS

    DOE PAGES

    Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...

    2016-12-01

    The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less

  11. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.

    PubMed

    Eshleman, Ryan; Singh, Rahul

    2016-10-06

    Adverse drug events (ADEs) constitute one of the leading causes of post-therapeutic death and their identification constitutes an important challenge of modern precision medicine. Unfortunately, the onset and effects of ADEs are often underreported complicating timely intervention. At over 500 million posts per day, Twitter is a commonly used social media platform. The ubiquity of day-to-day personal information exchange on Twitter makes it a promising target for data mining for ADE identification and intervention. Three technical challenges are central to this problem: (1) identification of salient medical keywords in (noisy) tweets, (2) mapping drug-effect relationships, and (3) classification of such relationships as adverse or non-adverse. We use a bipartite graph-theoretic representation called a drug-effect graph (DEG) for modeling drug and side effect relationships by representing the drugs and side effects as vertices. We construct individual DEGs on two data sources. The first DEG is constructed from the drug-effect relationships found in FDA package inserts as recorded in the SIDER database. The second DEG is constructed by mining the history of Twitter users. We use dictionary-based information extraction to identify medically-relevant concepts in tweets. Drugs, along with co-occurring symptoms are connected with edges weighted by temporal distance and frequency. Finally, information from the SIDER DEG is integrate with the Twitter DEG and edges are classified as either adverse or non-adverse using supervised machine learning. We examine both graph-theoretic and semantic features for the classification task. The proposed approach can identify adverse drug effects with high accuracy with precision exceeding 85 % and F1 exceeding 81 %. When compared with leading methods at the state-of-the-art, which employ un-enriched graph-theoretic analysis alone, our method leads to improvements ranging between 5 and 8 % in terms of the aforementioned measures. Additionally, we employ our method to discover several ADEs which, though present in medical literature and Twitter-streams, are not represented in the SIDER databases. We present a DEG integration model as a powerful formalism for the analysis of drug-effect relationships that is general enough to accommodate diverse data sources, yet rigorous enough to provide a strong mechanism for ADE identification.

  12. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary nodemore » in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.« less

  13. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. In this work, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by amore » genus model from a higher dimension in the graph theory. In conclusion, our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.« less

  14. Domain configurations in dislocations embedded hexagonal manganite systems: From the view of graph theory

    DOE PAGES

    Cheng, Shaobo; Zhang, Dong; Deng, Shiqing; ...

    2018-04-19

    Topological defects and their interactions often arouse multiple types of emerging phenomena from edge states in Skyrmions to disclination pairs in liquid crystals. In hexagonal manganites, partial edge dislocations, a prototype topological defect, are ubiquitous and they significantly alter the topologically protected domains and their behaviors. In this work, combining electron microscopy experiment and graph theory analysis, we report a systematic study of the connections and configurations of domains in this dislocation embedded system. Rules for domain arrangement are established. The dividing line between domains, which can be attributed by the strain field of dislocations, is accurately described by amore » genus model from a higher dimension in the graph theory. In conclusion, our results open a door for the understanding of domain patterns in topologically protected multiferroic systems.« less

  15. Eccentric connectivity index of chemical trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haoer, R. S., E-mail: raadsehen@gmail.com; Department of Mathematics, Faculty of Computer Sciences and Mathematics, University Of Kufa, Najaf; Atan, K. A., E-mail: kamel@upm.edu.my

    Let G = (V, E) be a simple connected molecular graph. In such a simple molecular graph, vertices and edges are depicted atoms and chemical bonds respectively, we refer to the sets of vertices by V (G) and edges by E (G). If d(u, v) be distance between two vertices u, v ∈ V(G) and can be defined as the length of a shortest path joining them. Then, the eccentricity connectivity index (ECI) of a molecular graph G is ξ(G) = ∑{sub v∈V(G)} d(v) ec(v), where d(v) is degree of a vertex v ∈ V(G). ec(v) is the length ofmore » a greatest path linking to another vertex of v. In this study, we focus the general formula for the eccentricity connectivity index (ECI) of some chemical trees as alkenes.« less

  16. Optimal solution for travelling salesman problem using heuristic shortest path algorithm with imprecise arc length

    NASA Astrophysics Data System (ADS)

    Bakar, Sumarni Abu; Ibrahim, Milbah

    2017-08-01

    The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.

  17. deBGR: an efficient and near-exact representation of the weighted de Bruijn graph

    PubMed Central

    Pandey, Prashant; Bender, Michael A.; Johnson, Rob; Patro, Rob

    2017-01-01

    Abstract Motivation: Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using ‘long read’ technologies like those offered by PacBio or Oxford Nanopore), efficient k-mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k-mer occurs, which is key in transcriptome assemblers. Results: We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18–28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems. Availability and implementation: https://github.com/splatlab/debgr. Contact: rob.patro@cs.stonybrook.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881995

  18. A distributed-memory approximation algorithm for maximum weight perfect bipartite matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydin; Li, Xiaoye S.

    We design and implement an efficient parallel approximation algorithm for the problem of maximum weight perfect matching in bipartite graphs, i.e. the problem of finding a set of non-adjacent edges that covers all vertices and has maximum weight. This problem differs from the maximum weight matching problem, for which scalable approximation algorithms are known. It is primarily motivated by finding good pivots in scalable sparse direct solvers before factorization where sequential implementations of maximum weight perfect matching algorithms, such as those available in MC64, are widely used due to the lack of scalable alternatives. To overcome this limitation, we proposemore » a fully parallel distributed memory algorithm that first generates a perfect matching and then searches for weightaugmenting cycles of length four in parallel and iteratively augments the matching with a vertex disjoint set of such cycles. For most practical problems the weights of the perfect matchings generated by our algorithm are very close to the optimum. An efficient implementation of the algorithm scales up to 256 nodes (17,408 cores) on a Cray XC40 supercomputer and can solve instances that are too large to be handled by a single node using the sequential algorithm.« less

  19. Hierarchical graphs for better annotations of rule-based models of biochemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bin; Hlavacek, William

    2009-01-01

    In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of amore » molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.« less

  20. Linear game non-contextuality and Bell inequalities—a graph-theoretic approach

    NASA Astrophysics Data System (ADS)

    Rosicka, M.; Ramanathan, R.; Gnaciński, P.; Horodecki, K.; Horodecki, M.; Horodecki, P.; Severini, S.

    2016-04-01

    We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions.

  1. Constructing Phylogenies.

    ERIC Educational Resources Information Center

    Bilardello, Nicholas; Valdes, Linda

    1998-01-01

    Introduces a method for constructing phylogenies using molecular traits and elementary graph theory. Discusses analyzing molecular data and using weighted graphs, minimum-weight spanning trees, and rooted cube phylogenies to display the data. (DDR)

  2. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-04-01

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph G: a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into G will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, which is a complete bipartite graph. We show that the complete bipartite graph K_{N,N} has a MSC of N minors, from which K_{N+1} is identified as the largest clique minor of K_{N,N}. The case of determining the largest clique minor of hardware with faults is briefly discussed but remains an open question.

  3. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets

    DOE PAGES

    Hamilton, Kathleen E.; Humble, Travis S.

    2017-02-23

    Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less

  4. Mathematical modeling of the malignancy of cancer using graph evolution.

    PubMed

    Gunduz-Demir, Cigdem

    2007-10-01

    We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.

  5. Scalable Triadic Analysis of Large-Scale Graphs: Multi-Core vs. Multi-Processor vs. Multi-Threaded Shared Memory Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Marquez, Andres; Choudhury, Sutanay

    2012-09-01

    Triadic analysis encompasses a useful set of graph mining methods that is centered on the concept of a triad, which is a subgraph of three nodes and the configuration of directed edges across the nodes. Such methods are often applied in the social sciences as well as many other diverse fields. Triadic methods commonly operate on a triad census that counts the number of triads of every possible edge configuration in a graph. Like other graph algorithms, triadic census algorithms do not scale well when graphs reach tens of millions to billions of nodes. To enable the triadic analysis ofmore » large-scale graphs, we developed and optimized a triad census algorithm to efficiently execute on shared memory architectures. We will retrace the development and evolution of a parallel triad census algorithm. Over the course of several versions, we continually adapted the code’s data structures and program logic to expose more opportunities to exploit parallelism on shared memory that would translate into improved computational performance. We will recall the critical steps and modifications that occurred during code development and optimization. Furthermore, we will compare the performances of triad census algorithm versions on three specific systems: Cray XMT, HP Superdome, and AMD multi-core NUMA machine. These three systems have shared memory architectures but with markedly different hardware capabilities to manage parallelism.« less

  6. Evolution of a Modified Binomial Random Graph by Agglomeration

    NASA Astrophysics Data System (ADS)

    Kang, Mihyun; Pachon, Angelica; Rodríguez, Pablo M.

    2018-02-01

    In the classical Erdős-Rényi random graph G( n, p) there are n vertices and each of the possible edges is independently present with probability p. The random graph G( n, p) is homogeneous in the sense that all vertices have the same characteristics. On the other hand, numerous real-world networks are inhomogeneous in this respect. Such an inhomogeneity of vertices may influence the connection probability between pairs of vertices. The purpose of this paper is to propose a new inhomogeneous random graph model which is obtained in a constructive way from the Erdős-Rényi random graph G( n, p). Given a configuration of n vertices arranged in N subsets of vertices (we call each subset a super-vertex), we define a random graph with N super-vertices by letting two super-vertices be connected if and only if there is at least one edge between them in G( n, p). Our main result concerns the threshold for connectedness. We also analyze the phase transition for the emergence of the giant component and the degree distribution. Even though our model begins with G( n, p), it assumes the existence of some community structure encoded in the configuration. Furthermore, under certain conditions it exhibits a power law degree distribution. Both properties are important for real-world applications.

  7. Optimizing Synchronization Stability of the Kuramoto Model in Complex Networks and Power Grids

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wong, K. Y. Michael

    Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial systems. For the Kuramoto model on general weighted networks, the synchronization stability, measured by the dominant Lyapunov exponent at the steady state, is shown to have intricate and nonlinear dependence on the network topology and the dynamical parameters. Specifically, the dominant Lyapunov exponent corresponds to the algebraic connectivity of a meta-graph whose edge weight depends nonlinearly on the steady states. In this study, we utilize the cut-set space (DC) approximation to estimate the nonlinear steady state and simplify the calculation of the stability measure, based on which we further derive efficient algorithms to optimize the synchronization stability. The properties of the optimized networks and application in power grid stability are also discussed. This work is supported by a Grant from the Research Grant Council of Hong Kong (Grant Numbers 605813 and 16322616).

  8. Graphtables

    DTIC Science & Technology

    2015-06-01

    Visualization, Graph Navigation, Visual Literacy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 19a. NAME OF...3 2.3. Visual Literacy ...obscured and individual edges that could be traversed before bundled are now completely lost among the bundled edges. 2.3. Visual Literacy Visual

  9. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    PubMed

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  10. Not seeing the forest for the trees: size of the minimum spanning trees (MSTs) forest and branch significance in MST-based phylogenetic analysis.

    PubMed

    Teixeira, Andreia Sofia; Monteiro, Pedro T; Carriço, João A; Ramirez, Mário; Francisco, Alexandre P

    2015-01-01

    Trees, including minimum spanning trees (MSTs), are commonly used in phylogenetic studies. But, for the research community, it may be unclear that the presented tree is just a hypothesis, chosen from among many possible alternatives. In this scenario, it is important to quantify our confidence in both the trees and the branches/edges included in such trees. In this paper, we address this problem for MSTs by introducing a new edge betweenness metric for undirected and weighted graphs. This spanning edge betweenness metric is defined as the fraction of equivalent MSTs where a given edge is present. The metric provides a per edge statistic that is similar to that of the bootstrap approach frequently used in phylogenetics to support the grouping of taxa. We provide methods for the exact computation of this metric based on the well known Kirchhoff's matrix tree theorem. Moreover, we implement and make available a module for the PHYLOViZ software and evaluate the proposed metric concerning both effectiveness and computational performance. Analysis of trees generated using multilocus sequence typing data (MLST) and the goeBURST algorithm revealed that the space of possible MSTs in real data sets is extremely large. Selection of the edge to be represented using bootstrap could lead to unreliable results since alternative edges are present in the same fraction of equivalent MSTs. The choice of the MST to be presented, results from criteria implemented in the algorithm that must be based in biologically plausible models.

  11. Exactly solved models on planar graphs with vertices in {Z}^3

    NASA Astrophysics Data System (ADS)

    Kels, Andrew P.

    2017-12-01

    It is shown how exactly solved edge interaction models on the square lattice, may be extended onto more general planar graphs, with edges connecting a subset of next nearest neighbour vertices of {Z}3 . This is done by using local deformations of the square lattice, that arise through the use of the star-triangle relation. Similar to Baxter’s Z-invariance property, these local deformations leave the partition function invariant up to some simple factors coming from the star-triangle relation. The deformations used here extend the usual formulation of Z-invariance, by requiring the introduction of oriented rapidity lines which form directed closed paths in the rapidity graph of the model. The quasi-classical limit is also considered, in which case the deformations imply a classical Z-invariance property, as well as a related local closure relation, for the action functional of a system of classical discrete Laplace equations.

  12. Resistance distance and Kirchhoff index in circulant graphs

    NASA Astrophysics Data System (ADS)

    Zhang, Heping; Yang, Yujun

    The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, closed-form formulae for Kirchhoff index and resistance distances of circulant graphs are derived in terms of Laplacian spectrum and eigenvectors. Special formulae are also given for four classes of circulant graphs (complete graphs, complete graphs minus a perfect matching, cycles, Möbius ladders Mp). In particular, the asymptotic behavior of Kf(Mp) as p ? ? is obtained, that is, Kf(Mp) grows as ⅙p3 as p ? ?.

  13. Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).

    PubMed

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.

  14. Securing Provenance of Distributed Processes in an Untrusted Environment

    NASA Astrophysics Data System (ADS)

    Syalim, Amril; Nishide, Takashi; Sakurai, Kouichi

    Recently, there is much concern about the provenance of distributed processes, that is about the documentation of the origin and the processes to produce an object in a distributed system. The provenance has many applications in the forms of medical records, documentation of processes in the computer systems, recording the origin of data in the cloud, and also documentation of human-executed processes. The provenance of distributed processes can be modeled by a directed acyclic graph (DAG) where each node represents an entity, and an edge represents the origin and causal relationship between entities. Without sufficient security mechanisms, the provenance graph suffers from integrity and confidentiality problems, for example changes or deletions of the correct nodes, additions of fake nodes and edges, and unauthorized accesses to the sensitive nodes and edges. In this paper, we propose an integrity mechanism for provenance graph using the digital signature involving three parties: the process executors who are responsible in the nodes' creation, a provenance owner that records the nodes to the provenance store, and a trusted party that we call the Trusted Counter Server (TCS) that records the number of nodes stored by the provenance owner. We show that the mechanism can detect the integrity problem in the provenance graph, namely unauthorized and malicious “authorized” updates even if all the parties, except the TCS, collude to update the provenance. In this scheme, the TCS only needs a very minimal storage (linear with the number of the provenance owners). To protect the confidentiality and for an efficient access control administration, we propose a method to encrypt the provenance graph that allows access by paths and compartments in the provenance graph. We argue that encryption is important as a mechanism to protect the provenance data stored in an untrusted environment. We analyze the security of the integrity mechanism, and perform experiments to measure the performance of both mechanisms.

  15. Solving Multi-variate Polynomial Equations in a Finite Field

    DTIC Science & Technology

    2013-06-01

    Algebraic Background In this section, some algebraic definitions and basics are discussed as they pertain to this re- search. For a more detailed...definitions and basics are discussed as they pertain to this research. For a more detailed treatment, consult a graph theory text such as [10]. A graph G...graph if V(G) can be partitioned into k subsets V1,V2, ...,Vk such that uv is only an edge of G if u and v belong to different partite sets. If, in

  16. Consensus, Polarization and Clustering of Opinions in Social Networks

    DTIC Science & Technology

    2013-06-01

    values of τ , and consensus at larger values. Fig. 6 compares the phase transitions for three different network configurations: RGG, Erdos- Renyi graph and...Erdos- Renyi graph [25] is generated uniformly at random from the collection of all graphs which have n = 50 nodes and M = 120 edges. The small- world...0.6 0.8 1 Threshold τ N or m al iz ed A lg eb ra ic C on ne ct iv ity RGG Erdos− Renyi Small−World Fig. 6. Phase transitions using three

  17. Quantum walks of two interacting particles on percolation graphs

    NASA Astrophysics Data System (ADS)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  18. Graph Structure Theory: Proceedings of a Joint Summer Research Conference on Graph Minors Held June 22 to July 5, 1991, at the University of Washington, Seattle. Contemporary Mathematics 147

    DTIC Science & Technology

    1991-01-01

    aspects of classical field theory, 1992 131 L A. Bokut’, Yu. L Ershov, and A. I. Kostrikin, Editors, Proceedings of the International Conference on Algebra...should be addressed to the Manager of Editorial Services , American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. The...dominant edges in T, and b(T) as the number of dominant edges not in T, for the fixed enumeration U. In [2] a(T) is called the " internal activity" and b(T

  19. Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Frey, Hannes; Rührup, Stefan

    A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.

  20. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less

  1. Calibration with confidence: a principled method for panel assessment.

    PubMed

    MacKay, R S; Kenna, R; Low, R J; Parker, S

    2017-02-01

    Frequently, a set of objects has to be evaluated by a panel of assessors, but not every object is assessed by every assessor. A problem facing such panels is how to take into account different standards among panel members and varying levels of confidence in their scores. Here, a mathematically based algorithm is developed to calibrate the scores of such assessors, addressing both of these issues. The algorithm is based on the connectivity of the graph of assessors and objects evaluated, incorporating declared confidences as weights on its edges. If the graph is sufficiently well connected, relative standards can be inferred by comparing how assessors rate objects they assess in common, weighted by the levels of confidence of each assessment. By removing these biases, 'true' values are inferred for all the objects. Reliability estimates for the resulting values are obtained. The algorithm is tested in two case studies: one by computer simulation and another based on realistic evaluation data. The process is compared to the simple averaging procedure in widespread use, and to Fisher's additive incomplete block analysis. It is anticipated that the algorithm will prove useful in a wide variety of situations such as evaluation of the quality of research submitted to national assessment exercises; appraisal of grant proposals submitted to funding panels; ranking of job applicants; and judgement of performances on degree courses wherein candidates can choose from lists of options.

  2. Calibration with confidence: a principled method for panel assessment

    PubMed Central

    MacKay, R. S.; Low, R. J.; Parker, S.

    2017-01-01

    Frequently, a set of objects has to be evaluated by a panel of assessors, but not every object is assessed by every assessor. A problem facing such panels is how to take into account different standards among panel members and varying levels of confidence in their scores. Here, a mathematically based algorithm is developed to calibrate the scores of such assessors, addressing both of these issues. The algorithm is based on the connectivity of the graph of assessors and objects evaluated, incorporating declared confidences as weights on its edges. If the graph is sufficiently well connected, relative standards can be inferred by comparing how assessors rate objects they assess in common, weighted by the levels of confidence of each assessment. By removing these biases, ‘true’ values are inferred for all the objects. Reliability estimates for the resulting values are obtained. The algorithm is tested in two case studies: one by computer simulation and another based on realistic evaluation data. The process is compared to the simple averaging procedure in widespread use, and to Fisher's additive incomplete block analysis. It is anticipated that the algorithm will prove useful in a wide variety of situations such as evaluation of the quality of research submitted to national assessment exercises; appraisal of grant proposals submitted to funding panels; ranking of job applicants; and judgement of performances on degree courses wherein candidates can choose from lists of options. PMID:28386432

  3. Supervised variational model with statistical inference and its application in medical image segmentation.

    PubMed

    Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David

    2015-01-01

    Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.

  4. Automatic classification of protein structures relying on similarities between alignments

    PubMed Central

    2012-01-01

    Background Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. Results When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. Conclusions We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP. PMID:22974051

  5. Massive Social Network Analysis: Mining Twitter for Social Good

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ediger, David; Jiang, Karl; Riedy, Edward J.

    Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Tooklit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system.more » Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.« less

  6. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    PubMed

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  7. Detecting complexes from edge-weighted PPI networks via genes expression analysis.

    PubMed

    Zhang, Zehua; Song, Jian; Tang, Jijun; Xu, Xinying; Guo, Fei

    2018-04-24

    Identifying complexes from PPI networks has become a key problem to elucidate protein functions and identify signal and biological processes in a cell. Proteins binding as complexes are important roles of life activity. Accurate determination of complexes in PPI networks is crucial for understanding principles of cellular organization. We propose a novel method to identify complexes on PPI networks, based on different co-expression information. First, we use Markov Cluster Algorithm with an edge-weighting scheme to calculate complexes on PPI networks. Then, we propose some significant features, such as graph information and gene expression analysis, to filter and modify complexes predicted by Markov Cluster Algorithm. To evaluate our method, we test on two experimental yeast PPI networks. On DIP network, our method has Precision and F-Measure values of 0.6004 and 0.5528. On MIPS network, our method has F-Measure and S n values of 0.3774 and 0.3453. Comparing to existing methods, our method improves Precision value by at least 0.1752, F-Measure value by at least 0.0448, S n value by at least 0.0771. Experiments show that our method achieves better results than some state-of-the-art methods for identifying complexes on PPI networks, with the prediction quality improved in terms of evaluation criteria.

  8. Plane representations of graphs and visibility between parallel segments

    NASA Astrophysics Data System (ADS)

    Tamassia, R.; Tollis, I. G.

    1985-04-01

    Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. This paper studies visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be a planar. The authors consider three types of visibility representations, and give complete characterizations of the classes of graphs that admit them. Furthermore, they present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.

  9. A top-down approach for approximate data anonymisation

    NASA Astrophysics Data System (ADS)

    Li, JianQiang; Yang, Ji-Jiang; Zhao, Yu; Liu, Bo

    2013-08-01

    Data sharing in today's information society poses a threat to individual privacy and organisational confidentiality. k-anonymity is a widely adopted model to prevent the owner of a record being re-identified. By generalising and/or suppressing certain portions of the released dataset, it guarantees that no records can be uniquely distinguished from at least other k-1 records. A key requirement for the k-anonymity problem is to minimise the information loss resulting from data modifications. This article proposes a top-down approach to solve this problem. It first considers each record as a vertex and the similarity between two records as the edge weight to construct a complete weighted graph. Then, an edge cutting algorithm is designed to divide the complete graph into multiple trees/components. The Large Components with size bigger than 2k-1 are subsequently split to guarantee that each resulting component has the vertex number between k and 2k-1. Finally, the generalisation operation is applied on the vertices in each component (i.e. equivalence class) to make sure all the records inside have identical quasi-identifier values. We prove that the proposed approach has polynomial running time and theoretical performance guarantee O(k). The empirical experiments show that our approach results in substantial improvements over the baseline heuristic algorithms, as well as the bottom-up approach with the same approximate bound O(k). Comparing to the baseline bottom-up O(logk)-approximation algorithm, when the required k is smaller than 50, the adopted top-down strategy makes our approach achieve similar performance in terms of information loss while spending much less computing time. It demonstrates that our approach would be a best choice for the k-anonymity problem when both the data utility and runtime need to be considered, especially when k is set to certain value smaller than 50 and the record set is big enough to make the runtime have to be taken into account.

  10. The Use of Weighted Graphs for Large-Scale Genome Analysis

    PubMed Central

    Zhou, Fang; Toivonen, Hannu; King, Ross D.

    2014-01-01

    There is an acute need for better tools to extract knowledge from the growing flood of sequence data. For example, thousands of complete genomes have been sequenced, and their metabolic networks inferred. Such data should enable a better understanding of evolution. However, most existing network analysis methods are based on pair-wise comparisons, and these do not scale to thousands of genomes. Here we propose the use of weighted graphs as a data structure to enable large-scale phylogenetic analysis of networks. We have developed three types of weighted graph for enzymes: taxonomic (these summarize phylogenetic importance), isoenzymatic (these summarize enzymatic variety/redundancy), and sequence-similarity (these summarize sequence conservation); and we applied these types of weighted graph to survey prokaryotic metabolism. To demonstrate the utility of this approach we have compared and contrasted the large-scale evolution of metabolism in Archaea and Eubacteria. Our results provide evidence for limits to the contingency of evolution. PMID:24619061

  11. On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models

    NASA Astrophysics Data System (ADS)

    Khorunzhiy, O.

    2008-08-01

    Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of walks and closed walks over the random graph. These sums can be considered as discrete analogues of the matrix integrals of random matrix theory. We study the diagram structure of the cumulant expansions of logarithms of these matrix sums and analyze the limiting expressions as n → ∞ in the cases of constant and vanishing edge probabilities.

  12. Fitchi: haplotype genealogy graphs based on the Fitch algorithm.

    PubMed

    Matschiner, Michael

    2016-04-15

    : In population genetics and phylogeography, haplotype genealogy graphs are important tools for the visualization of population structure based on sequence data. In this type of graph, node sizes are often drawn in proportion to haplotype frequencies and edge lengths represent the minimum number of mutations separating adjacent nodes. I here present Fitchi, a new program that produces publication-ready haplotype genealogy graphs based on the Fitch algorithm. http://www.evoinformatics.eu/fitchi.htm : michaelmatschiner@mac.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Analysis of Interferometric Synthetic Aperture Radar Phase Data at Brady Hot Springs, Nevada, USA Using Prior Information

    NASA Astrophysics Data System (ADS)

    Reinisch, E. C.; Ali, S. T.; Cardiff, M. A.; Morency, C.; Kreemer, C.; Feigl, K. L.; Team, P.

    2016-12-01

    Time-dependent deformation has been observed at Brady Hot Springs using interferometric synthetic aperture radar (InSAR) [Ali et al. 2016, http://dx.doi.org/10.1016/j.geothermics.2016.01.008]. Our goal is to evaluate multiple competing hypotheses to explain the observed deformation at Brady. To do so requires statistical tests that account for uncertainty. Graph theory is useful for such an analysis of InSAR data [Reinisch, et al. 2016, http://dx.doi.org/10.1007/s00190-016-0934-5]. In particular, the normalized edge Laplacian matrix calculated from the edge-vertex incidence matrix of the graph of the pair-wise data set represents its correlation and leads to a full data covariance matrix in the weighted least squares problem. This formulation also leads to the covariance matrix of the epoch-wise measurements, representing their relative uncertainties. While the formulation in terms of incidence graphs applies to any quantity derived from pair-wise differences, the modulo-2π ambiguity of wrapped phase renders the problem non-linear. The conventional practice is to unwrap InSAR phase before modeling, which can introduce mistakes without increasing the corresponding measurement uncertainty. To address this issue, we are applying Bayesian inference. To build the likelihood, we use three different observables: (a) wrapped phase [e.g., Feigl and Thurber 2009, http://dx.doi.org/10.1111/j.1365-246X.2008.03881.x]; (b) range gradients, as defined by Ali and Feigl [2012, http://dx.doi.org/10.1029/2012GC004112]; and (c) unwrapped phase, i.e. range change in mm, which we validate using GPS data. We apply our method to InSAR data taken over Brady Hot Springs geothermal field in Nevada as part of a project entitled "Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology" (PoroTomo) [ http://geoscience.wisc.edu/feigl/porotomo].

  14. Resistance Distances and Kirchhoff Index in Generalised Join Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan

    2017-03-01

    The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.

  15. Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupavskii, A B; Raigorodskii, A M

    2013-10-31

    We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3more » (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.« less

  16. Using graph theory to quantify coarse sediment connectivity in alpine geosystems

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Thiel, Markus; Schwanghart, Wolfgang; Haas, Florian; Becht, Michael

    2010-05-01

    Networks are a common object of study in various disciplines. Among others, informatics, sociology, transportation science, economics and ecology frequently deal with objects which are linked with other objects to form a network. Despite this wide thematic range, a coherent formal basis to represent, measure and model the relational structure of models exists. The mathematical model for networks of all kinds is a graph which can be analysed using the tools of mathematical graph theory. In a graph model of a generic system, system components are represented by graph nodes, and the linkages between them are formed by graph edges. The latter may represent all kinds of linkages, from matter or energy fluxes to functional relations. To some extent, graph theory has been used in geosciences and related disciplines; in hydrology and fluvial geomorphology, for example, river networks have been modeled and analysed as graphs. An important issue in hydrology is the hydrological connectivity which determines if runoff generated on some area reaches the channel network. In ecology, a number of graph-theoretical indices is applicable to describing the influence of habitat distribution and landscape fragmentation on population structure and species mobility. In these examples, the mobility of matter (water, sediment, animals) through a system is an important consequence of system structure, i.e. the location and topology of its components as well as of properties of linkages between them. In geomorphology, sediment connectivity relates to the potential of sediment particles to move through the catchment. As a system property, connectivity depends, for example, on the degree to which hillslopes within a catchment are coupled to the channel system (lateral coupling), and to which channel reaches are coupled to each other (longitudinal coupling). In the present study, numerical GIS-based models are used to investigate the coupling of geomorphic process units by delineating the process domains of important geomorphic processes in a high-mountain environment (rockfall, slope-type debris flows, slope aquatic and fluvial processes). The results are validated by field mapping; they show that only small parts of a catchment are actually coupled to its outlet with respect to coarse (bedload) sediment. The models not only generate maps of the spatial extent and geomorphic activity of the aforementioned processes, they also output so-called edge lists that can be converted to adjacency matrices and graphs. Graph theory is then employed to explore ‘local' (i.e. referring to single nodes or edges) and ‘global' (i.e. system-wide, referring to the whole graph) measures that can be used to quantify coarse sediment connectivity. Such a quantification will complement the mainly qualitative appraisal of coupling and connectivity; the effect of connectivity on catchment properties such as specific sediment yield and catchment sensitivity will then be studied on the basis of quantitative measures.

  17. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration.

    PubMed

    Wu, Guangsheng; Liu, Juan; Wang, Caihua

    2017-12-28

    Prediction of drug-disease interactions is promising for either drug repositioning or disease treatment fields. The discovery of novel drug-disease interactions, on one hand can help to find novel indictions for the approved drugs; on the other hand can provide new therapeutic approaches for the diseases. Recently, computational methods for finding drug-disease interactions have attracted lots of attention because of their far more higher efficiency and lower cost than the traditional wet experiment methods. However, they still face several challenges, such as the organization of the heterogeneous data, the performance of the model, and so on. In this work, we present to hierarchically integrate the heterogeneous data into three layers. The drug-drug and disease-disease similarities are first calculated separately in each layer, and then the similarities from three layers are linearly fused into comprehensive drug similarities and disease similarities, which can then be used to measure the similarities between two drug-disease pairs. We construct a novel weighted drug-disease pair network, where a node is a drug-disease pair with known or unknown treatment relation, an edge represents the node-node relation which is weighted with the similarity score between two pairs. Now that similar drug-disease pairs are supposed to show similar treatment patterns, we can find the optimal graph cut of the network. The drug-disease pair with unknown relation can then be considered to have similar treatment relation with that within the same cut. Therefore, we develop a semi-supervised graph cut algorithm, SSGC, to find the optimal graph cut, based on which we can identify the potential drug-disease treatment interactions. By comparing with three representative network-based methods, SSGC achieves the highest performances, in terms of both AUC score and the identification rates of true drug-disease pairs. The experiments with different integration strategies also demonstrate that considering several sources of data can improve the performances of the predictors. Further case studies on four diseases, the top-ranked drug-disease associations have been confirmed by KEGG, CTD database and the literature, illustrating the usefulness of SSGC. The proposed comprehensive similarity scores from multi-views and multiple layers and the graph-cut based algorithm can greatly improve the prediction performances of drug-disease associations.

  18. The partition dimension of subdivision of a graph

    NASA Astrophysics Data System (ADS)

    Amrullah, Baskoro, Edy Tri; Uttunggadewa, Saladin; Simanjuntak, Rinovia

    2016-02-01

    Let G = (V,E) be a connected graph, u,v ∈ V (G), e = uv ∈ E(G) and k be a positive integer. A k-subdivision of an edge e is a replacement of e = uv with a path u, x1, x2, x ..., xk, v. A graph G with a k-subdivided edge is denoted with S(G(e; k)). Let p be a positive integer and Π = {L1, L2, L3, …, Lp} be a p-partition of V (G). The representation of a vertex v with respect to Π, r(v|Π), is the vector (d(v, L1), d(v, L2), d(v, L3),…, d(v, Lp)) where d(v, Li) for i ∈ [1, p] is the minimum distance between v and the vertices of Li. The partition Π is called a resolving partition of G if r(w|Π) ≠ r(v|Π) for all w ≠ v ∈ V (G). The partition dimension, pd(G), of G is the smallest integer p such that G has a resolving p-partition. In this paper, we present sharp upper and lower bounds of the partition dimension of S(G(e; k)) for any graph G.

  19. Semi-Metric Topology of the Human Connectome: Sensitivity and Specificity to Autism and Major Depressive Disorder.

    PubMed

    Simas, Tiago; Chattopadhyay, Shayanti; Hagan, Cindy; Kundu, Prantik; Patel, Ameera; Holt, Rosemary; Floris, Dorothea; Graham, Julia; Ooi, Cinly; Tait, Roger; Spencer, Michael; Baron-Cohen, Simon; Sahakian, Barbara; Bullmore, Ed; Goodyer, Ian; Suckling, John

    2015-01-01

    The human functional connectome is a graphical representation, consisting of nodes connected by edges, of the inter-relationships of blood oxygenation-level dependent (BOLD) time-series measured by MRI from regions encompassing the cerebral cortices and, often, the cerebellum. Semi-metric analysis of the weighted, undirected connectome distinguishes an edge as either direct (metric), such that there is no alternative path that is accumulatively stronger, or indirect (semi-metric), where one or more alternative paths exist that have greater strength than the direct edge. The sensitivity and specificity of this method of analysis is illustrated by two case-control analyses with independent, matched groups of adolescents with autism spectrum conditions (ASC) and major depressive disorder (MDD). Significance differences in the global percentage of semi-metric edges was observed in both groups, with increases in ASC and decreases in MDD relative to controls. Furthermore, MDD was associated with regional differences in left frontal and temporal lobes, the right limbic system and cerebellum. In contrast, ASC had a broadly increased percentage of semi-metric edges with a more generalised distribution of effects and some areas of reduction. In summary, MDD was characterised by localised, large reductions in the percentage of semi-metric edges, whilst ASC is characterised by more generalised, subtle increases. These differences were corroborated in greater detail by inspection of the semi-metric backbone for each group; that is, the sub-graph of semi-metric edges present in >90% of participants, and by nodal degree differences in the semi-metric connectome. These encouraging results, in what we believe is the first application of semi-metric analysis to neuroimaging data, raise confidence in the methodology as potentially capable of detection and characterisation of a range of neurodevelopmental and psychiatric disorders.

  20. Semi-Metric Topology of the Human Connectome: Sensitivity and Specificity to Autism and Major Depressive Disorder

    PubMed Central

    Simas, Tiago; Chattopadhyay, Shayanti; Hagan, Cindy; Kundu, Prantik; Patel, Ameera; Holt, Rosemary; Floris, Dorothea; Graham, Julia; Ooi, Cinly; Tait, Roger; Spencer, Michael; Baron-Cohen, Simon; Sahakian, Barbara; Bullmore, Ed; Goodyer, Ian; Suckling, John

    2015-01-01

    Introduction The human functional connectome is a graphical representation, consisting of nodes connected by edges, of the inter-relationships of blood oxygenation-level dependent (BOLD) time-series measured by MRI from regions encompassing the cerebral cortices and, often, the cerebellum. Semi-metric analysis of the weighted, undirected connectome distinguishes an edge as either direct (metric), such that there is no alternative path that is accumulatively stronger, or indirect (semi-metric), where one or more alternative paths exist that have greater strength than the direct edge. The sensitivity and specificity of this method of analysis is illustrated by two case-control analyses with independent, matched groups of adolescents with autism spectrum conditions (ASC) and major depressive disorder (MDD). Results Significance differences in the global percentage of semi-metric edges was observed in both groups, with increases in ASC and decreases in MDD relative to controls. Furthermore, MDD was associated with regional differences in left frontal and temporal lobes, the right limbic system and cerebellum. In contrast, ASC had a broadly increased percentage of semi-metric edges with a more generalised distribution of effects and some areas of reduction. In summary, MDD was characterised by localised, large reductions in the percentage of semi-metric edges, whilst ASC is characterised by more generalised, subtle increases. These differences were corroborated in greater detail by inspection of the semi-metric backbone for each group; that is, the sub-graph of semi-metric edges present in >90% of participants, and by nodal degree differences in the semi-metric connectome. Conclusion These encouraging results, in what we believe is the first application of semi-metric analysis to neuroimaging data, raise confidence in the methodology as potentially capable of detection and characterisation of a range of neurodevelopmental and psychiatric disorders. PMID:26308854

  1. Ringo: Interactive Graph Analytics on Big-Memory Machines

    PubMed Central

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2016-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads. PMID:27081215

  2. Ringo: Interactive Graph Analytics on Big-Memory Machines.

    PubMed

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2015-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.

  3. Complexity of the heart rhythm after heart transplantation by entropy of transition network for RR-increments of RR time intervals between heartbeats.

    PubMed

    Makowiec, Danuta; Struzik, Zbigniew; Graff, Beata; Wdowczyk-Szulc, Joanna; Zarczynska-Buchnowiecka, Marta; Gruchala, Marcin; Rynkiewicz, Andrzej

    2013-01-01

    Network models have been used to capture, represent and analyse characteristics of living organisms and general properties of complex systems. The use of network representations in the characterization of time series complexity is a relatively new but quickly developing branch of time series analysis. In particular, beat-to-beat heart rate variability can be mapped out in a network of RR-increments, which is a directed and weighted graph with vertices representing RR-increments and the edges of which correspond to subsequent increments. We evaluate entropy measures selected from these network representations in records of healthy subjects and heart transplant patients, and provide an interpretation of the results.

  4. Primitive graphs with small exponent and small scrambling index

    NASA Astrophysics Data System (ADS)

    Surbakti, Ita Y.; Suwilo, Saib; Butar-butar, Ericha A.; Oktaviani, Helda

    2018-01-01

    A connected graph G is primitive provide there is a positive integer k such that for each pair of vertices u and v there is a uv-walk of length k. The smallest of such positive integer k is the exponent of G and is denoted by exp(G). The scrambling index of a primitive graph G, denoted by k(G), is the smallest positive integer k such that for each pair of vertices u and v there is a vertex w such that there is a uw-walk and a vw-walk of length k. By an n-chainring CR(n) we mean a graph obtained from an n-cycle by replacing each edge of the n-cycle by a triangle. By a (q,p)-dory, D(q,p), we mean a graph with vertex set V(D(q,p)) = V(P q × P p ) ∪ {w 1, w 2} and edge set E(D(q,p)) = E(P q × Pp ) ∪ {w 1 - (u i ,v 1) : i = 1, 2,…, q}∪{w 2 -(u i ,vp ) : i = 1, 2,…, q}, where Pn is a path on n vertices. We discus the exponent and scrambling index of an n- chainring and (q, p)-dory. We present formulae for exponent and scrambling index in terms of their diameter.

  5. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

    PubMed

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin

    2018-01-01

    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  6. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    DOEpatents

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  7. NOUS: Construction and Querying of Dynamic Knowledge Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Agarwal, Khushbu; Purohit, Sumit

    The ability to construct domain specific knowledge graphs (KG) and perform question-answering or hypothesis generation is a trans- formative capability. Despite their value, automated construction of knowledge graphs remains an expensive technical challenge that is beyond the reach for most enterprises and academic institutions. We propose an end-to-end framework for developing custom knowl- edge graph driven analytics for arbitrary application domains. The uniqueness of our system lies A) in its combination of curated KGs along with knowledge extracted from unstructured text, B) support for advanced trending and explanatory questions on a dynamic KG, and C) the ability to answer queriesmore » where the answer is embedded across multiple data sources.« less

  8. Minimizing Expected Maximum Risk from Cyber-Attacks with Probabilistic Attack Success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuiyan, Tanveer H.; Nandi, Apurba; Medal, Hugh

    The goal of our work is to enhance network security by generating partial cut-sets, which are a subset of edges that remove paths from initially vulnerable nodes (initial security conditions) to goal nodes (critical assets), on an attack graph given costs for cutting an edge and a limited overall budget.

  9. Folding Automaton for Trees

    NASA Astrophysics Data System (ADS)

    Subashini, N.; Thiagarajan, K.

    2018-04-01

    In this paper we observed the definition of folding technique in graph theory and we derived the corresponding automaton for trees. Also derived some propositions on symmetrical structure tree, non-symmetrical structure tree, point symmetrical structure tree, edge symmetrical structure tree along with finite number of points. This approach provides to derive one edge after n’ number of foldings.

  10. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.

    PubMed

    Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei

    2013-10-01

    The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems.

    PubMed

    Su, Housheng; Wu, Han; Chen, Xia

    2017-10-01

    This paper studies the multi-input and multi-output discrete-time nonnegative edge synchronization of networked systems based on neighbors' output information. The communication relationship among the edges of networked systems is modeled by well-known line graph. Two observer-based edge synchronization algorithms are designed, for which some necessary and sufficient synchronization conditions are derived. Moreover, some computable sufficient synchronization conditions are obtained, in which the feedback matrix and the observer matrix are computed by solving the linear programming problems. We finally design several simulation examples to demonstrate the validity of the given nonnegative edge synchronization algorithms.

  12. Mathematics of Web science: structure, dynamics and incentives.

    PubMed

    Chayes, Jennifer

    2013-03-28

    Dr Chayes' talk described how, to a discrete mathematician, 'all the world's a graph, and all the people and domains merely vertices'. A graph is represented as a set of vertices V and a set of edges E, so that, for instance, in the World Wide Web, V is the set of pages and E the directed hyperlinks; in a social network, V is the people and E the set of relationships; and in the autonomous system Internet, V is the set of autonomous systems (such as AOL, Yahoo! and MSN) and E the set of connections. This means that mathematics can be used to study the Web (and other large graphs in the online world) in the following way: first, we can model online networks as large finite graphs; second, we can sample pieces of these graphs; third, we can understand and then control processes on these graphs; and fourth, we can develop algorithms for these graphs and apply them to improve the online experience.

  13. Are randomly grown graphs really random?

    PubMed

    Callaway, D S; Hopcroft, J E; Kleinberg, J M; Newman, M E; Strogatz, S H

    2001-10-01

    We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta=1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta=1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph-older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.

  14. On the modification Highly Connected Subgraphs (HCS) algorithm in graph clustering for weighted graph

    NASA Astrophysics Data System (ADS)

    Albirri, E. R.; Sugeng, K. A.; Aldila, D.

    2018-04-01

    Nowadays, in the modern world, since technology and human civilization start to progress, all city in the world is almost connected. The various places in this world are easier to visit. It is an impact of transportation technology and highway construction. The cities which have been connected can be represented by graph. Graph clustering is one of ways which is used to answer some problems represented by graph. There are some methods in graph clustering to solve the problem spesifically. One of them is Highly Connected Subgraphs (HCS) method. HCS is used to identify cluster based on the graph connectivity k for graph G. The connectivity in graph G is denoted by k(G)> \\frac{n}{2} that n is the total of vertices in G, then it is called as HCS or the cluster. This research used literature review and completed with simulation of program in a software. We modified HCS algorithm by using weighted graph. The modification is located in the Process Phase. Process Phase is used to cut the connected graph G into two subgraphs H and \\bar{H}. We also made a program by using software Octave-401. Then we applied the data of Flight Routes Mapping of One of Airlines in Indonesia to our program.

  15. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance

    PubMed Central

    Lin, Jing; Pramono, Zacharias Aloysius Dwi; Maurer-Stroh, Sebastian

    2016-01-01

    The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment (“Duals”) or from two segments (“Doubles”); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n– 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different therapeutic objectives. PMID:26771381

  16. Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology

    NASA Astrophysics Data System (ADS)

    Sharma, Harshita; Zerbe, Norman; Heim, Daniel; Wienert, Stephan; Lohmann, Sebastian; Hellwich, Olaf; Hufnagl, Peter

    2016-03-01

    This paper describes a novel graph-based method for efficient representation and subsequent classification in histological whole slide images of gastric cancer. Her2/neu immunohistochemically stained and haematoxylin and eosin stained histological sections of gastric carcinoma are digitized. Immunohistochemical staining is used in practice by pathologists to determine extent of malignancy, however, it is laborious to visually discriminate the corresponding malignancy levels in the more commonly used haematoxylin and eosin stain, and this study attempts to solve this problem using a computer-based method. Cell nuclei are first isolated at high magnification using an automatic cell nuclei segmentation strategy, followed by construction of cell nuclei attributed relational graphs of the tissue regions. These graphs represent tissue architecture comprehensively, as they contain information about cell nuclei morphology as vertex attributes, along with knowledge of neighborhood in the form of edge linking and edge attributes. Global graph characteristics are derived and ensemble learning is used to discriminate between three types of malignancy levels, namely, non-tumor, Her2/neu positive tumor and Her2/neu negative tumor. Performance is compared with state of the art methods including four texture feature groups (Haralick, Gabor, Local Binary Patterns and Varma Zisserman features), color and intensity features, and Voronoi diagram and Delaunay triangulation. Texture, color and intensity information is also combined with graph-based knowledge, followed by correlation analysis. Quantitative assessment is performed using two cross validation strategies. On investigating the experimental results, it can be concluded that the proposed method provides a promising way for computer-based analysis of histopathological images of gastric cancer.

  17. Graph edit distance from spectral seriation.

    PubMed

    Robles-Kelly, Antonio; Hancock, Edwin R

    2005-03-01

    This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems.

  18. On the existence of point spectrum for branching strips quantum graph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, I. Yu., E-mail: popov1955@gmail.com; Skorynina, A. N.; Blinova, I. V., E-mail: irin-a@yandex.ru

    2014-03-15

    The quantum graph having the form of branching strips with hexagonal (honeycomb) structure is considered. The Hamiltonian is determined as free 1D Schrödinger operator on each edge and some “boundary” conditions at each vertex. We obtain the conditions ensuring the point spectrum's existence for the Schrödinger operator of the system and relations that give us the eigenvalues.

  19. Information Selection in Intelligence Processing

    DTIC Science & Technology

    2011-12-01

    given. Edges connecting nodes representing irrelevant persons with either relevant or irrelevant persons are added randomly, as in an Erdos- Renyi ...graph (Erdos at Renyi , 1959): For each irrelevant node i , and another node j (either relevant or irrelevant) there is a predetermined probability that...statistics for engineering and the sciences (7th ed.). Boston: Duxbury Press. Erdos, P., & Renyi , A. (1959). “On Random Graphs,” Publicationes

  20. Maintenance of a Minimum Spanning Forest in a Dynamic Planar Graph

    DTIC Science & Technology

    1990-01-18

    v): Delete the edge from v to its parent , thereby dividing the tree containing v into two trees. evert(v): Make v the root of its tree by reversing...the path from v to the original root. find parent (v): Return the parent of v, or null if v is the root of its tree. find Ica(u, v): Return the least...given node (including the parent edge). The ordered set of edges adjacent to node v is called the edge list for v. For example, in our application we

  1. Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    PubMed Central

    Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374

  2. Local difference measures between complex networks for dynamical system model evaluation.

    PubMed

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.

  3. Three dimensional unstructured multigrid for the Euler equations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1991-01-01

    The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.

  4. Vertex centrality as a measure of information flow in Italian Corporate Board Networks

    NASA Astrophysics Data System (ADS)

    Grassi, Rosanna

    2010-06-01

    The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.

  5. Prediction of Oncogenic Interactions and Cancer-Related Signaling Networks Based on Network Topology

    PubMed Central

    Acencio, Marcio Luis; Bovolenta, Luiz Augusto; Camilo, Esther; Lemke, Ney

    2013-01-01

    Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research interested in detecting signaling networks most prone to contribute with the emergence of malignant phenotype. PMID:24204854

  6. Introducing axonal myelination in connectomics: A preliminary analysis of g-ratio distribution in healthy subjects.

    PubMed

    Mancini, Matteo; Giulietti, Giovanni; Dowell, Nicholas; Spanò, Barbara; Harrison, Neil; Bozzali, Marco; Cercignani, Mara

    2017-09-14

    Microstructural imaging and connectomics are two research areas that hold great potential for investigating brain structure and function. Combining these two approaches can lead to a better and more complete characterization of the brain as a network. The aim of this work is characterizing the connectome from a novel perspective using the myelination measure given by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, whose aggregated value can now be estimated in vivo using MRI. In two different datasets of healthy subjects, we reconstructed the structural connectome and then used the g-ratio estimated from diffusion and magnetization transfer data to characterize the network structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio distribution across the edges of the graph did not show the power-law distribution observed using the number of streamlines as a weight. Second, connections involving regions related to motor and sensory functions were the highest in myelin content. We also observed significant differences in terms of the hub structure and the rich-club organization suggesting that connections involving hub regions present higher myelination than peripheral connections. Taken together, these findings offer a characterization of g-ratio distribution across the connectome in healthy subjects and lay the foundations for further investigating plasticity and pathology using a similar approach. Copyright © 2017. Published by Elsevier Inc.

  7. On the Existence of Simultaneous Edge Disjoint Realizations of Degree Sequences with ’Few’ Edges

    DTIC Science & Technology

    1975-08-01

    constructing graphs and digraphs with given valences and factors. Discrete Math . 6 (1973) 79-88. 3. M. Keren, Realization of a sun of sequences by a sum...appear. 5. S. Kundu, The k factor conjecture is true. Discrete Math . 6 (1973) 367-376. 6. S. Kundu, Disjoint representation of tree realizable

  8. A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.

    PubMed

    Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang

    2016-04-01

    Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.

  9. Network-based model of the growth of termite nests

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Perna, Andrea; Fortunato, Santo; Darrouzet, Eric; Theraulaz, Guy; Jost, Christian

    2015-12-01

    We present a model for the growth of the transportation network inside nests of the social insect subfamily Termitinae (Isoptera, termitidae). These nests consist of large chambers (nodes) connected by tunnels (edges). The model based on the empirical analysis of the real nest networks combined with pruning (edge removal, either random or weighted by betweenness centrality) and a memory effect (preferential growth from the latest added chambers) successfully predicts emergent nest properties (degree distribution, size of the largest connected component, average path lengths, backbone link ratios, and local graph redundancy). The two pruning alternatives can be associated with different genuses in the subfamily. A sensitivity analysis on the pruning and memory parameters indicates that Termitinae networks favor fast internal transportation over efficient defense strategies against ant predators. Our results provide an example of how complex network organization and efficient network properties can be generated from simple building rules based on local interactions and contribute to our understanding of the mechanisms that come into play for the formation of termite networks and of biological transportation networks in general.

  10. Coined quantum walks on weighted graphs

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2017-11-01

    We define a discrete-time, coined quantum walk on weighted graphs that is inspired by Szegedy’s quantum walk. Using this, we prove that many lackadaisical quantum walks, where each vertex has l integer self-loops, can be generalized to a quantum walk where each vertex has a single self-loop of real-valued weight l. We apply this real-valued lackadaisical quantum walk to two problems. First, we analyze it on the line or one-dimensional lattice, showing that it is exactly equivalent to a continuous deformation of the three-state Grover walk with faster ballistic dispersion. Second, we generalize Grover’s algorithm, or search on the complete graph, to have a weighted self-loop at each vertex, yielding an improved success probability when l < 3 + 2\\sqrt{2} ≈ 5.828 .

  11. Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Atsuko; Ohashi, Takeyoshi; Kawasaki, Takahiro; Inoue, Osamu; Kawada, Hiroki

    2013-04-01

    A new method for calculating critical dimension (CDs) at the top and bottom of three-dimensional (3D) pattern profiles from a critical-dimension scanning electron microscope (CD-SEM) image, called as "T-sigma method", is proposed and evaluated. Without preparing a library of database in advance, T-sigma can estimate a feature of a pattern sidewall. Furthermore, it supplies the optimum edge-definition (i.e., threshold level for determining edge position from a CDSEM signal) to detect the top and bottom of the pattern. This method consists of three steps. First, two components of line-edge roughness (LER); noise-induced bias (i.e., LER bias) and unbiased component (i.e., bias-free LER) are calculated with set threshold level. Second, these components are calculated with various threshold values, and the threshold-dependence of these two components, "T-sigma graph", is obtained. Finally, the optimum threshold value for the top and the bottom edge detection are given by the analysis of T-sigma graph. T-sigma was applied to CD-SEM images of three kinds of resist-pattern samples. In addition, reference metrology was performed with atomic force microscope (AFM) and scanning transmission electron microscope (STEM). Sensitivity of CD measured by T-sigma to the reference CD was higher than or equal to that measured by the conventional edge definition. Regarding the absolute measurement accuracy, T-sigma showed better results than the conventional definition. Furthermore, T-sigma graphs were calculated from CD-SEM images of two kinds of resist samples and compared with corresponding STEM observation results. Both bias-free LER and LER bias increased as the detected edge point moved from the bottom to the top of the pattern in the case that the pattern had a straight sidewall and a round top. On the other hand, they were almost constant in the case that the pattern had a re-entrant profile. T-sigma will be able to reveal a re-entrant feature. From these results, it is found that T-sigma method can provide rough cross-sectional pattern features and achieve quick, easy and accurate measurements of top and bottom CD.

  12. Kevin Bacon and Graph Theory

    ERIC Educational Resources Information Center

    Hopkins, Brian

    2004-01-01

    The interconnected world of actors and movies is a familiar, rich example for graph theory. This paper gives the history of the "Kevin Bacon Game" and makes extensive use of a Web site to analyze the underlying graph. The main content is the classroom development of the weighted average to determine the best choice of "center" for the graph. The…

  13. Learning graph matching.

    PubMed

    Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J

    2009-06-01

    As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.

  14. Scaling Semantic Graph Databases in Size and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morari, Alessandro; Castellana, Vito G.; Villa, Oreste

    In this paper we present SGEM, a full software system for accelerating large-scale semantic graph databases on commodity clusters. Unlike current approaches, SGEM addresses semantic graph databases by only employing graph methods at all the levels of the stack. On one hand, this allows exploiting the space efficiency of graph data structures and the inherent parallelism of graph algorithms. These features adapt well to the increasing system memory and core counts of modern commodity clusters. On the other hand, however, these systems are optimized for regular computation and batched data transfers, while graph methods usually are irregular and generate fine-grainedmore » data accesses with poor spatial and temporal locality. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods and a custom, multithreaded runtime system. We introduce our stack, motivate its advantages with respect to other solutions and show how we solved the challenges posed by irregular behaviors. We present the result of our software stack on the Berlin SPARQL benchmarks with datasets up to 10 billion triples (a triple corresponds to a graph edge), demonstrating scaling in dataset size and in performance as more nodes are added to the cluster.« less

  15. Efficient Extraction of High Centrality Vertices in Distributed Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbhare, Alok; Frincu, Marc; Raghavendra, Cauligi S.

    2014-09-09

    Betweenness centrality (BC) is an important measure for identifying high value or critical vertices in graphs, in variety of domains such as communication networks, road networks, and social graphs. However, calculating betweenness values is prohibitively expensive and, more often, domain experts are interested only in the vertices with the highest centrality values. In this paper, we first propose a partition-centric algorithm (MS-BC) to calculate BC for a large distributed graph that optimizes resource utilization and improves overall performance. Further, we extend the notion of approximate BC by pruning the graph and removing a subset of edges and vertices that contributemore » the least to the betweenness values of other vertices (MSL-BC), which further improves the runtime performance. We evaluate the proposed algorithms using a mix of real-world and synthetic graphs on an HPC cluster and analyze its strengths and weaknesses. The experimental results show an improvement in performance of upto 12x for large sparse graphs as compared to the state-of-the-art, and at the same time highlights the need for better partitioning methods to enable a balanced workload across partitions for unbalanced graphs such as small-world or power-law graphs.« less

  16. MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.

    PubMed

    He, Tiantian; Chan, Keith C C

    2018-05-01

    An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.

  17. Exponential stability of stochastic complex networks with multi-weights based on graph theory

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Chen, Tianrui

    2018-04-01

    In this paper, a novel approach to exponential stability of stochastic complex networks with multi-weights is investigated by means of the graph-theoretical method. New sufficient conditions are provided to ascertain the moment exponential stability and almost surely exponential stability of stochastic complex networks with multiple weights. It is noted that our stability results are closely related with multi-weights and the intensity of stochastic disturbance. Numerical simulations are also presented to substantiate the theoretical results.

  18. Model validation of simple-graph representations of metabolism

    PubMed Central

    Holme, Petter

    2009-01-01

    The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012

  19. An In-Depth Analysis of the Chung-Lu Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winlaw, M.; DeSterck, H.; Sanders, G.

    2015-10-28

    In the classic Erd}os R enyi random graph model [5] each edge is chosen with uniform probability and the degree distribution is binomial, limiting the number of graphs that can be modeled using the Erd}os R enyi framework [10]. The Chung-Lu model [1, 2, 3] is an extension of the Erd}os R enyi model that allows for more general degree distributions. The probability of each edge is no longer uniform and is a function of a user-supplied degree sequence, which by design is the expected degree sequence of the model. This property makes it an easy model to work withmore » theoretically and since the Chung-Lu model is a special case of a random graph model with a given degree sequence, many of its properties are well known and have been studied extensively [2, 3, 13, 8, 9]. It is also an attractive null model for many real-world networks, particularly those with power-law degree distributions and it is sometimes used as a benchmark for comparison with other graph generators despite some of its limitations [12, 11]. We know for example, that the average clustering coe cient is too low relative to most real world networks. As well, measures of a nity are also too low relative to most real-world networks of interest. However, despite these limitations or perhaps because of them, the Chung-Lu model provides a basis for comparing new graph models.« less

  20. Globally optimal grouping for symmetric closed boundaries by combining boundary and region information.

    PubMed

    Stahl, Joachim S; Wang, Song

    2008-03-01

    Many natural and man-made structures have a boundary that shows a certain level of bilateral symmetry, a property that plays an important role in both human and computer vision. In this paper, we present a new grouping method for detecting closed boundaries with symmetry. We first construct a new type of grouping token in the form of symmetric trapezoids by pairing line segments detected from the image. A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling quadrilaterals. For such a closed boundary, we define a unified grouping cost function in a ratio form: the numerator reflects the boundary information of proximity and symmetry and the denominator reflects the region information of the enclosed area. The introduction of the region-area information in the denominator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent the grouping tokens. In this new graph model, the grouping cost function can be encoded by carefully designed edge weights and the desired optimal boundary corresponds to a special cycle with a minimum ratio-form cost. We finally show that such a cycle can be found in polynomial time using a previous graph algorithm. We implement this symmetry-grouping method and test it on a set of synthetic data and real images. The performance is compared to two previous grouping methods that do not consider symmetry in their grouping cost functions.

  1. A local structure model for network analysis

    DOE PAGES

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    2017-04-01

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  2. A local structure model for network analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casleton, Emily; Nordman, Daniel; Kaiser, Mark

    The statistical analysis of networks is a popular research topic with ever widening applications. Exponential random graph models (ERGMs), which specify a model through interpretable, global network features, are common for this purpose. In this study we introduce a new class of models for network analysis, called local structure graph models (LSGMs). In contrast to an ERGM, a LSGM specifies a network model through local features and allows for an interpretable and controllable local dependence structure. In particular, LSGMs are formulated by a set of full conditional distributions for each network edge, e.g., the probability of edge presence/absence, depending onmore » neighborhoods of other edges. Additional model features are introduced to aid in specification and to help alleviate a common issue (occurring also with ERGMs) of model degeneracy. Finally, the proposed models are demonstrated on a network of tornadoes in Arkansas where a LSGM is shown to perform significantly better than a model without local dependence.« less

  3. Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline

    PubMed Central

    Wang, Jiahui; Vachet, Clement; Rumple, Ashley; Gouttard, Sylvain; Ouziel, Clémentine; Perrot, Emilie; Du, Guangwei; Huang, Xuemei; Gerig, Guido; Styner, Martin

    2014-01-01

    Automated segmenting and labeling of individual brain anatomical regions, in MRI are challenging, due to the issue of individual structural variability. Although atlas-based segmentation has shown its potential for both tissue and structure segmentation, due to the inherent natural variability as well as disease-related changes in MR appearance, a single atlas image is often inappropriate to represent the full population of datasets processed in a given neuroimaging study. As an alternative for the case of single atlas segmentation, the use of multiple atlases alongside label fusion techniques has been introduced using a set of individual “atlases” that encompasses the expected variability in the studied population. In our study, we proposed a multi-atlas segmentation scheme with a novel graph-based atlas selection technique. We first paired and co-registered all atlases and the subject MR scans. A directed graph with edge weights based on intensity and shape similarity between all MR scans is then computed. The set of neighboring templates is selected via clustering of the graph. Finally, weighted majority voting is employed to create the final segmentation over the selected atlases. This multi-atlas segmentation scheme is used to extend a single-atlas-based segmentation toolkit entitled AutoSeg, which is an open-source, extensible C++ based software pipeline employing BatchMake for its pipeline scripting, developed at the Neuro Image Research and Analysis Laboratories of the University of North Carolina at Chapel Hill. AutoSeg performs N4 intensity inhomogeneity correction, rigid registration to a common template space, automated brain tissue classification based skull-stripping, and the multi-atlas segmentation. The multi-atlas-based AutoSeg has been evaluated on subcortical structure segmentation with a testing dataset of 20 adult brain MRI scans and 15 atlas MRI scans. The AutoSeg achieved mean Dice coefficients of 81.73% for the subcortical structures. PMID:24567717

  4. Minimum Covers of Fixed Cardinality in Weighted Graphs.

    ERIC Educational Resources Information Center

    White, Lee J.

    Reported is the result of research on combinatorial and algorithmic techniques for information processing. A method is discussed for obtaining minimum covers of specified cardinality from a given weighted graph. By the indicated method, it is shown that the family of minimum covers of varying cardinality is related to the minimum spanning tree of…

  5. Self-similarity analysis of eubacteria genome based on weighted graph.

    PubMed

    Qi, Zhao-Hui; Li, Ling; Zhang, Zhi-Meng; Qi, Xiao-Qin

    2011-07-07

    We introduce a weighted graph model to investigate the self-similarity characteristics of eubacteria genomes. The regular treating in similarity comparison about genome is to discover the evolution distance among different genomes. Few people focus their attention on the overall statistical characteristics of each gene compared with other genes in the same genome. In our model, each genome is attributed to a weighted graph, whose topology describes the similarity relationship among genes in the same genome. Based on the related weighted graph theory, we extract some quantified statistical variables from the topology, and give the distribution of some variables derived from the largest social structure in the topology. The 23 eubacteria recently studied by Sorimachi and Okayasu are markedly classified into two different groups by their double logarithmic point-plots describing the similarity relationship among genes of the largest social structure in genome. The results show that the proposed model may provide us with some new sights to understand the structures and evolution patterns determined from the complete genomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Genome alignment with graph data structures: a comparison

    PubMed Central

    2014-01-01

    Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884

  7. Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere

    NASA Astrophysics Data System (ADS)

    Garner, David; Ramgoolam, Sanjaye

    2013-10-01

    The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes. Note that if, after removing the white vertices, the graph contains a blue edge connecting to the same black vertex at both ends, then the triangulation generated from the black edges will contain faces that resemble cut discs. These faces are triangles with two of the edges identified.

  8. VISAGE: Interactive Visual Graph Querying.

    PubMed

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2016-06-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.

  9. VISAGE: Interactive Visual Graph Querying

    PubMed Central

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2017-01-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670

  10. Unimodular lattice triangulations as small-world and scale-free random graphs

    NASA Astrophysics Data System (ADS)

    Krüger, B.; Schmidt, E. M.; Mecke, K.

    2015-02-01

    Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.

  11. Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory

    PubMed Central

    Sacchet, Matthew D.; Prasad, Gautam; Foland-Ross, Lara C.; Thompson, Paul M.; Gotlib, Ian H.

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on “support vector machines” to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities. PMID:25762941

  12. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  13. Projected power iteration for network alignment

    NASA Astrophysics Data System (ADS)

    Onaran, Efe; Villar, Soledad

    2017-08-01

    The network alignment problem asks for the best correspondence between two given graphs, so that the largest possible number of edges are matched. This problem appears in many scientific problems (like the study of protein-protein interactions) and it is very closely related to the quadratic assignment problem which has graph isomorphism, traveling salesman and minimum bisection problems as particular cases. The graph matching problem is NP-hard in general. However, under some restrictive models for the graphs, algorithms can approximate the alignment efficiently. In that spirit the recent work by Feizi and collaborators introduce EigenAlign, a fast spectral method with convergence guarantees for Erd-s-Renyí graphs. In this work we propose the algorithm Projected Power Alignment, which is a projected power iteration version of EigenAlign. We numerically show it improves the recovery rates of EigenAlign and we describe the theory that may be used to provide performance guarantees for Projected Power Alignment.

  14. Growth dominates choice in network percolation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.

    2013-09-01

    The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.

  15. Graphs and matroids weighted in a bounded incline algebra.

    PubMed

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.

  16. Overlapping community detection based on link graph using distance dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Jing; Cai, Li-Jun

    2018-01-01

    The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.

  17. Exact sampling of graphs with prescribed degree correlations

    NASA Astrophysics Data System (ADS)

    Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán

    2015-08-01

    Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.

  18. Bridges in complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Ang-Kun; Tian, Liang; Liu, Yang-Yu

    2018-01-01

    A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations. We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have a very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.

  19. Scale-free characteristics of random networks: the topology of the world-wide web

    NASA Astrophysics Data System (ADS)

    Barabási, Albert-László; Albert, Réka; Jeong, Hawoong

    2000-06-01

    The world-wide web forms a large directed graph, whose vertices are documents and edges are links pointing from one document to another. Here we demonstrate that despite its apparent random character, the topology of this graph has a number of universal scale-free characteristics. We introduce a model that leads to a scale-free network, capturing in a minimal fashion the self-organization processes governing the world-wide web.

  20. A Scalable Distributed Syntactic, Semantic, and Lexical Language Model

    DTIC Science & Technology

    2012-09-01

    Here pa(τ) denotes the set of parent states of τ. If the recursive factorization refers to a graph , then we have a Bayesian network (Lauritzen 1996...Broadly speaking, however, the recursive factorization can refer to a representation more complicated than a graph with a fixed set of nodes and edges...factored language (FL) model (Bilmes and Kirchhoff 2003) is close to the smoothing technique we propose here, the major difference is that FL

  1. miniTri Mantevo miniapp v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Johathan; Stark, Dylan; Wolf, Michael

    2016-02-02

    miniTri is a miniapplication developed as part of the Mantevo project. Given a graph, miniTri enumerates all triangles in this graph and computes a metric for each triangle based on the triangle edge and vertex degree. The output of miniTri is a summary of this metric. miniTri mimics the computational requirements of an important set of data science applications. Several approaches to this problem are included in the miniTri software.

  2. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  3. Anderson localization for radial tree-like random quantum graphs

    NASA Astrophysics Data System (ADS)

    Hislop, Peter D.; Post, Olaf

    We prove that certain random models associated with radial, tree-like, rooted quantum graphs exhibit Anderson localization at all energies. The two main examples are the random length model (RLM) and the random Kirchhoff model (RKM). In the RLM, the lengths of each generation of edges form a family of independent, identically distributed random variables (iid). For the RKM, the iid random variables are associated with each generation of vertices and moderate the current flow through the vertex. We consider extensions to various families of decorated graphs and prove stability of localization with respect to decoration. In particular, we prove Anderson localization for the random necklace model.

  4. Diagnostic and Remedial Learning Strategy Based on Conceptual Graphs

    ERIC Educational Resources Information Center

    Jong, BinShyan; Lin, TsongWuu; Wu, YuLung; Chan, Teyi

    2004-01-01

    Numerous scholars have applied conceptual graphs for explanatory purposes. This study devised the Remedial-Instruction Decisive path (RID path) algorithm for diagnosing individual student learning situation. This study focuses on conceptual graphs. According to the concepts learned by students and the weight values of relations among these…

  5. Assessing the impact of background spectral graph construction techniques on the topological anomaly detection algorithm

    NASA Astrophysics Data System (ADS)

    Ziemann, Amanda K.; Messinger, David W.; Albano, James A.; Basener, William F.

    2012-06-01

    Anomaly detection algorithms have historically been applied to hyperspectral imagery in order to identify pixels whose material content is incongruous with the background material in the scene. Typically, the application involves extracting man-made objects from natural and agricultural surroundings. A large challenge in designing these algorithms is determining which pixels initially constitute the background material within an image. The topological anomaly detection (TAD) algorithm constructs a graph theory-based, fully non-parametric topological model of the background in the image scene, and uses codensity to measure deviation from this background. In TAD, the initial graph theory structure of the image data is created by connecting an edge between any two pixel vertices x and y if the Euclidean distance between them is less than some resolution r. While this type of proximity graph is among the most well-known approaches to building a geometric graph based on a given set of data, there is a wide variety of dierent geometrically-based techniques. In this paper, we present a comparative test of the performance of TAD across four dierent constructs of the initial graph: mutual k-nearest neighbor graph, sigma-local graph for two different values of σ > 1, and the proximity graph originally implemented in TAD.

  6. Adaptive tracking control of leader-following linear multi-agent systems with external disturbances

    NASA Astrophysics Data System (ADS)

    Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen

    2016-10-01

    In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.

  7. Finding Strong Bridges and Strong Articulation Points in Linear Time

    NASA Astrophysics Data System (ADS)

    Italiano, Giuseppe F.; Laura, Luigi; Santaroni, Federico

    Given a directed graph G, an edge is a strong bridge if its removal increases the number of strongly connected components of G. Similarly, we say that a vertex is a strong articulation point if its removal increases the number of strongly connected components of G. In this paper, we present linear-time algorithms for computing all the strong bridges and all the strong articulation points of directed graphs, solving an open problem posed in [2].

  8. Literature Search through Mixed-Membership Community Discovery

    NASA Astrophysics Data System (ADS)

    Eliassi-Rad, Tina; Henderson, Keith

    We introduce a new approach to literature search that is based on finding mixed-membership communities on an augmented co-authorship graph (ACA) with a scalable generative model. An ACA graph contains two types of edges: (1) coauthorship links and (2) links between researchers with substantial expertise overlap. Our solution eliminates the biases introduced by either looking at citations of a paper or doing a Web search. A case study on PubMed shows the benefits of our approach.

  9. A VLSI decomposition of the deBruijn graph

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Mceliece, R.; Pollara, F.

    1990-01-01

    A new Viterbi decoder for convolutional codes with constraint lengths up to 15, called the Big Viterbi Decoder, is under development for the Deep Space Network. It will be demonstrated by decoding data from the Galileo spacecraft, which has a rate 1/4, constraint-length 15 convolutional encoder on board. Here, the mathematical theory underlying the design of the very-large-scale-integrated (VLSI) chips that are being used to build this decoder is explained. The deBruijn graph B sub n describes the topology of a fully parallel, rate 1/v, constraint length n+2 Viterbi decoder, and it is shown that B sub n can be built by appropriately wiring together (i.e., connecting together with extra edges) many isomorphic copies of a fixed graph called a B sub n building block. The efficiency of such a building block is defined as the fraction of the edges in B sub n that are present in the copies of the building block. It is shown, among other things, that for any alpha less than 1, there exists a graph G which is a B sub n building block of efficiency greater than alpha for all sufficiently large n. These results are illustrated by describing a special hierarchical family of deBruijn building blocks, which has led to the design of the gate-array chips being used in the Big Viterbi Decoder.

  10. Signal Processing for Time-Series Functions on a Graph

    DTIC Science & Technology

    2018-02-01

    as filtering to functions supported on graphs. These methods can be applied to scalar functions with a domain that can be described by a fixed...classical signal processing such as filtering to account for the graph domain. This work essentially divides into 2 basic approaches: graph Laplcian...based filtering and weighted adjacency matrix-based filtering . In Shuman et al.,11 and elaborated in Bronstein et al.,13 filtering operators are

  11. Better Decomposition Heuristics for the Maximum-Weight Connected Graph Problem Using Betweenness Centrality

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takanori; Bannai, Hideo; Nagasaki, Masao; Miyano, Satoru

    We present new decomposition heuristics for finding the optimal solution for the maximum-weight connected graph problem, which is known to be NP-hard. Previous optimal algorithms for solving the problem decompose the input graph into subgraphs using heuristics based on node degree. We propose new heuristics based on betweenness centrality measures, and show through computational experiments that our new heuristics tend to reduce the number of subgraphs in the decomposition, and therefore could lead to the reduction in computational time for finding the optimal solution. The method is further applied to analysis of biological pathway data.

  12. Graph-based normalization and whitening for non-linear data analysis.

    PubMed

    Aaron, Catherine

    2006-01-01

    In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the "global" and the "local" problem.

  13. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  14. Relaxation dynamics of maximally clustered networks

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2018-01-01

    We study the relaxation dynamics of fully clustered networks (maximal number of triangles) to an unclustered state under two different edge dynamics—the double-edge swap, corresponding to degree-preserving randomization of the configuration model, and single edge replacement, corresponding to full randomization of the Erdős-Rényi random graph. We derive expressions for the time evolution of the degree distribution, edge multiplicity distribution and clustering coefficient. We show that under both dynamics networks undergo a continuous phase transition in which a giant connected component is formed. We calculate the position of the phase transition analytically using the Erdős-Rényi phenomenology.

  15. Free edge effects in laminated composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1989-01-01

    The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.

  16. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins.

    PubMed

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-17

    A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.

  17. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins

    PubMed Central

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-01

    Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636

  18. Connectivity is a Poor Indicator of Fast Quantum Search

    NASA Astrophysics Data System (ADS)

    Meyer, David A.; Wong, Thomas G.

    2015-03-01

    A randomly walking quantum particle evolving by Schrödinger's equation searches on d -dimensional cubic lattices in O (√{N }) time when d ≥5 , and with progressively slower runtime as d decreases. This suggests that graph connectivity (including vertex, edge, algebraic, and normalized algebraic connectivities) is an indicator of fast quantum search, a belief supported by fast quantum search on complete graphs, strongly regular graphs, and hypercubes, all of which are highly connected. In this Letter, we show this intuition to be false by giving two examples of graphs for which the opposite holds true: one with low connectivity but fast search, and one with high connectivity but slow search. The second example is a novel two-stage quantum walk algorithm in which the walking rate must be adjusted to yield high search probability.

  19. Path scanning for the detection of anomalous subgraphs and use of DNS requests and host agents for anomaly/change detection and network situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, Joshua Charles; Fisk, Michael Edward; Brugh, Alexander William

    A system, apparatus, computer-readable medium, and computer-implemented method are provided for detecting anomalous behavior in a network. Historical parameters of the network are determined in order to determine normal activity levels. A plurality of paths in the network are enumerated as part of a graph representing the network, where each computing system in the network may be a node in the graph and the sequence of connections between two computing systems may be a directed edge in the graph. A statistical model is applied to the plurality of paths in the graph on a sliding window basis to detect anomalousmore » behavior. Data collected by a Unified Host Collection Agent ("UHCA") may also be used to detect anomalous behavior.« less

  20. The PANTHER User Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less

  1. EdgeMaps: visualizing explicit and implicit relations

    NASA Astrophysics Data System (ADS)

    Dörk, Marian; Carpendale, Sheelagh; Williamson, Carey

    2011-01-01

    In this work, we introduce EdgeMaps as a new method for integrating the visualization of explicit and implicit data relations. Explicit relations are specific connections between entities already present in a given dataset, while implicit relations are derived from multidimensional data based on shared properties and similarity measures. Many datasets include both types of relations, which are often difficult to represent together in information visualizations. Node-link diagrams typically focus on explicit data connections, while not incorporating implicit similarities between entities. Multi-dimensional scaling considers similarities between items, however, explicit links between nodes are not displayed. In contrast, EdgeMaps visualize both implicit and explicit relations by combining and complementing spatialization and graph drawing techniques. As a case study for this approach we chose a dataset of philosophers, their interests, influences, and birthdates. By introducing the limitation of activating only one node at a time, interesting visual patterns emerge that resemble the aesthetics of fireworks and waves. We argue that the interactive exploration of these patterns may allow the viewer to grasp the structure of a graph better than complex node-link visualizations.

  2. Spatial search on a two-dimensional lattice with long-range interactions

    NASA Astrophysics Data System (ADS)

    Osada, Tomo; Sanaka, Kaoru; Munro, William J.; Nemoto, Kae

    2018-06-01

    Quantum-walk-based algorithms that search a marked location among N locations on a d -dimensional lattice succeeds in time O (√{N }) for d >2 , while this is not found to be possible when d =2 . In this paper, we consider a spatial search algorithm using continuous-time quantum walk on a two-dimensional square lattice with the existence of additional long-range edges. We examined such a search on a probabilistic graph model where an edge connecting non-nearest-neighbor lattice points i and j apart by a distance |i -j | is added by probability pi j=|i-j | -α(α ≥0 ) . Through numerical analysis, we found that the search succeeds in time O (√{N }) when α ≤αc=2.4 ±0.1 . For α >2 , the expectation value of the additional long-range edges on each node scales as a constant when N →∞ , which means that search time of O (√{N }) is achieved on a graph with average degree scaling as a constant.

  3. Towards Scalable Graph Computation on Mobile Devices.

    PubMed

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2014-10-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.

  4. Exponent and scrambling index of double alternate circular snake graphs

    NASA Astrophysics Data System (ADS)

    Rahmayanti, Sri; Pasaribu, Valdo E.; Nasution, Sawaluddin; Liani Salnaz, Sishi

    2018-01-01

    A graph is primitive if it contains a cycle of odd length. The exponent of a primitive graph G, denoted by exp(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk length k. The scrambling index of a primitive graph G, denoted by k(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk of length 2k. For an even positive integer n and an odd positive integer r, a (n,r)-double alternate circular snake graph, denoted by DA(C r,n ), is a graph obtained from a path u 1 u 2 ... u n by replacing each edge of the form u 2i u 2i+1 by two different r-cycles. We study the exponent and scrambling index of DA(C r,n ) and show that exp(DA(C r,n )) = n + r - 4 and k(DA(C r,n )) = (n + r - 3)/2.

  5. Graph partitions and cluster synchronization in networks of oscillators

    PubMed Central

    Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio

    2017-01-01

    Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454

  6. Towards Scalable Graph Computation on Mobile Devices

    PubMed Central

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  7. The Replicator Equation on Graphs

    PubMed Central

    Ohtsuki, Hisashi; Nowak, Martin A.

    2008-01-01

    We study evolutionary games on graphs. Each player is represented by a vertex of the graph. The edges denote who meets whom. A player can use any one of n strategies. Players obtain a payoff from interaction with all their immediate neighbors. We consider three different update rules, called ‘birth-death’, ‘death-birth’ and ‘imitation’. A fourth update rule, ‘pairwise comparison’, is shown to be equivalent to birth-death updating in our model. We use pair-approximation to describe the evolutionary game dynamics on regular graphs of degree k. In the limit of weak selection, we can derive a differential equation which describes how the average frequency of each strategy on the graph changes over time. Remarkably, this equation is a replicator equation with a transformed payoff matrix. Therefore, moving a game from a well-mixed population (the complete graph) onto a regular graph simply results in a transformation of the payoff matrix. The new payoff matrix is the sum of the original payoff matrix plus another matrix, which describes the local competition of strategies. We discuss the application of our theory to four particular examples, the Prisoner’s Dilemma, the Snow-Drift game, a coordination game and the Rock-Scissors-Paper game. PMID:16860343

  8. A novel line segment detection algorithm based on graph search

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  9. Information Measures of Degree Distributions with an Application to Labeled Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Purvine, Emilie AH

    2016-01-11

    The problem of describing the distribution of labels over a set of objects is relevant to many domains. For example: cyber security, social media, and protein interactions all care about the manner in which labels are distributed among different objects. In this paper we present three interacting statistical measures on label distributions, inspired by entropy and information theory. Labeled graphs are discussed as a specific case of labels distributed over a set of edges. We describe a use case in cyber security using a labeled directed multi-graph of IPFLOW. Finally we show how these measures respond when labels are updatedmore » in certain ways.« less

  10. Spatial Search by Quantum Walk is Optimal for Almost all Graphs.

    PubMed

    Chakraborty, Shantanav; Novo, Leonardo; Ambainis, Andris; Omar, Yasser

    2016-03-11

    The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices where each edge exists with probability p, search by CTQW is almost surely optimal as long as p≥log^{3/2}(n)/n. Consequently, we show that quantum spatial search is in fact optimal for almost all graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that we can extend our results on search to establish high fidelity quantum communication between two arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as well as entanglement generation. Our work shows that quantum information tasks typically designed for structured systems retain performance in very disordered structures.

  11. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  12. A GRAPH PARTITIONING APPROACH TO PREDICTING PATTERNS IN LATERAL INHIBITION SYSTEMS

    PubMed Central

    RUFINO FERREIRA, ANA S.; ARCAK, MURAT

    2017-01-01

    We analyze spatial patterns on networks of cells where adjacent cells inhibit each other through contact signaling. We represent the network as a graph where each vertex represents the dynamics of identical individual cells and where graph edges represent cell-to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph vertices and assign them into disjoint classes. We then use results from monotone systems theory to prove the existence of patterns that are structured in such a way that all the cells in the same class have the same final fate. To study the stability properties of these patterns, we rely on the graph partition to perform a block decomposition of the system. Then, to guarantee stability, we provide a small-gain type criterion that depends on the input-output properties of each cell in the reduced system. Finally, we discuss pattern formation in stochastic models. With the help of a modal decomposition we show that noise can enhance the parameter region where patterning occurs. PMID:29225552

  13. A characterization of horizontal visibility graphs and combinatorics on words

    NASA Astrophysics Data System (ADS)

    Gutin, Gregory; Mansour, Toufik; Severini, Simone

    2011-06-01

    A Horizontal Visibility Graph (HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos Luque et al. [B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: exact results for random time series, Phys. Rev. E 80 (2009), 046103]. We prove that a graph is an HVG if and only if it is outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics Flajolet and Noy [P. Flajolet, M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math., 204 (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm. Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique, we determine asymptotically the average number of edges of HVGs.

  14. Graph Unification and Tangram Hypothesis Explanation Representation (GATHER) and System and Component Modeling Framework (SCMF)

    DTIC Science & Technology

    2008-08-01

    services, DIDS and DMS, are deployable on the TanGrid system and are accessible via two APIs, a Java client and a servlet based interface. Additionally...but required the user to instantiate an IGraph object with several Java Maps containing the nodes, node attributes, edge types, and the connections...restrictions imposed by the bulk ingest process. Finally, once the bulk ingest process was available in the GraphUnification Java Archives (JAR), DC was

  15. Using genetic markers to orient the edges in quantitative trait networks: the NEO software.

    PubMed

    Aten, Jason E; Fuller, Tova F; Lusis, Aldons J; Horvath, Steve

    2008-04-15

    Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers. We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue. The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait networks if the edges can be anchored to genetic marker data. R software tutorials, data, and supplementary material can be downloaded from: http://www.genetics.ucla.edu/labs/horvath/aten/NEO.

  16. Unsupervised Approaches for Post-Processing in Computationally Efficient Waveform-Similarity-Based Earthquake Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2015-12-01

    Recent improvements in computational efficiency for waveform correlation-based detections achieved by new methods such as Fingerprint and Similarity Thresholding (FAST) promise to allow large-scale blind search for similar waveforms in long-duration continuous seismic data. Waveform similarity search applied to datasets of months to years of continuous seismic data will identify significantly more events than traditional detection methods. With the anticipated increase in number of detections and associated increase in false positives, manual inspection of the detection results will become infeasible. This motivates the need for new approaches to process the output of similarity-based detection. We explore data mining techniques for improved detection post-processing. We approach this by considering similarity-detector output as a sparse similarity graph with candidate events as vertices and similarities as weighted edges. Image processing techniques are leveraged to define candidate events and combine results individually processed at multiple stations. Clustering and graph analysis methods are used to identify groups of similar waveforms and assign a confidence score to candidate detections. Anomaly detection and classification are applied to waveform data for additional false detection removal. A comparison of methods will be presented and their performance will be demonstrated on a suspected induced and non-induced earthquake sequence.

  17. A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph

    PubMed Central

    Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.

    2016-01-01

    We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference. PMID:27857179

  18. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  19. A scale-free network with limiting on vertices

    NASA Astrophysics Data System (ADS)

    Tang, Lian; Wang, Bin

    2010-05-01

    We propose and analyze a random graph model which explains a phenomena in the economic company network in which company may not expand its business at some time due to the limiting of money and capacity. The random graph process is defined as follows: at any time-step t, (i) with probability α(k) and independently of other time-step, each vertex vi (i≤t-1) is inactive which means it cannot be connected by more edges, where k is the degree of vi at the time-step t; (ii) a new vertex vt is added along with m edges incident with vt at one time and its neighbors are chosen in the manner of preferential attachment. We prove that the degree distribution P(k) of this random graph process satisfies P(k)∝C1k if α(ṡ) is a constant α0; and P(k)∝C2k-3 if α(ℓ)↓0 as ℓ↑∞, where C1,C2 are two positive constants. The analytical result is found to be in good agreement with that obtained by numerical simulations. Furthermore, we get the degree distributions in this model with m-varying functions by simulation.

  20. High performance genetic algorithm for VLSI circuit partitioning

    NASA Astrophysics Data System (ADS)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  1. GOGrapher: A Python library for GO graph representation and analysis.

    PubMed

    Muller, Brian; Richards, Adam J; Jin, Bo; Lu, Xinghua

    2009-07-07

    The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve.

  2. Spectral-clustering approach to Lagrangian vortex detection.

    PubMed

    Hadjighasem, Alireza; Karrasch, Daniel; Teramoto, Hiroshi; Haller, George

    2016-06-01

    One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.

  3. Matched signal detection on graphs: Theory and application to brain imaging data classification.

    PubMed

    Hu, Chenhui; Sepulcre, Jorge; Johnson, Keith A; Fakhri, Georges E; Lu, Yue M; Li, Quanzheng

    2016-01-15

    Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection (MSD) theory for signals with intrinsic structures described by weighted graphs. First, we regard graph Laplacian eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely, we consider signals with bounded variation on graphs and more general signals that are randomly drawn from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian distribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional magnetic resonance imaging (R-fMRI) data of 30 early mild cognitive impairment and 20 NC subjects. Our results demonstrate that the MSD approach is able to outperform the traditional methods and help detect AD at an early stage, probably due to the success of exploiting the manifold structure of the data. Copyright © 2015. Published by Elsevier Inc.

  4. Spectral Analysis for Weighted Iterated Triangulations of Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Yufei; Dai, Meifeng; Wang, Xiaoqian; Sun, Yu; Su, Weiyi

    Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a first study on the spectra of the normalized Laplacian of weighted iterated triangulations of graphs. We analytically obtain all the eigenvalues, as well as their multiplicities from two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index, Kemeny’s constant and number of weighted spanning trees.

  5. Weighted Scaling in Non-growth Random Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li

    2012-09-01

    We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.

  6. Applying network theory to animal movements to identify properties of landscape space use.

    PubMed

    Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George

    2018-04-01

    Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a framework for conservationists to analyze movement data. Functions created for the analyses are available within the R package moveNT. © 2018 by the Ecological Society of America.

  7. Weighted link graphs: a distributed IDS for secondary intrusion detection and defense

    NASA Astrophysics Data System (ADS)

    Zhou, Mian; Lang, Sheau-Dong

    2005-03-01

    While a firewall installed at the perimeter of a local network provides the first line of defense against the hackers, many intrusion incidents are the results of successful penetration of the firewalls. One computer"s compromise often put the entire network at risk. In this paper, we propose an IDS that provides a finer control over the internal network. The system focuses on the variations of connection-based behavior of each single computer, and uses a weighted link graph to visualize the overall traffic abnormalities. The functionality of our system is of a distributed personal IDS system that also provides a centralized traffic analysis by graphical visualization. We use a novel weight assignment schema for the local detection within each end agent. The local abnormalities are quantitatively carried out by the node weight and link weight and further sent to the central analyzer to build the weighted link graph. Thus, we distribute the burden of traffic processing and visualization to each agent and make it more efficient for the overall intrusion detection. As the LANs are more vulnerable to inside attacks, our system is designed as a reinforcement to prevent corruption from the inside.

  8. A Coding Method for Efficient Subgraph Querying on Vertex- and Edge-Labeled Graphs

    PubMed Central

    Zhu, Lei; Song, Qinbao; Guo, Yuchen; Du, Lei; Zhu, Xiaoyan; Wang, Guangtao

    2014-01-01

    Labeled graphs are widely used to model complex data in many domains, so subgraph querying has been attracting more and more attention from researchers around the world. Unfortunately, subgraph querying is very time consuming since it involves subgraph isomorphism testing that is known to be an NP-complete problem. In this paper, we propose a novel coding method for subgraph querying that is based on Laplacian spectrum and the number of walks. Our method follows the filtering-and-verification framework and works well on graph databases with frequent updates. We also propose novel two-step filtering conditions that can filter out most false positives and prove that the two-step filtering conditions satisfy the no-false-negative requirement (no dismissal in answers). Extensive experiments on both real and synthetic graphs show that, compared with six existing counterpart methods, our method can effectively improve the efficiency of subgraph querying. PMID:24853266

  9. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.

    2017-12-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  10. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari

    2017-07-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  11. Gain-Sparsity and Symmetry-Forced Rigidity in the Plane.

    PubMed

    Jordán, Tibor; Kaszanitzky, Viktória E; Tanigawa, Shin-Ichi

    We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2 k with odd k , unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph.

  12. Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs.

    PubMed

    González-Tablas, Ana I; Tapiador, Juan E

    2016-05-11

    We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN) composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user's security preferences implicitly captured by policies already in place.

  13. Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs

    PubMed Central

    González-Tablas, Ana I.; Tapiador, Juan E.

    2016-01-01

    We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN) composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user’s security preferences implicitly captured by policies already in place. PMID:27187385

  14. Principal curve detection in complicated graph images

    NASA Astrophysics Data System (ADS)

    Liu, Yuncai; Huang, Thomas S.

    2001-09-01

    Finding principal curves in an image is an important low level processing in computer vision and pattern recognition. Principal curves are those curves in an image that represent boundaries or contours of objects of interest. In general, a principal curve should be smooth with certain length constraint and allow either smooth or sharp turning. In this paper, we present a method that can efficiently detect principal curves in complicated map images. For a given feature image, obtained from edge detection of an intensity image or thinning operation of a pictorial map image, the feature image is first converted to a graph representation. In graph image domain, the operation of principal curve detection is performed to identify useful image features. The shortest path and directional deviation schemes are used in our algorithm os principal verve detection, which is proven to be very efficient working with real graph images.

  15. A note on Kirchhoff index

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Trinajstić, Nenad

    2008-03-01

    We report lower bounds for the Kirchhoff index of a connected (molecular) graph in terms of its structural parameters such as the number of vertices (atoms), the number of edges (bonds), maximum vertex degree (valency), connectivity and chromatic number.

  16. Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir

    2010-11-01

    Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.

  17. Surface Hold Advisor Using Critical Sections

    NASA Technical Reports Server (NTRS)

    Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)

    2013-01-01

    The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.

  18. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  19. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE PAGES

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    2016-03-24

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  20. TSAR, a new graph-theoretical approach to computational modeling of protein side-chain flexibility: modeling of ionization properties of proteins.

    PubMed

    Stroganov, Oleg V; Novikov, Fedor N; Zeifman, Alexey A; Stroylov, Viktor S; Chilov, Ghermes G

    2011-09-01

    A new graph-theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation-dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief-network-a well-established mathematical abstraction-the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi-empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pK(a) values of protein residues. The average correlation coefficient (R) between calculated and experimental pK(a) values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pK(a) calculations. Copyright © 2011 Wiley-Liss, Inc.

  1. On the strong metric dimension of generalized butterfly graph, starbarbell graph, and {C}_{m}\\odot {P}_{n} graph

    NASA Astrophysics Data System (ADS)

    Yunia Mayasari, Ratih; Atmojo Kusmayadi, Tri

    2018-04-01

    Let G be a connected graph with vertex set V(G) and edge set E(G). For every pair of vertices u,v\\in V(G), the interval I[u, v] between u and v to be the collection of all vertices that belong to some shortest u ‑ v path. A vertex s\\in V(G) strongly resolves two vertices u and v if u belongs to a shortest v ‑ s path or v belongs to a shortest u ‑ s path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G is defined as the cardinality of strong metric basis. In this paper we determine the strong metric dimension of a generalized butterfly graph, starbarbell graph, and {C}mȯ {P}n graph. We obtain the strong metric dimension of generalized butterfly graph is sdim(BFn ) = 2n ‑ 2. The strong metric dimension of starbarbell graph is sdim(S{B}{m1,{m}2,\\ldots,{m}n})={\\sum }i=1n({m}i-1)-1. The strong metric dimension of {C}mȯ {P}n graph are sdim({C}mȯ {P}n)=2m-1 for m > 3 and n = 2, and sdim({C}mȯ {P}n)=2m-2 for m > 3 and n > 2.

  2. Analysis of Social Network Measures with Respect to Structural Properties of Networks

    DTIC Science & Technology

    2012-03-01

    there has been increased interest in degree based generators. The three generators that this thesis is interested in are the Erdos- Renyi (ER...these generators has their pros and cons. The ER graph generator was developed in 1960 by Erdos and Renyi in hopes of producing networks that...0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 P e rc e n ta ge Average Clustering Coefficient Erdös- Renyi BA (2 edge) BA (5 edge) BA (10 edge) PNDCG (α=2.35

  3. RNA Graph Partitioning for the Discovery of RNA Modularity: A Novel Application of Graph Partition Algorithm to Biology

    PubMed Central

    Elmetwaly, Shereef; Schlick, Tamar

    2014-01-01

    Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578

  4. Adaptive sampling in behavioral surveys.

    PubMed

    Thompson, S K

    1997-01-01

    Studies of populations such as drug users encounter difficulties because the members of the populations are rare, hidden, or hard to reach. Conventionally designed large-scale surveys detect relatively few members of the populations so that estimates of population characteristics have high uncertainty. Ethnographic studies, on the other hand, reach suitable numbers of individuals only through the use of link-tracing, chain referral, or snowball sampling procedures that often leave the investigators unable to make inferences from their sample to the hidden population as a whole. In adaptive sampling, the procedure for selecting people or other units to be in the sample depends on variables of interest observed during the survey, so the design adapts to the population as encountered. For example, when self-reported drug use is found among members of the sample, sampling effort may be increased in nearby areas. Types of adaptive sampling designs include ordinary sequential sampling, adaptive allocation in stratified sampling, adaptive cluster sampling, and optimal model-based designs. Graph sampling refers to situations with nodes (for example, people) connected by edges (such as social links or geographic proximity). An initial sample of nodes or edges is selected and edges are subsequently followed to bring other nodes into the sample. Graph sampling designs include network sampling, snowball sampling, link-tracing, chain referral, and adaptive cluster sampling. A graph sampling design is adaptive if the decision to include linked nodes depends on variables of interest observed on nodes already in the sample. Adjustment methods for nonsampling errors such as imperfect detection of drug users in the sample apply to adaptive as well as conventional designs.

  5. Enabling Graph Appliance for Genome Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rina; Graves, Jeffrey A; Lee, Sangkeun

    2015-01-01

    In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to storemore » and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.« less

  6. A simplifying feature of the heterotic one loop four graviton amplitude

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2018-01-01

    We show that the weight four modular graph functions that contribute to the integrand of the t8t8D4R4 term at one loop in heterotic string theory do not require regularization, and hence the integrand is simple. This is unlike the graphs that contribute to the integrands of the other gravitational terms at this order in the low momentum expansion, and these integrands require regularization. This property persists for an infinite number of terms in the effective action, and their integrands do not require regularization. We find non-trivial relations between weight four graphs of distinct topologies that do not require regularization by performing trivial manipulations using auxiliary diagrams.

  7. Scale-free effect of substitution networks

    NASA Astrophysics Data System (ADS)

    Li, Ziyu; Yu, Zhouyu; Xi, Lifeng

    2018-02-01

    In this paper, we construct the growing networks in terms of substitution rule. Roughly speaking, we replace edges of different colors with different initial graphs. Then the evolving networks are constructed. We obtained the free-scale effect of our substitution networks.

  8. Local Higher-Order Graph Clustering

    PubMed Central

    Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.

    2018-01-01

    Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258

  9. A multicolour graph as a complete topological invariant for \\Omega-stable flows without periodic trajectories on surfaces

    NASA Astrophysics Data System (ADS)

    Kruglov, V. E.; Malyshev, D. S.; Pochinka, O. V.

    2018-01-01

    Studying the dynamics of a flow on surfaces by partitioning the phase space into cells with the same limit behaviour of trajectories within a cell goes back to the classical papers of Andronov, Pontryagin, Leontovich and Maier. The types of cells (the number of which is finite) and how the cells adjoin one another completely determine the topological equivalence class of a flow with finitely many special trajectories. If one trajectory is chosen in every cell of a rough flow without periodic orbits, then the cells are partitioned into so-called triangular regions of the same type. A combinatorial description of such a partition gives rise to the three-colour Oshemkov-Sharko graph, the vertices of which correspond to the triangular regions, and the edges to separatrices connecting them. Oshemkov and Sharko proved that such flows are topologically equivalent if and only if the three-colour graphs of the flows are isomorphic, and described an algorithm of distinguishing three-colour graphs. But their algorithm is not efficient with respect to graph theory. In the present paper, we describe the dynamics of Ω-stable flows without periodic trajectories on surfaces in the language of four-colour graphs, present an efficient algorithm for distinguishing such graphs, and develop a realization of a flow from some abstract graph. Bibliography: 17 titles.

  10. GOGrapher: A Python library for GO graph representation and analysis

    PubMed Central

    Muller, Brian; Richards, Adam J; Jin, Bo; Lu, Xinghua

    2009-01-01

    Background The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. Findings An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. Conclusion The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve. PMID:19583843

  11. Rapid self-organised initiation of ad hoc sensor networks close above the percolation threshold

    NASA Astrophysics Data System (ADS)

    Korsnes, Reinert

    2010-07-01

    This work shows potentials for rapid self-organisation of sensor networks where nodes collaborate to relay messages to a common data collecting unit (sink node). The study problem is, in the sense of graph theory, to find a shortest path tree spanning a weighted graph. This is a well-studied problem where for example Dijkstra’s algorithm provides a solution for non-negative edge weights. The present contribution shows by simulation examples that simple modifications of known distributed approaches here can provide significant improvements in performance. Phase transition phenomena, which are known to take place in networks close to percolation thresholds, may explain these observations. An initial method, which here serves as reference, assumes the sink node starts organisation of the network (tree) by transmitting a control message advertising its availability for its neighbours. These neighbours then advertise their current cost estimate for routing a message to the sink. A node which in this way receives a message implying an improved route to the sink, advertises its new finding and remembers which neighbouring node the message came from. This activity proceeds until there are no more improvements to advertise to neighbours. The result is a tree network for cost effective transmission of messages to the sink (root). This distributed approach has potential for simple improvements which are of interest when minimisation of storage and communication of network information are a concern. Fast organisation of the network takes place when the number k of connections for each node ( degree) is close above its critical value for global network percolation and at the same time there is a threshold for the nodes to decide to advertise network route updates.

  12. Advanced Avionics Verification and Validation Phase II (AAV&V-II)

    DTIC Science & Technology

    1999-01-01

    Algorithm 2-8 2.7 The Weak Control Dependence Algorithm 2-8 2.8 The Indirect Dependence Algorithms 2-9 2.9 Improvements to the Pleiades Object...describes some modifications made to the Pleiades object management system to increase the speed of the analysis. 2.1 THE INTERPROCEDURAL CONTROL FLOW...slow as the edges in the graph increased. The time to insert edges was addressed by enhancements to the Pleiades object management system, which are

  13. Random graph models for dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.

    2017-10-01

    Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.

  14. Fusion of LIDAR Data and Multispectral Imagery for Effective Building Detection Based on Graph and Connected Component Analysis

    NASA Astrophysics Data System (ADS)

    Gilani, S. A. N.; Awrangjeb, M.; Lu, G.

    2015-03-01

    Building detection in complex scenes is a non-trivial exercise due to building shape variability, irregular terrain, shadows, and occlusion by highly dense vegetation. In this research, we present a graph based algorithm, which combines multispectral imagery and airborne LiDAR information to completely delineate the building boundaries in urban and densely vegetated area. In the first phase, LiDAR data is divided into two groups: ground and non-ground data, using ground height from a bare-earth DEM. A mask, known as the primary building mask, is generated from the non-ground LiDAR points where the black region represents the elevated area (buildings and trees), while the white region describes the ground (earth). The second phase begins with the process of Connected Component Analysis (CCA) where the number of objects present in the test scene are identified followed by initial boundary detection and labelling. Additionally, a graph from the connected components is generated, where each black pixel corresponds to a node. An edge of a unit distance is defined between a black pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to a neighbouring white pixel, if any. This phenomenon produces a disconnected components graph, where each component represents a prospective building or a dense vegetation (a contiguous block of black pixels from the primary mask). In the third phase, a clustering process clusters the segmented lines, extracted from multispectral imagery, around the graph components, if possible. In the fourth step, NDVI, image entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and isolated building's occluded parts. Finally, the initially extracted building boundary is extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate the building and to maximise the boundary reach towards building edges. The proposed technique is evaluated using two Australian data sets: Aitkenvale and Hervey Bay, for object-based and pixel-based completeness, correctness, and quality. The proposed technique detects buildings larger than 50 m2 and 10 m2 in the Aitkenvale site with 100% and 91% accuracy, respectively, while in the Hervey Bay site it performs better with 100% accuracy for buildings larger than 10 m2 in area.

  15. A graph model for preventing railway accidents based on the maximal information coefficient

    NASA Astrophysics Data System (ADS)

    Shao, Fubo; Li, Keping

    2017-01-01

    A number of factors influences railway safety. It is an important work to identify important influencing factors and to build the relationship between railway accident and its influencing factors. The maximal information coefficient (MIC) is a good measure of dependence for two-variable relationships which can capture a wide range of associations. Employing MIC, a graph model is proposed for preventing railway accidents which avoids complex mathematical computation. In the graph, nodes denote influencing factors of railway accidents and edges represent dependence of the two linked factors. With the increasing of dependence level, the graph changes from a globally coupled graph to isolated points. Moreover, the important influencing factors are identified from many factors which are the monitor key. Then the relationship between railway accident and important influencing factors is obtained by employing the artificial neural networks. With the relationship, a warning mechanism is built by giving the dangerous zone. If the related factors fall into the dangerous zone in railway operations, the warning level should be raised. The built warning mechanism can prevent railway accidents and can promote railway safety.

  16. Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an approach guided by the computer-aided design model

    NASA Astrophysics Data System (ADS)

    Viana, Ilisio; Orteu, Jean-José; Cornille, Nicolas; Bugarin, Florian

    2015-11-01

    We focus on quality control of mechanical parts in aeronautical context using a single pan-tilt-zoom (PTZ) camera and a computer-aided design (CAD) model of the mechanical part. We use the CAD model to create a theoretical image of the element to be checked, which is further matched with the sensed image of the element to be inspected, using a graph theory-based approach. The matching is carried out in two stages. First, the two images are used to create two attributed graphs representing the primitives (ellipses and line segments) in the images. In the second stage, the graphs are matched using a similarity function built from the primitive parameters. The similarity scores of the matching are injected in the edges of a bipartite graph. A best-match-search procedure in the bipartite graph guarantees the uniqueness of the match solution. The method achieves promising performance in tests with synthetic data including missing elements, displaced elements, size changes, and combinations of these cases. The results open good prospects for using the method with realistic data.

  17. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  18. Sampled-data consensus in switching networks of integrators based on edge events

    NASA Astrophysics Data System (ADS)

    Xiao, Feng; Meng, Xiangyu; Chen, Tongwen

    2015-02-01

    This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies, each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a jointly connected topology condition is shown by both theoretical analysis and simulation examples.

  19. Percolation under noise: Detecting explosive percolation using the second-largest component

    NASA Astrophysics Data System (ADS)

    Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.

    2016-05-01

    We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.

  20. Phase transitions in the quadratic contact process on complex networks

    NASA Astrophysics Data System (ADS)

    Varghese, Chris; Durrett, Rick

    2013-06-01

    The quadratic contact process (QCP) is a natural extension of the well-studied linear contact process where infected (1) individuals infect susceptible (0) neighbors at rate λ and infected individuals recover (10) at rate 1. In the QCP, a combination of two 1's is required to effect a 01 change. We extend the study of the QCP, which so far has been limited to lattices, to complex networks. We define two versions of the QCP: vertex-centered (VQCP) and edge-centered (EQCP) with birth events 1-0-11-1-1 and 1-1-01-1-1, respectively, where “-” represents an edge. We investigate the effects of network topology by considering the QCP on random regular, Erdős-Rényi, and power-law random graphs. We perform mean-field calculations as well as simulations to find the steady-state fraction of occupied vertices as a function of the birth rate. We find that on the random regular and Erdős-Rényi graphs, there is a discontinuous phase transition with a region of bistability, whereas on the heavy-tailed power-law graph, the transition is continuous. The critical birth rate is found to be positive in the former but zero in the latter.

  1. Optimizing Robinson Operator with Ant Colony Optimization As a Digital Image Edge Detection Method

    NASA Astrophysics Data System (ADS)

    Yanti Nasution, Tarida; Zarlis, Muhammad; K. M Nasution, Mahyuddin

    2017-12-01

    Edge detection serves to identify the boundaries of an object against a background of mutual overlap. One of the classic method for edge detection is operator Robinson. Operator Robinson produces a thin, not assertive and grey line edge. To overcome these deficiencies, the proposed improvements to edge detection method with the approach graph with Ant Colony Optimization algorithm. The repairs may be performed are thicken the edge and connect the edges cut off. Edge detection research aims to do optimization of operator Robinson with Ant Colony Optimization then compare the output and generated the inferred extent of Ant Colony Optimization can improve result of edge detection that has not been optimized and improve the accuracy of the results of Robinson edge detection. The parameters used in performance measurement of edge detection are morphology of the resulting edge line, MSE and PSNR. The result showed that Robinson and Ant Colony Optimization method produces images with a more assertive and thick edge. Ant Colony Optimization method is able to be used as a method for optimizing operator Robinson by improving the image result of Robinson detection average 16.77 % than classic Robinson result.

  2. Quantum speedup in solving the maximal-clique problem

    NASA Astrophysics Data System (ADS)

    Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang

    2018-03-01

    The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.

  3. A new method of search design of refrigerating systems containing a liquid and gaseous working medium based on the graph model of the physical operating principle

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. A.; Sorokin, V. S.; Mishustina, S. N.; Proidakova, N. V.; Postupaeva, S. G.

    2017-01-01

    The article describes a new method of search design of refrigerating systems, the basis of which is represented by a graph model of the physical operating principle based on thermodynamical description of physical processes. The mathematical model of the physical operating principle has been substantiated, and the basic abstract theorems relatively semantic load applied to nodes and edges of the graph have been represented. The necessity and the physical operating principle, sufficient for the given model and intended for the considered device class, were demonstrated by the example of a vapour-compression refrigerating plant. The example of obtaining a multitude of engineering solutions of a vapour-compression refrigerating plant has been considered.

  4. Gaps in the spectrum of a periodic quantum graph with periodically distributed \\delta ^{\\prime} -type interactions

    NASA Astrophysics Data System (ADS)

    Barseghyan, Diana; Khrabustovskyi, Andrii

    2015-06-01

    We consider a family of quantum graphs {{\\{(Γ ,{{A}\\varepsilon })\\}}\\varepsilon \\gt 0}, where Γ is a {{{Z}}n}-periodic metric graph and the periodic Hamiltonian {{A}\\varepsilon } is defined by the operation -{{\\varepsilon }-1}\\frac{{{d}2}}{d{{x}2}} on the edges of Γ and either δ \\prime -type conditions or the Kirchhoff conditions at its vertices. Here \\varepsilon \\gt 0 is a small parameter. We show that the spectrum of {{A}\\varepsilon } has at least m gaps as \\varepsilon \\to 0 (m\\in {N} is a predefined number), moreover the location of these gaps can be nicely controlled via a suitable choice of the geometry of Γ and of coupling constants involved in δ \\prime -type conditions.

  5. A graph theoretic approach to scene matching

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1991-01-01

    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.

  6. Topological Filtering of Dynamic Functional Brain Networks Unfolds Informative Chronnectomics: A Novel Data-Driven Thresholding Scheme Based on Orthogonal Minimal Spanning Trees (OMSTs)

    PubMed Central

    Dimitriadis, Stavros I.; Salis, Christos; Tarnanas, Ioannis; Linden, David E.

    2017-01-01

    The human brain is a large-scale system of functionally connected brain regions. This system can be modeled as a network, or graph, by dividing the brain into a set of regions, or “nodes,” and quantifying the strength of the connections between nodes, or “edges,” as the temporal correlation in their patterns of activity. Network analysis, a part of graph theory, provides a set of summary statistics that can be used to describe complex brain networks in a meaningful way. The large-scale organization of the brain has features of complex networks that can be quantified using network measures from graph theory. The adaptation of both bivariate (mutual information) and multivariate (Granger causality) connectivity estimators to quantify the synchronization between multichannel recordings yields a fully connected, weighted, (a)symmetric functional connectivity graph (FCG), representing the associations among all brain areas. The aforementioned procedure leads to an extremely dense network of tens up to a few hundreds of weights. Therefore, this FCG must be filtered out so that the “true” connectivity pattern can emerge. Here, we compared a large number of well-known topological thresholding techniques with the novel proposed data-driven scheme based on orthogonal minimal spanning trees (OMSTs). OMSTs filter brain connectivity networks based on the optimization between the global efficiency of the network and the cost preserving its wiring. We demonstrated the proposed method in a large EEG database (N = 101 subjects) with eyes-open (EO) and eyes-closed (EC) tasks by adopting a time-varying approach with the main goal to extract features that can totally distinguish each subject from the rest of the set. Additionally, the reliability of the proposed scheme was estimated in a second case study of fMRI resting-state activity with multiple scans. Our results demonstrated clearly that the proposed thresholding scheme outperformed a large list of thresholding schemes based on the recognition accuracy of each subject compared to the rest of the cohort (EEG). Additionally, the reliability of the network metrics based on the fMRI static networks was improved based on the proposed topological filtering scheme. Overall, the proposed algorithm could be used across neuroimaging and multimodal studies as a common computationally efficient standardized tool for a great number of neuroscientists and physicists working on numerous of projects. PMID:28491032

  7. Oriented matroids—combinatorial structures underlying loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Brunnemann, Johannes; Rideout, David

    2010-10-01

    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator (Ashtekar A and Lewandowski J 1998 Adv. Theor. Math. Phys. 1 388) in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in three-dimensional Riemannian space and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)). Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence, the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of Brunnemann and Rideout (2008 Class. Quantum Grav. 25 065001 and 065002), and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3 (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)), and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.

  8. The Price of Anarchy in Network Creation Games Is (Mostly) Constant

    NASA Astrophysics Data System (ADS)

    Mihalák, Matúš; Schlegel, Jan Christoph

    We study the price of anarchy and the structure of equilibria in network creation games. A network creation game (first defined and studied by Fabrikant et al. [4]) is played by n players {1,2,...,n}, each identified with a vertex of a graph (network), where the strategy of player i, i = 1,...,n, is to build some edges adjacent to i. The cost of building an edge is α> 0, a fixed parameter of the game. The goal of every player is to minimize its creation cost plus its usage cost. The creation cost of player i is α times the number of built edges. In the SumGame (the original variant of Fabrikant et al. [4]) the usage cost of player i is the sum of distances from i to every node of the resulting graph. In the MaxGame (variant defined and studied by Demaine et al. [3]) the usage cost is the eccentricity of i in the resulting graph of the game. In this paper we improve previously known bounds on the price of anarchy of the game (of both variants) for various ranges of α, and give new insights into the structure of equilibria for various values of α. The two main results of the paper show that for α > 273·n all equilibria in SumGame are trees and thus the price of anarchy is constant, and that for α> 129 all equilibria in MaxGame are trees and the price of anarchy is constant. For SumGame this (almost) answers one of the basic open problems in the field - is price of anarchy of the network creation game constant for all values of α? - in an affirmative way, up to a tiny range of α.

  9. Parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  10. Neuro-symbolic representation learning on biological knowledge graphs.

    PubMed

    Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert

    2017-09-01

    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  11. On extreme points of the diffusion polytope

    DOE PAGES

    Hay, M. J.; Schiff, J.; Fisch, N. J.

    2017-01-04

    Here, we consider a class of diffusion problems defined on simple graphs in which the populations at any two vertices may be averaged if they are connected by an edge. The diffusion polytope is the convex hull of the set of population vectors attainable using finite sequences of these operations. A number of physical problems have linear programming solutions taking the diffusion polytope as the feasible region, e.g. the free energy that can be removed from plasma using waves, so there is a need to describe and enumerate its extreme points. We also review known results for the case ofmore » the complete graph Kn, and study a variety of problems for the path graph Pn and the cyclic graph Cn. Finall, we describe the different kinds of extreme points that arise, and identify the diffusion polytope in a number of simple cases. In the case of increasing initial populations on Pn the diffusion polytope is topologically an n-dimensional hypercube.« less

  12. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less

  13. Graph Matching: Relax at Your Own Risk.

    PubMed

    Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo

    2016-01-01

    Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.

  14. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  15. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE PAGES

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...

    2017-07-10

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  16. Exploring the evolution of London's street network in the information space: A dual approach

    NASA Astrophysics Data System (ADS)

    Masucci, A. Paolo; Stanilov, Kiril; Batty, Michael

    2014-01-01

    We study the growth of London's street network in its dual representation, as the city has evolved over the past 224 years. The dual representation of a planar graph is a content-based network, where each node is a set of edges of the planar graph and represents a transportation unit in the so-called information space, i.e., the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation principle. Then we show that the growth of the network can be analytically described by logistic laws and that the topological properties of the network are governed by robust log-normal distributions characterizing the network's connectivity and small-world properties that are consistent over time. Moreover, we find that the double-Pareto-like distributions for the connectivity emerge for major roads and can be modeled via a stochastic content-based network model using simple space-filling principles.

  17. Verification of hypergraph states

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Takeuchi, Yuki; Hayashi, Masahito

    2017-12-01

    Hypergraph states are generalizations of graph states where controlled-Z gates on edges are replaced with generalized controlled-Z gates on hyperedges. Hypergraph states have several advantages over graph states. For example, certain hypergraph states, such as the Union Jack states, are universal resource states for measurement-based quantum computing with only Pauli measurements, while graph state measurement-based quantum computing needs non-Clifford basis measurements. Furthermore, it is impossible to classically efficiently sample measurement results on hypergraph states unless the polynomial hierarchy collapses to the third level. Although several protocols have been proposed to verify graph states with only sequential single-qubit Pauli measurements, there was no verification method for hypergraph states. In this paper, we propose a method for verifying a certain class of hypergraph states with only sequential single-qubit Pauli measurements. Importantly, no i.i.d. property of samples is assumed in our protocol: any artificial entanglement among samples cannot fool the verifier. As applications of our protocol, we consider verified blind quantum computing with hypergraph states, and quantum computational supremacy demonstrations with hypergraph states.

  18. Bipartite graphs in systems biology and medicine: a survey of methods and applications.

    PubMed

    Pavlopoulos, Georgios A; Kontou, Panagiota I; Pavlopoulou, Athanasia; Bouyioukos, Costas; Markou, Evripides; Bagos, Pantelis G

    2018-04-01

    The latest advances in high-throughput techniques during the past decade allowed the systems biology field to expand significantly. Today, the focus of biologists has shifted from the study of individual biological components to the study of complex biological systems and their dynamics at a larger scale. Through the discovery of novel bioentity relationships, researchers reveal new information about biological functions and processes. Graphs are widely used to represent bioentities such as proteins, genes, small molecules, ligands, and others such as nodes and their connections as edges within a network. In this review, special focus is given to the usability of bipartite graphs and their impact on the field of network biology and medicine. Furthermore, their topological properties and how these can be applied to certain biological case studies are discussed. Finally, available methodologies and software are presented, and useful insights on how bipartite graphs can shape the path toward the solution of challenging biological problems are provided.

  19. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    PubMed

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  20. An asynchronous traversal engine for graph-based rich metadata management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dong; Carns, Philip; Ross, Robert B.

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less

  1. An asynchronous traversal engine for graph-based rich metadata management

    DOE PAGES

    Dai, Dong; Carns, Philip; Ross, Robert B.; ...

    2016-06-23

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less

  2. Graph Curvature for Differentiating Cancer Networks

    PubMed Central

    Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen

    2015-01-01

    Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480

  3. The Roadmaker's algorithm for the discrete pulse transform.

    PubMed

    Laurie, Dirk P

    2011-02-01

    The discrete pulse transform (DPT) is a decomposition of an observed signal into a sum of pulses, i.e., signals that are constant on a connected set and zero elsewhere. Originally developed for 1-D signal processing, the DPT has recently been generalized to more dimensions. Applications in image processing are currently being investigated. The time required to compute the DPT as originally defined via the successive application of LULU operators (members of a class of minimax filters studied by Rohwer) has been a severe drawback to its applicability. This paper introduces a fast method for obtaining such a decomposition, called the Roadmaker's algorithm because it involves filling pits and razing bumps. It acts selectively only on those features actually present in the signal, flattening them in order of increasing size by subtracing an appropriate positive or negative pulse, which is then appended to the decomposition. The implementation described here covers 1-D signal as well as two and 3-D image processing in a single framework. This is achieved by considering the signal or image as a function defined on a graph, with the geometry specified by the edges of the graph. Whenever a feature is flattened, nodes in the graph are merged, until eventually only one node remains. At that stage, a new set of edges for the same nodes as the graph, forming a tree structure, defines the obtained decomposition. The Roadmaker's algorithm is shown to be equivalent to the DPT in the sense of obtaining the same decomposition. However, its simpler operators are not in general equivalent to the LULU operators in situations where those operators are not applied successively. A by-product of the Roadmaker's algorithm is that it yields a proof of the so-called Highlight Conjecture, stated as an open problem in 2006. We pay particular attention to algorithmic details and complexity, including a demonstration that in the 1-D case, and also in the case of a complete graph, the Roadmaker's algorithm has optimal complexity: it runs in time O(m), where m is the number of arcs in the graph.

  4. The Full Ward-Takahashi Identity for Colored Tensor Models

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, Carlos I.

    2018-03-01

    Colored tensor models (CTM) is a random geometrical approach to quantum gravity. We scrutinize the structure of the connected correlation functions of general CTM-interactions and organize them by boundaries of Feynman graphs. For rank- D interactions including, but not restricted to, all melonic φ^4 -vertices—to wit, solely those quartic vertices that can lead to dominant spherical contributions in the large- N expansion—the aforementioned boundary graphs are shown to be precisely all (possibly disconnected) vertex-bipartite regularly edge- D-colored graphs. The concept of CTM-compatible boundary-graph automorphism is introduced and an auxiliary graph calculus is developed. With the aid of these constructs, certain U (∞)-invariance of the path integral measure is fully exploited in order to derive a strong Ward-Takahashi Identity for CTMs with a symmetry-breaking kinetic term. For the rank-3 φ^4 -theory, we get the exact integral-like equation for the 2-point function. Similarly, exact equations for higher multipoint functions can be readily obtained departing from this full Ward-Takahashi identity. Our results hold for some Group Field Theories as well. Altogether, our non-perturbative approach trades some graph theoretical methods for analytical ones. We believe that these tools can be extended to tensorial SYK-models.

  5. Toward Collaboration Sensing

    ERIC Educational Resources Information Center

    Schneider, Bertrand; Pea, Roy

    2014-01-01

    We describe preliminary applications of network analysis techniques to eye-tracking data collected during a collaborative learning activity. This paper makes three contributions: first, we visualize collaborative eye-tracking data as networks, where the nodes of the graph represent fixations and edges represent saccades. We found that those…

  6. The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles.

    PubMed

    Gămănuţ, Răzvan; Kennedy, Henry; Toroczkai, Zoltán; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Burkhalter, Andreas

    2018-02-07

    The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological markers enabled detailed counts of labeled neurons in individual areas. The observed log-normal distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a distinct connectivity profile for each area, analogous to that observed in macaques. The cortical network has a density of 97%, considerably higher than the 66% density reported in macaques. A weighted graph analysis reveals a similar global efficiency but weaker spatial clustering compared with that reported in macaques. The consistency, precision of the connectivity profile, density, and weighted graph analysis of the present data differ significantly from those obtained in earlier studies in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Network inference using informative priors

    PubMed Central

    Mukherjee, Sach; Speed, Terence P.

    2008-01-01

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of “network inference” is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling. PMID:18799736

  8. Network inference using informative priors.

    PubMed

    Mukherjee, Sach; Speed, Terence P

    2008-09-23

    Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of "network inference" is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling.

  9. A componential model of human interaction with graphs: 1. Linear regression modeling

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  10. Spectral and scattering theory for Schrödinger operators on perturbed topological crystals

    NASA Astrophysics Data System (ADS)

    Parra, D.; Richard, S.

    In this paper, we investigate the spectral and the scattering theory of Schrödinger operators acting on perturbed periodic discrete graphs. The perturbations considered are of two types: either a multiplication operator by a short-range or a long-range function, or a short-range type modification of the measure defined on the vertices and on the edges of the graph. Mourre theory is used for describing the nature of the spectrum of the underlying operators. For short-range perturbations, existence and asymptotic completeness of local wave operators are also proved.

  11. Princeton VLSI Project.

    DTIC Science & Technology

    1982-01-01

    a rectilinear graph. iefnition 2.1: A rectiliwr graph G is a triple (V. E. X). where V is the vertex set, E is the edge set, and X:Vx V-E U le , where...G,(V, ,) as follows: . =e(z) I =z(a),a E Viand E., = (z, ) I Z1 >Z2E:I, V and E-V are similarly defined. It can be easily shown that C is consistent...width of the layout after the introduction the le .’gths of the drivers introduced on wn to u _-, If we of drivers, which is given by so,+m. is 0(m2

  12. Graph-associated entanglement cost of a multipartite state in exact and finite-block-length approximate constructions

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hayata; Soeda, Akihito; Murao, Mio

    2017-09-01

    We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.

  13. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

    PubMed

    Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy

    2014-12-05

    Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly available, we anticipate that gene function will come to be represented by graphs, as gene structure has been represented by sequences, and that the methods introduced here will provide a broader foundation for understanding how genes work.

  14. Graph Theory Roots of Spatial Operators for Kinematics and Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2011-01-01

    Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component bodies, the indexing schemes, etc. The relationship of the underlying structure is intimately connected with efficient, recursive computational algorithms. The results provide the foundational groundwork for a much broader look at the key problems in kinematics and dynamics. The properties of general graphs and trees of nodes and edge were examined, as well as the properties of adjacency matrices that are used to describe graph connectivity. The nilpotency property of such matrices for directed trees was reviewed, and the adjacency matrices were generalized to the notion of block weighted adjacency matrices that support block matrix elements. This leads us to the development of the notion of Spatial Kernel Operator SKO kernels. These kernels provide the basis for the development of SKO resolvent operators.

  15. Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra

    NASA Astrophysics Data System (ADS)

    Russell, Emily R.; Menon, Govind

    2016-06-01

    We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.

  16. Inner and Outer Recursive Neural Networks for Chemoinformatics Applications.

    PubMed

    Urban, Gregor; Subrahmanya, Niranjan; Baldi, Pierre

    2018-02-26

    Deep learning methods applied to problems in chemoinformatics often require the use of recursive neural networks to handle data with graphical structure and variable size. We present a useful classification of recursive neural network approaches into two classes, the inner and outer approach. The inner approach uses recursion inside the underlying graph, to essentially "crawl" the edges of the graph, while the outer approach uses recursion outside the underlying graph, to aggregate information over progressively longer distances in an orthogonal direction. We illustrate the inner and outer approaches on several examples. More importantly, we provide open-source implementations [available at www.github.com/Chemoinformatics/InnerOuterRNN and cdb.ics.uci.edu ] for both approaches in Tensorflow which can be used in combination with training data to produce efficient models for predicting the physical, chemical, and biological properties of small molecules.

  17. Graph-based layout analysis for PDF documents

    NASA Astrophysics Data System (ADS)

    Xu, Canhui; Tang, Zhi; Tao, Xin; Li, Yun; Shi, Cao

    2013-03-01

    To increase the flexibility and enrich the reading experience of e-book on small portable screens, a graph based method is proposed to perform layout analysis on Portable Document Format (PDF) documents. Digital born document has its inherent advantages like representing texts and fractional images in explicit form, which can be straightforwardly exploited. To integrate traditional image-based document analysis and the inherent meta-data provided by PDF parser, the page primitives including text, image and path elements are processed to produce text and non text layer for respective analysis. Graph-based method is developed in superpixel representation level, and page text elements corresponding to vertices are used to construct an undirected graph. Euclidean distance between adjacent vertices is applied in a top-down manner to cut the graph tree formed by Kruskal's algorithm. And edge orientation is then used in a bottom-up manner to extract text lines from each sub tree. On the other hand, non-textual objects are segmented by connected component analysis. For each segmented text and non-text composite, a 13-dimensional feature vector is extracted for labelling purpose. The experimental results on selected pages from PDF books are presented.

  18. Entropy of spatial network ensembles

    NASA Astrophysics Data System (ADS)

    Coon, Justin P.; Dettmann, Carl P.; Georgiou, Orestis

    2018-04-01

    We analyze complexity in spatial network ensembles through the lens of graph entropy. Mathematically, we model a spatial network as a soft random geometric graph, i.e., a graph with two sources of randomness, namely nodes located randomly in space and links formed independently between pairs of nodes with probability given by a specified function (the "pair connection function") of their mutual distance. We consider the general case where randomness arises in node positions as well as pairwise connections (i.e., for a given pair distance, the corresponding edge state is a random variable). Classical random geometric graph and exponential graph models can be recovered in certain limits. We derive a simple bound for the entropy of a spatial network ensemble and calculate the conditional entropy of an ensemble given the node location distribution for hard and soft (probabilistic) pair connection functions. Under this formalism, we derive the connection function that yields maximum entropy under general constraints. Finally, we apply our analytical framework to study two practical examples: ad hoc wireless networks and the US flight network. Through the study of these examples, we illustrate that both exhibit properties that are indicative of nearly maximally entropic ensembles.

  19. Information extraction and knowledge graph construction from geoscience literature

    NASA Astrophysics Data System (ADS)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo; Chen, Jingwen

    2018-03-01

    Geoscience literature published online is an important part of open data, and brings both challenges and opportunities for data analysis. Compared with studies of numerical geoscience data, there are limited works on information extraction and knowledge discovery from textual geoscience data. This paper presents a workflow and a few empirical case studies for that topic, with a focus on documents written in Chinese. First, we set up a hybrid corpus combining the generic and geology terms from geology dictionaries to train Chinese word segmentation rules of the Conditional Random Fields model. Second, we used the word segmentation rules to parse documents into individual words, and removed the stop-words from the segmentation results to get a corpus constituted of content-words. Third, we used a statistical method to analyze the semantic links between content-words, and we selected the chord and bigram graphs to visualize the content-words and their links as nodes and edges in a knowledge graph, respectively. The resulting graph presents a clear overview of key information in an unstructured document. This study proves the usefulness of the designed workflow, and shows the potential of leveraging natural language processing and knowledge graph technologies for geoscience.

  20. Incremental isometric embedding of high-dimensional data using connected neighborhood graphs.

    PubMed

    Zhao, Dongfang; Yang, Li

    2009-01-01

    Most nonlinear data embedding methods use bottom-up approaches for capturing the underlying structure of data distributed on a manifold in high dimensional space. These methods often share the first step which defines neighbor points of every data point by building a connected neighborhood graph so that all data points can be embedded to a single coordinate system. These methods are required to work incrementally for dimensionality reduction in many applications. Because input data stream may be under-sampled or skewed from time to time, building connected neighborhood graph is crucial to the success of incremental data embedding using these methods. This paper presents algorithms for updating $k$-edge-connected and $k$-connected neighborhood graphs after a new data point is added or an old data point is deleted. It further utilizes a simple algorithm for updating all-pair shortest distances on the neighborhood graph. Together with incremental classical multidimensional scaling using iterative subspace approximation, this paper devises an incremental version of Isomap with enhancements to deal with under-sampled or unevenly distributed data. Experiments on both synthetic and real-world data sets show that the algorithm is efficient and maintains low dimensional configurations of high dimensional data under various data distributions.

Top