Edge-based finite element method for shallow water equations
NASA Astrophysics Data System (ADS)
Ribeiro, F. L. B.; Galeão, A. C.; Landau, L.
2001-07-01
This paper describes an edge-based implementation of the generalized residual minimum (GMRES) solver for the fully coupled solution of non-linear systems arising from finite element discretization of shallow water equations (SWEs). The gain in terms of memory, floating point operations and indirect addressing is quantified for semi-discrete and space-time analyses. Stabilized formulations, including Petrov-Galerkin models and discontinuity-capturing operators, are also discussed for both types of discretization. Results illustrating the quality of the stabilized solutions and the advantages of using the edge-based approach are presented at the end of the paper. Copyright
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Loehner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of the upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Lohner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more traditional element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well-documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Yang, Gang; Hu, De'an; Long, Shuyao
2017-02-01
A reconstructed edge-based smoothed triangular element, which is incorporated with the discrete shear gap (DSG) method, is formulated based on the global coordinate for analysis of Reissner-Mindlin plates. A symbolic integration combined with the smoothing technique is implemented to calculate the smoothed finite element matrices, which is integrated along the boundaries of each smoothing cell. Numerical results show that the proposed element is free from shear locking, and its results are in good agreement with the exact solutions, even for very thin plates with extremely distorted elements. The proposed element gives more accurate results than the original DSG element without smoothing, and it can be taken as an alternative element for analysis of Reissner-Mindlin plates. The prominent feature of the present element is that the integration scheme is unified in the smoothed form for all of the finite element matrices.
An edge-based smoothed triangle element for non-linear explicit dynamic analysis of shells
NASA Astrophysics Data System (ADS)
Zheng, Gang; Cui, Xiangyang; Li, Guangyao; Wu, Suzhen
2011-07-01
The paper presents an edge-based smoothed triangular element (EST) for nonlinear analysis of shell structures using an explicit dynamic formulation. In order to improve the accuracy and the convergence of the shell element without additional parameters, the gradient smoothing operation is performed to the strain rates in the smoothing domains associated with the edges of triangular elements. An edge coordinate system is defined local on the edges of the triangular element for the strain smoothing operation. The material nonlinearities for the dynamic solution are treated by using the updated Lagrangian description and an elastic-plastic constitutive law. The shear strains in the element formulation are approximated using the discrete shear gap method to mitigate the shear locking, and this element can be applicable for both thin shells and thick shells. Numerical results for elastic and elastic-plastic problems show the effectiveness and efficiency of the proposed shell element.
Edge-based finite elements and vector ABCs applied to 3D scattering
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1992-01-01
An edge based finite element formulation with vector absorbing boundary conditions is presented for scattering by composite structures having boundaries satisfying impedance and/or transition conditions. Remarkably accurate results are obtained by placing the mesh a small fraction of a wavelength away from the scatterer.
Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
NASA Astrophysics Data System (ADS)
Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin
2017-02-01
We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.
NASA Astrophysics Data System (ADS)
Jahandari, Hormoz; Ansari, SeyedMasoud; Farquharson, Colin G.
2017-03-01
This study compares two finite-element (FE) and three finite-volume (FV) schemes which use unstructured tetrahedral grids for the modelling of electromagnetic (EM) data. All these schemes belong to a group of differential methods where the electric field is defined along the edges of the elements. The FE and FV schemes are based on both the EM-field and the potential formulations of Maxwell's equations. The EM-field FE scheme uses edge-based (vector) basis functions while the potential FE scheme uses vector and scalar basis functions. All the FV schemes use staggered tetrahedral-Voronoï grids. Three examples are used for comparisons in terms of accuracy and in terms of the computation resources required by generic iterative and direct solvers for solving the problems. Two of these examples represent survey scenarios with electric and magnetic sources and the results are compared with those from the literature while the third example is a comparison against analytical solutions for an electric dipole source. Exactly the same mesh is used for all examples to allow for direct comparison of the various schemes. The results show that while the FE and FV schemes are comparable in terms of accuracy and computation resources, the FE schemes are slightly more accurate but also more expensive than the FV schemes.
NASA Astrophysics Data System (ADS)
González-Estrada, Octavio A.; Natarajan, Sundararajan; Ródenas, Juan José; Nguyen-Xuan, Hung; Bordas, Stéphane P. A.
2013-07-01
An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a "smooth + singular" decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.
Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing.
Oskooi, Ardavan F; Kottke, Chris; Johnson, Steven G
2009-09-15
Finite-difference time-domain methods suffer from reduced accuracy when discretizing discontinuous materials. We previously showed that accuracy can be significantly improved by using subpixel smoothing of the isotropic dielectric function, but only if the smoothing scheme is properly designed. Using recent developments in perturbation theory that were applied to spectral methods, we extend this idea to anisotropic media and demonstrate that the generalized smoothing consistently reduces the errors and even attains second-order convergence with resolution.
Finite difference micromagnetic simulation with self-consistent currents and smooth surfaces
Cerjan, C; Gibbons, M R; Hewett, D W; Parker, G
1999-05-27
A micromagnetic algorithm has been developed using the finite difference method (FDM). Elliptic field equations are solved on the mesh using the efficient Dynamic Alternating Direction Implicit method. Smooth surfaces have been included in the FDM formulation so structures of irregular shape can be modeled. The current distribution and temperature of devices are also calculated. Keywords: Micromagnetic simulation, Magnetic dots, Read heads, Thermal Effects
Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
NASA Astrophysics Data System (ADS)
Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian
2012-12-01
This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.
Goode, D.J.; Appel, C.A.
1992-01-01
More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield
Visual servo walking control for humanoids with finite-time convergence and smooth robot velocities
NASA Astrophysics Data System (ADS)
Delfin, Josafat; Becerra, Hector M.; Arechavaleta, Gustavo
2016-07-01
In this paper, we address the problem of humanoid locomotion guided from information of a monocular camera. The goal of the robot is to reach a desired location defined in terms of a target image, i.e., a positioning task. The proposed approach allows us to introduce a desired time to complete the positioning task, which is advantageous in contrast to the classical exponential convergence. In particular, finite-time convergence is achieved while generating smooth robot velocities and considering the omnidirectional waking capability of the robot. In addition, we propose a hierarchical task-based control scheme, which can simultaneously handle the visual positioning and the obstacle avoidance tasks without affecting the desired time of convergence. The controller is able to activate or inactivate the obstacle avoidance task without generating discontinuous velocity references while the humanoid is walking. Stability of the closed loop for the two task-based control is demonstrated theoretically even during the transitions between the tasks. The proposed approach is generic in the sense that different visual control schemes are supported. We evaluate a homography-based visual servoing for position-based and image-based modalities, as well as for eye-in-hand and eye-to-hand configurations. The experimental evaluation is performed with the humanoid robot NAO.
Canny edge-based deformable image registration
NASA Astrophysics Data System (ADS)
Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping
2017-02-01
This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.
(In)stability of quasi-static paths of some finite dimensional smooth or elastic-plastic systems
NASA Astrophysics Data System (ADS)
Martins, J. A. C.; Monteiro Marques, M. D. P.; Petrov, A.; Rebrova, N. V.; Sobolev, V. A.; Coelho, I.
2005-01-01
In this paper we discuss some mathematical issues related to the stability of quasistatic paths of finite dimensional mechanical systems that have a smooth or an elastic-plastic behavior. The concept of stability of quasi-static paths used here is essentially a continuity property relatively to the size of the initial perturbations (as in Lyapunov stability) and to the smallness of the rate of application of the external forces (which here plays the role of the small parameter in singular perturbation problems). A related concept of attractiveness is also proposed. Sufficient conditions for attractiveness or for instability of quasi-static paths of smooth systems are presented. The Ziegler column and other examples illustrate these situations. Mathematical formulations (plus existence and uniqueness results) for dynamic and quasi-static elastic-plastic problems with linear hardening are recalled. A stability result is proved for the quasi-static evolution of these systems.
A continuum model for excitation-contraction of smooth muscle under finite deformations.
Sharifimajd, Babak; Stålhand, Jonas
2014-08-21
The main focus in most of the continuum based muscle models is the mechanics of muscle contraction while other physiological processes governing muscle contraction, e.g., cell membrane excitation and activation, are ignored. These latter processes are essential to initiate contraction and to determine the amount of generated force, and by excluding them, the developed model cannot replicate the true behavior of the muscle in question. The aim of this study is to establish a thermodynamically and physiologically consistent framework which allows us to model smooth muscle contraction by including cell membrane excitability and kinetics of myosin phosphorylation, along with dynamics of smooth muscle contraction. The model accounts for these processes through a set of coupled dissipative constitutive equations derived by applying first principles. To show the performance of the derived model, it is evaluated for two different cases: a chemo-mechanical study of pig taenia coli cells where the excitation process is excluded, and an electro-chemo-mechanical study of rat myometrium. The results show that the model is able to replicate important aspects of the smooth muscle excitation-contraction process.
A Novel Three-Dimensional Contact Finite Element Based on Smooth Pressure Interpolations
Jones, R.E.; Papadopoulos, P.
2000-10-01
This article proposes a new three-dimensional contact finite element which employs continuous and weakly coupled pressure interpolations on each of the interacting boundaries. The resulting formulation circumvents the geometric bias of one-pass methods, as well as the surface locking of traditional two-pass node-on-surf ace methods. A Lagrange multiplier implementation of the proposed element is validated for frictionless quasi-static contact by a series of numerical simulations.
A collection of edge-based elements
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Edge-based elements have proved useful in solving electromagnetic problems since they are nondivergent. Previous authors have presented several two and three dimensional elements. Herein, we present four types of elements which are suitable for modeling several types of three dimensional geometries. Distorted brick and triangular prism elements are given in cartesian coordinates as well as the specialized cylindrical shell and pie-shaped prism elements which are suitable for problems best described in polar cylindrical coordinates.
NASA Astrophysics Data System (ADS)
Nordendale, Nikolas A.; Heard, William F.; Sherburn, Jesse A.; Basu, Prodyot K.
2016-03-01
The response of structural components of high-strength cementitious (HSC) materials to projectile impact is characterized by high-rate fragmentation resulting from strong compressive shock waves coupled with reflected tensile waves. Accurate modeling of armor panels of such brittle materials under high-velocity projectile impact is a complex problem requiring meticulous experimental characterization of material properties. In a recent paper by the authors, an approach to handle such problems based on a modified Advanced Fundamental Concrete (AFC) constitutive model was developed. In the HSC panels considered in this study, an analogous approach is applied, and the predictions are verified with ballistic impact test data. Traditional Lagrangian finite element analysis (FEA) of these problems tends to introduce errors and suffers from convergence issues resulting from large deformations at free surfaces. Also, FEA cannot properly account for the issues of secondary impact of spalled fragments when multiple armor panels are used. Smoothed particle hydrodynamics (SPH) is considered to be an attractive alternative to resolve these and other issues. However, SPH-based quantitative results have been found to be less accurate than the FEA-based ones when the deformations are not sufficiently large. This paper primarily focuses on a comparison of FEA and SPH models to predict high-velocity projectile impact on single and stacked HSC panels. Results are compared to recent ballistic experiments performed as a part of this research, and conclusions are drawn based on the findings.
NASA Astrophysics Data System (ADS)
Vasyliv, Yaroslav; Alexeev, Alexander
2015-11-01
In the meshfree family of methods, partial differential equations are solved on unstructured grids where a search radius establishes an implicit nodal connectivity used to determine whether to include or exclude neighboring nodes in the constructed approximation. Smoothed Particle Hydrodynamics (SPH) is widely attributed to be the eldest of the meshfree methods dating back to an astrophysics paper published in 1977 by Gingold and Monaghan. However, beating them by five years was Jensen when he published Finite Differences for Arbitrary Grids (FIDAG) in 1972. Ultimately this work and others were generalized by Liszka and Orkisz in 1979 as a weighted least squares formulation solving for the Taylor coefficients and is now commonly known as General Finite Differences (GFD). Shortly after in 1981, Lancaster and Salkauskas introduced the Moving Least Squares (MLS) approximation for surface reconstruction using a weighted least squares formulation where the unknown coefficients are treated as functions varying from node to node in the support domain. Here we examine important differences, similarities and limitations of each method by solving the 2D Poisson equation on unstructured grids. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903.
Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin
2014-01-01
Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.
Jiang, Chen; Liu, Gui-Rong; Han, Xu; Zhang, Zhi-Qian; Zeng, Wei
2015-01-01
The smoothed FEM (S-FEM) is firstly extended to explore the behavior of 3D anisotropic large deformation of rabbit ventricles during the passive filling process in diastole. Because of the incompressibility of myocardium, a special method called selective face-based/node-based S-FEM using four-node tetrahedral elements (FS/NS-FEM-TET4) is adopted in order to avoid volumetric locking. To validate the proposed algorithms of FS/NS-FEM-TET4, the 3D Lame problem is implemented. The performance contest results show that our FS/NS-FEM-TET4 is accurate, volumetric locking-free and insensitive to mesh distortion than standard linear FEM because of absence of isoparametric mapping. Actually, the efficiency of FS/NS-FEM-TET4 is comparable with higher-order FEM, such as 10-node tetrahedral elements. The proposed method for Holzapfel myocardium hyperelastic strain energy is also validated by simple shear tests through the comparison outcomes reported in available references. Finally, the FS/NS-FEM-TET4 is applied in the example of the passive filling of MRI-based rabbit ventricles with fiber architecture derived from rule-based algorithm to demonstrate its efficiency. Hence, we conclude that FS/NS-FEM-TET4 is a promising alternative other than FEM in passive cardiac mechanics.
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.
2012-12-01
The Lost-Hills oil field located in Kern County,California ranks sixth in total remaining reserves in California. Hundreds of densely packed wells characterize the field with one well every 5000 to 20000 square meters. Subsidence due to oil extraction can be grater than 10 cm/year and is highly variable both in space and time. The RADARSAT-1 SAR satellite collected data over this area with a 24-day repeat during a 2 year period spanning 2002-2004. Relatively high interferometric correlation makes this an excellent region for development and test of deformation time-series inversion algorithms. Errors in deformation time series derived from a stack of differential interferograms are primarily due to errors in the digital terrain model, interferometric baselines, variability in tropospheric delay, thermal noise and phase unwrapping errors. Particularly challenging is separation of non-linear deformation from variations in troposphere delay and phase unwrapping errors. In our algorithm a subset of interferometric pairs is selected from a set of N radar acquisitions based on criteria of connectivity, time interval, and perpendicular baseline. When possible, the subset consists of temporally connected interferograms, otherwise the different groups of interferograms are selected to overlap in time. The maximum time interval is constrained to be less than a threshold value to minimize phase gradients due to deformation as well as minimize temporal decorrelation. Large baselines are also avoided to minimize the consequence of DEM errors on the interferometric phase. Based on an extension of the SVD based inversion described by Lee et al. ( USGS Professional Paper 1769), Schmidt and Burgmann (JGR, 2003), and the earlier work of Berardino (TGRS, 2002), our algorithm combines estimation of the DEM height error with a set of finite difference smoothing constraints. A set of linear equations are formulated for each spatial point that are functions of the deformation velocities
NASA Astrophysics Data System (ADS)
von Clarmann, T.
2014-04-01
The difference due to the content of a priori information between a constrained retrieval and the true atmospheric state is usually represented by the so-called smoothing error. In this paper it is shown that the concept of the smoothing error is questionable because it is not compliant with Gaussian error propagation. The reason for this is that the smoothing error does not represent the expected deviation of the retrieval from the true state but the expected deviation of the retrieval from the atmospheric state sampled on an arbitrary grid, which is itself a smoothed representation of the true state. The idea of a sufficiently fine sampling of this reference atmospheric state is untenable because atmospheric variability occurs on all scales, implying that there is no limit beyond which the sampling is fine enough. Even the idealization of infinitesimally fine sampling of the reference state does not help because the smoothing error is applied to quantities which are only defined in a statistical sense, which implies that a finite volume of sufficient spatial extent is needed to meaningfully talk about temperature or concentration. Smoothing differences, however, which play a role when measurements are compared, are still a useful quantity if the involved a priori covariance matrix has been evaluated on the comparison grid rather than resulting from interpolation. This is, because the undefined component of the smoothing error, which is the effect of smoothing implied by the finite grid on which the measurements are compared, cancels out when the difference is calculated.
NASA Astrophysics Data System (ADS)
von Clarmann, T.
2014-09-01
The difference due to the content of a priori information between a constrained retrieval and the true atmospheric state is usually represented by a diagnostic quantity called smoothing error. In this paper it is shown that, regardless of the usefulness of the smoothing error as a diagnostic tool in its own right, the concept of the smoothing error as a component of the retrieval error budget is questionable because it is not compliant with Gaussian error propagation. The reason for this is that the smoothing error does not represent the expected deviation of the retrieval from the true state but the expected deviation of the retrieval from the atmospheric state sampled on an arbitrary grid, which is itself a smoothed representation of the true state; in other words, to characterize the full loss of information with respect to the true atmosphere, the effect of the representation of the atmospheric state on a finite grid also needs to be considered. The idea of a sufficiently fine sampling of this reference atmospheric state is problematic because atmospheric variability occurs on all scales, implying that there is no limit beyond which the sampling is fine enough. Even the idealization of infinitesimally fine sampling of the reference state does not help, because the smoothing error is applied to quantities which are only defined in a statistical sense, which implies that a finite volume of sufficient spatial extent is needed to meaningfully discuss temperature or concentration. Smoothing differences, however, which play a role when measurements are compared, are still a useful quantity if the covariance matrix involved has been evaluated on the comparison grid rather than resulting from interpolation and if the averaging kernel matrices have been evaluated on a grid fine enough to capture all atmospheric variations that the instruments are sensitive to. This is, under the assumptions stated, because the undefined component of the smoothing error, which is the
2015-04-22
our inverse problem we need to know the characteristics of the defect for that field configuration. In design optimization, the problem geometry is...The computational process in inverse problem solution is shown in Fig.10. It requires solving for the vector of design parameters . We first...lines for the Numerical Model SMOOTH-SHAPED DEFECT In inverse problem design optimization, getting a practically manufacturable shape is
ERIC Educational Resources Information Center
Price, Beverley; Pincott, Maxine; Rebman, Ashley; Northcutt, Jen; Barsanti, Amy; Silkunas, Betty; Brighton, Susan K.; Reitz, David; Winkler, Maureen
1999-01-01
Presents discipline tips from several teachers to keep classrooms running smoothly all year. Some of the suggestions include the following: a bear-cave warning system, peer mediation, a motivational mystery, problem students acting as the teacher's assistant, a positive-behavior-reward chain, a hallway scavenger hunt (to ensure quiet passage…
A 3D finite-volume scheme for the Euler equations on adaptive tetrahedral grids
Vijayan, P.; Kallinderis, Y. )
1994-08-01
The paper describes the development and application of a new Euler solver for adaptive tetrahedral grids. Spatial discretization uses a finite-volume, node-based scheme that is of central-differencing type. A second-order Taylor series expansion is employed to march the solution in time according to the Lax-Wendroff approach. Special upwind-like smoothing operators for unstructured grids are developed for shock-capturing, as well as for suppression of solution oscillations. The scheme is formulated so that all operations are edge-based, which reduces the computational effort significantly. An adaptive grid algorithm is employed in order to resolve local flow features. This is achieved by dividing the tetrahedral cells locally, guided by a flow feature detection algorithm. Application cases include transonic flow around the ONERA M6 wing and transonic flow past a transport aircraft configuration. Comparisons with experimental data evaluate accuracy of the developed adaptive solver. 31 refs., 33 figs.
Pairwise and edge-based models of epidemic dynamics on correlated weighted networks
Rattana, P.; Miller, J.C.; Kiss, I.Z.
2014-01-01
In this paper we explore the potential of the pairwise-type modelling approach to be extended to weighted networks where nodal degree and weights are not independent. As a baseline or null model for weighted networks, we consider undirected, heterogenous networks where edge weights are randomly distributed. We show that the pairwise model successfully captures the extra complexity of the network, but does this at the cost of limited analytical tractability due the high number of equations. To circumvent this problem, we employ the edge-based modelling approach to derive models corresponding to two different cases, namely for degree-dependent and randomly distributed weights. These models are more amenable to compute important epidemic descriptors, such as early growth rate and final epidemic size, and produce similarly excellent agreement with simulation. Using a branching process approach we compute the basic reproductive ratio for both models and discuss the implication of random and correlated weight distributions on this as well as on the time evolution and final outcome of epidemics. Finally, we illustrate that the two seemingly different modelling approaches, pairwsie and edge-based, operate on similar assumptions and it is possible to formally link the two. PMID:25580064
NASA Astrophysics Data System (ADS)
Hendrikse, Anne; Veldhuis, Raymond; Spreeuwers, Luuk
2013-12-01
Second-order statistics play an important role in data modeling. Nowadays, there is a tendency toward measuring more signals with higher resolution (e.g., high-resolution video), causing a rapid increase of dimensionality of the measured samples, while the number of samples remains more or less the same. As a result the eigenvalue estimates are significantly biased as described by the Marčenko Pastur equation for the limit of both the number of samples and their dimensionality going to infinity. By introducing a smoothness factor, we show that the Marčenko Pastur equation can be used in practical situations where both the number of samples and their dimensionality remain finite. Based on this result we derive methods, one already known and one new to our knowledge, to estimate the sample eigenvalues when the population eigenvalues are known. However, usually the sample eigenvalues are known and the population eigenvalues are required. We therefore applied one of the these methods in a feedback loop, resulting in an eigenvalue bias correction method. We compare this eigenvalue correction method with the state-of-the-art methods and show that our method outperforms other methods particularly in real-life situations often encountered in biometrics: underdetermined configurations, high-dimensional configurations, and configurations where the eigenvalues are exponentially distributed.
Face recognition via edge-based Gabor feature representation for plastic surgery-altered images
NASA Astrophysics Data System (ADS)
Chude-Olisah, Chollette C.; Sulong, Ghazali; Chude-Okonkwo, Uche A. K.; Hashim, Siti Z. M.
2014-12-01
Plastic surgery procedures on the face introduce skin texture variations between images of the same person (intra-subject), thereby making the task of face recognition more difficult than in normal scenario. Usually, in contemporary face recognition systems, the original gray-level face image is used as input to the Gabor descriptor, which translates to encoding some texture properties of the face image. The texture-encoding process significantly degrades the performance of such systems in the case of plastic surgery due to the presence of surgically induced intra-subject variations. Based on the proposition that the shape of significant facial components such as eyes, nose, eyebrow, and mouth remains unchanged after plastic surgery, this paper employs an edge-based Gabor feature representation approach for the recognition of surgically altered face images. We use the edge information, which is dependent on the shapes of the significant facial components, to address the plastic surgery-induced texture variation problems. To ensure that the significant facial components represent useful edge information with little or no false edges, a simple illumination normalization technique is proposed for preprocessing. Gabor wavelet is applied to the edge image to accentuate on the uniqueness of the significant facial components for discriminating among different subjects. The performance of the proposed method is evaluated on the Georgia Tech (GT) and the Labeled Faces in the Wild (LFW) databases with illumination and expression problems, and the plastic surgery database with texture changes. Results show that the proposed edge-based Gabor feature representation approach is robust against plastic surgery-induced face variations amidst expression and illumination problems and outperforms the existing plastic surgery face recognition methods reported in the literature.
EVolution: an edge-based variational method for non-rigid multi-modal image registration
NASA Astrophysics Data System (ADS)
de Senneville, B. Denis; Zachiu, C.; Ries, M.; Moonen, C.
2016-10-01
Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).
Mapping edge-based traffic measurements onto the internal links in MPLS network
NASA Astrophysics Data System (ADS)
Zhao, Guofeng; Tang, Hong; Zhang, Yi
2004-09-01
Applying multi-protocol label switching techniques to IP-based backbone for traffic engineering goals has shown advantageous. Obtaining a volume of load on each internal link of the network is crucial for traffic engineering applying. Though collecting can be available for each link, such as applying traditional SNMP scheme, the approach may cause heavy processing load and sharply degrade the throughput of the core routers. Then monitoring merely at the edge of the network and mapping the measurements onto the core provides a good alternative way. In this paper, we explore a scheme for traffic mapping with edge-based measurements in MPLS network. It is supposed that the volume of traffic on each internal link over the domain would be mapped onto by measurements available only at ingress nodes. We apply path-based measurements at ingress nodes without enabling measurements in the core of the network. We propose a method that can infer a path from the ingress to the egress node using label distribution protocol without collecting routing data from core routers. Based on flow theory and queuing theory, we prove that our approach is effective and present the algorithm for traffic mapping. We also show performance simulation results that indicate potential of our approach.
NASA Astrophysics Data System (ADS)
Zhang, Yushu; Xiao, Di; Wen, Wenying; Tian, Yuan
2013-12-01
In some special multimedia applications, only the regions with semantic information should be provided better protection whereas the other smooth regions can be free of encryption. However, most of the existing multimedia security schemes only consider bits and pixels rather than semantic information during their encryption. Motivated by this, we propose an edge-based lightweight image encryption scheme using chaos-based reversible hidden transform and multiple-order discrete fractional cosine transform. An image is first carried out by the edge detection based on advanced CNN structure with adaptive thresholds to assess data significance in the image. The detection output is a binary image, in which a “1” reflects the detected pixel whereas a “0” is opposite. Both the detected image and the original image are divided into non-overlapping pixel blocks in the same way, respectively. Whether each block is encrypted or not depends on the significance judged by the corresponding detected block. The significant block is performed by reversible hidden transform followed by multiple-order discrete fractional cosine transform parameters and orders of these two transforms are determined by a two dimensional cross chaotic map. Experiment results show the significant contour features of an image that have been largely hidden only by encrypting about half pixels in the average sense. The keys are extremely sensitive and the proposed scheme can resist noise attack to some extent.
WE-D-9A-04: Improving Multi-Modality Image Registration Using Edge-Based Transformations
Wang, Y; Tyagi, N; Veeraraghavan, H; Deasy, J
2014-06-15
Purpose: Multi-modality deformable image registration (DIR) for head and neck (HN) radiotherapy is difficult, particularly when matching computed tomography (CT) scans with magnetic resonance imaging (MRI) scans. We hypothesized that the ‘shared information’ between images of different modalities was to be found in some form of edge-based transformation, and that novel edge-based DIR methods might outperform standard DIR methods. Methods: We propose a novel method that combines gray-scale edge-based morphology and mutual information (MI) in two stages. In the first step, we applied a modification of a previously published mathematical morphology method as an efficient gray scale edge estimator, with denoising function. The results were fed into a MI-based solver (plastimatch). The method was tested on 5 HN patients with pretreatment CT and MR datasets and associated follow-up weekly MR scans. The followup MRs showed significant regression in tumor and normal structure volumes as compared to the pretreatment MRs. The MR images used in this study were obtained using fast spin echo based T2w images with a 1 mm isotropic resolution and FOV matching the CT scan. Results: In all cases, the novel edge-based registration method provided better registration quality than MI-based DIR using the original CT and MRI images. For example, the mismatch in carotid arteries was reduced from 3–5 mm to within 2 mm. The novel edge-based method with different registration regulation parameters did not show any distorted deformations as compared to the non-realistic deformations resulting from MI on the original images. Processing time was 1.3 to 2 times shorter (edge vs. non-edge). In general, we observed quality improvement and significant calculation time reduction with the new method. Conclusion: Transforming images to an ‘edge-space,’ if designed appropriately, greatly increases the speed and accuracy of DIR.
Puso, M A; Laursen, T A
2002-05-02
Smoothing of contact surfaces can be used to eliminate the chatter typically seen with node on facet contact and give a better representation of the actual contact surface. The latter affect is well demonstrated for problems with interference fits. In this work we present two methods for the smoothing of contact surfaces for 3D finite element contact. In the first method, we employ Gregory patches to smooth the faceted surface in a node on facet implementation. In the second method, we employ a Bezier interpolation of the faceted surface in a mortar method implementation of contact. As is well known, node on facet approaches can exhibit locking due to the failure of the Babuska-Brezzi condition and in some instances fail the patch test. The mortar method implementation is stable and provides optimal convergence in the energy of error. In the this work we demonstrate the superiority of the smoothed versus the non-smoothed node on facet implementations. We also show where the node on facet method fails and some results from the smoothed mortar method implementation.
NASA Astrophysics Data System (ADS)
Guevara, Ivonne; Wiseman, Howard
2015-10-01
Smoothing is an estimation method whereby a classical state (probability distribution for classical variables) at a given time is conditioned on all-time (both earlier and later) observations. Here we define a smoothed quantum state for a partially monitored open quantum system, conditioned on an all-time monitoring-derived record. We calculate the smoothed distribution for a hypothetical unobserved record which, when added to the real record, would complete the monitoring, yielding a pure-state "quantum trajectory." Averaging the pure state over this smoothed distribution yields the (mixed) smoothed quantum state. We study how the choice of actual unraveling affects the purity increase over that of the conventional (filtered) state conditioned only on the past record.
Guevara, Ivonne; Wiseman, Howard
2015-10-30
Smoothing is an estimation method whereby a classical state (probability distribution for classical variables) at a given time is conditioned on all-time (both earlier and later) observations. Here we define a smoothed quantum state for a partially monitored open quantum system, conditioned on an all-time monitoring-derived record. We calculate the smoothed distribution for a hypothetical unobserved record which, when added to the real record, would complete the monitoring, yielding a pure-state "quantum trajectory." Averaging the pure state over this smoothed distribution yields the (mixed) smoothed quantum state. We study how the choice of actual unraveling affects the purity increase over that of the conventional (filtered) state conditioned only on the past record.
NASA Technical Reports Server (NTRS)
Voronov, Oleg
2007-01-01
Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.
Nonequilibrium Flows with Smooth Particle Applied Mechanics.
NASA Astrophysics Data System (ADS)
Kum, Oyeon
Smooth particle methods are relatively new methods for simulating solid and fluid flows though they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separately controlled. The gradient algorithm, based on differentiating the smooth particle expressions for (urho) and (Trho), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier's heat -flow law and Newton's viscous force law are used. Smooth particle methods show an interesting parallel linking them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh -Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails. Considerably fewer smooth particles are required than atoms in a corresponding molecular dynamics
NASA Astrophysics Data System (ADS)
Dendy, E. D.; Padial-Collins, N. T.; VanderHeyden, W. B.
2002-08-01
We present a new general-purpose advection scheme for unstructured meshes based on the use of a variation of the interface-tracking flux formulation recently put forward by O. Ubbink and R. I. Issa ( J. Comput. Phys.153, 26 (1999)), in combination with an extended version of the flux-limited advection scheme of J. Thuburn ( J. Comput. Phys.123, 74 (1996)), for continuous fields. Thus, along with a high-order mode for continuous fields, the new scheme presented here includes optional integrated interface-tracking modes for discontinuous fields. In all modes, the method is conservative, monotonic, and compatible. It is also highly shape preserving. The scheme works on unstructured meshes composed of any kind of connectivity element, including triangular and quadrilateral elements in two dimensions and tetrahedral and hexahedral elements in three dimensions. The scheme is finite-volume based and is applicable to control-volume finite-element and edge-based node-centered computations. An explicit-implicit extension to the continuous-field scheme is provided only to allow for computations in which the local Courant number exceeds unity. The transition from the explicit mode to the implicit mode is performed locally and in a continuous fashion, providing a smooth hybrid explicit-implicit calculation. Results for a variety of test problems utilizing the continuous and discontinuous advection schemes are presented.
Nonequilibrium flows with smooth particle applied mechanics
Kum, Oyeon
1995-07-01
Smooth particle methods are relatively new methods for simulating solid and fluid flows through they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separately controlled. The gradient algorithm, based on differentiating the smooth particle expression for (uρ) and (Tρ), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier`s heat-flow law and Newton`s viscous force law are used. Smooth particle methods show an interesting parallel linking to them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh-Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails.
The smooth entropy formalism for von Neumann algebras
NASA Astrophysics Data System (ADS)
Berta, Mario; Furrer, Fabian; Scholz, Volkher B.
2016-01-01
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
The smooth entropy formalism for von Neumann algebras
Berta, Mario; Furrer, Fabian; Scholz, Volkher B.
2016-01-15
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
Smooth Potential Chaos and N-Body Simulations
NASA Astrophysics Data System (ADS)
Kandrup, Henry E.; Sideris, Ioannis V.
2003-03-01
Integrations in fixed N-body realizations of smooth density distributions corresponding to a chaotic galactic potential can be used to derive reliable estimates of the largest (finite-time) Lyapunov exponent χS associated with an orbit in the smooth potential generated from the same initial condition, even though the N-body orbit is typically characterized by an N-body exponent χN>>χS. This can be accomplished by either comparing initially nearby orbits in a single N-body system or tracking orbits with the same initial condition evolved in two different N-body realizations of the same smooth density.
NASA Technical Reports Server (NTRS)
Stenholm, Stig
1993-01-01
A single mode cavity is deformed smoothly to change its electromagnetic eigenfrequency. The system is modeled as a simple harmonic oscillator with a varying period. The Wigner function of the problem is obtained exactly by starting with a squeezed initial state. The result is evaluated for a linear change of the cavity length. The approach to the adiabatic limit is investigated. The maximum squeezing is found to occur for smooth change lasting only a fraction of the oscillational period. However, only a factor of two improvement over the adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully within the model.
An edge-based temporal error concealment for MPEG-coded video
NASA Astrophysics Data System (ADS)
Huang, Yu-Len; Lien, Hsiu-Yi
2005-07-01
When transmitted over unreliable channels, the compressed video can suffer severe degradation. Some strategies were employed to make an acceptable quality of the decoded image sequence. Error concealment (EC) technique is one of effective approaches to diminish the quality degradation. A number of EC algorithms have been developed to combat the transmission errors for MPEG-coded video. These methods always work well to reconstruct the smooth or regular damaged macroblocks. However, for damaged macroblocks were irregular or high-detail, the reconstruction may follow noticeable blurring consequence or not match well with the surrounding macroblocks. This paper proposes an edgebased temporal EC model to conceal the errors. In the proposed method, both the spatial and the temporal contextual features in compressed video are measured by using an edge detector, i.e. Sobel operator. The edge information surrounding a damaged macroblock is utilized to estimate the lost motion vectors based on the boundary matching technique. Next, the estimated motion vectors are used to reconstruct the damaged macroblock by exploiting the information in reference frames. In comparison with traditional EC algorithms, the proposed method provides a significant improvement on both objective peak signal-to-noise ratio (PSNR) measurement and subjective visual quality of MPEG-coded video.
Smoothed Particle Hydrodynamic Simulator
2016-10-05
This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.
1992-01-01
A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.
Smoothed Analysis for the Conjugate Gradient Algorithm
NASA Astrophysics Data System (ADS)
Menon, Govind; Trogdon, Thomas
2016-11-01
The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random perturbation is drawn from the Laguerre unitary ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used to analyze the expected iteration count in the framework of smoothed analysis, introduced by Spielman and Teng (2001). The rigorous results are compared with numerical calculations in several cases of interest.
Characteristics of Three-Node Smoothing Element under Penalty Constraints
NASA Technical Reports Server (NTRS)
Sobel, Seth S.
1995-01-01
The project is based upon research of Tessler et al. (1994) on an improved variational formulation for post-processing stress predictions in Finite Element Analysis. The methodology, called Smoothing Element Analysis (SEA), employs a three-node smoothing finite element. The present effort focused on verifying the basic constant strain criterion for the three-node smoothing element subject to a set of internal penalty constraints. The convergence characteristics of the element are assessed by first deriving the constrained form of the assumed element stress and stress gradient fields, and then by verifying the validity of the constant strain criterion once the element penalty constraints are explicitly imposed. The analytical investigation is carried out with the use of the symbolic manipulation code 'Mathematica'.
Finite Time Blowup for Parabolic Systems in Two Dimensions
NASA Astrophysics Data System (ADS)
Mooney, Connor
2017-03-01
We construct examples of finite time singularity from smooth data for linear uniformly parabolic systems in the plane. We obtain similar examples for quasilinear systems with coefficients that depend only on the solution.
... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...
INTERMEDIATE FILAMENTS IN SMOOTH MUSCLE
Tang, Dale D.
2008-01-01
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle. PMID:18256275
Finite-volume scheme for anisotropic diffusion
Es, Bram van; Koren, Barry; Blank, Hugo J. de
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
A variational method for finite element stress recovery and error estimation
NASA Technical Reports Server (NTRS)
Tessler, A.; Riggs, H. R.; Macy, S. C.
1993-01-01
A variational method for obtaining smoothed stresses from a finite element derived nonsmooth stress field is presented. The method is based on minimizing a functional involving discrete least-squares error plus a penalty constraint that ensures smoothness of the stress field. An equivalent accuracy criterion is developed for the smoothing analysis which results in a C sup 1-continuous smoothed stress field possessing the same order of accuracy as that found at the superconvergent optimal stress points of the original finite element analysis. Application of the smoothing analysis to residual error estimation is also demonstrated.
An Accuracy Evaluation of Unstructured Node-Centred Finite Volume Methods
NASA Technical Reports Server (NTRS)
Svard, Magnus; Gong, Jing; Nordstrom, Jan
2006-01-01
Node-centred edge-based finite volume approximations are very common in computational fluid dynamics since they are assumed to run on structured, unstructured and even on mixed grids. We analyse the accuracy properties of both first and second derivative approximations and conclude that these schemes can not be used on arbitrary grids as is often assumed. For the Euler equations first-order accuracy can be obtained if care is taken when constructing the grid. For the Navier-Stokes equations, the grid restrictions are so severe that these finite volume schemes have little advantage over structured finite difference schemes. Our theoretical results are verified through extensive computations.
Lazarides, George; Vamvasakis, Achilleas
2007-10-15
We consider the extension of the supersymmetric Pati-Salam model which solves the b-quark mass problem of supersymmetric grand unified models with exact Yukawa unification and universal boundary conditions and leads to the so-called new shifted hybrid inflationary scenario. We show that this model can also lead to a new version of smooth hybrid inflation based only on renormalizable interactions provided that a particular parameter of its superpotential is somewhat small. The potential possesses valleys of minima with classical inclination, which can be used as inflationary paths. The model is consistent with the fitting of the three-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant. In particular, the spectral index turns out to be adequately small so that it is compatible with the data. Moreover, the Pati-Salam gauge group is broken to the standard model gauge group during inflation and, thus, no monopoles are formed at the end of inflation. Supergravity corrections based on a nonminimal Kaehler potential with a convenient choice of a sign keep the spectral index comfortably within the allowed range without generating maxima and minima of the potential on the inflationary path. So, unnatural restrictions on the initial conditions for inflation can be avoided.
Astrophysical smooth particle hydrodynamics
NASA Astrophysics Data System (ADS)
Rosswog, Stephan
2009-04-01
The paper presents a detailed review of the smooth particle hydrodynamics (SPH) method with particular focus on its astrophysical applications. We start by introducing the basic ideas and concepts and thereby outline all ingredients that are necessary for a practical implementation of the method in a working SPH code. Much of SPH's success relies on its excellent conservation properties and therefore the numerical conservation of physical invariants receives much attention throughout this review. The self-consistent derivation of the SPH equations from the Lagrangian of an ideal fluid is the common theme of the remainder of the text. We derive a modern, Newtonian SPH formulation from the Lagrangian of an ideal fluid. It accounts for changes of the local resolution lengths which result in corrective, so-called "grad-h-terms". We extend this strategy to special relativity for which we derive the corresponding grad-h equation set. The variational approach is further applied to a general-relativistic fluid evolving in a fixed, curved background space-time. Particular care is taken to explicitly derive all relevant equations in a coherent way.
Nonanalyticities of entropy functions of finite and infinite systems.
Casetti, Lapo; Kastner, Michael
2006-09-08
In contrast to the canonical ensemble where thermodynamic functions are smooth for all finite system sizes, the microcanonical entropy can show nonanalytic points also for finite systems. The relation between finite and infinite system nonanalyticities is illustrated by means of a simple classical spinlike model which is exactly solvable for both finite and infinite system sizes, showing a phase transition in the latter case. The microcanonical entropy is found to have exactly one nonanalytic point in the interior of its domain. For all finite system sizes, this point is located at the same fixed energy value epsilon(c)(finite), jumping discontinuously to a different value epsilon(c)(infinite) in the thermodynamic limit. Remarkably, epsilon(c)(finite) equals the average potential energy of the infinite system at the phase transition point. The result indicates that care is required when trying to infer infinite system properties from finite system nonanalyticities.
SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS
NASA Technical Reports Server (NTRS)
Bach, R.
1994-01-01
The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential
Ceramic coatings on smooth surfaces
NASA Technical Reports Server (NTRS)
Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)
1991-01-01
A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.
Ryanodine receptors in smooth muscle.
Guerrero-Hernández, Agustín; Gómez-Viquez, Leticia; Guerrero-Serna, Guadalupe; Rueda, Angélica
2002-07-01
The sarcoplasmic reticulum (SR) of smooth muscle is endowed with two different types of Ca2+ release channels, i.e. inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs). In general, both release channels mobilize Ca2+ from the same internal store in smooth muscle. While the importance of IP3Rs in agonist-induced contraction is well established, the role of RyRs in excitation-contraction coupling of smooth muscle is not clear. The participation of smooth muscle RyRs in the amplification of Ca2+ transients induced by either opening of Ca2+-permeable channels or IP3-triggered Ca2+ release has been studied. The efficacy of both processes to activate RyRs by calcium-induced calcium release (CICR) is highly variable and not widely present in smooth muscle. Although RyRs in smooth muscle generate Ca2+ sparks that are similar to those observed in striated muscles, the contribution of these local Ca2+ events to depolarization-induced global rise in [Ca2+]i is rather limited. Recent data suggest that RyRs are involved in regulating the luminal [Ca2+] of SR and also in smooth muscle relaxation. This review summarizes studies that were carried out mainly in muscle strips or in freshly isolated myocytes, and that were aimed to determine the physiological role of RyRs in smooth muscle.
An analysis of smoothed particle hydrodynamics
Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J.; Hicks, D.L.
1994-03-01
SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.
Finite element model for brittle fracture and fragmentation
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...
2016-06-01
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Simple Robust Fixed Lag Smoothing
1988-12-02
SIMPLE ROBUST FIXED LAG SMOOTHING by ~N. D. Le R.D. Martin 4 TECHNICAL RlEPORT No. 149 December 1988 Department of Statistics, GN-22 Accesion For...frLsD1ist Special A- Z Simple Robust Fixed Lag Smoothing With Application To Radar Glint Noise * N. D. Le R. D. Martin Department of Statistics, GN...smoothers. The emphasis here is on fixed-lag smoothing , as opposed to the use of existing robust fixed interval smoothers (e.g., as in Martin, 1979
Radar data smoothing filter study
NASA Technical Reports Server (NTRS)
White, J. V.
1984-01-01
The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.
Active controls for ride smoothing
NASA Technical Reports Server (NTRS)
Conner, D. W.; Thompson, G. O.
1976-01-01
Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.
NASA Astrophysics Data System (ADS)
Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo
2016-06-01
In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.
Accurate interlaminar stress recovery from finite element analysis
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Riggs, H. Ronald
1994-01-01
The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.
Blow-up of the smooth solution to quantum hydrodynamic models in Rd
NASA Astrophysics Data System (ADS)
Guo, Boling; Wang, Guangwu
2016-10-01
In this paper we firstly investigate the local-in-time existence of smooth solution for the quantum hydrodynamic models (QHD) in Rd. Then we prove that any smooth solution of the QHD model which satisfies suitable conditions will blow up in finite time. The model can be derived from nonlinear Schrödinger equation by a Madelung transformation. The main idea is based on the construction of approximate solution and energy inequality.
A variational method for finite element stress recovery: Applications in one-dimension
NASA Technical Reports Server (NTRS)
Riggs, H. Ronald
1992-01-01
It is well-known that stresses (and strains) calculated by a displacement-based finite element analysis are generally not as accurate as the displacements. In addition, the calculated stress field is typically discontinuous at element interfaces. Because the stresses are typically of more interest than the displacements, several procedures have been proposed to obtain a smooth stress field, given the finite element stresses, and to improve the accuracy. Hinton and Irons introduced global least squares smoothing of discrete data defined on a plane using a finite element formulation. Tessler and co-workers recently developed a conceptually similar formulation for smoothing of two-dimensional data based on a discrete least square approximation with a penalty constraint. The penalty constraint results in a stress field which is C(exp 1)-continuous, a result not previously obtained. The approach requires additional, 'smoothing' finite element analysis and for their two-dimensional application, they used a conforming C(exp 0)-continuous triangular finite element based on a conforming plate element. This paper presents the results of a detailed investigation into the application of Tessler's smoothing procedure to the smoothing of finite element stresses from one-dimensional problems. Although the one-dimensional formulation has some practical applicability, such as in truss, beam, axisymmetric mechanics, and one-dimensional heat conduction, the primary motivation for developing the one-dimensional smoothing case is to explore the characteristics of the general smoothing strategy. In particular, it is used to describe the behavior of the method and to explore the suitability of criteria proposed for the smoothing analysis. Prior to presenting numerical results, the variational formulation of the smoothing strategy is presented and a criterion for the smoothing analysis is described.
Smooth and fast versus instantaneous quenches in quantum field theory
NASA Astrophysics Data System (ADS)
Das, Sumit R.; Galante, Damián A.; Myers, Robert C.
2015-08-01
We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.
Income Smoothing: Methodology and Models.
1986-05-01
that managers desire a pattern % of income that has low variability relative to a linear time trend. 2. Industry Trend. Target 2 assumes that firms...R167 55? INCOME SMOOTHING: METHODOLOGY ND NODELS(U) UMVL in1POSTGRADUATE SCHOOL MONTEREY CA 0 D HOSES "AY S6 UNCLASSIFIED NP5-604FO53 E * I* vu...California oCiD ELEC fl MAY 12 986 INCOME SMOOTHING - METHODOLOGY AND MODELS by 0. Douglas Moses May 1986 *Approved frpublic release; ditibto uniie
Registration of 'Newell' Smooth Bromegrass
Technology Transfer Automated Retrieval System (TEKTRAN)
‘Newell’ (Reg. No. CV-xxxx, PI 671851) smooth bromegrass (Bromus inermis Leyss.) is a steppe or southern type cultivar that is primarily adapted in the USA to areas north of 40o N lat. and east of 100o W long. that have 500 mm or more annual precipitation or in areas that have similar climate cond...
NASA Astrophysics Data System (ADS)
Hou, Pengcheng; Zhong, Zheqiang; Zhang, Bin
2016-11-01
In radial smoothing scheme, taking a super-Gaussian pulse train obtained by the pulse stacking scheme based on fibers and spatial shaping technology based on serrated-aperture apodizers as the pump laser, due to the hemispherical shape of the optical Kerr medium, the induced refraction index by the interaction of the optical Kerr medium and the pump laser is spherically distributed with periodical variation. Consequently, the transmission wavefront of the laser quads in the beamline is periodically modulated, resulting in the rapidly and periodic focal zooming in far field. This focal zooming smoothes the speckles on target plane in the radial direction in the sense of averaged over a finite time interval. The performance of the pump laser and the optical Kerr medium strongly affect the radial smoothing effect. In order to obtain better smoothing effect as that of smoothing by spectral dispersion, the propagation model of laser quads in the beamline with the radial smoothing scheme has been built up and further used to optimize the parameters of the pump laser and the optical Kerr medium. The beam smoothing effects of the joint use of continuous phase plate and polarization control plate with smoothing by spectral dispersion, as well as radial smoothing have been analyzed and compared in detail. Results indicate that, the delay time between each super-Gaussian pulse in the pump laser should be matched with the pulse width of each super-Gaussian pulse to achieve the best and stable radial smoothing effect, while the fluctuation of the peak intensity of each super-Gaussian pulse in the pump laser would degrade the radial smoothing effect. The selection of the optical Kerr medium directly determines its thickness and peak intensity of the pump laser to obtain the required wavefront modulation, which affects the feasibility of the radial smoothing scheme.
Higgs Boson, Magnetic Monopoles and Exotic Smoothness in 4D
NASA Astrophysics Data System (ADS)
Asselmeyer-Maluga, Torsten; Król, Jerzy
We present a model where three incompatible smoothness structures on open 4-manifolds are partly responsible for different physical effects, like: i. the appearance of magnetic matter and Higgs field as non-perturbative solutions of Yang-Mills theory, ii. in cosmology: the inflation, its speed, finite time of the acceleration and the Higgs mass, iii. the perturbative quantum matter as in the standard model of particles. The corresponding 3 smoothness structures are: i. exotic {R}4s with its exotic end S3 × {R}, ii. the fake S3 × Θ (8_{10)}{R} of Freedman, iii. the standard {R}4. It is conjectured that the issue of quantum gravity relies on the incompatibility of the structures.
Smoothed particle hydrodynamics with GRAPE-1A
NASA Technical Reports Server (NTRS)
Umemura, Masayuki; Fukushige, Toshiyuki; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro; Turner, Edwin L.; Loeb, Abraham
1993-01-01
We describe the implementation of a smoothed particle hydrodynamics (SPH) scheme using GRAPE-1A, a special-purpose processor used for gravitational N-body simulations. The GRAPE-1A calculates the gravitational force exerted on a particle from all other particles in a system, while simultaneously making a list of the nearest neighbors of the particle. It is found that GRAPE-1A accelerates SPH calculations by direct summation by about two orders of magnitudes for a ten thousand-particle simulation. The effective speed is 80 Mflops, which is about 30 percent of the peak speed of GRAPE-1A. Also, in order to investigate the accuracy of GRAPE-SPH, some test simulations were executed. We found that the force and position errors are smaller than those due to representing a fluid by a finite number of particles. The total energy and momentum were conserved within 0.2-0.4 percent and 2-5 x 10 exp -5, respectively, in simulations with several thousand particles. We conclude that GRAPE-SPH is quite effective and sufficiently accurate for self-gravitating hydrodynamics.
Analytic elements of smooth shapes
NASA Astrophysics Data System (ADS)
Strack, Otto D. L.; Nevison, Patrick R.
2015-10-01
We present a method for producing analytic elements of a smooth shape, obtained using conformal mapping. Applications are presented for a case of impermeable analytic elements as well as for head-specified ones. The mathematical operations necessary to use the elements in practical problems can be carried out before modeling of flow problems begins. A catalog of shapes, along with pre-determined coefficients could be established on the basis of the approach presented here, making applications in the field straight forward.
Finite-Element Fracture Analysis of Pins and Bolts
NASA Technical Reports Server (NTRS)
Nord, K. J.
1986-01-01
Stress intensities calculated in bending and tension. Finite-element stress-analysis method gives stress-intensity estimates for surface flaws on smooth and threaded round bars. Calculations done for purely tensile and purely bending loads. Results, presented in dimensionless form, useful for determining fatigue lives of bolts and pins.
Quasispecies theory for finite populations
NASA Astrophysics Data System (ADS)
Park, Jeong-Man; Muñoz, Enrique; Deem, Michael W.
2010-01-01
We present stochastic, finite-population formulations of the Crow-Kimura and Eigen models of quasispecies theory, for fitness functions that depend in an arbitrary way on the number of mutations from the wild type. We include back mutations in our description. We show that the fluctuation of the population numbers about the average values is exceedingly large in these physical models of evolution. We further show that horizontal gene transfer reduces by orders of magnitude the fluctuations in the population numbers and reduces the accumulation of deleterious mutations in the finite population due to Muller’s ratchet. Indeed, the population sizes needed to converge to the infinite population limit are often larger than those found in nature for smooth fitness functions in the absence of horizontal gene transfer. These analytical results are derived for the steady state by means of a field-theoretic representation. Numerical results are presented that indicate horizontal gene transfer speeds up the dynamics of evolution as well.
Quasispecies theory for finite populations
Park, Jeong-Man; Muñoz, Enrique; Deem, Michael W.
2015-01-01
We present stochastic, finite-population formulations of the Crow-Kimura and Eigen models of quasispecies theory, for fitness functions that depend in an arbitrary way on the number of mutations from the wild type. We include back mutations in our description. We show that the fluctuation of the population numbers about the average values are exceedingly large in these physical models of evolution. We further show that horizontal gene transfer reduces by orders of magnitude the fluctuations in the population numbers and reduces the accumulation of deleterious mutations in the finite population due to Muller’s ratchet. Indeed the population sizes needed to converge to the infinite population limit are often larger than those found in nature for smooth fitness functions in the absence of horizontal gene transfer. These analytical results are derived for the steady-state by means of a field-theoretic representation. Numerical results are presented that indicate horizontal gene transfer speeds up the dynamics of evolution as well. PMID:20365394
Tape-Smoothing Tool For Adhesion Tests
NASA Technical Reports Server (NTRS)
Allen, Peter B.
1992-01-01
Small tool smoothes adhesive tape uniformly to ensure consistency and repeatability of tape-peel tests of adhesion of paint to substrate. Includes resilient pad covered with tough, smooth fabric. Internal spring regulates force applied to tape.
Effectiveness of Analytic Smoothing in Equipercentile Equating.
ERIC Educational Resources Information Center
Kolen, Michael J.
1984-01-01
An analytic procedure for smoothing in equipercentile equating using cubic smoothing splines is described and illustrated. The effectiveness of the procedure is judged by comparing the results from smoothed equipercentile equating with those from other equating methods using multiple cross-validations for a variety of sample sizes. (Author/JKS)
7 CFR 51.768 - Smooth texture.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a...
7 CFR 51.768 - Smooth texture.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a...
Beamline smoothing of the Advanced Photon Source
Friedsam, H.; Penicka, M.; Zhao, S.
1995-06-01
This paper outlines a general beamline smoothing concept based on the use of First Principle Component analysis. Bean-dine smoothing is commonly used for the detection of blunders in the positioning of beam elements and to provide a smooth particle beam path with the fewest adjustments to individual beam components. It also provides the data for assessment of the achieved positioning quality.
A SAS IML Macro for Loglinear Smoothing
ERIC Educational Resources Information Center
Moses, Tim; von Davier, Alina
2011-01-01
Polynomial loglinear models for one-, two-, and higher-way contingency tables have important applications to measurement and assessment. They are essentially regarded as a smoothing technique, which is commonly referred to as loglinear smoothing. A SAS IML (SAS Institute, 2002a) macro was created to implement loglinear smoothing according to…
Leptogenesis in smooth hybrid inflation
NASA Astrophysics Data System (ADS)
Jeannerot, R.; Khalil, S.; Lazarides, G.
2001-05-01
We present a concrete supersymmetric grand unified model based on the Pati-Salam gauge group SU(4)c×SU(2)L×SU(2)R and leading naturally to smooth hybrid inflation, which avoids the cosmological disaster encountered in the standard hybrid inflationary scenario from the overproduction of monopoles at the end of inflation. Successful `reheating' which satisfies the gravitino constraint takes place after the termination of inflation. Also, adequate baryogenesis via a primordial leptogenesis occurs consistently with the solar and atmospheric neutrino oscillation data as well as the SU(4)c symmetry.
NASA Astrophysics Data System (ADS)
Song, Chi; Zhang, Xuejun; Zhang, Xin; Hu, Haifei; Zeng, Xuefeng
2017-01-01
A rigid conformal (RC) lap can smooth mid-spatial-frequency (MSF) errors, which are naturally smaller than the tool size, while still removing large-scale errors in a short time. However, the RC-lap smoothing efficiency performance is poorer than expected, and existing smoothing models cannot explicitly specify the methods to improve this efficiency. We presented an explicit time-dependent smoothing evaluation model that contained specific smoothing parameters directly derived from the parametric smoothing model and the Preston equation. Based on the time-dependent model, we proposed a strategy to improve the RC-lap smoothing efficiency, which incorporated the theoretical model, tool optimization, and efficiency limit determination. Two sets of smoothing experiments were performed to demonstrate the smoothing efficiency achieved using the time-dependent smoothing model. A high, theory-like tool influence function and a limiting tool speed of 300 RPM were o
Smooth halos in the cosmic web
NASA Astrophysics Data System (ADS)
Gaite, José
2015-04-01
Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.
Smooth halos in the cosmic web
Gaite, José
2015-04-01
Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.
s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography
Li, Ying; Qin, Jing; Hsin, Yue-Loong; Osher, Stanley; Liu, Wentai
2016-01-01
EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contamination in the recorded signals. To obtain a unique solution, regularizations can be incorporated to impose additional constraints on the solution. An appropriate choice of regularization is critically important for the reconstruction accuracy of a brain image. In this paper, we propose a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating two recently proposed regularization techniques: Total Generalized Variation (TGV) regularization and ℓ1−2 regularization. TGV is able to preserve the source edge and recover the spatial distribution of the source intensity with high accuracy. Compared to the relevant total variation (TV) regularization, TGV enhances the smoothness of the image and reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely used in the image processing field. In order to handle 3D EEG source images, we propose a voxel-based Total Generalized Variation (vTGV) regularization that extends the definition of second-order TGV from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the ℓ1−2 regularization is utilized to promote sparsity on the current density itself. We demonstrate that ℓ1−2 regularization is able to enhance sparsity and accelerate computations than ℓ1 regularization. The proposed model is solved by an efficient and robust algorithm based on the difference of convex functions algorithm (DCA) and the alternating direction method of multipliers (ADMM). Numerical experiments using synthetic data demonstrate the
Standard-smooth hybrid inflation
Lazarides, George; Vamvasakis, Achilleas
2007-12-15
We consider the extended supersymmetric Pati-Salam model which, for {mu}>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity)
Finite difference methods for approximating Heaviside functions
NASA Astrophysics Data System (ADS)
Towers, John D.
2009-05-01
We present a finite difference method for discretizing a Heaviside function H(u(x→)), where u is a level set function u:Rn ↦ R that is positive on a bounded region Ω⊂Rn. There are two variants of our algorithm, both of which are adapted from finite difference methods that we proposed for discretizing delta functions in [J.D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys. 220 (2007) 915-931; J.D. Towers, Discretizing delta functions via finite differences and gradient normalization, Preprint at http://www.miracosta.edu/home/jtowers/; J.D. Towers, A convergence rate theorem for finite difference approximations to delta functions, J. Comput. Phys. 227 (2008) 6591-6597]. We consider our approximate Heaviside functions as they are used to approximate integrals over Ω. We prove that our first approximate Heaviside function leads to second order accurate quadrature algorithms. Numerical experiments verify this second order accuracy. For our second algorithm, numerical experiments indicate at least third order accuracy if the integrand f and ∂Ω are sufficiently smooth. Numerical experiments also indicate that our approximations are effective when used to discretize certain singular source terms in partial differential equations. We mostly focus on smooth f and u. By this we mean that f is smooth in a neighborhood of Ω, u is smooth in a neighborhood of ∂Ω, and the level set u(x)=0 is a manifold of codimension one. However, our algorithms still give reasonable results if either f or u has jumps in its derivatives. Numerical experiments indicate approximately second order accuracy for both algorithms if the regularity of the data is reduced in this way, assuming that the level set u(x)=0 is a manifold. Numerical experiments indicate that dependence on the placement of Ω with respect to the grid is quite small for our algorithms. Specifically, a grid shift results in an O(hp) change in the computed solution
NASA Astrophysics Data System (ADS)
Stein, David B.; Guy, Robert D.; Thomases, Becca
2017-04-01
The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet for fluid problems it only achieves first-order spatial accuracy near embedded boundaries for the velocity field and fails to converge pointwise for elements of the stress tensor. In a previous work we introduced the Immersed Boundary Smooth Extension (IBSE) method, a variation of the IB method that achieves high-order accuracy for elliptic PDE by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations. In this work, we extend the IBSE method to allow for the imposition of a divergence constraint, and demonstrate high-order convergence for the Stokes and incompressible Navier-Stokes equations: up to third-order pointwise convergence for the velocity field, and second-order pointwise convergence for all elements of the stress tensor. The method is flexible to the underlying discretization: we demonstrate solutions produced using both a Fourier spectral discretization and a standard second-order finite-difference discretization.
Simple Finite Jordan Pseudoalgebras
NASA Astrophysics Data System (ADS)
Kolesnikov, Pavel
2009-01-01
We consider the structure of Jordan H-pseudoalgebras which are linearly finitely generated over a Hopf algebra H. There are two cases under consideration: H = U(h) and H = U(h) # C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits-Kantor-Koecher construction for finite Jordan pseudoalgebras and describe all simple ones.
Lensing smoothing of BAO wiggles
NASA Astrophysics Data System (ADS)
Di Dio, Enea
2017-03-01
We study non-perturbatively the effect of the deflection angle on the BAO wiggles of the matter power spectrum in real space. We show that from redshift z~2 this introduces a dispersion of roughly 1 Mpc at BAO scale, which corresponds approximately to a 1% effect. The lensing effect induced by the deflection angle, which is completely geometrical and survey independent, smears out the BAO wiggles. The effect on the power spectrum amplitude at BAO scale is about 0.1 % for z~2 and 0.2 % for z~4. We compare the smoothing effects induced by the lensing potential and non-linear structure formation, showing that the two effects become comparable at z ~ 4, while the lensing effect dominates for sources at higher redshifts. We note that this effect is not accounted through BAO reconstruction techniques.
Autoregressive smoothing of GOMOS transmittances
NASA Astrophysics Data System (ADS)
Fussen, D.; Vanhellemont, F.; Bingen, C.; Kyrölä, B.; Tamminen, J.; Sofieva, V.; Hassinen, S.; Seppälä, A.; Verronen, P. T.; Bertaux, J. L.; Hauchecorne, A.; Dalaudier, F.; d'Andon, O. Fanton; Barrot, G.; Mangin, A.; Theodore, B.; Guirlet, M.; Renard, J. B.; Fraisse, R.; Snoeij, P.; Koopman, R.; Saavedra, L.
GOMOS is a stellar occultation instrument onboard ENVISAT. It has already measured several hundreds of thousands occultations since March 2002. In some circumstances, the obliqueness of the star setting causes the remote sounding of possible horizontal turbulence that cannot be adequately corrected by using the fast photometer signals, leading to the presence of residual scintillation in the atmospheric transmittance. We investigate the mechanism that produces this spurious signal that may cause the retrieval of wavy constituent profiles. A special algorithm of vertical autoregressive smoothing (VAS) is proposed that takes into account the physical correlation between adjacent measurements at different tangent altitudes. A regularization parameter of the method may be optimized on basis of the minimal correlation between the residuals as prescribed by the Durbin-Watson statistics. The improvements obtained in the retrieval of both O 3 and NO 2 number density profiles is presented and discussed with respect to the results of the official data processing model.
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1987-01-01
The technique of obtaining second-order oscillation-free total -variation-diminishing (TVD), scalar difference schemes by adding a limited diffusive flux ('smoothing') to a second-order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell-by-cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second-order spatial accuracy was found to have extremely restrictive time-step limitation. Switching to an implicit scheme removed the time-step limitation.
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1986-01-01
The technique of obtaining second order, oscillation free, total variation diminishing (TVD), scalar difference schemes by adding a limited diffusion flux (smoothing) to a second order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell by cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second order spatial accuracy was found to have an extremely restrictive time step limitation (Delta t less than Delta x squared). Switching to an implicit scheme removed the time step limitation.
Mechanics of Vascular Smooth Muscle.
Ratz, Paul H
2015-12-15
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth
NASA Technical Reports Server (NTRS)
Zeng, Lingzhen; Bennett, Charles L.; Chuss, David T.; Wollack, Edward J.
2009-01-01
Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approximately 7 degrees full width at half maximum (FWHM) is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A return loss better than -28 dB was measured across the band.
A Low Cross-Polarization Smooth-Walled Horn with Improved Bandwidth
NASA Technical Reports Server (NTRS)
Zeng, Lingzhen; Bennette, Charles L.; Chuss, David T.; Wollack, Edward J.
2009-01-01
Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-manufacture smooth-walled feed is explored that approximates these properties over a finite bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-walled scalar feedhorn with a diffraction-limited approx. 14deg FWHM beam is presented. The feed was demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45 GHz (30% fractional bandwidth). A power reflection below -28 dB was measured across the band.
The Smooth Muscle of the Artery
1975-01-01
to keep up with inter- national standards. The German Cancer Research Center as well as the Hax-Planck Inntitutes of Heidelberg are well equipped to...SOMLYO: I plan to briefly review some of the aspects of normal function of vascular smooth muscle with particular ---- I SMOOTH MUSCLE STRUCTURE 35...schematic review of the data on catabolism in connective tissue cells smooth muscle cells. The increasing number of electron microscopic studies of
Smooth GERBS, orthogonal systems and energy minimization
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Zanaty, Peter
2013-12-01
New results are obtained in three mutually related directions of the rapidly developing theory of generalized expo-rational B-splines (GERBS) [7, 6]: closed-form computability of C∞-smooth GERBS in terms of elementary and special functions, Hermite interpolation and least-squares best approximation via smooth GERBS, energy minimizing properties of smooth GERBS similar to those of the classical cubic polynomial B-splines.
Smooth GERBS, orthogonal systems and energy minimization
Dechevsky, Lubomir T. E-mail: pza@hin.no; Zanaty, Peter E-mail: pza@hin.no
2013-12-18
New results are obtained in three mutually related directions of the rapidly developing theory of generalized expo-rational B-splines (GERBS) [7, 6]: closed-form computability of C{sup ∞}-smooth GERBS in terms of elementary and special functions, Hermite interpolation and least-squares best approximation via smooth GERBS, energy minimizing properties of smooth GERBS similar to those of the classical cubic polynomial B-splines.
QUARKONIUM AT FINITE TEMPERATURE.
UMEDA, T.
2006-06-09
Lattice QCD studies on charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results on charmonium spectral functions. The 'wave function' of charmonium is also discussed to study the spatial correlation between quark and anti-quark in deconfinement phase.
ERIC Educational Resources Information Center
Lee, Kum Young
2009-01-01
This thesis explores finite control in Korean. An overview of the previous studies of control shows that the mainstream literature on control has consistently argued that referential dependence between an overt matrix argument and an embedded null subject is characteristic of non-finite clauses which contain a PRO subject. Moreover, although some…
MODELING OF FRICTION STIR WELDING (FSW) PROCESS USING SMOOTH PARTICLE HYDRODYNAMICS (SPH)
Tartakovsky, Alexandre M.; Grant, Glenn J.; Sun, Xin; Khaleel, Mohammad A.
2006-06-14
We present a novel modeling approach to simulate FSW process that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on Smoothed Particle Hydrodynamics (SPH) method, a fully Lagrangian particle method that can simulate the dynamics of interfaces, large material deformations, void formations and material's strain and temperature history without employing complex tracking schemes. Two- and three-dimensional simulations for different tool designs are presented. Preliminary numerical results are in good qualitative agreement with experimental observations.
Smooth Passage For The Jetfoil
NASA Technical Reports Server (NTRS)
1978-01-01
The Flying Princess is a Boeing Jetfoil, one of a family of commercial waterjets built by Boeing Marine Systems, a division of The Boeing Company, Seattle, Washington. The new Jetfoil offers a number of advantages over earlier hydrofoils, a major one being a smooth ride in rough waters. NASA technology contributed to jolt-free passenger comfort. Hydrofoils skim the surface at speeds considerably greater than those of conventional ships because there is little friction between hull and water. Hulls are raised above the water by the lift of the foils, which resemble and function like an airplane wing. The foils are attached to the hull by rigid struts, which ordinarily cause a vessel operating in coastal seas to follow the contour of the waves. In wind-whipped waters, this makes for a rough ride. Seeking to increase passenger acceptance, Boeing Marine System engineers looked for ways to improve rough-water ride quality. Langley Research Center conducts continuing ride quality research. Initially, it was aimed at improving aircraft ride; it was later expanded to include all modes of transportation. Research includes studies of vibration, acceleration, temperature, humidity, passenger seats and posture, and the psychological aspects of passenger reaction to vehicle ride. As part of the program, Langley developed instrumentation, ride quality models and methods of data analysis.
Smooth horizons and quantum ripples
NASA Astrophysics Data System (ADS)
Golovnev, Alexey
2015-05-01
Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear.
Fourier smoothing of digital photographic spectra
NASA Astrophysics Data System (ADS)
Anupama, G. C.
1990-03-01
Fourier methods of smoothing one-dimensional data are discussed with particular reference to digital photographic spectra. Data smoothed using lowpass filters with different cut-off frequencies are intercompared. A method to scale densities in order to remove the dependence of grain noise on density is described. Optimal filtering technique which models signal and noise in Fourier domain is also explained.
Smoothing the output from a DAC
NASA Technical Reports Server (NTRS)
Wagner, C.
1980-01-01
Circuit smooths stepped waveform from analog-to-digital converter without appreciable phase shift between stepped input signal and smoothed output signal and without any effect from stepping rate. Waveform produced is suitable for driving controls used in manufacturing processes, aerospace systems, and automobiles.
Leiomodin and tropomodulin in smooth muscle
NASA Technical Reports Server (NTRS)
Conley, C. A.
2001-01-01
Evidence is accumulating to suggest that actin filament remodeling is critical for smooth muscle contraction, which implicates actin filament ends as important sites for regulation of contraction. Tropomodulin (Tmod) and smooth muscle leiomodin (SM-Lmod) have been found in many tissues containing smooth muscle by protein immunoblot and immunofluorescence microscopy. Both proteins cofractionate with tropomyosin in the Triton-insoluble cytoskeleton of rabbit stomach smooth muscle and are solubilized by high salt. SM-Lmod binds muscle tropomyosin, a biochemical activity characteristic of Tmod proteins. SM-Lmod staining is present along the length of actin filaments in rat intestinal smooth muscle, while Tmod stains in a punctate pattern distinct from that of actin filaments or the dense body marker alpha-actinin. After smooth muscle is hypercontracted by treatment with 10 mM Ca(2+), both SM-Lmod and Tmod are found near alpha-actinin at the periphery of actin-rich contraction bands. These data suggest that SM-Lmod is a novel component of the smooth muscle actin cytoskeleton and, furthermore, that the pointed ends of actin filaments in smooth muscle may be capped by Tmod in localized clusters.
Myosin filament structure in vertebrate smooth muscle
1996-01-01
The in vivo structure of the myosin filaments in vertebrate smooth muscle is unknown. Evidence from purified smooth muscle myosin and from some studies of intact smooth muscle suggests that they may have a nonhelical, side-polar arrangement of crossbridges. However, the bipolar, helical structure characteristic of myosin filaments in striated muscle has not been disproved for smooth muscle. We have used EM to investigate this question in a functionally diverse group of smooth muscles (from the vascular, gastrointestinal, reproductive, and visual systems) from mammalian, amphibian, and avian species. Intact muscle under physiological conditions, rapidly frozen and then freeze substituted, shows many myosin filaments with a square backbone in transverse profile. Transverse sections of fixed, chemically skinned muscles also show square backbones and, in addition, reveal projections (crossbridges) on only two opposite sides of the square. Filaments gently isolated from skinned smooth muscles and observed by negative staining show crossbridges with a 14.5-nm repeat projecting in opposite directions on opposite sides of the filament. Such filaments subjected to low ionic strength conditions show bare filament ends and an antiparallel arrangement of myosin tails along the length of the filament. All of these observations are consistent with a side-polar structure and argue against a bipolar, helical crossbridge arrangement. We conclude that myosin filaments in all smooth muscles, regardless of function, are likely to be side-polar. Such a structure could be an important factor in the ability of smooth muscles to contract by large amounts. PMID:8698822
Thermal smoothing of rough surfaces in vacuo
NASA Technical Reports Server (NTRS)
Wahl, G.
1986-01-01
The derivation of equations governing the smoothing of rough surfaces, based on Mullins' (1957, 1960, and 1963) theories of thermal grooving and of capillarity-governed solid surface morphology is presented. As an example, the smoothing of a one-dimensional sine-shaped surface is discussed.
7 CFR 51.1870 - Fairly smooth.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Fresh Tomatoes 1 Definitions § 51.1870 Fairly smooth. Fairly smooth means that the tomato...
Prediction of peak forces for a shortening smooth muscle tissue subjected to vibration.
Pidaparti, Ramana M; Dhanaraj, Nandhini; Meiss, Richard A
2008-01-01
The objective of the present study is to investigate the peak forces for a tracheal smooth muscle tissue subjected to an applied longitudinal vibration following isotonic shortening. A non-linear finite element analysis was carried out to simulate the vibratory response under experimental conditions that corresponds to forced length oscillations at 33 Hz for 1 second. The stiffness change and hysteresis estimated from the experimental data was used in the analysis. The finite element results of peak forces are compared to the experimental data obtained. The comparison of results indicate that the approach and the vibratory response obtained may be useful for describing the cross-bridge de-attachments within the cells as well as connective tissue connections characteristic of tracheal smooth muscle tissue.
Lunar Smooth Plains Identification and Classification
NASA Astrophysics Data System (ADS)
Boyd, A. K.; Robinson, M. S.; Mahanti, P.; Lawrence, S. J.; Spudis, P.; Jolliff, B. L.
2012-12-01
Smooth plains are widespread on the Moon and have diverse origins. The maria comprise the majority of the smooth plains and are volcanic in origin. Highland smooth plains are patchy, and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that highland plains were volcanic, possibly more silicic than the maria. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted basin impact ejecta, most likely from the Imbrium and possibly Orientale basins. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation, contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100), sampled at 333 m/pixel. We classify the smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images. Terrain with slopes less than 2° (1 km baseline) and standard deviation of slope less than 0.75° (1 km x 1 km box, n=9) are defined as smooth plains. Highland smooth plains are distinguished from basaltic smooth plains using the following criteria: LROC WAC 643 nm normalized reflectance > 0.056, LROC WAC 321 nm / 415 nm ratio < 0.74, and Clementine FeO < 12 wt.% (excluding Clementine non-coverage areas). The remaining smooth plains are classified as maria and are subdivided into two classes: LROC WAC 321 nm / 415 nm ratio > 0.77 is termed blue maria and a ratio ≤ 0.77 is termed red maria. The automatic classification was limited to the 87% of the Moon covered by photometrically normalized WAC data (60°S to 60°N). The differences between the maria and highland smooth plains
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Neoclassical Radial Electric Field and Transport with Finite Orbits
Wang, W. X.; Hinton, F. L.; Wong, S. K.
2001-07-30
Neoclassical transport in a toroidal plasma with finite ion orbits is studied, including for the first time the self-consistent radial electric field. Using a low-noise {delta}f particle simulation, we demonstrate that a deep electric-field well develops in a region with a steep density gradient, because of the self-collision--driven ion flux. We find that the electric field agrees with the standard neoclassical expression, when the toroidal rotation is zero, even for a steep density gradient. Ion thermal transport is modified by the electric-field well in a way which is consistent with the orbit squeezing effect, but smoothed by the finite orbits.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
A Very Smooth Ride in a Rough Sea
NASA Astrophysics Data System (ADS)
Frisch, Uriel; Zheligovsky, Vladislav
2014-03-01
It has been known for some time that a 3D incompressible Euler flow that has initially a barely smooth velocity field nonetheless has Lagrangian fluid particle trajectories that are analytic in time for at least a finite time Serfati (C. R. Acad. Sci. Paris Série I 320:175-180, 1995), Shnirelman (Glob. Stoch. Anal., http://arxiv.org/abs/1205.5837v1, 2012). Here an elementary derivation is given, based on Cauchy's form of the Euler equations in Lagrangian coordinates. This form implies simple recurrence relations among the time-Taylor coefficients of the Lagrangian map, used here to derive bounds for the C 1,γ Hölder norms of the coefficients and infer temporal analyticity of Lagrangian trajectories when the initial velocity is C 1,γ.
A maximum principle for smooth optimal impulsive control problems with multipoint state constraints
NASA Astrophysics Data System (ADS)
Dykhta, V. A.; Samsonyuk, O. N.
2009-06-01
A nonlinear optimal impulsive control problem with trajectories of bounded variation subject to intermediate state constraints at a finite number on nonfixed instants of time is considered. Features of this problem are discussed from the viewpoint of the extension of the classical optimal control problem with the corresponding state constraints. A necessary optimality condition is formulated in the form of a smooth maximum principle; thorough comments are given, a short proof is presented, and examples are discussed.
Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing.
Yu, Wen; Li, Xiaoou
2010-10-01
This paper, presents a novel identification approach using fuzzy neural networks. It focuses on structure and parameters uncertainties which have been widely explored in the literatures. The main contribution of this paper is that an integrated analytic framework is proposed for automated structure selection and parameter identification. A kernel smoothing technique is used to generate a model structure automatically in a fixed time interval. To cope with structural change, a hysteresis strategy is proposed to guarantee finite times switching and desired performance.
Competition for finite resources
NASA Astrophysics Data System (ADS)
Cook, L. Jonathan; Zia, R. K. P.
2012-05-01
The resources in a cell are finite, which implies that the various components of the cell must compete for resources. One such resource is the ribosomes used during translation to create proteins. Motivated by this example, we explore this competition by connecting two totally asymmetric simple exclusion processes (TASEPs) to a finite pool of particles. Expanding on our previous work, we focus on the effects on the density and current of having different entry and exit rates.
Spline-Based Smoothing of Airfoil Curvatures
NASA Technical Reports Server (NTRS)
Li, W.; Krist, S.
2008-01-01
Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been
Steffen, Michael; Curtis, Sean; Kirby, Robert M; Ryan, Jennifer K
2008-01-01
Streamline integration of fields produced by computational fluid mechanics simulations is a commonly used tool for the investigation and analysis of fluid flow phenomena. Integration is often accomplished through the application of ordinary differential equation (ODE) integrators--integrators whose error characteristics are predicated on the smoothness of the field through which the streamline is being integrated--smoothness which is not available at the inter-element level of finite volume and finite element data. Adaptive error control techniques are often used to ameliorate the challenge posed by inter-element discontinuities. As the root of the difficulties is the discontinuous nature of the data, we present a complementary approach of applying smoothness-enhancing accuracy-conserving filters to the data prior to streamline integration. We investigate whether such an approach applied to uniform quadrilateral discontinuous Galerkin (high-order finite volume) data can be used to augment current adaptive error control approaches. We discuss and demonstrate through numerical example the computational trade-offs exhibited when one applies such a strategy.
Smoothed dissipative particle dynamics model for polymer molecules in suspension
NASA Astrophysics Data System (ADS)
Litvinov, Sergey; Ellero, Marco; Hu, Xiangyu; Adams, Nikolaus A.
2008-06-01
We present a model for a polymer molecule in solution based on smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)]. This method is a thermodynamically consistent version of smoothed particle hydrodynamics able to discretize the Navier-Stokes equations and, at the same time, to incorporate thermal fluctuations according to the fluctuation-dissipation theorem. Within the framework of the method developed for mesoscopic multiphase flows by Hu and Adams [J. Comput. Phys. 213, 844 (2006)], we introduce additional finitely extendable nonlinear elastic interactions between particles that represent the beads of a polymer chain. In order to assess the accuracy of the technique, we analyze the static and dynamic conformational properties of the modeled polymer molecule in solution. Extensive tests of the method for the two-dimensional (2D) case are performed, showing good agreement with the analytical theory. Finally, the effect of confinement on the conformational properties of the polymer molecule is investigated by considering a 2D microchannel with gap H varying between 1 and 10μm , of the same order as the polymer gyration radius. Several SDPD simulations are performed for different chain lengths corresponding to N=20-100 beads, giving a universal behavior of the gyration radius RG and polymer stretch X as functions of the channel gap when normalized properly.
ANALYSIS ON CENSORED QUANTILE RESIDUAL LIFE MODEL VIA SPLINE SMOOTHING.
Ma, Yanyuan; Wei, Ying
2012-01-01
We propose a general class of quantile residual life models, where a specific quantile of the residual life time, conditional on an individual has survived up to time t, is a function of certain covariates with their coefficients varying over time. The varying coefficients are assumed to be smooth unspecified functions of t. We propose to estimate the coefficient functions using spline approximation. Incorporating the spline representation directly into a set of unbiased estimating equations, we obtain a one-step estimation procedure, and we show that this leads to a uniformly consistent estimator. To obtain further computational simplification, we propose a two-step estimation approach in which we estimate the coefficients on a series of time points first, and follow this with spline smoothing. We compare the two methods in terms of their asymptotic efficiency and computational complexity. We further develop inference tools to test the significance of the covariate effect on residual life. The finite sample performance of the estimation and testing procedures are further illustrated through numerical experiments. We also apply the methods to a data set from a neurological study.
Bessel smoothing filter for spectral-element mesh
NASA Astrophysics Data System (ADS)
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-03-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for travel-time tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behavior is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sub-linear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the
AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING
NASA Technical Reports Server (NTRS)
Morgan, H. L
1994-01-01
Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.
Numerical Convergence In Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Hernquist, Lars; Li, Yuexing
2015-02-01
We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and Nnb → ∞, where N is the total number of particles, h is the smoothing length, and Nnb is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding Nnb fixed. We demonstrate that if Nnb is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if Nnb is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for Nnb by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find Nnb vpropN 0.5. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N 1 + δ), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.
Approximation of Bivariate Functions via Smooth Extensions
Zhang, Zhihua
2014-01-01
For a smooth bivariate function defined on a general domain with arbitrary shape, it is difficult to do Fourier approximation or wavelet approximation. In order to solve these problems, in this paper, we give an extension of the bivariate function on a general domain with arbitrary shape to a smooth, periodic function in the whole space or to a smooth, compactly supported function in the whole space. These smooth extensions have simple and clear representations which are determined by this bivariate function and some polynomials. After that, we expand the smooth, periodic function into a Fourier series or a periodic wavelet series or we expand the smooth, compactly supported function into a wavelet series. Since our extensions are smooth, the obtained Fourier coefficients or wavelet coefficients decay very fast. Since our extension tools are polynomials, the moment theorem shows that a lot of wavelet coefficients vanish. From this, with the help of well-known approximation theorems, using our extension methods, the Fourier approximation and the wavelet approximation of the bivariate function on the general domain with small error are obtained. PMID:24683316
Progress in smooth particle hydrodynamics
Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.
1998-07-01
Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Smoothing analysis of HLSII storage ring magnets
NASA Astrophysics Data System (ADS)
Wang, Wei; He, Xiao-Ye; Tang, Zheng; Yao, Qiu-Yang
2016-12-01
Hefei Light Source (HLS) has been upgraded to improve the quality and stability of the synchrotron light, and the new facility is named HLSII. However, a final accurate adjustment is required to smooth the beam orbit after the initial instalment and alignment of the magnets. We implement a reliable smoothing method for the beam orbit of the HLSII storage ring. In addition to greatly smoothing and stabilizing the beam orbit, this method also doubles the work efficiency and significantly reduces the number of magnets adjusted and the range of the adjustments. Supported by National Natural Science Foundation of China (11275192) and the Upgrade Project of Hefei Light Source
Smoothing spline primordial power spectrum reconstruction
Sealfon, Carolyn; Verde, Licia; Jimenez, Raul
2005-11-15
We reconstruct the shape of the primordial power spectrum (PPS) using a smoothing spline. Our adapted smoothing spline technique provides a complementary method to existing efforts to search for smooth features in the PPS, such as a running spectral index. With this technique we find no significant indication with Wilkinson Microwave Anisotropy Probe first-year data that the PPS deviates from a Harrison-Zeldovich spectrum and no evidence for loss of power on large scales. We also examine the effect on the cosmological parameters of the additional PPS freedom. Smooth variations in the PPS are not significantly degenerate with other cosmological parameters, but the spline reconstruction greatly increases the errors on the optical depth and baryon fraction.
7 CFR 51.768 - Smooth texture.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a central cross section, on grapefruit 41/8... 7 Agriculture 2 2012-01-01 2012-01-01 false Smooth texture. 51.768 Section 51.768...
7 CFR 51.768 - Smooth texture.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a central cross section, on grapefruit 41/8... 7 Agriculture 2 2010-01-01 2010-01-01 false Smooth texture. 51.768 Section 51.768...
7 CFR 51.768 - Smooth texture.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a central cross section, on grapefruit 41/8... 7 Agriculture 2 2011-01-01 2011-01-01 false Smooth texture. 51.768 Section 51.768...
Finite-Temperature Micromagnetism
Skomski, R; Kumar, P; Hadjipanayis, GC; Sellmyer, DJ
2013-07-01
It is investigated how magnetic hysteresis is affected by finite-temperature excitations, using soft regions in hard-magnetic matrices as model systems. In lowest order, magnetization processes are described by the traditional approach of using finite-temperature materials constants such as K-1(T). Nanoscale excitations are usually small perturbations. For example, a Bloch summation over all magnon wave vectors shows that remanence is slightly enhanced, because long-wavelength excitations are suppressed. However, a reverse magnetic field enhances the effect of thermal excitations and causes a small reduction of the coercivity. To describe such effects, we advocate micromagnetic calculations where finite-temperature fluctuations are treated as small corrections to the traditional approach, as contrasted to full-scale Monte Carlo simulations.
Vascular smooth muscle phenotypic diversity and function
2010-01-01
The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts. PMID:20736412
Beam-smoothing investigation on Heaven I
NASA Astrophysics Data System (ADS)
Xiang, Yi-huai; Gao, Zhi-xing; Tong, Xiao-hui; Dai, Hui; Tang, Xiu-zhang; Shan, Yu-sheng
2007-01-01
Directly driven targets for inertial confinement fusion (ICF) require laser beams with extremely smooth irradiance profiles to prevent hydrodynamic instabilities that destroy the spherical symmetry of the target during implosion. Such instabilities can break up and mix together the target's wall and fuel material, preventing it from reaching the density and temperature required for fusion ignition. 1,2 Measurements in the equation of state (EOS) experiments require laser beams with flat-roofed profiles to generate uniform shockwave 3. Some method for beam smooth, is thus needed. A technique called echelon-free induced spatial incoherence (EFISI) is proposed for producing smooth target beam profiles with large KrF lasers. The idea is basically an image projection technique that projects the desired time-averaged spatial profile onto the target via the laser system, using partially coherent broadband lighe. Utilize the technique, we developing beam- smoothing investigation on "Heaven I". At China Institute of Atomic Energy , a new angular multiplexing providing with beam-smoothing function has been developed, the total energy is 158J, the stability of energy is 4%, the pulse duration is 25ns, the effective diameter of focusing spot is 400um, and the ununiformity is about 1.6%, the power density on the target is about 3.7×10 12W/cm2. At present, the system have provided steady and smooth laser irradiation for EOS experiments.
Asymptotic analysis of numerical wave propagation in finite difference equations
NASA Technical Reports Server (NTRS)
Giles, M.; Thompkins, W. T., Jr.
1983-01-01
An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.
Convergence of finite difference transient response computations for thin shells.
NASA Technical Reports Server (NTRS)
Sobel, L. H.; Geers, T. L.
1973-01-01
Numerical studies pertaining to the limits of applicability of the finite difference method in the solution of linear transient shell response problems are performed, and a computational procedure for the use of the method is recommended. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. This is not a serious limitation in view of natural constraints imposed by the extension of Saint Venant's principle to transient response problems. It is also found that the short wavelength limitations of thin shell (Bernoulli-Euler) theory create significant convergence difficulties in computed response to certain types of transverse excitations. These difficulties may be overcome, however, through proper selection of finite difference mesh dimensions and temporal smoothing of the excitation.
Effects of hydrogen sulphide in smooth muscle.
Dunn, William R; Alexander, Stephen P H; Ralevic, Vera; Roberts, Richard E
2016-02-01
In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes.
NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS
Zhu, Qirong; Li, Yuexing; Hernquist, Lars
2015-02-10
We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and N{sub nb} → ∞, where N is the total number of particles, h is the smoothing length, and N{sub nb} is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding N{sub nb} fixed. We demonstrate that if N{sub nb} is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if N{sub nb} is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for N{sub nb} by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find N{sub nb} ∝N {sup 0.5}. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N {sup 1} {sup +} {sup δ}), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.
Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
Manual tracking enhances smooth pursuit eye movements
Niehorster, Diederick C.; Siu, Wilfred W. F.; Li, Li
2015-01-01
Previous studies have reported that concurrent manual tracking enhances smooth pursuit eye movements only when tracking a self-driven or a predictable moving target. Here, we used a control-theoretic approach to examine whether concurrent manual tracking enhances smooth pursuit of an unpredictable moving target. In the eye-hand tracking condition, participants used their eyes to track a Gaussian target that moved randomly along a horizontal axis. In the meantime, they used their dominant hand to move a mouse to control the horizontal movement of a Gaussian cursor to vertically align it with the target. In the eye-alone tracking condition, the target and cursor positions recorded in the eye-hand tracking condition were replayed, and participants only performed eye tracking of the target. Catch-up saccades were identified and removed from the recorded eye movements, allowing for a frequency-response analysis of the smooth pursuit response to unpredictable target motion. We found that the overall smooth pursuit gain was higher and the number of catch-up saccades made was less when eye tracking was accompanied by manual tracking than when not. We conclude that concurrent manual tracking enhances smooth pursuit. This enhancement is a fundamental property of eye-hand coordination that occurs regardless of the predictability of the target motion. PMID:26605840
Interstitial cells: regulators of smooth muscle function.
Sanders, Kenton M; Ward, Sean M; Koh, Sang Don
2014-07-01
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Interstitial Cells: Regulators of Smooth Muscle Function
Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don
2014-01-01
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007
Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.
Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B
1998-05-01
In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.
Noether’s Theorem for Smooth, Discrete and Finite Element Models
2007-11-02
Ø �¶"%,y(_ Ù (Ú£ �&"®�&y. Û�3¶Ü �,®�¶"§�f�"%,y( ()*& µ��¶"-,k(_ Ù (Ú£ $’&\\*’�,d3 ()*& Ý Ý ¸ �, ()*#& Þ...îM½ ë’ðGïìñO» ë\\ñÚïìð ò ó ôõ"±�W(_��\\�& � &\\�"-$’&\\ö�,¡ ôì��(M&\\,y(_�"-%���W(_��§ Ù (Ú£ § Q Ö Õ ÷ ø « ù ø «ú û...Û Þ Ý ï ð ß ÛÖ ¦ G Ý ï Þ ØßÞ¤à Ü à Ù ñ Ø ¦ Ú Y Y Ü Ø ¦ÐÏ à �S� � � � � � � �4#&�� 10�$#& á
Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing
2009-09-01
define the discrete functional Eh(v h) = 1 2λ ∑ i | vhi − g h i | 2 h2 + Jh(v h), (1.3) ∗This work was partially supported by the Office of Naval Research... vhi +(1,0) − v h i ) h )2 + ( vhi +(0,1) − v h i h )2 h2. Efficient algorithms have been developed to compute the discrete minimizer([2], [6], [3...functions. So for discrete functions vh = vhi , we define the discrete L p(Ωh) norms ‖vh‖Lp(Ωh) := ( ∑ i∈Ωh | vhi | p h2 ) 1 p for 1 ≤ p < ∞ and ‖vh‖L
Structured mesh generation with smoothness controls
NASA Astrophysics Data System (ADS)
Zhang, Yaoxin; Jia, Yafei; Wang, Sam S. Y.
2006-08-01
In geometrically complex domains, the Ryskin and Leal (RL) orthogonal mesh generation system may cause mesh distortion and overlapping problems when using the weak constraint method with specified boundary point distribution for all boundaries. To resolve these problems, an improved RL system with automatic smoothness control is proposed. In this improved RL system, the automatic smoothness control mechanism is based on five types of smoothness conditions and includes the self-adjustment mechanism and the auto-evaluation mechanism for an empirical parameter. The proposed system is illustrated using several test examples. Several applications to natural domains are also demonstrated. It is shown that the improved RL system is capable of resolving the above problems at little cost of orthogonality.
Archetypal oscillator for smooth and discontinuous dynamics.
Cao, Qingjie; Wiercigroch, Marian; Pavlovskaia, Ekaterina E; Grebogi, Celso; Thompson, J Michael T
2006-10-01
We propose an archetypal system to investigate transitions from smooth to discontinuous dynamics. In the smooth regime, the system bears significant similarities to the Duffing oscillator, exhibiting the standard dynamics governed by the hyperbolic structure associated with the stationary state of the double well. At the discontinuous limit, however, there is a substantial departure in the dynamics from the standard one. In particular, the velocity flow suffers a jump in crossing from one well to another, caused by the loss of local hyperbolicity due to the collapse of the stable and unstable manifolds of the stationary state. In the presence of damping and external excitation, the system has coexisting attractors and also a chaotic saddle which becomes a chaotic attractor when a smoothness parameter drops to zero. This attractor can bifurcate to a high-period periodic attractor or a chaotic sea with islands of quasiperiodic attractors depending on the strength of damping.
Multiple predictor smoothing methods for sensitivity analysis.
Helton, Jon Craig; Storlie, Curtis B.
2006-08-01
The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.
Large eddy simulation of smooth-wall, transitional and fully rough-wall channel flow
NASA Astrophysics Data System (ADS)
Saito, Namiko; Pullin, Dale I.; Inoue, Michio
2012-07-01
Large eddy simulation (LES) is reported for both smooth and rough-wall channel flows at resolutions for which the roughness is subgrid. The stretched vortex, subgrid-scale model is combined with an existing wall-model that calculates the local friction velocity dynamically while providing a Dirichlet-like slip velocity at a slightly raised wall. This wall model is presently extended to include the effects of subgrid wall roughness by the incorporation of the Hama's roughness function Δ U^+(k_{sinfty }^+) that depends on some geometric roughness height ks∞ scaled in inner variables. Presently Colebrook's empirical roughness function is used but the model can utilize any given function of an arbitrary number of inner-scaled, roughness length parameters. This approach requires no change to the interior LES and can handle both smooth and rough walls. The LES is applied to fully turbulent, smooth, and rough-wall channel flow in both the transitional and fully rough regimes. Both roughness and Reynolds number effects are captured for Reynolds numbers Reb based on the bulk flow speed in the range 104-1010 with the equivalent Reτ, based on the wall-drag velocity uτ varying from 650 to 108. Results include a Moody-like diagram for the friction factor f = f(Reb, ɛ), ɛ = ks∞/δ, mean velocity profiles, and turbulence statistics. In the fully rough regime, at sufficiently large Reb, the mean velocity profiles show collapse in outer variables onto a roughness modified, universal, velocity-deficit profile. Outer-flow stream-wise turbulence intensities scale well with uτ for both smooth and rough-wall flow, showing a log-like profile. The infinite Reynolds number limits of both smooth and rough-wall flows are explored. An assumption that, for smooth-wall flow, the turbulence intensities scaled on uτ are bounded above by the sum of a logarithmic profile plus a finite function across the whole channel suggests that the infinite Reb limit is inviscid slip flow without
LATTICE QCD AT FINITE TEMPERATURE.
PETRECZKY, P.
2005-03-12
I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.
ibr: Iterative bias reduction multivariate smoothing
Hengartner, Nicholas W; Cornillon, Pierre-andre; Matzner - Lober, Eric
2009-01-01
Regression is a fundamental data analysis tool for relating a univariate response variable Y to a multivariate predictor X {element_of} E R{sup d} from the observations (X{sub i}, Y{sub i}), i = 1,...,n. Traditional nonparametric regression use the assumption that the regression function varies smoothly in the independent variable x to locally estimate the conditional expectation m(x) = E[Y|X = x]. The resulting vector of predicted values {cflx Y}{sub i} at the observed covariates X{sub i} is called a regression smoother, or simply a smoother, because the predicted values {cflx Y}{sub i} are less variable than the original observations Y{sub i}. Linear smoothers are linear in the response variable Y and are operationally written as {cflx m} = X{sub {lambda}}Y, where S{sub {lambda}} is a n x n smoothing matrix. The smoothing matrix S{sub {lambda}} typically depends on a tuning parameter which we denote by {lambda}, and that governs the tradeoff between the smoothness of the estimate and the goodness-of-fit of the smoother to the data by controlling the effective size of the local neighborhood over which the responses are averaged. We parameterize the smoothing matrix such that large values of {lambda} are associated to smoothers that averages over larger neighborhood and produce very smooth curves, while small {lambda} are associated to smoothers that average over smaller neighborhood to produce a more wiggly curve that wants to interpolate the data. The parameter {lambda} is the bandwidth for kernel smoother, the span size for running-mean smoother, bin smoother, and the penalty factor {lambda} for spline smoother.
Airway epithelium stimulates smooth muscle proliferation.
Malavia, Nikita K; Raub, Christopher B; Mahon, Sari B; Brenner, Matthew; Panettieri, Reynold A; George, Steven C
2009-09-01
Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air-liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (HASM) using commercially available Transwells. In some co-cultures, the NHBE were repeatedly (x4) scrape-injured. An in vivo model of tracheal injury consisted of gently denuding the tracheal epithelium (x3) of a rabbit over 5 days and then examining the trachea by histology 3 days after the last injury. Our results show that HASM cell number increases 2.5-fold in the presence of NHBE, and 4.3-fold in the presence of injured NHBE compared with HASM alone after 8 days of in vitro co-culture. In addition, IL-6, IL-8, monocyte chemotactic protein (MCP)-1 and, more markedly, matrix metalloproteinase (MMP)-9 concentration increased in co-culture correlating with enhanced HASM growth. Inhibiting MMP-9 release significantly attenuated the NHBE-dependent HASM proliferation in co-culture. In vivo, the injured rabbit trachea demonstrated proliferation in the smooth muscle (trachealis) region and significant MMP-9 staining, which was absent in the uninjured control. The airway epithelium modulates smooth muscle cell proliferation via a mechanism that involves secretion of soluble mediators including potential smooth muscle mitogens such as IL-6, IL-8, and MCP-1, but also through a novel MMP-9-dependent mechanism.
Production of super-smooth articles
Duchane, D.V.
1983-03-15
Super-smooth rounded or formed articles made of thermoplastic materials including various poly(Methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.
Geometrical Wake of a Smooth Flat Collimator
Stupakov, G.V.; /SLAC
2011-09-09
A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.
Production of super-smooth articles
Duchane, David V.
1983-01-01
Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.
Production of super-smooth articles
Duchane, D.V.
1981-05-29
Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.
Error analysis of mixed finite element methods for wave propagation in double negative metamaterials
NASA Astrophysics Data System (ADS)
Li, Jichun
2007-12-01
In this paper, we develop both semi-discrete and fully discrete mixed finite element methods for modeling wave propagation in three-dimensional double negative metamaterials. Optimal error estimates are proved for Nedelec spaces under the assumption of smooth solutions. To our best knowledge, this is the first error analysis obtained for Maxwell's equations when metamaterials are involved.
Modelling the electromagnetic performance of moving rail gun launchers using finite elements
NASA Astrophysics Data System (ADS)
Rodger, D.; Leonard, P. J.
1993-01-01
A finite element technique for modelling 3D transient eddy currents in 'smooth rotor' conductors moving at constant velocity is described. A method for joining discontinuous A fields at the interface between conductors in sliding electrical contact has been implemented in the MEGA software package for 2 and 3D electromagnetic field analysis.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Endothelial and smooth muscle histamine receptors
Blank, R.S.; Hollis, T.M.
1986-03-01
Histamine is produced within the vascular wall and mediates a variety of normal and pathologic vascular responses. The interaction of histamine with its vascular cell receptors has been shown to affect factors such as actin cable formation, cyclase activities, prostacyclin synthesis, cell motility, and proliferation. In addition, abundant evidence exists to implicate an arterial nascent histamine pool in the control of vessel wall permeability under conditions of stress and injury. However, endothelial and smooth muscle cell histamine receptors have been only incompletely characterized. The authors report here the time-dependent, saturable, and trypsin sensitive binding of /sup 3/H-histamine to the endothelial cell surface. The K/sub d/ for endothelial and smooth muscle cell histamine receptors are 0.70 and 2.80 ..mu..M respectively. Histamine binding to smooth muscle cells also exhibited saturation with concentrations of /sup 3/H-histamine up to 4 ..mu..M. While the smooth muscle cell H/sub 1/ receptor binding was negligible, the H/sub 2/ receptor appeared to represent a relatively low affinity, high capacity site for histamine binding. The uptake of /sup 3/H-histamine in both cell types displayed kinetics consistent with that of fluid-phase pinocytosis.
Autonomic Modification of Intestinal Smooth Muscle Contractility
ERIC Educational Resources Information Center
Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.
2016-01-01
Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1992-01-01
Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1992-09-01
Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.
Autonomic modification of intestinal smooth muscle contractility.
Montgomery, Laura E A; Tansey, Etain A; Johnson, Chris D; Roe, Sean M; Quinn, Joe G
2016-03-01
Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe this spontaneous activity and its modification by agents associated with parasympathetic and sympathetic nerve activity. A section of the rabbit small intestine is suspended in an organ bath, and the use of a pressure transducer and data-acquisition software allows the measurement of tension generated by the smooth muscle of intestinal walls. The application of the parasympathetic neurotransmitter ACh at varying concentrations allows students to observe an increase in intestinal smooth muscle tone with increasing concentrations of this muscarinic receptor agonist. Construction of a concentration-effect curve allows students to calculate an EC50 value for ACh and consider some basic concepts surrounding receptor occupancy and activation. Application of the hormone epinephrine to the precontracted intestine allows students to observe the inhibitory effects associated with sympathetic nerve activation. Introduction of the drug atropine to the preparation before a maximal concentration of ACh is applied allows students to observe the inhibitory effect of a competitive antagonist on the physiological response to a receptor agonist. The final experiment involves the observation of the depolarizing effect of K(+) on smooth muscle. Students are also invited to consider why the drugs atropine, codeine, loperamide, and botulinum toxin have medicinal uses in the management of gastrointestinal problems.
Resting calcium influx in airway smooth muscle.
Montaño, Luis M; Bazán-Perkins, Blanca
2005-01-01
Plasma membrane Ca2+ leak remains the most uncertain of the cellular Ca2+ regulation pathways. During passive Ca2+ influx in non-stimulated smooth muscle cells, basal activity of constitutive Ca2+ channels seems to be involved. In vascular smooth muscle, the 3 following Ca2+ entry pathways contribute to this phenomenon: (i) via voltage-dependent Ca2+ channels, (ii) receptor gated Ca2+ channels, and (iii) store operated Ca2+ channels, although, in airway smooth muscle it seems only 2 passive Ca2+ influx pathways are implicated, one sensitive to SKF 96365 (receptor gated Ca2+ channels) and the other to Ni2+ (store operated Ca2+ channels). Resting Ca2+ entry could provide a sufficient amount of Ca2+ and contribute to resting intracellular Ca2+ concentration ([Ca2+]i), maintenance of the resting membrane potential, myogenic tone, and sarcoplasmic reticulum-Ca2+ refilling. However, further research, especially in airway smooth muscle, is required to better explore the physiological role of this passive Ca2+ influx pathway as it could be involved in airway hyperresponsiveness.
The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases
NASA Astrophysics Data System (ADS)
Ding, Bingbing; Witt, Ingo; Yin, Huicheng
2015-01-01
For one dimensional or multidimensional compressible Euler system of polytropic gases, it is well known that the smooth solution will generally develop singularities in finite time. However, for three dimensional Chaplygin gases, due to the crucial role of "null condition" in the potential equation which is derived by the irrotational and isentropic flow, P. Godin in [9] has proved the global existence of a smooth 3-D spherically symmetric flow with variable entropy when the initial data are of small smooth perturbations with compact supports to a constant state. It is noted that there are some clear differences for the global solution or blowup problems between 2-D and 3-D hyperbolic equations or systems. In this paper, we will focus on the global symmetric solution problem of 2-D full compressible Euler system of Chaplygin gases. Through carrying out involved analysis and finding an appropriate weight we can derive some uniform weighted energy estimates on the small symmetric solution to 2-D compressible Euler system of Chaplygin gases and further establish the global existence of the smooth solution by the continuous induction method.
Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles.
Perrino, Brian A
2016-04-30
An increase in intracellular Ca(2+) is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca(2+) sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca(2+) sensitization. The relative importance of Ca(2+) sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca(2+) sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca(2+) sensitization pathways are activated. The signaling pathways regulating Ca(2+) sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca(2+) sensitization, while also discussing the functional importance to different smooth muscles of the GI tract.
A three-dimensional chemo-mechanical continuum model for smooth muscle contraction.
Böl, Markus; Schmitz, André; Nowak, Götz; Siebert, Tobias
2012-09-01
Based on two fields, namely the placement and the calcium concentration, a chemo-mechanically coupled three-dimensional model, describing the contractile behaviour of smooth muscles, is presented by means of a strain energy function. The strain energy function (Schmitz and Böl, 2011) is additively decomposed into a passive part, relating to elastin and collagen, and an active calcium-driven part related to the chemical contraction of the smooth muscle cells. For the description of the calcium phase the four state cross-bridge model of Hai and Murphy (Hai and Murphy, 1988) has been implemented into the finite element method. Beside three-dimensional illustrative boundary-value problems demonstrating the features of the presented modelling concept, simulations on an idealised artery document the applicability of the model to more realistic geometries.
Smooth Wilson loops in N=4 non-chiral superspace
NASA Astrophysics Data System (ADS)
Beisert, Niklas; Müller, Dennis; Plefka, Jan; Vergu, Cristian
2015-12-01
We consider a supersymmetric Wilson loop operator for 4d N = 4 super Yang-Mills theory which is the natural object dual to the AdS 5 × S 5 superstring in the AdS/CFT correspondence. It generalizes the traditional bosonic 1 /2 BPS Maldacena-Wilson loop operator and completes recent constructions in the literature to smooth (non-light-like) loops in the full N=4 non-chiral superspace. This Wilson loop operator enjoys global super-conformal and local kappa-symmetry of which a detailed discussion is given. Moreover, the finiteness of its vacuum expectation value is proven at leading order in perturbation theory. We determine the leading vacuum expectation value for general paths both at the component field level up to quartic order in anti-commuting coordinates and in the full non-chiral superspace in suitable gauges. Finally, we discuss loops built from quadric splines joined in such a way that the path derivatives are continuous at the intersection.
Regular and chaotic dynamics of a piecewise smooth bouncer
Langer, Cameron K. Miller, Bruce N.
2015-07-15
The dynamical properties of a particle in a gravitational field colliding with a rigid wall moving with piecewise constant velocity are studied. The linear nature of the wall's motion permits further analytical investigation than is possible for the system's sinusoidal counterpart. We consider three distinct approaches to modeling collisions: (i) elastic, (ii) inelastic with constant restitution coefficient, and (iii) inelastic with a velocity-dependent restitution function. We confirm the existence of distinct unbounded orbits (Fermi acceleration) in the elastic model, and investigate regular and chaotic behavior in the inelastic cases. We also examine in the constant restitution model trajectories wherein the particle experiences an infinite number of collisions in a finite time, i.e., the phenomenon of inelastic collapse. We address these so-called “sticking solutions” and their relation to both the overall dynamics and the phenomenon of self-reanimating chaos. Additionally, we investigate the long-term behavior of the system as a function of both initial conditions and parameter values. We find the non-smooth nature of the system produces novel bifurcation phenomena not seen in the sinusoidal model, including border-collision bifurcations. The analytical and numerical investigations reveal that although our piecewise linear bouncer is a simplified version of the sinusoidal model, the former not only captures essential features of the latter but also exhibits behavior unique to the discontinuous dynamics.
Smooth particle hydrodynamics: theory and application to the origin of the moon
Benz, W.
1986-01-01
The origin of the moon is modeled by the so-called smooth particle hydrodynamics (SPH) method (Lucy, 1977, Monaghan 1985) which substitutes to the fluid a finite set of extended particles, the hydrodynamics equations reduce to the equation of motion of individual particles. These equations of motion differ only from the standard gravitational N-body problem insofar that pressure gradients and viscosity terms have to be added to the gradient of the potential to derive the forces between the particles. The numerical tools developed for ''classical'' N-body problems can therefore be readily applied to solve 3 dimensional hydroynamical problems. 12 refs., 1 fig.
Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G; Vassilevski, P S
2007-05-31
Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.
Molecular memory with atomically smooth graphene contacts
2013-01-01
We report the use of bilayer graphene as an atomically smooth contact for nanoscale devices. A two-terminal bucky-ball (C60) based molecular memory is fabricated with bilayer graphene as a contact on the polycrystalline nickel electrode. Graphene provides an atomically smooth covering over an otherwise rough metal surface. The use of graphene additionally prohibits the electromigration of nickel into the C60 layer. The devices exhibit a low-resistance state in the first sweep cycle and irreversibly switch to a high-resistance state at 0.8 to 1.2 V bias. In the subsequent cycles, the devices retain the high-resistance state, thus making it write-once read-many memory. PMID:24225345
SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction
NASA Astrophysics Data System (ADS)
Thompson, Robert
2015-02-01
SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access. SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).
Compensating for estimation smoothing in kriging
Olea, R.A.; Pawlowsky, Vera
1996-01-01
Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.
A smoothing algorithm using cubic spline functions
NASA Technical Reports Server (NTRS)
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Generation of Surfaces with Smooth Highlight Lines
2000-01-01
2 (s)ds/ si. (2) 0=i i=1 §3. Concept of Surface Generation Based on Evolute A surface is generated by moving a generatrix along two directrices . When...Fig. 1(a) shows an object surface Surfaces with Smooth Highlight Lines 147 Sgeneratrices v generated surface S u directrices evoluteseolesufc (a...the directrices , and suffix u denotes partial differentiation. Fig. 1(b) shows an evolute surface and a generated surface satisfying the constraints
Structure-Preserving Smoothing of Biomedical Images
NASA Astrophysics Data System (ADS)
Gil, Debora; Hernàndez-Sabaté, Aura; Burnat, Mireia; Jansen, Steven; Martínez-Villalta, Jordi
Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood.
Wrench for smooth or damaged fasteners
NASA Technical Reports Server (NTRS)
Carrillo, R.
1981-01-01
Smooth-surfaced or damaged fasteners that cannot be gripped by conventional wrench can be unscrewed by special wrench. It can be used in tight spaces and will not damage adjacent structures. Wrench consists of central handle and 2 independent jaws with serrated teeth. Teeth are placed on fastener to be removed, and handle is rotated until fastener is gripped with positive locking action. Rotation of wrench handle removes fastener.
Variational algorithms for nonlinear smoothing applications
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.
1977-01-01
A variational approach is presented for solving a nonlinear, fixed-interval smoothing problem with application to offline processing of noisy data for trajectory reconstruction and parameter estimation. The nonlinear problem is solved as a sequence of linear two-point boundary value problems. Second-order convergence properties are demonstrated. Algorithms for both continuous and discrete versions of the problem are given, and example solutions are provided.
Rotorcraft Smoothing Via Linear Time Periodic Methods
2007-07-01
Optimal Control Methodology for Rotor Vibration Smoothing . . 30 vii Page IV. Mathematic Foundations of Linear Time Periodic Systems . . . . 33 4.1 The...62 6.3 The Maximum Likelihood Estimator . . . . . . . . . . . 63 6.4 The Cramer-Rao Inequality . . . . . . . . . . . . . . . . 66 6.4.1 Statistical ...adjustments for vibration reduction. 2.2.2.4 1980’s to late 1990’s. Rotor vibrational reduction methods during the 1980’s began to adopt a mathematical
Notch Signaling in Vascular Smooth Muscle Cells.
Baeten, J T; Lilly, B
2017-01-01
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.
On the thermodynamics of smooth muscle contraction
NASA Astrophysics Data System (ADS)
Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.
2016-09-01
Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.
Smooth muscle tumours of the alimentary tract.
Diamond, T.; Danton, M. H.; Parks, T. G.
1990-01-01
Neoplasms arising from smooth muscle of the gastrointestinal (GI) tract are uncommon, comprising only 1% of gastrointestinal tumours. A total of 51 cases of smooth muscle tumour of the GI tract were analysed; 44 leiomyomas and 7 leiomyosarcomas. Lesions occurred in all areas from the oesophagus to the rectum, the stomach being the commonest site. Thirty-six patients had clinical features referable to the tumour. The tumour was detected during investigation or management of an unrelated disease process in 15 patients. The clinical presentation varied depending on tumour location, but abdominal pain and GI bleeding were the commonest presenting symptoms. The lesion was demonstrated preoperatively, mainly by endoscopy and barium studies, in 27 patients. Surgical excision was the treatment of choice, where possible. There was no recurrence in the leiomyoma group but four patients died in the leiomyosarcoma group. Although rare, smooth muscle tumours should be considered in situations where clinical presentation and investigations are not suggestive of any common GI disorder. The preoperative assessment and diagnosis is difficult because of the variability in clinical features and their inaccessibility to routine GI investigation. It is recommended that, where possible, the lesion, whether symptomatic or discovered incidentally, should be excised completely to achieve a cure and prevent future complications. Images Figure 3 Figure 4 PMID:2221768
Smooth muscle differentiation in scleroderma fibroblastic cells.
Sappino, A. P.; Masouyé, I.; Saurat, J. H.; Gabbiani, G.
1990-01-01
Using antibodies to alpha-smooth muscle actin and desmin on paraffin-embedded formalin-fixed tissue sections, the authors demonstrate that fibroblastic cells of localized and systemic scleroderma lesions express features of smooth muscle differentiation. Eleven of eleven skin specimens of systemic sclerosis patients and two of four skin specimens of localized scleroderma displayed the presence of fibroblasts expressing alpha-smooth muscle actin, a cell population that predominated in areas of prominent collagen deposition. A similar fibroblastic phenotype was found in the esophagus, the liver, and the lung specimens obtained from four patients who died of progressive systemic sclerosis. Immunostaining for desmin, performed on adjacent tissue sections, demonstrated that a minority of these fibroblastic cells present in skin and visceral lesions contained this protein. The authors' observations indicate that scleroderma fibroblasts are phenotypically related to the stromal cells previously identified in hypertrophic scars, fibromatoses, and desmoplasia; they might provide novel criteria for the characterization of scleroderma lesions and help to identify the factors responsible for phenotypic modulations in fibroblastic cells. Images Figure 1 Figure 2 Figure 3 PMID:1698026
Symmetric smoothing filters from global consistency constraints.
Haque, Sheikh Mohammadul; Pai, Gautam P; Govindu, Venu Madhav
2015-05-01
Many patch-based image denoising methods can be viewed as data-dependent smoothing filters that carry out a weighted averaging of similar pixels. It has recently been argued that these averaging filters can be improved using their doubly stochastic approximation, which are symmetric and stable smoothing operators. In this paper, we introduce a simple principle of consistency that argues that the relative similarities between pixels as imputed by the averaging matrix should be preserved in the filtered output. The resultant consistency filter has the theoretically desirable properties of being symmetric and stable, and is a generalized doubly stochastic matrix. In addition, we can also interpret our consistency filter as a specific form of Laplacian regularization. Thus, our approach unifies two strands of image denoising methods, i.e., symmetric smoothing filters and spectral graph theory. Our consistency filter provides high-quality image denoising and significantly outperforms the doubly stochastic version. We present a thorough analysis of the properties of our proposed consistency filter and compare its performance with that of other significant methods for image denoising in the literature.
Least-squares finite element methods for quantum chromodynamics
Ketelsen, Christian; Brannick, J; Manteuffel, T; Mccormick, S
2008-01-01
A significant amount of the computational time in large Monte Carlo simulations of lattice quantum chromodynamics (QCD) is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, and has random coefficients. More recently, adaptive algebraic multigrid (AMG) methods have been shown to be effective preconditioners for Wilson's discretization of the Dirac equation. This paper presents an alternate discretization of the Dirac operator based on least-squares finite elements. The discretization is systematically developed and physical properties of the resulting matrix system are discussed. Finally, numerical experiments are presented that demonstrate the effectiveness of adaptive smoothed aggregation ({alpha}SA ) multigrid as a preconditioner for the discrete field equations resulting from applying the proposed least-squares FE formulation to a simplified test problem, the 2d Schwinger model of quantum electrodynamics.
Methods and framework for visualizing higher-order finite elements.
Schroeder, William J; Bertel, François; Malaterre, Mathieu; Thompson, David; Pébay, Philippe P; O'Bara, Robert; Tendulkar, Saurabh
2006-01-01
The finite element method is an important, widely used numerical technique for solving partial differential equations. This technique utilizes basis functions for approximating the geometry and the variation of the solution field over finite regions, or elements, of the domain. These basis functions are generally formed by combinations of polynomials. In the past, the polynomial order of the basis has been low-typically of linear and quadratic order. However, in recent years so-called p and hp methods have been developed, which may elevate the order of the basis to arbitrary levels with the aim of accelerating the convergence of the numerical solution. The increasing complexity of numerical basis functions poses a significant challenge to visualization systems. In the past, such systems have been loosely coupled to simulation packages, exchanging data via file transfer, and internally reimplementing the basis functions in order to perform interpolation and implement visualization algorithms. However, as the basis functions become more complex and, in some cases, proprietary in nature, it becomes increasingly difficult if not impossible to reimplement them within the visualization system. Further, most visualization systems typically process linear primitives, in part to take advantage of graphics hardware and, in part, due to the inherent simplicity of the resulting algorithms. Thus, visualization of higher-order finite elements requires tessellating the basis to produce data compatible with existing visualization systems. In this paper, we describe adaptive methods that automatically tessellate complex finite element basis functions using a flexible and extensible software framework. These methods employ a recursive, edge-based subdivision algorithm driven by a set of error metrics including geometric error, solution error, and error in image space. Further, we describe advanced pretessellation techniques that guarantees capture of the critical points of the
7 CFR 51.772 - Fairly smooth texture.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does...
7 CFR 51.772 - Fairly smooth texture.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does...
A Kalman Filter with Smoothing for Hurricane Tracking and Prediction
1989-12-01
algorithms were categorized into three groups by Meditch [Ref. 51; Fixed Point Smoothing smooths the estimate iox at a fixed point k as K increases... Smoothing , Storm Trackig. I bstract (continue on reiersc if necr!:ry and ldetif by block number) T-he Performance of a Kalmnan filter used to track a...hurricane was substantially improved by implementing a fixed interval smoothing algofitin. This tracking routine was designed and imiplemencrted in a
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans
ERIC Educational Resources Information Center
Lencer, Rebekka; Trillenberg, Peter
2008-01-01
Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…
Alternative Smoothing and Scaling Strategies for Weighted Composite Scores
ERIC Educational Resources Information Center
Moses, Tim
2014-01-01
In this study, smoothing and scaling approaches are compared for estimating subscore-to-composite scaling results involving composites computed as rounded and weighted combinations of subscores. The considered smoothing and scaling approaches included those based on raw data, on smoothing the bivariate distribution of the subscores, on smoothing…
The Optimal Degree of Smoothing in Equipercentile Equating with Postsmoothing.
ERIC Educational Resources Information Center
Zeng, Lingjia
1995-01-01
The effects of different degrees of smoothing on results of equipercentile equating in random groups design using a postsmoothing method based on cubic splines were investigated, and a computer-based procedure was introduced for selecting a desirable degree of smoothing. Results suggest that no particular degree of smoothing was always optimal.…
Infant Attention and the Development of Smooth Pursuit Tracking.
ERIC Educational Resources Information Center
Richards, John E.; Holley, Felecia B.
1999-01-01
Studied effect of attention on smooth pursuit and saccadic tracking in infants at 8, 14, 20, and 26 weeks old. Found an increase across age in overall tracking, gain of smooth-pursuit eye movements, and increased amplitude of compensatory saccades at faster tracking speeds. Findings show that development of smooth pursuit, targeted saccadic eye…
Visual Short-Term Memory During Smooth Pursuit Eye Movements
ERIC Educational Resources Information Center
Kerzel, Dirk; Ziegler, Nathalie E.
2005-01-01
Visual short-term memory (VSTM) was probed while observers performed smooth pursuit eye movements. Smooth pursuit keeps a moving object stabilized in the fovea. VSTM capacity for position was reduced during smooth pursuit compared with a condition with eye fixation. There was no difference between a condition in which the items were approximately…
An extension of the finite cell method using boolean operations
NASA Astrophysics Data System (ADS)
Abedian, Alireza; Düster, Alexander
2017-01-01
In the finite cell method, the fictitious domain approach is combined with high-order finite elements. The geometry of the problem is taken into account by integrating the finite cell formulation over the physical domain to obtain the corresponding stiffness matrix and load vector. In this contribution, an extension of the FCM is presented wherein both the physical and fictitious domain of an element are simultaneously evaluated during the integration. In the proposed extension of the finite cell method, the contribution of the stiffness matrix over the fictitious domain is subtracted from the cell, resulting in the desired stiffness matrix which reflects the contribution of the physical domain only. This method results in an exponential rate of convergence for porous domain problems with a smooth solution and accurate integration. In addition, it reduces the computational cost, especially when applying adaptive integration schemes based on the quadtree/octree. Based on 2D and 3D problems of linear elastostatics, numerical examples serve to demonstrate the efficiency and accuracy of the proposed method.
Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature
Rudd, R E; Broughton, J Q
2005-05-30
Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.
Finite difference computation of Casimir forces
NASA Astrophysics Data System (ADS)
Pinto, Fabrizio
2016-09-01
In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
NASA Astrophysics Data System (ADS)
Alimonti, L.; Atalla, N.
2017-02-01
This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.
Su, Wen; Xie, Zhongwen; Liu, Shu; Calderon, Lindsay E.; Guo, Zhenheng
2013-01-01
Recent data revealed that protein kinase C-potentiated myosin phosphatase inhibitor of 17 kDa (CPI-17), a myosin phosphatase inhibitory protein preferentially expressed in smooth muscle, is upregulated/activated in several diseases but whether this CPI-17 increase plays a causal role in pathologically enhanced vascular smooth muscle contractility and blood pressure remains unclear. To address this possibility, we generated a smooth muscle-specific CPI-17 transgenic mouse model (CPI-17-Tg) and demonstrated that the CPI-17 transgene was selectively expressed in smooth muscle-enriched tissues, including mesenteric arteries. The isometric contractions in the isolated second-order branch of mesenteric artery helical strips from CPI-17-Tg mice were significantly enhanced compared with controls in response to phenylephrine, U-46619, serotonin, ANG II, high potassium, and calcium. The perfusion pressure increases in isolated perfused mesenteric vascular beds in response to norepinephrine were also enhanced in CPI-17-Tg mice. The hypercontractility was associated with increased phosphorylation of CPI-17 and 20-kDa myosin light chain under basal and stimulated conditions. Surprisingly, the protein levels of rho kinase 2 and protein kinase Cα/δ were significantly increased in CPI-17-Tg mouse mesenteric arteries. Radiotelemetry measurements demonstrated that blood pressure was significantly increased in CPI-17-Tg mice. However, no vascular remodeling was detected by morphometric analysis. Taken together, our results demonstrate that increased CPI-17 expression in smooth muscle promotes vascular smooth muscle contractility and increases blood pressure, implicating a pathological significant role of CPI-17 upregulation. PMID:23604714
Irregular Wave Runup on Smooth Slopes.
1981-12-01
CERC- CETA -81-17 N. IE D CETA 81-17 Z Irregular Wave Runup on Smooth Slopes by ot John P. Ahrens COASTAL ENGINEERING TECHNICAL AID NO. 81-17 DECEMBER...GOVT ACCESSION NO, 3. RECIPIENT’S CATALOG NUMBER CETA 811 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Coastal Engineering IRREGULAR...Coastal Engineering Research Center, 1977); CETA 77-2 "Prediction of Irregular Wave Runup" by John P. Ahrens; and CETA 78-2 "Revised Wave Runup
Old Basin Filled by Smooth Plains
NASA Technical Reports Server (NTRS)
1975-01-01
Old basin, 190 km in diameter, filled by smooth plains at 43 degrees S, 55 degrees W. The basin's hummocky rim is partly degraded and cratered by later events. Mariner 10 frame 166607.
The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.
Image Credit: NASA/JPL/Northwestern University
Workshop on advances in smooth particle hydrodynamics
Wingate, C.A.; Miller, W.A.
1993-12-31
This proceedings contains viewgraphs presented at the 1993 workshop held at Los Alamos National Laboratory. Discussed topics include: negative stress, reactive flow calculations, interface problems, boundaries and interfaces, energy conservation in viscous flows, linked penetration calculations, stability and consistency of the SPH method, instabilities, wall heating and conservative smoothing, tensors, tidal disruption of stars, breaking the 10,000,000 particle limit, modelling relativistic collapse, SPH without H, relativistic KSPH avoidance of velocity based kernels, tidal compression and disruption of stars near a supermassive rotation black hole, and finally relativistic SPH viscosity and energy.
Method for producing smooth inner surfaces
Cooper, Charles A.
2016-05-17
The invention provides a method for preparing superconducting cavities, the method comprising causing polishing media to tumble by centrifugal barrel polishing within the cavities for a time sufficient to attain a surface smoothness of less than 15 nm root mean square roughness over approximately a 1 mm.sup.2 scan area. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media bound to a carrier to tumble within the cavities. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media in a slurry to tumble within the cavities.
Compressive Sensing via Nonlocal Smoothed Rank Function
Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683
Compressive Sensing via Nonlocal Smoothed Rank Function.
Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1993-07-01
Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.
Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration.
Bentley, J Kelley; Hershenson, Marc B
2008-01-01
Increased airway smooth muscle mass is present in fatal and non-fatal asthma. However, little information is available regarding the cellular mechanism (i.e., hyperplasia vs. hypertrophy). Even less information exists regarding the functional consequences of airway smooth muscle remodeling. It would appear that increased airway smooth muscle mass would tend to increase airway narrowing and airflow obstruction. However, the precise effects of increased airway smooth muscle mass on airway narrowing are not known. This review will consider the evidence for airway smooth muscle cell proliferation and hypertrophy in asthma, potential functional effects, and biochemical mechanisms.
Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.
2016-01-01
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223
A generalized smoothness criterion for acoustic-to-articulatory inversion
Ghosh, Prasanta Kumar; Narayanan, Shrikanth
2010-01-01
The many-to-one mapping from representations in the speech articulatory space to acoustic space renders the associated acoustic-to-articulatory inverse mapping non-unique. Among various techniques, imposing smoothness constraints on the articulator trajectories is one of the common approaches to handle the non-uniqueness in the acoustic-to-articulatory inversion problem. This is because, articulators typically move smoothly during speech production. A standard smoothness constraint is to minimize the energy of the difference of the articulatory position sequence so that the articulator trajectory is smooth and low-pass in nature. Such a fixed definition of smoothness is not always realistic or adequate for all articulators because different articulators have different degrees of smoothness. In this paper, an optimization formulation is proposed for the inversion problem, which includes a generalized smoothness criterion. Under such generalized smoothness settings, the smoothness parameter can be chosen depending on the specific articulator in a data-driven fashion. In addition, this formulation allows estimation of articulatory positions recursively over time without any loss in performance. Experiments with the MOCHA TIMIT database show that the estimated articulator trajectories obtained using such a generalized smoothness criterion have lower RMS error and higher correlation with the actual measured trajectories compared to those obtained using a fixed smoothness constraint. PMID:20968386
A semi-implicit gas-kinetic scheme for smooth flows
NASA Astrophysics Data System (ADS)
Wang, Peng; Guo, Zhaoli
2016-08-01
In this paper, a semi-implicit gas-kinetic scheme (SIGKS) is derived for smooth flows based on the Bhatnagar-Gross-Krook (BGK) equation. As a finite-volume scheme, the evolution of the average flow variables in a control volume is under the Eulerian framework, whereas the construction of the numerical flux across the cell interface comes from the Lagrangian perspective. The adoption of the Lagrangian aspect makes the collision and the transport mechanisms intrinsically coupled together in the flux evaluation. As a result, the time step size is independent of the particle collision time and solely determined by the Courant-Friedrichs-Lewy (CFL) condition. An analysis of the reconstructed distribution function at the cell interface shows that the SIGKS can be viewed as a modified Lax-Wendroff type scheme with an additional term. Furthermore, the addition term coming from the implicitness in the reconstruction is expected to be able to enhance the numerical stability of the scheme. A number of numerical tests of smooth flows with low and moderate Mach numbers are performed to benchmark the SIGKS. The results show that the method has second-order spatial accuracy, and can give accurate numerical solutions in comparison with benchmark results. It is also demonstrated that the numerical stability of the proposed scheme is better than the original GKS for smooth flows.
Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens
Aboubaker Osman, Djaltou; Bouzid, Feriel; Canaan, Stéphane; Drancourt, Michel
2016-01-01
Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause. PMID:26793699
Smooth blasting with the electronic delay detonator
Yamamoto, Masaaki; Ichijo, Toshiyuki; Tanaka, Yoshiharu
1995-12-31
The authors utilized electronic detonators (EDs) to investigate the effect of high detonator delay accuracy on overbreak, remaining rock damage, and surface smoothness, in comparison with that of long-period delay detonators (0.25 sec interval) PDs. The experiments were conducted in a deep mine, in a test site region composed of very hard granodiorite with a seismic wave velocity of about 6.0 km/sec and a uniaxial compressive strength, uniaxial tensile strength, and Young`s modulus of 300 MPa, 12 MPa, and 73 GPa, respectively. The blasting design was for a test tunnel excavation of 8 m{sup 2} in cross section, with an advance per round of 2.5 m. Five rounds were performed, each with a large-hole cut and perimeter holes in a 0.4-m spacing charged with 20-mm-diameter water gel explosive to obtain low charge concentration. EDs were used in the holes on the perimeter of the right half, and PDs were used in all other holes. Following each shot, the cross section was measured by laser to determine amount of overbreak and surface smoothness. In situ seismic prospecting was used to estimate the depth of damage in the remaining rock, and the damage was further investigated by boring into both side walls.
Sympathetic innervation promotes vascular smooth muscle differentiation.
Damon, Deborah H
2005-06-01
The sympathetic nervous system (SNS) is an important modulator of vascular smooth muscle (VSM) growth and function. Several lines of evidence suggest that the SNS also promotes VSM differentiation. The present study tests this hypothesis. Expression of smooth muscle myosin (SM2) and alpha-actin were assessed by Western analysis as indexes of VSM differentiation. SM2 expression (normalized to alpha-actin) in adult innervated rat femoral and tail arteries was 479 +/- 115% of that in noninnervated carotid arteries. Expression of alpha-actin (normalized to GAPDH or total protein) in 30-day-innervated rat femoral arteries was greater than in corresponding noninnervated femoral arteries from guanethidine-sympathectomized rats. SM2 expression (normalized to alpha-actin) in neonatal femoral arteries grown in vitro for 7 days in the presence of sympathetic ganglia was greater than SM2 expression in corresponding arteries grown in the absence of sympathetic ganglia. In VSM-endothelial cell cultures grown in the presence of dissociated sympathetic neurons, alpha-actin (normalized to GAPDH) was 300 +/- 66% of that in corresponding cultures grown in the absence of neurons. This effect was inhibited by an antibody that neutralized the activity of transforming growth factor-beta2. All of these data indicate that sympathetic innervation increased VSM contractile protein expression and thereby suggest that the SNS promotes and/or maintains VSM differentiation.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems
NASA Technical Reports Server (NTRS)
Vanek, Petr; Mandel, Jan; Brezina, Marian
1996-01-01
Multigrid methods are very efficient iterative solvers for system of algebraic equations arising from finite element and finite difference discretization of elliptic boundary value problems. The main principle of multigrid methods is to complement the local exchange of information in point-wise iterative methods by a global one utilizing several related systems, called coarse levels, with a smaller number of variables. The coarse levels are often obtained as a hierarchy of discretizations with different characteristic meshsizes, but this requires that the discretization is controlled by the iterative method. To solve linear systems produced by existing finite element software, one needs to create an artificial hierarchy of coarse problems. The principal issue is then to obtain computational complexity and approximation properties similar to those for nested meshes, using only information in the matrix of the system and as little extra information as possible. Such algebraic multigrid method that uses the system matrix only was developed by Ruge. The prolongations were based on the matrix of the system by partial solution from given values at selected coarse points. The coarse grid points were selected so that each point would be interpolated to via so-called strong connections. Our approach is based on smoothed aggregation introduced recently by Vanek. First the set of nodes is decomposed into small mutually disjoint subsets. A tentative piecewise constant interpolation (in the discrete sense) is then defined on those subsets as piecewise constant for second order problems, and piecewise linear for fourth order problems. The prolongation operator is then obtained by smoothing the output of the tentative prolongation and coarse level operators are defined variationally.
Sparse Representation of Smooth Linear Operators
1990-08-01
received study by many authors, resulting in constructions with a variety of properties. Meyer [13] constructed orthonormal wavelets for which h E CI(R...Lemmas 2.3 and 2.4; in fact, substitution of the finite sums which determine the elements of UTUT for the integrals in those lemmas yields the...some k the orthogonal matrices U1,..., U, defined in Section 4.1 have been computed (1 = log2(n/k)). We now present a procedure for computation of UTUT
Smoothed Particle Hydrodynamics: Applications Within DSTO
2006-10-01
by Cartwright et al. [5], [6] and [7]. These authors have used an SPH model embedded in the commercial finite element code PAM-SHOCK to simulate the...already been made by Cartwright and McGuckin of Pacific ESI in collaboration with Stuart Cannon and Terry Turner from the SPS branch. They used the...method, noted by Cartwright et al. in a previous paper [6], is that considerable loss of wave amplitude can occur in an SPH simulation if a wave is
Implementation and performance of beam smoothing on 10 beams of the Nova Laser
Pennington, D. M.; Dixit, S. N.; Weiland, T. L.; Ehrlich, R.; Rothenberg, J. E.
1997-03-11
Recent simulations and experiments on Nova indicate that some level of smoothing may be required to suppress filamentation in plasmas on the National Ignition Facility (NIF), resulting in the addition of 1-D smoothing capability to the current baseline design. Control of stimulated Brillouin scattering (SBS) and filamentation is considered essential to the success of laser fusion because they affect the amount and location of laser energy delivered to the x-ray conversion region (hohlraum wall) for indirect drive and to the absorptive region for direct drive, Smoothing by spectral dispersion (SSD)[1], reduces these instabilities by reducing nonuniformities in the focal irradiance when averaged over a finite time interval. We have installed SSD on Nova to produce beam smoothing on all 10 beam lines. A single dispersion grating is located in a position common to all 10 beam lines early in the preamplifier chain. This location limits the 1{omega} bandwidth to 2.2 {angstrom} with sufficient dispersion to displace the speckle field of each frequency component at the target plane by one half speckle diameter. Several beam lines were modified to allow orientation of the dispersion on each arm relative to the hohlraum wall. After conversion to the third harmonic the beam passes through a kinoform phase plate (KPP) designed to produce an elliptical spot at best focus. The KPPs produce a focal spot having an elliptical flat-top envelope with a superimposed speckle pattern. Over 93% of the energy is contained in the central 400 km. Calculations indicate a 16% rms. intensity variance will be reached after 330 ps for a single beam.
Implementation and performance of beam smoothing on 10 beams of the Nova laser
NASA Astrophysics Data System (ADS)
Pennington, Deanna M.; Dixit, Sham N.; Weiland, Timothy L.; Ehrlich, Robert B.; Rothenberg, Joshua E.
1997-12-01
Recent simulations and experiments on Nova indicate that some level of smoothing may be required to suppress filamentation in plasmas on the National Ignition Facility, resulting in the addition of 1D smoothing capability to the current baseline design. Control of stimulated Brillouin scattering and filamentation is considered essential to the success of laser fusion because they affect the amount and location of laser energy delivered to the x-ray conversion region (holhraum wall) for indirect drive and to the absorptive region for direct drive. Smoothing by spectral dispersion (SSD), reduces these instabilities by reducing nonuniformities in the focal irradiance when averaged over a finite time interval. We have installed SSD on Nova to produce beam smoothing on all 10 beam lines. A single dispersion grating is located in a position common to all 10 beam lines early in the preamplifier chain. This location limits the 1(omega) bandwidth to 2.2 angstroms with sufficient dispersion to displace the speckle field of each frequency component at the target plane by one half speckle diameter. Several beam lines were modified to allow orientation of the dispersion on each arm relative to the holhraum wall. After conversion to the third harmonic the beam passes through a kinoform phase plate (KPP) designed to produce an elliptical spot at best focus. The KPPs produce a focal spot having an elliptical flat-top envelope with a superimposed speckle pattern. Over 93% of the energy is contained in the central 400 micrometers . Calculations indicate a 16% rms intensity variance will be reached after 330 ps for a single beam.
A four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL
Pennington, D.M.; Henesian, M.A.; Wilcox, R.B.; Weiland, T.L.; Eimerl, D.; Ehrlich, R.B.; Laumann, C.W.; Miller, J.L.
1995-06-26
A novel four-color beam smoothing scheme with a capability similar to that planned for the proposed National Ignition Facility has been deployed on the Nova laser, and has been successfully used for laser fusion experiments. Wavefront aberrations in high power laser systems produce nonuniformities in the energy distribution of the focal spot that can significantly degrade the coupling of the energy into a fusion target, driving various plasma instabilities. The introduction of temporal and spatial incoherence over the face of the beam using techniques such as smoothing by spectral dispersion (SSD) can reduce these variation in the focal irradiance when averaged over a finite time interval. We developed a multiple frequency source that is spatially separated into four quadrants, each containing a different central frequency. Each quadrant is independently converted to the third harmonic in a four-segment Type I/ Type II KDP crystal array with independent phase-matching for efficient frequency conversion. Up to 2.3 kJ of third harmonic light is generated in a 1 ns pulse, corresponding to up to 65% conversion efficiency. SSD is implemented by adding limited frequency modulated bandwidth to each frequency component. Smoothing by spectral dispersion is implemented during the spatial separation of the FM modulated beams to provide additional smoothing, reaching a 16% rms intensity variation level. The four- color system was successfully used to probe NIF-like plasmas, producing {lt} 1% SBS backscatter at {gt} 2x10{sup 15} W/cm{sup 2}. This paper discusses the detailed implementation and performance of the segmented four-color system on the Nova laser system.
PV output smoothing with energy storage.
Ellis, Abraham; Schoenwald, David Alan
2012-03-01
This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.
Computational brittle fracture using smooth particle hydrodynamics
Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.
1996-10-01
We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.
Cobalt contraction of vascular smooth muscle
Dominiczak, A.; Clyde, E.; Bohr, D. )
1991-03-11
Although it has been reported that cobalt causes contraction of vascular smooth muscle, the mechanism responsible for this contraction has not been defined. The authors studied these contractions in rat aortic rings. Concentration-response studies indicated that the threshold for contraction was 10{sup {minus}8}M, maximum contraction occurred at 3 {times} 10{sup 7}M and relaxation began at 10{sup {minus}6}M. No contraction occurred in a calcium-free physiological salt solution and the contraction was not inhibited by H-7, a protein kinase C inhibitor. The authors conclude the cobalt in low concentrations causes contraction by activating calcium channels and that in high concentrations it causes relaxation by inactivating these same channels.
How a Nanodroplet Diffuses on Smooth Surfaces
NASA Astrophysics Data System (ADS)
Li, Chu; Huang, Jizu; Li, Zhigang
2016-11-01
In this study, we investigate how nanodroplets diffuse on smooth surfaces through molecular dynamics (MD) simulations and theoretical analyses. The simulations results show that the surface diffusion of nanodroplet is different from that of single molecules and solid nanoparticles. The dependence of nanodroplet diffusion coefficient on temperature is surface wettability dependent, which undergoes a transition from linear to nonlinear as the surface wettability is weakened due to the coupling of temperature and surface energy. We also develop a simple relation for the diffusion coefficient by using the contact angle and contact radius of the droplet. It works well for different surface wettabilities and sized nanodroplets, as confirmed by MD simulations. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant No. 615312.
Subjective scaling of smooth surface friction.
Smith, A M; Scott, S H
1996-05-01
1. Six men and four women, 30-51 yr of age, were asked to use the tip of the washed and dried index finger to stroke six different featureless, flat surfaces mounted on a three-dimensional force platform. The six surfaces were rosin-coated glass, glass, satin-finished aluminum, poly-vinyl chloride (PVC) plastic, Teflon, and nyloprint (polyamide plastic). The subjects were requested to indicate where the sensation produced by each surface should be placed on an unidimensional scale represented by an 18cm line labeled at one end by the words "most slippery" and at the other end by the words "most sticky." The coefficients of friction for each surface and for each subject were subsequently assessed by asking each subject to stroke the surfaces as if they were assessing its slipperiness for 5 s. 2. The finger forces normal and tangential to the stroked surfaces were digitized at 250 Hz and stored on a laboratory computer. The ratio of the mean tangential force to the mean perpendicular force during stroking was used to calculate the mean coefficient of kinetic friction. The mean friction for all subjects ranged from 0.43 for the nyloprint surface to 2.79 for the rosin-coated glass. Correlation coefficients calculated between the subjective estimates of friction and the measured coefficients of friction for each subject individually resulted in a mean correlation of 0.85 (n = 10, P < 0.001). 3. These data indicate that subjects can accurately scale relative differences in the friction of macroscopically smooth, flat surfaces, by modulating the tangential force applied to the finger while keeping the normal force relatively constant. The fact that subjects maintained a relatively constant normal force and instead varied the tangential force across different surfaces suggests that receptors sensitive to these tangential forces are important in the perception of smooth surface friction.
Binocular Depth Judgments on Smoothly Curved Surfaces
Hornsey, Rebecca L.; Scarfe, Peter
2016-01-01
Binocular disparity is an important cue to depth, allowing us to make very fine discriminations of the relative depth of objects. In complex scenes, this sensitivity depends on the particular shape and layout of the objects viewed. For example, judgments of the relative depths of points on a smoothly curved surface are less accurate than those for points in empty space. It has been argued that this occurs because depth relationships are represented accurately only within a local spatial area. A consequence of this is that, when judging the relative depths of points separated by depth maxima and minima, information must be integrated across separate local representations. This integration, by adding more stages of processing, might be expected to reduce the accuracy of depth judgements. We tested this idea directly by measuring how accurately human participants could report the relative depths of two dots, presented with different binocular disparities. In the first, Two Dot condition the two dots were presented in front of a square grid. In the second, Three Dot condition, an additional dot was presented midway between the target dots, at a range of depths, both nearer and further than the target dots. In the final, Surface condition, the target dots were placed on a smooth surface defined by binocular disparity cues. In some trials, this contained a depth maximum or minimum between the target dots. In the Three Dot condition, performance was impaired when the central dot was presented with a large disparity, in line with predictions. In the Surface condition, performance was worst when the midpoint of the surface was at a similar distance to the targets, and relatively unaffected when there was a large depth maximum or minimum present. These results are not consistent with the idea that depth order is represented only within a local spatial area. PMID:27824895
Smooth Pursuit of Flicker-Defined Motion
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Stevenson, Scott B.
2014-01-01
We examined the pursuit response to stimuli defined by space-variant flicker of a dense random dot carrier pattern. On each frame, every element of the pattern could change polarity, with a probability given by a two-dimensional Gaussian distribution. A normal distribution produces a circular region of twinkle, while inverting the distribution results in a spot of static texture in a twinkling surround. In this latter case, the carrier texture could be stationary, or could move with the twinkle modulator, thereby producing first-order motion in the region of the spot. While the twinkle-defined spot produces a strong sensation of motion, the complementary stimulus defined by the absence of twinkle does not, when viewed peripherally, it appears to move in steps even when the generating distribution moves smoothly. We examined pursuit responses to these stimuli using two techniques: 1) the eye movement correlogram, obtained by cross-correlating eye velocity with the velocity of a randomly-moving stimulus; and 2) delayed visual feedback, where transient stabilization of a target can produce spontaneous oscillations of the eye, with a period empirically observed to vary linearly with the applied delay. Both techniques provide an estimate of the internal processing time, which can be as short as 100 milliseconds for a first-order target. Assessed by the correlogram method, the response to flicker-defined motion is delayed by more than 100 milliseconds, and significantly weaker (especially in the vertical dimension). When initially presented in the delayed feedback condition, purely saccadic oscillation is observed. One subject eventually developed smooth oscillations (albeit with significant saccadic intrusions), showing a period-versus-delay slope similar to that observed for first-order targets. This result is somewhat surprising, given that we interpret the slope of the period-versus-delay-function as reflecting the balance between position- and velocity
Local, smooth, and consistent Jacobi set simplification
Bhatia, Harsh; Wang, Bei; Norgard, Gregory; Pascucci, Valerio; Bremer, Peer -Timo
2014-10-31
The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lack fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).
Local, smooth, and consistent Jacobi set simplification
Bhatia, Harsh; Wang, Bei; Norgard, Gregory; ...
2014-10-31
The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lackmore » fine-grained control over the process, and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi set in two dimensions. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth–death points (a birth–death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction).« less
Diffusion tensor smoothing through weighted Karcher means
Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie
2014-01-01
Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors– 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264
Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography
Buck, Amanda K. W.; Ding, Zhaohua; Elder, Christopher P.; Towse, Theodore F.; Damon, Bruce M.
2015-01-01
Purpose To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and Methods 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level. Results Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing. Conclusion Modest anisotropic smoothing (10%) improved fiber-tracking results, while preserving structural features. PMID:26010830
Image segmentation on adaptive edge-preserving smoothing
NASA Astrophysics Data System (ADS)
He, Kun; Wang, Dan; Zheng, Xiuqing
2016-09-01
Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.
Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.
1984-06-01
STANDARDS 16r A CD in UMODULATION OF THE CHOLINERGICMECHANISMS IN THE BRONCHIAL SMOOTH MUSCLE A THESIS SUBMITTED TO THE UNIVERSITY OF BERGEN FOR THE DOCTOR...MECHANISMS IN THE BRONCHIAL SMOOTH MUSCLE A THESIS SUBMITTED TO THE UNIVERSITY OF BERGEN FOR THE DOCTOR SCIENTIARUM DEGREE by Pi1 An E% LECTE3 NORE/PUBL-84...DECLASSIFICATION/DOWNGRADING SCHEDULE 118 FFITOX/465/001 4) TITLE MODULATION OF THE CHOLINERGIC MECHANISMS IN THE BRONCHIAL SMOOTH MUSCLE (A thesis submitted to
I-spline Smoothing for Calibrating Predictive Models.
Wu, Yuan; Jiang, Xiaoqian; Kim, Jihoon; Ohno-Machado, Lucila
2012-01-01
We proposed the I-spline Smoothing approach for calibrating predictive models by solving a nonlinear monotone regression problem. We took advantage of I-spline properties to obtain globally optimal solutions while keeping the computational cost low. Numerical studies based on three data sets showed the empirical evidences of I-spline Smoothing in improving calibration (i.e.,1.6x, 1.4x, and 1.4x on the three datasets compared to the average of competitors-Binning, Platt Scaling, Isotonic Regression, Monotone Spline Smoothing, Smooth Isotonic Regression) without deterioration of discrimination.
The Existence of Smooth Densities for the Prediction, Filtering and Smoothing Problems
1990-12-20
identify by block number) FIELD GROUP SUB-GROUP Prediction, filtering, smoothing, stochastic control,I adjoint process, minimum principle, minimum risk ...minimize expected risk . Using integration by parts reverse time representations of Jump processes are obtained. These results have applications in, for...optimal control. Martingale representation results to minimize expected risk are described in [14] and [26]. Full details of results obtained during
Smooth Muscle Titin Zq Domain Interaction with the Smooth Muscle α-Actinin Central Rod*
Chi, Richard J.; Simon, Alanna R.; Bienkiewicz, Ewa A.; Felix, Augustine; Keller, Thomas C. S.
2008-01-01
Actin-myosin II filament-based contractile structures in striated muscle, smooth muscle, and nonmuscle cells contain the actin filament-cross-linking protein α-actinin. In striated muscle Z-disks, α-actinin interacts with N-terminal domains of titin to provide a structural linkage crucial for the integrity of the sarcomere. We previously discovered a long titin isoform, originally smitin, hereafter sm-titin, in smooth muscle and demonstrated that native sm-titin interacts with C-terminal EF hand region and central rod R2-R3 spectrin-like repeat region sites in α-actinin. Reverse transcription-PCR analysis of RNA from human adult smooth muscles and cultured rat smooth muscle cells and Western blot analysis with a domain-specific antibody presented here revealed that sm-titin contains the titin gene-encoded Zq domain that may bind to the α-actinin R2-R3 central rod domain as well as Z-repeat domains that bind to the EF hand region. We investigated whether the sm-titin Zq domain binds to α-actinin R2 and R3 spectrin repeat-like domain loops that lie in proximity with two-fold symmetry on the surface of the central rod. Mutations in α-actinin R2 and R3 domain loop residues decreased interaction with expressed sm-titin Zq domain in glutathione S-transferase pull-down and solid phase binding assays. Alanine mutation of a region of the Zq domain with high propensity for α-helix formation decreased apparent Zq domain dimer formation and decreased Zq interaction with the α-actinin R2-R3 region in surface plasmon resonance assays. We present a model in which two sm-titin Zq domains interact with each other and with the two R2-R3 sites in the α-actinin central rod. PMID:18519573
Moschetti, Morgan P.; Mueller, Charles S.; Boyd, Oliver S.; Petersen, Mark D.
2014-01-01
In anticipation of the update of the Alaska seismic hazard maps (ASHMs) by the U. S. Geological Survey, we report progress on the comparison of smoothed seismicity models developed using fixed and adaptive smoothing algorithms, and investigate the sensitivity of seismic hazard to the models. While fault-based sources, such as those for great earthquakes in the Alaska-Aleutian subduction zone and for the ~10 shallow crustal faults within Alaska, dominate the seismic hazard estimates for locations near to the sources, smoothed seismicity rates make important contributions to seismic hazard away from fault-based sources and where knowledge of recurrence and magnitude is not sufficient for use in hazard studies. Recent developments in adaptive smoothing methods and statistical tests for evaluating and comparing rate models prompt us to investigate the appropriateness of adaptive smoothing for the ASHMs. We develop smoothed seismicity models for Alaska using fixed and adaptive smoothing methods and compare the resulting models by calculating and evaluating the joint likelihood test. We use the earthquake catalog, and associated completeness levels, developed for the 2007 ASHM to produce fixed-bandwidth-smoothed models with smoothing distances varying from 10 to 100 km and adaptively smoothed models. Adaptive smoothing follows the method of Helmstetter et al. and defines a unique smoothing distance for each earthquake epicenter from the distance to the nth nearest neighbor. The consequence of the adaptive smoothing methods is to reduce smoothing distances, causing locally increased seismicity rates, where seismicity rates are high and to increase smoothing distances where seismicity is sparse. We follow guidance from previous studies to optimize the neighbor number (n-value) by comparing model likelihood values, which estimate the likelihood that the observed earthquake epicenters from the recent catalog are derived from the smoothed rate models. We compare likelihood
A Finite Speed Curzon-Ahlborn Engine
ERIC Educational Resources Information Center
Agrawal, D. C.
2009-01-01
Curzon and Ahlborn achieved finite power output by introducing the concept of finite rate of heat transfer in a Carnot engine. The finite power can also be achieved through a finite speed of the piston on the four branches of the Carnot cycle. The present paper combines these two approaches to study the behaviour of output power in terms of…
Control of Finite-State, Finite Memory Stochastic Systems
NASA Technical Reports Server (NTRS)
Sandell, Nils R.
1974-01-01
A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.
Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V
2012-03-01
Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.
An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics
NASA Astrophysics Data System (ADS)
Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Lee, Chun Hean
2015-11-01
A vertex centred Jameson-Schmidt-Turkel (JST) finite volume algorithm was recently introduced by the authors (Aguirre et al., 2014 [1]) in the context of fast solid isothermal dynamics. The spatial discretisation scheme was constructed upon a Lagrangian two-field mixed (linear momentum and the deformation gradient) formulation presented as a system of conservation laws [2-4]. In this paper, the formulation is further enhanced by introducing a novel upwind vertex centred finite volume algorithm with three key novelties. First, a conservation law for the volume map is incorporated into the existing two-field system to extend the range of applications towards the incompressibility limit (Gil et al., 2014 [5]). Second, the use of a linearised Riemann solver and reconstruction limiters is derived for the stabilisation of the scheme together with an efficient edge-based implementation. Third, the treatment of thermo-mechanical processes through a Mie-Grüneisen equation of state is incorporated in the proposed formulation. For completeness, the study of the eigenvalue structure of the resulting system of conservation laws is carried out to demonstrate hyperbolicity and obtain the correct time step bounds for non-isothermal processes. A series of numerical examples are presented in order to assess the robustness of the proposed methodology. The overall scheme shows excellent behaviour in shock and bending dominated nearly incompressible scenarios without spurious pressure oscillations, yielding second order of convergence for both velocities and stresses.
Smooth cubic commensurate oxides on gallium nitride
Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.
2014-02-14
Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.
Neuroeffector apparatus in gastrointestinal smooth muscle organs.
Sanders, Kenton M; Hwang, Sung Jin; Ward, Sean M
2010-12-01
Control of gastrointestinal (GI) movements by enteric motoneurons is critical for orderly processing of food, absorption of nutrients and elimination of wastes. Work over the past several years has suggested that motor neurotransmission is more complicated than simple release of transmitter from nerve terminals and binding of receptors on smooth muscle cells. In fact the 'neuro-effector' junction in the tunica muscularis might consist of synaptic-like connectivity with specialized cells, and contributions from multiple cell types in integrated post-junctional responses. Interstitial cells of Cajal (ICC) were proposed as potential mediators in motor neurotransmission based on reduced post-junctional responses observed in W mutants that have reduced populations of ICC. More recent studies on W mutants have contradicted the original findings, and suggested that ICC may not be significant players in motor neurotransmission. This review examines the evidence for and against the role of ICC in motor neurotransmission and outlines areas for additional investigation that would help further resolve this controversy.
Cl− channels in smooth muscle cells
Bulley, Simon
2013-01-01
In smooth muscle cells (SMCs), the intracellular chloride ion (Cl−) concentration is high due to accumulation by Cl−/HCO3− exchange and Na+, K+, Cl− cotransportation. The equilibrium potential for Cl− (ECl) is more positive than physiological membrane potentials (Em), with Cl− efflux inducing membrane depolarization. Early studies used electrophysiology and non-specific antagonists to study the physiological relevance of Cl− channels in SMCs. More recent reports have incorporated molecular biological approaches to identify and determine the functional significance of several different Cl− channels. Both “classic” and cGMP-dependent calcium (Ca2+)-activated (ClCa) channels and volume-sensitive Cl− channels are present, with TMEM16A/ANO1, bestrophins and ClC-3, respectively, proposed as molecular candidates for these channels. The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in SMCs. This review will focus on discussing recent progress made in identifying each of these Cl− channels in SMCs, their physiological functions, and contribution to diseases that modify contraction, apoptosis and cell proliferation. PMID:24077695
A Smoothed Particle Hydrodynamics approach for poroelasticity
NASA Astrophysics Data System (ADS)
Osorno, Maria; Steeb, Holger
2016-04-01
Within the framework of the SHynergie project we look to investigate hydraulic fracturing and crack evolving in poroelastic media. We model biphasic media assuming incompressible solid grain and incompressible pore liquid. Modeling evolving fractures and fracture networks in elastic and poroelastic media by mesh-based numerical approaches, like X-FEM, is especially in 3-dim a challenging task. Therefore, we propose a meshless particle method for fractured media based on the Smoothed Particle Hydrodynamics (SPH) approach. SPH is a meshless Lagrangian method highly suitable for the simulation of large deformations including free surfaces and/or interfaces. Within the SPH method, the computational domain is discretized with particles, avoiding the computational expenses of meshing. Our SPH solution is implemented in a parallel computational framework, which allows to simulate large domains more representative of the scale of our study cases. Our implementation is carefully validated against classical mesh-based approaches and compared with classical solutions for consolidation problems. Furthermore, we discuss fracture initiation and propagation in poroelastic rocks at the reservoir scale.
An implicit Smooth Particle Hydrodynamic code
Knapp, Charles E.
2000-05-01
An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.
Programming smooth muscle plasticity with chromatin dynamics.
McDonald, Oliver G; Owens, Gary K
2007-05-25
Smooth muscle cells (SMCs) possess remarkable phenotypic plasticity that allows rapid adaptation to fluctuating environmental cues. For example, vascular SMCs undergo profound changes in their phenotype during neointimal formation in response to vessel injury or within atherosclerotic plaques. Recent studies have shown that interaction of serum response factor (SRF) and its numerous accessory cofactors with CArG box DNA sequences within promoter chromatin of SMC genes is a nexus for integrating signals that influence SMC differentiation in development and disease. During development, SMC-restricted sets of posttranslational histone modifications are acquired within the CArG box chromatin of SMC genes. These modifications in turn control the chromatin-binding properties of SRF. The histone modifications appear to encode a SMC-specific epigenetic program that is used by extracellular cues to influence SMC differentiation, by regulating binding of SRF and its partners to the chromatin template. Thus, SMC differentiation is dynamically regulated by the interplay between SRF accessory cofactors, the SRF-CArG interaction, and the underlying histone modification program. As such, the inherent plasticity of the SMC lineage offers unique glimpses into how cellular differentiation is dynamically controlled at the level of chromatin within the context of changing microenvironments. Further elucidation of how chromatin regulates SMC differentiation will undoubtedly yield valuable insights into both normal developmental processes and the pathogenesis of several vascular diseases that display detrimental SMC phenotypic behavior.
Immortalization of primary human smooth muscle cells.
Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K
1992-01-01
Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088
Drop splash on a smooth, dry surface
NASA Astrophysics Data System (ADS)
Riboux, Guillaume; Gordillo, Jose Manuel; Korobkin, Alexander
2013-11-01
It is our purpose here to determine the conditions under which a drop of a given liquid with a known radius R impacting against a smooth impermeable surface at a velocity V, will either spread axisymmetrically onto the substrate or will create a splash, giving rise to usually undesired star-shaped patterns. In our experimental setup, drops are generated injecting low viscosity liquids falling under the action of gravity from a stainless steel hypodermic needle. The experimental observations using two high speed cameras operating simultaneously and placed perpendicularly to each other reveal that, initially, the drop deforms axisymmetrically, with A (T) the radius of the wetted area. For high enough values of the drop impact velocity, a thin sheet of liquid starts to be ejected from A (T) at a velocity Vjet > V for instants of time such that T >=Tc . If Vjet is above a certain threshold, which depends on the solid wetting properties as well as on the material properties of both the liquid and the atmospheric gas, the rim of the lamella dewets the solid to finally break into drops. Using Wagner's theory we demonstrate that A (T) =√{ 3 RVT } and our results also reveal that Tc We - 1 / 2 =(ρV2 R / σ) - 1 / 2 and Vjet We 1 / 4 .
Hidden Degeneracies in Piecewise Smooth Dynamical Systems
NASA Astrophysics Data System (ADS)
Jeffrey, Mike R.
When a flow suffers a discontinuity in its vector field at some switching surface, the flow can cross through or slide along the surface. Sliding along the switching surface can be understood as the flow along an invariant manifold inside a switching layer. It turns out that the usual method for finding sliding modes — the Filippov convex combination or Utkin equivalent control — results in a degeneracy in the switching layer whenever the flow is tangent to the switching surface from both sides. We derive the general result and analyze the simplest case here, where the flow curves parabolically on either side of the switching surface (the so-called fold-fold or two-fold singularities). The result is a set of zeros of the fast switching flow inside the layer, which is structurally unstable to perturbation by terms nonlinear in the switching parameter, terms such as (signx)2 [where the superscript does mean “squared”]. We provide structurally stable forms, and show that in this form the layer system is equivalent to a generic singularity of a two timescale system. Finally we show that the same degeneracy arises when a discontinuity is smoothed using standard regularization methods.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Surface consistent finite frequency phase corrections
NASA Astrophysics Data System (ADS)
Kimman, W. P.
2016-07-01
Static time-delay corrections are frequency independent and ignore velocity variations away from the assumed vertical ray path through the subsurface. There is therefore a clear potential for improvement if the finite frequency nature of wave propagation can be properly accounted for. Such a method is presented here based on the Born approximation, the assumption of surface consistency and the misfit of instantaneous phase. The concept of instantaneous phase lends itself very well for sweep-like signals, hence these are the focus of this study. Analytical sensitivity kernels are derived that accurately predict frequency-dependent phase shifts due to P-wave anomalies in the near surface. They are quick to compute and robust near the source and receivers. An additional correction is presented that re-introduces the nonlinear relation between model perturbation and phase delay, which becomes relevant for stronger velocity anomalies. The phase shift as function of frequency is a slowly varying signal, its computation therefore does not require fine sampling even for broad-band sweeps. The kernels reveal interesting features of the sensitivity of seismic arrivals to the near surface: small anomalies can have a relative large impact resulting from the medium field term that is dominant near the source and receivers. Furthermore, even simple velocity anomalies can produce a distinct frequency-dependent phase behaviour. Unlike statics, the predicted phase corrections are smooth in space. Verification with spectral element simulations shows an excellent match for the predicted phase shifts over the entire seismic frequency band. Applying the phase shift to the reference sweep corrects for wavelet distortion, making the technique akin to surface consistent deconvolution, even though no division in the spectral domain is involved. As long as multiple scattering is mild, surface consistent finite frequency phase corrections outperform traditional statics for moderately large
Neurophysiology and Neuroanatomy of Smooth Pursuit: Lesion Studies
ERIC Educational Resources Information Center
Sharpe, James A.
2008-01-01
Smooth pursuit impairment is recognized clinically by the presence of saccadic tracking of a small object and quantified by reduction in pursuit gain, the ratio of smooth eye movement velocity to the velocity of a foveal target. Correlation of the site of brain lesions, identified by imaging or neuropathological examination, with defective smooth…
Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells.
Sanders, Kenton M; Kito, Yoshihiko; Hwang, Sung Jin; Ward, Sean M
2016-09-01
Interstitial cells of mesenchymal origin form gap junctions with smooth muscle cells in visceral smooth muscles and provide important regulatory functions. In gastrointestinal (GI) muscles, there are two distinct classes of interstitial cells, c-Kit(+) interstitial cells of Cajal and PDGFRα(+) cells, that regulate motility patterns. Loss of these cells may contribute to symptoms in GI motility disorders.
Cognitive Processes Involved in Smooth Pursuit Eye Movements
ERIC Educational Resources Information Center
Barnes, G. R.
2008-01-01
Ocular pursuit movements allow moving objects to be tracked with a combination of smooth movements and saccades. The principal objective is to maintain smooth eye velocity close to object velocity, thus minimising retinal image motion and maintaining acuity. Saccadic movements serve to realign the image if it falls outside the fovea, the area of…
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Evolutionary processes in finite populations
NASA Astrophysics Data System (ADS)
Lorenz, Dirk M.; Park, Jeong-Man; Deem, Michael W.
2013-02-01
We consider the evolution of large but finite populations on arbitrary fitness landscapes. We describe the evolutionary process by a Markov-Moran process. We show that to O(1/N), the time-averaged fitness is lower for the finite population than it is for the infinite population. We also show that fluctuations in the number of individuals for a given genotype can be proportional to a power of the inverse of the mutation rate. Finally, we show that the probability for the system to take a given path through the fitness landscape can be nonmonotonic in system size.
NASA Astrophysics Data System (ADS)
Brown, Eric G.; Louko, Jorma
2015-08-01
We present and utilize a simple formalism for the smooth creation of boundary conditions within relativistic quantum field theory. We consider a massless scalar field in (1 + 1)-dimensional flat spacetime and imagine smoothly transitioning from there being no boundary condition to there being a two-sided Dirichlet mirror. The act of doing this, expectantly, generates a flux of real quanta that emanates from the mirror as it is being created. We show that the local stress-energy tensor of the flux is finite only if an infrared cutoff is introduced, no matter how slowly the mirror is created, in agreement with the perturbative results of Obadia and Parentani. In the limit of instaneous mirror creation the total energy injected into the field becomes ultraviolet divergent, but the response of an Unruh-DeWitt particle detector passing through the infinite burst of energy nevertheless remains finite. Implications for vacuum entanglement extraction and for black hole firewalls are discussed.
Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes
NASA Astrophysics Data System (ADS)
Walthers, Christopher M.
Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain
Scattering and bound states of fermions in a mixed vector–scalar smooth step potential
Castilho, W.M. Castro, A.S. de
2014-07-15
The scattering of a fermion in the background of a smooth step potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling. Charge-conjugation and chiral-conjugation transformations are discussed and it is shown that a finite set of intrinsically relativistic bound-state solutions appears as poles of the transmission amplitude. It is also shown that those bound solutions disappear asymptotically as one approaches the conditions for the realization of the so-called spin and pseudospin symmetries in a four-dimensional space–time. - Highlights: • Scattering and bound states of fermions in a kink-like potential. • No pair production despite the high localization. • No bounded solution under exact spin and pseudospin symmetries.
Anoctamins and gastrointestinal smooth muscle excitability.
Sanders, Kenton M; Zhu, Mei Hong; Britton, Fiona; Koh, Sang Don; Ward, Sean M
2012-02-01
Interstitial cells of Cajal (ICC) generate electrical pacemaker activity in gastrointestinal smooth muscles. We investigated whether Tmem16a, which encodes anoctamin 1 (ANO1), a Ca(2+)-activated Cl(-) channel, might be involved in pacemaker activity in ICC. The Tmem16a transcripts and ANO1 were expressed robustly in GI muscles, specifically in ICC in murine, non-human primate (Macaca fascicularis) and human GI tracts. Splice variants of Tmem16a, as well as other paralogues of the Tmem16 family, were expressed in gastrointestinal muscles. Calcium-activated Cl(-) channel blocking drugs, niflumic acid and DIDS blocked slow waves in intact muscles of mouse, primate and human small intestine and stomach. Slow waves failed to develop in Tmem16a knock-out mice (Tmem16a(tm1Bdh/tm1Bdh)). The pacemaker mechanism was investigated in isolated ICC from transgenic mice with constitutive expression of copepod super green fluorescent protein (copGFP). Depolarization of ICC activated inward currents due to a Cl(-)-selective conductance. Removal of extracellular Ca(2+), replacement of Ca(2+) with Ba(2+), or extracellular Ni(2+) (30 μM) blocked the inward current. Single Ca(2+)-activated Cl(-) channels with a unitary conductance of 7.8 pS were resolved in excised patches from ICC. The inward current was blocked in a concentration-dependent manner by niflumic acid (IC(50) = 4.8 μM). The role of ANO1 in cholinergic responses in ICC was also investigated. Carbachol activated Ca(2+)-activated Cl(-) currents in ICC, and responses to cholinergic nerve stimulation were blocked by niflumic acid in intact muscles. Anoctamin 1 is a prominent conductance in ICC, and these channels appear to be involved in pacemaker activity and in responses to enteric excitatory neurotransmitters.
Neptune's Orbital Migration Was Grainy, Not Smooth
NASA Astrophysics Data System (ADS)
Nesvorný, David; Vokrouhlický, David
2016-07-01
The Kuiper Belt is a population of icy bodies beyond the orbit of Neptune. The complex orbital structure of the Kuiper Belt, including several categories of objects inside and outside of resonances with Neptune, emerged as a result of Neptune’s migration into an outer planetesimal disk. An outstanding problem with the existing migration models is that they invariably predict excessively large resonant populations, while observations show that the non-resonant orbits are in fact common (e.g., the main belt population is ≃2-4 times larger than Plutinos in the 3:2 resonance). Here we show that this problem can be resolved if it is assumed that Neptune’s migration was grainy, as expected from scattering encounters of Neptune with massive planetesimals. The grainy migration acts to destabilize resonant bodies with large libration amplitudes, a fraction of which ends up on stable non-resonant orbits. Thus, the non-resonant-to-resonant ratio obtained with the grainy migration is higher, up to ˜10 times higher for the range of parameters investigated here, than in a model with smooth migration. In addition, the grainy migration leads to a narrower distribution of the libration amplitudes in the 3:2 resonance. The best fit to observations is obtained when it is assumed that the outer planetesimal disk below 30 au contained 1000-4000 Plutos. We estimate that the combined mass of Pluto-class objects in the original disk represented 10%-40% of the estimated disk mass ({M}{{disk}}≃ 20 {M}{{Earth}}). This constraint can be used to better understand the accretion processes in the outer solar system.
On PAC learning of functions with smoothness properties using feedforward sigmoidal networks
Rao, N.S.V.; Protopopescu, V.A.
1996-04-01
We consider Probably and Approximately Corrct (PAC) learning of an unknown function f: [0,1]{sup d} {r_arrow} [0,1], based on finite samples using feedforward sigmoidal networks. The unknown function f is chosen from the family F{intersection}C([0,1]{sup d}) or F{intersection}L{sup {infinity}}([0,1]{sup d}), where F has either bounded modulus of smoothness or bounded capacity or both. The learning sample is given by (X{sub 1},f(X{sub 1})),(X{sub 2},f(X{sub 2})),{hor_ellipsis},(X{sub n},f(X{sub n})), where X{sub 1},X{sub 2},{hor_ellipsis},X{sub n} are independently and identically distributed according to an unknown distribution. We consider the feedforward networks with a a single hidden layer of 1/(1 + e{sup {minus}{gamma}z})-units and bounded parameters, but the results can be extended to other neural networks where the hidden units satisfy suitable smoothness conditions. We analyze three function estimators based on nearest neighbor rule, local averaging, and Nadaraya-Watson estimator, all computed using the Haar system. It is shown that given a sufficiently large sample, each of these estimators approximates the best neural network to any given error with arbitrarily high probability. This result is crucical for establishing the essentially equivalent capabilities of neural networks and the above estimators for PAC learning from finite samples. Practical importance of this ``equivalence`` stems from the fact that computing a neural network which approximates the best possible one is computationally difficult, whereas the three estimators are linear-time computable in terms of sample size.
ERIC Educational Resources Information Center
Tou, Erik R
2013-01-01
This project classifies groups of small order using a group's center as the key feature. Groups of a given order "n" are typed based on the order of each group's center. Students are led through a sequence of exercises that combine proof-writing, independent research, and an analysis of specific classes of finite groups…
Finite simple groups as expanders
Kassabov, Martin; Lubotzky, Alexander; Nikolov, Nikolay
2006-01-01
We prove that there exist k ∈ ℕ and 0 < ε ∈ ℝ such that every non-abelian finite simple group G, which is not a Suzuki group, has a set of k generators for which the Cayley graph Cay(G; S) is an ε-expander. PMID:16601101
Finite element shell instability analysis
NASA Technical Reports Server (NTRS)
1975-01-01
Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.
Upwind Compact Finite Difference Schemes
NASA Astrophysics Data System (ADS)
Christie, I.
1985-07-01
It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.
Finite length Taylor Couette flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Hussaini, M. Y.
1987-01-01
Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.
Finite volume model for two-dimensional shallow environmental flow
Simoes, F.J.M.
2011-01-01
This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.
An invertebrate smooth muscle with striated muscle myosin filaments
Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger
2015-01-01
Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857
An invertebrate smooth muscle with striated muscle myosin filaments.
Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger
2015-10-20
Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.
Computer programs for smoothing and scaling airfoil coordinates
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1983-01-01
Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.
AnL1 smoothing spline algorithm with cross validation
NASA Astrophysics Data System (ADS)
Bosworth, Ken W.; Lall, Upmanu
1993-08-01
We propose an algorithm for the computation ofL1 (LAD) smoothing splines in the spacesWM(D), with . We assume one is given data of the formyiD(f(ti) +ɛi, iD1,...,N with {itti}iD1N ⊂D, theɛi are errors withE(ɛi)D0, andf is assumed to be inWM. The LAD smoothing spline, for fixed smoothing parameterλ?;0, is defined as the solution,sλ, of the optimization problem (1/N)∑iD1N yi-g(ti +λJM(g), whereJM(g) is the seminorm consisting of the sum of the squaredL2 norms of theMth partial derivatives ofg. Such an LAD smoothing spline,sλ, would be expected to give robust smoothed estimates off in situations where theɛi are from a distribution with heavy tails. The solution to such a problem is a "thin plate spline" of known form. An algorithm for computingsλ is given which is based on considering a sequence of quadratic programming problems whose structure is guided by the optimality conditions for the above convex minimization problem, and which are solved readily, if a good initial point is available. The "data driven" selection of the smoothing parameter is achieved by minimizing aCV(λ) score of the form .The combined LAD-CV smoothing spline algorithm is a continuation scheme in λ↘0 taken on the above SQPs parametrized inλ, with the optimal smoothing parameter taken to be that value ofλ at which theCV(λ) score first begins to increase. The feasibility of constructing the LAD-CV smoothing spline is illustrated by an application to a problem in environment data interpretation.
Smooth muscle phenotypic modulation--a personal experience.
Campbell, Julie H; Campbell, Gordon R
2012-08-01
The idea that smooth muscle cells can exist in multiple phenotypic states depending on the functional demands placed upon them has been around for >5 decades. However, much of the literature today refers to only recent articles, giving the impression that it is a new idea. At the same time, the current trend is to delve deeper and deeper into transcriptional regulation of smooth muscle genes, and much of the work describing the change in biology of the cells in the different phenotypic states does not appear to be known. This loss of historical perspective regarding the biology of smooth muscle phenotypic modulation is what the current article has tried to mitigate.
Tobacco constituents are mitogenic for arterial smooth-muscle cells
Becker, C.G.; Hajjar, D.P.; Hefton, J.M.
1985-07-01
Tobacco glycoprotein (TGP) purified from flue-cured tobacco leaves, tar-derived material (TAR), the water soluble, nondialyzable, delipidized extract of cigarette smoke condensate, rutin-bovine serum albumin conjugates, quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells, but not adventitial fibroblasts. The mitogenicity appears to depend on polyphenol epitopes on carrier molecules. Ellagic acid, another plant polyphenol, inhibited arterial smooth-muscle proliferation. These results suggest that a number of ubiquitous, plant-derived substances may influence smooth-muscle cell proliferation in the arterial wall.
Smooth solutions of the Navier-Stokes equations
Pokhozhaev, S I
2014-02-28
We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to x∈R{sup 3}. We obtain existence theorems for global (with respect to t>0) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on t, are also obtained. Bibliography: 10 titles.
Finite-volume WENO scheme for viscous compressible multicomponent flows
NASA Astrophysics Data System (ADS)
Coralic, Vedran; Colonius, Tim
2014-10-01
We develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navie-Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, i.e. it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten-Lax-van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes. A third-order total variation diminishing (TVD) Runge-Kutta (RK) algorithm is employed to march the solution in time. The derivation is generalized to three dimensions and nonuniform Cartesian grids. A two-point, fourth-order, Gaussian quadrature rule is utilized to build the spatial averages of the reconstructed variables inside the cells, as well as at cell boundaries. The algorithm is therefore fourth-order accurate in space and third-order accurate in time in smooth regions of the flow. We corroborate the properties of our numerical method by considering several challenging one-, two- and three-dimensional test cases, the most complex of which is the asymmetric collapse of an air bubble submerged in a cylindrical water cavity that is embedded in 10% gelatin.
Finite-volume WENO scheme for viscous compressible multicomponent flows
Coralic, Vedran; Colonius, Tim
2014-01-01
We develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navier-Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, i.e. it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten-Lax-van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes. A third-order total variation diminishing (TVD) Runge-Kutta (RK) algorithm is employed to march the solution in time. The derivation is generalized to three dimensions and nonuniform Cartesian grids. A two-point, fourth-order, Gaussian quadrature rule is utilized to build the spatial averages of the reconstructed variables inside the cells, as well as at cell boundaries. The algorithm is therefore fourth-order accurate in space and third-order accurate in time in smooth regions of the flow. We corroborate the properties of our numerical method by considering several challenging one-, two- and three-dimensional test cases, the most complex of which is the asymmetric collapse of an air bubble submerged in a cylindrical water cavity that is embedded in 10% gelatin. PMID:25110358
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Performance of algebraic multi-grid solvers based on unsmoothed and smoothed aggregation schemes
NASA Astrophysics Data System (ADS)
Webster, R.
2001-08-01
A comparison is made of the performance of two algebraic multi-grid (AMG0 and AMG1) solvers for the solution of discrete, coupled, elliptic field problems. In AMG0, the basis functions for each coarse grid/level approximation (CGA) are obtained directly by unsmoothed aggregation, an appropriate scaling being applied to each CGA to improve consistency. In AMG1 they are assembled using a smoothed aggregation with a constrained energy optimization method providing the smoothing. Although more costly, smoothed basis functions provide a better (more consistent) CGA. Thus, AMG1 might be viewed as a benchmark for the assessment of the simpler AMG0. Selected test problems for D'Arcy flow in pipe networks, Fick diffusion, plane strain elasticity and Navier-Stokes flow (in a Stokes approximation) are used in making the comparison. They are discretized on the basis of both structured and unstructured finite element meshes. The range of discrete equation sets covers both symmetric positive definite systems and systems that may be non-symmetric and/or indefinite. Both global and local mesh refinements to at least one order of resolving power are examined. Some of these include anisotropic refinements involving elements of large aspect ratio; in some hydrodynamics cases, the anisotropy is extreme, with aspect ratios exceeding two orders. As expected, AMG1 delivers typical multi-grid convergence rates, which for all practical purposes are independent of mesh bandwidth. AMG0 rates are slower. They may also be more discernibly mesh-dependent. However, for the range of mesh bandwidths examined, the overall cost effectiveness of the two solvers is remarkably similar when a full convergence to machine accuracy is demanded. Thus, the shorter solution times for AMG1 do not necessarily compensate for the extra time required for its costly grid generation. This depends on the severity of the problem and the demanded level of convergence. For problems requiring few iterations, where grid
On numerically accurate finite element
NASA Technical Reports Server (NTRS)
Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
1974-01-01
A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.
7 CFR 51.772 - Fairly smooth texture.
Code of Federal Regulations, 2010 CFR
2010-01-01
... texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not average more than 1/2 inch...
Restoration of noisy blurred images by a smoothing spline filter.
Peyrovian, M J; Sawchuk, A A
1977-12-01
For the restoration of noisy blurred images, a controllable smoothing criterion based on the locally variable statistics and minimization of the second derivative is defined, and the corresponding filter, applicable to both space-variant and space-invariant degradations, is obtained. The output of this filter is a cubic spline function. The parameters of the filter determine the local smoothing window and over-all extent of smoothing, and thus the tradeoff between resolution and smoothing is controllable in a spatially nonstationary manner. The interesting properties of this filter have made it capable of restoring signal-dependent noisy images, and it has been successfully applied for filtering images degraded by film-grain noise. Since the matrices of this filter are banded circulant or Toeplitz, efficient algorithms are used for matrix manipulations.
7 CFR 51.772 - Fairly smooth texture.
Code of Federal Regulations, 2011 CFR
2011-01-01
... texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not average more than 1/2 inch...
Smooth local subspace projection for nonlinear noise reduction
Chelidze, David
2014-03-15
Many nonlinear or chaotic time series exhibit an innate broad spectrum, which makes noise reduction difficult. Local projective noise reduction is one of the most effective tools. It is based on proper orthogonal decomposition (POD) and works for both map-like and continuously sampled time series. However, POD only looks at geometrical or topological properties of data and does not take into account the temporal characteristics of time series. Here, we present a new smooth projective noise reduction method. It uses smooth orthogonal decomposition (SOD) of bundles of reconstructed short-time trajectory strands to identify smooth local subspaces. Restricting trajectories to these subspaces imposes temporal smoothness on the filtered time series. It is shown that SOD-based noise reduction significantly outperforms the POD-based method for continuously sampled noisy time series.
Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.
Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z
2017-03-01
A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.
Construction of spline functions in spreadsheets to smooth experimental data
Technology Transfer Automated Retrieval System (TEKTRAN)
A previous manuscript detailed how spreadsheet software can be programmed to smooth experimental data via cubic splines. This addendum corrects a few errors in the previous manuscript and provides additional necessary programming steps. ...
Optimal smoothing of site-energy distributions from adsorption isotherms
Brown, L.F.; Travis, B.J.
1983-01-01
The equation for the adsorption isotherm on a heterogeneous surface is a Fredholm integral equation. In solving it for the site-energy distribution (SED), some sort of smoothing must be carried out. The optimal amount of smoothing will give the most information that is possible without introducing nonexistent structure into the SED. Recently, Butler, Reeds, and Dawson proposed a criterion (the BRD criterion) for choosing the optimal smoothing parameter when using regularization to solve Fredholm equations. The BRD criterion is tested for its suitability in obtaining optimal SED's. This criterion is found to be too conservative. While using it never introduces nonexistent structure into the SED, significant information is often lost. At present, no simple criterion for choosing the optimal smoothing parameter exists, and a modeling approach is recommended.
Finite temperature instability for compactification
Accetta, F.S.; Kolb, E.W.
1986-03-01
We consider finite temperature effects upon theories with extra dimensions compactified via vacuum stress energy (Casimir) effects. For sufficiently high temperature, a static configuration for the internal space is impossible. At somewhat lower temperatures, there is an instability due to thermal fluctuations of radius of the compact dimensions. For both cases, the Universe can evolve to a de Sitter-like expansion of all dimensions. Stability to late times constrains the initial entropy of the universe. 28 refs., 1 fig., 2 tabs.
NASA Astrophysics Data System (ADS)
Batailly, Alain; Magnain, Benoît; Chevaugeon, Nicolas
2013-05-01
The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar elements (Fischer and Wriggers, Comput Methods Appl Mech Eng 195:5020-5036, 2006; McDevitt and Laursen, Int J Numer Methods Eng 48:1525-1547, 2000; Puso and Laursen, Comput Methods Appl Mech Eng 93:601-629, 2004), smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) (Belytschko et al., Int J Numer Methods Eng 55:101-125, 2002; Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method, ASME, New York, 1982; Legrand, Modèles de prediction de l'interaction rotor/stator dans un moteur d'avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes, 2005; Muñoz, Comput Methods Appl Mech Eng 197:979-993, 2008; Wriggers and Krstulovic-Opara, J Appl Math Mech (ZAMM) 80:77-80, 2000) and, the use of isogeometric analysis (Temizer et al., Comput Methods Appl Mech Eng 200:1100-1112, 2011; Hughes et al., Comput Methods Appl Mech Eng 194:4135-4195, 2005; de Lorenzis et al., Int J Numer Meth Eng, in press, 2011). In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management (Feng et al., Comput Mech 36:375-383, 2005). A comparative study focusing on the pros and cons of each
Evolutionary dynamics in finite populations
NASA Astrophysics Data System (ADS)
Hauert, Christoph
2013-03-01
Traditionally, evolutionary dynamics has been studied based on infinite populations and deterministic frameworks such as the replicator equation. Only more recently the focus has shifted to the stochastic dynamics arising in finite populations. Over the past years new concepts have been developed to describe such dynamics and has lead to interesting results that arise from the stochastic, microscopic updates, which drive the evolutionary process. Here we discuss a transparent link between the dynamics in finite and infinite populations. The focus on microscopic processes reveals interesting insights into (sometimes implicit) assumptions in terms of biological interactions that provide the basis for deterministic frameworks and the replicator equation in particular. More specifically, we demonstrate that stochastic differential equations can provide an efficient approach to model evolutionary dynamics in finite populations and we use the rock-scissors-paper game with mutations as an example. For sufficiently large populations the agreement with individual based simulations is excellent, with the interesting caveat that mutation events may not be too rare. In the absence of mutations, the excellent agreement extends to small population sizes.
Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics
Hoover, W. G.; Hoover, C. G.
1993-08-01
Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.
Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics
NASA Astrophysics Data System (ADS)
Hoover, W. G.; Hoover, C. G.
1993-08-01
Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics 'smoothed-particle hydrodynamics,' in 1977. It is a likely contributor to 'hybrid' simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.
Airway smooth muscle in exercise-induced bronchospasm: some speculations.
Middleton, E
1975-11-01
Some possible neurophysiological, biochemical, and pharmacological pathways affecting the state of contractility if airway smooth muscle in exercise-induced bronchospasm (EIB) are described. No unifying hypothesis can be set forth at this time. Indeed, it is likely that the heterogeneous nature of EIB is a reflection of the numerous biochemical loci in smooth muscle cells that could be affected by the various metabolic changes accompanying heavy exertion.
Smooth muscle alpha-actinin interaction with smitin.
Chi, Richard J; Olenych, Scott G; Kim, Kyoungtae; Keller, Thomas C S
2005-07-01
Actin-myosin II filament-based contractile structures in striated muscle, smooth muscle, and nonmuscle cells also contain the actin filament-crosslinking protein alpha-actinin. In striated muscle sarcomeres, interactions between the myosin-binding protein titin and alpha-actinin in the Z-line provide an important structural linkage. We previously discovered a titin-like protein, smitin, associated with the contractile apparatus of smooth muscle cells. Purified native smooth muscle alpha-actinin binds with nanomolar affinity to smitin in smitin-myosin coassemblies in vitro. Smooth muscle alpha-actinin also interacts with striated muscle titin. In contrast to striated muscle alpha-actinin interaction with titin and smitin, which is significantly enhanced by PIP2, smooth muscle alpha-actinin interacts with smitin and titin equally well in the presence and absence of PIP2. Using expressed regions of smooth muscle alpha-actinin, we have demonstrated smitin-binding sites in the smooth muscle alpha-actinin R2-R3 spectrin-like repeat rod domain and a C-terminal domain formed by cryptic EF-hand structures. These smitin-binding sites are highly homologous to the titin-binding sites of striated muscle alpha-actinin. Our results suggest that direct interaction between alpha-actinin and titin or titin-like proteins is a common feature of actin-myosin II contractile structures in striated muscle and smooth muscle cells and that the molecular bases for alpha-actinin interaction with these proteins are similar, although regulation of these interactions may differ according to tissue.
Efficient parallel algorithms for elastic plastic finite element analysis
NASA Astrophysics Data System (ADS)
Ding, K. Z.; Qin, Q.-H.; Cardew-Hall, M.; Kalyanasundaram, S.
2008-03-01
This paper presents our new development of parallel finite element algorithms for elastic plastic problems. The proposed method is based on dividing the original structure under consideration into a number of substructures which are treated as isolated finite element models via the interface conditions. Throughout the analysis, each processor stores only the information relevant to its substructure and generates the local stiffness matrix. A parallel substructure oriented preconditioned conjugate gradient method, which is combined with MR smoothing and diagonal storage scheme are employed to solve linear systems of equations. After having obtained the displacements of the problem under consideration, a substepping scheme is used to integrate elastic plastic stress strain relations. The procedure outlined controls the error of the computed stress by choosing each substep size automatically according to a prescribed tolerance. The combination of these algorithms shows a good speedup when increasing the number of processors and the effective solution of 3D elastic plastic problems whose size is much too large for a single workstation becomes possible.
The mixed finite element multigrid method for stokes equations.
Muzhinji, K; Shateyi, S; Motsa, S S
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results.
Strictly finite-range potential for light and heavy nuclei
NASA Astrophysics Data System (ADS)
Salamon, P.; Lovas, R. G.; Betan, R. M. Id; Vertse, T.; Balkay, L.
2014-05-01
Strictly finite-range (SFR) potentials are exactly zero beyond their finite range. Single-particle energies and densities, as well as S-matrix pole trajectories, are studied in a few SFR potentials suited for the description of neutrons interacting with light and heavy nuclei. The SFR potentials considered are the standard cutoff Woods-Saxon (CWS) potentials and two potentials approaching zero smoothly: the SV potential introduced by Salamon and Vertse [Phys. Rev. C 77, 037302 (2008), 10.1103/PhysRevC.77.037302] and the SS potential of Sahu and Sahu [Int. J. Mod. Phys. E 21, 1250067 (2012), 10.1142/S021830131250067X]. The parameters of these latter potentials were set so that the potentials may be similar to the CWS shape. The range of the SV and SS potentials scales with the cube root of the mass number of the core like the nuclear radius itself. For light nuclei a single term of the SV potential (with a single parameter) is enough for a good description of the neutron-nucleus interaction. The trajectories are compared with a benchmark for which the starting points (belonging to potential depth zero) can be determined independently. Even the CWS potential is found to conform to this benchmark if the range is identified with the cutoff radius. For the CWS potentials some trajectories show irregular shapes, while for the SV and SS potentials all trajectories behave regularly.
The Mixed Finite Element Multigrid Method for Stokes Equations
Muzhinji, K.; Shateyi, S.; Motsa, S. S.
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q2-Q1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361
Regulation of gastrointestinal motility--insights from smooth muscle biology.
Sanders, Kenton M; Koh, Sang Don; Ro, Seungil; Ward, Sean M
2012-11-01
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
The evolutionary origin of bilaterian smooth and striated myocytes
Brunet, Thibaut; Fischer, Antje HL; Steinmetz, Patrick RH; Lauri, Antonella; Bertucci, Paola; Arendt, Detlev
2016-01-01
The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI: http://dx.doi.org/10.7554/eLife.19607.001 PMID:27906129
Stimulation of aortic smooth muscle cell mitogenesis by serotonin
Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.
1986-02-01
Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.
Smooth Vibrotactile Flow Generation Using Two Piezoelectric Actuators.
Jeonggoo Kang; Jongsuh Lee; Heewon Kim; Kwangsu Cho; Semyung Wang; Jeha Ryu
2012-01-01
This paper proposes a method for generating a smooth directional vibrotactile flow on a thin plate. While actuating two piezoelectric actuators spatially across the plate, temporal sweeping of the input excitation frequency from zero to the first mode of the resonance frequency can smooth the perceived directional vibrotactile flow, as compared to a vibrotactile flow generated by conventional apparent tactile movement and phantom sensation methods. In order to ascertain important factors in the excitation pattern, a user study was conducted for three factors (amplitude (constant versus modulated), frequency (constant versus swept), and ending shape (sharp versus smooth)). The results showed that frequency sweeping in addition to amplitude modulation and smooth ending were the most important factors in smoothing vibrotactile flows. Moreover, an excitation signal with a smooth ending shape was important for generating nonspiky flows at the midpoint. In this study, a vibration isolation design is also proposed in order to substantially decrease the transmission of the actuator vibration to the mockup housing. As such, it is expected that the proposed vibrotactile flow generation method and vibration isolation design may be useful in applications including generating directional information in navigation maps or for identifying callers in mobile devices.
Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies
NASA Astrophysics Data System (ADS)
Mafu, Mhlambululi; Garapo, Kevin; Petruccione, Francesco
2013-12-01
A realistic quantum-key-distribution protocol necessarily runs with finite resources. Usually, security proofs for existing quantum key distribution are asymptotic in the sense that certain parameters are exceedingly large compared to practical realistic values. In this paper, we derive bounds on the secret key rates for the Bennett 1992 protocol, which includes a preprocessing step. The derivation for a finite-size key is expressed as an optimization problem by using results from the uncertainty relations and the smooth Rényi entropies.
The use of Ixaru's method in locating the poles of the S-matrix in strictly finite-range potentials
Vertse, Tamas; Lovas, R. G.; Racz, A.; Salamon, P.
2012-09-26
Energies of the S-matrix poles are calculated by solving the radial Schroedinger equation numerically by using Ixaru's CPM(2) method. The trajectories of the poles in the complex wave number plane are determined for two nuclear potentials that are zero beyond finite distances. These are the Woods-Saxon form with cutoff and the Salamon-Vertse potential, which goes to zero smoothly at a finite distance. Properties of the trajectories are analyzed for real and complex values of the depths of the corresponding potentials.
All-DNA finite-state automata with finite memory.
Wang, Zhen-Gang; Elbaz, Johann; Remacle, F; Levine, R D; Willner, Itamar
2010-12-21
Biomolecular logic devices can be applied for sensing and nano-medicine. We built three DNA tweezers that are activated by the inputs H(+)/OH(-); ; nucleic acid linker/complementary antilinker to yield a 16-states finite-state automaton. The outputs of the automata are the configuration of the respective tweezers (opened or closed) determined by observing fluorescence from a fluorophore/quencher pair at the end of the arms of the tweezers. The system exhibits a memory because each current state and output depend not only on the source configuration but also on past states and inputs.
Finite element based inversion for time-harmonic electromagnetic problems
NASA Astrophysics Data System (ADS)
Schwarzbach, Christoph; Haber, Eldad
2013-05-01
In this paper we address the inverse problem and present some recent advances in numerical methods to recover the subsurface electrical conductivity from time-harmonic electromagnetic data. We rigorously formulate and discretize both the forward and the inverse problem in the finite element framework. To solve the forward problem, we derive a finite element discretization of the first-order system of Maxwell's equations in terms of the electric field and the magnetic induction. We show that our approach is equivalent to the standard discretization of the vector Helmholtz equation in terms of the electric field and that the discretization of magnetic induction of the same approximation order is hidden in the standard discretization. We implement the forward solver on unstructured tetrahedral meshes using edge elements. Unstructured meshes are not only capable of representing complex geometry. They can also reduce the overall problem size and, thus, the size of the system of linear equations arising from the forward problem such that direct methods for its solution using a sparse matrix factorization become feasible. The inverse problem is formulated as a regularized output least squares problem. We consider two regularization functions. First, we derive a smoothness regularizer using a primal-dual mixed finite element formulation which generalizes the standard Laplacian operator for a piecewise constant conductivity model on unstructured meshes. Secondly, we derive a total variation regularizer for the same class of models. For the choice of the regularization parameter we revisit the so-called dynamic regularization and compare it to a standard regularization scheme with fixed regularization parameter. The optimization problem is solved by the Gauss-Newton method which can be efficiently implemented using sparse matrix-vector operations and exploiting the sparse matrix factorization of the forward problem system matrix. A synthetic data example from marine
Transport coefficients of heavy quarks around Tc at finite quark chemical potential
NASA Astrophysics Data System (ADS)
Berrehrah, H.; Gossiaux, P. B.; Aichelin, J.; Cassing, W.; Torres-Rincon, J. M.; Bratkovskaya, E.
2014-11-01
The interactions of heavy quarks with the partonic environment at finite temperature T and finite quark chemical potential μq are investigated in terms of transport coefficients within the dynamical quasiparticle model (DQPM) designed to reproduce the lattice-QCD (lQCD) results (including the partonic equation of state) in thermodynamic equilibrium. These results are confronted with those of nuclear many-body calculations close to the critical temperature Tc. The hadronic and partonic spatial diffusion coefficients join smoothly and show a pronounced minimum around Tc at μq=0 as well as at finite μq. Close to and above Tc its absolute value matches the lQCD calculations for μq=0 . The smooth transition of the heavy-quark transport coefficients from the hadronic to the partonic medium corresponds to a crossover in line with lattice calculations, and differs substantially from perturbative-QCD calculations which show a large discontinuity at Tc. This indicates that in the vicinity of Tc dynamically dressed massive partons should be the effective degrees of freedom in the quark-gluon plasma.
Intestinal smooth muscle cell maintenance by basic fibroblast growth factor.
Lee, Min; Wu, Benjamin M; Stelzner, Matthias; Reichardt, Holger M; Dunn, James C Y
2008-08-01
Intestinal tissue engineering is a potential therapy for patients with short bowel syndrome. Tissue engineering scaffolds that promote smooth muscle cell proliferation and angiogenesis are essential toward the regeneration of functional smooth muscles for peristalsis and motility. Since basic fibroblast growth factor (bFGF) can stimulate smooth muscle proliferation and angiogenesis, the delivery of bFGF was employed to stimulate proliferation and survival of primary intestinal smooth muscle cells. Two methods of local bFGF delivery were examined: the incorporation of bFGF into the collagen coating and the encapsulation of bFGF into poly(D,L-lactic-co-glycolic acid) microspheres. Cell-seeded scaffolds were implanted into the omentum and were retrieved after 4, 14, and 28 days. The seeded cells proliferated from day 4 to day 14 in all implants; however, at 28 days, significantly higher density of implanted cells and blood vessels was observed, when 10 microg of bFGF was incorporated into the collagen coating of scaffolds as compared to scaffolds with either no bFGF or 1 microg of bFGF in collagen. Microsphere encapsulation of 1 microg of bFGF produced similar effects as 10 microg of bFGF mixed in collagen and was more effective than the delivery of 1 microg of bFGF by collagen incorporation. The majority of the implanted cells also expressed alpha-smooth muscle actin. Scaffolds coated with microsphere-encapsulated bFGF and seeded with smooth muscle cells may be a useful platform for the regeneration of the intestinal smooth muscle.
Characterizing the Pressure Smoothing Scale of the Intergalactic Medium
NASA Astrophysics Data System (ADS)
Kulkarni, Girish; Hennawi, Joseph F.; Oñorbe, Jose; Rorai, Alberto; Springel, Volker
2015-10-01
The thermal state of the intergalactic medium (IGM) at z < 6 constrains the nature and timing of cosmic reionization events, but its inference from the Lyα forest is degenerate with the 3D structure of the IGM on ˜100 kpc scales, where, analogous to the classical Jeans argument, the pressure of the T ≃ 104 K gas supports it against gravity. We simulate the IGM using smoothed particle hydrodynamics, and find that, at z < 6, the gas density power spectrum does not exhibit the expected filtering scale cutoff, because dense gas in collapsed halos dominates the small-scale power masking pressure smoothing effects. We introduce a new statistic, the real-space Lyα flux, Freal, which naturally suppresses dense gas, and is thus robust against the poorly understood physics of galaxy formation, revealing pressure smoothing in the diffuse IGM. The Freal power spectrum is accurately described by a simple fitting function with cutoff at λF, allowing us to rigorously quantify the pressure smoothing scale for the first time: we find λF = 79 kpc (comoving) at z = 3 for our fiducial thermal model. This statistic has the added advantage that it directly relates to observations of correlated Lyα forest absorption in close quasar pairs, recently proposed as a method to measure the pressure smoothing scale. Our results enable one to quantify the pressure smoothing scale in simulations, and ask meaningful questions about its dependence on reionization and thermal history. Accordingly, the standard description of the IGM in terms of the amplitude T0 and slope γ of the temperature-density relation T={T}0{(ρ /\\bar{ρ })}γ -1 should be augmented with a third pressure smoothing scale parameter λF.
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
Accuracy of eye position for saccades and smooth pursuit
Shanidze, Natela; Ghahghaei, Saeideh; Verghese, Preeti
2016-01-01
In this study, we address the question of whether a target is foveated during smooth pursuit. Specifically, we examine whether smooth pursuit eye movements land near the center-of-mass of the target, as is the case for saccades. To that end, we instructed eight untrained, healthy participants to follow moving targets, presented monocularly in a scanning laser ophthalmoscope. Stimuli moved either in a modified step-ramp (smooth pursuit), or made a single step (saccade), stepping 6° from the center. Targets were ring-shaped and either 0.6° or 1.7° in diameter. In an additional set of experiments, two participants collected more extensive data on smooth pursuit and saccades for a larger range of target sizes (0.6°, 1.7°, or 4.3°). During pursuit, eyes were rarely placed at target center, even when participants' fixational stability was taken into account. Furthermore, there was a clear tendency for distance from target center to increase with target size. This outcome was in contrast to saccades, where there was no effect of target size across participants. The difference in foveal placement between the two types of eye movements is consistent with their different purposes: closer inspection of the target for saccades versus maintenance of the target in the visual field for smooth pursuit. PMID:28006073
Muscarinic receptor size on smooth muscle cells and membranes
Collins, S.M.; Jung, C.Y.; Grover, A.K.
1986-08-01
The loss of (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) binding following high-energy radiation was used to compare the muscarinic receptor size on single smooth muscle cells isolated by collagenase digestion from the canine stomach and on plasma membranes derived from intact gastric smooth muscle without exposure to exogenous proteolysis. Radiation inactivation of galactose oxidase (68 kdaltons), yeast alcohol dehydrogenase (160 kdaltons), and pyruvate kinase (224 kdaltons) activities were used as molecular-weight standards. Radiation inactivation of (/sup 3/H)QNB binding to rat brain membranes, which gave a target size of 86 kdaltons, served as an additional control. In isolated smooth muscle cells, the calculated size of the muscarinic receptor was 80 +/- 8 kdaltons. In contrast, in a smooth muscle enriched plasma membrane preparation, muscarinic receptor size was significantly smaller at 45 +/- 3 kdaltons. Larger molecular sizes were obtained either in the presence of protease inhibitors (62 +/- 4 kdaltons) or by using a crude membrane preparation of gastric smooth muscle 86 +/- 7 kdaltons).
[Electrophysiology and calcium signalling in human bronchial smooth muscle].
Marthan, R; Hyvelin, J M; Roux, E; Savineau, J P
1999-01-01
Recently, cells isolated from airways have been used to characterize precisely the electrophysiological properties of this smooth muscle and to describe the changes in cytosolic calcium concentration ([Ca2+]i) occurring upon agonist stimulation. Although most studies have produced consistent results in terms of types of ion channel and pathways of calcium signalling implicated in the mechanical activity of airways, there are differences according to (i) the site along the bronchial tree (trachea vs. bronchi); (ii) the proliferating status of the cells (freshly isolated vs. cultured) and (iii) the species (human vs. animals). With regard to the electrophysiological properties of airway smooth muscle, the contribution to [Ca2+]i rise of Ca2+ influx through L-type voltage-dependent calcium channels depends on the balance between depolarization related to non-specific cation channel and/or chloride channel activation and hyperpolarization related to activation of a variety of potassium channels. Most of the above-mentioned channels appear to be controlled, directly or indirectly, by agonists in human bronchial smooth muscle. With regard to calcium signalling, the pattern of agonist-induced [Ca2+]i responses, the so-called [Ca2+]i oscillations, has been observed recently in freshly isolated airway smooth muscle cells. The role and the calcium sources involved in these oscillations in human bronchial smooth muscle are currently being investigated.
Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells
Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua
2016-01-01
Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055
Geographic smoothing of solar PV: results from Gujarat
NASA Astrophysics Data System (ADS)
Klima, Kelly; Apt, Jay
2015-10-01
We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log-log domain at high frequencies f, ranging from {f}-1.23 to {f}-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a {f}-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an {f}-1.76 spectrum. This suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.
Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation
Ballantyne, Margaret D.; Pinel, Karine; Dakin, Rachel; Vesey, Alex T.; Diver, Louise; Mackenzie, Ruth; Garcia, Raquel; Welsh, Paul; Sattar, Naveed; Hamilton, Graham; Joshi, Nikhil; Dweck, Marc R.; Miano, Joseph M.; McBride, Martin W.; Newby, David E.; McDonald, Robert A.
2016-01-01
Background— Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. Methods and Results— Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle–induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. Conclusions— These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies. PMID:27052414
Geographic smoothing of solar PV: Results from Gujarat
Klima, Kelly; Apt, Jay
2015-09-24
We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less
Criticality in finite dynamical networks
NASA Astrophysics Data System (ADS)
Rohlf, Thimo; Gulbahce, Natali; Teuscher, Christof
2007-03-01
It has been shown analytically and experimentally that both random boolean and random threshold networks show a transition from ordered to chaotic dynamics at a critical average connectivity Kc in the thermodynamical limit [1]. By looking at the statistical distributions of damage spreading (damage sizes), we go beyond this extensively studied mean-field approximation. We study the scaling properties of damage size distributions as a function of system size N and initial perturbation size d(t=0). We present numerical evidence that another characteristic point, Kd exists for finite system sizes, where the expectation value of damage spreading in the network is independent of the system size N. Further, the probability to obtain critical networks is investigated for a given system size and average connectivity k. Our results suggest that, for finite size dynamical networks, phase space structure is very complex and may not exhibit a sharp order-disorder transition. Finally, we discuss the implications of our findings for evolutionary processes and learning applied to networks which solve specific computational tasks. [1] Derrida, B. and Pomeau, Y. (1986), Europhys. Lett., 1, 45-49
Finite difference neuroelectric modeling software.
Dang, Hung V; Ng, Kwong T
2011-06-15
This paper describes a finite difference neuroelectric modeling software (FNS), written in C and MATLAB, which can be executed as a standalone program or integrated with other packages for electroencephalography (EEG) analysis. The package from the Oxford Center for Functional MRI of the Brain (FMRIB), FMRIB Software Library (FSL), is used to segment the anatomical magnetic resonance (MR) image for realistic head modeling. The EEG electrode array is fitted to the realistic head model using the Bioelectromagnetism MATLAB toolbox. The finite difference formulation for a general inhomogeneous anisotropic body is used to obtain the system matrix equation, which is then solved using the conjugate gradient algorithm. The reciprocity theorem is utilized to limit the number of required forward solutions to N-1, where N is the number of electrodes. Results show that the forward solver only requires 500 MB of random-access memory (RAM) for a realistic 256×256×256 head model and that the software can be conveniently combined with inverse algorithms such as beamformers and MUSIC. The software is freely available under the GNU Public License.
Double excitations in finite systems.
Romaniello, P; Sangalli, D; Berger, J A; Sottile, F; Molinari, L G; Reining, L; Onida, G
2009-01-28
Time-dependent density-functional theory (TDDFT) is widely used in the study of linear response properties of finite systems. However, there are difficulties in properly describing excited states, which have double- and higher-excitation characters, which are particularly important in molecules with an open-shell ground state. These states would be described if the exact TDDFT kernel were used; however, within the adiabatic approximation to the exchange-correlation (xc) kernel, the calculated excitation energies have a strict single-excitation character and are fewer than the real ones. A frequency-dependent xc kernel could create extra poles in the response function, which would describe states with a multiple-excitation character. We introduce a frequency-dependent xc kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to achieve this, we use the Bethe-Salpeter equation with a dynamically screened Coulomb interaction W(omega), which can describe these excitations, and from this we obtain the xc kernel. Using a two-electron model system, we show that the frequency dependence of W does indeed introduce the double excitations that are instead absent in any static approximation of the electron-hole screening.
Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2012-01-01
The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.
A method of smoothed particle hydrodynamics using spheroidal kernels
NASA Technical Reports Server (NTRS)
Fulbright, Michael S.; Benz, Willy; Davies, Melvyn B.
1995-01-01
We present a new method of three-dimensional smoothed particle hydrodynamics (SPH) designed to model systems dominated by deformation along a preferential axis. These systems cause severe problems for SPH codes using spherical kernels, which are best suited for modeling systems which retain rough spherical symmetry. Our method allows the smoothing length in the direction of the deformation to evolve independently of the smoothing length in the perpendicular plane, resulting in a kernel with a spheroidal shape. As a result the spatial resolution in the direction of deformation is significantly improved. As a test case we present the one-dimensional homologous collapse of a zero-temperature, uniform-density cloud, which serves to demonstrate the advantages of spheroidal kernels. We also present new results on the problem of the tidal disruption of a star by a massive black hole.
Cantharidin decreases in vitro digestion of alfalfa and smooth bromegrass.
Lenssen, A W; Blodgett, S L; Higgins, R A; Nagaraja, T G; Posler, G L; Broce, A B
1990-10-01
Blister beetles (Coleoptera:Meloidae) containing the toxin cantharidin can be incorporated with alfalfa (Medicago sativa L) during forage conservation. Cantharidin inadvertently ingested with animal feed may cause illness or death. Little information is available on the effects of cantharidin on ruminant microbial digestion. The objective of our study was to determine cantharidin effects on digestibility of alfalfa and smooth bromegrass (Bromus inermis Leyss) by measuring in vitro digestible dry matter (IVDDM) and cell wall digestion (CWD). Alfalfa dry matter digestibility, measured after IVDDM at 48 and 96 h fermentation periods, decreased as cantharidin concentration increased. Increasing cantharidin concentration also significantly reduced IVDDM of smooth bromegrass at 24 and 96 h digestion time. The CWD of alfalfa and smooth bromegrass decreased as cantharidin concentration increased. These results indicate that ingestion of cantharidin by ruminants may decrease microbial digestion of fibrous feeds and therefore may decrease the efficiency of feed utilization by ruminants.
Stochastic optimization with randomized smoothing for image registration.
Sun, Wei; Poot, Dirk H J; Smal, Ihor; Yang, Xuan; Niessen, Wiro J; Klein, Stefan
2017-01-01
Image registration is typically formulated as an optimization process, which aims to find the optimal transformation parameters of a given transformation model by minimizing a cost function. Local minima may exist in the optimization landscape, which could hamper the optimization process. To eliminate local minima, smoothing the cost function would be desirable. In this paper, we investigate the use of a randomized smoothing (RS) technique for stochastic gradient descent (SGD) optimization, to effectively smooth the cost function. In this approach, Gaussian noise is added to the transformation parameters prior to computing the cost function gradient in each iteration of the SGD optimizer. The approach is suitable for both rigid and nonrigid registrations. Experiments on synthetic images, cell images, public CT lung data, and public MR brain data demonstrate the effectiveness of the novel RS technique in terms of registration accuracy and robustness.
Surface smoothness: cartilage biomarkers for knee OA beyond the radiologist
NASA Astrophysics Data System (ADS)
Tummala, Sudhakar; Dam, Erik B.
2010-03-01
Fully automatic imaging biomarkers may allow quantification of patho-physiological processes that a radiologist would not be able to assess reliably. This can introduce new insight but is problematic to validate due to lack of meaningful ground truth expert measurements. Rather than quantification accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used on tibial and femoral cartilage compartments resulting from an automatic segmentation scheme. These smoothness estimates are validated for their ability to diagnose osteoarthritis and compared to smoothness estimates based on manual expert segmentations and to conventional cartilage volume quantification. We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers.
Sadati, Monirosadat; Luap, Clarisse; Kroeger, Martin; Gusev, Andrei A.; Oettinger, Hans Christian
2011-03-15
We present a method combining generalized Tikhonov regularization with a finite element approximation for reconstructing smooth velocity and velocity gradient fields from spatially scattered and noisy velocity data in a two-dimensional complex flow domain. Synthetic velocity data for a cross-slot geometry are generated using the Oldroyd-B solution, subsequently perturbed by random noise. Performances of diverse finite element continuity-regularization criterion combinations are tested against noise-free data, while the optimum regularization parameter is determined using generalized cross-validation. The best performance is achieved for the velocity field and its gradients simultaneously by C{sup 2} continuous Hermite finite elements and minimization of a norm of the velocity's third derivative. The standard regularization criterion based on the second derivative is shown to lead to systematic distortions in boundary regions, allowing therefore a lower reduction in the statistical error. Furthermore, optical fields are calculated by applying a differential constitutive equation directly to the reconstructed flow kinematics; high quality velocity gradient fields are shown to be an essential prerequisite for their reliable prediction. Overall, the method is expedient to implement and does not require boundary conditions.
A User Guide for Smoothing Air Traffic Radar Data
NASA Technical Reports Server (NTRS)
Bach, Ralph E.; Paielli, Russell A.
2014-01-01
Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.
Monocular and binocular smooth pursuit in central field loss.
Shanidze, Natela; Heinen, Stephen; Verghese, Preeti
2017-01-09
Macular degeneration results in heterogeneous central field loss (CFL) and often has asymmetrical effects in the two eyes. As such, it is not clear to what degree the movements of the two eyes are coordinated. To address this issue, we examined smooth pursuit quantitatively in CFL participants during binocular viewing and compared it to the monocular viewing case. We also examined coordination of the two eyes during smooth pursuit and how this coordination was affected by interocular ratios of acuity and contrast, as well as CFL-specific interocular differences, such as scotoma sizes and degree of binocular overlap. We hypothesized that the coordination of eye movements would depend on the binocularity of the two eyes. To test our hypotheses, we used a modified step-ramp paradigm, and measured pursuit in both eyes while viewing was binocular, or monocular with the dominant or non-dominant eye. Data for CFL participants and age-matched controls were examined at the group, within-group, and individual levels. We found that CFL participants had a broader range of smooth pursuit gains and a significantly lower correlation between the two eyes, as compared to controls. Across both CFL and control groups, smooth pursuit gain and correlation between the eyes are best predicted by the ratio of contrast sensitivity between the eyes. For the subgroup of participants with measurable stereopsis, both smooth pursuit gain and correlation are best predicted by stereoacuity. Therefore, our results suggest that coordination between the eyes during smooth pursuit depends on binocular cooperation between the eyes.
The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia
Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C.; Wong, Agnes M. F.
2016-01-01
Purpose Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Methods Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Results Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). Conclusions This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades. PMID:27070109
Optimization by Smoothed Bandpass Calibration in Radio Spectroscopy
NASA Astrophysics Data System (ADS)
Kameno, S.; Yamaki, H.; Mizuno, I.; Beppu, H.; Imai, H.; Kuno, N.; Akashi, T.
2013-10-01
We have developed the Smoothed Bandpass Calibration (SBC) method and the best suitable scan pattern to optimize radio spectroscopic observations. Adequate spectral smoothing is applied to the spectrum toward OFF-source blank sky adjacent to a target source direction for the purpose of bandpass correction. Because the smoothing process reduces noise, the integration time for OFF-source scans can be reduced keeping the signal-to-noise ratio. Since the smoothing is not applied to ON-source scans, the spectral resolution for line features is kept. An optimal smoothing window is determined by bandpass flatness evaluated by Spectral Allan Variance (SAV). An efficient scan pattern is designed to the OFF-source scans within the bandpass stability timescale estimated by Time-based Allan Variance (TAV). We have tested the SBC using the digital spectrometer, SAM45, on the Nobeyama 45-m telescope. The optimal smoothing windows were determined as 501, 28, 18, and 4 ch for bandwidths of 2000, 500, 125, and 15.6 MHz, respectively. The optimal scan pattern was designed as sequences of [60-s ON + 10-s OFF] and [48-s ON + 16-s OFF] scan pairs for narrow and wide bandwidth, respectively. The noise level with the SBC was reduced by factors of 1.8 and 1.3 compared with the conventional method. We also found sporadic instability (bursts) in the total power and spectra in IF during the test observations. Although the bursts significantly distorts the resultant spectra, we found a solution to cancel the spectral variation by decomposing them into static and burst components. This solution can be a hint to ease spectral flagging processes and to bring better efficiency in integration time.
An immersed boundary method for aeroacoustic flow using a high-order finite difference method
NASA Astrophysics Data System (ADS)
Olson, Britton
2016-11-01
An immersed boundary method that achieves second order accuracy in space on acoustic reflection problems is introduced and tested on a number of aero-acoustic related problems. The method follows a continuous forcing approach and uses existing solver operators to smoothly extend the flow solution though the immersed boundary. Both no-slip and free-slip boundary conditions are demonstrated on complex geometries using a high-order finite difference code on a Cartesian grid. High Mach number test problems are also shown, demonstrating the method's robustness in the presence of shock waves.
A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems
NASA Technical Reports Server (NTRS)
Casper, Jay; Atkins, H. L.
1993-01-01
The finite-volume approach is presently used to obtain a 2D, high-order accurate and basically nonoscillatory shock-capture method whose high-order spatial accuracy is obtained by means of a piecewise polynomial approximation of the solution from cell averages. Attention is given to a high-order spatial operator that is able to both retain high-order accuracy in smooth regions and avoid the oscillations that are associated with interpolations across steep gradients. The operator is extended to hyperbolic systems of equations and curvilinear meshes.
Fission-Fusion Adaptivity in Finite Elements for Nonlinear Dynamics of Shells
1988-11-30
where mesh refinement will prove useful. In fact, the deviation of a bilinear element from a smooth shell midsurface can be related to the angle between...comparisons with nonadaptive meshes. Conclusions and further discussions are given in Section 6. -5- 2. FINITE ELEMENT FORMULATION The shape of the midsurface ...8217 22 , and e3 is defined so that e, and e2 are tangent to the midsurface and rotate with the element; 2. for each node, a triad b i is defined so that
High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids
NASA Astrophysics Data System (ADS)
McCorquodale, P.; Dorr, M. R.; Hittinger, J. A. F.; Colella, P.
2015-05-01
We present an approach to solving hyperbolic conservation laws by finite-volume methods on mapped multiblock grids, extending the approach of Colella, Dorr, Hittinger, and Martin (2011) [10] for grids with a single mapping. We consider mapped multiblock domains for mappings that are conforming at inter-block boundaries. By using a smooth continuation of the mapping into ghost cells surrounding a block, we reduce the inter-block communication problem to finding an accurate, robust interpolation into these ghost cells from neighboring blocks. We demonstrate fourth-order accuracy for the advection equation for multiblock coordinate systems in two and three dimensions.
High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids
McCorquodale, P. W.; Colella, P.; Dorr, M. R.; ...
2015-01-13
We present an approach to solving hyperbolic conservation laws by finite-volume methods on mapped multiblock grids, extending the approach of Colella, Dorr, Hittinger, and Martin (2011) [10] for grids with a single mapping. We consider mapped multiblock domains for mappings that are conforming at inter-block boundaries. By using a smooth continuation of the mapping into ghost cells surrounding a block, we reduce the inter-block communication problem to finding an accurate, robust interpolation into these ghost cells from neighboring blocks. Lastly, we demonstrate fourth-order accuracy for the advection equation for multiblock coordinate systems in two and three dimensions.
A multigrid algorithm for the cell-centered finite difference scheme
NASA Technical Reports Server (NTRS)
Ewing, Richard E.; Shen, Jian
1993-01-01
In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.
Near atomically smooth alkali antimonide photocathode thin films
NASA Astrophysics Data System (ADS)
Feng, Jun; Karkare, Siddharth; Nasiatka, James; Schubert, Susanne; Smedley, John; Padmore, Howard
2017-01-01
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. We calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Peaked and smooth solitons for K *(3, 1) equation
NASA Astrophysics Data System (ADS)
Fu, H.; Tang, Y.; Tang, S.; Yan, H.; Liu, Q.
2014-01-01
The qualitative theory of differential equations is applied to K *(3, 1) equation, u t = u x u + 2α( uu xxx + 2 u x u xx ). Our procedure shows that K *(3, 1) equation has the regular peakon soliton, cuspon soliton and smooth soliton solutions when sitting on non-zero constant pedestal lim_{x→±∞}u=A≠ 0, or possesses compacton solutions only when lim_{x→±∞}u=A=0. In particular, mathematical analysis and numerical graph are provided for those peakon, cuspon, compacton and smooth soliton solutions.
A Non-smooth Newton Method for Multibody Dynamics
Erleben, K.; Ortiz, R.
2008-09-01
In this paper we deal with the simulation of rigid bodies. Rigid body dynamics have become very important for simulating rigid body motion in interactive applications, such as computer games or virtual reality. We present a novel way of computing contact forces using a Newton method. The contact problem is reformulated as a system of non-linear and non-smooth equations, and we solve this system using a non-smooth version of Newton's method. One of the main contribution of this paper is the reformulation of the complementarity problems, used to model impacts, as a system of equations that can be solved using traditional methods.
Digital smoothing of the Langmuir probe I-V characteristic
Magnus, F.; Gudmundsson, J. T.
2008-07-15
Electrostatic probes or Langmuir probes are the most common diagnostic tools in plasma discharges. The second derivative of the Langmuir probe I-V characteristic is proportional to the electron energy distribution function. Determining the second derivative accurately requires some method of noise suppression. We compare the Savitzky-Golay filter, the Gaussian filter, and polynomial fitting to the Blackman filter for digitally smoothing simulated and measured I-V characteristics. We find that the Blackman filter achieves the most smoothing with minimal distortion for noisy data.
Geology of Smooth Ridge: MARS-IODP Cabled Observatory Site
NASA Astrophysics Data System (ADS)
Jordahl, K. A.; Paull, C. K.; Ussler, W.; Aiello, I. W.; Mitts, P.; Greene, H. G.; Gibbs, S.
2004-12-01
We document the geologic environment of Smooth Ridge, off shore Central California, where the deep-water node associated with the MARS (Monterey Accelerated Research Site) scientific research cable is to be deployed. The MARS cable will provide internet connections and electric power at a node in 890 m of water in support of scientific observatory development and experiments. IODP boreholes are proposed which will be connected to the MARS cable. The deeply incised channels of Monterey and Soquel Canyons flank Smooth Ridge to the SW and NE and the San Gregorio faults marks its NW and upslope boundary. However, the top of Smooth Ridge, as its name implies, only has subdued bathymetric features. These include a subtle downslope channel and one distinct slump scar. A patch of acoustically reflective seafloor on the west side of the ridge, over 5 km from the MARS site, is associated with the only known large-scale biological community on the crest of Smooth Ridge. A reflection seismic survey conducted in 2003 with a high-resolution electrical sparker source reveals the stratigraphy of the Smooth Ridge in unprecedented detail. In conjunction with previously collected widely-spaced multichannnel seismic data, observations and samples obtained using remotely-operated vehicle (ROV) dives, and piston cores, this new survey reveals the erosional and depositional history of Smooth Ridge. The continuity of seismic reflections indicates nearly undisturbed deposition occurred until at least the mid-Miocene. Since that time, and especially since the upper Pliocene, the record is marked by unconformities and infill due to shifting channels, large slumps and landslides, and sediment waves. Several crossing seismic lines provide a quasi-three-dimensional view of a distinct slump scar's structure, and reveal a history of multiple headwall failures. Other subsurface structures, including a much larger, and older, slump feature, have no bathymetric expression at all. 14C dated piston
Inhibitory action of relaxin on human cervical smooth muscle.
Norström, A; Bryman, I; Wiqvist, N; Sahni, S; Lindblom, B
1984-09-01
The influence of purified porcine relaxin on contractility of human cervical smooth muscle was investigated in vitro. Strips of cervical tissue were obtained by needle biopsy from pregnant and nonpregnant women and were mounted in a superfused organ chamber for isometric measurement of contractile activity. Relaxin (0.005-25 micrograms/ml) inhibited the spontaneous contractions in cervical strips from 18% of nonpregnant, 68% of early pregnant, and in 100% of term pregnant women. These results indicate that relaxin has an inhibitory action on cervical smooth muscle and that this effect is more constantly detected as pregnancy proceeds.
A new seamless, smooth, interior, absorptive finishing system
NASA Astrophysics Data System (ADS)
D'Antonio, Peter
2003-04-01
Architects and acousticians have sought a field-applied, absorptive finishing system that resembles a smooth plaster or painted drywall surface, since the dawn of architectural acoustics. Some success has been achieved using sprayed cellulose or cementitious materials, but surface smoothness has been a challenge. A new approach utilizing a thin microporous layer of mineral particles applied over a mineral wool panel will be described. This material can be applied to almost any shape surface, internally pigmented to match almost any color and renovated. It is currently finding application in many architectural applications, including museums. A recent installation in the New Pinakothek Museum in Munich will be illustrated.
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Tartakovsky, A. M.; Geyer, T.
2014-12-01
Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present pore- and fracture-scale flow simulations obtained with a Smoothed Particle Hydrodynamics (SPH) model. The model allows to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions. Several empirical and semi-analytical solutions are used to verify the model. We show that our results satisfy the empirical scaling laws for droplet velocity and critical contact angle. Due to the efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces as well as the velocity enhancement of droplets on saturated surfaces can readily be obtained. Furthermore, we study the effect of surface roughness on droplet velocities. Lastly, we present flow and transport simulations in the presence of an adjacent porous matrix in order to investigate its influence on the fracture surface flow dynamics and transport across the matrix-fracture interface.
Finite element analysis of notch behavior using a state variable constitutive equation
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.
1985-01-01
The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.
A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation
Banks, J W; Hittinger, J A
2009-11-24
Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.
Homoclinic snaking in plane Couette flow: bending, skewing, and finite-size effects
NASA Astrophysics Data System (ADS)
Gibson, John; Schneider, Tobias
2016-11-01
Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. In this talk, we present a numerical study of the snaking solutions, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing, and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the traveling-wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly-skewed localized equilibrium.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Finite volume hydromechanical simulation in porous media
Nordbotten, Jan Martin
2014-01-01
Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a finite element setting. The former approach is unfavorable as it introduces two separate grid structures, while the latter approach loses the advantages of finite volume methods for the flow equation. Recently, we proposed a cell-centered finite volume method for elasticity. Herein, we explore the applicability of this novel method to provide a compatible finite volume discretization for coupled hydromechanic flows in porous media. We detail in particular the issue of coupling terms, and show how this is naturally handled. Furthermore, we observe how the cell-centered finite volume framework naturally allows for modeling fractured and fracturing porous media through internal boundary conditions. We support the discussion with a set of numerical examples: the convergence properties of the coupled scheme are first investigated; second, we illustrate the practical applicability of the method both for fractured and heterogeneous media. PMID:25574061
Finite volume hydromechanical simulation in porous media.
Nordbotten, Jan Martin
2014-05-01
Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a finite element setting. The former approach is unfavorable as it introduces two separate grid structures, while the latter approach loses the advantages of finite volume methods for the flow equation. Recently, we proposed a cell-centered finite volume method for elasticity. Herein, we explore the applicability of this novel method to provide a compatible finite volume discretization for coupled hydromechanic flows in porous media. We detail in particular the issue of coupling terms, and show how this is naturally handled. Furthermore, we observe how the cell-centered finite volume framework naturally allows for modeling fractured and fracturing porous media through internal boundary conditions. We support the discussion with a set of numerical examples: the convergence properties of the coupled scheme are first investigated; second, we illustrate the practical applicability of the method both for fractured and heterogeneous media.
Learning Extended Finite State Machines
NASA Technical Reports Server (NTRS)
Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard
2014-01-01
We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.
LATTICE QCD AT FINITE DENSITY.
SCHMIDT, C.
2006-07-23
I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.
Quantum memories at finite temperature
NASA Astrophysics Data System (ADS)
Brown, Benjamin J.; Loss, Daniel; Pachos, Jiannis K.; Self, Chris N.; Wootton, James R.
2016-10-01
To use quantum systems for technological applications one first needs to preserve their coherence for macroscopic time scales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum memory. An attractive scenario is the construction of passive storage of quantum information with minimal active support. Indeed, passive protection is the basis of robust and scalable classical technology, physically realized in the form of the transistor and the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open problem, plagued with a variety of no-go theorems. Several approaches have been devised to overcome these theorems by taking advantage of their loopholes. The state-of-the-art developments in this field are reviewed in an informative and pedagogical way. The main principles of self-correcting quantum memories are given and several milestone examples from the literature of two-, three- and higher-dimensional quantum memories are analyzed.
Finite-time braiding exponents
NASA Astrophysics Data System (ADS)
Budišić, Marko; Thiffeault, Jean-Luc
2015-08-01
Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.
An integral equation approach to smooth 3D Navier-Stokes solution
NASA Astrophysics Data System (ADS)
Costin, O.; Luo, G.; Tanveer, S.
2008-12-01
We summarize a recently developed integral equation (IE) approach to tackling the long-time existence problem for smooth solution v(x, t) to the 3D Navier-Stokes (NS) equation in the context of a periodic box problem with smooth time independent forcing and initial condition v0. Using an inverse-Laplace transform of {\\skew5\\hat v} (k, t) - {\\skew5\\hat v}_0 in 1/t, we arrive at an IE for {\\skew5\\hat U} (k, p) , where p is inverse-Laplace dual to 1/t and k is the Fourier variable dual to x. The advantage of this formulation is that the solution {\\skew5\\hat U} to the IE is known to exist a priori for p \\in \\mathbb{R}^+ and the solution is integrable and exponentially bounded at ∞. Global existence of NS solution in this formulation is reduced to an asymptotics question. If \\parallel\\!{\\skew5\\hat U} (\\cdot, p)\\!\\parallel_{{l^{1} (\\mathbb{Z}^3)}} has subexponential bounds as p→∞, then global existence to NS follows. Moreover, if f=0, then the converse is also true in the following sense: if NS has global solution, then there exists n>=1 for which the inverse-Laplace transform of {\\skew5\\hat v} (k, t) - {\\skew5\\hat v}_0 in 1/tn necessarily decays as q→∞, where q is the inverse-Laplace dual to 1/tn. We also present refined estimates of the exponential growth when the solution {\\skew5\\hat U} is known on a finite interval [0, p0]. We also show that for analytic v[0] and f, with finitely many nonzero Fourier-coefficients, the series for {\\skew5\\hat U} (k, p) in powers of p has a radius of convergence independent of initial condition and forcing; indeed the radius gets bigger for smaller viscosity. We also show that the IE can be solved numerically with controlled errors. Preliminary numerical calculations for Kida (1985 J. Phys. Soc. Japan 54 2132) initial conditions, though far from being optimized, and performed on a modest interval in the accelerated variable q show decay in q.
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
NASA Astrophysics Data System (ADS)
Stevens, D.; Power, H.
2015-10-01
We propose a node-based local meshless method for advective transport problems that is capable of operating on centrally defined stencils and is suitable for shock-capturing purposes. High spatial convergence rates can be achieved; in excess of eighth-order in some cases. Strongly-varying smooth profiles may be captured at infinite Péclet number without instability, and for discontinuous profiles the solution exhibits neutrally stable oscillations that can be damped by introducing a small artificial diffusion parameter, allowing a good approximation to the shock-front to be maintained for long travel times without introducing spurious oscillations. The proposed method is based on local collocation with radial basis functions (RBFs) in a "finite collocation" configuration. In this approach the PDE governing and boundary equations are enforced directly within the local RBF collocation systems, rather than being reconstructed from fixed interpolating functions as is typical of finite difference, finite volume or finite element methods. In this way the interpolating basis functions naturally incorporate information from the governing PDE, including the strength and direction of the convective velocity field. By using these PDE-enhanced interpolating functions an "implicit upwinding" effect is achieved, whereby the flow of information naturally respects the specifics of the local convective field. This implicit upwinding effect allows high-convergence solutions to be obtained on centred stencils for advection problems. The method is formulated using a high-convergence implicit timestepping algorithm based on Richardson extrapolation. The spatial and temporal convergence of the proposed approach is demonstrated using smooth functions with large gradients. The capture of discontinuities is then investigated, showing how the addition of a dynamic stabilisation parameter can damp the neutrally stable oscillations with limited smearing of the shock front.
Valentín, A; Humphrey, J D; Holzapfel, G A
2013-08-01
We implemented a constrained mixture model of arterial growth and remodeling in a nonlinear finite element framework to facilitate numerical analyses of diverse cases of arterial adaptation and maladaptation, including disease progression, resulting in complex evolving geometries and compositions. This model enables hypothesis testing by predicting consequences of postulated characteristics of cell and matrix turnover, including evolving quantities and orientations of fibrillar constituents and nonhomogenous degradation of elastin or loss of smooth muscle function. The nonlinear finite element formulation is general within the context of arterial mechanics, but we restricted our present numerical verification to cylindrical geometries to allow comparisons with prior results for two special cases: uniform transmural changes in mass and differential growth and remodeling within a two-layered cylindrical model of the human aorta. The present finite element model recovers the results of these simplified semi-inverse analyses with good agreement.
Valentín, A.; Humphrey, J. D.; Holzapfel, G. A.
2013-01-01
We implemented a constrained mixture model of arterial growth and remodeling (G&R) in a nonlinear finite element framework to facilitate numerical analyses of diverse cases of arterial adaptation and maladaptation, including disease progression, resulting in complex evolving geometries and compositions. This model enables hypothesis testing by predicting consequences of postulated characteristics of cell and matrix turnover, including evolving quantities and orientations of fibrillar constituents and non-homogenous degradation of elastin or loss of smooth muscle function. The non-linear finite element formulation is general within the context of arterial mechanics, but we restricted our present numerical verification to cylindrical geometries to allow comparisons to prior results for two special cases: uniform transmural changes in mass and differential G&R within a two-layered cylindrical model of the human aorta. The present finite element model recovers the results of these simplified semi-inverse analyses with good agreement. PMID:23713058
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.
2015-01-01
This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2006-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2004-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reduction in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
Notice of Release: 'Stress tolerant smooth bromegrass STSB'
Technology Transfer Automated Retrieval System (TEKTRAN)
The Agricultural Research Service, U.S. Department of Agriculture announces the release of a stress tolerant smooth bromegrass (STSB) [Bromus inermys, Leyss.] germplasm (PI xxxx) developed by Dr. Bryan K. Kindiger at the USDA-ARS Grazinglands Research Laboratory, El Reno, OK 73036. STSB is release...
Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)
NASA Technical Reports Server (NTRS)
Vu, Bruce; Berg, Jared; Harris, Michael F.
2014-01-01
Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.
Image Rotation Does Not Rotate Smooth Eye Movements
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Stone, Leland S. (Technical Monitor)
1997-01-01
Subjects viewing a drifting noise pattern make reflexive smooth eye movements in the direction of motion, which follow rapid changes in movement direction. These responses are unaffected by rotations of the pattern, suggesting that there is no coupling between visually sensed rotation and the direction of ocular following.
Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings
Huys, Quentin J. M.; Paninski, Liam
2009-01-01
Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo (“particle filtering”) methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise) are inferred automatically from noisy data via expectation-maximisation. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise. PMID:19424506
Caveolin-1 regulates contractility in differentiated vascular smooth muscle.
Je, Hyun-Dong; Gallant, Cynthia; Leavis, Paul C; Morgan, Kathleen G
2004-01-01
Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.
7 CFR 51.1008 - Fairly smooth texture.
Code of Federal Regulations, 2010 CFR
2010-01-01
... characteristic of the fruit, especially that from young trees. ... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND.... Fairly smooth texture means that the fruit is comparatively free from lumpiness and that pebbling is...
Current spread in the smooth muscle of the rabbit aorta
Mekata, F.
1974-01-01
1. The electrical responses of the smooth muscle cells of the rabbit aorta to both extracellular and intracellular stimulation were studied using the partitioned chamber and Wheatstone bridge method. 2. No spontaneous electrical activity was recorded when the tissue was soaked in either isotonic or hypertonic Krebs solutions, and strong depolarizing currents also failed to trigger action potentials in either solution. 3. The circular muscle of the aorta has cable properties. Mean values in isotonic Krebs solution were 2·1 mm for space constant and 433 msec for time constant. 4. The input resistance (mean 12 MΩ) measured with the Wheatstone bridge method was considerably smaller than that calculated from values measured with the partitioned chamber method. 5. Electrotonic potentials could be recorded from the smooth muscle of `injury bundles' although their amplitude was smaller than that from the intact bundle. 6. High concentrations of noradrenaline readily induce oscillatory potentials from the aorta in both isotonic and hypertonic Krebs solutions. It was estimated by simultaneous recording with two micro-electrodes that noradrenaline-induced oscillatory potential can conduct in both longitudinal and transverse directions of the smooth muscle. 7. These results suggest that the smooth muscle of the aorta behaves like a syncytium or single unit muscle and activation of cells on the inner surface of the media can be induced both by electrotonic current spread and by propagation of oscillatory potentials from the outer cells directly activated by the transmitter. PMID:4436818
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
An adaptive filter for smoothing noisy radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Stiles, J. A.; Shanmugam, K. S.; Holtzman, J. C.; Smith, S. A.
1981-01-01
A spatial domain adaptive Wiener filter for smoothing radar images corrupted by multiplicative noise is presented. The filter is optimum in a minimum mean squared error sense, computationally efficient, and preserves edges in the image better than other filters. The proposed algorithm can also be used for processing optical images with illumination variations that have a multiplicative effect.
Weight Factor Selection in Double Exponential Smoothing Enrollment Forecasts.
ERIC Educational Resources Information Center
Gardner, Don E.
1981-01-01
The merits of double exponential smoothing are discussed relative to other types of pattern-based enrollment forecasting methods. The basic assumptions and formulas for its use are outlined. The difficulties associated with selecting an appropriate weight factor are discussed, and the potential effect on prediction results is illustrated.…
An Investigation of Two Procedures for Smoothing Test Norms.
ERIC Educational Resources Information Center
Jones, Patricia B.; Sabers, Darrell L.
Several techniques have been developed for creating continuous smooth distributions of test norms. This paper describes two studies that explore the behavior of cubic splines in order to determine their appropriateness for use in test norming. The first study uses data from the Curriculum Referenced Tests of Mastery (CRTM) and employs two…
Postprocessing Fourier spectral methods: The case of smooth solutions
Garcia-Archilla, B.; Novo, J.; Titi, E.S.
1998-11-01
A postprocessing technique to improve the accuracy of Galerkin methods, when applied to dissipative partial differential equations, is examined in the particular case of smooth solutions. Pseudospectral methods are shown to perform poorly. This performance is analyzed and a refined postprocessing technique is proposed.
An Error Detection and Smoothing Algorithm for Infrared Data.
1986-04-01
34A Dynamic Programming Technique for Nonlinear ’R. L. Lucke, A. P. Schaum , J. C. Kershenstein, J. Michalo- Smoothing", Proc. IEEE International Conf...UNIVERSITY APPLIED PHYSICS LABORATORY LAUREL. MARYLAND REFERENCES 1R. L. Lucke, A. P. Schaum , J. C. Kershenstein, J. 7 H. Ney, "A Dynamic Programming
Convergence rate of spherical harmonic expansions of smooth functions
NASA Astrophysics Data System (ADS)
Dai, Feng; Wang, Kunyang
2008-12-01
We extend a well-known result of Bonami and Clerc on the almost everywhere (a.e.) convergence of Cesàro means of spherical harmonic expansions. For smooth functions measured in terms of [phi]-derivatives on the unit sphere, we obtained the sharp a.e. convergence rate of Cesàro means of their spherical harmonic expansions.
Easy Songs for Smooth Transitions in the Classroom
ERIC Educational Resources Information Center
Araujo, Nina; Aghayan, Carol
2006-01-01
Young children in school go through 16 to 20 transitions every day. What can make 10 children settle down, clean up, and move from room to room without protest? Even if you are uncomfortable singing in public, the simple songs in this book will help you glide smoothly through tough transitions such as greetings and good-byes, calling attention,…
Calderón's problem for Lipschitz piecewise smooth conductivities
NASA Astrophysics Data System (ADS)
Eun Kim, Sung
2008-10-01
We consider Lipschitz conductivities which are piecewise smooth across polyhedral boundaries in {\\bb R}^3 . Using complex geometrical optics solutions for Schrödinger operators with certain δ-function potentials, we obtain global uniqueness for Calderón's inverse conductivity problem.
Congenital smooth muscle hamartoma of the palpebral conjunctiva.
Mora, L Evelyn; Rodríguez-Reyes, Abelardo A; Vera, Ana M; Rubio, Rosa Isela; Mayorquín-Ruiz, Mariana; Salcedo, Guillermo
2012-01-01
Smooth muscle hamartoma is defined as a disorganized focus or an overgrowth of mature smooth muscle, generally with low capacity of autonomous growth and benign behavior. The implicated tissues are mature and proliferate in a disorganized fashion. A healthy 5-day-old Mexican boy was referred to the authors' hospital in México city for evaluation of a "cystic" lesion of the right eye that had been noted since birth. The pregnancy and delivery were unremarkable. On physical examination, there was a reddish-pink soft lesion with a tender "cystic" appearance, which was probably emerging from the upper eyelid conjunctiva, which measured 2.7 cm in its widest diameter and transilluminated. Ultrasound imaging revealed an anterior "cystic" lesion with normally formed phakic eye. An excisional biopsy was performed, and the lesion was dissected from the upper tarsal subconjunctival space. Subsequent histologic and immunohistochemical findings were consistent with the diagnosis of congenital smooth muscle hamartoma (CSMH) of the tarsal conjunctiva. The authors' research revealed that only one case of CSMH localized in the conjunctiva (Roper GJ, Smith MS, Lueder GT. Congenital smooth muscle hamartoma of the conjunctival fornix. Am J Ophthalmol. 1999;128:643-4) has been reported to date in the literature. To the best of the authors' knowledge, this current case would be the second case reported of CSMH in this anatomic location. Therefore, the authors' recommendation is to include CSMH in the differential diagnosis of a cystic mass that presents in the fornix and palpebral conjunctiva.
Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension.
Perros, F; Dorfmüller, P; Souza, R; Durand-Gasselin, I; Godot, V; Capel, F; Adnot, S; Eddahibi, S; Mazmanian, M; Fadel, E; Hervé, P; Simonneau, G; Emilie, D; Humbert, M
2007-05-01
Pulmonary hypertension is characterised by a progressive increase in pulmonary arterial resistance due to endothelial and smooth muscle cell proliferation resulting in chronic obstruction of small pulmonary arteries. There is evidence that inflammatory mechanisms may contribute to the pathogenesis of human and experimental pulmonary hypertension. The aim of the study was to address the role of fractalkine (CX3CL1) in the inflammatory responses and pulmonary vascular remodelling of a monocrotaline-induced pulmonary hypertension model. The expression of CX3CL1 and its receptor CX3CR1 was studied in monocrotaline-induced pulmonary hypertension by means of immunohistochemistry and quantitative reverse-transcription PCR on laser-captured microdissected pulmonary arteries. It was demonstrated that CX3CL1 was expressed by inflammatory cells surrounding pulmonary arterial lesions and that smooth muscle cells from these vessels had increased CX3CR1 expression. It was then shown that cultured rat pulmonary artery smooth muscle cells expressed CX3CR1 and that CX3CL1 induced proliferation but not migration of these cells. In conclusion, the current authors proposed that fractalkine may act as a growth factor for pulmonary artery smooth muscle cells. Chemokines may thus play a role in pulmonary artery remodelling.
Wide-band array signal processing via spectral smoothing
NASA Technical Reports Server (NTRS)
Xu, Guanghan; Kailath, Thomas
1989-01-01
A novel algorithm for the estimation of direction-of-arrivals (DOA) of multiple wide-band sources via spectral smoothing is presented. The proposed algorithm does not require an initial DOA estimate or a specific signal model. The advantages of replacing the MUSIC search with an ESPRIT search are discussed.
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
Older Smooth Plains on Mercury Obscured by Impact Features
NASA Astrophysics Data System (ADS)
Byrne, P. K.; Denevi, B. W.; Klimczak, C.; Prockter, L. M.; Solomon, S. C.; Whitten, J.; Head, J. W.
2012-12-01
On the basis of morphology and spectral reflectance, the surface of Mercury can be broadly divided into three major terrain types: low-reflectance material, intermediate terrain, and smooth plains. This last terrain type is distinguished morphologically by a comparatively smooth and gently rolling surface, has a lower density of impact craters and basins than other surface units on the planet, and typically occupies low-lying areas. Their smooth texture, embayment of other landforms, and distinctive partial to complete burial of older impact features suggests that most of these plains are probably volcanic in nature. Recent mapping work has shown that smooth plains younger than the end of the late heavy bombardment (LHB) occupy ~30% of Mercury's surface. An outstanding question concerns the distribution and nature of older plains units on the planet, especially those that underlie large impact features and may correspond morphologically to smooth plains but have not yet been mapped accordingly. A preliminary survey of such terrain yielded five exemplar sites: at the Amaral (26.5°S, 117.8°E; 101 km diameter), Mickiewicz (23.2°N, 256.7°E; 103 km), and Vivaldi (13.8°N, 274.1°E; 212 km) basins and at two unnamed features at 53.1°S, 38.6°E (83 km in diameter) and 7.1°N, 38.3°E (118 km). We expect that more thorough mapping will uncover additional candidate areas. In each of the example sites, an extensive continuous ejecta deposit and secondary impact field characterize the proximal and distal facies, respectively, of the impact feature; and in each case, the secondaries field (and impact-sculpted terrain in the case of Vivaldi) is superposed upon patches of plains that otherwise appear smooth and host numerous, flooded antecedent craters tens of kilometers in diameter. Moreover, these smooth patches occur at several ranges of azimuths surrounding each crater or basin, suggesting that they may have formed contiguous units prior to formation of the younger
Geographic smoothing of solar PV: Results from Gujarat
Klima, Kelly; Apt, Jay
2015-09-24
We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f, ranging from f^{-1.23} to f^{-1.56} (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f^{-1.66} spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f^{-1.76} spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.
Young's experiment and the finiteness of information.
Brukner, Caslav; Zeilinger, Anton
2002-05-15
Young's experiment is the quintessential quantum experiment. It is argued here that quantum interference is a consequence of the finiteness of information. The observer has the choice of whether that information manifests itself as path information or in the interference pattern or partly in both to the extent defined by the finiteness of information.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
On a Equation in Finite Algebraically Structures
ERIC Educational Resources Information Center
Valcan, Dumitru
2013-01-01
Solving equations in finite algebraically structures (semigroups with identity, groups, rings or fields) many times is not easy. Even the professionals can have trouble in such cases. Therefore, in this paper we proposed to solve in the various finite groups or fields, a binomial equation of the form (1). We specify that this equation has been…
On a Result for Finite Markov Chains
ERIC Educational Resources Information Center
Kulathinal, Sangita; Ghosh, Lagnojita
2006-01-01
In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…
Frontiers of finite temperature lattice QCD
NASA Astrophysics Data System (ADS)
Borsányi, Szabolcs
2017-03-01
I review a selection of recent finite temperature lattice results of the past years. First I discuss the extension of the equation of state towards high temperatures and finite densities, then I show recent results on the QCD topological susceptibility at high temperatures and highlight its relevance for dark matter search.
Synthesis of finite settling time discrete systems
NASA Technical Reports Server (NTRS)
Gatlin, J. A.
1978-01-01
A new finite settling time (FST) control law is presented. The performance and the flexibility of this dual-rate, sampled-data law as applied to the class of error driven, feedback control systems are demonstrated. A hybrid analog/digital simulation is performed in order to illustrate the practical aspects of this type of finite settling time design.
Extracting excited mesons from the finite volume
Doring, Michael
2014-12-01
As quark masses come closer to their physical values in lattice simulations, finite volume effects dominate the level spectrum. Methods to extract excited mesons from the finite volume are discussed, like moving frames in the presence of coupled channels. Effective field theory can be used to stabilize the determination of the resonance spectrum.
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Finite Topological Spaces as a Pedagogical Tool
ERIC Educational Resources Information Center
Helmstutler, Randall D.; Higginbottom, Ryan S.
2012-01-01
We propose the use of finite topological spaces as examples in a point-set topology class especially suited to help students transition into abstract mathematics. We describe how carefully chosen examples involving finite spaces may be used to reinforce concepts, highlight pathologies, and develop students' non-Euclidean intuition. We end with a…
Stochastic delocalization of finite populations
NASA Astrophysics Data System (ADS)
Geyrhofer, Lukas; Hallatschek, Oskar
2013-01-01
The localization of populations of replicating bacteria, viruses or autocatalytic chemicals arises in various contexts, such as ecology, evolution, medicine or chemistry. Several deterministic mathematical models have been used to characterize the conditions under which localized states can form, and how they break down due to convective driving forces. It has been repeatedly found that populations remain localized unless the bias exceeds a critical threshold value, and that close to the transition the population is characterized by a diverging length scale. These results, however, have been obtained upon ignoring number fluctuations (‘genetic drift’), which are inevitable given the discreteness of the replicating entities. Here, we study the localization/delocalization of a finite population in the presence of genetic drift. The population is modeled by a linear chain of subpopulations, or demes, which exchange migrants at a constant rate. Individuals in one particular deme, called ‘oasis’, receive a growth rate benefit, and the total population is regulated to have constant size N. In this ecological setting, we find that any finite population delocalizes on sufficiently long time scales. Depending on parameters, however, populations may remain localized for a very long time. The typical waiting time to delocalization increases exponentially with both population size and distance to the critical wind speed of the deterministic approximation. We augment these simulation results by a mathematical analysis that treats the reproduction and migration of individuals as branching random walks subject to global constraints. For a particular constraint, different from a fixed population size constraint, this model yields a solvable first moment equation. We find that this solvable model approximates very well the fixed population size model for large populations, but starts to deviate as population sizes are small. Nevertheless, the qualitative behavior of the
Scattering of light by polydisperse, randomly oriented, finite circular cylinders.
Mishchenko, M I; Travis, L D; Macke, A
1996-08-20
We use the T-matrix method, as described by Mishchenko [Appl. Opt. 32, 4652 (1993)], to compute rigorously light scattering by finite circular cylinders in random orientation. First we discuss numerical aspects of T -matrix computations specific for finite cylinders and present results of benchmark computations for a simple cylinder model. Then we report results of extensive computations for polydisperse, randomly oriented cylinders with a refractive index of 1.53 + 0.008i, diameter-to-length ratios of 1/2, 1/1.4, 1, 1.4, and 2, and effective size parameters ranging from 0 to 25. These computations parallel our recent study of light scattering by polydisperse, randomly oriented spheroids and are used to compare scattering properties of the two classes of simple convex particles. Despite the significant difference in shape between the two particle types (entirely smooth surface for spheroids and sharp rectangular edges for cylinders), the comparison shows rather small differences in the integral photometric characteristics (total optical cross sections, single-scattering albedo, and asymmetry parameter of the phase function) and the phase function. The general patterns of the other elements of the scattering matrix for cylinders and aspect-ratio-equivalent spheroids are also qualitatively similar, although noticeable quantitative differences can be found in some particular cases. In general, cylinders demonstrate much less shape dependence of the elements of the scattering matrix than do spheroids. Our computations show that, like spheroids and bispheres, cylinders with surface-equivalent radii smaller than a wavelength can strongly depolarize backscattered light, thus suggesting that backscattering depolarization for nonspherical particles cannot be universally explained by using only geometric-optics considerations.
Optimization of finite-size errors in finite-temperature calculations of unordered phases
NASA Astrophysics Data System (ADS)
Iyer, Deepak; Srednicki, Mark; Rigol, Marcos
It is common knowledge that the microcanonical, canonical, and grand canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.
Optimization of finite-size errors in finite-temperature calculations of unordered phases
NASA Astrophysics Data System (ADS)
Iyer, Deepak; Srednicki, Mark; Rigol, Marcos
2015-06-01
It is common knowledge that the microcanonical, canonical, and grand-canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.
Finite element coiled cochlea model
NASA Astrophysics Data System (ADS)
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Electroweak relaxation from finite temperature
NASA Astrophysics Data System (ADS)
Hardy, Edward
2015-11-01
We study theories which naturally select a vacuum with parametrically small Electroweak Scale due to finite temperature effects in the early universe. In particular, there is a scalar with an approximate shift symmetry broken by a technically natural small coupling to the Higgs, and a temperature dependent potential. As the temperature of the universe drops, the scalar follows the minimum of its potential altering the Higgs mass squared parameter. The scalar also has a periodic potential with amplitude proportional to the Higgs expectation value, which traps it in a vacuum with a small Electroweak Scale. The required temperature dependence of the potential can occur through strong coupling effects in a hidden sector that are suppressed at high temperatures. Alternatively, it can be generated perturbatively from a one-loop thermal potential. In both cases, for the scalar to be displaced, a hidden sector must be reheated to temperatures significantly higher than the visible sector. However this does not violate observational constraints provided the hidden sector energy density is transferred to the visible sector without disrupting big bang nucleosynthesis. We also study how the mechanism can be implemented when the visible sector is completed to the Minimal Supersymmetric Standard Model at a high scale. Models with a UV cutoff of 10 TeV and no fields taking values over a range greater than 1012 GeV are possible, although the scalar must have a range of order 108 times the effective decay constant in the periodic part of its potential.
Social exclusion in finite populations
NASA Astrophysics Data System (ADS)
Li, Kun; Cong, Rui; Wu, Te; Wang, Long
2015-04-01
Social exclusion, keeping free riders from benefit sharing, plays an important role in sustaining cooperation in our world. Here we propose two different exclusion regimes, namely, peer exclusion and pool exclusion, to investigate the evolution of social exclusion in finite populations. In the peer exclusion regime, each excluder expels all the defectors independently, and thus bears the total cost on his own, while in the pool exclusion regime, excluders spontaneously form an institution to carry out rejection of the free riders, and each excluder shares the cost equally. In a public goods game containing only excluders and defectors, it is found that peer excluders outperform pool excluders if the exclusion costs are small, and the situation is converse once the exclusion costs exceed some critical points, which holds true for all the selection intensities and different update rules. Moreover, excluders can dominate the whole population under a suitable parameters range in the presence of second-order free riders (cooperators), showing that exclusion has prominent advantages over common costly punishment. More importantly, our finding indicates that the group exclusion mechanism helps the cooperative union to survive under unfavorable conditions. Our results may give some insights into better understanding the prevalence of such a strategy in the real world and its significance in sustaining cooperation.
NASA Technical Reports Server (NTRS)
Cwik, T.; Jamnejad, V.; Zuffada, C.
1993-01-01
It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.
NASA Technical Reports Server (NTRS)
Pinson, Robin M.; Schmitt, Terri L.; Hanson, John M.
2008-01-01
Six degree-of-freedom (DOF) launch vehicle trajectories are designed to follow an optimized 3-DOF reference trajectory. A vehicle has a finite amount of control power that it can allocate to performing maneuvers. Therefore, the 3-DOF trajectory must be designed to refrain from using 100% of the allowable control capability to perform maneuvers, saving control power for handling off-nominal conditions, wind gusts and other perturbations. During the Ares I trajectory analysis, two maneuvers were found to be hard for the control system to implement; a roll maneuver prior to the gravity turn and an angle of attack maneuver immediately after the J-2X engine start-up. It was decided to develop an approach for creating smooth maneuvers in the optimized reference trajectories that accounts for the thrust available from the engines. A feature of this method is that no additional angular velocity in the direction of the maneuver has been added to the vehicle after the maneuver completion. This paper discusses the equations behind these new maneuvers and their implementation into the Ares I trajectory design cycle. Also discussed is a possible extension to adjusting closed-loop guidance.
Inherent rhythm of smooth muscle cells in rat mesenteric arterioles: An eigensystem formulation
NASA Astrophysics Data System (ADS)
Ho, I. Lin; Moshkforoush, Arash; Hong, Kwangseok; Meininger, Gerald A.; Hill, Michael A.; Tsoukias, Nikolaos M.; Kuo, Watson
2016-04-01
On the basis of experimental data and mathematical equations in the literature, we remodel the ionic dynamics of smooth muscle cells (SMCs) as an eigensystem formulation, which is valid for investigating finite variations of variables from the equilibrium such as in common experimental operations. This algorithm provides an alternate viewpoint from frequency-domain analysis and enables one to probe functionalities of SMCs' rhythm by means of a resonance-related mechanism. Numerical results show three types of calcium oscillations of SMCs in mesenteric arterioles: spontaneous calcium oscillation, agonist-dependent calcium oscillation, and agonist-dependent calcium spike. For simple single and double SMCs, we demonstrate properties of synchronization among complex signals related to calcium oscillations, and show different correlation relations between calcium and voltage signals for various synchronization and resonance conditions. For practical cell clusters, our analyses indicate that the rhythm of SMCs could (1) benefit enhancements of signal communications among remote cells, (2) respond to a significant calcium peaking against transient stimulations for triggering globally oscillating modes, and (3) characterize the globally oscillating modes via frog-leap (non-molecular-diffusion) calcium waves across inhomogeneous SMCs.
NASA Astrophysics Data System (ADS)
Wu, Hsing-Yu; Meng, Kai
2016-07-01
When a surface experiencing robotic processing to improve its optical performance (such as removing mid-spatial frequencies, localized grinding errors, and regional surface scratches), spindle speed, tool travel speed, pressure, slurry density as well as groove patterns are main factors to influence surface finishes. Based on the desired material removal rate, the Preston equation can provide optimized pressures and velocities between the tool and processed surface. Various groove patterns, however, can hardly predict by the equation because different patterns can cause unique tool deformation and pressure distribution, leading to determine unique smoothing result. In this paper, four typical groove patterns are studied: non-groove, grid grove, annular groove and radial groove with three typical tool types are evaluated by Finite Element Method (FEM) and statistics. Characteristics of these tools and groove patterns are presented in the end of this paper.
Critical initial smoothness of a two-dimensional interface for well-defined needle-structure growth
NASA Astrophysics Data System (ADS)
Mineev, M. B.
1990-12-01
Considering two-dimensional evolution of an interface, we identify qualitatively different regimes dependent on the initial smoothenss of the front characterized by the parameter γ that describes how fast an initial Fourier coefficient A0k decreases with k, when k-->∞, where A0k=e-α-βkγ. It is shown that for γ>2, after some time, the front's shape has a starlike well-defined needle structure. The number of needles increases with time, and the needles develop into cusps in finite time. For γ<=2, the starlike symmetry is broken and we have a less regular form. The conclusion is that for an almost flat initial front (α>>1, β<<1) the critical smoothness is γ=2.
Electronic chemical response indexes at finite temperature in the canonical ensemble.
Franco-Pérez, Marco; Gázquez, José L; Vela, Alberto
2015-07-14
Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.
Electronic chemical response indexes at finite temperature in the canonical ensemble
Franco-Pérez, Marco E-mail: jlgm@xanum.uam.mx Gázquez, José L. E-mail: jlgm@xanum.uam.mx; Vela, Alberto E-mail: jlgm@xanum.uam.mx
2015-07-14
Assuming that the electronic energy is given by a smooth function of the number of electrons and within the extension of density functional theory to finite temperature, the first and second order chemical reactivity response functions of the Helmholtz free energy with respect to the temperature, the number of electrons, and the external potential are derived. It is found that in all cases related to the first or second derivatives with respect to the number of electrons or the external potential, there is a term given by the average of the corresponding derivative of the electronic energy of each state (ground and excited). For the second derivatives, including those related with the temperature, there is a thermal fluctuation contribution that is zero at zero temperature. Thus, all expressions reduce correctly to their corresponding chemical reactivity expressions at zero temperature and show that, at room temperature, the corrections are very small. When the assumption that the electronic energy is given by a smooth function of the number of electrons is replaced by the straight lines behavior connecting integer values, as required by the ensemble theorem, one needs to introduce directional derivatives in most cases, so that the temperature dependent expressions reduce correctly to their zero temperature counterparts. However, the main result holds, namely, at finite temperature the thermal corrections to the chemical reactivity response functions are very small. Consequently, the present work validates the usage of reactivity indexes calculated at zero temperature to infer chemical behavior at room and even higher temperatures.
Development of an adaptive hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1994-01-01
In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.
Stabilized Finite Elements in FUN3D
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.
Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P
2016-11-11
We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.
Smooth plains on Mercury. A comparison with Vesta
NASA Astrophysics Data System (ADS)
Zambon, Francesca; De Sanctis, Maria Cristina; Carli, Cristian; Filacchione, Gianrico; Ferrari, Sabrina; Benkhoff, Johannes; Massironi, Matteo; Capaccioni, Fabrizio; Giacomini, Lorenza; Palumbo, Pasquale
2015-04-01
Mercury, the closest planet to the Sun, has been visited by MESSENGER spacecraft and it is the target of the future BepiColombo mission. After 3 years of orbit around Mercury a global coverage of the surface has been done. A recent work by Denevi et al. (2014), based on the MESSENGER data, revels that ~27% of Mercury's surface is covered by smooth plains (SP). Large part of Mercury's SP seems to have volcanic origin, while a further 2% have been identified as Odin-type plains which are of difficult interpretation and represent the knobby and hummocky plains surrounding the Caloris basin. SPs are widespread on Mercury's surface and they have an uneven distribution. Large part of SPs are mainly concentrated in the northern hemisphere, within the Caloris basins and in the circum-Caloris plains. Moreover has been observed that differences in material correspond to spectral slope variations. High-reflectance red plains (HRP) are characterized by spectral slope values greater than the average while low-reflectance blue plains (LBP) are identified thanks to their lower-than-average spectral slopes. X-Ray Spectrometer (XRS) data show that HRP-type areas are associated with a low-Fe (<4wt% Fe) basalt-like composition, while the LBP are Fe poor ultramafic composition (high Mg/Si and Ca/Si and low Al/Si)(Nittler et al., 2011; Weider et al., 2012; Denevi at al., 2014). Vesta, explored by Dawn in 2011, does not show Mercury-like smooth plain, but it presents highly localized smooth material, such as in the Marcia crater floor and rim (Yingst et al., 2014). This unit is characterized by low albedo and has been interpreted as very young impact melt. Another example of smooth terrain on Vesta has been found in the Rheasilvia basin. This area occurs in irregularly-bounded of very smooth material, located on slopes or topographically lower regions (Yingst et al., 2014). This unit has been interpreted as ejecta emplaced during the Rheasilvia impact event, which could be modified by
Spatially recursive filtering and smoothing for multibody dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1988-01-01
Methods developed recently by the author to solve the problem of forward dynamics for nonlinear joint-connected multibody systems are summarized. Solution of this problem is of interest in such application areas as robotics, deploying structures, ground vehicles, and pointing of antennas and instrumented platforms. The problem is solved by the recursive filtering and smoothing techniques of state estimation theory. The filtering stage takes the applied joint moments as inputs to produce a sequence of spatial constraint forces acting at the joints of the system. The smoothing stage takes the innovations process resulting from the filter as an input and produces a set of spatial accelerations and a corresponding set of joint-angle accelerations.
Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Vázquez-Quesada, Adolfo; Ellero, Marco; Español, Pep
2009-01-01
Dissipative particle dynamics (DPD) as a model of fluid particles suffers from the problem that it has no physical scale associated with the particles. Therefore, a DPD simulation requires an ambiguous fine-tuning of the model parameters with the physical parameters. A corrected version of DPD that does not suffer from this problem is smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)]. SDPD is, in fact, a version of the well-known smoothed particle hydrodynamics method, albeit with the proper inclusion of thermal fluctuations. Here, we show that SDPD produces the proper scaling of the fluctuations as the resolution of the simulation is varied. This is investigated in two problems: the Brownian motion of a spherical colloidal particle and a polymer molecule in suspension.
Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics.
Vázquez-Quesada, Adolfo; Ellero, Marco; Español, Pep
2009-01-21
Dissipative particle dynamics (DPD) as a model of fluid particles suffers from the problem that it has no physical scale associated with the particles. Therefore, a DPD simulation requires an ambiguous fine-tuning of the model parameters with the physical parameters. A corrected version of DPD that does not suffer from this problem is smoothed dissipative particle dynamics (SDPD) [P. Espanol and M. Revenga, Phys. Rev. E 67, 026705 (2003)]. SDPD is, in fact, a version of the well-known smoothed particle hydrodynamics method, albeit with the proper inclusion of thermal fluctuations. Here, we show that SDPD produces the proper scaling of the fluctuations as the resolution of the simulation is varied. This is investigated in two problems: the Brownian motion of a spherical colloidal particle and a polymer molecule in suspension.
General Relativistic Smoothed Particle Hydrodynamics code developments: A progress report
NASA Astrophysics Data System (ADS)
Faber, Joshua; Silberman, Zachary; Rizzo, Monica
2017-01-01
We report on our progress in developing a new general relativistic Smoothed Particle Hydrodynamics (SPH) code, which will be appropriate for studying the properties of accretion disks around black holes as well as compact object binary mergers and their ejecta. We will discuss in turn the relativistic formalisms being used to handle the evolution, our techniques for dealing with conservative and primitive variables, as well as those used to ensure proper conservation of various physical quantities. Code tests and performance metrics will be discussed, as will the prospects for including smoothed particle hydrodynamics codes within other numerical relativity codebases, particularly the publicly available Einstein Toolkit. We acknowledge support from NSF award ACI-1550436 and an internal RIT D-RIG grant.
Smooth Horizonless Geometries Deep Inside the Black-Hole Regime
NASA Astrophysics Data System (ADS)
Bena, Iosif; Giusto, Stefano; Martinec, Emil J.; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P.
2016-11-01
We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D 1 -D 5 -P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N =(4 ,4 ) D 1 -D 5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.
Diffusive smoothing of 3D segmented medical data
Patané, Giuseppe
2014-01-01
This paper proposes an accurate, computationally efficient, and spectrum-free formulation of the heat diffusion smoothing on 3D shapes, represented as triangle meshes. The idea behind our approach is to apply a (r,r)-degree Padé–Chebyshev rational approximation to the solution of the heat diffusion equation. The proposed formulation is equivalent to solve r sparse, symmetric linear systems, is free of user-defined parameters, and is robust to surface discretization. We also discuss a simple criterion to select the time parameter that provides the best compromise between approximation accuracy and smoothness of the solution. Finally, our experiments on anatomical data show that the spectrum-free approach greatly reduces the computational cost and guarantees a higher approximation accuracy than previous work. PMID:26257940
Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calcification
Leopold, Jane A.
2014-01-01
Vascular calcification is highly prevalent and, when present, is associated with major adverse cardiovascular events. Vascular smooth muscle cells play an integral role in mediating vessel calcification by undergoing differentiation to osteoblast-like cells and generating matrix vesicles that serve as a nidus for calcium-phosphate deposition in the vessel wall. Once believed to be a passive process, it is now recognized that vascular calcification is a complex and highly regulated process that involves activation of cellular signaling pathways, circulating inhibitors of calcification, genetic factors, and hormones. This review will examine several of the key mechanisms linking vascular smooth muscle cells to vessel calcification that may be targeted to reduce vessel wall mineralization and, thereby, reduce cardiovascular risk. PMID:25435520
Combining sparseness and smoothness improves classification accuracy and interpretability.
de Brecht, Matthew; Yamagishi, Noriko
2012-04-02
Sparse logistic regression (SLR) has been shown to be a useful method for decoding high-dimensional fMRI and MEG data by automatically selecting relevant feature dimensions. However, when applied to signals with high spatio-temporal correlations, SLR often over-prunes the feature space, which can result in overfitting and weight vectors that are difficult to interpret. To overcome this problem, we investigate a modification of ℓ₁-normed sparse logistic regression, called smooth sparse logistic regression (SSLR), which has a spatio-temporal "smoothing" prior that encourages weights that are close in time and space to have similar values. This causes the classifier to select spatio-temporally continuous groups of features, whereas SLR classifiers often select a scattered collection of independent features. We applied the method to both simulation data and real MEG data. We found that SSLR consistently increases classification accuracy, and produces weight vectors that are more meaningful from a neuroscientific perspective.
Gravitational lensing by a smoothly variable surface mass density
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan; Wambsganss, Joachim
1989-01-01
The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.
Contractile proteins of endothelial cells, platelets and smooth muscle.
Becker, C G; Nachman, R L
1973-04-01
In experiments described herein it was observed, by direct and indirect immunofluorescence technics, that rabbit antisera to human platelet actomyosin (thrombosthenin) stained mature megakaryocytes, blood platelets, endothelial cells and smooth muscle cells of arteries and veins, endothelial cells of liver sinusoids and certain capillaries, uterine smooth muscle cells, myoepithelial cells, perineurial cells of peripheral nerves and "fibroblastic" cells of granulation tissue. The specificity of immunohistologic staining was confirmed by appropriate absorption and blocking studies and immunodiffusional analysis in agarose gel. It was also observed by immunodiffusional analysis in agarose gel, electrophoresis of actomyosin fragments in polyacrylamide gels, immune inhibition of actomyosin ATPase activity and immune aggregation of platelets that uterine and platelet actomyosin are partially, but not completely, identical.
Skeletal muscle-smooth muscle interaction: an unusual myoelastic system.
Hikida, R S; Peterson, W J
1983-09-01
The serratus superficialis metapatagialis (SSM) of pigeons is a skeletal muscle with unusual properties. It lies between the ribs and the trailing edge of the wing, where it is attached to the skin by a system of smooth muscles having elastic tendons. Wing movements during flight induce marked changes in this muscle's length. The SSM inserts onto the deep fascia, and at its termination the skeletal muscle contains large numbers of microtubules. Many myofibrils attach to leptomeric organelles, which then attach to the terminal end of the skeletal muscle fiber. The deep fascia next connects to the dermis of the skin by bundles of smooth muscles that have elastic tendons at both ends. This system allows large movements of the muscle while preventing its fibers from overstretching. The movements and presumed forces acting at this muscle make the presence of sensory receptors such as muscle spindles unlikely. Spindles are absent in this muscle.
A new seamless, smooth, interior, absorptive finishing system
NASA Astrophysics Data System (ADS)
D'Antonio, Peter
2003-10-01
Government architecture typically employs classic forms of vaults, domes and other focusing or reflective shapes, usually created with hard materials like concrete and plaster. The use of conventional porous absorption is typically rejected as an acoustical surface material for aesthetic reasons. Hence, many of these new and existing facilities have compromised speech intelligibility and music quality. Acousticians have sought a field-applied, absorptive finishing system that resembles a smooth plaster or painted drywall surface, since the dawn of architectural acoustics. Some success has been achieved using sprayed cellulose or cementitious materials, but surface smoothness has been a challenge. A new approach utilizing a thin microporous layer of mineral particles applied over a mineral wool panel will be described. This material can be applied to almost any shape surface, internally pigmented to match almost any color and renovated. Because of these unique characteristics the new seamless, absorptive, finishing system is being specified for many new and renovated spaces. Application examples will be presented.
Multiple liquid bridges with non-smooth interfaces
NASA Astrophysics Data System (ADS)
Fel, Leonid G.; Rubinstein, Boris Y.; Ratner, Vadim
2016-08-01
We consider a coexistence of two axisymmetric liquid bridges LB i and LB m of two immiscible liquids i and m which are immersed in a third liquid (or gas) e and trapped between two smooth solid bodies with axisymmetric surfaces S 1, S 2 and free contact lines. Evolution of liquid bridges allows two different configurations of LB i and LB m with multiple (five or three) interfaces of non-smooth shape. We formulate a variational problem with volume constraints and present its governing equations supplemented by boundary conditions. We find a universal relationship between curvature of the interfaces and discuss the Neumann triangle relations at the singular curve where all liquids meet together.
REGIONALLY SMOOTHED META-ANALYSIS METHODS FOR GWAS DATASETS
Begum, Ferdouse; Sharker, Monir H.; Sherman, Stephanie L.; Tseng, George C.; Feingold, Eleanor
2015-01-01
Genome-wide association studies (GWAS) are proven tools for finding disease genes, but it is often necessary to combine many cohorts into a meta-analysis to detect statistically significant genetic effects. Often the component studies are performed by different investigators on different populations, using different chips with minimal SNPs overlap. In some cases, raw data are not available for imputation so that only the genotyped SNP results can be used in meta-analysis. Even when SNP sets are comparable, different cohorts may have peak association signals at different SNPs within the same gene due to population differences in linkage disequilibrium or environmental interactions. We hypothesize that the power to detect statistical signals in these situations will improve by using a method that simultaneously meta-analyzes and smooths the signal over nearby markers. In this study we propose regionally smoothed meta-analysis (RSM) methods and compare their performance on real and simulated data. PMID:26707090
Smoothed Profile Method to Simulate Colloidal Particles in Complex Fluids
NASA Astrophysics Data System (ADS)
Yamamoto, Ryoichi; Nakayama, Yasuya; Kim, Kang
A new direct numerical simulation scheme, called "Smoothed Profile (SP) method," is presented. The SP method, as a direct numerical simulation of particulate flow, provides a way to couple continuum fluid dynamics with rigid-body dynamics through smoothed profile of colloidal particle. Our formulation includes extensions to colloids in multicomponent solvents such as charged colloids in electrolyte solutions. This method enables us to compute the time evolutions of colloidal particles, ions, and host fluids simultaneously by solving Newton, advection-diffusion, and Navier-Stokes equations so that the electro-hydrodynamic couplings can be fully taken into account. The electrophoretic mobilities of charged spherical particles are calculated in several situations. The comparisons with approximation theories show quantitative agreements for dilute dispersions without any empirical parameters.
Smoothed particle hydrodynamics method from a large eddy simulation perspective
NASA Astrophysics Data System (ADS)
Di Mascio, A.; Antuono, M.; Colagrossi, A.; Marrone, S.
2017-03-01
The Smoothed Particle Hydrodynamics (SPH) method, often used for the modelling of the Navier-Stokes equations by a meshless Lagrangian approach, is revisited from the point of view of Large Eddy Simulation (LES). To this aim, the LES filtering procedure is recast in a Lagrangian framework by defining a filter that moves with the positions of the fluid particles at the filtered velocity. It is shown that the SPH smoothing procedure can be reinterpreted as a sort of LES Lagrangian filtering, and that, besides the terms coming from the LES convolution, additional contributions (never accounted for in the SPH literature) appear in the equations when formulated in a filtered fashion. Appropriate closure formulas are derived for the additional terms and a preliminary numerical test is provided to show the main features of the proposed LES-SPH model.
Efficient sinogram smoothing for dynamic neuroreceptor PET imaging
NASA Astrophysics Data System (ADS)
Pan, Xiaochuan; La Riviere, Patrick J.; Ye, James; Mukherjee, J.; Chen, Chin-Tu
1997-05-01
We have developed image-restoration techniques applicable to dynamic positron emission tomography that improve the visual quality and quantitative accuracy of neuroreceptor images. Starting wit data from a study of dopamine D-2 receptors in rhesus monkey striata using selective radioligands such as fallypride, we performed a novel effective 3D smoothing of the dynamic sinogram at a much lower computational cost than a truly 3D, adaptive smoothing. The processed sinogram was then input to a standard filtered back-projection algorithm and the resulting images were sharper and less noisy than images reconstructed from the unprocessed sinogram. Simulations were performed and the radioligand binding curves extracted from the restored images were found to be smoother and more accurate than those extracted form the unprocessed reconstructions. Comparison was also made to reconstructions from sinograms processed by the principal component analysis/projection onto convex sets algorithm.
Color Demosaicing Using Asymmetric Directional Interpolation and Hue Vector Smoothing
NASA Astrophysics Data System (ADS)
Takahashi, Yoshihisa; Hiraki, Kentaro; Kikuchi, Hisakazu; Muramatsu, Shogo
This paper presents a color demosaicing method applied to the Bayer pattern color filter array (CFA). Reliable estimation of an edge direction, edge-directed asymmetric interpolation, and the use of color samples at immediate neighbors are considered as the key guidelines for smooth and sharp image restoration. Also, special interest is directed to local areas that are rich in high spatial frequency variations. For suppression of false colors likely to occur in those areas, a hue vector representation is introduced so that the spatial correlation between different color components may be exploited in consistent with the local constant-hue principle. Smoothing is repeated in the hue vector field a few times. Experimental results have shown preferable performances in terms of PSNR, CIELAB color difference, hue angle difference, CIE chromaticity and visual appearance, in particular resulting in less false colors.
Effects of sodium selenite on vascular smooth muscle reactivity.
Togna, G; Russo, P; Pierconti, F; Caprino, L
2000-02-01
The effects of sodium selenite (Na(2)SeO(3)) on the vascular smooth muscle reactivity of rabbit aorta were studied. In isolated rabbit aorta, Na(2)SeO(3) inhibited contractile response to phenylephrine and developed a lasting contracture in the vascular tissue. Relaxation in phenylephrine-precontracted aortic rings induced by sodium nitroprusside and 8-bromo-guanosine 3':5'-cyclic-monophosphate was also inhibited. Preliminary data obtained with ascorbic acid suggested a partial involvement of an oxidative mechanism. Excluding the possibility that Se damages actin or modifies its distribution (immunohistochemical evaluation), results indicate that Se alters vascular smooth muscle reactivity by inhibiting both its contracting and relaxing properties. Calcium-dependent mechanisms appear to be primarily involved and an interference with calcium re-uptake by sarcoplasmic reticulum as a possible site of Se vascular action could be hypothesized.
Movement of a finite body in channel flow
NASA Astrophysics Data System (ADS)
Smith, Frank T.; Johnson, Edward R.
2016-07-01
A body of finite size is moving freely inside, and interacting with, a channel flow. The description of this unsteady interaction for a comparatively dense thin body moving slowly relative to flow at medium-to-high Reynolds number shows that an inviscid core problem with vorticity determines much, but not all, of the dominant response. It is found that the lift induced on a body of length comparable to the channel width leads to differences in flow direction upstream and downstream on the body scale which are smoothed out axially over a longer viscous length scale; the latter directly affects the change in flow directions. The change is such that in any symmetric incident flow the ratio of slopes is found to be cos (π / 7 ), i.e. approximately 0.900969, independently of Reynolds number, wall shear stresses and velocity profile. The two axial scales determine the evolution of the body and the flow, always yielding instability. This unusual evolution and linear or nonlinear instability mechanism arise outside the conventional range of flow instability and are influenced substantially by the lateral positioning, length and axial velocity of the body.
Finite element modeling of a progressively expanding shape memory stent.
Thériault, Philippe; Terriault, Patrick; Brailovski, Vladimir; Gallo, Richard
2006-01-01
Cardiovascular stents are small cylindrical devices introduced in stenosed arteries to reopen the lumen and restore blood flow. However, this treatment presents complications, including restenosis, which is the reclosing of the artery's diameter after the insertion of a stent. The structure of the prosthesis penetrates into and injures the walls of the patient's artery. There then follows a proliferation of cells and the formation of scar tissue around the injury, similar to the scarring of other organic tissues. This reaction to the trauma subjects the artery to close. The proposed solution is to develop a Nitinol stent with a progressive expansion device made of polyethylene, allowing smooth and gradual contact between the stent and the artery's wall by creep effect. The purpose of this paper is to describe the technology and methodology for the numerical study of this kind of stent through the finite element method. ANSYS 8.0 software is used to perform the analysis. The Nitinol is modeled with a superelastic law and the polyethylene with a yield hardening law. A first simulation determines the final geometry of the stent laser cut from a small tube. A second simulation examines the behavior of the prosthesis during surgery and over the 4 weeks following the operation. The results demonstrate that a compromise can be reached between a limited expansion prior the inflation of the expandable balloon and a significant expansion by creep of the polymer rings.
High-order Finite Element Analysis of Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Zhang, Alvin; Sahni, Onkar
2014-11-01
Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.
A finite volume model simulation for the Broughton Archipelago, Canada
NASA Astrophysics Data System (ADS)
Foreman, M. G. G.; Czajko, P.; Stucchi, D. J.; Guo, M.
A finite volume circulation model is applied to the Broughton Archipelago region of British Columbia, Canada and used to simulate the three-dimensional velocity, temperature, and salinity fields that are required by a companion model for sea lice behaviour, development, and transport. The absence of a high resolution atmospheric model necessitated the installation of nine weather stations throughout the region and the development of a simple data assimilation technique that accounts for topographic steering in interpolating/extrapolating the measured winds to the entire model domain. The circulation model is run for the period of March 13-April 3, 2008 and correlation coefficients between observed and model currents, comparisons between model and observed tidal harmonics, and root mean square differences between observed and model temperatures and salinities all showed generally good agreement. The importance of wind forcing in the near-surface circulation, differences between this simulation and one computed with another model, the effects of bathymetric smoothing on channel velocities, further improvements necessary for this model to accurately simulate conditions in May and June, and the implication of near-surface current patterns at a critical location in the 'migration corridor' of wild juvenile salmon, are also discussed.
Effects of finite-time singularities on gravitational waves
NASA Astrophysics Data System (ADS)
Kleidis, K.; Oikonomou, V. K.
2016-10-01
We analyze the impact of finite-time singularities on gravitational waves, in the context of F(R) gravity. We investigate which singularities are allowed to occur during the inflationary era, when gravitational waves are considered, and we discuss the quantitative implications of each allowed singularity. As we show, only a pressure singularity, the so-called Type II and also a Type IV singularity are allowed to occur during the inflationary era. In the case of a Type II, the resulting amplitude of the gravitational wave is zero or almost zero, hence this pressure singularity has a significant impact on the primordial gravitational waves. The case of a Type IV singularity is more interesting since as we show, the singularity has no effect on the amplitude of the gravitational waves. Therefore, this result combined with the fact that the Type IV singularity affects only the dynamics of inflation, leads to the conclusion that the Universe passes smoothly through a Type IV singularity.
Nonlinear harmonic generation in finite amplitude black hole oscillations
NASA Astrophysics Data System (ADS)
Papadopoulos, Philippos
2002-04-01
The nonlinear generation of harmonics in gravitational perturbations of black holes is explored using numerical relativity based on an ingoing light-cone framework. Localized, finite, perturbations of an isolated black hole are parametrized by amplitude and angular harmonic form. The response of the black hole spacetime is monitored and its harmonic content analyzed to identify the strength of the nonlinear generation of harmonics as a function of the initial data amplitude. It is found that overwhelmingly the black hole responds at the harmonic mode perturbed, even for spacetimes with 10% of the black hole mass radiated. The coefficients for down and up scattering in harmonic space are computed for a range of couplings. Down scattering, leading to smoothing out of angular structure, is found to be equally as or more efficient than the up scatterings that would lead to increased rippling. The details of this nonlinear balance may form the quantitative mechanism by which black holes avoid fission even for arbitrary strong distortions.
Finite deformation analysis of geomaterials
NASA Astrophysics Data System (ADS)
Jeremi, Boris; Runesson, Kenneth; Sture, Stein
2001-07-01
The mathematical structure and numerical analysis of classical small deformation elasto-plasticity is generally well established. However, development of large deformation elastic-plastic numerical formulation for dilatant, pressure sensitive material models is still a research area.In this paper we present development of the finite element formulation and implementation for large deformation, elastic-plastic analysis of geomaterials. Our developments are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. A consistent linearization of the right deformation tensor together with the Newton method at the constitutive and global levels leads toward an efficient and robust numerical algorithm. The presented numerical formulation is capable of accurately modelling dilatant, pressure sensitive isotropic and anisotropic geomaterials subjected to large deformations. In particular, the formulation is capable of simulating the behaviour of geomaterials in which eigentriads of stress and strain do not coincide during the loading process.The algorithm is tested in conjunction with the novel hyperelasto-plastic model termed the B material model, which is a single surface (single yield surface, affine single ultimate surface and affine single potential surface) model for dilatant, pressure sensitive, hardening and softening geomaterials. It is specifically developed to model large deformation hyperelasto-plastic problems in geomechanics.We present an application of this formulation to numerical analysis of low confinement tests on cohesionless granular soil specimens recently performed in a SPACEHAB module aboard the Space Shuttle during the STS-89 mission. We compare numerical modelling with test results and show the significance of added confinement by the thin hyperelastic latex membrane undergoing large stretching.
Smooth surface glass ionomer restoration for primary teeth.
Killian, C M; Croll, T P
1991-01-01
Glass ionomer restorative cement offers the clinician an alternative to bonded composite resin for restoration of certain lesions in primary teeth. This article details a step-by-step procedure for restoration of a smooth surface carious lesion in a primary incisor using an encapsulated glass ionomer restorative material and reviews advantages and limitations of the cement. A light-hardened glass ionomer liner/base that has proven useful as an enamel and dentin restorative is also described.
On the existence of smooth Cauchy steep time functions
NASA Astrophysics Data System (ADS)
Minguzzi, E.
2016-06-01
A simple proof (based on results in Chruściel et al 2015 Ann. Henri Poincaré arXiv:1301.2909) is given that every globally hyperbolic spacetime admits a smooth Cauchy steep time function. This result is useful in order to show that globally hyperbolic spacetimes can be isometrically embedded in Minkowski spacetimes and that they split as a product. The proof is based on a recent result on the differentiability of Geroch’s volume functions.
Ultra-smooth finishing of aspheric surfaces using CAST technology
NASA Astrophysics Data System (ADS)
Kong, John; Young, Kevin
2014-06-01
Growing applications for astronomical ground-based adaptive systems and air-born telescope systems demand complex optical surface designs combined with ultra-smooth finishing. The use of more sophisticated and accurate optics, especially aspheric ones, allows for shorter optical trains with smaller sizes and a reduced number of components. This in turn reduces fabrication and alignment time and costs. These aspheric components include the following: steep surfaces with large aspheric departures; more complex surface feature designs like stand-alone off-axis-parabola (OAP) and free form optics that combine surface complexity with a requirement for ultra-high smoothness, as well as special optic materials such as lightweight silicon carbide (SiC) for air-born systems. Various fabrication technologies for finishing ultra-smooth aspheric surfaces are progressing to meet these growing and demanding challenges, especially Magnetorheological Finishing (MRF) and ion-milling. These methods have demonstrated some good success as well as a certain level of limitations. Amongst them, computer-controlled asphere surface-finishing technology (CAST), developed by Precision Asphere Inc. (PAI), plays an important role in a cost effective manufacturing environment and has successfully delivered numerous products for the applications mentioned above. One of the most recent successes is the Gemini Planet Imager (GPI), the world's most powerful planet-hunting instrument, with critical aspheric components (seven OAPs and free form optics) made using CAST technology. GPI showed off its first images in a press release on January 7, 2014 . This paper reviews features of today's technologies in handling the ultra-smooth aspheric optics, especially the capabilities of CAST on these challenging products. As examples, three groups of aspheres deployed in astronomical optics systems, both polished and finished using CAST, will be discussed in detail.
Arc-based smoothing of ion beam intensity on targets
Friedman, Alex
2012-06-20
Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less
Arc-based smoothing of ion beam intensity on targets
Friedman, Alex
2012-06-15
By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.
Arc-based smoothing of ion beam intensity on targets
Friedman, Alex
2012-06-20
Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.
Smoothing CFM56 engine removal rate at USAir
Halsmer, R.A.; Matson, R.E. )
1992-07-01
An overview is presented of the airborne developed engine performance trending (ADEPT) engine condition monitoring system, employed to smooth out engine removal variance, incurred over annual seasonal ambient temperature variations. The cyclic nature of engine removals and the problems it creates are discussed, and the specific steps that can be taken to minimize the highs and lows are outlined. A summary of the benefits attained by using the ADEPT system is given.
Menthol inhibiting parasympathetic function of tracheal smooth muscle
Wang, Hsing-Won; Liu, Shao-Cheng; Chao, Pin-Zhir; Lee, Fei-Peng
2016-01-01
Menthol is used as a constituent of food and drink, tobacco and cosmetics nowadays. This cold receptor agonist has been used as a nasal inhalation solution in the daily life. The effect of menthol on nasal mucosa in vivo is well known; however, the effect of the drug on tracheal smooth muscle has been rarely explored. Therefore, during administration of the drug for nasal symptoms, it might also affect the trachea via oral intake or inhalation. We used our preparation to test the effectiveness of menthol on isolated rat tracheal smooth muscle. A 5 mm long portion of rat trachea was submersed in 30 ml Krebs solution in a muscle bath at 37ºC. Changes in tracheal contractility in response to the application of a parasympathetic mimetic agent were measured using a transducer connected to a Pentium III computer equipped with polygraph software. The following assessments of menthol were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10-6 M methacholine as a parasympathetic mimetic; (3) effect of the drug on electrically induced tracheal smooth muscle contractions. Results indicated that addition of a parasympathetic mimetic to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of menthol at doses of 10-5 M or above elicited a relaxation response to 10-6 M methacholine-induced contraction. Menthol could also inhibit electrical field stimulation (EFS) induced spike contraction. However, it alone had a minimal effect on the basal tension of trachea as the concentration increased. We concluded that the degree of drug-induced tracheal contraction or relaxation was dose-dependent. In addition, this study indicated that high concentrations of menthol might actually inhibit parasympathetic function of the trachea. PMID:27994497
High-order conservative finite difference GLM-MHD schemes for cell-centered MHD
NASA Astrophysics Data System (ADS)
Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi
2010-08-01
We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.
Antioscillons from bubble collisions at finite temperature
NASA Astrophysics Data System (ADS)
Mersini-Houghton, Laura
2014-04-01
We study the role of the topology of bubbles at finite temperatures plays on collisions and the existence of new field configurations. We show that in the case of false vacuum decay at finite temperature, the cylindrical symmetry of bubbles admits a new exotic field with negative energies, the antiperiodic "twisted" field. New field configurations arise generically, not only at finite temperatures but whenever a cluster of bubbles resulting from collisions form nontrivial topologies. The interaction of both configurations induces instabilites on the bubble. Collisions of bubbles occupied by the new fields can lead to the emergence of new structures, named antioscillons.
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Finite solutions of fully fuzzy linear system
NASA Astrophysics Data System (ADS)
Malkawi, Ghassan; Ahmad, Nazihah; Ibrahim, Haslinda
2014-12-01
The solution of Fully Fuzzy Linear System (FFLS) is normally categorized as unique, finite and infinitely many solutions. However, in the case of more than one solution, the finite or alternative solution is not detected when linear programming is considered. Therefore this paper aims to provide a method of using min-max system and absolute system to append new concept for the consistency of FFLS, which is called finite solution of FFLS, where the FFLS have more than two solutions, and not only an infinite solution.
Smoothed Particle Inference Analysis of SNR RCW 103
NASA Astrophysics Data System (ADS)
Frank, Kari A.; Burrows, David N.; Dwarkadas, Vikram
2016-04-01
We present preliminary results of applying a novel analysis method, Smoothed Particle Inference (SPI), to an XMM-Newton observation of SNR RCW 103. SPI is a Bayesian modeling process that fits a population of gas blobs ("smoothed particles") such that their superposed emission reproduces the observed spatial and spectral distribution of photons. Emission-weighted distributions of plasma properties, such as abundances and temperatures, are then extracted from the properties of the individual blobs. This technique has important advantages over analysis techniques which implicitly assume that remnants are two-dimensional objects in which each line of sight encompasses a single plasma. By contrast, SPI allows superposition of as many blobs of plasma as are needed to match the spectrum observed in each direction, without the need to bin the data spatially. This RCW 103 analysis is part of a pilot study for the larger SPIES (Smoothed Particle Inference Exploration of SNRs) project, in which SPI will be applied to a sample of 12 bright SNRs.
Jaw-movement smoothness during empty chewing and gum chewing.
Minami, Ichiro; Akhter, Rahena; Luraschi, Julien; Oogai, Kazuhiro; Nemoto, Tetsu; Peck, Christopher C; Murray, Gregory M
2012-06-01
A major goal of motor coordination is the production of a smooth movement. Jerk-cost, which is an inverse measure of movement smoothness, has been evaluated during gum chewing in previous studies. However, the effect of the gum bolus is still unclear. The aims of this study were to compare the jerk-cost values of normal gum chewing with those of empty chewing. Thirteen subjects undertook, empty chewing, then chewing of gum, and then a second empty chewing. Jerk-cost was calculated from an accelerometer attached to the skin of the mentum. There was a significantly higher smoothness (i.e. lower jerk-cost, P < 0.05) during the opening and second-half closing phases in empty chewing compared with gum chewing. There were no significant differences in jerk-costs (i.e. opening or closing) between the first and the second empty-chewing sequences. These results suggest that the influence of the mechanical effects of tooth contact on jerk-cost is not restricted just to the occlusal phase of chewing, but rather the effect influences the entire opening and closing phases of chewing.
Modified anisotropic diffusion for image smoothing and enhancement
NASA Astrophysics Data System (ADS)
Tang, Zhong; Whitaker, Ross T.
2001-05-01
This paper discusses an improved nonlinear filtering approach based on anisotropic diffusion technique. This modified anisotropic diffusion method smooths along curve directions, i.e. the directions of level sets. The upwind scheme for level set is used to solve the diffusion equation. Compared with the conventional anisotropic diffusion, which depends only on the local gradient of intensities of the processed image, this modified scheme overcomes the defect of indefinite edge enhancement associated with Perona-Malik model while depressing noises in a better performance. Moreover, a multi-scale diffusion technique is applied to limit blurring by the presence of edges as measured at the scale of interest, so that accurate information about boundaries of objects could be preserved and small details that fall below the scale of interest be removed. Then an extension into vector-valued diffusion is also presented in this paper, which is capable of smoothing small objects while maintaining boundaries information in vector-valued images. Experiments on gray-scale and color images demonstrate the efficacy of this method in image smoothing as well as image enhancement.
Hierarchical motion estimation with smoothness constraints and postprocessing
NASA Astrophysics Data System (ADS)
Xie, Kan; Van Eycken, Luc; Oosterlinck, Andre J.
1996-01-01
How to acquire accurate and reliable motion parameters from an image sequence is a knotty problem for many applications in image processing, image recognition, and video coding, especially when scenes involve moving objects with various shapes and sizes as well as very fast and complicated motion. In this paper, an improved pel-based motion estimation (ME) algorithm with smoothness constraints is presented, which is based on the investigation and the comparison of different existing pel-based ME (or optical flow) algorithms. Then, in order to cope with various moving objects and their complex motion, a hierarchical ME algorithm with smoothness constraints and postprocessing is proposed. The experimental results show that the motion parameters obtained by the hierarchical ME algorithm are quite creditable and seem to be close to the real physical motion fields if the luminance intensity changes are due to the motion of objects. The hierarchical ME algorithm still provides approximate and smooth vector fields even for scenes that involve some motion-irrelevant intensity changes or blurring caused by violent motion.
Balancing aggregation and smoothing errors in inverse models
Turner, A. J.; Jacob, D. J.
2015-06-30
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Liquid drops and surface tension with smoothed particle applied mechanics
NASA Astrophysics Data System (ADS)
Nugent, S.; Posch, H. A.
2000-10-01
Smoothed particle applied mechanics (SPAM), also referred to as smoothed particle hydrodynamics, is a Lagrangian particle method for the simulation of continuous flows. Here we apply it to the formation of a liquid drop, surrounded by its vapor, for a van der Waals (vdW) fluid in two dimensions. The cohesive pressure of the vdW equation of state gives rise to an attractive, central force between the particles with an interaction range which is assumed to exceed the interaction range of all the other smoothed forces in the SPAM equations of motion. With this assumption, stable drops are formed, and the vdW phase diagram is well reproduced by the simulations. Below the critical temperature, the surface tension for equilibrated drops may be computed from the pressure excess in their centers. It agrees very well with the surface tension independently determined from the vibrational frequency of weakly excited drops. We also study strongly deformed drops performing large-amplitude oscillations, which are reminiscent of the oscillations of a large ball of water under microgravity conditions. In an appendix we comment on the limitations of SPAM by studying the violation of angular momentum conservation, which is a consequence of noncentral forces contributed by the full Newtonian viscous stress tensor.
Bayesian smoothing of dipoles in magneto-/electroencephalography
NASA Astrophysics Data System (ADS)
Vivaldi, Valentina; Sorrentino, Alberto
2016-04-01
We describe a novel method for dynamic estimation of multi-dipole states from magneto-/electroencephalography (M/EEG) time series. The new approach builds on the recent development of particle filters for M/EEG; these algorithms approximate, with samples and weights, the posterior distribution of the neural sources at time t given the data up to time t. However, for off-line inference purposes it is preferable to work with the smoothing distribution, i.e. the distribution for the neural sources at time t conditioned on the whole time series. In this study, we use a Monte Carlo algorithm to approximate the smoothing distribution for a time-varying set of current dipoles. We show, using numerical simulations, that the estimates provided by the smoothing distribution are more accurate than those provided by the filtering distribution, particularly at the appearance of the source. We validate the proposed algorithm using an experimental data set recorded from an epileptic patient. Improved localization of the source onset can be particularly relevant in source modeling of epileptic patients, where the source onset brings information on the epileptogenic zone.
Transdifferentiation of human endothelial progenitors into smooth muscle cells.
Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W
2016-04-01
Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction.
Transcoding-after-Smoothing System for VBR MPEG Video Streaming
NASA Astrophysics Data System (ADS)
Nugraha, I. Gusti Bagus Baskara; Morita, Hiroyoshi
Delivering video streaming service over the Internet encounters some challenges. Two of them are heterogeneity of networks capacity and variability of video data rate. The capacity of network segments are constrained. Meanwhile, the rate of video data to be transmitted is highly variable in order to get near-constant images quality. Therefore, to send variable bit rate (VBR) video data over capacity-constrained network, its bit rate should be adjusted. In this paper a system to adjust the transmission bit rate of VBR MPEG video data called Transcoding-after-Smoothing (TaS), which is a combination of bit rate transcoding and bit rate smoothing algorithm, is proposed. The system smoothes out transmission rate of video data while at the same time also performs transcoding on some video frames when necessary in order to keep the transmission bit rate below a certain threshold value. Two kinds of TaS methods are proposed. One method does not have transcoding preference, while the other method uses frame type preference where an intra-coded frame is the last one that will be transcoded. These methods are implemented in our video server where a VBR video data is accessed by a client. Our experiment results show that the first TaS method yields significant reduction in the number of transcoded frames compared with the second TaS method and conventional frame-level transcoding. However, the second method performs better in minimizing the quality distortion.
Bayesian smoothing of dipoles in Magneto-/Electro-encephalography
NASA Astrophysics Data System (ADS)
Vivaldi, Valentina; Sorrentino, Alberto
2016-02-01
We describe a novel method for dynamic estimation of multi-dipole states from Magneto/Electro-encephalography (M/EEG) time series. The new approach builds on the recent development of particle filters for M/EEG; these algorithms approximate, with samples and weights, the posterior distribution of the neural sources at time t given the data up to time t. However, for off-line inference purposes it is preferable to work with the smoothing distribution, i.e. the distribution for the neural sources at time t conditioned on the whole time series. In this study, we use a Monte Carlo algorithm to approximate the smoothing distribution for a time-varying set of current dipoles. We show, using numerical simulations, that the estimates provided by the smoothing distribution are more accurate than those provided by the filtering distribution, particularly at the appearance of the source. We validate the proposed algorithm using an experimental dataset recorded from an epileptic patient. Improved localization of the source onset can be particularly relevant in source modeling of epileptic patients, where the source onset brings information on the epileptogenic zone.
Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis
Edwards, I.J.
1989-01-01
Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of ({sup 35}S)-sodium sulfate and ({sup 3}H)-serine or ({sup 3}H)-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of {sup 35}S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect.
Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation
Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva; Yang, Dan; Hilaire, Cynthia St.; Guo Ying; Palamakumbura, Amitha H.; Schreiber, Barbara M.; Ravid, Katya; Trackman, Philip C.
2008-02-01
Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.
Visual enhancement of unmixed multispectral imagery using adaptive smoothing
Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.
2004-01-01
Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.
Airway epithelial-derived factor relaxes pulmonary vascular smooth muscle.
Farah, Omar R; Li, Dongge; McIntyre, Brendan A S; Pan, Jingyi; Belik, Jaques
2009-01-01
The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this investigation was to evaluate whether bronchial epithelial cells release a pulmonary arterial smooth muscle relaxant factor. Conditioned media from SPOC-1 or BEAS-2B, a rat- and a human-derived bronchial epithelial cell line, respectively, were utilized. This media significantly relaxed precontracted adult but not fetal pulmonary arterial muscle in an oxygen tension-dependent manner. This response was mediated via soluble guanylate cyclase, involving AKT/PI3-kinase and neuronal nitric oxide synthase. Airway epithelial cell-conditioned media increased AKT phosphorylation in pulmonary smooth muscle cells (SMC) and reduced intracellular calcium change following ATP stimulation to a significantly greater extent than observed for bronchial SMC. The present data strongly support the evidence for bronchial epithelial cells releasing a stable and soluble factor capable of inducing pulmonary arterial SMC relaxation. We speculate that under physiological conditions, the maintenance of a low pulmonary vascular resistance, postnatally, is in part modulated by the airway epithelium.
Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression.
Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael
2016-07-01
The conversion of vascular smooth muscle cells (SMCs) from contractile to proliferative phenotype is thought to play an important role in atherosclerosis. However, the contribution of this process to plaque growth has never been fully defined. In this study, we show that activation of SMC TGFβ signaling, achieved by suppression of SMC fibroblast growth factor (FGF) signaling input, induces their conversion to a contractile phenotype and dramatically reduces atherosclerotic plaque size. The FGF/TGFβ signaling cross talk was observed in vitro and in vivo In vitro, inhibition of FGF signaling increased TGFβ activity, thereby promoting smooth muscle differentiation and decreasing proliferation. In vivo, smooth muscle-specific knockout of an FGF receptor adaptor Frs2α led to a profound inhibition of atherosclerotic plaque growth when these animals were crossed on Apoe(-/-) background and subjected to a high-fat diet. In particular, there was a significant reduction in plaque cellularity, increase in fibrous cap area, and decrease in necrotic core size. In agreement with these findings, examination of human coronary arteries with various degrees of atherosclerosis revealed a strong correlation between the activation of FGF signaling, loss of TGFβ activity, and increased disease severity. These results identify SMC FGF/TGFβ signaling cross talk as an important regulator of SMC phenotype switch and document a major contribution of medial SMC proliferation to atherosclerotic plaque growth.
REFINING GENETICALLY INFERRED RELATIONSHIPS USING TREELET COVARIANCE SMOOTHING1
Crossett, Andrew; Lee, Ann B.; Klei, Lambertus; Devlin, Bernie; Roeder, Kathryn
2013-01-01
Recent technological advances coupled with large sample sets have uncovered many factors underlying the genetic basis of traits and the predisposition to complex disease, but much is left to discover. A common thread to most genetic investigations is familial relationships. Close relatives can be identified from family records, and more distant relatives can be inferred from large panels of genetic markers. Unfortunately these empirical estimates can be noisy, especially regarding distant relatives. We propose a new method for denoising genetically—inferred relationship matrices by exploiting the underlying structure due to hierarchical groupings of correlated individuals. The approach, which we call Treelet Covariance Smoothing, employs a multiscale decomposition of covariance matrices to improve estimates of pairwise relationships. On both simulated and real data, we show that smoothing leads to better estimates of the relatedness amongst distantly related individuals. We illustrate our method with a large genome-wide association study and estimate the “heritability” of body mass index quite accurately. Traditionally heritability, defined as the fraction of the total trait variance attributable to additive genetic effects, is estimated from samples of closely related individuals using random effects models. We show that by using smoothed relationship matrices we can estimate heritability using population-based samples. Finally, while our methods have been developed for refining genetic relationship matrices and improving estimates of heritability, they have much broader potential application in statistics. Most notably, for error-in-variables random effects models and settings that require regularization of matrices with block or hierarchical structure. PMID:24587841
REFINING GENETICALLY INFERRED RELATIONSHIPS USING TREELET COVARIANCE SMOOTHING.
Crossett, Andrew; Lee, Ann B; Klei, Lambertus; Devlin, Bernie; Roeder, Kathryn
2013-06-27
Recent technological advances coupled with large sample sets have uncovered many factors underlying the genetic basis of traits and the predisposition to complex disease, but much is left to discover. A common thread to most genetic investigations is familial relationships. Close relatives can be identified from family records, and more distant relatives can be inferred from large panels of genetic markers. Unfortunately these empirical estimates can be noisy, especially regarding distant relatives. We propose a new method for denoising genetically-inferred relationship matrices by exploiting the underlying structure due to hierarchical groupings of correlated individuals. The approach, which we call Treelet Covariance Smoothing, employs a multiscale decomposition of covariance matrices to improve estimates of pairwise relationships. On both simulated and real data, we show that smoothing leads to better estimates of the relatedness amongst distantly related individuals. We illustrate our method with a large genome-wide association study and estimate the "heritability" of body mass index quite accurately. Traditionally heritability, defined as the fraction of the total trait variance attributable to additive genetic effects, is estimated from samples of closely related individuals using random effects models. We show that by using smoothed relationship matrices we can estimate heritability using population-based samples. Finally, while our methods have been developed for refining genetic relationship matrices and improving estimates of heritability, they have much broader potential application in statistics. Most notably, for error-in-variables random effects models and settings that require regularization of matrices with block or hierarchical structure.
Tensor classification of structure in smoothed particle hydrodynamics density fields
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Bonnell, Ian; Lucas, William; Rice, Ken
2016-04-01
As hydrodynamic simulations increase in scale and resolution, identifying structures with non-trivial geometries or regions of general interest becomes increasingly challenging. There is a growing need for algorithms that identify a variety of different features in a simulation without requiring a `by eye' search. We present tensor classification as such a technique for smoothed particle hydrodynamics (SPH). These methods have already been used to great effect in N-Body cosmological simulations, which require smoothing defined as an input free parameter. We show that tensor classification successfully identifies a wide range of structures in SPH density fields using its native smoothing, removing a free parameter from the analysis and preventing the need for tessellation of the density field, as required by some classification algorithms. As examples, we show that tensor classification using the tidal tensor and the velocity shear tensor successfully identifies filaments, shells and sheet structures in giant molecular cloud simulations, as well as spiral arms in discs. The relationship between structures identified using different tensors illustrates how different forces compete and co-operate to produce the observed density field. We therefore advocate the use of multiple tensors to classify structure in SPH simulations, to shed light on the interplay of multiple physical processes.
TARGETING THE AIRWAY SMOOTH MUSCLE FOR ASTHMA TREATMENT
Camoretti-Mercado, Blanca
2009-01-01
Asthma is a complex respiratory disease whose incidence has increased worldwide in the last decade. There is currently no cure for asthma. While bronchodilator and anti-inflammatory medications are effective medicines in some asthmatic patients, it is clear that an unmet therapeutic need persists for a subpopulation of individuals with severe asthma. This chronic lung disease is characterized by airflow limitation and lung inflammation and remodeling that includes increased airway smooth muscle (ASM) mass. In addition to its contractile properties, the ASM also contributes to the inflammatory process by producing active mediators, modifying the extracellular matrix composition, and interacting with inflammatory cells. These undesirable functions make interventions aimed at reducing ASM abundance an attractive strategy for novel asthma therapies. There are at least three mechanisms that could limit the accumulation of smooth muscle – decreased cell proliferation, augmented cell apoptosis, and reduced cell migration into the smooth muscle layer. Inhibitors of the mevalonate pathway or statins hold promise for asthma because they exhibit anti-inflammatory, anti-migratory, and anti-proliferative effects in pre-clinical and clinical studies, and they can target the SM. This review will discuss current knowledge of ASM biology and identify gaps in the field in order to stimulate future investigations of the cellular mechanisms controlling ASM overabundance in asthma. Targeting ASM has the potential to be an innovative venue of treatment for patients with asthma. PMID:19766960
Movements of a Sphere Moving Over Smooth and Rough Inclines
NASA Astrophysics Data System (ADS)
Jan, Chyan-Deng
1992-01-01
The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free
Gravity-induced stresses in finite slopes
Savage, W.Z.
1994-01-01
An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.
Model Reduction of Viscoelastic Finite Element Models
NASA Astrophysics Data System (ADS)
Park, C. H.; Inman, D. J.; Lam, M. J.
1999-01-01
This paper examines a method of adding viscoelastic properties to finite element models by using additional co-ordinates to account for the frequency dependence usually associated with such damping materials. Several such methods exist and all suffer from an increase in order of the final finite model which is undesirable in many applications. Here we propose to combine one of these methods, the GHM (Golla-Hughes-McTavish) method, with model reduction techniques to remove the objection of increased model order. The result of combining several methods is an ability to add the effects of visoelastic components to finite element or other analytical models without increasing the order of the system. The procedure is illustrated by a numerical example. The method proposed here results in a viscoelastic finite element of a structure without increasing the order of the original model.
Model Misspecification: Finite Mixture or Homogeneous?
Tarpey, Thaddeus; Yun, Dong; Petkova, Eva
2007-01-01
A common problem in statistical modelling is to distinguish between finite mixture distribution and a homogeneous non-mixture distribution. Finite mixture models are widely used in practice and often mixtures of normal densities are indistinguishable from homogenous non-normal densities. This paper illustrates what happens when the EM algorithm for normal mixtures is applied to a distribution that is a homogeneous non-mixture distribution. In particular, a population-based EM algorithm for finite mixtures is introduced and applied directly to density functions instead of sample data. The population-based EM algorithm is used to find finite mixture approximations to common homogeneous distributions. An example regarding the nature of a placebo response in drug treated depressed subjects is used to illustrate ideas. PMID:18974843
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
Super-renormalizable and finite gravitational theories
NASA Astrophysics Data System (ADS)
Modesto, Leonardo; Rachwał, Lesław
2014-12-01
We hereby introduce and extensively study a class of non-polynomial higher derivative theories of gravity that realize a ultraviolet (UV) completion of Einstein general relativity. These theories are unitary (ghost free) and at most only one-loop divergences survive. The outcome is a class of theories super-renormalizable in even dimension and finite in odd dimension. Moreover, we explicitly prove in D = 4 that there exists an extension of the theory that is completely finite and all the beta functions vanish even at one-loop. These results can be easily extended in extra dimensions and it is likely that the higher dimensional theory can be made finite, too. Therefore we have the possibility for "finite quantum gravity" in any dimension.
Patel, Chirag A; Rattan, Satish
2006-11-01
The internal anal sphincter (IAS) tone is important for the rectoanal continence. The RhoA/Rho kinase (ROK) pathway has been associated with the agonist-induced sustained contraction of the smooth muscle, but its role in the spontaneously tonic smooth muscle is not known. Present studies compared expression of different components of the RhoA/ROK pathway between the IAS (a truly tonic SM), the rectal smooth muscle (RSM) (a mixture of phasic and tonic), and anococcygeus smooth muscle (ASM) (a purely phasic SM) of rat. RT-PCR and Western blot analyses were performed to determine RhoA, ROCK-II, CPI-17, MYPT1, and myosin light-chain 20 (MLC20). Phosphorylated CPI-17 at threonine-38 residue (p(Thr38)-CPI-17), MYPT1 at threonine-696 residue (p(Thr696)-MYPT1), and MLC20 at threonine-18/serine-19 residues (p(Thr18/Ser19)-MLC20) were also determined in the basal state and after pretreatment with the ROK inhibitor Y 27632. In addition, we compared the effect of Y 27632 on the basal isometric tension and ROK activity in the IAS vs. the RSM. Our data show the highest levels of RhoA, ROCK-II, CPI-17, MLC20, and of phospho-MYPT1, -CPI-17, and -MLC20 in the IAS followed by in the RSM and ASM. Conversely, MYPT1 levels were lowest in the IAS and highest in the ASM. In the IAS, Y 27632 caused a concentration-dependent decrease in the basal tone, levels of phospho-MYPT1, -CPI-17, and -MLC20, and ROK activity. We conclude that RhoA/ROK plays a critical role in the basal tone in the IAS by the inhibition of MLC phosphatase via the phosphorylation of MYPT1 and CPI-17.