Sample records for educating engineering designers

  1. Engineering Design Education Program for Graduate School

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Yoshifumi; Iida, Haruhiko

    The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.

  2. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  3. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    NASA Astrophysics Data System (ADS)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  4. The Engineering of Engineering Education: Curriculum Development from a Designer's Point of View

    ERIC Educational Resources Information Center

    Rompelman, Otto; De Graaff, Erik

    2006-01-01

    Engineers have a set of powerful tools at their disposal for designing robust and reliable technical systems. In educational design these tools are seldom applied. This paper explores the application of concepts from the systems approach in an educational context. The paradigms of design methodology and systems engineering appear to be suitable…

  5. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  6. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  7. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  8. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  9. Combined Engineering Education Based on Regional Needs Aiming for Design Education

    NASA Astrophysics Data System (ADS)

    Hama, Katsumi; Yaegashi, Kosuke; Kobayashi, Junya

    The importance of design education that cultivates integrated competences has been suggested in higher educational institutions in fields of engineering in relation to quality assurance of engineering education. However, it is also pointed out to lay stress on cooperative education in collaboration with the community because there is a limit to correspond to the design education only by a group of educational institutions. This paper reports the outline of the practical engineering education, which is executing in the project learning of Hakodate National College of Technology, based on regional needs and the result of the activity as a model of education program for fusion and combination.

  10. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    ERIC Educational Resources Information Center

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  11. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  12. Engineer's Notebook--A Design Assessment Tool

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  13. New Perspectives: Technology Teacher Education and Engineering Design

    ERIC Educational Resources Information Center

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident. The National Science Foundation has encouraged and funded opportunities for technology educators and engineers to work collaboratively. However, perspectives regarding the role engineering should play within the discipline of technology…

  14. Green engineering education through a U.S. EPA/academia collaboration.

    PubMed

    Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert

    2003-12-01

    The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.

  15. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    NASA Astrophysics Data System (ADS)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  16. Inclusion by Design: Engineering Inclusive Practices in Secondary Schools

    ERIC Educational Resources Information Center

    Dukes, Charles; Lamar-Dukes, Pamela

    2009-01-01

    In order to help teachers understand the importance of intentional design for inclusive education, this article describes the design process an engineer might use when designing a new project. If teachers learn to think like engineers, it is possible for them to design inclusive education. This conceptual design can then be combined with…

  17. Examining Elementary School Students' Transfer of Learning through Engineering Design Using Think-Aloud Protocol Analysis

    ERIC Educational Resources Information Center

    Kelley, Todd; Sung, Euisuk

    2017-01-01

    The introduction of engineering practices within the "Next Generation Science Standards" provides technology educators with opportunities to help STEM educators infuse engineering design within a core curriculum. The introduction of teaching engineering design in early elementary grades also provides opportunities to conduct research…

  18. Educating the Engineer.

    ERIC Educational Resources Information Center

    Wallace, Melanie; Wallace, Mack

    2003-01-01

    Presented as a conversation between a teacher and engineer about school design, addresses educators' preferences and engineers' perspectives on issues, such as windows, sustainable design, sinks, acoustics, and natural ventilation. (EV)

  19. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    NASA Astrophysics Data System (ADS)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  20. Education and Research Laboratories as a Means of Enhancing the Quality of Professional Engineering Education in Design and Production of Composite Parts

    ERIC Educational Resources Information Center

    Khaliulin, Valentin I.; Gershtein, Elena M.

    2016-01-01

    Relevance of this research is determined by quality improvement of professional engineering education. The purpose of this paper is to offer practical recommendations for those interested in establishment of education and research laboratories as a means of enhancing the quality of professional engineering education in design and production of…

  1. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    NASA Astrophysics Data System (ADS)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.

  2. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  3. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.

  4. Integrating Engineering Design into Technology Education: Georgia's Perspective

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…

  5. Building a Framework for Engineering Design Experiences in STEM: A Synthesis

    ERIC Educational Resources Information Center

    Denson, Cameron D.

    2011-01-01

    Since the inception of the National Center for Engineering and Technology Education in 2004, educators and researchers have struggled to identify the necessary components of a "good" engineering design challenge for high school students. In reading and analyzing the position papers on engineering design many themes emerged that may begin to form a…

  6. E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education

    ERIC Educational Resources Information Center

    Morton, William; Uhomoibhi, James

    2011-01-01

    Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…

  7. Understanding Engineers' Responsibilities: A Prerequisite to Designing Engineering Education : Commentary on "Educating Engineers for the Public Good Through International Internships: Evidence from a Case Study at Universitat Politècnica de València".

    PubMed

    Murphy, Colleen; Gardoni, Paolo

    2017-07-18

    The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.

  8. Educating the humanitarian engineer.

    PubMed

    Passino, Kevin M

    2009-12-01

    The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.

  9. Contextual Shaping of Student Design Practices: The Role of Constraint in First-Year Engineering Design

    NASA Astrophysics Data System (ADS)

    Goncher, Andrea M.

    thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.

  10. Elementary teachers' mental models of engineering design processes: A comparison of two communities of practice

    NASA Astrophysics Data System (ADS)

    McMahon, Ann P.

    Educating K-12 students in the processes of design engineering is gaining popularity in public schools. Several states have adopted standards for engineering design despite the fact that no common agreement exists on what should be included in the K-12 engineering design process. Furthermore, little pre-service and in-service professional development exists that will prepare teachers to teach a design process that is fundamentally different from the science teaching process found in typical public schools. This study provides a glimpse into what teachers think happens in engineering design compared to articulated best practices in engineering design. Wenger's communities of practice work and van Dijk's multidisciplinary theory of mental models provide the theoretical bases for comparing the mental models of two groups of elementary teachers (one group that teaches engineering and one that does not) to the mental models of design engineers (including this engineer/researcher/educator and professionals described elsewhere). The elementary school teachers and this engineer/researcher/educator observed the design engineering process enacted by professionals, then answered questions designed to elicit their mental models of the process they saw in terms of how they would teach it to elementary students. The key finding is this: Both groups of teachers embedded the cognitive steps of the design process into the matrix of the social and emotional roles and skills of students. Conversely, the engineers embedded the social and emotional aspects of the design process into the matrix of the cognitive steps of the design process. In other words, teachers' mental models show that they perceive that students' social and emotional communicative roles and skills in the classroom drive their cognitive understandings of the engineering process, while the mental models of this engineer/researcher/educator and the engineers in the video show that we perceive that cognitive understandings of the engineering process drive the social and emotional roles and skills used in that process. This comparison of mental models with the process that professional designers use defines a problem space for future studies that investigate how to incorporate engineering practices into elementary classrooms. Recommendations for engineering curriculum development and teacher professional development based on this study are presented.

  11. How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices

    ERIC Educational Resources Information Center

    Fan, Szu-Chun; Yu, Kuang-Chao

    2017-01-01

    STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…

  12. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  13. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    ERIC Educational Resources Information Center

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  14. Guidelines for Engineering Teachers Concerning Educating the Engineer for Innovative and Entrepreneurial Activity.

    ERIC Educational Resources Information Center

    Eekels, J.

    1987-01-01

    Emphasizes that the concept of design is fundamental in innovation. Outlines the work of the European Society for Engineering Education-Working group on Innovation. Describes the innovation-management stream in the curriculum of the faculty of Industrial Design Engineering at Delft University of Technology, Netherlands. (CW)

  15. Enhancing Engineering Computer-Aided Design Education Using Lectures Recorded on the PC

    ERIC Educational Resources Information Center

    McGrann, Roy T. R.

    2006-01-01

    Computer-Aided Engineering (CAE) is a course that is required during the third year in the mechanical engineering curriculum at Binghamton University. The primary objective of the course is to educate students in the procedures of computer-aided engineering design. The solid modeling and analysis program Pro/Engineer[TM] (PTC[R]) is used as the…

  16. The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum

    NASA Astrophysics Data System (ADS)

    Iveland, Ashley

    In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories their ideas fit within, the more complex their understanding was thought to be). I found that the most commonly referenced aspects of engineering design were in line with the three main dimensions described in the Next Generation Science Standards (NGSS Lead States, 2013). I also found that the practicing teacher participants overall conveyed the most complex and integrated understandings of engineering design, with the undergraduate, prospective teachers not far behind. One of the most important factors related to a more integrated understanding of engineering design was having formal engineering experience, especially in the form of conducting engineering research or having been a professional engineer. Further, I found that female participants were more likely than their male counterparts to view engineering as having a human element--recognizing the need to collaborate with others throughout the process and the need to think about the potential user of the product the engineer is solving the problem for. These findings suggest that prior experience with engineering, and not experience in the classroom or with engineering education, tends to lead to a deeper, more authentic view of engineering. Finally, I close with a discussion of the overall findings, limitations of the study, potential implications, and future work.

  17. The Role of Authenticity in Design-Based Learning Environments: The Case of Engineering Education

    ERIC Educational Resources Information Center

    Strobel, J.; Wang, J.; Weber, N. R.; Dyehouse, M.

    2013-01-01

    The term "authenticity" is pervasive in the education literature in general and specifically in the design education and engineering education literature; yet, the construct is often used un-reflected and ill defined. The purpose of this paper is (1) to critically examine current conceptualizations of authenticity as principles to design learning…

  18. Practical Education Support to Foster Engineers at Manufacturing and Engineering Design Center in Muroran Institute of Technology

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu; Hanajima, Naohiko; Shimizu, Kazumichi; Satoh, Kohki

    To foster engineers with creative power, Muroran Institute of Technology established Manufacturing and Engineering Design Center (MEDeC) that concentrates on Monozukuri. MEDeC consists of three project groups : i) Education Support Group provides educational support for practical training classes on and off campus and PDCA (plan-do-check-action) -conscious engineering design education related to Monozukuri ; ii) Fundamental Manufacturing Research Group carries out nurture research into fundamental and innovative technology of machining and manufacturing, and iii) Regional Cooperation Group coordinates the activities in cooperation with bureau, schools and industries in and around Muroran City. MEDeC has a fully integrated collection of machine tools and hand tools for manufacturing, an atelier, a tatara workplace, implements for measurement and related equipment designed for practically teaching state-of-the-practice manufacturing methods.

  19. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  20. Examination of Assessment Practices for Engineering Design Projects in Secondary Technology Education (Second Article in 3-Part Series)

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    Based on the efforts to infuse engineering practices within the technology education curriculum it is appropriate to now investigate how technology education teachers are assessing engineering design activities within their classrooms. This descriptive study drew a full sample of high school technology teachers from the current International…

  1. An Overview of Selected Theories about Student Learning

    ERIC Educational Resources Information Center

    Goel, Sanjay

    2011-01-01

    Engineering educators are often not familiar with the theories and research findings of educational psychology, adult development, curriculum design, and instruction design. Even the published research in engineering/computing education does not sufficiently leverage this body of knowledge. Often in the educational reports and recommendations by…

  2. Engineering education and a lifetime of learning

    NASA Technical Reports Server (NTRS)

    Eisley, J. (Editor)

    1974-01-01

    The result of an eleven-week study by the National Aeronautics and Space Administration (NASA) and the American Society of Engineering Education is presented. The study was the ninth of a series of programs. The purposes of the programs were: (1) to introduce engineering school faculty members to system design and to a particular approach to teaching system design, (2) to introduce engineering faculty to NASA and to a specific NASA center, and (3) to produce a study of use to NASA and to the participants. The story was concerned with engineering education in the U.S., and concentrated upon undergraduate education and teaching, although this bias was not meant to imply that research and graduate study are less important to engineering education.

  3. A Contemporary Preservice Technology Education Program

    ERIC Educational Resources Information Center

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  4. The Concurrent Engineering Design Paradigm Is Now Fully Functional for Graphics Education

    ERIC Educational Resources Information Center

    Krueger, Thomas J.; Barr, Ronald E.

    2007-01-01

    Engineering design graphics education has come a long way in the past two decades. The emergence of solid geometric modeling technology has become the focal point for the graphical development of engineering design ideas. The main attraction of this 3-D modeling approach is the downstream application of the data base to analysis and…

  5. An Engineering Educator's Decision Support Tool for Improving Innovation in Student Design Projects

    ERIC Educational Resources Information Center

    Ozaltin, Nur Ozge; Besterfield-Sacre, Mary; Clark, Renee M.

    2015-01-01

    Learning how to design innovatively is a critical process skill for undergraduate engineers in the 21st century. To this end, our paper discusses the development and validation of a Bayesian network decision support tool that can be used by engineering educators to make recommendations that positively impact the innovativeness of product designs.…

  6. Incorporating a Product Archaeology Paradigm across the Mechanical Engineering Curriculum

    ERIC Educational Resources Information Center

    Moore-Russo, Deborah; Cormier, Phillip; Lewis, Kemper; Devendorf, Erich

    2013-01-01

    Historically, the teaching of design theory in an engineering curriculum has been relegated to a senior capstone design experience. Presently, however, engineering design concepts and courses can be found through the entirety of most engineering programs. Educators have recognized that engineering design provides a foundational platform that can…

  7. A systematic approach to engineering ethics education.

    PubMed

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  8. Research on reform plan of civil engineering adult education graduation design

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Sun, Shengnan; Cui, Shicai

    2017-12-01

    As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.

  9. Creating Learning Environment Connecting Engineering Design and 3D Printing

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  10. Educational Modules in Tissue Engineering Based on the "How People Learn" Framework

    ERIC Educational Resources Information Center

    Birol, Gulnur; Liu, Shu Q.; Smith, H. David; Hirsch, Penny

    2006-01-01

    This paper describes an educational package for use in tertiary level tissue engineering education. Current learning science principles and theory were employed in the design process of these educational tools. Each module started with a challenge statement designed to motivate students and consisted of laboratory exercises centered on the "How…

  11. A Place for Art and Design Education in the STEM Conversation

    ERIC Educational Resources Information Center

    Bequette, James W.; Bequette, Marjorie Bullitt

    2012-01-01

    The recent push for STEM (Science, Technology, Engineering, and Mathematics) education introduces (through the emphasis on engineering) a "design process" to science classrooms; some educators have also pushed for the "artistic or creative process" becoming a part of STEM education. In certain cases, this might be an opportunity for greater…

  12. Educating Engineers: Designing for the Future of the Field. Book Highlights

    ERIC Educational Resources Information Center

    Sheppard, Sheri D.; Macatangay, Kelly; Colby, Anne; Sullivan, William M.

    2008-01-01

    This multi-year study of undergraduate engineering education in the United States initiated questions about the alignment of engineering programs with the demands of current professional engineering practice. While describing engineering education from within the classroom and the lab, the report on the study offers new possibilities for teaching…

  13. Engineering the Future: Embedding Engineering Permanently across the School-University Interface

    ERIC Educational Resources Information Center

    MacBride, G.; Hayward, E. L.; Hayward, G.; Spencer, E.; Ekevall, E.; Magill, J.; Bryce, A. C.; Stimpson, B.

    2010-01-01

    This paper describes the design, implementation, and evaluation of an educational program. Engineering the Future (EtF) sought to promote a permanent, informed awareness within the school community of high-level engineering by embedding key aspects of engineering within the education curriculum. The Scottish education system is used for a case…

  14. Engineering Design EDUCATION: When, What, and HOW

    ERIC Educational Resources Information Center

    Khalaf, Kinda; Balawi, Shadi; Hitt, George Wesley; Radaideh, Ahmad

    2013-01-01

    This paper presents an innovative, interdisciplinary, design-and-build course created to improve placement, content, and pedagogy for introductory engineering design education. Infused at the freshman level, the course aims to promote expert design thinking by using problem-based learning (PBL) as the mode of delivery. The course is structured to…

  15. Computer Aided Design in Engineering Education.

    ERIC Educational Resources Information Center

    Gobin, R.

    1986-01-01

    Discusses the use of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) systems in an undergraduate engineering education program. Provides a rationale for CAD/CAM use in the already existing engineering program. Describes the methods used in choosing the systems, some initial results, and warnings for first-time users. (TW)

  16. Analysis of Engineering Content within Technology Education Programs

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  17. Career preference theory: A grounded theory describing the effects of undergraduate career preferences on student persistence in engineering

    NASA Astrophysics Data System (ADS)

    Dettinger, Karen Marie

    This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According to Career Preference Theory, "Social" Scientists, Designers, and Educators are likely to leave engineering, while Pragmatics and Physical Scientists are likely to persist.

  18. STEAM by Another Name: Transdisciplinary Practice in Art and Design Education

    ERIC Educational Resources Information Center

    Costantino, Tracie

    2018-01-01

    The recent movement to include art and design in Science, Technology, Engineering, and Mathematics (STEM) education has made Science, Technology, Engineering, Arts, and Mathematics (STEAM) an increasingly common acronym in the education lexicon. The STEAM movement builds on existing models of interdisciplinary curriculum, but what makes the union…

  19. A Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.

    ERIC Educational Resources Information Center

    Blair, Brittain A.

    This guide is a competency-based vocational curriculum designed to provide educators with viable ethanol (100 percent alcohol) engine conversion procedures stated in simple terms and set in a flexible educational environment. The curriculum is designed so that educators can form various combinations of instructional activities and resource…

  20. A Holistic Approach to Delivering Sustainable Design Education in Civil Engineering

    ERIC Educational Resources Information Center

    Vemury, Chandra Mouli; Heidrich, Oliver; Thorpe, Neil; Crosbie, Tracey

    2018-01-01

    Purpose: The purpose of this paper is to present pedagogical approaches developed and implemented to deliver sustainable design education (SDE) to second-year undergraduate students on civil engineering programmes in the (then) School of Civil Engineering and Geosciences at Newcastle University. In doing so, the work presented offers an example of…

  1. Student Interest in Engineering Design-Based Science

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  2. Introducing Engineering Design through an Intelligent Rube Goldberg Implementation

    ERIC Educational Resources Information Center

    Acharya, Sushil; Sirinterlikci, Arif

    2010-01-01

    Engineering students need a head start on designing a component, a process, or a system early in their educational endeavors, and engineering design topics need to be introduced appropriately without negatively affecting students' motivation for engineering. In ENGR1010 at Robert Morris University, freshmen engineering students are introduced to…

  3. Evaluating the Effectiveness of Integrative STEM Education: Teacher and Administrator Professional Development

    ERIC Educational Resources Information Center

    Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin

    2018-01-01

    The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…

  4. Reverse engineering by design: using history to teach.

    PubMed

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  5. Elementary Students' Engagement in Failure-Prone Engineering Design Tasks

    ERIC Educational Resources Information Center

    Andrews, Chelsea Joy

    2017-01-01

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in…

  6. Analogical Reasoning in the Engineering Design Process and Technology Education Applications

    ERIC Educational Resources Information Center

    Daugherty, Jenny; Mentzer, Nathan

    2008-01-01

    This synthesis paper discusses the research exploring analogical reasoning, the role of analogies in the engineering design process, and educational applications for analogical reasoning. Researchers have discovered that analogical reasoning is often a fundamental cognitive tool in design problem solving. Regarding the possible role of analogical…

  7. Closing the gap in systems engineering education for the space industry

    NASA Technical Reports Server (NTRS)

    Carlisle, R.

    1986-01-01

    The education of system engineers with emphasis on designing systems for space applications is discussed. System engineers determine the functional requirements, performance needs, and implementation procedures for proposed systems and their education is based on aeronautics and mathematics. Recommendations from industry for improving the curriculum of system engineers at the undergraduate and graduate levels are provided. The assistance provided by companies to the education of system engineers is examined.

  8. Engineering Design vs. Artistic Design: Some Educational Consequences

    ERIC Educational Resources Information Center

    Eder, Wolfgang Ernst

    2013-01-01

    "Design" can be a noun, or a verb. Six paths for research into engineering design (as verb) are identified, they must be coordinated for internal consistency and plausibility. Design research tries to clarify design processes and their underlying theories--for designing in general, and for particular forms, e.g., design engineering. Theories are a…

  9. Engineering Design Challenges in High School STEM Courses: A Compilation of Invited Position Papers

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.

    2011-01-01

    Since its initial funding by the National Science Foundation in 2004, the National Center for Engineering and Technology Education (NCETE) has worked to understand the infusion of engineering design experiences into the high school setting. Over the years, an increasing number of educators and professional groups have participated in the expanding…

  10. Engineering Design Processes in Seventh-Grade Classrooms: Bridging the Engineering Education Gap

    ERIC Educational Resources Information Center

    English, Lyn D.; Hudson, Peter B.; Dawes, Les

    2012-01-01

    This paper reports on some findings from the first year of a three-year longitudinal study, in which seventh- to ninth-graders were introduced to engineering education. Specifically, the paper addresses students' responses to an initial design activity involving bridge construction, which was implemented at the end of seventh grade. This paper…

  11. Secondary Engineering Design Graphics Educator Service Load of Students with Identified Categorical Disabilities and Limited English Proficiency

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Li, Songze; Williams, Thomas O.

    2014-01-01

    The ever-changing student population of engineering design graphics students necessitates broader sets of instructor adeptness. Specifically, preparedness to educate and provide adequate educational access to content for students with identified categorical disabilities and Limited English Proficiency (LEP) is now an essential readiness skill for…

  12. Adapting Wood Technology to Teach Design and Engineering

    ERIC Educational Resources Information Center

    Rummel, Robert A.

    2012-01-01

    Technology education has changed dramatically over the last few years. The transition of industrial arts to technology education and more recently the pursuit of design and engineering has resulted in technology education teachers often needing to change their curriculum and course activities to meet the demands of a rapidly changing profession.…

  13. Training Program for Practical Engineering Design through the Collaboration with Regional Companies

    NASA Astrophysics Data System (ADS)

    Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo

    An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.

  14. Using GREENSCOPE for Sustainable Process Design: An Educational Opportunity

    EPA Science Inventory

    Increasing sustainability can be approached through the education of those who design, construct, and operate facilities. As chemical engineers learn elements of process systems engineering, they can be introduced to sustainability concepts. The EPA’s GREENSCOPE methodology and...

  15. Peculiarities of Design Competence Formation in Future Clothing Engineering Educators in Ukraine and Foreign Countries

    ERIC Educational Resources Information Center

    Bilyk, Victoria

    2015-01-01

    The importance of engineering pedagogical education for the global labour market has been characterized. The peculiarities of modern engineering pedagogical education formation in foreign countries consisting in economy globalization, transition to a high quality education and international cooperation enhancing have been presented. The essence of…

  16. Incorporating Engineering Design Challenges into STEM Courses

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  17. Theory and Practice Meets in Industrial Process Design -Educational Perspective-

    NASA Astrophysics Data System (ADS)

    Aramo-Immonen, Heli; Toikka, Tarja

    Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.

  18. Rethinking the Systems Engineering Process in Light of Design Thinking

    DTIC Science & Technology

    2016-04-30

    systems engineering process models (Blanchard & Fabrycky, 1990) and the majority of engineering design education (Dym et al., 2005). The waterfall model ...Engineering Career Competency Model Clifford Whitcomb, Systems Engineering Professor, NPS Corina White, Systems Engineering Research Associate, NPS...Postgraduate School (NPS) in Monterey, CA. He teaches and conducts research in the design of enterprise systems, systems modeling , and system

  19. Educational Encounters of the Third Kind.

    PubMed

    Génova, Gonzalo; González, M Rosario

    2017-12-01

    An engineer who becomes an educator in a school of software engineering has the mission to teach how to design and construct software systems, therein applying his or her knowledge and expertise. However, due to their engineering background, engineers may forget that educating a person is not the same as designing a machine, since a machine has a well-defined goal, whilst a person is capable to self-propose his or her own objectives. The ethical implications are clear: educating a free person must leave space for creativity and self-determination in his or her own discovery of the way towards personal and professional fulfillment, which cannot consist only in achieving goals selected by others. We present here an argument that is applicable to most fields of engineering. However, the dis-analogy between educating students and programming robots may have a particular appeal to software engineers and computer scientists. We think the consideration of three different stages in the educational process may be useful to engineers when they act as educators. We claim that the three stages (instructing, training and mentoring) are essential to engineering education. In particular, education is incomplete if the third stage is not reached. Moreover, mentoring (the third stage aimed at developing creativity and self-determination) is incompatible with an educational assessment framework that considers the goals of the engineer are always given by others. In our view, then, an integral education is not only beyond programming the behavior of students, but also beyond having them reach those given goals.

  20. Optimization, an Important Stage of Engineering Design

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2010-01-01

    A number of leaders in technology education have indicated that a major difference between the technological design process and the engineering design process is analysis and optimization. The analysis stage of the engineering design process is when mathematical models and scientific principles are employed to help the designer predict design…

  1. AUTHENTIC INVOLVEMENT IN INTERDISCIPLINARY DESIGN, PROCEEDINGS OF CONFERENCE ON ENGINEERING DESIGN EDUCATION (3D, CARNEGIE INSTITUTE OF TECHNOLOGY, JULY 12-13, 1965).

    ERIC Educational Resources Information Center

    BULKELEY, PETER Z.

    REPORTED ARE THE PROCEEDINGS OF THE THIRD CONFERENCE ON ENGINEERING DESIGN EDUCATION. ITS CONCERNS WERE THE CRITICISM AND DISSEMINATION OF RESULTS OF DESIGN LABORATORY WORKSHOPS HELD EARLIER AT EACH OF THE PARTICIPATING INSTITUTIONS. WORKSHOPS WERE CONCERNED WITH FACULTY DEVELOPMENT TO DETERMINE WHETHER TEACHERS, MANY OF WHOM WERE EXPERIENCED IN…

  2. Characterizing Design Learning through the Use of Language: A Mixed-Methods Study of Engineering Designers. Research Brief

    ERIC Educational Resources Information Center

    Atman, Cindy; Kilgore, Deborah; McKenna, Ann

    2009-01-01

    This analysis, that utilizes data from part of the Academic Pathways Study (APS) of the Center for the Advancement of Engineering Education (CAEE), found that as a result of taking a course in engineering design and/or studying engineering for four years, students acquire engineering design language that is common to a larger community of practice…

  3. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  4. Iteration in Early-Elementary Engineering Design

    ERIC Educational Resources Information Center

    McFarland Kendall, Amber Leigh

    2017-01-01

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect…

  5. Development and Testing of Assessment Instruments for Multidisciplinary Engineering Capstone Design Courses

    ERIC Educational Resources Information Center

    Gerlick, Robert Edward

    2010-01-01

    The research presented in this manuscript was focused on the development of assessments for engineering design outcomes. The primary goal was to support efforts by the Transferrable Integrated Design Engineering Education (TIDEE) consortium in developing assessment instruments for multidisciplinary engineering capstone courses. Research conducted…

  6. Float Your Boat: Making Instant Design Challenges Meaningful and Relevant

    ERIC Educational Resources Information Center

    Oehrli, Robbie

    2016-01-01

    Engineering design is a core component of technology and engineering education, and although not every student will become an engineer following high school, all students can profit from having engineering design experiences in high school (Apedoe, Reynolds, Ellefson, & Schunn, 2008; Denson & Lammi, 2014; Grubbs & Strimel, 2015;…

  7. Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice

    ERIC Educational Resources Information Center

    Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue

    2016-01-01

    Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…

  8. High School Engineering and Technology Education Integration through Design Challenges

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  9. The Roles of Engineering Notebooks in Shaping Elementary Engineering Student Discourse and Practice

    ERIC Educational Resources Information Center

    Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.

    2017-01-01

    Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum "Engineering is Elementary" (EiE) support student work during design challenges. Through educational ethnography and…

  10. Product Design Engineering--A Global Education Trend in Multidisciplinary Training for Creative Product Design

    ERIC Educational Resources Information Center

    de Vere, Ian; Melles, Gavin; Kapoor, Ajay

    2010-01-01

    Product design is the convergence point for engineering and design thinking and practices. Until recently, product design has been taught either as a component of mechanical engineering or as a subject within design schools but increasingly there is global recognition of the need for greater synergies between industrial design and engineering…

  11. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  12. Iteration in Early-Elementary Engineering Design

    NASA Astrophysics Data System (ADS)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  13. Research and Innovation of Engineering Education in Europe the contribution of SEFI

    NASA Astrophysics Data System (ADS)

    Graaff, Erik De; Borri, Claudio

    The roots of engineering education lie in the workplace. It was not until the 19th century that higher engineering education moved to a more scholarly environment. True to its origins, research in the applied sciences never aimed at pure understanding alone. The goal of engineering investigations has always been to devise solutions to practice problems with a mixture of design, construction and innovation. If the establishing of a research tradition in engineering has taken quite a long time, the time needed to apply an academic mode of thinking to the approach to teaching and learning has been much longer. In fact, most of the design choices concerning the curricula in higher engineering education were made based on intuition, rather than on insight, until well over the half of the last century. Aiming at to support the development of engineering education in Europe, in 1973 the European Society of Engineering Education was established (labelled SEFI according to the French acronym Société. Européenne pour la Formation des Ingénieurs). Presently the society represents 196 institutional members. SEFI promotes cooperation between higher engineering education institutions and other scientific and international bodies on issues of research and development in Engineering Education, for instance through participating in European network projects such as the SOCRATES Thematic Network “TREE” (Teaching and Research in Engineering Education in Europe). SEFI is also engaged in policy development regarding engineering education publishing statements regarding issues like the Bologna process and the proposed European Institute of Technology. In the future SEFI aims to consolidate and strengthen its role in the European arena and to represent Europe on the Global stage.

  14. A Study of Trial and Error Learning in Technology, Engineering, and Design Education

    ERIC Educational Resources Information Center

    Franzen, Marissa Marie Sloan

    2016-01-01

    The purpose of this research study was to determine if trial and error learning was an effective, practical, and efficient learning method for Technology, Engineering, and Design Education students at the post-secondary level. A mixed methods explanatory research design was used to measure the viability of the learning source. The study sample was…

  15. Preparing University Students to Lead K-12 Engineering Outreach Programmes: A Design Experiment

    ERIC Educational Resources Information Center

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-01-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year…

  16. Coming to Terms with Engineering Design as Content

    ERIC Educational Resources Information Center

    Lewis, Theodore

    2005-01-01

    This article addresses the challenges posed by engineering design as a content area of technology education. What adjustments will technology teachers have to make in their approach to teaching and learning when they teach design as engineering in response to the new standards? How faithful to engineering as practiced must their approach be? There…

  17. Engineering Education in the Science Classroom: A Case Study of One Teacher's Disparate Approach with Ability-Tracked Classrooms

    ERIC Educational Resources Information Center

    Schnittka, Christine G.

    2012-01-01

    Currently, unless a K-12 student elects to enroll in technology-focused schools or classes, exposure to engineering design and habits of mind is minimal. However, the "Framework for K-12 Science Education," published by the National Research Council in 2011, includes engineering design as a new and major component of the science content…

  18. Future engineers: the intrinsic technology motivation of secondary school pupils

    NASA Astrophysics Data System (ADS)

    Jones, Lewis C. R.; McDermott, Hilary J.; Tyrer, John R.; Zanker, Nigel P.

    2018-07-01

    The supply of students motivated to study engineering in higher education is critical to the sector. Results are presented from the 'Mindsets STEM Enhancement Project'. Fifty-seven new resources packs, designed to improve STEM education in Design and Technology, were given to schools across London. A modified Intrinsic Motivation Inventory questionnaire measured pupils' (n = 458) motivation towards technology. The results show that although pupils have positive reactions to the technology content within Design and Technology lessons, the type of STEM resources and lessons created through the project had made no significant difference on pupils' interest/enjoyment towards technology. This suggests stand-alone resources do not improve pupil motivation. The impact of this work to engineering higher education is that the existing levels and the inability to improve pupil motivation in technology at school could be a factor affecting the pursuit of a technology or engineering related education or career.

  19. PBL and CDIO: Complementary Models for Engineering Education Development

    ERIC Educational Resources Information Center

    Edström, Kristina; Kolmos, Anette

    2014-01-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines,…

  20. Engineering in Elementary STEM Education: Curriculum Design, Instruction, Learning, and Assessment

    ERIC Educational Resources Information Center

    Cunningham, Christine M.

    2018-01-01

    Bolstered by new standards and new initiatives to promote STEM education, engineering is making its way into the school curriculum. This comprehensive introduction will help elementary educators integrate engineering into their classroom, school, or district in age-appropriate, inclusive, and engaging ways. Building on the work of a Museum of…

  1. Research and Exploration for Operational Research Education in Industry and Engineering Subject

    ERIC Educational Resources Information Center

    Wu, Yu-hua; Wang, Feng-ming; Du, Gang

    2007-01-01

    On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…

  2. Inquiry by Engineering Design: Applying the Sixth "E"

    ERIC Educational Resources Information Center

    Brand, Brenda; Kasarda, Mary; Williams, Christopher Bryant

    2017-01-01

    As the emphasis on STEM education increases, the "E" (engineering) in the acronym is gaining more attention in K-12 education. K-12 educators are urged to develop new and creative strategies for engaging youth in science and engineering activities that encourage them to be inventors and not just consumers. The Inquiry By Engineering…

  3. Short educational programs in optical design and engineering

    NASA Astrophysics Data System (ADS)

    Voznesenskaya, Anna; Romanova, Galina; Bakholdin, Alexey; Tolstoba, Nadezhda; Ezhova, Kseniia

    2016-09-01

    Globalization and diversification of education in optical engineering causes a number of new phenomena in students' learning paths. Many students have an interest to get some courses in other universities, to study in international environment, to broaden not only professional skills but social links and see the sights as well etc. Participation in short educational programs (e.g. summer / winter schools, camps etc.) allows students from different universities to learn specific issues in their or in some neighbor field and also earn some ECTS for the transcript of records. ITMO University provides a variety of short educational programs in optical design and engineering oriented for different background level, such are: Introduction into optical engineering, Introduction into applied and computer optics, Optical system design, Image modeling and processing, Design of optical devices and components. Depending on students' educational background these programs are revised and adopted each time. Usually the short educational programs last 4 weeks and provide 4 ECTS. The short programs utilize a set of out-of date educational technologies like problem-based learning, case-study and distance-learning and evaluation. Practically, these technologies provide flexibility of the educational process and intensive growth of the learning outcomes. Students are satisfied with these programs very much. In their feedbacks they point a high level of practical significance, experienced teaching staff, scholarship program, excellent educational environment, as well as interesting social program and organizational support.

  4. Delivering Core Engineering Concepts to Secondary Level Students

    ERIC Educational Resources Information Center

    Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong

    2008-01-01

    Through the efforts of National Center for Engineering and Technology Education (NCETE), three core engineering concepts within the realm of engineering design have emerged as crucial areas of need within secondary level technology education. These concepts are constraints, optimization, and predictive analysis (COPA). COPA appears to be at the…

  5. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    PubMed

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  6. The Industrial Property Rights Education in Collaboration with the Creative Product Design Education

    NASA Astrophysics Data System (ADS)

    Tokoro, Tetsuro; Habuchi, Hitoe; Chonan, Isao

    Recently, the Advanced Courses of Electronic System Engineering and Architecture and Civil Engineering of Gifu National College of Technology have introduced a creative subject, “Creative Engineering Practice”. In this subject, students study intellectual property rights. More specifically, they learn and practice industrial proprietary rights, procedures for obtaining a patent right, how to use Industrial Property Digital Library and so forth, along with the practice of creative product design. The industrial property rights education in collaboration with the creative product design education has been carried out by the cooperation of Japan Patent Office, Japan Institute of Invention and Innovation and a patent attorney. Through the instruction of the cooperative members, great educative results have been obtained. In this paper, we will describe the contents of the subject together with its items to pursue an upward spiral of progress.

  7. Design, Test, Redesign: Simulation in Technology, Engineering, and Design Education Classrooms

    ERIC Educational Resources Information Center

    Swinson, Ronnie; Clark, Aaron C.; Ernst, Jeremy V.; Sutton, Kevin

    2016-01-01

    Today's engineers, designers, and technologists are often thrust into the role of problem solver, from the initial design phase of a product or process all the way to final development. Many engineers in manufacturing environments are tasked with solving problems and continuously improving processes to enhance company profitability, efficiency,…

  8. Artistic and Industrial Institutions in Russian Education Structure in First Quarter of XXth Century

    NASA Astrophysics Data System (ADS)

    Chernyh, D. G.

    2017-11-01

    The article tells about the formation of Russian design education in the XXth century. It focuses on the peculiar features and causes of its insufficient effectiveness in the historical context. It studies the dynamics of changes in the priorities related to the artistic and industrial education in Russia and the connection of these processes with socio-political transformations. The article identifies the role of constructivist artists in the formation and approbation of advanced design-engineering techniques. It emphasizes the interdisciplinary essence of the profession of a designer as a special kind of design activities, its organizing, consolidating and progressive origin in the sphere of industrial production and carrying out interdisciplinary studies. It discloses the essence of a new “engineer-artist” profession. It briefly describes the influence of the fundamental principle of design - projectivity, on engineering and design disciplines when the interaction of an artist, an engineer and an architect is achieved on the basis of design, arrangement and inventive art as well as production organization where science and technology form the basis for creative work.

  9. Paired peer learning through engineering education outreach

    NASA Astrophysics Data System (ADS)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  10. Development Education and Engineering: A Framework for Incorporating Reality of Developing Countries into Engineering Studies

    ERIC Educational Resources Information Center

    Perez-Foguet, A.; Oliete-Josa, S.; Saz-Carranza, A.

    2005-01-01

    Purpose: To show the key points of a development education program for engineering studies fitted within the framework of the human development paradigm. Design/methodology/approach: The bases of the concept of technology for human development are presented, and the relationship with development education analysed. Special attention is dedicated…

  11. Trends in the Development of Technology and Engineering Education in Emerging Economies

    ERIC Educational Resources Information Center

    Adegbuyi, P. A. O.; Uhomoibhi, J. O.

    2008-01-01

    Purpose: The purpose of this paper is to report on the nature of technology and engineering education provision in developing economies, focusing on Nigeria. Design/methodology/approach: The paper draws on recent developments in the shake up and implementation of new measures to call for quality technology and engineering education in the country,…

  12. Using Engineering Cases in Technology Education

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2009-01-01

    There has been a great deal of discussion in the past few years about implementing engineering design in K-12 classrooms. Experts from K-12 education, universities, industry, and government officials attended the ASEE leadership workshop on K-12 Engineering Outreach in June of 2004 and came to a consensus on the need to implement engineering in…

  13. A Biotic Game Design Project for Integrated Life Science and Engineering Education

    PubMed Central

    Denisin, Aleksandra K.; Rensi, Stefano; Sanchez, Gabriel N.; Quake, Stephen R.; Riedel-Kruse, Ingmar H.

    2015-01-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games. PMID:25807212

  14. A biotic game design project for integrated life science and engineering education.

    PubMed

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  15. Integrating Innovation Skills in an Introductory Engineering Design-Build Course

    ERIC Educational Resources Information Center

    Liebenberg, Leon; Mathews, Edward Henry

    2012-01-01

    Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…

  16. Systems Engineering of Education V: Quantitative Concepts for Education Systems.

    ERIC Educational Resources Information Center

    Silvern, Leonard C.

    The fifth (of 14) volume of the Education and Training Consultant's (ETC) series on systems engineering of education is designed for readers who have completed others in the series. It reviews arithmetic and algebraic procedures and applies these to simple education and training systems. Flowchart models of example problems are developed and…

  17. The philosophical and pedagogical underpinnings of Active Learning in Engineering Education

    NASA Astrophysics Data System (ADS)

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving engineering education through active learning (http://www.ale-net.org/). The paper reiterates themes from those keynotes, namely, the philosophical and pedagogical underpinnings of Active Learning in Engineering Education, the scholarly questions that inspire engineering educators to go on improving their practice and exemplary models designed to activate the learning of engineering students. This paper aims to uncover the bedrock of established educational philosophies and theories that define and support active learning. The paper does not claim to present any new or innovative educational theory. There is already a surfeit of them. Rather, the aim is to assist Engineering Educators who wish to research how they can best activate the learning of their students by providing a readable, reasonable and solid underpinning for best practice in this field.

  18. Introducing Engineering Design to a Science Teaching Methods Course through Educational Robotics and Exploring Changes in Views of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Kaya, Erdogan; Newley, Anna; Deniz, Hasan; Yesilyurt, Ezgi; Newley, Patrick

    2017-01-01

    Engineering has become an important subject in the Next Generation Science Standards (NGSS), which have raised engineering design to the same level as scientific inquiry when teaching science disciplines at all levels. Therefore, preservice elementary teachers (PSTs) need to know how to integrate the engineering design process (EDP) into their…

  19. Engineering Design Thinking and Information Gathering. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2011-01-01

    The objective of this research was to explore the relationship between information access and design solution quality of high school students presented with an engineering design problem. This objective is encompassed in the research question driving this inquiry: How does information access impact the design process? This question has emerged in…

  20. Integrating design and communication in engineering education: a collaboration between Northwestern University and the Rehabilitation Institute of Chicago.

    PubMed

    Hirsch, Penny L; Yarnoff, Charles

    2011-01-01

    The required course for freshmen in Northwestern University's engineering school - a 2-quarter sequence called Engineering Design and Communication (EDC) - is noteworthy not only for its project-based focus on user-centered design, but also for its innovative integrated approach to teaching communication, teamwork, and ethics. Thanks to the collaboration between EDC faculty and staff at the Rehabilitation Institute of Chicago, EDC students, at the beginning of their education, experience the excitement of solving problems for real clients and users. At the same time, these authentic design projects offer an ideal setting for teaching students how to communicate effectively to different audiences and perform productively as team members and future leaders in engineering.

  1. Toward Epistemologically Authentic Engineering Design Activities in the Science Classroom

    ERIC Educational Resources Information Center

    Leonard, Mary J.

    2004-01-01

    In recent years educators and educational researchers in the U.S. have begun to introduce engineering design activities in secondary science classrooms for the purpose of scaffolding science learning as well as supporting such general problem-solving skills as decision making and working in teams. However, such curricula risk perpetuating a…

  2. Connecting Urban Students with Engineering Design: Community-Focused, Student-Driven Projects

    ERIC Educational Resources Information Center

    Parker, Carolyn; Kruchten, Catherine; Moshfeghian, Audrey

    2017-01-01

    The STEM Achievement in Baltimore Elementary Schools (SABES) program is a community partnership initiative that includes both in-school and afterschool STEM education for grades 3-5. It was designed to broaden participation and achievement in STEM education by bringing science and engineering to the lives of low-income urban elementary school…

  3. Design of a Professional Practice Simulator for Educating and Motivating First-Year Engineering Students

    ERIC Educational Resources Information Center

    Chesler, Naomi C.; Arastoopour, Golnaz; D'Angelo, Cynthia M.; Bagley, Elizabeth A.; Shaffer, David Williamson

    2013-01-01

    Increasingly, first-year engineering curricula incorporate design projects. However, the faculty and staff effort and physical resources required for the number of students enrolled can be daunting and affect the quality of instruction. To reduce these costs, ensure a high quality educational experience, and reduce variability in student outcomes…

  4. The Design and Development of a Computerized Tool Support for Conducting Senior Projects in Software Engineering Education

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Teng, Kao-Chiuan

    2011-01-01

    This paper presents a computerized tool support, the Meetings-Flow Project Collaboration System (MFS), for designing, directing and sustaining the collaborative teamwork required in senior projects in software engineering (SE) education. Among many schools' SE curricula, senior projects serve as a capstone course that provides comprehensive…

  5. A Study of Current Trends and Issues Related to Technical/Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Clark, Aaron C.; Scales Alice

    2000-01-01

    Presents results from a survey of engineering design graphics educators who responded to questions related to current trends and issues in the profession of graphics education. Concludes that there is a clear trend in institutions towards the teaching of constraint-based modeling and computer-aided manufacturing. (Author/YDS)

  6. Future Engineers: The Intrinsic Technology Motivation of Secondary School Pupils

    ERIC Educational Resources Information Center

    Jones, Lewis C. R.; McDermott, Hilary J.; Tyrer, John R.; Zanker, Nigel P.

    2018-01-01

    The supply of students motivated to study engineering in higher education is critical to the sector. Results are presented from the 'Mindsets STEM Enhancement Project.' Fifty-seven new resources packs, designed to improve STEM education in Design and Technology, were given to schools across London. A modified Intrinsic Motivation Inventory…

  7. Some Remarks on the Improvement of Engineering Education

    NASA Astrophysics Data System (ADS)

    Tribus, Myron

    2005-03-01

    This paper combines the quality management principles of Deming with the educational theories of Feuerstein and Bloom in the design of a system of engineering education in which every student, on graduation, will display mastery of the subjects in the curriculum.

  8. Some Remarks on the Improvement of Engineering Education

    ERIC Educational Resources Information Center

    Tribus, Myron

    2005-01-01

    This paper combines the quality management principles of Deming with the educational theories of Feuerstein and Bloom in the design of a system of engineering education in which every student, on graduation, will display mastery of the subjects in the curriculum.

  9. Professional development for design-based learning in engineering education: a case study

    NASA Astrophysics Data System (ADS)

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects. We conducted an intervention for the professional development of the DBL teachers in the Mechanical Engineering and the Electrical Engineering departments. We used the Experiential Learning Cycle as an educational model for the professionalisation programme. The findings show that the programme encouraged teachers to apply the DBL theoretical framework. However, there are some limitations with regard to specific project characteristics. Further research into supporting teachers to develop open-ended and multidisciplinary activities in the projects that support learning is recommended.

  10. Establishing a "Centre for Engineering Experimentation and Design Simulation": A Step towards Restructuring Engineering Education in India

    ERIC Educational Resources Information Center

    Venkateswarlu, P.

    2017-01-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with…

  11. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    ERIC Educational Resources Information Center

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  12. How Authors Did It--A Methodological Analysis of Recent Engineering Education Research Papers in the European Journal of Engineering Education

    ERIC Educational Resources Information Center

    Malmi, Lauri; Adawi, Tom; Curmi, Ronald; de Graaff, Erik; Duffy, Gavin; Kautz, Christian; Kinnunen, Päivi; Williams, Bill

    2018-01-01

    We investigated research processes applied in recent publications in the "European Journal of Engineering Education" (EJEE), exploring how papers link to theoretical work and how research processes have been designed and reported. We analysed all 155 papers published in EJEE in 2009, 2010 and 2013, classifying the papers using a taxonomy…

  13. Constructively Aligned Teaching and Learning in Higher Education in Engineering: What Do Students Perceive as Contributing to the Learning of Interdisciplinary Thinking?

    ERIC Educational Resources Information Center

    Spelt, E. J. H.; Luning, P. A.; van Boekel, M. A. J. S.; Mulder, M.

    2015-01-01

    Increased attention to the need for constructively aligned teaching and learning in interdisciplinary higher education in engineering is observed. By contrast, little research has been conducted on the implementation of the outcome-based pedagogical approach to interdisciplinary higher education in engineering. Therefore, the present design-based…

  14. Senior Design in Agricultural Engineering--Progress and Pitfalls.

    ERIC Educational Resources Information Center

    Holmes, R. G.; Rohrbach, R. P.

    1979-01-01

    Describes a specific senior design course and its objectives. Explains the basic deficiencies and problems for design education in agricultural engineering. Also stresses the effect the project advisor has on students' attitudes toward design and the applications of the course. (SMB)

  15. Validating the CDIO Syllabus for Engineering Education Using the Taxonomy of Engineering Competencies

    ERIC Educational Resources Information Center

    Woollacott, L. C.

    2009-01-01

    The CDIO (Conceive-Design-Implement-Operate) syllabus is the most detailed statement on the goals of engineering education currently found in the literature. This paper presents an in-depth validation exercise of the CDIO syllabus using the taxonomy of engineering competencies as a validating instrument. The study explains the attributes that make…

  16. Conceptual and Procedural Approaches to Mathematics in the Engineering Curriculum--Comparing Views of Junior and Senior Engineering Students in Two Countries

    ERIC Educational Resources Information Center

    Bergsten, Christer; Engelbrecht, Johann; Kågesten, Owe

    2017-01-01

    One challenge for an optimal design of the mathematical components in engineering education curricula is to understand how the procedural and conceptual dimensions of mathematical work can be matched with different demands and contexts from the education and practice of engineers. The focus in this paper is on how engineering students respond to…

  17. Influence of End Customer Exposure on Product Design within an Epistemic Game Environment

    ERIC Educational Resources Information Center

    Markovetz, Matthew R.; Clark, Renee M.; Swiecki, Zachari; Irgens, Golnaz Arastoopour; Chesler, Naomi C.; Shaffer, David W.; Bodnar, Cheryl A.

    2017-01-01

    Engineering product design requires both technical aptitude and an understanding of the nontechnical requirements in the marketplace, economic or otherwise. Engineering education has long focused on the technical side of product design, but there is increasing demand for market-aware engineers in industry. Market-awareness and customer-focus are…

  18. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  19. Engineering Education's Contribution to the Space Program.

    ERIC Educational Resources Information Center

    Stever, H. Guyford

    1988-01-01

    States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…

  20. Insights into Engineering Education Administration.

    ERIC Educational Resources Information Center

    American Society for Engineering Education, Washington, DC.

    Twelve articles that are designed to provide ideas to engineering department heads are presented. Articles and authors are as follows: "Estimating Undergraduate Student Capacity for an Engineering Department," (T. W. F. Russell, R. L. Daughtery, A. F. Graziano); "Financial Evaluation of Education Programs," (George DePuy and Ralph Swalm); "The…

  1. PUKHA: A New Pedagogical Experience

    ERIC Educational Resources Information Center

    De Magalhaes, A. Barbedo; Estima, M.; Almada-Lobo, B.

    2007-01-01

    Society needs responsible leaders and entrepreneurs. CDIO (conceive, design, implement and operate) is a framework for engineering education based on outcomes, more than on contents, that has been adopted by a growing number of engineering educational institutions for producing the next generation of engineering leaders. In order to support…

  2. Similarities and Differences in the Academic Education of Software Engineering and Architectural Design Professionals

    ERIC Educational Resources Information Center

    Hazzan, Orit; Karni, Eyal

    2006-01-01

    This article focuses on the similarities and differences in the academic education of software engineers and architects. The rationale for this work stems from our observation, each from the perspective of her or his own discipline, that these two professional design and development processes share some similarities. A pilot study was performed,…

  3. A Longitudinal Evaluation of a Project-Based Learning Initiative in an Engineering Undergraduate Programme

    ERIC Educational Resources Information Center

    Hall, Wayne; Palmer, Stuart; Bennett, Mitchell

    2012-01-01

    Project-based learning (PBL) is a well-known student-centred methodology for engineering design education. The methodology claims to offer a number of educational benefits. This paper evaluates the student perceptions of the initial and second offering of a first-year design unit at Griffith University in Australia. It builds on an earlier…

  4. Explore-create-share study: An evaluation of teachers as curriculum innovators in engineering education

    NASA Astrophysics Data System (ADS)

    Berry, Ayora

    The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and adopt it in their classrooms. In a CDB professional development model teachers actively design lessons, student resources, and assessments for their classroom instruction. In other science, technology, engineering and mathematics (STEM) disciplines, CDB professional development has been reported to (a) position teachers as architects of change, (b) provide a professional learning vehicle for educators to reflect on instructional practices and develop content knowledge, (c) inspire a sense of ownership in curriculum decision-making among teachers, and (d) use an instructional approach that is coherent with teachers' interests and professional goals. The CDB professional development program in this study used the Explore-Create-Share (ECS) framework as an instructional model to support teacher-led curriculum design and implementation. To evaluate the impact of the CDB professional development and associated ECS instructional model, three research studies were conducted. In each study, the participants completed a six-month CDB professional development program, the PTC STEM Certificate Program, that included sixty-two instructional contact hours. Participants learned about industry and education engineering concepts, tested engineering curricula, collaborated with K-12 educators and industry professionals, and developed project-based engineering curricula using the ECS framework. The first study evaluated the impact of the CDB professional development program on teachers' engineering knowledge, self-efficacy in designing engineering curriculum, and instructional practice in developing project-based engineering units. The study included twenty-six teachers and data was collected pre-, mid-, and post-program using teacher surveys and a curriculum analysis instrument. The second study evaluated teachers' perceptions of the ECS model as a curriculum authoring tool and the quality of the curriculum units they developed. The study included sixty-two participants and data was collected post-program using teacher surveys and a curriculum analysis instrument. The third study evaluated teachers' experiences implementing ECS units in the classroom with a focus on identifying the benefits, challenges and solutions associated with project-based engineering in the classroom. The study included thirty-one participants and data was collected using an open-ended survey instrument after teachers completed implementation of the ECS curriculum unit. Results of these three studies indicate that teachers can be prepared to integrate engineering in the classroom using a CDB professional development model. Teachers reported an increase in engineering content knowledge, improved their self-efficacy in curriculum planning, and developed high quality instructional units that were aligned to engineering design practices and STEM educational standards. The ECS instructional model was acknowledged as a valuable tool for developing and implementing engineering education in the classroom. Teachers reported that ECS curriculum design aligned with their teaching goals, provided a framework to integrate engineering with other subject-area concepts, and incorporated innovative teaching strategies. After implementing ECS units in the classroom, teachers reported that the ECS model engaged students in engineering design challenges that were situated in a real world context and required the application of interdisciplinary content knowledge and skills. Teachers also reported a number of challenges related to scheduling, content alignment, and access to resources. In the face of these obstacles, teachers presented a number of solutions that included optimization of one's teaching practice, being resource savvy, and adopting a growth mindset.

  5. Development of engineering drawing ability for emerging engineering education

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Wen; Cao, Xiao-Chang; Xie, Li; Jin, Jian-Jun; Wang, Chu-Diao

    2017-09-01

    Students majoring in engineering is required by the emerging engineering education (3E) in the aspect of their ability of engineering drawing. This paper puts forward training mode of engineering drawing ability for 3E. This mode consists of three kinds of training including training in courses, training in competitions and training in actual demand. We also design the feasible implementation plan and supplies viable references to carry out the mode.

  6. Relationship of Prior Knowledge and Working Engineers' Learning Preferences: Implications for Designing Effective Instruction

    ERIC Educational Resources Information Center

    Baukal, Charles E.; Ausburn, Lynna J.

    2017-01-01

    Continuing engineering education (CEE) is important to ensure engineers maintain proficiency over the life of their careers. However, relatively few studies have examined designing effective training for working engineers. Research has indicated that both learner instructional preferences and prior knowledge can impact the learning process, but it…

  7. Cognitive Processes of Students Participating in Two Approaches to Technology Education. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Hill, Roger B.

    2007-01-01

    The purpose of this study was to better understand cognitive strategies used by high school technology education students who have participated in technology education instruction with an engineering design focus. Specifically, this study evaluated the cognitive strategies of students participating in "Project Lead the Way" curriculum…

  8. Joint electrical engineering/physics course sequence for optics fundamentals and design

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Maldonado, Theresa A.; Black, Truman D.

    2000-06-01

    Optics is a key technology in a broad range of engineering and science applications of high national priority. Engineers and scientists with a sound background in this field are needed to preserve technical leadership and to establish new directions of research and development. To meet this educational need, a joint Electrical Engineering/Physics optics course sequence was created as PHYS 3445 Fundamentals of Optics and EE 4444 Optical Systems Design, both with a laboratory component. The objectives are to educate EE and Physics undergraduate students in the fundamentals of optics; in interdisciplinary problem solving; in design and analysis; in handling optical components; and in skills such as communications and team cooperation. Written technical reports in professional format are required, formal presentations are given, and participation in paper design contests is encouraged.

  9. Design Practices of Preservice Elementary Teachers in an Integrated Engineering and Literature Experience

    ERIC Educational Resources Information Center

    Wendell, Kristen Bethke

    2014-01-01

    The incorporation of engineering practices and core ideas into the "Next Generation Science Standards" at the elementary school level provides exciting opportunities but also raises important questions about the preparation of new elementary teachers. Both the teacher education and engineering education communities have a limited…

  10. The Bologna Process, Globalisation and Engineering Education Developments

    ERIC Educational Resources Information Center

    Uhomoibhi, James O.

    2009-01-01

    Purpose: The purpose of this paper is to report on the Bologna Process in the light of globalisation and examine how it affects curriculum and engineering education developments. Design/methodology/approach: The growing need for creative competitiveness and the striving for specific profiles of engineering qualifications that are of high quality…

  11. No Federal Programs are Designed Primarily to Support Engineering Education, but Many Do.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Federal civilian agency support for engineering education in 1980 is described. The support is placed in categories, current concerns about the supply of engineers and conditions of engineering schools are related to the support, and the changes made by the fiscal year 1982 budget are identified. It was found that 38 programs in 11 federal…

  12. Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.

    PubMed

    Cao, Gui Hong

    2015-12-01

    Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering sustainability.

  13. Engineering Design Concepts

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2004-01-01

    In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…

  14. Culturally responsive engineering education: A case study of a pre-college introductory engineering course at Tibetan Children's Village School of Selakui

    NASA Astrophysics Data System (ADS)

    Santiago, Marisol Mercado

    Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan communities, and surroundings helped the students to relate to abstract concepts in familiar settings. Lastly, they appreciated that I brought to the course relevant information about technology and society in India (their host country), engineers' work in industry, technologies used in other contexts as well, and projects that show how engineers can help to alleviate poverty. The findings of my research can inform (a) educators who are interested in integrating culturally responsive activities in their teaching methods, (b) researchers or teachers in ethnic minority schools abroad, (c) educators interested in developing engineering activities or courses for underrepresented ethnic minorities, ethnic diasporas or refugee youth in the United States, and (d) facilitators at multicultural engineering summer camps in the United States.

  15. Integrating Engineering Design Challenges into Secondary STEM Education

    ERIC Educational Resources Information Center

    Carr, Ronald L.; Strobel, Johannes

    2011-01-01

    Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…

  16. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    ERIC Educational Resources Information Center

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  17. An exploration of students' perceptions and attitudes towards creativity in engineering education

    NASA Astrophysics Data System (ADS)

    Waller, David R.

    This study used a mixed methods approach to develop a broad and deep understanding of students’ perceptions towards creativity in engineering education. Studies have shown that students’ attitudes can have an impact on their motivation to engage in creative behavior. Using an ex-post facto independent factorial design, attitudes of value towards creativity, time for creativity, and creativity stereotypes were measured and compared across gender, year of study, engineering discipline, preference for open-ended problem solving, and confidence in creative abilities. Participants were undergraduate engineering students at Queen’s University from all years of study. A qualitative phenomenological methodology was adopted to study students’ understandings and experiences with engineering creativity. Eleven students participated in oneon- one interviews that provided depth and insight into how students experience and define engineering creativity, and the survey included open-ended items developed using the 10 Maxims of Creativity in Education as a guiding framework. The findings from the survey suggested that students had high value for creativity, however students in fourth year or higher had less value than those in other years. Those with preference for open-ended problem solving and high confidence valued creative more than their counterparts. Students who preferred open-ended problem solving and students with high confidence reported that time was less of a hindrance to their creativity. Males identified more with creativity stereotypes than females, however overall they were both low. Open-ended survey and interview results indicated that students felt they experienced creativity in engineering design activities. Engineering creativity definitions had two elements: creative action and creative characteristic. Creative actions were associated with designing, and creative characteristics were predominantly associated with novelty. Other barriers that emerged from the qualitative analysis were lack of opportunity, lack of assessment, and discomfort with creativity. It was concluded that a universal definition is required to establish clear and aligned understandings of engineering creativity. Instructors may want to consider demonstrating value by assessing creativity and establishing clear criteria in design projects. It is recommended that students be given more opportunities for practice through design activities and that they be introduced to design and creative thinking concepts early in their engineering education.

  18. 34 CFR 637.13 - What are design projects?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What are design projects? 637.13 Section 637.13 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of...

  19. 34 CFR 637.13 - What are design projects?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are design projects? 637.13 Section 637.13 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of...

  20. 34 CFR 637.13 - What are design projects?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What are design projects? 637.13 Section 637.13 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of...

  1. 34 CFR 637.13 - What are design projects?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What are design projects? 637.13 Section 637.13 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of...

  2. 34 CFR 637.13 - What are design projects?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What are design projects? 637.13 Section 637.13 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of...

  3. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  4. PLTW and Epics-High: Curriculum Comparisons to Support Problem Solving in the Context of Engineering Design. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Kelley, Todd; Brenner, Daniel C.; Pieper, Jon T.

    2010-01-01

    A comparative study was conducted to compare two approaches to engineering design curriculum between different schools (inter-school) and between two curricular approaches, "Project Lead the Way" (PLTW) and "Engineering Projects in Community Service" (EPIC High) (inter-curricular). The researchers collected curriculum…

  5. An Engineering Innovation Tool: Providing Science Educators a Picture of Engineering in Their Classroom

    ERIC Educational Resources Information Center

    Ross, Julia Myers; Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.

    2018-01-01

    An Engineering Innovation Tool was designed to support science teachers as they navigate the opportunities and challenges the inclusion of engineering affords by providing a useful tool to be used within the professional development environment and beyond. The purpose of this manuscript is to share the design, development and substance of the tool…

  6. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-01-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering…

  7. Examining Elementary School Students' Mental Models of Sun-Earth Relationships as a Result of Engaging in Engineering Design

    ERIC Educational Resources Information Center

    Dankenbring, Chelsey; Capobianco, Brenda M.

    2016-01-01

    Current reform efforts in science education in the United States call for students to learn science through the integration of science and engineering practices. Studies have examined the effect of engineering design on students' understanding of engineering, technology, and science concepts. However, the majority of studies emphasize the accuracy…

  8. Building up STEM: An Analysis of Teacher-Developed Engineering Design-Based STEM Integration Curricular Materials

    ERIC Educational Resources Information Center

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael

    2016-01-01

    Improving K-12 Science, Technology, Engineering, and Mathematics (STEM) education has a priority on numerous education reforms in the United States. To that end, developing and sustaining quality programs that focus on integrated STEM education is critical for educators. Successful implementation of any STEM program is related to the curriculum…

  9. Two Approaches to Engineering Design:Observations in sTEm Education

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Brenner, Daniel C.; Pieper, Jon T.

    2010-01-01

    A comparative study was conducted to compare two approaches to engineering design curriculum across different schools (inter-school) and across two curricula "Project Lead the Way and Engineering Projects in Community Service" (inter-curricula). The researchers collected curricula material including handouts, lesson plans, guides,…

  10. Emerging Media in Engineering Technology: A Case Study in Higher Education

    ERIC Educational Resources Information Center

    Ostler, Karl B.

    2013-01-01

    Technical illustration, 3D modeling, and design drafting under the discipline of engineering technology face rapid change and advancements in technologies such that educational leaders must continually anticipate change and make intelligent choices in providing a quality educational experience to adult students. However, how successful program…

  11. Education: AIChE Probes Impact of Computer on Future Engineering Education.

    ERIC Educational Resources Information Center

    Krieger, James

    1983-01-01

    Evaluates influence of computer assisted instruction on engineering education, considering use of computers to remove burden of doing calculations and to provide interactive self-study programs of a tutorial/remedial nature. Cites universities requiring personal computer purchase, pointing out possibility for individualized design assignments.…

  12. Modeling Web-Based Educational Systems: Process Design Teaching Model

    ERIC Educational Resources Information Center

    Rokou, Franca Pantano; Rokou, Elena; Rokos, Yannis

    2004-01-01

    Using modeling languages is essential to the construction of educational systems based on software engineering principles and methods. Furthermore, the instructional design is undoubtedly the cornerstone of the design and development of educational systems. Although several methodologies and languages have been proposed for the specification of…

  13. A Virtual Steel Sculpture for Structural Engineering Education: Development and Initial Findings

    ERIC Educational Resources Information Center

    Dib, Hazar Nicholas; Adamo-Villani, Nicoletta

    2016-01-01

    We describe the development and evaluation of a virtual steel sculpture for engineering education. A good connection design requires the engineer to have a solid understanding of the mechanics and steel behavior. To help students better understand various connection types, many schools have acquired steel sculptures. A steel sculpture is a…

  14. Studies on the Use of Extramural Videopublished Materials in Continuing Education. Final Report.

    ERIC Educational Resources Information Center

    Sjogren, Douglas; And Others

    The Engineering Renewal and Growth (ERG) program at Colorado State University (CSU) was designed for continuing education of engineers. The program used videotapes and coordinated written materials to deliver instruction to the practicing engineer. Courses were leased to individual students or industries in which students worked. The courses were…

  15. Engineering Technology Education Bibliography, 1990.

    ERIC Educational Resources Information Center

    Dyrud, Marilyn A.

    1991-01-01

    Lists over 340 materials published in 1990 related to engineering technology education and grouped under the following headings: administration; architectural; computer-assisted design/management (CAD/CAM); civil; computers; curriculum; electrical/electronics; industrial; industry/government/employers; instructional technology; laboratories;…

  16. PBL and CDIO: complementary models for engineering education development

    NASA Astrophysics Data System (ADS)

    Edström, Kristina; Kolmos, Anette

    2014-09-01

    This paper compares two models for reforming engineering education, problem/project-based learning (PBL), and conceive-design-implement-operate (CDIO), identifying and explaining similarities and differences. PBL and CDIO are defined and contrasted in terms of their history, community, definitions, curriculum design, relation to disciplines, engineering projects, and change strategy. The structured comparison is intended as an introduction for learning about any of these models. It also invites reflection to support the understanding and evolution of PBL and CDIO, and indicates specifically what the communities can learn from each other. It is noted that while the two approaches share many underlying values, they only partially overlap as strategies for educational reform. The conclusions are that practitioners have much to learn from each other's experiences through a dialogue between the communities, and that PBL and CDIO can play compatible and mutually reinforcing roles, and thus can be fruitfully combined to reform engineering education.

  17. Rehabilitation engineering training for the future: influence of trends in academics, technology, and health reform.

    PubMed

    Winters, J M

    1995-01-01

    A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.

  18. Students' attitudes towards interdisciplinary education: a course on interdisciplinary aspects of science and engineering education

    NASA Astrophysics Data System (ADS)

    Gero, Aharon

    2017-05-01

    A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.

  19. How Mockups, a Key Engineering Tool, Help to Promote Science, Technology, Engineering, and Mathematics Education

    NASA Technical Reports Server (NTRS)

    McDonald, Harry E.

    2010-01-01

    The United States ranking among the world in science, technology, engineering, and mathematics (STEM) education is decreasing. To counteract this problem NASA has made it part of its mission to promote STEM education among the nation s youth. Mockups can serve as a great tool when promoting STEM education in America. The Orion Cockpit Working Group has created a new program called Students Shaping America s Next Space Craft (SSANS) to outfit the Medium Fidelity Orion Mockup. SSANS will challenge the students to come up with unique designs to represent the flight design hardware. There are two main types of project packages created by SSANS, those for high school students and those for university students. The high school projects will challenge wood shop, metal shop and pre-engineering classes. The university projects are created mainly for senior design projects and will require the students to perform finite element analysis. These projects will also challenge the undergraduate students in material selection and safety requirements. The SSANS program will help NASA in its mission to promote STEM education, and will help to shape our nations youth into the next generation of STEM leaders.

  20. Renewable Microgrid STEM Education & Colonias Outreach Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to encourage them to select science and engineering as a career by providing an engineering-based problem-solving experience involving renewable energy systems such as photovoltaic (PV) panels or wind turbines. All public and private schools, community colleges, and vocational training programs would be eligible for participation. The Power Microgrids High School Engineering Experience used renewable energy systems (PV and wind) to provide a design capstone experience to secondary students. The objective for each student team was to design a microgrid for the student’s school using renewable energymore » sources under cost, schedule, performance, and risk constraints. The students then implemented their designs in a laboratory environment to evaluate the completeness of the proposed design, which is a unique experience even for undergraduate college students. This application-based program was marketed to secondary schools in the 28th Congressional District through the Texas Education Agency’s (TEA) Regional Service Centers. Upon application, TEES identified regionally available engineers to act as mentors and supervisors for the projects. Existing curriculum was modified to include microgrid and additional renewable technologies and was made available to the schools.« less

  1. Design-Build-Write: Increasing the Impact of English for Specific Purposes Learning and Teaching in Aeronautical Engineering Education through Multiple Intelligences Task Design

    ERIC Educational Resources Information Center

    Tatzl, Dietmar

    2011-01-01

    This article presents an English for Specific Purposes (ESP) task developed for teaching aeronautical engineering students. The task Design-Build-Write rests on the assumption that engineering students are skilled at mathematical reasoning, problem solving, drawing and constructing. In Gardner's 1983 Multiple Intelligences (MI) theory, these…

  2. The Effect on Pupils' Science Performance and Problem-Solving Ability through Lego: An Engineering Design-Based Modeling Approach

    ERIC Educational Resources Information Center

    Li, Yanyan; Huang, Zhinan; Jiang, Menglu; Chang, Ting-Wen

    2016-01-01

    Incorporating scientific fundamentals via engineering through a design-based methodology has proven to be highly effective for STEM education. Engineering design can be instantiated for learning as they involve mental and physical stimulation and develop practical skills especially in solving problems. Lego bricks, as a set of toys based on design…

  3. Biomedical engineering education through global engineering teams.

    PubMed

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  4. Examining Young Students' Problem Scoping in Engineering Design

    ERIC Educational Resources Information Center

    Watkins, Jessica; Spencer, Kathleen; Hammer, David

    2014-01-01

    Problem scoping--determining the nature and boundaries of a problem--is an essential aspect of the engineering design process. Some studies from engineering education suggest that beginning students tend to skip problem scoping or oversimplify a problem. However, the ways these studies often characterize students' problem scoping often do not…

  5. Engineering Design Modules as Physics Teaching Tools

    ERIC Educational Resources Information Center

    Oliver, Douglas L.; Kane, Jackie

    2011-01-01

    Pre-engineering is increasingly being taught as a high school subject. This development presents challenges as well as opportunities for the physics education community. If pre-engineering is taught as a separate class, it may divert resources and students from traditional physics classes. However, design modules can be used as physics teaching…

  6. Multimedia Tutors for Science and Engineering.

    ERIC Educational Resources Information Center

    Woolf, Beverly Park; Poli, Corrado; Grosse, Ian; Day, Roberta

    We have built several multimedia tutors for science and engineering education. This paper discusses Design for Manufacturing tutors and an electronic homework systems used by over 2000 students daily. The engineering tutors instruct students on efficient procedures for designing parts for manufacture. The goal is to support a deeper understanding…

  7. Facilitating an Elementary Engineering Design Process Module

    ERIC Educational Resources Information Center

    Hill-Cunningham, P. Renee; Mott, Michael S.; Hunt, Anna-Blair

    2018-01-01

    STEM education in elementary school is guided by the understanding that engineering represents the application of science and math concepts to make life better for people. The Engineering Design Process (EDP) guides the application of creative solutions to problems. Helping teachers understand how to apply the EDP to create lessons develops a…

  8. Elementary students' engagement in failure-prone engineering design tasks

    NASA Astrophysics Data System (ADS)

    Andrews, Chelsea Joy

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.

  9. Guidelines to design engineering education in the twenty-first century for supporting innovative product development

    NASA Astrophysics Data System (ADS)

    Violante, Maria Grazia; Vezzetti, Enrico

    2017-11-01

    In the twenty-first century, meeting our technological challenges demands educational excellence, a skilled populace that is ready for the critical challenges society faces. There is widespread consensus, however, that education systems are failing to adequately prepare all students with the essential twenty-first century knowledge and skills necessary to succeed in life, career, and citizenship. The purpose of this paper is to understand how twenty-first century knowledge and skills can be appropriately embedded in engineering education finalised to innovative product development by using additive manufacturing (AM). The study designs a learning model by which to achieve effective AM education to address the requirements of twenty-first century and to offer students the occasion to experiment with STEM (Science, technology, engineering, and mathematics) concepts. The study is conducted using the quality function deployment (QFD) methodology.

  10. Technology of interdisciplinary open-ended designing in engineering education

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  11. Research Design Becomes Research Reality: Colorado School of Mines Implements Research Methodology for the Center for the Advancement of Engineering Education. Research Brief

    ERIC Educational Resources Information Center

    Loshbaugh, Heidi; Streveler, Ruth; Breaux, Kimberley

    2007-01-01

    The Center for the Advancement of Engineering Education was founded in 2003 with five collaborating institutions. A multi-institutional, multi-year grant offers many opportunities for the demands of reality to interfere with design goals. In particular, at Colorado School of Mines (CSM) student demographics required adjustment of the original APS…

  12. Renovation of a Mechanical Engineering Senior Design Class to an Industry-Tied and Team-Oriented Course

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2017-01-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…

  13. Engineering Encounters: The Cat in the Hat Builds Satellites. A Unit Promoting Scientific Literacy and the Engineering Design Process

    ERIC Educational Resources Information Center

    Rehmat, Abeera P.; Owens, Marissa C.

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a unit promoting scientific literacy and the engineering design process. The integration of engineering with scientific practices in K-12 education can promote creativity, hands-on learning, and an improvement in students'…

  14. Incorporating Kansei Engineering in Instructional Design: Designing Virtual Reality Based Learning Environments from a Novel Perspective

    ERIC Educational Resources Information Center

    Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong

    2008-01-01

    In recent years, the application of virtual reality (VR) technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the…

  15. Technology and Engineering Education Accommodation Service Profile: An Ex Post Facto Research Design

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.; Williams, Thomas O., Jr.

    2014-01-01

    Technology and engineering educators have an opportunity to serve a vital role in contributing to or assisting in the guidance of educational programming for students qualifying for accommodation services. Within this article, students referred to as at-risk were from two specific special populations within this group: individuals with…

  16. Effective Design of Educational Virtual Reality Applications for Medicine Using Knowledge-Engineering Techniques

    ERIC Educational Resources Information Center

    Górski, Filip; Bun, Pawel; Wichniarek, Radoslaw; Zawadzki, Przemyslaw; Hamrol, Adam

    2017-01-01

    Effective medical and biomedical engineering education is an important problem. Traditional methods are difficult and costly. That is why Virtual Reality is often used for that purpose. Educational medical VR is a well-developed IT field, with many available hardware and software solutions. Current solutions are prepared without methodological…

  17. E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory

    ERIC Educational Resources Information Center

    Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker

    2010-01-01

    Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…

  18. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    ERIC Educational Resources Information Center

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  19. The Promise of the Maker Movement for Education

    ERIC Educational Resources Information Center

    Martin, Lee

    2015-01-01

    The Maker Movement is a community of hobbyists, tinkerers, engineers, hackers, and artists who creatively design and build projects for both playful and useful ends. There is growing interest among educators in bringing making into K-12 education to enhance opportunities to engage in the practices of engineering, specifically, and STEM more…

  20. Impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    NASA Astrophysics Data System (ADS)

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.

  1. Establishment of Systematical Education Program of Engineering Ethics for a Technical College

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukito

    Engineering ethics education deals with a wide range of matters. Therefore it should not be treated within a single subject, but in a whole curriculum of a college. In Yatsushiro National College of Technology, we have designed a systematic education program of engineering ethics on the basis of “Yatsushiro National College Synthetic Education Program” , which was established in 2002. This education program, including education for formation of character and morality as well, has two distinctive features : five or seven-year successive course of study and cooperation among the departments and teaching staffs. This interactive scheme has produced highly educational effects.

  2. The Education of Future Aeronautical Engineers: Conceiving, Designing, Implementing and Operating

    ERIC Educational Resources Information Center

    Crawley, Edward F.; Brodeur, Doris R.; Soderholm, Diane H.

    2008-01-01

    This paper will outline answers to the two central questions regarding improving engineering education: (1) What is the full set of knowledge, skills, and attitudes that engineering students should possess as they leave the university, and at what level of proficiency?; and (2) How can we do better at ensuring that students learn these skills? The…

  3. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  4. The Use of Motivation Theory in Engineering Education Research: A Systematic Review of Literature

    ERIC Educational Resources Information Center

    Brown, Philip R.; McCord, Rachel E.; Matusovich, Holly M.; Kajfez, Rachel L.

    2015-01-01

    Motivation is frequently studied in the context of engineering education. However, the use of the term motivation can be inconsistent, both in how clearly it is defined and in how it is implemented in research designs and practice. This systematic literature review investigates the use of motivation across recent engineering education…

  5. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    NASA Astrophysics Data System (ADS)

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-04-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.

  6. Engineering education for youth: Diverse elementary school students' experiences with engineering design

    NASA Astrophysics Data System (ADS)

    Hegedus, Theresa

    Lingering concerns over the persistent achievement gap amidst the trend of an increasingly diverse society have been compounded by calls from the Oval Office, the National Science Board, and nationwide media to also address our current creativity crisis. Now, more than ever, we have a responsibility to produce a STEM-capable (science, technology, engineering, and mathematics) workforce to meet the demands of our rapidly changing local and global economic landscape. Barriers exist in our traditional educational system, which has historically limited underrepresented groups' affiliation and membership in the disciplines of science and engineering. The recent incorporation of engineering into the latest science education reform efforts presents an opportunity to expose students as early as elementary school to engineering practices and habits of mind, which have the potential to stimulate creative thinking skills through engineering design. This qualitative study was designed to examine the ways in which engineering education has the potential to promote creativity and academic competence in elementary science classrooms. As a part of my study, a diverse group of students from two fifth-grade classrooms took part in a 10-12 hour, engineering-based curriculum unit (Engineering is Elementary) during their regular science instructional time. Using a sociocultural lens, to include cultural production and identities in practice as part of my framework, I analyzed group and individual performances through classroom observations, student interviews, and teacher reflections to better understand the meaning students made of their experiences with engineering. Findings from the study included the ways in which creativity was culturally produced in the classroom to include: 1) idea generation; 2) design and innovation; 3) gumption/resourcefulness; and 4) social value. Opportunities for collaboration increased through each stage of the unit culminating with the design challenge. Engineering teams required cultivation by the teacher as students negotiated spaces for collaboration through challenges of competition versus compromise; assumed versus assigned roles; management of verbal versus non-verbal communication; and shifts from teacher-as-authority-figure to peers as sources of knowledge and inspiration. The engineering design challenge provided an ideal context for broaching socio-scientific issues and attention to ethical considerations. Students made reference to their growing environmental awareness and developing moral reasoning in their definitions and reflections on green engineering. Throughout the course of the unit, successful students, struggling students, and students with uncertain trajectories established themselves as competent and efficacious engineers. Implications of the study include ways to assist teachers in recognizing and cultivating creativity and collaboration in addition to effectively incorporating socio-scientific issues as part of the engineering (and science) curriculum. I also present recommendations for promoting equity in classroom engineering, pre-service teacher initiatives, and strategies for capitalizing on the complementarity between science and engineering.

  7. 34 CFR 637.41 - What are the cost restrictions on design project grants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What are the cost restrictions on design project grants? 637.41 Section 637.41 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...

  8. 34 CFR 637.41 - What are the cost restrictions on design project grants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What are the cost restrictions on design project grants? 637.41 Section 637.41 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...

  9. 34 CFR 637.41 - What are the cost restrictions on design project grants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What are the cost restrictions on design project grants? 637.41 Section 637.41 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...

  10. 34 CFR 637.41 - What are the cost restrictions on design project grants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What are the cost restrictions on design project grants? 637.41 Section 637.41 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...

  11. 34 CFR 637.41 - What are the cost restrictions on design project grants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are the cost restrictions on design project grants? 637.41 Section 637.41 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT...

  12. Engineering Design Activity: Understanding How Different Design Activities Influence Students' Motivation in Grades 9-12. Final Report. A Seed Grant Research Project. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Lawanto, Oenardi; Stewardson, Gary

    2009-01-01

    The objective of this study was to evaluate grade 9-12 students' motivation while engaged in two different engineering design projects: marble-sorter and bridge designs. The motivation components measured in this study were focused on students' intrinsic (IGO) and extrinsic (EGO) goal orientations, task value (TV), self-efficacy for learning and…

  13. Motivation for Creativity in Architectural Design and Engineering Design Students: Implications for Design Education

    ERIC Educational Resources Information Center

    Casakin, Hernan; Kreitler, Shulamith

    2010-01-01

    The investigation reported here dealt with the study of motivation for creativity. The goals were to assess motivation for creativity in architectural design and engineering design students based on the Cognitive Orientation theory which defines motivation as a function of a set of belief types, themes, and groupings identified as relevant for the…

  14. University of Wyoming, College of Engineering, undergraduate design projects to aid Wyoming persons with disabilities.

    PubMed

    Barrett, Steven F; Laurin, Kathy M; Bloom, Janet K Chidester

    2003-01-01

    In Spring 2002 the University of Wyoming received NSF funding from the Division of Bioengineering and Environmental Systems to provide a meaningful design experience for University of Wyoming, College of Engineering students that will directly aid individuals with disabilities within the state of Wyoming. Other universities have participated in this very worthwhile program [1, 2, 3]. To achieve the program purpose, the following objectives were established: Provide engineering students multi-disciplinary, meaningful, community service design projects, Provide persons with disabilities assistive devices to empower them to achieve the maximum individual growth and development and afford them the opportunity to participate in all aspects of life as they choose, Provide engineering students education and awareness on the special needs and challenges of persons with disabilities, and Provide undergraduate engineering students exposure to the biomedical field of engineering. To accomplish these objectives the College of Engineering partnered with three organizations that provide education and service related to disability. Specifically, the college has joined with the Wyoming Institute for Disabilities (WIND) assistive technology program, Wyoming New Options in Technology (WYNOT) and their Sports and Outdoor Assistive Recreation (SOAR) project along with the university's Special Education program. In this paper we will describe how the program was created, developed, and its current status.

  15. Science and Engineering

    ERIC Educational Resources Information Center

    Cowin, Roy; Reyes-Guerra, David

    1977-01-01

    Engineers may be involved in various functions such as research, development, planning, design (analysis and synthesis), construction, operation and management of engineering projects. This article discusses some branches of accredited engineering curricula, employment opportunities, the preparation for management, minimum education needed, women…

  16. Developing Engineering and Science Process Skills Using Design Software in an Elementary Education

    NASA Astrophysics Data System (ADS)

    Fusco, Christopher

    This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.

  17. Open the `black box' creativity and innovation: a study of activities in R&D departments. Some prospects for engineering education

    NASA Astrophysics Data System (ADS)

    Millet, Charlyne; Oget, David; Cavallucci, Denis

    2017-11-01

    Innovation is a key component to the success and longevity of companies. Our research opens the 'black box' of creativity and innovation in R&D teams. We argue that understanding the nature of R&D projects in terms of creativity/innovation, efficiency/inefficiency, is important for designing education policies and improving engineering curriculum. Our research addresses the inventive design process, a lesser known aspect of the innovation process, in 197 R&D departments of industrial sector companies in France. One fundamental issue facing companies is to evaluate processes and results of innovation. Results show that the evaluation of innovation is confined by a lack of methodology of inventive projects. We will be establishing the foundations of a formal ontology for inventive design projects and finally some recommendations for engineering education.

  18. Railway project design and construction (CEE 411) course updates.

    DOT National Transportation Integrated Search

    2017-01-20

    Course CEE 411 "Railway Project Design and Construction" is a cornerstone of the railway : engineering education program developed by the Rail Transportation and Engineering Center : (RailTEC) at the University of Illinois at Urbana-Champaign (UIUC)....

  19. Design Projects of the Future

    ERIC Educational Resources Information Center

    Shaeiwitz, Joseph A.; Turton, Richard

    2006-01-01

    The chemical engineering profession is in the midst of a significant evolution, perhaps a revolution. As the profession moves toward product development and design and away from petroleum and chemical process development and design, a new paradigm for chemical engineering education is evolving. Therefore, a new generation of capstone design…

  20. Formula Student as Part of a Mechanical Engineering Curriculum

    ERIC Educational Resources Information Center

    Davies, Huw Charles

    2013-01-01

    Formula Student (FS) is a multi-university student design competition managed by the UK Institution of Mechanical Engineers. Students are required to demonstrate and prove their creativity and engineering skills through the design, manufacture and financing of a small formula style race car. This paper seeks to explore the educational value that…

  1. Microbeads and Engineering Design in Chemistry: No Small Educational Investigation

    ERIC Educational Resources Information Center

    Hoffman, Adam; Turner, Ken

    2015-01-01

    A multipart laboratory activity introducing microbeads was created to meet engineering and engineering design practices consistent with new Next Generation Science Standards (NGSS). Microbeads are a current topic of concern as they have been found to cause adverse impacts in both marine and freshwater systems resulting in multiple states proposing…

  2. STEM Teachers' Planned and Enacted Attempts at Implementing Engineering Design-Based Instruction

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Rupp, Madeline

    2014-01-01

    This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design-based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education.…

  3. Constellation Program Design Challenges as Opportunities for Educational Outreach- Lessons Learned

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2010-01-01

    The Texas Space Grant Consortium (TSGC) and the NASA Exploration Systems Mission Directorate (ESMD) Education Office both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and scientists as actual design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, lessons learned are presented on the NASA Design Challenge Program.

  4. The development of Sustainability Graduate Community (SGC) as a learning pathway for sustainability education - a framework for engineering programmes in Malaysia Technical Universities Network (MTUN)

    NASA Astrophysics Data System (ADS)

    Johan, Kartina; Mohd Turan, Faiz

    2016-11-01

    ‘Environmental and sustainability’ is one of the Program Outcome (PO) designated by the Board of Engineers Malaysia (BEM) as one of the accreditation program requirement. However, to-date the implementation of sustainability elements in engineering programme in the technical universities in Malaysia is within individual faculty's curriculum plan and lack of university-level structured learning pathway, which enable all students to have access to an education in sustainability across all disciplines. Sustainability Graduate Community (SGC) is a framework designed to provide a learning pathway in the curriculum of engineering programs to inculcate sustainability education among engineering graduates. This paper aims to study the required attributes in Sustainability Graduate Community (SGC) framework to produce graduates who are not just engineers but also skilful in sustainability competencies using Global Project Management (GPM) P5 Standard for Sustainability. The development of the conceptual framework is to provide a constructive teaching and learning plan for educators and policy makers to work on together in developing the Sustainability Graduates (SG), the new kind of graduates from Malaysia Technical Universities Network (MTUN) in Malaysia who are literate in sustainability practices. The framework also support the call for developing holistic students based on Malaysian Education Blueprint (Higher Education) and address the gap between the statuses of engineering qualification to the expected competencies from industries in Malaysia in particular by achieving the SG attributes outlined in the framework

  5. Bridging the Gap between Engineering Design and PK-12 Curriculum Development through the Use of the STEM Education Quality Framework

    ERIC Educational Resources Information Center

    Pinnell, Margaret; Rowly, James; Preiss, Sandi; Franco, Suzanne; Blust, Rebecca; Beach, Renee

    2013-01-01

    This paper will describe a unique partnership among the Department of Teacher Education and School of Engineering at the University of Dayton (UD) and the Dayton Regional STEM Center (DRSC). This partnership resulted in the development of the STEM Education Quality Framework (SQF), a tool to guide educators in teaching, learning and refining STEM…

  6. Analysing the Correlation between Social Network Analysis Measures and Performance of Students in Social Network-Based Engineering Education

    ERIC Educational Resources Information Center

    Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav

    2016-01-01

    Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment,…

  7. The Educational Needs of Graduate Mechanical Engineers in New Zealand.

    ERIC Educational Resources Information Center

    Deans, J.

    1999-01-01

    Surveys graduate and undergraduate mechanical engineering students at the University of Auckland. Shows that the dominant work activities of New Zealand mechanical engineers include design and consultancy and that graduate engineers rapidly migrate into management. (Author/CCM)

  8. How Engineers Negotiate Domain Boundaries in a Complex, Interdisciplinary Engineering Project

    NASA Technical Reports Server (NTRS)

    Panther, Grace; Montfort, Devlin; Pirtle, Zachary

    2017-01-01

    Engineering educators have an essential role in preparing engineers to work in a complex, interdisciplinary workforce. While much engineering education focuses on teaching students to develop disciplinary expertise in specific engineering domains, there is a strong need to teach engineers about the knowledge that they develop or use in their work (Bucciarelli 1994, Allenby Sarewitz, 2011; Frodeman, 2013). The purpose of this research is to gain a better understanding of the knowledge systems of practicing engineers through observations of their practices such that the insights learned can guide future education efforts. Using an example from a complex and interdisciplinary engineering project, this paper presents a case study overviewing the types of epistemological (or knowledge-acquiring or using) complexities that engineers navigate. Specifically, we looked at a discussion of the thermal design of a CubeSat that occurred during an engineering review at NASA. We analyzed the review using a framework that we call 'peak events', or pointed discussions between reviewers, project engineers, and managers. We examined the dialog within peak events to identify the ways that knowledge was brought to bear, highlighting discussions of uncertainty and the boundaries of knowledge claims. We focus on one example discussion surrounding the thermal design of the CubeSat, which provides a particularly thorough example of a knowledge system since the engineers present explained, justified, negotiated, and defended knowledge within a social setting. Engineering students do not get much practice or instruction in explicitly negotiating knowledge systems and epistemic standards in this way. We highlight issues that should matter to engineering educators, such as the need to discuss what level of uncertainty is sufficient and the need to negotiate boundaries of system responsibility. Although this analysis is limited to a single discussion or 'peak event', our case shows that this type of discussion can occur in engineering and suggests that it could be important for future engineering education research.

  9. Joint Engineering Leadership Development Program: Developing a Diverse Regional Engineering Talent Ecosystem. A BHEF Case Study

    ERIC Educational Resources Information Center

    Business-Higher Education Forum, 2017

    2017-01-01

    Through the collaboration of its business and academic partners, the Business-Higher Education Forum (BHEF) launched the National Higher Education and Workforce Initiative (HEWI) to support business-higher education partnerships that co-design innovative community college and university pathways to careers, as well as maximize work-based learning…

  10. Are We Educating Engineers for Sustainability?: Comparison between Obtained Competences and Swedish Industry's Needs

    ERIC Educational Resources Information Center

    Hanning, Andreas; Abelsson, Anna Priem; Lundqvist, Ulrika; Svanstrom, Magdalena

    2012-01-01

    Purpose: The aim of this study is to contribute to the quality improvement and long-term strategic development of education for sustainable development (ESD) in engineering education curricula. Design/methodology/approach: The content in 70 courses in environment and SD were characterized and quantified using course document text analysis.…

  11. Impact of an Engineering Design-Based Curriculum Compared to an Inquiry-Based Curriculum on Fifth Graders' Content Learning of Simple Machines

    ERIC Educational Resources Information Center

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic…

  12. Effects of Interdisciplinary Education on Technology-Driven Application Design

    ERIC Educational Resources Information Center

    Tafa, Z.; Rakocevic, G.; Mihailovic, D.; Milutinovic, V.

    2011-01-01

    This paper describes the structure and the underlying rationale of a new course dedicated to capability maturity model integration (CMMI)-directed design of wireless sensor networks (WSNs)-based biomedical applications that stresses: 1) engineering-, medico-engineering-, and informatics-related issues; 2) design for general- and special-purpose…

  13. Engineering education as a complex system

    NASA Astrophysics Data System (ADS)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  14. Heat Transfer Principles in Thermal Calculation of Structures in Fire

    PubMed Central

    Zhang, Chao; Usmani, Asif

    2016-01-01

    Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379

  15. Increasing the Roles and Significance of Teachers in Policymaking for K-12 Engineering Education: Proceedings of a Convocation

    ERIC Educational Resources Information Center

    Olson, Steve

    2017-01-01

    Engineering is a small but growing part of K-12 education. Curricula that use the principles and practices of engineering are providing opportunities for elementary, middle, and high school students to design solutions to problems of immediate practical and societal importance. Professional development programs are showing teachers how to use…

  16. DETERMINATION OF THE EDUCATIONAL NEEDS OF AGRICULTURAL ENGINEERING TECHNICIANS IN OHIO, A DIGEST OF A PH.D. DISSERTATION. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    BENDER, RALPH E.; HALTERMAN, JERRY J.

    THIS STUDY WAS DESIGNED TO DEVELOP CURRICULUMS NEEDED IN TRAINING PROGRAMS FOR AGRICULTURAL ENGINEERING TECHNICIANS IN OHIO. A QUESTIONNAIRE TO INVENTORY THE LABOR FORCE WAS ADMINISTERED TO INDIVIDUALS, FIRMS, BUSINESSES, AND AGENCIES EMPLOYING PERSONS IN AREAS REQUIRING AGRICULTURAL ENGINEERING AND FARM MECHANICS. ANOTHER TO COLLECT INFORMATION…

  17. Multiple Learning Strategies Project. Small Engine Repair Service. Low Reader-Educable Mentally Impaired. [Vol. 1.

    ERIC Educational Resources Information Center

    Pitts, Jim; And Others

    This instructional package, one of two designed for low reader-educable mentally impaired students, focuses on the vocational area of small engine repair service. (Low readers are identified as those reading at a 3-6 grade level.) Contained in this document are forty-three learning modules organized into nine units: engine block; air cleaner;…

  18. IEEE Validation of the Continuing Education Achievement of Engineers Registry System. Procedures for Use with a CPT 8000 Word Processor and Communications Package.

    ERIC Educational Resources Information Center

    Institute of Electrical and Electronics Engineers, Inc., New York, NY.

    The Institute of Electrical and Electronics Engineers (IEEE) validation program is designed to motivate persons practicing in electrical and electronics engineering to pursue quality technical continuing education courses offered by any responsible sponsor. The rapid acceptance of the validation program necessitated the additional development of a…

  19. Multiple case studies of STEM teachers' orientations to science teaching through engineering design

    NASA Astrophysics Data System (ADS)

    Rupp, Madeline

    The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.

  20. The Stirling engine as a low cost tool to educate mechanical engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gros, J.; Munoz, M.; Moreno, F.

    1995-12-31

    The University of Zaragoza through CIRCE, the New Enterprise foundation, an Opel foundation and the local Government of Aragon have been developed a program to introduce the Stirling Engine as a low cost tool to educate students in mechanical engineering. The promotion of a prize like GNAT Power organized by the magazine Model Engineer in London, has improved the practical education of students in the field of mechanical devices and thermal engines. Two editions of the contest, 1993 and 1994, awarded the greatest power Stirling engine made by only using a little candle of paraffin as a heat source. Fourmore » engines were presented in the first edition, with an average power of about 100 mW, and seven engines in the second one, achieving a power of about 230 mW. Presentations in Technical Schools and the University have been carried out. Also low cost tools have been made for measuring an electronic device to draw the real internal pressure volume diagram using a PC. A very didactic software to design classic kinematic alpha, beta and gamma engines plus Ringbom beta and gamma engines has been created. A book is going to be published (in Spanish) explaining the design of small Stirling engines as a way to start with low cost research in thermal engines, a very difficult target with IC engines.« less

  1. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  2. The Engagement of Engineers in Education and Public Outreach: Beginning the Conversation

    NASA Astrophysics Data System (ADS)

    Grier, J.; Buxner, S.; Vezino, B.; Shipp, S. S.

    2014-12-01

    The Next Generation Science Standards (NGSS) are a new set of K-12 science standards that have been developed through a collaborative, state-led process. Based on the National Research Council (NRC) 'Framework for K-12 Education,' the NGSS are designed to provide all students with a coherent education possessing both robust content and rigorous practice. Within these standards is an enhanced emphasis on the intersection between science and engineering. The focus is not only on asking questions and finding answers (science) but also in identifying and designing solution to problems (engineering.) The NASA SMD (Science Mission Directorate) Education and Public Outreach (E/PO) Forums have been working with space scientists for many years to assist with their engagement in E/PO efforts, thus supporting the needs of previous science standards. In order to properly address the needs of NGSS, this conversation is being expanded to include engineers. Our initial efforts include a series of semi-structured interviews with a dozen engineers involved in different aspects of space science and mission development. We will present the responses from the survey and compare this information to our knowledge base about space scientists, their needs, attitudes, and understandings of E/PO. In addition to a new emphasis on engineering in the NGSS, we also consider engineering habits of mind such as systems thinking, creativity, optimism, collaboration, communication, and attention to ethical considerations as described by an NRC policy document for engineering education. Using the overall results, we will consider strategies, further ideas for investigation, and possible steps for going forward with this important aspect of including engineering in education and outreach programming.

  3. Interactive Web-Based and Hands-On Engineering Education: A Freshman Aerospace Design Course at MIT.

    ERIC Educational Resources Information Center

    Newman, Dava J.

    "Introduction to Aerospace and Design" is a 3-hour per week freshman elective course at Massachusetts Institute of Technology (MIT) that culminates in a Lighter-Than-Air (LTA) vehicle design competition, exposing freshmen to the excitement of aerospace engineering design typically taught in the junior or senior years. In addition to the…

  4. Where Is "Community"?: Engineering Education and Sustainable Community Development

    ERIC Educational Resources Information Center

    Schneider, J.; Leydens, J. A.; Lucena, J.

    2008-01-01

    Sustainable development initiatives are proliferating in the US and Europe as engineering educators seek to provide students with knowledge and skills to design technologies that are environmentally sustainable. Many such initiatives involve students from the "North," or "developed" world building projects for villages or…

  5. Integrating ethics in design through the value-sensitive design approach.

    PubMed

    Cummings, Mary L

    2006-10-01

    The Accreditation Board of Engineering and Technology (ABET) has declared that to achieve accredited status, 'engineering programs must demonstrate that their graduates have an understanding of professional and ethical responsibility.' Many engineering professors struggle to integrate this required ethics instruction in technical classes and projects because of the lack of a formalized ethics-in-design approach. However, one methodology developed in human-computer interaction research, the Value-Sensitive Design approach, can serve as an engineering education tool which bridges the gap between design and ethics for many engineering disciplines. The three major components of Value-Sensitive Design, conceptual, technical, and empirical, exemplified through a case study which focuses on the development of a command and control supervisory interface for a military cruise missile.

  6. Infusing Technology Driven Design Thinking in Industrial Design Education: A Case Study

    ERIC Educational Resources Information Center

    Mubin, Omar; Novoa, Mauricio; Al Mahmud, Abdullah

    2017-01-01

    Purpose: This paper narrates a case study on design thinking-based education work in an industrial design honours program. Student projects were developed in a multi-disciplinary setting across a Computing and Engineering faculty that allowed promoting technologically and user-driven innovation strategies. Design/methodology/approach: A renewed…

  7. Gas Station Pricing Game: A Lesson in Engineering Economics and Business Strategies.

    ERIC Educational Resources Information Center

    Sin, Aaron; Center, Alfred M.

    2002-01-01

    Describes an educational game designed for engineering majors that demonstrates engineering economics and business strategies, specifically the concepts of customer perception of product value, convenience, and price differentiation. (YDS)

  8. Current developments in the French engineering education system

    NASA Astrophysics Data System (ADS)

    Lemaître, Denis

    2017-03-01

    The French engineering education system has been established in quite a different way from others in Europe, such as the German and British systems, for instance. Due to both the whole state system and the private initiatives during the industrial revolution, the engineering education system today is composed of a large number (nearly 200) of rather small and specialised institutions, which have historically mostly developed outside universities. In the last decades, this system has had to face a powerful internationalisation movement. This has had major consequences on the curricula design, regarding foreign language teaching, international exchanges, and links with research. Currently, the French engineering education system is facing new challenges, regarding innovation and environmental and social issues, in a very competitive higher education context.

  9. Characterisation

    DTIC Science & Technology

    2007-03-01

    Characterisation. In Nanotechnology Aerospace Applications – 2006 (pp. 4-1 – 4-8). Educational Notes RTO-EN-AVT-129bis, Paper 4. Neuilly-sur-Seine, France: RTO...the Commercialisation Processes Concept IDEA Proof-of- Principle Trial Samples Engineering Verification Samples Design Verification Samples...SEIC Systems Engineering for commercialisation Design Houses, Engineering & R&D USERS & Integrators SE S U R Integrators Fabs & Wafer Processing Die

  10. Engineering Design in the Primary School: Applying STEM Concepts to Build an Optical Instrument

    ERIC Educational Resources Information Center

    King, Donna; English, Lyn D.

    2016-01-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts.…

  11. The Use of Engineering Design Scenarios to Assess Student Knowledge of Global, Societal, Economic, and Environmental Contexts

    ERIC Educational Resources Information Center

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-01-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on…

  12. Design and Inquiry: Bases for an Accommodation between Science and Technology Education in the Curriculum?

    ERIC Educational Resources Information Center

    Lewis, Theodore

    2006-01-01

    This article examines the merits of the proposition that design and inquiry are conceptual parallels. It does so by first looking closely at the inquiry-related discourse within science education, then at aspects of the design discourse within engineering, and finally within technology education. Convergences and divergences of these two streams…

  13. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (3rd) Held in Denver, Colorado on June 14-16, 1988

    DTIC Science & Technology

    1988-06-01

    Based Software Engineering Project Course .............. 83 SSoftware Engineering, Software Engineering Concepts: The Importance of Object-Based...quality assurance, and independent system testing . The Chief Programmer is responsible for all software development activities, including prototyping...during the Requirements Analysis phase, the Preliminary Design, the Detailed Design, Coding and Unit Testing , CSC Integration and Testing , and informal

  14. Critical materials: a reason for sustainable education of industrial designers and engineers

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas R.; Bakker, Conny; Peck, David

    2013-08-01

    Developed economies have become highly dependent on a range of technology metals with names such as neodymium and terbium. Stakeholders have warned of the impending scarcity of these critical materials. Difficulties in materials supply can affect the high-tech industries as well as the success of sustainable innovation strategies that are based on sophisticated technology. Industrial designers and engineers should therefore increase their awareness of the limits in availability of critical materials. In this paper, it is argued that materials' criticality can give a fresh impetus to the higher education of industrial design engineers. It is important to train future professionals to apply a systems perspective to the process of technology innovation, enabling them to thrive under circumstances of constrained material choices. The conclusions outline ideas on how to weave the topic into existing educational programmes of future technology developers.

  15. Engineering Knowledge and Student Development: An Institutional and Pedagogical Critique of Engineering Education

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng

    Educators have recommended the integration of engineering and the liberal arts as a promising educational model to prepare young engineers for global economic, environmental, sociotechnical, and ethical challenges. Drawing upon philosophy of technology, engineering studies, and educational psychology, this dissertation examines diverse visions and strategies for integrating engineering and liberal education and explores their impacts on students' intellectual and moral development. Based on archival research, interviews, and participant observation, the dissertation presents in-depth case studies of three educational initiatives that seek to blend engineering with the humanities, social sciences, and arts: Harvey Mudd College, the Picker Engineering Program at Smith College, and the Programs in Design and Innovation at Rensselaer Polytechnic Institute. The research finds that learning engineering in a liberal arts context increases students' sense of "owning" their education and contributes to their communication, teamwork, and other non-technical professional skills. In addition, opportunities for extensive liberal arts learning in the three cases encourage some students to pursue alternative, less technocentric approaches to engineering. Nevertheless, the case studies suggest that the epistemological differences between the engineering and liberal arts instructors help maintain a technical/social dualism among most students. Furthermore, the dissertation argues a "hidden curriculum," which reinforces the dominant ideology in the engineering profession, persists in the integrated programs and prevents the students from reflecting on the broad social context of engineering and critically examining the assumptions upheld in the engineering profession.

  16. User Participation and Participatory Design: Topics in Computing Education.

    ERIC Educational Resources Information Center

    Kautz, Karlheinz

    1996-01-01

    Discusses user participation and participatory design in the context of formal education for computing professionals. Topics include the current curriculum debate; mathematical- and engineering-based education; traditional system-development training; and an example of a course program that includes computers and society, and prototyping. (53…

  17. Where Is the "E" in STEM for Young Children? Engineering Design Education in an Elementary Teacher Preparation Program

    ERIC Educational Resources Information Center

    DiFrancesca, Daniell; Lee, Carrie; McIntyre, Ellen

    2014-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education initiatives in the United States have surged as the demand for high-quality STEM education has escalated (Nadelson, Callahan, Pyke, Hay, & Schrader, 2009; Parry, 2011). The goal of this article is to present a description of how one STEM-focused elementary teacher preparation…

  18. Engineering Encounters: An Engineering Design Process for Early Childhood

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela; Bowditch, Michelle; Kagan, Michelle; Robinson-Cheek, Linda; Webb, Tedra; Meller, Megan; Nosek, Theresa

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about trying (again) to engineer an egg package. Engineering is an essential part of science education, as emphasized in the "Next Generation Science Standards" (NGSS Lead States 2013). Engineering practices and performance…

  19. Utilizing Civil Engineering Senior Design Capstone Projects to Evaluate Students' Sustainability Education across Engineering Curriculum

    ERIC Educational Resources Information Center

    Dancz, Claire L. A.; Ketchman, Kevin J.; Burke, Rebekah D.; Hottle, Troy A.; Parrish, Kristen; Bilec, Melissa M.; Landis, Amy E.

    2017-01-01

    While many institutions express interest in integrating sustainability into their civil engineering curriculum, the engineering community lacks consensus on established methods for infusing sustainability into curriculum and verified approaches to assess engineers' sustainability knowledge. This paper presents the development of a sustainability…

  20. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  1. Efficacy of the Technological/Engineering Design Approach: Imposed Cognitive Demands within Design-Based Biotechnology Instruction

    ERIC Educational Resources Information Center

    Wells, John G.

    2016-01-01

    Though not empirically established as an efficacious pedagogy for promoting higher order thinking skills, technological/engineering design-based learning in K-12 STEM education is increasingly embraced as a core instructional method for integrative STEM learning that promotes the development of student critical thinking skills (Honey, Pearson,…

  2. Integrating the Engineering Curriculum through the Synthesis and Design Studio

    ERIC Educational Resources Information Center

    Kellam, Nadia; Walther, Joachim; Costantino, Tracie; Cramond, Bonnie

    2013-01-01

    Traditional curricular approaches within engineering education tend to be fragmented, with opportunities for content- and meta-level synthesis being mostly limited to freshman and senior year design courses. In this paper, we are proposing a curricular model, the Synthesis and Design Studio, to combat the tendency towards fragmented curricula. The…

  3. Sketching by Design: Teaching Sketching to Young Learners

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Sung, Euisuk

    2017-01-01

    Recent science educational reforms in the United States have prompted increased efforts to teach engineering design as an approach to improve STEM (Science, Technology, Engineering, and Mathematics) learning in K-12 classrooms. Teaching design in early grades is a new endeavor for teachers in the United States. Much can be learned from design…

  4. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  5. Assessing Open-Ended Design Problems

    ERIC Educational Resources Information Center

    Bartholomew, Scott R.

    2017-01-01

    Interest in Technology and Engineering Education (TEE) has recently revolved around working to define/redefine who we are, and who we are not; while others in TEE are not interested in a change of identity. An emphasis on design, design education, and design assessment may help clarify the discussion surrounding the future direction of TEE.…

  6. Towards the Successful Integration of Design Thinking in Industrial Design Education

    ERIC Educational Resources Information Center

    Mubin, Omar; Novoa, Mauricio; Al Mahmud, Abdullah

    2016-01-01

    This paper narrates a case study on design thinking based education work in an industrial design honours program. Student projects were developed in a multi-disciplinary setting across a Computing and Engineering faculty that allowed promoting technologically and user driven innovation strategies. A renewed culture and environment for Industrial…

  7. Practical Example of Introductory Engineering Education Based on the Design Process and Teaching Methodology Using a Gyro Bicycle

    ERIC Educational Resources Information Center

    Higa, Yoshikazu; Shimojima, Ken

    2018-01-01

    This report describes a workshop on the Dynamics of Machinery based on the fabrication of a gyro- bicycle in a summer school program for junior high school students. The workshop was conducted by engineering students who had completed "Creative Research", an engineering design course at the National Institute of Technology, Okinawa…

  8. Using Student Video Cases to Assess Pre-service Elementary Teachers' Engineering Teaching Responsiveness

    NASA Astrophysics Data System (ADS)

    Dalvi, Tejaswini; Wendell, Kristen

    2017-10-01

    Our study addresses the need for new approaches to prepare novice elementary teachers to teach both science and engineering, and for new tools to measure how well those approaches are working. This in particular would inform the teacher educators of the extent to which novice teachers are developing expertise in facilitating their students' engineering design work. One important dimension to measure is novice teachers' abilities to notice the substance of student thinking and to respond in productive ways. This teacher noticing is particularly important in science and engineering education, where students' initial, idiosyncratic ideas and practices influence the likelihood that particular instructional strategies will help them learn. This paper describes evidence of validity and reliability for the Video Case Diagnosis (VCD) task, a new instrument for measuring pre-service elementary teachers' engineering teaching responsiveness. To complete the VCD, participants view a 6-min video episode of children solving an engineering design problem, describe in writing what they notice about the students' science ideas and engineering practices, and propose how a teacher could productively respond to the students. The rubric for scoring VCD responses allowed two independent scorers to achieve inter-rater reliability. Content analysis of the video episode, systematic review of literature on science and engineering practices, and solicitation of external expert educator responses establish content validity for VCD. Field test results with three different participant groups who have different levels of engineering education experience offer evidence of construct validity.

  9. 75 FR 73050 - Office of Elementary and Secondary Education Overview Information; College Assistance Migrant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... priority is an invitational priority for applications that promote science, technology, engineering, and... Priority 1--Science, Technology, Engineering and Mathematics (STEM) Education: Projects that are designed... prepared for postsecondary or graduate study and careers in STEM, with a specific focus on an increase in...

  10. The European Project Semester at ISEP: The Challenge of Educating Global Engineers

    ERIC Educational Resources Information Center

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-01-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European…

  11. Enhancing Elementary Teacher Practice through Technological/Engineering Design Based Learning

    ERIC Educational Resources Information Center

    Deck, Anita S.

    2016-01-01

    As widespread as Science, Technology, Engineering, and Math (STEM) initiatives and reforms are today in education, a rudimentary problem with these endeavors is being overlooked. In general, education programs and school districts are failing to ensure that elementary teachers who provide children's early academic experiences have the appropriate…

  12. Active Learning and Reflection in Product Development Engineering Education

    ERIC Educational Resources Information Center

    Shekar, Aruna

    2007-01-01

    Traditional engineering courses at tertiary level have been traditionally theory-based, supported by laboratory work, but there is now a world-wide trend towards project-based learning. In product development education, project-based learning is essential in order to integrate the disciplines of design, marketing and manufacturing towards the…

  13. Integrated STEM: A New Primer for Teaching Technology Education

    ERIC Educational Resources Information Center

    Asunda, Paul A.; Mativo, John

    2017-01-01

    Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…

  14. Making Recycled Paper: An Engineering Design Challenge

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) educators are facing the challenge of attracting more students. The disparity between the need for engineers and the enrollment of engineering students is growing (Genalo, Bruning, & Adams, 2000), and career aspirations of high school students are inconsistent with the employment…

  15. ENGINEERING MANPOWER BULLETIN NUMBER 9.

    ERIC Educational Resources Information Center

    ALDEN, JOHN D.

    DESIGNED TO INFORM LEADERS IN INDUSTRY, GOVERNMENT, AND EDUCATION, WHOSE RESPONSIBILITY INCLUDES AWARENESS OF ENGINEERING MANPOWER DEVELOPMENTS, THIS BULLETIN REPORTS A STUDY CONDUCTED BY THE ENGINEERING MANPOWER COMMISSION OF ENGINEERS IN THE ARMED SERVICES. THE WORK OF THE COMMISSION IS TO ASSURE THE MOST EFFECTIVE UTILIZATION OF ENGINEERING…

  16. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R.; Jones, J. M.

    2006-07-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less

  17. Multi-Disciplinary Type Creativity Education for Students from 15 years old to Bachelor Level in College of Technology

    NASA Astrophysics Data System (ADS)

    Yotsuyanagi, Takao; Ikeda, Senri; Suzuki, Katsuhiko; Kobayashi, Hiroshi; Sakuraba, Hiroshi; Shoji, Akira; Itoh, Masahiko

    Creativity is the most fundamental keyword for engineers to solve the various problems in manufacturing products. This engineering “learning” cannot be achieved without the real experiences, especially by the teens who have the curiosity to know everything. New educational program has been innovated in Miyagi National College of Technology. This new curriculum started as “03C” in 2003. It involves two laboratories for mixed-departments type grouping, which intend to cultivate the creative ability for the 2nd year students in College Course and the 1st year students in Advanced Course as Engineering Design. This paper presents the trial of the new educational program on the cultivating creative ability designed for teen-agers, and discusses the processes in detail, results and further problems. This program will progress still more with continuous improvement of manufacturing subjects in cooperative with educational-industrial complex.

  18. Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering

    NASA Astrophysics Data System (ADS)

    Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García

    The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.

  19. Constructing engineers through practice: Gendered features of learning and identity development

    NASA Astrophysics Data System (ADS)

    Tonso, Karen L.

    How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.

  20. New optical engineering and instrument design programs at the University of California, Irvine Extension

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.; Doushkina, Valentina V.

    2010-08-01

    Three years ago we reported on a new optics education program established at the Irvine Center for Applied Competitive Technologies (CACT) at the Advanced Technology and Education Park (ATEP) operated by the South Orange County Community College District (SOCCCD). This paper reports on new Optical Engineering and Instrument Design Programs now being offered through the University of California, Irvine Extension. While there are some similarities between the two programs, the differences are mainly the students' level. The community college level programs were targeted primarily at technicians and junior level engineers. The university level programs are targeted at senior level engineering and physical sciences university students, graduate and post graduate students and designers in industry. This paper reviews the reasons for establishing these certificate programs and their content, the students' motivations for taking them and their employers' incentives for encouraging the students.

  1. Various advanced design projects promoting engineering education

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  2. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    ERIC Educational Resources Information Center

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  3. First-year engineering students' views of the nature of engineering

    NASA Astrophysics Data System (ADS)

    Karatas, Faik O.

    The changing nature of engineering problems and new challenges that result from globalization and new ways of doing business have triggered calls for a revolutionary shift in engineering education. To respond to these challenges, the engineering education paradigm has been revised by adding more design and humanities/social sciences components to it. Philosophy, sociology, and history of engineering are more often cited as a major part of engineering education in this movement. Research on the nature of engineering (NOE), which is derived from philosophy, sociology, and the history of engineering, could have as much potential impact on engineering education as research on the nature of science (NOS) has had on science education. Thus, it is surprising that there has been no noteworthy research on this topic. The purpose of this study is to describe and determine first-year engineering students' views of the NOE and how these students differentiate engineering from science. In this research, an open-ended Views of the Nature of Engineering questionnaire (VNOE) was employed to collect baseline data. Semi-structured interviews based on the VNOE questionnaire were conducted with the second cohort of the participants. Data analysis was guided by a traditional phenomenographic approach, which is a branch of the hermeneutic tradition, coupled to constant comparison technique. The results of this study indicated that the participants' overall views of the nature of engineering were not ill-developed, but rather unarticulated. Moreover, the relationship between engineering and science was considered unidirectional rather than bidirectional. The results of this study could be used to inform engineering educators, first-year engineering coordinators, and policy makers as well as serving as the base for further research and potential implications for future first-year and K-12 engineering education.

  4. A Study of Current Trends and Issues for Graphics Education: Results from a Five-Year Follow-Up Survey

    ERIC Educational Resources Information Center

    Clark, Aaron C.; Scales, Alice Y.

    2006-01-01

    During the 1998-1999 academic year, a survey was conducted to look at current trends and issues in the profession of graphics education (Clark & Scales, 1999). The survey solicited information from the membership of the Engineering Design Graphics Division of the American Society for Engineering Education related to their view of future areas of…

  5. Engineering Play: Exploring Associations with Executive Function, Mathematical Ability, and Spatial Ability in Preschool

    ERIC Educational Resources Information Center

    Gold, Zachary Samuel

    2017-01-01

    Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing…

  6. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  7. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  8. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  9. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  10. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  11. Exploring Complex Engineering Learning over Time with Epistemic Network Analysis

    ERIC Educational Resources Information Center

    Svarovsky, Gina Navoa

    2011-01-01

    Recently, K-12 engineering education has received increased attention as a pathway to building stronger foundations in math and science and introducing young people to the profession. However, the National Academy of Engineering found that many K-12 engineering programs focus heavily on engineering design and science and math learning while…

  12. Learning from Engineering Failures: A Case Study of the Deepwater Horizon

    ERIC Educational Resources Information Center

    Rose, Mary Annette; Hunt, Brian

    2012-01-01

    Natural catastrophes and engineering failures provide timely, motivating, and conceptually rich backdrops for learning. Engineering educators have long embraced case studies of engineering failures as a sound pedagogical strategy for meeting several learning standards, such as "design within realistic constraints", and teaching failure…

  13. Students' Guide to Engineering Schools.

    ERIC Educational Resources Information Center

    National Action Council for Minorities in Engineering, Inc., New York, NY.

    Designed for minority students considering careers in engineering, this guide provides descriptions of every undergraduate engineering college in the United States with at least one curriculum approved by the Accreditation Board for Engineering and Technology, and guidelines for assessing educational wants and needs. Entries for each of the 261…

  14. Persistence, Engagement, and Migration in Engineering Programs. Research Brief

    ERIC Educational Resources Information Center

    Ohland, Matthew W.; Sheppard, Sheri D.; Lichtenstein, Gary; Eris, Ozgur; Chachra, Debbie; Layton, Richard A.

    2008-01-01

    Those responsible for designing, maintaining, and delivering engineering education are asking questions to understand the outcomes of undergraduate engineering programs. These questions have been motivated by concerns about the declining interest in studying engineering, the continued lack of gender and ethnic diversity in the engineering…

  15. The community FabLab platform: applications and implications in biomedical engineering.

    PubMed

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  16. Experience in the Education of Engineers from Vietnam in the Faculty of Mining and Geoengineering AGH

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Borowski, Marek

    2018-03-01

    The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.

  17. Designs that Fly: What the History of Aeronautics Tells Us about the Future of Design-Based Research in Education

    ERIC Educational Resources Information Center

    O'Neill, D. Kevin

    2012-01-01

    For almost two decades, there has been growing interest in what design-based research (DBR) can contribute to both educational practice and theory. Since its introduction into the literature, this orientation to educational research has repeatedly been likened to aeronautical engineering as a way to clarify its nature and argue its potential. This…

  18. Professional Development for Design-Based Learning in Engineering Education: A Case Study

    ERIC Educational Resources Information Center

    Gómez Puente, Sonia M.; van Eijck, Michiel; Jochems, Wim

    2015-01-01

    Design-based learning (DBL) is an educational approach in which students gather and apply theoretical knowledge to solve design problems. In this study, we examined how critical DBL dimensions (project characteristics, design elements, the teacher's role, assessment, and social context) are applied by teachers in the redesign of DBL projects.…

  19. Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships

    ERIC Educational Resources Information Center

    Paknejad, Mohammad R.

    2016-01-01

    Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…

  20. Improving Electrical Engineering Education at the American University of Sharjah through Continuous Assessment

    ERIC Educational Resources Information Center

    Al-Nashash, Hasan; Khaliq, Abdul; Qaddoumi, Nasser; Al-Assaf, Yousef; Assaleh, Khaled; Dhaouadi, Rached; El-Tarhuni, Mohamed

    2009-01-01

    The electrical engineering (ELE) program at the American University of Sharjah (AUS) is designed to fulfill the ABET criteria. Several assessment tools are used to qualitatively and quantitatively measure the level of achievement of the program's educational objectives and outcomes. These tools include alumni, employer, and graduate advisor…

  1. Developing Interactive Educational Engineering Software for the World Wide Web with Java.

    ERIC Educational Resources Information Center

    Reed, John A.; Afjeh, Abdollah A.

    1998-01-01

    Illustrates the design and implementation of a Java applet for use in educational propulsion engineering curricula. The Java Gas Turbine Simulator applet provides an interactive graphical environment which allows the rapid, efficient construction and analysis of arbitrary gas turbine systems. The simulator can be easily accessed from the World…

  2. Integrating Social Sustainability in Engineering Education at the KTH Royal Institute of Technology

    ERIC Educational Resources Information Center

    Björnberg, Karin Edvardsson; Skogh, Inga-Britt; Strömberg, Emma

    2015-01-01

    Purpose: The purpose of this paper is to investigate what are perceived to be the main challenges associated with the integration of social sustainability into engineering education at the KTH Royal Institute of Technology, Stockholm. Design/methodology/approach: Semi-structured interviews were conducted with programme leaders and teachers from…

  3. Military Curriculum Materials for Vocational and Technical Education. Soils Engineering 3-1. Edition 1.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in soils engineering was adapted from military curriculum materials for use in vocational education. The course is designed to acquaint students with various soil types and their characteristics using various procedures, tests, and recording forms. Some of these duties are determining…

  4. Multiple Learning Strategies Project. Building Maintenance & Engineering. Educable Mentally Impaired. [Vol. 3.

    ERIC Educational Resources Information Center

    Steinberg, Alan; And Others

    This instructional package is one of three designed for educable mentally impaired students in the vocational area of building maintenance and engineering. The thirty-one learning modules are organized into nine units: grounds; sanitation; boiler maintenance and operation; power and hand tools; cabinet construction; repair of damaged furniture;…

  5. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  6. Human Systems Engineering: A Learning Model Designed To Converge Education, Business, and Industry.

    ERIC Educational Resources Information Center

    Hanson, Karen L.

    The Human Systems Engineering (HSE) Model was created to facilitate collaboration among education, business, and industry. It emphasized the role of leaders who converge with others to accomplish their goals while paying attention to the key elements that create successful partnerships. The partnership of XXsys Technologies, Inc., University of…

  7. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    ERIC Educational Resources Information Center

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  8. Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective

    ERIC Educational Resources Information Center

    Hadjerrouit, Said

    2005-01-01

    In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…

  9. Infusing Engineering Concepts: Teaching Engineering Design

    ERIC Educational Resources Information Center

    Daugherty, Jenny

    2012-01-01

    Engineering has gained considerable traction in many K-12 schools. However, there are several obstacles or challenges to an effective approach that leads to student learning. Questions such as where engineering best fits in the curriculum; how to include it authentically and appropriately; toward what educational end; and how best to prepare…

  10. Engineering Sustainable Solutions Program: Critical Literacies for Engineers Portfolio

    ERIC Educational Resources Information Center

    Paten, Cheryl J. K.; Palousis, Nicholas; Hargroves, Karlson; Smith, Michael

    2005-01-01

    Purpose: While a number of universities in Australia have embraced concepts such as project/problem-based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a "critical literacy" into all engineering streams. This paper was presented…

  11. The roles of engineering notebooks in shaping elementary engineering student discourse and practice

    NASA Astrophysics Data System (ADS)

    Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.

    2017-06-01

    Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum Engineering is Elementary (EiE) support student work during design challenges. Through educational ethnography and discourse analysis, transcripts of student talk and action were created and coded around the uses of notebooks in the accomplishment of engineering tasks. Our coding process identified two broad categories of roles of the notebooks: they scaffold student activity and support epistemic practices of engineering. The study showed the importance of prompts to engage students in effective uses of writing, the roles the notebook assumes in the students' small groups, and the ways design challenges motivate children to write and communicate.

  12. Software Engineering Education Directory

    DTIC Science & Technology

    1990-04-01

    and Engineering (CMSC 735) Codes: GPEV2 * Textiooks: IEEE Tutoria on Models and Metrics for Software Management and Engameeing by Basi, Victor R...Software Engineering (Comp 227) Codes: GPRY5 Textbooks: IEEE Tutoria on Software Design Techniques by Freeman, Peter and Wasserman, Anthony 1. Software

  13. Computer-Aided Engineering Education at the K.U. Leuven.

    ERIC Educational Resources Information Center

    Snoeys, R.; Gobin, R.

    1987-01-01

    Describes some recent initiatives and developments in the computer-aided design program in the engineering faculty of the Katholieke Universiteit Leuven (Belgium). Provides a survey of the engineering curriculum, the computer facilities, and the main software packages available. (TW)

  14. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (6th), Held in Alexandria, Virginia on September 11-13, 1991

    DTIC Science & Technology

    1991-09-01

    level are, by necessity, designed to be accomplished by one or a few students in the course of a single academic term. Moreover, the software is seldom...that are covered in Computer Science curricula today, but with more of an engineering structure added. A stronger engineering design component is...ing, and sound software design principles found throughout Ada, and they are unambiguously specified. These are not features which were grafted onto a

  15. Sociotechnical Systems Design: An Engineering Program for Social-Science Students.

    ERIC Educational Resources Information Center

    Harrison, Howard L.; And Others

    The University of Wisconsin College of Engineering's Sociotechnical Systems Design (STSD) Program, which was developed to provide social science students with systems concepts and basic technological skills necessary for attacking these problems, is considered. The need for such professionals, current educational responses, the organization of the…

  16. Usability Engineering Can Change Our Thinking

    ERIC Educational Resources Information Center

    Flowers, Jim

    2014-01-01

    Technology and engineering education and its predecessors have a long history of being effective programs for helping students learn about technology and technological design. Students are often asked to solve design challenges, develop product ideas, and create models or prototypes for products. They do not often set up tests with product users…

  17. Robot Contest as a Laboratory for Experiential Engineering Education

    ERIC Educational Resources Information Center

    Verner, Igor M.; Ahlgren, David J.

    2004-01-01

    By designing, building, and operating autonomous robots students learn key engineering subjects and develop systems-thinking, problem-solving, and teamwork skills. Such events as the Trinity College Fire-Fighting Home Robot Contest (TCFFHRC) offer rich opportunities for students to apply their skills by requiring design, and implementation of…

  18. The Engineering Design Process as a Model for STEM Curriculum Design

    ERIC Educational Resources Information Center

    Corbett, Krystal Sno

    2012-01-01

    Engaging pedagogics have been proven to be effective in the promotion of deep learning for science, technology, engineering, and mathematics (STEM) students. In many cases, academic institutions have shown a desire to improve education by implementing more engaging techniques in the classroom. The research framework established in this…

  19. Balancing Fun and Learning in a Serious Game Design

    ERIC Educational Resources Information Center

    Franzwa, Christopher; Tang, Ying; Johnson, Aaron; Bielefeldt, Talbot

    2014-01-01

    This article presents the underlying philosophy of Sustain City, an educational serious game system that engages students, particularly prospective and beginning science and engineering students, in a series of engineering design challenges. Various strategies implemented in Sustain City for achieving a balance of fun and learning are discussed,…

  20. Teaching ethics in engineering education through historical analysis.

    PubMed

    Billington, David P

    2006-04-01

    The goal of this paper is to stress the significance of ethics for engineering education and to illustrate how it can be brought into the mainstream of higher education in a natural way that is integrated with the teaching objectives of enriching the core meaning of engineering. Everyone will agree that the practicing engineer should be virtuous, should be a good colleague, and should use professional understanding for the common good. But these injunctions to virtue do not reach closely enough the ethic of the engineer as engineer, as someone acting in a uniquely engineering situation, and it is to such conditions that I wish to speak through a set of specific examples from recent history. I shall briefly refer to four controversies between engineers. Then, in some detail I shall narrate three historical cases that directly involve the actions of one engineer, and finally I would like to address some common contemporary issues. The first section, Engineering Ethics and the History of Innovation, includes four cases involving professional controversy. Each controversy sets two people against each other in disputes over who invented the telegraph, the radio, the automobile, and the airplane. In each dispute, it is possible to identify ethical and unethical behavior or ambiguous ethical behavior that serves as a basis for educational discussion. The first two historical cases described in "Crises and the Engineer" involve the primary closure dam systems in The Netherlands, each one the result of the actions of one engineer. The third tells of an American engineer who took his political boss, a big city mayor, to court over the illegal use of a watershed. The challenges these engineers faced required, in the deepest sense, a commitment to ethical behavior that is unique to engineering and instructive to our students. Finally, the cases in "Professors and Comparative Critical Analysis" illuminate the behavior of engineers in the design of structures and also how professors can make public criticisms of designs that seem wasteful.

  1. The Role of Re-Appropriation in Open Design: A Case Study on How Openness in Higher Education for Industrial Design Engineering Can Trigger Global Discussions on the Theme of Urban Gardening

    ERIC Educational Resources Information Center

    Ostuzzi, Francesca; Conradie, Peter; De Couvreur, Lieven; Detand, Jan; Saldien, Jelle

    2016-01-01

    This case study explores the opportunities for students of Industrial Design Engineering to engage with direct and indirect stakeholders by making their design process and results into open-ended designed solutions. The reported case study involved 47 students during a two-weeks intensive course on the topic of urban gardening. Observations were…

  2. FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica

    2015-11-01

    The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.

  3. Case Study of a Project-Based Learning Course in Civil Engineering Design

    ERIC Educational Resources Information Center

    Gavin, K.

    2011-01-01

    This paper describes the use of project-based learning to teach design skills to civil engineering students at University College Dublin (UCD). The paper first considers the development of problem-based leaning (PBL) as a tool in higher education. The general issues to be considered in the design of the curriculum for a PBL module are reviewed.…

  4. Value Engineering. "A Working Tool for Cost Control in the Design of Educational Facilities."

    ERIC Educational Resources Information Center

    Lawrence, Jerry

    Value Engineering (VE) is a cost optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. By using VE, the optimum value for every life cycle dollar spent on a facility is obtained by identifying not…

  5. Engineering the Future.

    ERIC Educational Resources Information Center

    Finniston, Monty

    1985-01-01

    Describes several key characteristics of professionalism and an engineering education curriculum which focuses on developing professionalism. The entrance course, teaching design, structured training, and continuing development are among the curricular areas addressed. (JN)

  6. Understanding of Student Task Interpretation, Design Planning, and Cognitive Strategies during Engineering Design Activities in Grades 9-12. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Lawanto, Oenardi

    2011-01-01

    The objective of this study was to describe the task interpretation of students engaged in a design activity and determine the extent to which students translate their understanding of their design task to their planning and cognitive strategies. Twenty-nine students at one Colorado high school participated in this study. Students worked…

  7. Considering Climate Change in Road and Building Design

    NASA Astrophysics Data System (ADS)

    Jacobs, Jennifer M.; Kirshen, Paul H.; Daniel, Jo Sias

    2013-07-01

    What is the role of climate in infrastructure design? How can engineers design for a changing climate? How can climate scientists better inform the design process? These were the questions posed at the first Infrastructure and Climate Network (ICNet) Steering Committee Workshop, which was sponsored by a U.S. National Science Foundation research grant (CBET-1231326) from the Research Coordination Networks-Science, Engineering and Education for Sustainability (RCN-SEES) program.

  8. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    NASA Astrophysics Data System (ADS)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  9. Teaching Engineering Practices

    NASA Astrophysics Data System (ADS)

    Cunningham, Christine M.; Carlsen, William S.

    2014-03-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.

  10. A Phenomenological Examination of Virtual Game Developers' Experiences Using Jacob's Ladder Pre-Production Design Tactic

    ERIC Educational Resources Information Center

    Brown-Turner, Jasmine

    2017-01-01

    Edutainment refers to curriculum and instruction designed with a clear educational purpose, including multi-faceted virtual learning game design. Tools such as the Jacob's Ladder pre-production design tactic have been developed to ensure that voices of both engineers and educators are heard. However, it is unclear how development team members…

  11. HydroViz: design and evaluation of a Web-based tool for improving hydrology education

    NASA Astrophysics Data System (ADS)

    Habib, E.; Ma, Y.; Williams, D.; Sharif, H. O.; Hossain, F.

    2012-10-01

    HydroViz is a Web-based, student-centered, educational tool designed to support active learning in the field of Engineering Hydrology. The design of HydroViz is guided by a learning model that is based on learning with data and simulations, using real-world natural hydrologic systems to convey theoretical concepts, and using Web-based technologies for dissemination of the hydrologic education developments. This model, while being used in a hydrologic education context, can be adapted in other engineering educational settings. HydroViz leverages the free Google Earth resources to enable presentation of geospatial data layers and embed them in web pages that have the same look and feel of Google Earth. These design features significantly facilitate the dissemination and adoption of HydroViz by any interested educational institutions regardless of their access to data or computer models. To facilitate classroom usage, HydroViz is populated with a set of course modules that can be used incrementally within different stages of an engineering hydrology curriculum. A pilot evaluation study was conducted to determine the effectiveness of the HydroViz tool in delivering its educational content, to examine the buy-in of the program by faculty and students, and to identify specific project components that need to be further pursued and improved. A total of 182 students from seven freshmen and senior-level undergraduate classes in three universities participated in the study. HydroViz was effective in facilitating students' learning and understanding of hydrologic concepts and increasing related skills. Students had positive perceptions of various features of HydroViz and they believe that HydroViz fits well in the curriculum. In general, HydroViz tend to be more effective with students in senior-level classes than students in freshmen classes. Lessons gained from this pilot study provide guidance for future adaptation and expansion studies to scale-up the application and utility of HydroViz and other similar systems into various hydrology and water-resource engineering curriculum settings. The paper presents a set of design principles that contribute to the development of other active hydrology educational systems.

  12. Explore-Create-Share Study: An Evaluation of Teachers as Curriculum Innovators in Engineering Education

    ERIC Educational Resources Information Center

    Berry, Ayora

    2017-01-01

    The purpose of this study was to investigate the effects of a curriculum design-based (CDB) professional development model on K-12 teachers' capacity to integrate engineering education in the classroom. This teacher professional development approach differs from other training programs where teachers learn how to use a standard curriculum and…

  13. Cognitive Mapping Techniques: Implications for Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Dixon, Raymond A.; Lammi, Matthew

    2014-01-01

    The primary goal of this paper is to present the theoretical basis and application of two types of cognitive maps, concept map and mind map, and explain how they can be used by educational researchers in engineering design research. Cognitive mapping techniques can be useful to researchers as they study students' problem solving strategies…

  14. A Proposition to Engineer a Bridge: Reconnecting with the Industry-Based Educators

    ERIC Educational Resources Information Center

    Rigler, Kenny

    2017-01-01

    The first steps in the engineering design process are to identify and define the problem (Eide, Jenison, Mashaw, & Northup, 2001). The primary purpose of this article is to highlight the problem that has existed for the past three decades (a disconnect between industrial educators and proponents of technological literacy) and to make a…

  15. The Role of Environmental Engineering Education in Sustainable Development in Iran: AUT Experience

    ERIC Educational Resources Information Center

    Moghaddam, M. R. Alavi; Taher-shamsi, A.; Maknoun, R.

    2007-01-01

    Purpose: The aim of this paper is to explain the strategies and activities of a main technical University in Iran (Amirkabir University of Technology (AUT)) toward sustainable development goals. Design/methodology/approach: In this paper, three main strategies of AUT to achieve sustainable developments goals in engineering education are explained.…

  16. Strategies for the Cooperation of Educational Institutions and Companies in Mechanical Engineering

    ERIC Educational Resources Information Center

    Kettunen, Juha

    2006-01-01

    Purpose: The purpose of this study is to analyse the strategic planning of the Centre for Mechanical Engineering, which is a joint venture of educational institutions and companies in Southwest Finland. Design/methodology/approach: The paper presents the strategies of focus and cost efficiency and how the selected strategies can be adjusted…

  17. Harnessing the Environmental Professional Expertise of Engineering Students--The Course: "Environmental Management Systems in the Industry"

    ERIC Educational Resources Information Center

    Ben-Zvi-Assaraf, Orit; Ayal, Nitzan

    2010-01-01

    More and more technical universities now advocate integrating sustainability in higher education and including it as a strategic goal for improving education's quality and relevance to society. This study examines 30 fourth-year chemical engineering students, graduates of a university course designed to combine their terminological domain with…

  18. Findings from a Pre-Kindergarten Classroom: Making the Case for STEM in Early Childhood Education

    ERIC Educational Resources Information Center

    Tippett, Christine D.; Milford, Todd M.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) in early childhood education is an area currently given little attention in the literature, which is unfortunate since young children are natural scientists and engineers. Here, we outline our mixed-methods design-based research investigation of a pre-kindergarten (Pre-K) classroom where two…

  19. Meteorology Meets Engineering: An Interdisciplinary STEM Module for Middle and Early Secondary School Students

    ERIC Educational Resources Information Center

    Barrett, Bradford S.; Moran, Angela L.; Woods, John E.

    2014-01-01

    Background: Given the continued need to educate the public on both the meteorological and engineering hazards posed by the severe winds of a tornado, an interdisciplinary science, technology, engineering, and mathematics (STEM) module designed by the faculty from the Oceanography and Mechanical Engineering Departments at the United States Naval…

  20. Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering

    ERIC Educational Resources Information Center

    McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary

    2011-01-01

    Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…

  1. Assessment of Knowledge and Skills Needed in Selected Engineering Technician Fields: Mechanical/Manufacturing/Industrial.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    A study identified the essential educational topics and the level of proficiency perceived to be required in these topics for selected two-year engineering technology programs in North Carolina. The four curricula studied were mechanical engineering technology, mechanical drafting and design technology, manufacturing engineering technology, and…

  2. Educational Horsepower: Engine Design and Construction in the Classroom

    ERIC Educational Resources Information Center

    Christensen, Brad

    2007-01-01

    Engines, in their many forms and functions, have had a tremendous impact on society and the environment. It is hard for the contemporary student to fathom a world without trains, cars, trucks, powerboats, and airplanes. With the fascination, history, impacts, and importance of engines to modern society, it is only natural that engine technology…

  3. Professional development of Russian HEIs' management and faculty in CDIO standards application

    NASA Astrophysics Data System (ADS)

    Chuchalin, Alexander; Malmqvist, Johan; Tayurskaya, Marina

    2016-07-01

    The paper presents the approach to complex training of managers and faculty staff for system modernisation of Russian engineering education. As a methodological basis of design and implementation of the faculty development programme, the CDIO (Conceive-Design-Implement-Operate) Approach was chosen due to compliance of its concept to the purposes and tasks of engineering education development in Russia. The authors describe the structure, the content and implementation technology of the programme designed by Tomsk Polytechnic University and Skolkovo Institute of Science and Technology with the assistance of Chalmers University of Technology and KTH Royal Institute of Technology and other members of the CDIO Initiative. The programme evaluation based on the questionnaire results showed that the programme content is relevant, has high practical value and high level of novelty for all categories of participants. Therefore, the CDIO approach was recommended for implementation to improve various elements of the engineering programme such as learning outcomes, content and structure, teaching, learning and assessment methods. Besides, the feedback results obtained through programme participants' survey contribute to identification of problems preventing development of engineering education in Russia and thus serve as milestones for further development of the programme.

  4. Innovative Design of Complex Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2004-01-01

    The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

  5. Training of Ability for Engineering Design through Long Term Internship Program

    NASA Astrophysics Data System (ADS)

    Konishi, Masami; Gofuku, Akio; Tomita, Eiji

    The education program for engineering design capabilities through long term internship of Okayama University had started in 2006. The program supported by the MEXT is aimed to educate students in the Graduate School of Natural Science and Technology of Okayama University. The internship satellite laboratory of the University is settled in the near place of collaborative companies in which students are engaged with the project themes extracted from problems in the factory of collaborative companies. Through the program, promotion of abilities for setup and solving a problem considering cost and due date together with performance of the solution. Students are also expected to gain knowledge on patent and ethics required for skillful engineers.

  6. Maintaining the competitive edge; Use of computers for undergraduate instruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, F.; Miller, M.; Podlo, A.L.

    1991-11-01

    There is a revolution in U.S. undergraduate engineering curricula, one marked by a renaissance of interest in liberal arts education, re-emphasis on basic education, and a new emphasis on computer training. The Dept. of Petroleum Engineering at the U. of Texas recognized its weaknesses and in Sept. 1987 designed and implemented new curricula incorporating computer and technical communications skills for undergraduate students. This paper provides details of the curricula changes. The results of this 4-year program demonstrate that problem-solving skills of petroleum engineering students are sharpened through computerized education and proficient communication.

  7. Challenges of Designing the Next Generation of America's Schools.

    ERIC Educational Resources Information Center

    Duke, Daniel L.

    1998-01-01

    The Thomas Jefferson Center for Educational Design at the University of Virginia, with associates representing architecture, business, education, engineering, sociology, and technology, wants to redesign both schools and schooling. The goal is to raise standards without destroying hope, promote responsibility without sacrificing safety, expand…

  8. PEER Site Map

    Science.gov Websites

    * PEER's Industry Partners * PEER's Educational Affiliates * History of PEER * Technology Transfer * Annual * PEER's Educational Affiliates * Student Design Competition * Student Leadership Council * Classes and Other Educational Activities Frequently Asked Questions Links - Important Earthquake Engineering

  9. What Do Subject Matter Experts Have to Say about Participating in Education and Outreach?

    NASA Astrophysics Data System (ADS)

    Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA’s Universe of Learning partners wish to actively engage with Subject Matter Experts (scientists and engineers) throughout the design, development, and delivery of products, programs, and professional development. In order to ensure these engagement efforts aligned with the needs of Subject Matter Experts, the external evaluators conducted an online survey. The subject pool included the scientists and engineers employed at the partner organizations as well as other scientists and engineers affiliated with NASA’s Astrophysics missions and research programs. This presentation will describe scientists’/engineers’ interest in various types of education/outreach, their availability to participate in education/outreach, factors that would encourage their participation in education/outreach, and the preparation and support they have for participation in education/outreach.

  10. Teaching Design in Middle-School: Instructors' Concerns and Scaffolding Strategies

    NASA Astrophysics Data System (ADS)

    Bamberger, Yael M.; Cahill, Clara S.

    2013-04-01

    This study deals with engineering education in the middle-school level. Its focus is instructors' concerns in teaching design, as well as scaffolding strategies that can help teachers deal with these concerns. Through participatory action research, nine instructors engaged in a process of development and instruction of a curriculum about energy along with engineering design. A 50-h curriculum was piloted during a summer camp for 38 middle-school students. Data was collected through instructors' materials: observation field notes, daily reflections and post-camp discussions. In addition, students' artifacts and planning graphical models were collected in order to explore how instructors' concerns were aligned with students' learning. Findings indicate three main tensions that reflect instructors' main concerns: how to provide sufficient scaffolding yet encourage creativity, how to scaffold hands-on experiences that promote mindful planning, and how to scaffold students' modeling practices. Pedagogical strategies for teaching design that developed through this work are described, as well as the ways they address the National Research Council (A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, Washington, DC, 2011) core ideas of engineering education and the International Technological Literacy standards (ITEA in Standards for technological literacy, 3rd edn. International Technology education Association, Reston, VA, 2007).

  11. Constellation Program Design Challenges as Opportunities for Educational Outreach and Workforce Development for Senior Design Classes

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2009-01-01

    The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.

  12. Curriculum planning for the development of graphicacy capability: three case studies from Europe and the USA

    NASA Astrophysics Data System (ADS)

    Danos, Xenia; Barr, Ronald; Górska, Renata; Norman, Eddie

    2014-11-01

    Curriculum planning for the development of graphicacy capability has not been systematically included in general education to coincide with the graphicacy needs of human society. In higher education, graphicacy curricula have been developed to meet the needs of certain disciplines, for example medical and teacher training and engineering, among others. A framework for graphicacy curricula, anticipating the graphicacy needs in higher education, has yet to be strategically planned for general education. This is partly a result of lack of research effort in this area, but also a result of lack of systematic curriculum planning in general. This paper discusses these issues in the context of graphicacy curricula for engineering. The paper presents three broad individual case studies spanning Europe and the USA, brought together by the common denominator, graphicacy. The case studies are based on: an analysis of graphicacy within general education curricula, an analysis of graphicacy for engineering education in Europe and an analysis of graphicacy for engineering education in the USA. These three papers were originally presented in a plenary session at the American Society for Engineering Education, Engineering Design Graphics Division at the University of Limerick in November 2012. The case studies demonstrate the potential for strategic curriculum planning in regard to the development of graphicacy in general education and an overview of a methodology to achieve that. It also offers further evidence towards the importance of the systematic classification of graphics capabilities in Engineering and how the lack of a developed theoretical framework in this area undermines the case for the importance of graphics within engineering education.

  13. Formula student as part of a mechanical engineering curriculum

    NASA Astrophysics Data System (ADS)

    Davies, Huw Charles

    2013-10-01

    Formula Student (FS) is a multi-university student design competition managed by the UK Institution of Mechanical Engineers. Students are required to demonstrate and prove their creativity and engineering skills through the design, manufacture and financing of a small formula style race car. This paper seeks to explore the educational value that derives from the FS activity through a series of semi-structured interviews with key stakeholders. Through the analysis of the interview data, it was found that the FS activity supported development of student skills and competencies in the following areas: use of engineering knowledge to support the application of existing and emerging technology; application of theoretical and practical knowledge to the solution of engineering problems; development of technical and commercial management skills; development of effective interpersonal skills, including communication skills; and demonstration of personal commitment to professional development. In addition, a number of areas for implementing 'good practise' have been identified. The information herein supports educators in their responsibility to help meet the needs of the engineering industry for high quality graduates.

  14. A Social Cognitive Approach to Understanding Engineering Career Interest and Expectations among Underrepresented Students in School-Based Clubs

    ERIC Educational Resources Information Center

    Dika, Sandra L.; Alvarez, Jaquelina; Santos, Jeannette; Suárez, Oscar Marcelo

    2016-01-01

    Interest in engineering at early stages of the educational career is one important precursor to choosing to study engineering in college, and engineering-related clubs are designed to foster such interest and diversify the engineering pipeline. In this study, the researchers employed a social cognitive career theory framework to examine level of…

  15. You Be the Judge: When Competitions Employ an Engineering Design Rubric

    ERIC Educational Resources Information Center

    Goldberg, Gail Lynn

    2017-01-01

    This article examines the use of an engineering design rubric by judges for three different student competitions--one regional, one national, and one global--to evaluate portfolios posted on the Innovation Portal, a free online resource available to students, teachers, and others engaged in STEM education across instructional levels. Judges…

  16. Application of a Novel Collaboration Engineering Method for Learning Design: A Case Study

    ERIC Educational Resources Information Center

    Cheng, Xusen; Li, Yuanyuan; Sun, Jianshan; Huang, Jianqing

    2016-01-01

    Collaborative case studies and computer-supported collaborative learning (CSCL) play an important role in the modern education environment. A number of researchers have given significant attention to learning design in order to improve the satisfaction of collaborative learning. Although collaboration engineering (CE) is a mature method widely…

  17. An Example-Centric Tool for Context-Driven Design of Biomedical Devices

    ERIC Educational Resources Information Center

    Dzombak, Rachel; Mehta, Khanjan; Butler, Peter

    2015-01-01

    Engineering is one of the most global professions, with design teams developing technologies for an increasingly interconnected and borderless world. In order for engineering students to be proficient in creating viable solutions to the challenges faced by diverse populations, they must receive an expe­riential education in rigorous engineering…

  18. Elementary Educators' Perceptions of Design, Engineering, and Technology: An Analysis by Ethnicity

    ERIC Educational Resources Information Center

    Mendoza Diaz, Noemi V.; Cox, Monica F.; Adams, Stephanie G.

    2013-01-01

    This mixed-methods pilot study extends researchers' understandings about elementary teachers' (K-6) perceptions of design, engineering and technology. In the first phase of the study, a reliable and valid survey was given to thirty-five participants in a teacher professional development academy sponsored by the Institute for P-12 Engineering…

  19. Preparing university students to lead K-12 engineering outreach programmes: a design experiment

    NASA Astrophysics Data System (ADS)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-11-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year design experiment to examine the programme's effectiveness at preparing university students to lead pre-engineering activities. Pre- and post-surveys incorporated items from the Student Engagement sub-scale of the Teacher Sense of Efficacy Scale. Surveys were analysed using paired-samples t-test. Interview and open-ended survey data were analysed using discourse analysis and the constant comparative method. As a result of participation in the programme, university students reported a gain in efficacy to lead pre-engineering activities. The paper discusses programme features that supported efficacy gains and concludes with a set of design principles for developing learning environments that effectively prepare university students to facilitate pre-engineering outreach programmes.

  20. Day one sustainability

    NASA Astrophysics Data System (ADS)

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-05-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead the UK through such adaptations. This paper discusses the importance of interdisciplinary teaching to produce multi-faceted team approaches to sustainable design solutions. Methods for measuring success in education are often not fit for purpose, producing good students but poor engineers. Real-world failures to apply sustainable design present a serious, difficult to detect, and ultimately economically negative situation. Techniques to replace summative examinations are presented and discussed, with the aim of enhancing core technical skills alongside those required for sustainable design. Finally, the role of our future engineers in policy-making is discussed. In addition to carbon, the provision of water and food will heavily influence the work of civil engineers in the coming decades. Leadership from civil engineers with the technical knowledge and social awareness to tackle these issues will be required. This provides both opportunities and challenges for engineering education in the UK.

  1. Developing Smartphone Apps for Education, Outreach, Science, and Engineering

    NASA Astrophysics Data System (ADS)

    Weatherwax, A. T.; Fitzsimmons, Z.; Czajkowski, J.; Breimer, E.; Hellman, S. B.; Hunter, S.; Dematteo, J.; Savery, T.; Melsert, K.; Sneeringer, J.

    2010-12-01

    The increased popularity of mobile phone apps provide scientists with a new avenue for sharing and distributing data and knowledge with colleagues, while also providing meaningful education and outreach products for consumption by the general public. Our initial development of iPhone and Android apps centered on the distribution of exciting auroral images taken at the South Pole for education and outreach purposes. These portable platforms, with limited resources when compared to computers, presented a unique set of design and implementation challenges that we will discuss in this presentation. For example, the design must account for limited memory; screen size; processing power; battery life; and potentially high data transport costs. Some of these unique requirements created an environment that enabled undergraduate and high-school students to participate in the creation of these apps. Additionally, during development it became apparent that these apps could also serve as data analysis and engineering tools. Our presentation will further discuss our plans to use apps not only for Education and Public Outreach, but for teaching, science and engineering.

  2. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    NASA Astrophysics Data System (ADS)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  3. On the Developing Role of Physical Models in Engineering Design Education

    ERIC Educational Resources Information Center

    Green, Graham; Smrcek, Ladislav

    2006-01-01

    Recent research, undertaken using participative observation methods within the Leonardo Da Vinci project "Open-Dynamic-Design", provides evidence that EU industrial practice continues to value the flexibility of physical models across a range of disciplines. This research is placed within the philosophical educational framework…

  4. FEU Technology Digest No. 2.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This publication contains a glossary of acronyms; an editorial (Ingram); "Integrative Assignments and Design" (Biles, Palmer); "Computer-Based Education: A Student's Response" (Landau); "Taking the RISC [Reduced Instruction Set Computer] in FHE [Further and Higher Education]" (Meeke); "Engineering Education in…

  5. X-traktor: A Rookie Robot, Simple, Yet Complex, Impeccably Designed, a Very Innovative Multidisciplinary Engineering Masterpiece

    NASA Technical Reports Server (NTRS)

    Henderson, A. J., Jr.

    2001-01-01

    FIRST is the acronym of For Inspiration and Recognition of Science and Technology. FIRST is a 501.C.3 non-profit organization whose mission is to generate an interest in science and engineering among today's young adults and youth. This mission is accomplished through a robot competition held annually in the spring of each year. NASAs Marshall Space Flight Center, Education Programs Department, awarded a grant to Lee High School, the sole engineering magnet school in Huntsville, Alabama. MSFC awarded the grant in hopes of fulfilling its goal of giving back invaluable resources to its community and engineers, as well as educating tomorrow's work force in the high-tech area of science and technology. Marshall engineers, Lee High School students and teachers, and a host of other volunteers and parents officially initiated this robot design process and competitive strategic game plan. The FIRST Robotics Competition is a national engineering contest, which immerses high school students in the exciting world of science and engineering. Teaming with engineers from government agencies, businesses, and universities enables the students to learn about the engineering profession. The students and engineers have six weeks to work together to brainstorm, design, procure, construct, and test their robot. The team then competes in a spirited, 'no-holds barred' tournament, complete with referees, other FIRST-designed robots, cheerleaders, and time clocks. The partnerships developed between schools, government agencies, businesses, and universities provide an exchange of resources and talent that build cooperation and expose students to new and rewarding career options. The result is a fun, exciting, and stimulating environment in which all participants discover the important connections between classroom experiences and real-world applications. This paper will highlight the story, engineering development, and evolutionary design of Xtraktor, the rookie robot, a manufacturing marvel and engineering achievement.

  6. The Dean as Advocate for Change.

    ERIC Educational Resources Information Center

    McCoy, John J.

    1997-01-01

    Engineering education will be profoundly affected by changes in the U.S. corporate culture, career aspirations of entering college students, research funding sources, and the globalization of engineering design. The engineering school's dean must interpret these strong social pressures for change in curriculum content and operations and serve as…

  7. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  8. Educational Innovation in the Design of an Online Nuclear Engineering Curriculum

    ERIC Educational Resources Information Center

    Hall, Simin; Jones, Brett D.; Amelink, Catherine; Hu, Deyu

    2013-01-01

    The purpose of this paper is to describe the development and implementation phases of online graduate nuclear engineering courses that are part of the Graduate Nuclear Engineering Certificate program at Virginia Tech. Virginia Tech restarted its nuclear engineering program in the Fall of 2007 with 60 students, and by 2009, the enrollment had grown…

  9. Development and Application of 3D Printed Mesoreactors in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin

    2018-01-01

    3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…

  10. Collaborations in a Community of Practice Working to Integrate Engineering Design in Elementary Science Education

    ERIC Educational Resources Information Center

    Lehman, James D.; Kim, WooRi; Harris, Constance

    2014-01-01

    The new standards for K-12 science education in the United States call for science teachers to integrate engineering concepts and practices within their science teaching in order to improve student learning. To accomplish this, teachers need appropriate instructional materials as well as the knowledge and skills to effectively use them. This mixed…

  11. Multiple Learning Strategies Project. Small Engine Repair Service. Low Reader-Educable Mentally Impaired. [Vol. 2.

    ERIC Educational Resources Information Center

    White, Debi; And Others

    This instructional package, one of two designed for low reader-educable mentally impaired students, focuses on the vocational area of small engine repair service. (Low readers are identified as those at a reading level of grades 3-6.) Contained in this document are fifty learning modules organized into twelve units: sharpening and grinding mowers;…

  12. Internet-based distributed collaborative environment for engineering education and design

    NASA Astrophysics Data System (ADS)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.

  13. Present Circumstances and its Effect of Participation in NHK Robocon/RoboCup Competition for Engineering Education in College of Technology

    NASA Astrophysics Data System (ADS)

    Sugiura, Touko; Ito, Kazuaki; Watanabe, Masato

    The engineering education through making robots which needs various techniques such as construction of mechanism and electric circuit design are very useful for training of the students' creativity and developing the students' personality. Toyota National College of Technology has participate in NHK Robocon competition for sixteen years and Robocup competition for four years as a part of engineering education getting spectacular results in those competitions. This paper discusses the present circumstances and its effect of participation in Robocon/RoboCup competition for the engineering education, based on the students' questionnaire survey. It is described to participate in NHK Robocon competition is very important for enhancing the students' knowledge and experience. Furthermore, the participation in Robocup competition brings better results for student' personality development as compared with participation in only Robocon competition.

  14. They Can't Spell "Engineering" but They Can Do It: Designing an Engineering Curriculum for the Preschool Classroom

    ERIC Educational Resources Information Center

    Davis, Martha E.; Cunningham, Christine M.; Lachapelle, Cathy P.

    2017-01-01

    Engineering is Elementary (EiE) is a curriculum project of the Museum of Science, Boston, that promotes and supports engineering literacy and educational equity for all children. Building on the success of its award-winning curriculum for grades 1-5, the team has recently turned its attention to Wee Engineer, a research-based engineering…

  15. Acclimating international graduate students to professional engineering ethics.

    PubMed

    Newberry, Byron; Austin, Katherine; Lawson, William; Gorsuch, Greta; Darwin, Thomas

    2011-03-01

    This article describes the education portion of an ongoing grant-sponsored education and research project designed to help graduate students in all engineering disciplines learn about the basic ethical principles, rules, and obligations associated with engineering practice in the United States. While the curriculum developed for this project is used for both domestic and international students, the educational materials were designed to be sensitive to the specific needs of international graduate students. In recent years, engineering programs in the United States have sought to develop a larger role for professional ethics education in the curriculum. Accreditation requirements, as well as pressures from the private sector, have helped facilitate this shift in focus. Almost half of all engineering graduate students in the U.S. are international students. Further, research indicates that the majority of these students will remain in the U.S. to work post-graduation. It is therefore in the interest of the profession that these students, coming from diverse backgrounds, receive some formal exposure to the professional and ethical expectations and norms of the engineering profession in the United States to help ensure that they have the knowledge and skills--non-technical as well as technical--required in today's engineering profession. In becoming acculturated to professional norms in a host country, international students face challenges that domestic students do not encounter; such as cultural competency, language proficiency, and acculturation stress. Mitigating these challenges must be a consideration in the development of any effective education materials. The present article discusses the project rationale and describes the development of on-line instructional materials aimed at helping international engineering graduate students acclimate to professional engineering ethics standards in the United States. Finally, a brief data summary of students' perceptions of the usefulness of the content and instructional interface is provided to demonstrate the initial effectiveness of the materials and to present a case for project sustainability.

  16. Improving FCS Accountability: Increasing STEM Awareness with Interior Design Modules

    ERIC Educational Resources Information Center

    Etheredge, Jessica; Moody, Dana; Cooper, Ashley

    2014-01-01

    This paper demonstrates ways in which family and consumer sciences (FCS) educators can explore more opportunities to integrate Science, Technology, Engineering, and Math (STEM) principles into secondary education curriculum. Interior design is used as a case study for creating learning modules that incorporate STEM principles in a creative and…

  17. Educating Instructional Designers: Different Methods for Different Outcomes.

    ERIC Educational Resources Information Center

    Rowland, Gordon; And Others

    1994-01-01

    Suggests new methods of teaching instructional design based on literature reviews of other design fields including engineering, architecture, interior design, media design, and medicine. Methods discussed include public presentations, visiting experts, competitions, artifacts, case studies, design studios, and internships and apprenticeships.…

  18. Roadmapping towards Sustainability Proficiency in Engineering Education

    ERIC Educational Resources Information Center

    Rodriguez-Andara, Alejandro; Río-Belver, Rosa María; Rodríguez-Salvador, Marisela; Lezama-Nicolás, René

    2018-01-01

    Purpose: The purpose of this paper is to deliver a roadmap that displays pathways to develop sustainability skills in the engineering curricula. Design/methodology/approach: The selected approach to enrich engineering students with sustainability skills was active learning methodologies. First, a survey was carried out on a sample of 189 students…

  19. Engineering Research Centers: A Partnership for Competitiveness.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    This publication consists of colorful data sheets on the National Science Foundation's Engineering Research Centers (ERC) Program, a program designed to strengthen the competitiveness of U.S. industries by bringing new approaches and goals to academic engineering research and education. The main elements of the ERC mission are cross-disciplinary…

  20. How Engineering Standards Are Interpreted and Translated for Middle School

    ERIC Educational Resources Information Center

    Judson, Eugene; Ernzen, John; Krause, Stephen; Middleton, James A.; Culbertson, Robert J.

    2016-01-01

    In this exploratory study we examined the alignment of Next Generation Science Standards (NGSS) middle school engineering design standards with lesson ideas from middle school teachers, science education faculty, and engineering faculty (4-6 members per group). Respondents were prompted to provide plain language interpretations of two middle…

  1. Engineering for Everyone

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Higgins, Melissa

    2015-01-01

    The new Next Generation Science Standards make it a priority for schools to focus more on the E in STEM, to help students learn the skills and practices of engineering. Schools that are doing so face a challenge, however: How to design educational experiences in engineering that engage all students--including girls and minorities, who are…

  2. Teaching Continuum Mechanics in a Mechanical Engineering Program

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  3. Enhanced and Conventional Project-Based Learning in an Engineering Design Module

    ERIC Educational Resources Information Center

    Chua, K. J.; Yang, W. M.; Leo, H. L.

    2014-01-01

    Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…

  4. Experiences in Digital Circuit Design Courses: A Self-Study Platform for Learning Support

    ERIC Educational Resources Information Center

    Bañeres, David; Clarisó, Robert; Jorba, Josep; Serra, Montse

    2014-01-01

    The synthesis of digital circuits is a basic skill in all the bachelor programmes around the ICT area of knowledge, such as Computer Science, Telecommunication Engineering or Electrical Engineering. An important hindrance in the learning process of this skill is that the existing educational tools for the design of circuits do not allow the…

  5. Use of an Authentic, Industrially Situated Virtual Laboratory Project to Address Engineering Design and Scientific Inquiry in High Schools

    ERIC Educational Resources Information Center

    Gilbuena, Debra M.; Kirsch, F. Adam; Koretsky, Milo D.

    2012-01-01

    This paper is intended for engineering educators, high school curriculum designers, and high school teachers interested in integrating authentic, project-based learning experiences into their classes. These types of projects may appear complex, but have many advantages. We characterize the successful implementation of one such project, the…

  6. Engineering Encounters: Designing Healthy Ice Pops. A STEM Enrichment Project for Second Graders Incorporates Nutrition and Design Principles

    ERIC Educational Resources Information Center

    Bubnick, Laura; Enneking, Katie; Egbers, Julie

    2016-01-01

    Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…

  7. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  8. A Study on Design-Oriented Demands of VR via ZMET-QFD Model for Industrial Design Education and Students' Learning

    ERIC Educational Resources Information Center

    Liang, Yo-Wen; Lee, An-Sheng; Liu, Shuo-Fang

    2016-01-01

    The difficulty of Virtual Reality application in industrial design education and learning is VR engineers cannot comprehend what the important functions or elements are for students. In addition, a general-purpose VR usually confuses the students and provides neither good manipulation means nor useful toolkits. To solve these problems, the…

  9. Integrating principles and multidisciplinary projects in design education

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1992-01-01

    The critical need to improve engineering design education in the U.S. is presented and a number of actions to achieve that end are discussed. The importance of teaching undergraduates the latest methods and principles through the means of team design in multidisciplinary projects leading to a testable product is emphasized. Desirable training for design instructors is described and techniques for selecting and managing projects that teach effectively are discussed.

  10. The impact of distributed computing on education

    NASA Technical Reports Server (NTRS)

    Utku, S.; Lestingi, J.; Salama, M.

    1982-01-01

    In this paper, developments in digital computer technology since the early Fifties are reviewed briefly, and the parallelism which exists between these developments and developments in analysis and design procedures of structural engineering is identified. The recent trends in digital computer technology are examined in order to establish the fact that distributed processing is now an accepted philosophy for further developments. The impact of this on the analysis and design practices of structural engineering is assessed by first examining these practices from a data processing standpoint to identify the key operations and data bases, and then fitting them to the characteristics of distributed processing. The merits and drawbacks of the present philosophy in educating structural engineers are discussed and projections are made for the industry-academia relations in the distributed processing environment of structural analysis and design. An ongoing experiment of distributed computing in a university environment is described.

  11. An Italian Education: IEEE Pulse talks with Riccardo Pietrabissa, president of Italy's National Bioengineering Group, about Italian progress and challenges in biomedical engineering education.

    PubMed

    Pietrabissa, Riccardo; Reynolds, Pamela

    2015-01-01

    From Leonardo da Vinci's designs for ball bearings to the incredible engineering wizardry behind the Ferrari, the inventive, inquisitive, and ingenious spirit of the engineer has always lived--and thrived--in Italy. From education to research to product development, Italy has always been regarded as an engineering leader. But does this apply to biomedical engineering (BME)? Despite many successes, questions loom, as they do at engineering schools worldwide. Concerns such as whether BME programs are providing students with enough focused, practical, hands-on training remain at the forefront, as does the question of whether graduates will be able to find jobs in industry after university studies are over. Here, IEEE Pulse explores these topics with Riccardo Pietrabissa, president of the Gruppo Nazionale di Bioingegneria (National Bioengineering Group) and a full professor in the Department of Chemistry, Materials, and Chemical Engineering at Politecnico di Milano.

  12. Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design.

    PubMed

    Raman, Ritu; Bashir, Rashid

    2017-10-01

    The discipline of biological design has a relatively short history, but has undergone very rapid expansion and development over that time. This Progress Report outlines the evolution of this field from biomimicry to biofabrication to biohybrid systems' design, showcasing how each subfield incorporates bioinspired dynamic adaptation into engineered systems. Ethical implications of biological design are discussed, with an emphasis on establishing responsible practices for engineering non-natural or hypernatural functional behaviors in biohybrid systems. This report concludes with recommendations for implementing biological design into educational curricula, ensuring effective and responsible practices for the next generation of engineers and scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Return to Innovative Engineering Design, Critical Thinking and Systems Engineering

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.

    2007-01-01

    I believe we are facing a critical time where innovative engineering design is of paramount importance to the success of our aerospace industry. However, the very qualities and attributes necessary for enhancing, educating, and mentoring a creative spirit are in decline in important areas. The importance of creativity and innovation in this country was emphasized by a special edition of the Harvard Business Review OnPoint entitled: "The Creative Company" which compiled a series of past and present articles on the subject of creativity and innovation and stressed its importance to our national economy. There is also a recognition of a lack of engineering, critical thinking and problem-solving skills in our education systems and a trend toward trying to enhance those skills by developing K-12 educational programs such as Project Lead the Way, "Science for All Americans", Benchmarks 2061 , etc. In addition, with respect to spacecraft development, we have a growing need for young to mid-level engineers with appropriate experience and skills in spacecraft design, development, analysis, testing, and systems engineering. As the Director of Engineering at NASA's Johnson Space Center, I realized that sustaining engineering support of an operational human spacecraft such as the Space Shuttle is decidedly different than engineering design and development skills necessary for designing a new spacecraft such as the Crew Exploration Vehicle of the Constellation Program. We learned a very important lesson post Columbia in that the Space Shuttle is truly an experimental and not an operational vehicle and the strict adherence to developed rules and processes and chains of command of an inherently bureaucratic organizational structure will not protect us from a host of known unknowns let alone unknown unknowns. There are no strict rules, processes, or procedures for understanding anomalous results of an experiment, anomalies with an experimental spacecraft like Shuttle, or in the conceptual design of a spacecraft. Engineering design is as much an art as it is a science. The critical thinking skills necessary to uncover lurking problems in an experimental design and creatively develop solutions are some of the same skills necessary to design a new spacecraft. Thus, I believe engineers unfamiliar with or removed from design and development need time to transition and develop the required skill set to be effective spacecraft designers. I believe the creative process necessary in design can be enhanced and even taught as early as grades K-12 and should continue to be nurtured and developed at the university level and beyond. I am going to present a strategy for developing learning teams to address complex multidisciplinary problems and to creatively develop solutions to those problems rapidly at minimal cost. I will frame a real problem, the development of on-orbit thermal protection system repair of the Space Shuttle, and step through the series of skills necessary to enhance the creative process. The case study I will illustrate is based on a real project, the R&D Reinforced Carbon-Carbon (RCC) Repair Team's development of on-orbit repair concepts for damaged Space Shuttle RCC nose cap and/or leading edges.

  14. Long-Term Impact of the Enrichment Experiences in Engineering (E[superscript 3]) Summer Teacher Program

    ERIC Educational Resources Information Center

    Autenrieth, Robin L.; Lewis, Chance W.; Butler-Purry, Karen L.

    2017-01-01

    The Enrichment Experiences in Engineering (E[superscript 3] ) summer teacher program is hosted by the Dwight Look College of Engineering at Texas A&M University and is designed to provide engineering research experiences for Texas high school science and mathematics teachers. The mission of the E[superscript 3] program is to educate and excite…

  15. Land-Grant Colleges and American Engineers: Redefining Professional and Vocational Engineering Education in the American Midwest, 1862-1917

    ERIC Educational Resources Information Center

    Nienkamp, Paul

    2010-01-01

    During the twentieth-century, American engineers harnessed the atom, sent men to the moon, and literally reshaped the world. They re-routed rivers to create giant hydroelectric dams, created a massive and interconnected highway system, and designed skyscrapers, jets, computers, and the internet. As a modern profession, engineering boasted strong…

  16. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-23

    Young visitors to the inaugural USA Science and Engineering Festival at the National Mall in Washington, D.C., learn about the life cycle of a star at an exhibit sponsored by the John C. Stennis Space Center Education Office. Stennis personnel participated in the final weekend of the Oct. 10-24 festival with education activities and to present information on its new Spaced Out Sports Design Challenge.

  17. Re-Engineering Vocational and Technical Education (VTE) for Sustainable Development in North Central Geo-Political Zone, Nigeria

    ERIC Educational Resources Information Center

    Sofoluwe, Abayomi Olumade

    2013-01-01

    The purpose of the study is to re-engineer vocational and technical education for sustainable development in the North Central Geo-Political Zone in Nigeria. The research design adopted was a survey inferential type. Stratified random was used to select 36 schools out of 98 schools while 920 students out of 3680 students were sampled. The data…

  18. Data Driven Professional Development Design for Out-of-School Time Educators Using Planetary Science and Engineering Educational Materials

    NASA Astrophysics Data System (ADS)

    Clark, J.; Bloom, N.

    2017-12-01

    Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.

  19. Engineering design in the primary school: applying stem concepts to build an optical instrument

    NASA Astrophysics Data System (ADS)

    King, Donna; English, Lyn D.

    2016-12-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts. As such, this study examined the learning that occurred when fifth-grade students completed an optical engineering activity using an iterative engineering design model. Through a qualitative methodology using a case study design, we analysed multiple data sources including students' design sketches from eight focus groups. Three key findings emerged: first, the collaborative process of the first design sketch enabled students to apply core STEM concepts to model construction; second, during the construction stage students used experimentation for the positioning of lenses, mirrors and tubes resulting in a simpler 'working' model; and third, the redesign process enabled students to apply structural changes to their design. The engineering design model was useful for structuring stages of design, construction and redesign; however, we suggest a more flexible approach for advanced applications of STEM concepts in the future.

  20. Comparing Freshman and doctoral engineering students in design: mapping with a descriptive framework

    NASA Astrophysics Data System (ADS)

    Carmona Marques, P.

    2017-11-01

    This paper reports the results of a study of engineering students' approaches to an open-ended design problem. To carry out this, sketches and interviews were collected from 9 freshmen (first year) and 10 doctoral engineering students, when they designed solutions for orange squeezers. Sketches and interviews were analysed and mapped with a descriptive 'ideation framework' (IF) of the design process, to document and compare their design creativity (Carmona Marques, P., A. Silva, E. Henriques, and C. Magee. 2014. "A Descriptive Framework of the Design Process from a Dual Cognitive Engineering Perspective." International Journal of Design Creativity and Innovation 2 (3): 142-164). The results show that the designers worked in a manner largely consistent with the IF for generalisation and specialisation loops. Also, doctoral students produced more alternative solutions during the ideation process. In addition, compared to freshman, doctoral used the generalisation loop of the IF, working at higher levels of abstraction. The iterative nature of design is highlighted during this study - a potential contribution to decrease the gap between both groups in engineering education.

  1. Unique Education and Workforce Development for NASA Engineers

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Miller, Lauren L.

    2010-01-01

    NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.

  2. Optical engineering capstone design projects with industry sponsors

    NASA Astrophysics Data System (ADS)

    Bunch, Robert M.; Leisher, Paul O.; Granieri, Sergio C.

    2014-09-01

    Capstone senior design is the culmination of a student's undergraduate engineering education that prepares them for engineering practice. In fact, any engineering degree program that pursues accreditation by the Engineering Accreditation Commission of ABET must contain "a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints." At Rose-Hulman, we offer an interdisciplinary Optical Engineering / Engineering Physics senior design curriculum that meets this requirement. Part of this curriculum is a two-course sequence where students work in teams on a design project leading to a functional prototype. The students begin work on their capstone project during the first week of their senior year. The courses are deliverable-driven and the students are held accountable for regular technical progress through weekly updates with their faculty advisor and mid-term design reviews. We have found that client-sponsored projects offer students an enriched engineering design experience as it ensures consideration of constraints and standards requirements similar to those that they will encounter as working engineers. Further, client-sponsored projects provide teams with an opportunity for regular customer interactions which help shape the product design. The process that we follow in both soliciting and helping to scope appropriate industry-related design projects will be described. In addition, an outline of the capstone course structure as well as methods used to hold teams accountable for technical milestones will be discussed. Illustrative examples of past projects will be provided.

  3. Eliciting and characterizing students' mental models within the context of engineering design

    NASA Astrophysics Data System (ADS)

    Dankenbring, Chelsey

    Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.

  4. Relationship of prior knowledge and working engineers' learning preferences: implications for designing effective instruction

    NASA Astrophysics Data System (ADS)

    Baukal, Charles E.; Ausburn, Lynna J.

    2017-05-01

    Continuing engineering education (CEE) is important to ensure engineers maintain proficiency over the life of their careers. However, relatively few studies have examined designing effective training for working engineers. Research has indicated that both learner instructional preferences and prior knowledge can impact the learning process, but it has not established if these factors are interrelated. The study reported here considered relationships of prior knowledge and three aspects of learning preferences of working engineers at a manufacturing company: learning strategy choices, verbal-visual cognitive styles, and multimedia preferences. Prior knowledge was not found to be significantly related to engineers' learning preferences, indicating independence of effects of these variables on learning. The study also examined relationships of this finding to the Multimedia Cone of Abstraction and implications for its use as an instructional design tool for CEE.

  5. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  6. Beyond "Commentaries of Despair:" Reengineering Pathways to Design in the Schooling of Black Men

    ERIC Educational Resources Information Center

    Matthews, Lou Edward; Williams, Brian A.

    2007-01-01

    Ensuring that young Black men are afforded equal educational opportunities, access, and outcomes in education remains the most pressing challenge of modern schooling. Critical to overcoming this challenge is a focus on engineering pathways to design for school-based initiatives which draw more comprehensively from research and the prevailing…

  7. What Is the Function of a Figurine? Can the Repertory Grid Technique Tell?

    ERIC Educational Resources Information Center

    Persson, Helena Isakssson

    2016-01-01

    Teaching design and product development at upper secondary school level in Sweden is a matter of interdisciplinary considerations. Education in product development, at this level, prepares students for further studies and career in engineering or industrial design. Knowledge of artefacts is an important element in the education. In coherence with…

  8. Designing and Building a Cardboard Chair: Children's Engineering at the TECA Eastern Regional Conference

    ERIC Educational Resources Information Center

    Linnell, Charles C.

    2007-01-01

    This article describes the 2006 Technology Education Collegiate Association (TECA) Eastern Regional elementary competition, wherein teams of technology education students from nine different universities designed and built cardboard chairs. The competition required the teams (four or five to a team) from universities up and down the East Coast to…

  9. A sociocultural analysis of Latino high school students' funds of knowledge and implications for culturally responsive engineering education

    NASA Astrophysics Data System (ADS)

    Mejia, Joel Alejandro

    Previous studies have suggested that, when funds of knowledge are incorporated into science and mathematics curricula, students are more engaged and often develop richer understandings of scientific concepts. While there has been a growing body of research addressing how teachers may integrate students' linguistic, social, and cultural practices with science and mathematics instruction, very little research has been conducted on how the same can be accomplished with Latino and Latina students in engineering. The purpose of this study was to address this gap in the literature by investigating how fourteen Latino and Latina high school adolescents used their funds of knowledge to address engineering design challenges. This project was intended to enhance the educational experience of underrepresented minorities whose social and cultural practices have been traditionally undervalued in schools. This ethnographic study investigated the funds of knowledge of fourteen Latino and Latina high school adolescents and how they used these funds of knowledge in engineering design. Participant observation, bi-monthly group discussion, retrospective and concurrent protocols, and monthly one-on-one interviews were conducted during the study. A constant comparative analysis suggested that Latino and Latina adolescents, although profoundly underrepresented in engineering, bring a wealth of knowledge and experiences that are relevant to engineering design thinking and practice.

  10. From Brainstorming to C-Sketch to Principles of Historical Innovators: Ideation Techniques to Enhance Student Creativity

    ERIC Educational Resources Information Center

    White, Christina; Wood, Kristin; Jensen, Dan

    2012-01-01

    The heart and soul of engineering is innovation and our ability to improve the human condition through design. To enrich engineering education, it is critical that we advance our teaching in innovation and design processes. This research focuses on the ideation component of innovation through the investigation of a suite of concept generation…

  11. Social Network Theory in Engineering Education

    NASA Astrophysics Data System (ADS)

    Simon, Peter A.

    Collaborative groups are important both in the learning environment of engineering education and, in the real world, the business of engineering design. Selecting appropriate individuals to form an effective group and monitoring a group's progress are important aspects of successful task performance. This exploratory study looked at using the concepts of cognitive social structures, structural balance, and centrality from social network analysis as well as the measures of emotional intelligence. The concepts were used to analyze potential team members to examine if an individual's ability to perceive emotion in others and the self and to use, understand, and manage those emotions are a factor in a group's performance. The students from a capstone design course in computer engineering were used as volunteer subjects. They were formed into groups and assigned a design exercise to determine whether and which of the above-mentioned tools would be effective in both selecting teams and predicting the quality of the resultant design. The results were inconclusive with the exception of an individual's ability to accurately perceive emotions. The instruments that were successful were the Self-Monitoring scale and the accuracy scores derived from cognitive social structures and Level IV of network levels of analysis.

  12. Engineering Professional Development Design for Secondary School Teachers: A Multiple Case Study

    ERIC Educational Resources Information Center

    Daugherty, Jenny Lynn

    2009-01-01

    The complexity of engineering and its integration into K-12 education have resulted in a variety of issues requiring sustained empirical research (Johnson, Burghardt, & Daugherty, 2008). One particular area of need, given the emphasis on teacher effects on student learning, is to research engineering-oriented teacher professional development. A…

  13. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    ERIC Educational Resources Information Center

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  14. Primary School Students' Views about Science, Technology and Engineering

    ERIC Educational Resources Information Center

    Pekmez, Esin

    2018-01-01

    Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…

  15. Assessing an Entrepreneurship Education Project in Engineering Studies by Means of Participatory Techniques

    ERIC Educational Resources Information Center

    Ortiz-Medina, Leovigilda; Fernández-Ahumada, Elvira; Lara-Vélez, Pablo; Garrido-Varo, Ana; Pérez-Marin, Dolores; Guerrero-Ginel, José Emilio

    2014-01-01

    The new imperatives of the knowledge-based society require engineering students to equip themselves with a broad range of skills, among which entrepreneurship plays a critical role. An academic itinerary was designed with the explicit aim of improving the entrepreneurial attitudes of agricultural engineering students in a state university in…

  16. Explaining Variation in Student Efforts towards Using Math and Science Knowledge in Engineering Contexts

    ERIC Educational Resources Information Center

    Berland, Leema K.; Steingut, Rebecca

    2016-01-01

    Previous research suggests that in classes that take an integrated approach to science, technology, engineering, and math (STEM) education, students tend to engage in fulfilling goals of their engineering design challenges, but only inconsistently engage with the related math and science content. The present research examines these inconsistencies…

  17. The Role of Entrepreneurship Program Models and Experiential Activities on Engineering Student Outcomes

    ERIC Educational Resources Information Center

    Duval-Couetil, Nathalie; Shartrand, Angela; Reed, Teri

    2016-01-01

    Entrepreneurship education is being delivered to greater numbers of engineering students through a variety of courses, programs, and experiential learning activities. Some of these opportunities are designed primarily to serve engineering students in their departments and colleges, while others are cross-campus, university-wide efforts to serve…

  18. Developing a Vision of Pre-College Engineering Education

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Berland, Leema K.

    2012-01-01

    We report the results of a study focused on identifying and articulating an ''epistemic foundation'' underlying a pre-collegiate focus on engineering. We do so in the context of UTeach"Engineering" (UTE), a program supported in part by funding by the National Science Foundation and designed to develop a model approach to address the…

  19. Design and Implementation of Multi-Campus, Modular Master Classes in Biochemical Engineering

    ERIC Educational Resources Information Center

    Wuyts, Niek; Bruneel, Dorine; Meyers, Myriam; Van Hoof, Etienne; De Vos, Leander; Langie, Greet; Rediers, Hans

    2015-01-01

    The Master of Science in engineering technology: biochemical engineering is organised in KU Leuven at four geographically dispersed campuses. To sustain the Master's programmes at all campuses, it is clear that a unique education profile at each campus is crucial. In addition, a rationalisation is required by increased cooperation, increased…

  20. STEM Curricula. Premiere PD

    ERIC Educational Resources Information Center

    Brown, Ryan, Ed.; Ernst, Jeremy, Ed.; Clark, Aaron, Ed.; DeLuca, Bill, Ed.; Kelly, Daniel, Ed.

    2017-01-01

    This professional development activity on STEM Education is designed to keep Technology and Engineering teachers up to date regarding current and important issues in the discipline. This article describes why there is a focus on STEM Education, defines STEM Education, and discusses curriculum integration and its elements.

  1. Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized.

  2. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  3. Multiple Approaches to Design Education

    ERIC Educational Resources Information Center

    Fox, Richard L.; And Others

    1974-01-01

    Discusses implementation of Sloan Foundation projects at the Case Western School of Engineering, including the development of a computer assisted mechanical structural design course, the establishment of a complex systems laboratory, and personnel views of industry-university design projects. (CC)

  4. A requirements engineering approach for improving the quality of diabetes education websites.

    PubMed

    Shabestari, Omid; Roudsari, Abdul

    2011-01-01

    Diabetes Mellitus is a major chronic disease with multi-organ involvement and high-cost complications. Although it has been proved that structured education can control the risk of developing these complications, there is big room for improvement in the educational services for these patients. e-learning can be a good solution to fill this gap. Most of the current e-learning solutions for diabetes were designed by computer experts and healthcare professionals but the patients, as end-users of these systems, haven't been deeply involved in the design process. Considering the expectations of the patients, this article investigates a requirement engineering process comparing the level of importance given to different attributes of the e-learning by patients and healthcare professionals. The results of this comparison can be used for improving the currently developed online diabetes education systems.

  5. An interdisciplinary collaboration between computer engineering and mathematics/bilingual education to develop a curriculum for underrepresented middle school students

    NASA Astrophysics Data System (ADS)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-12-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.

  6. Transformation of engineering education: Taking a perspective for the challenges of change

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid Abdul Wahid

    There are a variety of imperatives which call us to transform engineering education. Those who have made attempts to facilitate a change in engineering education have experienced slow or no progress. The literature on change has suggestions and strategies related to educational change but most of them are not able to guide the conversations and actions effectively. People interested in understanding the challenges often ask 'what makes educational change so difficult?' This research is an effort towards finding an answer to this question. The study adopted a transdisciplinary approach while taking a systems perspective on educational change in order to examine the challenges. Instead of exploring the effectiveness of change strategies and interventions, this study sought to understand the basic nature of change in engineering education organizations. For this purpose, the study adopted an integrated theoretical framework consisting of systems thinking, complexity theory, and transformative learning theory. The methodology was designed on the complexity research paradigm with interpretive qualitative methods used for data analysis. This approach enabled understanding the social and human conditions which reduce or enhance the likelihood of change in the context of an engineering education organization. The context for this study to investigate the challenges of transformation in engineering education is efforts around educating the Engineer of 2020. Four institutional initiatives at various stages in the transformation process provided cases for investigation in the study. The engineering educators at the four institutions participating in the study had experiences of active engagement in educational change. The interpretive qualitative analysis of the participants' accounts induced a systems perspective of the challenges which faculty face in their educational transformation efforts. The inertia which educational organizations experience against change appears to be caused by the commitment which the faculty members have to the educational paradigm prevalent in the organization and by the organizational structures and culture established in this paradigm. A condition that seems essential for the emergence of a new educational formation within an organizational context is the formation of a neighborhood of faculty who have a commitment for innovative education. The new ways of education seem to emerge in sustained, serendipitous, and long-term communicative interactions among the inhabitants of a neighborhood.

  7. GiveMe Shelter: a people-centred design process for promoting independent inquiry-led learning in engineering

    NASA Astrophysics Data System (ADS)

    Dyer, Mark; Grey, Thomas; Kinnane, Oliver

    2017-11-01

    It has become increasingly common for tasks traditionally carried out by engineers to be undertaken by technicians and technologist with access to sophisticated computers and software that can often perform complex calculations that were previously the responsibility of engineers. Not surprisingly, this development raises serious questions about the future role of engineers and the education needed to address these changes in technology as well as emerging priorities from societal to environmental challenges. In response to these challenges, a new design module was created for undergraduate engineering students to design and build temporary shelters for a wide variety of end users from refugees, to the homeless and children. Even though the module provided guidance on principles of design thinking and methods for observing users needs through field studies, the students found it difficult to respond to needs of specific end users but instead focused more on purely technical issues.

  8. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developedmore » in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.« less

  9. Software engineering and Ada in design

    NASA Technical Reports Server (NTRS)

    Oneill, Don

    1986-01-01

    Modern software engineering promises significant reductions in software costs and improvements in software quality. The Ada language is the focus for these software methodology and tool improvements. The IBM FSD approach, including the software engineering practices that guide the systematic design and development of software products and the management of the software process are examined. The revised Ada design language adaptation is revealed. This four level design methodology is detailed including the purpose of each level, the management strategy that integrates the software design activity with the program milestones, and the technical strategy that maps the Ada constructs to each level of design. A complete description of each design level is provided along with specific design language recording guidelines for each level. Finally, some testimony is offered on education, tools, architecture, and metrics resulting from project use of the four level Ada design language adaptation.

  10. COED Transactions, Vol. IX, No. 10 & No. 11, October/November 1977. Teaching Professional Use of the Computer While Teaching the Major. Computer Applications in Design Instruction.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    Presented are two papers on computer applications in engineering education coursework. The first paper suggests that since most engineering graduates use only "canned programs" and rarely write their own programs, educational emphasis should include model building and the use of existing software as well as program writing. The second paper deals…

  11. SE Capstone Project: Building Systems Engineering Education and Workforce Capacity

    DTIC Science & Technology

    2012-04-01

    This project developed a system to improve fuel efficiency by means of regenerative braking . The team designed a simple system that allows "bolt-on...air traffic control, social networking, credit/debit cards, and anti-lock brakes are only a few functions enabled by complex systems of systems . We...Building Systems Engineering Education and Workforce Capacity SE Capstone Project APRIL 2012 Report Documentation Page Form ApprovedOMB No. 0704

  12. Design of Training Systems. Computerization of the Educational Technology Assessment Model (ETAM). Volume 2

    DTIC Science & Technology

    1977-05-01

    444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION

  13. Expert vs. novice: Problem decomposition/recomposition in engineering design

    NASA Astrophysics Data System (ADS)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.

  14. Universal Design in Postsecondary Education: Process, Principles, and Applications

    ERIC Educational Resources Information Center

    Burgstahler, Sheryl

    2009-01-01

    Designing any product or environment involves the consideration of many factors, including aesthetics, engineering options, environmental issues, safety concerns, industry standards, and cost. Typically, designers focus their attention on the average user. In contrast, universal design (UD), according to the Center for Universal Design, "is…

  15. Designing under Constraints: Cell Phone Case Design Challenge

    ERIC Educational Resources Information Center

    Sutton, Kevin; Grubbs, Michael E.; Ernst, Jeremy

    2014-01-01

    Engineering design has been suggested as a viable instructional approach for Technology Education (TE) to intentionally provide students the opportunity to apply multidisciplinary concepts to solve ill-defined design challenges (Wells & Ernst, 2012; Sanders & Wells, 2010; Wicklein, 2006). Currently, the context for design challenges in TE…

  16. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    ERIC Educational Resources Information Center

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  17. Challenge-based instruction in biomedical engineering: a scalable method to increase the efficiency and effectiveness of teaching and learning in biomedical engineering.

    PubMed

    Harris, Thomas R; Brophy, Sean P

    2005-09-01

    Vanderbilt University, Northwestern University, the University of Texas and the Harvard/MIT Health Sciences Technology Program have collaborated since 1999 to develop means to improve bioengineering education. This effort, funded by the National Science Foundation as the VaNTH Engineering Research Center in Bioengineering Educational Technologies, has sought a synthesis of learning science, learning technology, assessment and the domains of bioengineering in order to improve learning by bioengineering students. Research has shown that bioengineering educational materials may be designed to emphasize challenges that engage the student and, when coupled with a learning cycle and appropriate technologies, can lead to improvements in instruction.

  18. Automotive Technology. Career Education Guide.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC. European Area.

    The curriculum guide is designed to provide students with realistic training in automotive technology theory and practice within the secondary educational framework and to prepare them for entry into an occupation or continuing postsecondary education. The learning modules are grouped into three areas: small engines, automotive technology, and…

  19. The European Project Semester at ISEP: the challenge of educating global engineers

    NASA Astrophysics Data System (ADS)

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-05-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.

  20. Research on Building Education & Workforce Capacity in Systems Engineering

    DTIC Science & Technology

    2011-02-07

    manufacturing or design sites where students could observe engineering processes related to their projects Mentors with the highest level of student ... engagement interacted with students in every single activity area and with frequency, while others provided only intermittent correspondence. Note

  1. Cause and control: education and training of professional industrial hygienists for 2020.

    PubMed

    Sherwood, R J

    1992-06-01

    By the year 2020, the environmental movement will have established a recognized profession, expert at studying deleterious effects in the working and public domains. Environmental science practitioners will be better able to identify and relate ill effects to the presence of adverse agents in the environment; they will not, however, necessarily be skilled at developing systems for control. Industrial hygienists should provide the unique and special skills required to establish economically optimum control systems. Industrial hygiene should by then have been redefined to emphasize this critical role of its professional members. A new orientation for education is therefore proposed to provide a sound basis for the professional needs of industrial hygienists who should be at the peak of their careers in 2020. Members of the profession should then be the leaders in research on, and practice of, the science and engineering of design, installation, and monitoring of control systems for occupational and environmental hazards. The preferred educational background for entry to the profession should be some branch of engineering, which by then must have recovered its lost status and be divided into fewer specialized compartments than it is today. Engineering should provide a broader base for students entering professional education in this field, who will be more concerned with prevention and engineering control of both occupational and environmental hazards, rather than with measurement and epidemiology of the biological and toxicologic sciences. Preparation for professional work in industrial hygiene will call for the specialized education of engineers required to design and maintain processes that minimize the use, production, or generation of hazardous substances.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. What Do Informal Educators Need To Be Successful In Teaching Planetary Science And Engineering?: Results From The PLANETS Out-Of-School Time Educator Needs Assessment (NASA NNX16AC53A)

    NASA Astrophysics Data System (ADS)

    Clark, J.; Bloom, N.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is five-year interdisciplinary and cross-institutional partnership to develop and disseminate out-of-school time curricular and professional development modules that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU), the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Museum of Science (MOS) Boston are partners in developing, piloting, and researching the impact of three out of school time planetary science and engineering curriculum and related professional development units over the life of the project. Critical to the success of out-of-school time curriculum implementation is to consider the needs of the informal education leaders. The CSTL at NAU is conducting a needs-assessment of OST educators nationwide to identify the gaps between current knowledge and abilities of OST educators and the knowledge and abilities necessary in order to facilitate effective STEM educational experiences for youth. The research questions are: a. What are current conditions of OST programs and professional development for OST educators? b. What do OST educators and program coordinators already know and think about facilitating meaningful and high quality STEM instruction? c. What are perceived needs of OST educators and program coordinators in order to implement meaningful and high quality STEM instruction? d. What design decisions will make professional development experiences more accessible, acceptable and useful to OST educators and program coordinators? In this presentation we will share the preliminary results of the national survey. The information about the needs of informal STEM educators can inform other NASA Science Mission Directorate educational partners in their program development in addition to AGU members designing informal education outreach.

  3. Beyond Blackboards: Engaging Underserved Middle School Students in Engineering.

    PubMed

    Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H; Petrosino, Anthony J; White, Christina K; Lin, Fu-An; Wood, Kristin L

    Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students' engagement with engineering through design-based experiences focused on the 21 st Century Engineering Challenges. Set within a predominantly low-income, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students' interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants' and nonparticipants' questionnaire responses before the implementation and at the end of the program's first academic year. Statistically significant findings indicate a school-wide increase in students' interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students' awareness of opportunities within engineering.

  4. Beyond Blackboards: Engaging Underserved Middle School Students in Engineering

    PubMed Central

    Blanchard, Sarah; Judy, Justina; Muller, Chandra; Crawford, Richard H.; Petrosino, Anthony J.; White, Christina K.; Lin, Fu-An; Wood, Kristin L.

    2015-01-01

    Beyond Blackboards is an inquiry-centered, after-school program designed to enhance middle school students’ engagement with engineering through design-based experiences focused on the 21st Century Engineering Challenges. Set within a predominantly low-income, majority-minority community, our study aims to investigate the impact of Beyond Blackboards on students’ interest in and understanding of engineering, as well as their ability to align their educational and career plans. We compare participants’ and nonparticipants’ questionnaire responses before the implementation and at the end of the program's first academic year. Statistically significant findings indicate a school-wide increase in students’ interest in engineering careers, supporting a shift in school culture. However, only program participants showed increased enjoyment of design-based strategies, understanding of what engineers do, and awareness of the steps for preparing for an engineering career. These quantitative findings are supported by qualitative evidence from participant focus groups highlighting the importance of mentors in shaping students’ awareness of opportunities within engineering. PMID:26064787

  5. Advanced interdisciplinary undergraduate program: light engineering

    NASA Astrophysics Data System (ADS)

    Bakholdin, Alexey; Bougrov, Vladislav; Voznesenskaya, Anna; Ezhova, Kseniia

    2016-09-01

    The undergraduate educational program "Light Engineering" of an advanced level of studies is focused on development of scientific learning outcomes and training of professionals, whose activities are in the interdisciplinary fields of Optical engineering and Technical physics. The program gives practical experience in transmission, reception, storage, processing and displaying information using opto-electronic devices, automation of optical systems design, computer image modeling, automated quality control and characterization of optical devices. The program is implemented in accordance with Educational standards of the ITMO University. The specific features of the Program is practice- and problem-based learning implemented by engaging students to perform research and projects, internships at the enterprises and in leading Russian and international research educational centers. The modular structure of the Program and a significant proportion of variable disciplines provide the concept of individual learning for each student. Learning outcomes of the program's graduates include theoretical knowledge and skills in natural science and core professional disciplines, deep knowledge of modern computer technologies, research expertise, design skills, optical and optoelectronic systems and devices.

  6. "Design for All in the Context of the Information Society": Integration of a Specialist Course in a Generalist M.Sc. Program in Electrical and Electronics Engineering

    ERIC Educational Resources Information Center

    Godino-Llorente, J. I.; Fraile, R.; Gonzalez de Sande, J. C.; Osma-Ruiz, V.; Saenz-Lechon, N.

    2012-01-01

    This paper describes an educational research experience that took place in the Electrical & Electronics Engineering Master's program offered at the Escuela Universitaria de Ingenieria Tecnica de Telecomunicacion, Universidad Politecnica de Madrid, Madrid, Spain. The focus is to provide details of the motivation behind and the design and…

  7. Identifying the Gaps of Fourth Year Degree Pre-Service Teachers' Pedagogical Content Knowledge in Teaching Engineering Graphics and Design

    ERIC Educational Resources Information Center

    Khoza, Samuel Dumazi

    2017-01-01

    Engineering Graphics and Design is a technological subject which is offered in the Bachelor of Education degree from third to fourth year of the degree course. Fourth year pre-service teachers find EGD difficult to teach because of various reasons. Therefore the aim of the paper was to investigate fourth year pre-service teachers' pedagogical…

  8. RFID Student Educational Experiences at the UNT College of Engineering: A Sequential Approach to Creating a Project-Based RFID Course

    ERIC Educational Resources Information Center

    Vaidyanathan, V. V.; Varanasi, M. R.; Kougianos, E.; Wang, Shuping; Raman, H.

    2009-01-01

    This paper describes radio frequency identification (RFID) projects, designed and implemented by students in the College of Engineering at the University of North Texas, as part of their senior-design project requirement. The paper also describes an RFID-based project implemented at Rice Middle School in Plano, TX, which went on to win multiple…

  9. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    ERIC Educational Resources Information Center

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  10. Designing a Site to Embed and to Interact with Wolfram Alpha Widgets in Math and Sciences Courses

    ERIC Educational Resources Information Center

    Cepeda, Francisco Javier Delgado; Acosta, Ruben Dario Santiago

    2014-01-01

    This paper reports design and implementation outcomes at middle development advance of an educative program based on use and construction of widgets on Wolfram Alpha platform at higher education level for engineering and sciences areas. Widgets were based on Physics and Mathematics curricula under Project Oriented Learning and Blended Learning…

  11. The Critical Incident Technique: An Effective Tool for Gathering Experience from Practicing Engineers

    ERIC Educational Resources Information Center

    Hanson, James H.; Brophy, Patrick D.

    2012-01-01

    Not all knowledge and skills that educators want to pass to students exists yet in textbooks. Some still resides only in the experiences of practicing engineers (e.g., how engineers create new products, how designers identify errors in calculations). The critical incident technique, CIT, is an established method for cognitive task analysis. It is…

  12. Diesel Engine Services. An Instructor's Guide for a Program in Trade and Technical Education. Automotive Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Designed to prepare students to be engine mechanics working on automotive and large stationary diesel engines, this instructor's guide contains eight units arranged from simple to complex to facilitate student learning. Each contains behavioral objectives, a content outline, understandings and teaching approaches necessary to develop the content,…

  13. Students' Perceptions of the Relevance of Mathematics in Engineering

    ERIC Educational Resources Information Center

    Flegg, Jennifer; Mallet, Dann; Lupton, Mandy

    2012-01-01

    In this article, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society [M. Kirschenman and B. Brenner, "Education for Civil…

  14. ''Can I Drop It This Time?'' Gender and Collaborative Group Dynamics in an Engineering Design-Based Afterschool Program

    ERIC Educational Resources Information Center

    Schnittka, Jessica; Schnittka, Christine

    2016-01-01

    The 21st century has brought an increasing demand for expertise in science, technology, engineering, and math (STEM). Although strides have been made towards increasing gender diversity in several of these disciplines, engineering remains primarily male dominated. In response, the U.S. educational system has attempted to make engineering…

  15. Beyond Borders: Participatory Design Research and the Changing Role of Design

    ERIC Educational Resources Information Center

    Blair-Early, Adream

    2010-01-01

    University art and design programs are branching out and creating cross-disciplinary programs and research centers that connect design students and faculty across various disciplines such as business, engineering, architecture, information studies, health sciences and education. A human-centered, problem-based approach to design research looks to…

  16. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    ERIC Educational Resources Information Center

    Hardrict-Ewing, Gloria

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction…

  17. Training mechanical engineering students to utilize biological inspiration during product development.

    PubMed

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  18. Community-Based Engineering

    ERIC Educational Resources Information Center

    Dalvi, Tejaswini; Wendell, Kristen

    2015-01-01

    A team of science teacher educators working in collaboration with local elementary schools explored opportunities for science and engineering "learning by doing" in the particular context of urban elementary school communities. In this article, the authors present design task that helps students identify and find solutions to a…

  19. Project Adopsys as an example of international collaboration in the field of photonics

    NASA Astrophysics Data System (ADS)

    Zoric, Nenad; Livshits, Irina; Urbach, Paul

    2015-01-01

    Tendencies of international cooperation in engineering education became very visible during recent years. We demonstrate this statement on one currently running EU project ADOPSYS in the field of optical design, which is an important part of engineering education in photonics. This example shows the importance of the input from different countries and organizations - both from industry and academia. Seven universities and eight optical companies are involved in the project ADOPSYS. Sharing experience of Academia education activity we provide new international type of education "free-of borders". We are going to discuss the key enable technology - PHOTONICS, which is widely used in modern society. Engineering science became very international. For communicating between people from different countries the English language is now used almost exclusively. For a fruitful collaboration between people from different nations, in multi-national projects, tolerance and respect are required between people of different political, cultural, educational backgrounds.

  20. The use of engineering design scenarios to assess student knowledge of global, societal, economic, and environmental contexts

    NASA Astrophysics Data System (ADS)

    McKenna, Ann F.; Hynes, Morgan M.; Johnson, Amy M.; Carberry, Adam R.

    2016-07-01

    Product archaeology as an educational approach asks engineering students to consider and explore the broader societal and global impacts of a product's manufacturing, distribution, use, and disposal on people, economics, and the environment. This study examined the impact of product archaeology in a project-based engineering design course on student attitudes and perceptions about engineering and abilities to extend and refine knowledge about broader contexts. Two design scenarios were created: one related to dental hygiene and one related to vaccination delivery. Design scenarios were used to (1) assess knowledge of broader contexts, and (2) test variability of student responses across different contextual situations. Results from pre- to post-surveying revealed improved student perceptions of knowledge of broader contexts. Significant differences were observed between the two design scenarios. The findings support the assumption that different design scenarios elicit consideration of different contexts and design scenarios can be constructed to target specific contextual considerations.

  1. Shuttle Case Study Collection Website Development

    NASA Technical Reports Server (NTRS)

    Ransom, Khadijah S.; Johnson, Grace K.

    2012-01-01

    As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.

  2. Detection and Monitoring of Improvised Explosive Device Education Networks through the World Wide Web

    DTIC Science & Technology

    2009-06-01

    search engines are not up to this task, as they have been optimized to catalog information quickly and efficiently for user ease of access while promoting retail commerce at the same time. This thesis presents a performance analysis of a new search engine algorithm designed to help find IED education networks using the Nutch open-source search engine architecture. It reveals which web pages are more important via references from other web pages regardless of domain. In addition, this thesis discusses potential evaluation and monitoring techniques to be used in conjunction

  3. Innovative assessment paradigm to enhance student learning in engineering education

    NASA Astrophysics Data System (ADS)

    El-Maaddawy, Tamer

    2017-11-01

    Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering design course. Direct evidence of the impact of employing this innovation on student learning and achievement was derived by monitoring student academic performance in direct assessment tasks throughout the semester. Students' feedback demonstrated the effectiveness of this innovation to improve their understanding of course topics build their autonomy, independent judgement, and self-regulated learning skills.

  4. Environmental Education. Second Edition.

    ERIC Educational Resources Information Center

    Pratt, James; And Others

    The purpose of the AIA-COPE group in this compendium is to unite the teaching and design professions in their effort to educate for environmental awareness. Part one includes suggestions to architects, landscape architects, civil engineers, urban and regional planners, and ecologists for working with primary and secondary schools, self education,…

  5. Support a Science of Performance Improvement

    ERIC Educational Resources Information Center

    Bryk, Anthony S.

    2009-01-01

    We must reengineer both how we carry out educational R&D and the schools in which this work occurs if we want to achieve more productive ends. Education needs a Design, Educational Engineering, and Development infrastructure, which includes a rapid prototyping process by which researchers and practitioners co-develop innovations, try them in…

  6. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    ERIC Educational Resources Information Center

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  7. Higher Education and the New Society

    ERIC Educational Resources Information Center

    Keller, George

    2008-01-01

    While he celebrated higher education as the engine of progress in every aspect of American life, George Keller also challenged academia's sacred cows and entrenched practices with provocative ideas designed to induce "creative discomfort." Completed shortly before his death in 2007, "Higher Education and the New Society" caps the career of one of…

  8. Freshman-year experiences for African-American students in engineering

    NASA Astrophysics Data System (ADS)

    Chapple, Bernadette Maria

    1998-12-01

    The purpose of this study was to discover (a) why African American students choose to persist as an engineering major and (b) why students choose to leave engineering as a major. A total of 17 students from a large land-grant university participated in this study that was both quantitative and qualitative in design. This research will assist both the College of Engineering and the University in understanding the educational experiences of the matriculating African American pre-engineering student. In an effort to provide reasons and rationale for why African American engineering students choose to stay in this major and why other African American engineering student majors choose to leave, the researcher examined an undergraduate engineering program at a large land-grant institution in the South. The College of Engineering at this institution was able to institute several programs designed to increase the number of African American students choosing engineering as a major. Although initiatives for pre-collegiate students are important in the retention of African American students, it is the retention of those students once accepted into a program of study that the institution focuses on most. It is the intent of this study to offer a better understanding of such a retention initiative. Due to the decline of African American students pursuing majors in science and mathematics in general and in engineering in particular, an important research concern is to offer more insight into the experiences of the freshman engineering student in an attempt to develop fundamental reasons for why students remain in engineering and why some students leave. To assist the College of Engineering and the University in understanding the educational experiences of the matriculating African American pre-engineering student the data were collected from both a quantitative and qualitative approach. Results indicated that (a) students who chose to persist in the engineering program where highly committed and motivated to achieve their educational goals and (b) students who decided to switch out of the engineering curriculum simply felt unprepared for the demands of the engineering curriculum and, upon further exploration of the curriculum, discovered that engineering was not the career they initially desired.

  9. Factors that facilitate or inhibit interest of domestic students in the engineering PhD: A mixed methods study

    NASA Astrophysics Data System (ADS)

    Howell Smith, Michelle C.

    Given the increasing complexity of technology in our society, the United States has a growing demand for a more highly educated technical workforce. Unfortunately, the proportion of United States citizens earning a PhD in engineering has been declining and there is concern about meeting the economic, national security and quality of life needs of our country. This mixed methods sequential exploratory instrument design study identified factors that facilitate or inhibit interest in engineering PhD programs among domestic engineering undergraduate students in the United States. This study developed a testable theory for how domestic students become interested in engineering PhD programs and a measure of that process, the Exploring Engineering Interest Inventory (EEII). The study was conducted in four phases. The first phase of the study was a qualitative grounded theory exploration of interest in the engineering PhD. Qualitative data were collected from domestic engineering students, engineering faculty and industry professional who had earned a PhD in engineering. The second phase, instrument development, developed the Exploring Engineering Interest Inventory (EEII), a measurement instrument designed with good psychometric properties to test a series of preliminary hypotheses related to the theory generated in the qualitative phase. In the third phase of the study, the EEII was used to collect data from a larger sample of junior and senior engineering majors. The fourth phase integrated the findings from the qualitative and quantitative phases. Four factors were identified as being significant influences of interest in the engineering PhD: Personal characteristics, educational environment, misperceptions of the economic and personal costs, and misperceptions of engineering work. Recommendations include increasing faculty encouragement of students to pursue an engineering PhD and programming to correct the misperceptions of the costs of the engineering PhD and the nature of the work that PhD engineers do. The tested model provides engineering educators with information to help them prioritize their efforts to increase interest in the engineering PhD among domestic students.

  10. Design of Smart Educational Robot as a Tool For Teaching Media Based on Contextual Teaching and Learning to Improve the Skill of Electrical Engineering Student

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Basuki, I.; Asto, B. I. G. P.; Anifah, L.

    2018-04-01

    The development of robotics in Indonesia has been very encouraging. The barometer is the success of the Indonesian Robot Contest. The focus of research is a teaching module manufacturing, planning mechanical design, control system through microprocessor technology and maneuverability of the robot. Contextual Teaching and Learning (CTL) strategy is the concept of learning where the teacher brings the real world into the classroom and encourage students to make connections between knowledge possessed by its application in everyday life. This research the development model used is the 4-D model. This Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with the aim to produce a tool of learning in the form of smart educational robot modules and kit based on Contextual Teaching and Learning at the Department of Electrical Engineering to improve the skills of the Electrical Engineering student. Socialization questionnaires showed that levels of the student majoring in electrical engineering competencies image currently only limited to conventional machines. The average assessment is 3.34 validator included in either category. Modules developed can give hope to the future are able to produce Intelligent Robot Tool for Teaching.

  11. Re-Engineering Information Technology: Design Considerations for Competency Education. CompetencyWorks Issue Brief

    ERIC Educational Resources Information Center

    Glowa, Liz

    2013-01-01

    Competency education is student-centric, personalizing student progress so that every child has adequate time and support to reach proficiency every step of the way. Competency education fundamentally changes the way the educational enterprise is organized around student needs, and thus must have a dynamic IT system to support it. Following an…

  12. Pre-Service Teachers' Mind Maps and Opinions on STEM Education Implemented in an Environmental Literacy Course

    ERIC Educational Resources Information Center

    Sümen, Özlem Özçakir; Çalisici, Hamza

    2016-01-01

    This study aims to implement a science, technology, engineering, and mathematics (STEM) education approach in an environmental education course. The research involved the design and implementation of STEM activities by researchers, as part of the environmental education course taught in the second year of a Primary School Teaching undergraduate…

  13. Environmental Engineering Unit Operations and Unit Processes Laboratory Manual.

    ERIC Educational Resources Information Center

    O'Connor, John T., Ed.

    This manual was prepared for the purpose of stimulating the development of effective unit operations and unit processes laboratory courses in environmental engineering. Laboratory activities emphasizing physical operations, biological, and chemical processes are designed for various educational and equipment levels. An introductory section reviews…

  14. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  15. Scalable Game Design: A Strategy to Bring Systemic Computer Science Education to Schools through Game Design and Simulation Creation

    ERIC Educational Resources Information Center

    Repenning, Alexander; Webb, David C.; Koh, Kyu Han; Nickerson, Hilarie; Miller, Susan B.; Brand, Catharine; Her Many Horses, Ian; Basawapatna, Ashok; Gluck, Fred; Grover, Ryan; Gutierrez, Kris; Repenning, Nadia

    2015-01-01

    An educated citizenry that participates in and contributes to science technology engineering and mathematics innovation in the 21st century will require broad literacy and skills in computer science (CS). School systems will need to give increased attention to opportunities for students to engage in computational thinking and ways to promote a…

  16. Re-Engineering Values into the Youth Education System: A Needs Analysis Study in Brunei Darussalam

    ERIC Educational Resources Information Center

    Zakaria, Gamal Abdul Nasir; Tajudeen, Ahmad Labeeb; Nawi, Aliff; Mahalle, Salwa

    2014-01-01

    This study aimed to present a practical framework for designing a values teaching program in the youth education system. The choice of content, the nature of the students with respect to learning and their perception about the selected content for teaching values were studied. The study follows a Needs analysis design which drew upon document…

  17. First-Hand Experience with Engineering Design and Career Interest in Engineering: An Informal STEM Education Case Study

    ERIC Educational Resources Information Center

    Ayar, Mehmet C.

    2015-01-01

    The purpose of this study is to present students' experiences, interest in engineering, and personal narratives while participating in a robotics summer camp in a metropolitan city in Turkey. In this study, I used qualitative data collection methods such as interviews, field notes, and observations. I used the four principles of Engle and Conant…

  18. Using Arts Integration to Make Science Learning Memorable in the Upper Elementary Grades: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Graham, Nicholas James; Brouillette, Liane

    2016-01-01

    The Next Generation Science Standards (NGSS) have brought a stronger emphasis on engineering into K-12 STEM (science, technology, engineering and mathematics) instruction. Introducing the design process used in engineering into science classrooms simulated a dialogue among some educators about adding the arts to the mix. This led to proposals for…

  19. Model Wind Turbine Design in a Project-Based Middle School Engineering Curriculum Built on State Frameworks

    ERIC Educational Resources Information Center

    Cogger, Steven D.; Miley, Daniel H.

    2012-01-01

    This paper proposes that project-based active learning is a key part of engineering education at the middle school level. One project from a comprehensive middle school engineering curriculum developed by the authors is described to show how active learning and state frameworks can coexist. The theoretical basis for learning and assessment in a…

  20. Using Cognitive Load Theory to Interpret Student Difficulties with a Problem-Based Learning Approach to Engineering Education: A Case Study

    ERIC Educational Resources Information Center

    Peters, Michael

    2015-01-01

    This article reports on an investigation with first year undergraduate Product Design and Management students within a School of Engineering and Applied Science. The students at the time of this investigation had studied fundamental engineering science and mathematics for one semester. The students were given an open ended, ill-formed problem…

  1. Workstations in Higher Education.

    ERIC Educational Resources Information Center

    Weissman, Ronald F. E.; And Others

    1988-01-01

    Five articles discuss various aspects of workstations and their applications in higher education. Highlights include microcomputers and workstations; UNIX operating system; campus-wide networks; software; Project SOCRATES and the interdisciplinary aspect of engineering; mechanical system design and simulation; and the Creation Station, a…

  2. MEDISIGN: Educating designers for the operating room.

    PubMed

    Goossens; Lange; Kleinrensink

    2004-06-01

    One of the interesting things about medical technology is that it addresses so many diverse subjects, which is indeed the case in all departments of a hospital, in general practice and in other care agencies. Medical technology contributes to the diagnosis, treatment and prevention of disease and disorders. Designing for medical applications demands a high level of creativity and inventivity, both in low-tech and in high-tech applications. In over 200 projects with hospitals and companies in the medical field the Delft industrial designer has therefore played an important part in designing innovative products [1]. In the new program Medisign the expertise and networks that have been built up in this area over the past 20 years are being passed on to students. The program is based upon the idea that education of engineers in human anatomy, physiology, medical technoloy, health care systems and even basic surgical techniques will lead to better communication with the medical professionals and to better design solutions in this area. To our knowledge this is the first initiative in Europe in which structural education in anatomy is offered to industrial design engineers.

  3. 15 CFR 801.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and wholesale trade, advertising, accounting, construction, design, engineering, management consulting, real estate, professional services, entertainment, education, and health care. (h) International...

  4. 15 CFR 801.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and wholesale trade, advertising, accounting, construction, design, engineering, management consulting, real estate, professional services, entertainment, education, and health care. (h) International...

  5. Development Research of a Teachers' Educational Performance Support System: The Practices of Design, Development, and Evaluation

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Smith, Thomas J.; Harris, Marian S.; Lockard, James

    2010-01-01

    This study adopted design and development research methodology (Richey & Klein, "Design and development research: Methods, strategies, and issues," 2007) to systematically investigate the process of applying instructional design principles, human-computer interaction, and software engineering to a performance support system (PSS) for behavior…

  6. Design Sketching: A Lost Skill

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2017-01-01

    As national STEM initiatives focus on engineering design as a STEM integrator, a more important concern for K-12 educators should be teaching design fundamentals and using these experiences to help students obtain STEM content knowledge. There appears however, to be little instruction and emphasis on building students' design-sketching skills in…

  7. An Engineering Design STEM Project: T-Shirt Launcher

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Grant, Melva R.

    2013-01-01

    The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…

  8. LATUX: An Iterative Workflow for Designing, Validating, and Deploying Learning Analytics Visualizations

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew

    2015-01-01

    Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…

  9. Clinical Design Sciences: A View from Sister Design Efforts.

    ERIC Educational Resources Information Center

    Zaritsky, Raul; Kelly, Anthony E.; Flowers, Woodie; Rogers, Everett; O'Neill, Patrick

    2003-01-01

    Asserts that the social sciences are clinical-like endeavors, and the way that "sister" fields discover and validate their results may inform research practice in education. Describes three fields of design that confront similar societal demands for improvement (engineering product design, research on the diffusion of innovations, and…

  10. Developing knowledge intensive ideas in engineering education: the application of camp methodology

    NASA Astrophysics Data System (ADS)

    Heidemann Lassen, Astrid; Løwe Nielsen, Suna

    2011-11-01

    Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in engineering education. However, so far the engineering education literature provides little attention to the important discussion of how to develop knowledge intensive ideas based on creativity methods and concepts. Purpose: The purpose of this article is to investigate how to design creative camps from which knowledge intensive ideas can unfold. Design/method/sample: A framework on integration of creativity and knowledge intensity is first developed, and then tested through the planning, execution and evaluation of a specialized creativity camp with focus on supply chain management. Detailed documentation of the learning processes of the participating 49 engineering and business students is developed through repeated interviews during the process as well as a survey. Results: The research illustrates the process of development of ideas, and how the participants through interdisciplinary collaboration, cognitive flexibility and joint ownership develop highly innovative and knowledge-intensive ideas, with direct relevance for the four companies whose problems they address. Conclusions: The article demonstrates how the creativity camp methodology holds the potential of combining advanced academic knowledge and creativity, to produce knowledge intensive ideas, when the design is based on ideas of experiential learning as well as creativity principles. This makes the method a highly relevant learning approach for engineering students in the search for skills to both develop and implement innovative ideas.

  11. Investigating the Language of Engineering Education

    NASA Astrophysics Data System (ADS)

    Variawa, Chirag

    A significant part of professional communication development in engineering is the ability to learn and understand technical vocabulary. Mastering such vocabulary is often a desired learning outcome of engineering education. In promoting this goal, this research investigates the development of a tool that creates wordlists of characteristic discipline-specific vocabulary for a given course. These wordlists explicitly highlight requisite vocabulary learning and, when used as a teaching aid, can promote greater accessibility in the learning environment. Literature, including work in higher education, diversity and language learning, suggest that designing accessible learning environments can increase the quality of instruction and learning for all students. Studying the student/instructor interface using the framework of Universal Instructional Design identified vocabulary learning as an invisible barrier in engineering education. A preliminary investigation of this barrier suggested that students have difficulty assessing their understanding of technical vocabulary. Subsequently, computing word frequency on engineering course material was investigated as an approach for characterizing this barrier. However, it was concluded that a more nuanced method was necessary. This research program was built on previous work in the fields of linguistics and computer science, and lead to the design of an algorithm. The developed algorithm is based on a statistical technique called, Term Frequency-Inverse Document Frequency. Comparator sets of documents are used to hierarchically identify characteristic terms on a target document, such as course materials from a previous term of study. The approach draws on a standardized artifact of the engineering learning environment as its dataset; a repository of 2254 engineering final exams from the University of Toronto, to process the target material. After producing wordlists for ten courses, with the goal of highlighting characteristic discipline-specific terms, the effectiveness of the approach was evaluated by comparing the computed results to the judgment of subject-matter experts. The overall data show a good correlation between the program and the subject-matter experts. The results indicated a balance between accuracy and feasibility, and suggested that this approach could mimic subject-matter expertise to create a list discipline-specific vocabulary from course materials.

  12. Becoming an engineer: Doctoral women's perspectives on identity and learning in the culture of engineering

    NASA Astrophysics Data System (ADS)

    Wood, Shaunda L.

    Women face many obstacles in their academic careers but there is a gap in the research with regards to their perceptions of science and engineering education and how non/participation in the culture of engineering affects their identities. Moreover, little research has been conducted with female Ph.D. students especially with regard to the reasons they have continued their studies, and their level of satisfaction with their career and lives. This study was guided by the sociocultural approach and theories of learning and identity. Methodologically, the design adopted is a naturalistic qualitative inquiry using two open-ended interviews with participant verification after the first interview. The life history narratives (Mishler, 1999) obtained from the seven doctoral electrical and mechanical women engineers, at various stages in their programs, were the primary source of data. By examining the path of becoming a doctoral woman engineer, this study makes the educational experiences of women intelligible to the general public as well as policy makers. It gives voice to the women engineers whose perspectives are rarely heard in academic settings or mainstream society. The findings of the study lend insight to the importance and necessity of more inclusive engineering education, incorporating not only women's studies courses into the curriculum but anti-racism education as well as including the perspective of 'Other' people of difference. Moreover, multi-perspective approaches to increasing enrolment and retention of women in engineering were more effective and in keeping with addressing notions of 'difference' in engineering populations.

  13. Teachers from Instructors to Designers of Inquiry-Based Science, Technology, Engineering, and Mathematics Education: How Effective Inquiry-Based Science Education Implementation Can Result in Innovative Teachers and Students

    ERIC Educational Resources Information Center

    Filippi, Alyssa; Agarwal, Dipali

    2017-01-01

    There is a need for individuals in science, technology, engineering, and mathematics (STEM) careers to drive the innovation and research potential of Europe. Yet, there is expected to be a decrease in the number of STEM professionals, as there is less student interest in STEM fields of the study. Studies show that STEM classes that focus on…

  14. Preparing engineers for the challenges of community engagement

    NASA Astrophysics Data System (ADS)

    Harsh, Matthew; Bernstein, Michael J.; Wetmore, Jameson; Cozzens, Susan; Woodson, Thomas; Castillo, Rafael

    2017-11-01

    Despite calls to address global challenges through community engagement, engineers are not formally prepared to engage with communities. Little research has been done on means to address this 'engagement gap' in engineering education. We examine the efficacy of an intensive, two-day Community Engagement Workshop for engineers, designed to help engineers better look beyond technology, listen to and learn from people, and empower communities. We assessed the efficacy of the workshop in a non-experimental pre-post design using a questionnaire and a concept map. Questionnaire results indicate participants came away better able to ask questions more broadly inclusive of non-technological dimensions of engineering projects. Concept map results indicate participants have a greater understanding of ways social factors shape complex material systems after completing the programme. Based on the workshop's strengths and weaknesses, we discuss the potential of expanding and supplementing the programme to help engineers account for social aspects central to engineered systems.

  15. Education in Engineering and Ecohydrology for Fish Passage

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D.; Towler, B.

    2011-12-01

    Historical fish migration routes linking feeding and spawning habitats have been significantly impacted by culverts, dikes, dams, and other barriers on waterways throughout the world. For example an estimated 2.5 million barriers to fish migration exist in the United States. In recent years, there has been an increased focus on removing or mitigating these barriers as an efficient mechanism to restore habitat. Effective design and implementation of these measures requires specialists with skills at the intersection of engineering, hydrology and biology. Recognizing the need for a cadre of engineers with the additional skills in hydraulics and ecohydrology needed to analyze and design solutions for enhancing fish passage in streams and rivers, the University of Massachusetts Amherst now offers a Master of Science in Civil Engineering (MSCE) degree with a specialization in Fish Passage Engineering. The curriculum is offered in conjunction with the U.S. Fish and Wildlife Service and is informed by the recommendations of the Curriculum Working Group of the Bioengineering Section of the American Fisheries Society. The curriculum is offered through the Department of Civil and Environmental Engineering. This presentation will describe the motivation for the degree, the content of coursework and the challenges inherent in developing an interdisciplinary education program spanning biogeosciences and engineering.

  16. Developing a new industrial engineering curriculum using a systems engineering approach

    NASA Astrophysics Data System (ADS)

    Buyurgan, Nebil; Kiassat, Corey

    2017-11-01

    This paper reports on the development of an engineering curriculum for a new industrial engineering programme at a medium-sized private university in the northeast United States. A systems engineering process has been followed to design and develop the new curriculum. Considering the programme curriculum as a system, first the stakeholders have been identified, and some preliminary analysis on their needs and requirements has been conducted. Following that, the phases of conceptual design, preliminary design, and detailed design have been pursued during which different levels of validation, assessment, and evaluation processes have been utilised. In addition, a curriculum assessment and continuous improvement process have been developed to assess the curriculum and the courses frequently. The resulting curriculum is flexible, allowing the pursuit of accelerated graduate programmes, a second major, various minor options, and study-abroad; relevant, tailored to the needs of industry partners in the vicinity; and practical, providing hands-on education, resulting in employment-ready graduates.

  17. Design and Configuration of a Medical Imaging Systems Computer Laboratory Syllabus

    ERIC Educational Resources Information Center

    Selver, M. Alper

    2016-01-01

    Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…

  18. Try This: Construct a Water Catchment

    ERIC Educational Resources Information Center

    Teaching Science, 2017

    2017-01-01

    EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article describes a project designed to teach middle school students how to construct a water catchment system. Water…

  19. German for Engineers and Scientists: Initiatives in International Education.

    ERIC Educational Resources Information Center

    Weinmann, Sigrid

    The Michigan Technological University program in German area studies is described. The program is designed for science and engineering students at both undergraduate and graduate levels. Its components include: a 1-year scientific German sequence, stressing specialized vocabulary, reading skills, use of reference materials, translation into…

  20. Building a Greener Future

    ERIC Educational Resources Information Center

    Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries

    2016-01-01

    Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…

Top