Sample records for educating nuclear engineers

  1. US nuclear engineering education: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratiomore » of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.« less

  2. US Nuclear Engineering Education: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and researchmore » funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  4. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy levels are assigned in accordance with the CO-PO mapping. Finally, the course has to fulfill the International Engineering Alliance (IEA) Graduate Attributes of the Washington Accord.

  5. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  6. A Program for Cultivating Nuclear Talent at Engineering Educational Institute in a Remote Area from Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsuyoshi

    Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.

  7. Educational Innovation in the Design of an Online Nuclear Engineering Curriculum

    ERIC Educational Resources Information Center

    Hall, Simin; Jones, Brett D.; Amelink, Catherine; Hu, Deyu

    2013-01-01

    The purpose of this paper is to describe the development and implementation phases of online graduate nuclear engineering courses that are part of the Graduate Nuclear Engineering Certificate program at Virginia Tech. Virginia Tech restarted its nuclear engineering program in the Fall of 2007 with 60 students, and by 2009, the enrollment had grown…

  8. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never amore » member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.« less

  9. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  10. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  11. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less

  12. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  13. Multi-University Southeast INIE Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year.more » In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs. This will be achieved by involving the faculty in the development of state-of-the-art research facilities at the URRs and subsequently, in the utilization of these facilities, c) Facilitate the use of the URRs by the science and engineering faculty within the individual institutions and by the general community of science and engineering, d) Develop a far-reaching educational component that is capable of addressing the needs of the nuclear science and engineering community. Specifically, the aim of this component will be to perform public outreach activities, contribute to the active recruitment of the next generation of nuclear professionals, strengthen the education of nuclear engineering students, and promote nuclear engineering education for minority students.« less

  14. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.

    The world’s first master’s degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5½ year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, includedmore » students who started the program in their third year of studies, as the first 2½ years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program’s specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training.« less

  15. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Programmore » since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.« less

  17. Establishment of an Undergraduate Research and Training Program in Radiochemistry at Florida Memorial University, a Historically Black College or University (HBCU)

    NASA Astrophysics Data System (ADS)

    Tamalis, Dimitri; Stiffin, Rose; Elliott, Michael; Huisso, Ayivi; Biegalski, Steven; Landsberger, Sheldon

    2009-08-01

    With the passing of the Energy Policy Act of 2005, the United States is experiencing for the first time in over two decades, what some refer to as the "Nuclear Renaissance". The US Nuclear Regulatory Commission (NRC) recognizes this surge in application submissions and is committed to reviewing these applications in a timely manner to support the country's growing energy demands. Notwithstanding these facts, it is understood that the nuclear industry requires appropriately trained and educated personnel to support the growing needs of the nuclear industry and the US NRC. Equally important is the need to educate the next generation of students in nuclear non-proliferation, nuclear forensics and various aspects of homeland security for the national laboratories and the Department of Defense. From mechanical engineers educated and experienced in materials, thermal/fluid dynamics, and component failure analysis, to physicists using advanced computing techniques to design the next generation of nuclear reactor fuel elements, the need for new engineers, scientists, and health physicist has never been greater.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, Calvin Mitchell

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safetymore » engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.« less

  19. The Keller Plan: A Successful Experiment in Engineering Education.

    ERIC Educational Resources Information Center

    Koen, Billy; And Others

    1985-01-01

    Discusses the Keller Plan or personalized system of instruction (PSI), a mastery-oriented, self-paced, modular teaching strategy using student/peer proctors. Success for PSI in chemical engineering, operations research, electrical engineering, and nuclear engineering courses is explained. (DH)

  20. U.S. Nuclear Engineering Education: Status and Prospects.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    This study examines the status of and outlook for nuclear engineering (NE) in the United States. The study resulted from a concern about the downward trends in student enrollments in NE, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of U.S. university NE departments and programs, the…

  1. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  2. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    ERIC Educational Resources Information Center

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  3. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    ERIC Educational Resources Information Center

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…

  4. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack S. Brenizer, Jr.

    2003-01-17

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less

  5. Contributions of the SCK.CEN Academy to education and training in nuclear science and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coeck, Michele

    Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear installations, SCK.CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK.CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In the interest of maintaining a competent workforce in industry, Healthcare, research, and policy, and of transferring nuclear knowledge and skills to the next generations,more » the SCK.CEN Academy takes it as its mission to: - provide guidance for students and early-stage researchers; - organize academic courses and customized training for professionals; - offer policy support with regard to education and training matters; - care for critical-intellectual capacities for society. Specifically in the domain of nuclear instrumentation the SCK.CEN Academy provides an opportunity to students at Bachelor, Master and PhD level to make use of the SCK.CEN infrastructure to support their thesis research or to perform an internship with the aim to improve and extend their knowledge and skills in a specific research or technical domain. Further, they can contribute to new findings in the field of nuclear instrumentation. The students are guided by our scientists, engineers and technicians who have years of experience in the relevant field. In addition, the SCK.CEN Academy contributes to traditional university education programs and delivers courses in several nuclear topics such as dosimetry. We also coordinate the Belgian Nuclear higher Engineering Network (BNEN), a one year (60 ECTS) master-after-master specialization in nuclear engineering in which 6 Belgian universities and SCK.CEN are involved. Beyond the contributions to academic education, we also provide several customized training programs tailored to the needs of the learners in terms of content, duration, level, language, location, etc. Complementary to the theoretical classes, ample attention is given to practical sessions and technical visits are foreseen which enable trainees to enrich and illustrate their acquired knowledge with the practice of real-life situations. In this poster presentation an overview will be given of the activities in the domains described above. Moreover it will be shown how these initiatives are embedded in the most recent European approaches to nuclear education and training via collaboration in several EU projects and networks. (authors)« less

  6. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is,more » providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century.« less

  7. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students' enrolment and performance, and teaching staff's human resource development.

  8. Computers in Engineering Teaching.

    ERIC Educational Resources Information Center

    Rushby, N. J.

    This bibliography cites 26 books, papers, and reports dealing with various uses of computers in engineering education; and describes several computer programs available for use in teaching aeronautical, chemical, civil, electrical and electronic, mechanical, and nuclear engineering. Each computer program entry is presented by name, author,…

  9. Midwest Nuclear Science and Engineering Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state,more » federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.« less

  10. Russian University Education in Nuclear Safeguards and Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.

    2009-03-15

    As safeguards and security (S&S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC&A). As part of the U.S. Department of Energy’s (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S&S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S&S personnel. The Educationmore » Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S&S Graduate Program is available only at MEPhI and is the world’s first S&S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S&S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5½ year Engineering Degree Program (EDP) in S&S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program’s first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S&S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills. The project has also supported the instruction of policy-oriented nonproliferation courses at various Russian universities. These courses are targeted towards future workers in the nuclear field to help build an effective nonproliferation awareness within the nuclear complex. A long-range goal of this project is to assist the educational programs at MEPhI and TPU in becoming self-sustainable and therefore able to maintain the three degree programs without DOE support. This paper describes current development of these education programs and new initiatives. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical S&S degree programs.« less

  11. Building on the past, planning for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodall, D.M.

    1996-12-31

    A University Working Conference (UWC) sponsored by the American Nuclear Society (ANS) was held on June 14 and 15, 1996, prior to the ANS Annual Meeting in Reno, Nevada. With a theme of {open_quotes}Building on the Past, Planning for the Future,{close_quotes} the meeting was the successor to the first UWC held in Philadelphia, Pennsylvania, in 1995. This workshop refined the recommendations to the national nuclear engineering academic community of the earlier UWC on strategies for success in the 21st century. This UWC had 40 attendees from academe and industry, and the program was developed around the outcomes of the Philadelphiamore » meeting. The general chair of UWC96 was Don Miller of Ohio State University, while the author of this paper served as the technical program chair. Assistant technical program chairs included Madeline Feltus of Pennsylvania State University, Dan Bullen of Iowa State University, and Gilbert Brown of the University of Massachusetts Lowell. A working conference is often loosely structured, with an informal, flexible program, consisting of a few highlight or keynote presentations followed by workshop sessions devoted to a theme area. The workshop sessions at this meeting included the following: 1. strategic planning in today`s climate; 2. university/industry research collaboration; 3. profiles of nuclear engineering and radiological engineering students, now and in the future; 4. accreditation issues, especially ABET`s engineering 2000; 5. employment of nuclear and radiological engineers; 6. new program thrusts in nuclear engineering departments; 7. uses of new technology in the classroom and laboratory; 8. internet access to information for education; 9. distance education/remote delivery of curricula.« less

  12. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.

    2010-06-16

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field stillmore » seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad range of subjects, including nuclear material accountancy principles, legal definitions and the regulatory base and inspection tools and techniques. This 60% core part is given by representatives from regulatory bodies (The International Atomic Energy Agency (IAEA), Institute for Radiological Protection and Nuclear Safety, Directorate General for Nuclear Energy and Transport), industry (AREVA, British Nuclear Group), and research (Stockholm University, Hamburg University, Joint Research Centre-Institute of Transuranic Elements, and Joint Research Centre-Institute for the Protection of the Citizen). The remaining part is completed with topical lectures addressed by invited lecturers, such as from Pacific Northwest National Laboratory and the IAEA addressing topics of physical protection, illicit trafficking, the Iraq case study, exercises, including satellite imagery interpretation etc. With this structure of a stable core plus a variable set of invited lectures, the course will remain sustainable and up-to-date. A syllabus provides the students a homogeneous set of information material in nuclear safeguards and nonproliferation matters at the European and international level. In this way, the ESARDA TKMWG aims to contribute to a two-fold scientific-technical and political-juridical education and training.« less

  13. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been mademore » clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students’ enrolment and performance, and teaching staff’s human resource development.« less

  14. Overview of codes and tools for nuclear engineering education

    NASA Astrophysics Data System (ADS)

    Yakovlev, D.; Pryakhin, A.; Medvedeva, L.

    2017-01-01

    The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.

  15. UC Berkeley Nuclear Engineering Curriculum and Research Enhancement. Final report, February 14, 1993--February 14, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T.K.; Peterson, P.F.

    1995-05-11

    This is a report for the 2/14/93 to 2/14/95 period of the five-year program proposed and initiated in 1992, for curriculum and research enhancement for the Department of Nuclear Engineering at the University of California, Berkeley. The program is designed to strengthen the departmental academic infrastructure and improve the education breadth of nuclear engineering students. The DOE funds have supported scholarships and a novel educational program which includes summer coursework at the Diablo Canyon Nuclear Power Plant. The summer course provides an important introduction to reactor safety and operations to students who will in the future be responsible for runningmore » many of our existing nuclear power plants. The work was funded under DOE contract DE-FG0393ER75856, with a matching gift to the Department from the Pacific Gas and Electric Company (PG&E). The program described in the original grant proposal has been successful implemented with an enthusiastic response from our students and faculty. The program consisted of two parts, one for innovative additions to our curriculum funded by the DOE, and the other for distinguished lectureships and support for basic research funded by gifts from PG&E.« less

  16. Tackling the nuclear manpower shortage: industry, educators must work together

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzig, W.

    1981-10-01

    A 50% decline in graduate enrollment and an increase to 50% of foreign nationals among the nuclear engineering students since 1973 at Pennsylvania State University is typical of national trends, which have led to the closing of 13 undergraduate programs across the country. Penn State's proximity to Three Mile Island had less effect than its interactions with high schools and utilities in keeping the nuclear program as strong as it is. Penn State operates three separate career programs to interest high school students in a nuclear career. Institute of Nuclear Power Operations (INPO) educational assistance reflects industry interest, but moremore » scholarships are needed to broaden student awareness. (DCK)« less

  17. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R.; Jones, J. M.

    2006-07-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less

  18. The Times, They are a Changin': An Insider Indicates Where Federal Funding of Science and Engineering May be Heading.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1981-01-01

    Provides quotes from President Reagan's personal science adviser, George Keyworth, concerning federal funding of science and engineering programs, including statements regarding solar energy, nuclear power, national defense, women and minorities programs, and National Science Foundation educational programs. (CS)

  19. Modeling nuclear processes by Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less

  20. Control console replacement at the WPI Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  1. Energy: Education and Industry Changes for a New Era Utilization System Modifications.

    ERIC Educational Resources Information Center

    Dille, Earl K.; Dreifke, Gerald E.

    This paper provides data and opinions on long- and short-term challenges and changes required to meet the human resource and educational needs in a nuclear electric era as seen from a utility company's point of view. In particular, statements on engineering education curriculum, statistics on certain future manpower requirements, electric utility…

  2. Personnel Requirements, Education, and Training for Civilian Nuclear Activities, 1984-2000. Executive Summary.

    ERIC Educational Resources Information Center

    Stevenson, Wayne

    This report provides projections of the employment of scientists, engineers, technicians, and other occupations for the civilian nuclear industry through the year 2000. Low, medium, and high projections are provided. In all cases, a substantial number of job openings are anticipated to fill needs created by employment growth, retirement, death,…

  3. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillich, Don; Kovanen, Andrew; Anderson, Tom

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of {approx}100 keV. Within the next year, cadets and faculty atmore » USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.« less

  4. Jobs for Women in Science. A Discussion for the Conference for Educating Women for Science: A Continuous Spectrum.

    ERIC Educational Resources Information Center

    Hanson, Marlys C.

    Opportunities for scientists in the near future will be very good in the fields of energy research and development, both for degreed scientists and for technicians. Geologists, geophysicists, mining engineers, rock mechanics, hydrologists, applied physicists, applied chemists, and nuclear engineers are among the types of personnel needed. These…

  5. Assessing the Effects of Organizational Changes within the Office of the Secretary of Defense on the Nuclear Mission

    DTIC Science & Technology

    2016-09-01

    School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial...chemical and biological defense programs for OSD and his/her official title was changed to Assistant to the Secretary of Defense for Nuclear, Chemical...weapons program was no longer the true 27 focus in this office. The current title of this office is Assistant Secretary of Defense for Nuclear

  6. Control console replacement at the WPI Reactor. [Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekkebus, Allen E

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop [http://neutrons.ornl.gov/workshops/nst2/], several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons formore » Materials Science and Engineering educational symposium [http://neutrons.ornl.gov/workshops/edsym2007]. It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcr@ornl.gov.« less

  8. Utility operations review of North Carolina State University BSNE curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, E.A.; Faggart, E.M.; Jackson, G.D.

    1988-01-01

    The industry advisors group of the North Carolina State University (NCSU) Department of Nuclear Engineering raised the question of how well the curriculum for a bachelor of science in nuclear engineering (BSNE) meets the needs of educating students to enter the nuclear operations field. The concern was that the nuclear industry has evolved from a design to an operations mode, but that the BSNE curriculum may not have responded to this evolution. To address this issue, a group of four persons qualified as senior reactor operators with operational experience from different utilities was selected. The authors are the members ofmore » this review group. All are degreed personnel, with three BSNE graduates from NCSU, and all have participated in nuclear plant startups and currently work at nuclear plant sites. The group prepared by reviewing the curriculum before arriving on campus, including the report developed for the Accreditation Board for Engineering and Technology. During our two-day campus visit, we reviewed course materials, interviewed professors, and toured laboratory and reactor facilities in order to get more insight into the breadth and thrust of the BSNE curriculum. The observations and recommendations contained in this paper were developed based on these reviews and discussions and represent the opinions of the authors and not necessarily their companies.« less

  9. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  10. Expanded scope of training and education programs at the UFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernetson, W.G.; Whaley, P.M.

    1985-01-01

    Historically, the University of Florida Training Reactor (UFTR) has been used to train both hot and cold license reactor operator candidates in intensive two- and three-week training programs consisting of a correlated set of classroom lectures, hands-on reactor operations, and laboratory exercises. These training programs provide nuclear plant operating staff with fundamental operational experience in understanding, controlling, and evaluating subcritical multiplication, reactivity effects, reactivity manipulations, and reactor operations; a sufficient number of startups and shutdowns is also assured. The UDTR is also used in a nuclear engineering course entitled ''Principles of Nuclear Reactor Operations.'' The purpose of this paper ismore » to report the results of efforts to redirect and refine tractor operations educational and training programs at the UFTR.« less

  11. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  12. Nuclear Criticality Experimental Research Center (NCERC) Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less

  13. Development of TPF-1 plasma focus for education

    NASA Astrophysics Data System (ADS)

    Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.

    2017-09-01

    The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.

  14. Maintaining a highly-qualified nuclear industry workforce.

    PubMed

    McAndrew-Benavides, Elizabeth

    2011-01-01

    Since 2001, the nuclear industry has conducted a series of staffing assessments to better understand workforce demographics and predict future workforce demands. The industry's 2007 workforce survey indicated that in the next 5 y, up to 35% of the current nuclear workforce could retire and would need to be replaced. Thousands of individuals will need to be hired to replace the retirees, especially in engineering, maintenance and operations. Because of the challenges at hand, NEI convened the Workforce Working Group to make recommendations to address recruitment, retention and education needs. Their recommendations are now being implemented. Copyright © 2010 Health Physics Society

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melber, B.D.; Saari, L.M.; White, A.S.

    This report assesses the job-relatedness of specialized educational programs for licensed nuclear reactor operators. The approach used involved systematically comparing the curriculum of specialized educational programs for college credit, to academic knowledge identified as necessary for carrying out the jobs of licenses reactor operators. A sample of eight programs, including A.S. degree, B.S. degree, and coursework programs were studied. Subject matter experts in the field of nuclear operations curriculum and training determined the extent to which individual program curricula covered the identified job-related academic knowledge. The major conclusions of the report are: There is a great deal of variation amongmore » individual programs, ranging from coverage of 15% to 65% of the job-related academic knowledge. Four schools cover at least half, and four schools cover less than one-third of this knowledge content; There is no systematic difference in the job-relatedness of the different types of specialized educational programs, A.S. degree, B.S. degree, and coursework; and Traditional B.S. degree programs in nuclear engineering cover as much job-related knowledge (about one-half of this knowledge content) as most of the specialized educational programs.« less

  16. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less

  20. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    As the debate over nuclear safety continues, the job market remains healthy for nuclear engineers. The average salary offered to new nuclear engineers with bachelor's degrees is $27,400. Salary averages and increases compare favorably with other engineering disciplines. Various job sources in the field are noted. (JN)

  1. An overview of the ENEA activities in the field of coupled codes NPP simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, C.; Negrenti, E.; Sepielli, M.

    2012-07-01

    In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark andmore » the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)« less

  2. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  3. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    NASA Astrophysics Data System (ADS)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  4. Public Outreach of the South Texas Health Physic Society and Texas A&M University Nuclear Engineering Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R. O.

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A&M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to sitemore » a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue.« less

  5. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  6. From elementary school science to graduate school textbooks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanier, R.G.

    1990-09-01

    The Nuclear Chemistry Division (NCD) at the Lawrence Livermore National Laboratory (LLNL) has a long history of using its resources to enhance the scientific literacy of students at virtually all educational levels, as well as providing for the continued scholarly development of its own staff. The Division has shown a particularly deep concern for motivating young scientific talent, and has a strong record of commitment toward educating and increasing the scientific skills of minorities and women. These activities are carried out by individual, group, or Division initiative and range from simple community involvement and classroom teaching to highly structured andmore » specialized technical training. This report collects and describes the official and unofficial educational activities that have been conducted in the Nuclear Chemistry Division at LLNL during the recent past. These activities serve as a model of what a few dedicated individuals and an enlightened management can contribute to the education of a new generation of scientists and engineers.« less

  7. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses trends in job opportunities for nuclear engineers. Lists some of the factors influencing increases and decreases in the demand for nuclear engineers. Describes the effects on career opportunities from recent nuclear accidents, military research and development, and projected increases of demand for electricity. (TW)

  8. Review of 1953-2003 ORAU Follow-Up Studies on Science Education Programs: Impacts on Participants' Education and Careers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oak Ridge Associated Universities

    2006-06-01

    Through sponsorship of science education programs for undergraduates and graduates, such as research participation programs and fellowships, the Department of Energy (DOE) encouraged the development of adequate numbers of qualified science and engineering (S&E) personnel to meet its current and future research and development (R&D) needs. This retrospective study summarizes impacts of selected programs on these participants. The summary data are from follow-up studies conducted from 1953 through 2003 by Oak Ridge Associated Universities and its predecessor, the Oak Ridge Institute for Nuclear Studies (ORINS).

  9. Manpower Assessment Brief #44: NUCLEAR ENGINEERING Enrollments Decreased at All Levels in 1998. Undergraduate and Doctoral Degrees Decreased, While Master's Degrees Increased Slightly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley, Duveen

    1999-05-04

    The survey of "Nuclear Engineering Enrollments and Degrees, 1998" was sent to 45 institutions offering a major in nuclear engineering or an option program in another discipline or department (for example, electrical or mechanical engineering) equivalent to a major that qualifies the graduates to perform as nuclear engineers. This document provides statistical data on undergraduate and graduate enrollments and degrees, employment and post-graduation plans, and foreign national participation.

  10. A case study for retaining nuclear power experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckjord, E.S.

    1996-12-31

    Nuclear engineering departments at U.S. universities are rethinking curricula to focus on essentials. Prospective engineers must know nuclear engineering disciplines, but knowing how their engineering forebears solved important problems will empower them even more by learning some history along with engineering. I suggest a way to retain experience, giving an example: the emergency core cooling system (ECCS) controversy and resolution.

  11. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  12. Journal of Undergraduate Research, Volume VIII, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  13. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactormore » with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible. The successful completion of two big D and D projects (HDR and KKN), which reached green field conditions, are showing quite the contrary. Moreover, research on D and D technologies offers the possibility to educate students on a field of nuclear technology, which will be very important in the future. In these days D and D companies are seeking for a lot of young engineers and this will not change in the coming years. (authors)« less

  14. Implanting a Discipline: The Academic Trajectory of Nuclear Engineering in the USA and UK

    ERIC Educational Resources Information Center

    Johnston, Sean F.

    2009-01-01

    The nuclear engineer emerged as a new form of recognised technical professional between 1940 and the early 1960s as nuclear fission, the chain reaction and their applications were explored. The institutionalization of nuclear engineering--channelled into new national laboratories and corporate design offices during the decade after the war, and…

  15. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  16. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  17. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  18. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  19. Nuclear Engineering Technologists in the Nuclear Power Era

    ERIC Educational Resources Information Center

    Wang, C. H.; And Others

    1974-01-01

    Describes manpower needs in nuclear engineering in the areas of research and development, architectural engineering and construction supervision, power reactor operations, and regulatory tasks. Outlines a suitable curriculum to prepare students for the tasks related to construction and operation of power reactors. (GS)

  20. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  1. Final report, DOE/industry matching grant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Arvind S.

    2003-02-25

    The Department of Energy/Industry Matching Grant was used to help improve nuclear engineering and science education at the University of Missouri-Rolla. The funds helped in the areas of recruitment and retention. Funds allowed the department to give scholarships to over 100 students (names included). Funds were also used for equipment upgrade and research, including two computers with peripherals, two NaI detectors, and a thermoluminescent dosimeter.

  2. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  3. Optimizing Chemical-Vapor-Deposition Diamond for Nitrogen-Vacancy Center Ensemble Magnetrometry

    DTIC Science & Technology

    2017-06-01

    Ju Li Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering...Sciences, U. S. Air Force Academy (2015) Submitted to the Department of Nuclear Science and Engineering in partial fulfillment of the requirements for the...degree of Master of Science in Nuclear Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 c○ Massachusetts Institute of

  4. Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine

    NASA Image and Video Library

    1964-05-21

    Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.

  5. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  6. Nuclear Engineering Enrollments and Degrees, 1982.

    ERIC Educational Resources Information Center

    Sweeney, Deborah H.; And Others

    This report presents data on the number of students enrolled and the number of bachelor's, master's, and doctoral degrees awarded in academic year 1981-82 from 72 United States institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented as well are historical data for the last decade…

  7. Brief 76 Nuclear Engineering Enrollments and Degrees Survey, 2015 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 Nuclear Engineering Enrollments and Degrees Survey reports degrees granted between September 1, 2014 and August 31, 2015. Enrollment information refers to the fall term 2015. The enrollments and degrees data comprises students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-five academic programs reported having nuclear engineering programs during 2015, and data was received from all thirty-five programs. The report includes enrollment information on undergraduate students and graduate students and information by degree level for post-graduation plans.

  8. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  9. Nuclear Physics Made Very, Very Easy

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1968-01-01

    The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.

  10. Workshop Physics Activity Guide, Module 3: Heat Temperature and Nuclear Radiation, Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 & 28)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.

  11. Utilization of a radiology-centric search engine.

    PubMed

    Sharpe, Richard E; Sharpe, Megan; Siegel, Eliot; Siddiqui, Khan

    2010-04-01

    Internet-based search engines have become a significant component of medical practice. Physicians increasingly rely on information available from search engines as a means to improve patient care, provide better education, and enhance research. Specialized search engines have emerged to more efficiently meet the needs of physicians. Details about the ways in which radiologists utilize search engines have not been documented. The authors categorized every 25th search query in a radiology-centric vertical search engine by radiologic subspecialty, imaging modality, geographic location of access, time of day, use of abbreviations, misspellings, and search language. Musculoskeletal and neurologic imagings were the most frequently searched subspecialties. The least frequently searched were breast imaging, pediatric imaging, and nuclear medicine. Magnetic resonance imaging and computed tomography were the most frequently searched modalities. A majority of searches were initiated in North America, but all continents were represented. Searches occurred 24 h/day in converted local times, with a majority occurring during the normal business day. Misspellings and abbreviations were common. Almost all searches were performed in English. Search engine utilization trends are likely to mirror trends in diagnostic imaging in the region from which searches originate. Internet searching appears to function as a real-time clinical decision-making tool, a research tool, and an educational resource. A more thorough understanding of search utilization patterns can be obtained by analyzing phrases as actually entered as well as the geographic location and time of origination. This knowledge may contribute to the development of more efficient and personalized search engines.

  12. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  13. Program For Optimization Of Nuclear Rocket Engines

    NASA Technical Reports Server (NTRS)

    Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.

    1994-01-01

    NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.

  14. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Fu; Zhang, He-Qiu; Liang, Hong-Wei; Peng, Xin-Cun; Zou, Ji-Jun; Tang, Bin; Du, Guo-Tong

    2017-08-01

    Not Available Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.

  15. 75 FR 43208 - Withdrawal of Regulatory Guide 5.17

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555.... Introduction The U.S. Nuclear Regulatory Commission (NRC) is withdrawing Regulatory Guide 5.17, ``Truck... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2010-18077 Filed...

  16. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  17. Expanding Outreach Efforts by Developing Community Advisory Councils - 12233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Susan M.; Phillips, Janice H.

    2012-07-01

    Nuclear energy generates significant reliable baseload electricity, yet many citizens in countries with nuclear power do not know the facts and benefits this clean energy source provides. For much of its history, the nuclear energy industry has been perceived as secretive and protective. Anti-nuclear activists use this general lack of public knowledge to sensationalise events, spread misinformation, and play on people's emotions. Yet, the nuclear energy industry has done little to combat these falsehoods imposed on the general public. Support for nuclear energy, or lack thereof, is even more pronounced after the extraordinary natural disasters and ensuing nuclear incident inmore » Japan earlier this year, making proactive outreach to restore public trust even more important than before. The industry must inform and educate at all levels to dispel the falsehoods and enable clear, rational decision-making by government officials, business leaders and the general public, if it wants to grow and provide clean energy for the future. AREVA understands that this community outreach and education are just the first steps toward helping clean energy sources grow. We know that energy demand and security means we need to utilize every clean energy source available. We must start the education process from pre-school age to encourage children to enter science, technology, engineering and math curriculums. We must maintain regular community dialog and open discussions and operate in a safe manner, because in the long run, it is these community members who will help ensure energy security for the country. These stakeholders have a strong voice, a voice that can be heard locally, and if necessary, a voice that can impact the future of nuclear energy worldwide. As always, our industry is committed to the relentless pursuit of ever safer nuclear power. The nuclear industry as a whole must restore and win back trust. But the only way to restore this trust is by working together as an industry to engage in open discussion and dialogue. It is only by working together as an industry that we can ensure a safe, clean air future for generations to come, no matter where in the world we live. (authors)« less

  18. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipeldauer, Mary D; Shelander Jr, Bruce R

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) wasmore » established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.« less

  19. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.

  20. 75 FR 79049 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ..., Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to an existing... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2010-31731 Filed...

  1. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  2. STEM Leader from the Roeper School: An Interview with Nuclear Engineer Clair J. Sullivan

    ERIC Educational Resources Information Center

    Ambrose, Don

    2016-01-01

    Clair J. Sullivan is an assistant professor in the Department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana-Champaign (UIUC). Her research interests include radiation detection and measurements; gamma-ray spectroscopy; automated isotope identification algorithms; nuclear forensics; nuclear security;…

  3. Cognitive decision errors and organization vulnerabilities in nuclear power plant safety management: Modeling using the TOGA meta-theory framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelli, M.; Gadomski, A. M.; Sepiellis, M.

    In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safetymore » Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)« less

  4. Scientific and Technical Manpower Requirements of Selected Segments of the Atomic Energy Field. Final Report.

    ERIC Educational Resources Information Center

    Voight, Keith L.

    The primary purpose of the study was to develop a supply/demand ratio for nuclear degree scientists and engineers from July 1969 through 1973. The need by private industry and electric utilities for scientists and engineers with degrees in disciplines other than nuclear science or engineering, as well as for technicians, nuclear reactor operators,…

  5. On the way to the smart education in the cloud: The experience of using a virtual learning environment and webinars in educational and career guidance process

    NASA Astrophysics Data System (ADS)

    Lapshinsky, V. A.

    2017-01-01

    The article is devoted to the consideration of issues of functionality and application of educational portal as virtual learning environments and webinars as SaaS services. Examples of their use in educational and vocational guidance processes are presented. The prospects of transition from portal VLE to SaaS and cloud services are marked. Portal www.valinfo.ru with original learning management system has been used in the educational process since 2003 in the National Research Nuclear University MEPhI and in the Peoples' Friendship University of Russia. Supported courses: Computer Science, Computer Workshop, Networks, Information Technology, The Introduction to Nano-Engineer, Nanotechnology and Nanomaterials etc. For webinars as SaaS services, used the "virtual classroom," kindly provided by WebSoft Company.

  6. Unique educational opportunities at the Missouri University research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketring, A.R.; Ross, F.K.; Spate, V.

    1997-12-01

    Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduatemore » students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups.« less

  7. Conceptual design studies and experiments related to cavity exhaust systems for nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Stoeffler, R. C.

    1972-01-01

    Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.

  8. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  9. Early Program Development

    NASA Image and Video Library

    2004-04-15

    This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.

  10. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  11. 10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL CROSS SECTION. Giffals & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan; and U.S. Army Engineer Division, New England Corps of Engineers, Boston, Massachusetts. Drawing Number 35-84-04. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA

  12. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required Initial Mass in Low Earth Orbit compared to conventional nuclear thermal rockets for a human mission to Mars. Of course, the realization of this concept still requires proper engineering and the dimensioning of quite unconventional machinery. A patent was filed on the concept. Because of the operating parameters of the nuclear core, which are very specific to this type of concept, it seems possible to test on ground this kind of engine at full scale in close loop using a reasonable size test facility with safe and clean conditions. Such tests can be conducted within fully confined enclosure, which would substantially increase the associated inherent nuclear safety levels. This breakthrough removes a showstopper for nuclear rocket engines development. The present paper will disclose the NTER (Nuclear Thermal Electric Rocket) engine concept, will present some of the results of the ESTEC concurrent engineering exercise, and will explain the concept for the NTER on-ground testing facility. Regulations and safety issues related to the development and implementation of the NTER concept will be addressed as well.

  13. Design considerations in clustering nuclear rocket engines

    NASA Technical Reports Server (NTRS)

    Sager, Paul H.

    1992-01-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  14. Design considerations in clustering nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Sager, Paul H.

    1992-07-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  15. Performance potential of gas-core and fusion rockets - A mission applications survey.

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Willis, E. A., Jr.

    1971-01-01

    This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-

  16. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  17. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  18. 75 FR 45171 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555...-3040. This guide describes some engineering practices and methods generally considered by the NRC to be... they reflect the latest general engineering approaches that are acceptable to the NRC staff. If future...

  19. 76 FR 50275 - Guidance for the Assessment of Beyond-Design-Basis Aircraft Impacts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...: Mekonen M. Bayssie, Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear... e-mail to [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The Nuclear..., Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2011-20513 Filed 8-11-11; 8:45 am...

  20. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  1. Experience in implementation of «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Kosilov, A. N.

    2017-01-01

    This paper describes the experience of teaching «Nuclear Knowledge Management» course at the National Research Nuclear University MEPhI (NRNU MEPhI). Currently, the course is implemented both in engineer and master degree programs and is attended by over 50 students. Goal, objectives and syllabus of the course are discussed in detail. A special attention is paid to practical exercises and final examination options in the case of small and large student groups. The course is supported by the Cyber Learning Platform for Nuclear Education and Training (CLP4NET), developed by the IAEA. The experience of NRNU MEPhI lecturers assisting in conducting the International School of Nuclear Knowledge Management, held annually in Trieste (Italy), is described with a special attention to the fact, that the course has passed the certification process at Academic Council of NRNU MEPhI. In 2014 and 2015 the course has been recognized as one of the best ones in NRNU MEPhI. Finally, perspectives of «Nuclear Knowledge Management» course are considered. They include increase of the course duration, introduction of the course into the learning process of other departments and institutions of the university, and transferring the course to other members of the Association «Consortium of ROSATOM supporting universities».

  2. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  3. Performance Criteria of Nuclear Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  4. Nuclear engineering enrollments and degrees, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, J R; Shirley, D L

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 73 US institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented here are historical data for the last decade, which provide information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students.

  5. Copper Doping of Zinc Oxide by Nuclear Transmutation

    DTIC Science & Technology

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  6. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  7. Early Program Development

    NASA Image and Video Library

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  8. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  9. 77 FR 3073 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2008-0554] RIN 3150-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases; Corrections AGENCY: Nuclear Regulatory... the American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016, phone (800) 843...

  10. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Treesearch

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  11. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  12. Marketing Strategy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report documents the research that has been undertaken as background for preparation of a marketing campaign for middle and high school students to increase interest in national security careers at the National Nuclear Security Administration. This work is a part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. Previous research on the development of a properly trained and skilled national security workforce has identified a lack of interest by k-12 students in the STEM (Science, Technology, Engineering, and Mathematics) fields. Further, participation in these careers by womenmore » and minority populations is limited and is not increasing. Added to this are low educational achievement levels in New Mexico, where the marketing campaign will be deployed.« less

  13. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  14. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  15. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  16. NASA Propulsion Engineering Research Center, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center infrastructure, and to develop research capability in key new areas. Significant research programs in propulsion systems for air and land transportation complement the space propulsion focus. The primary mission of the Center is student education. The student program emphasizes formal class work and research in classical engineering and science disciplines with applications to propulsion.

  17. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  18. A Report of the Nuclear Engineering Division Sessions at the 1971 ASEE Annual Conference

    ERIC Educational Resources Information Center

    Eckley, Wayne; Nelson, George W.

    1972-01-01

    Summarizes the discussions at the conference under the topics, Objective Criteria for the Future" and Teaching Concepts Basic to Nuclear Engineering." Includes comments from personnel representing universities, industries, and government laboratories. (TS)

  19. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Nuclear Targeting Terms for Engineers and Scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Ledger, John W.

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physicalmore » vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.« less

  1. Data Documentation for Navy Civilian Manpower Study,

    DTIC Science & Technology

    1986-09-01

    Engineering 0830 Mechanical Engineer 0840 Nuclear Engineering 0850 Electrical Engineering 0855 Electronics Engineering 0856 Electronics ...OCCUPATIONAL LEVEL (DONOL) CODES DONOL code Title 1060 Engineering Drafting 1061 Electronics Technician w 1062 Engineering Technician 1063 Industrial...Architect 2314 Electrical Engineer 2315 Electronic Engineer 2316 Industrial Engineer 2317 Mechanical Engineer 2318

  2. AIRCRAFT REACTOR CONTROL SYSTEM APPLICABLE TO TURBOJET AND TURBOPROP POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorker, G.E.

    1955-07-19

    Control systems proposed for direct cycle nuclear powered aircraft commonly involve control of engine speed, nuclear energy input, and chcmical energy input. A system in which these parameters are controlled by controlling the total energy input, the ratio of nuclear and chemical energy input, and the engine speed is proposed. The system is equally applicable to turbojet or turboprop applications. (auth)

  3. Report of the Nuclear Propulsion Mission Analysis, Figures of Merit Subpanel: Quantifiable figures of merit for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Haynes, Davy A.

    1991-01-01

    The results of an inquiry by the Nuclear Propulsion Mission Analysis, Figures of Merit subpanel are given. The subpanel was tasked to consider the question of what are the appropriate and quantifiable parameters to be used in the definition of an overall figure of merit (FoM) for Mars transportation system (MTS) nuclear thermal rocket engines (NTR). Such a characterization is needed to resolve the NTR engine design trades by a logical and orderly means, and to provide a meaningful method for comparison of the various NTR engine concepts. The subpanel was specifically tasked to identify the quantifiable engine parameters which would be the most significant engine factors affecting an overall FoM for a MTS and was not tasked with determining 'acceptable' or 'recommended' values for the identified parameters. In addition, the subpanel was asked not to define an overall FoM for a MTS. Thus, the selection of a specific approach, applicable weighting factors, to any interrelationships, for establishing an overall numerical FoM were considered beyond the scope of the subpanel inquiry.

  4. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  5. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  6. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  7. The past as prologue - A look at historical flight qualifications for space nuclear systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.

  8. The past as prologue - A look at historical flight qualifications for space nuclear systems

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.

    Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.

  9. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  10. Waste and Recycling

    ScienceCinema

    McCarthy, Kathy

    2018-01-01

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  11. American power conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less

  12. Safety engineering: KTA code of practice. Lifting mechanisms in nuclear plant

    NASA Astrophysics Data System (ADS)

    Lifting mechanisms safety requirements are discussed in accordance with the present state of development of science and engineering for the protection of life, health, and assets against the dangers of nuclear energy and the ill effects of ionizing radiation.

  13. Space Nuclear Reactor Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David Irvin

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  14. Radiation shielding estimates for manned Mars space flight.

    PubMed

    Dudkin, V E; Kovalev, E E; Kolomensky, A V; Sakovich, V A; Semenov, V F; Demin, V P; Benton, E V

    1992-01-01

    In the analysis of the required radiation shielding protection of spacecraft during a Mars flight, specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low- and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons.

  15. Revised Point of Departure Design Options for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce

    2015-01-01

    In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.

  16. Pedagogical Training and Research in Engineering Education

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2008-01-01

    Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…

  17. Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie

    2007-01-01

    This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.

  18. Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Schnitzler, Bruce G.

    2008-01-01

    The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.

  19. Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.

    PubMed

    Cao, Gui Hong

    2015-12-01

    Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering sustainability.

  20. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  1. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  2. 75 FR 37842 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... INFORMATION CONTACT: R. A. Jervey, Regulatory Guide Development Branch, Division of Engineering, Office of...) 251-7404 or e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The U.S. Nuclear..., Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc...

  3. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  4. Thermal Propulsion Capture System Heat Exchanger Design

    NASA Technical Reports Server (NTRS)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  5. The Story of the Nuclear Rocket: Back to the Future

    NASA Astrophysics Data System (ADS)

    Dewar, James A.

    2002-01-01

    The United States had a nuclear rocket development program from 1955-1973 called Project Rover/NERVA. Twenty reactor tests demonstrated conclusively the superiority, flexibility and reliability of nuclear rocket engines over their chemical counterparts. This paper surveys the technical accomplishments from that perspective, to help illustrate why many call for the program's reestablishment. Most focus on the large NERVA, but this review will consider the little known Small Nuclear Engine. KIWI-B1B was one of the first tests in which nuclear rockets demonstrated their superiority. It ejected its core as it rose to 1000MW (a megawatt equals 50 pounds of thrust). This seems contradictory, how can a `failure' demonstrate superiority? Precisely in this: the reactor remained controllable going to and from 1000MW, still ejecting its core, but still turning out power. That gave insurance to a mission. A solid or liquid chemical engine suffering similar damage would likely shutdown or blow up. KIWI-TNT and Phoebus-1A had planned and unplanned accidents. That verified the safety of nuclear engines in launch operations. NRX/EST and XE-Prime proved they could startup reliably under their own power in a simulated space environment and change power without loss of specific impulse or control, from 20MW to 1000MW and back. That gave flexibility for mid-course corrections, maneuvering between orbits or breaking into orbit. Pewee and the Nuclear Furnace tested fuels to achieve 10 hours of engine operation with 60 recycles (stops and starts). That meant an engine could perform multiple missions. Work started on fuels promising1000 seconds of specific impulse. That meant increased power and payload capacity and speed. This contrasts with the 450 seconds of LOX/LH2. The NERVA of 1971 would be 1500MW, with 10/60 capability and 825 seconds of a specific impulse. Later generation NERVAs would be in excess of 1000 seconds, 3000MW and 10/60. The Nixon Administration cancelled it in 1971. After its demise, the Small Nuclear Engine appeared for unmanned missions. To fit in the space shuttle's 15 by 60 foot cargo bay, the 10 foot long engine would be 400MW, weigh 5600 pounds and use slush hydrogen. That left 50 feet and almost 60,000 pounds for the tank, propellant and payload that could vary in size, but it was nominally 5 tons. It would cost 500 million (in1972 dollars) and take a decade to develop. It had NERVA's operating characteristics, but subsequent generation systems envisioned longer engine life and recycle capability and specific impulses of 1000+ seconds. Nixon ended this in 1973. By reconsidering it instead of a nuclear electric engine that serves only space science, the nation could gain a fast, powerful system that would radically change most future unmanned space missions. With its recycle capability, a single engine could ferry large scientific payloads swiftly throughout the solar system. Yet it also could propel heavy national security and commercial payloads to geo-synchronous orbit. NASA might even offer a satellite retrieval service. Thus, one lesson is clear: it is 1960s era technology, but the Small Engine is not obsolete. If developed, it would serve not just one, but three users yet have growth potential for decades for an ever more expansive space program.

  6. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    NASA Astrophysics Data System (ADS)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  7. Ground test facility for SEI nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.

    1992-07-01

    Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.

  8. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability. Emphasis will be placed on small engines, since the smaller the NTP engine, the easier it is to transport, assemble/disassemble, and filter the exhaust during tests. A new ground test concept using underground bore holes (modeled after the underground nuclear test program) to filter the NTP engine exhaust is being considered. The NTP engine system design, development, test, and evaluation plan includes many engine components and subsystems, which are very similar to those used in chemical engines, and can be developed in conjunction with them Other less mature NTP engine components and subsystems (e.g., reactor) will be thoroughly analyzed and tested to acceptable levels recommended by the referenced standards and guidelines. The affordable development strategy also considers a prototype flight test, as a final step in the development process. Preliminary development schedule estimates show that an aggressive development schedule (without much margin) will be required to be flight ready for a 2033 human mission to Mars.

  9. Engineering Education for a New Era

    NASA Astrophysics Data System (ADS)

    Ohgaki, Shinichiro

    Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.

  10. Geoethics and decision science issues in Japan's disaster management system: case study in the 2011 Tohoku earthquake and tsunami

    NASA Astrophysics Data System (ADS)

    Sugimoto, Megumi

    2015-04-01

    The March 11, 2011 Tohoku earthquake and its tsunami killed 18,508 people, including the missing (National Police Agency report as of April 2014) and raise the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station in Japan. The problems revealed can be viewed as due to a combination of risk-management, risk-communication, and geoethics issues. Japan's preparations for earthquakes and tsunamis are based on the magnitude of the anticipated earthquake for each region. The government organization coordinating the estimation of anticipated earthquakes is the "Headquarters for Earthquake Research Promotion" (HERP), which is under the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Japan's disaster mitigation system is depicted schematically as consisting of three layers: seismology, civil engineering, and disaster mitigation planning. This research explains students in geoscience should study geoethics as part of their education related Tohoku earthquake and the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station. Only when they become practicing professionals, they will be faced with real geoethical dilemmas. A crisis such as the 2011 earthquake, tsunami, and Fukushima Dai-ichi nuclear accident, will force many geoscientists to suddenly confront previously unanticipated geoethics and risk-communication issues. One hopes that previous training will help them to make appropriate decisions under stress. We name it "decision science".

  11. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  12. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    NASA Astrophysics Data System (ADS)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  13. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 33.

    DTIC Science & Technology

    1977-07-06

    the condensation mode. Analysis is presented of the expediency of creating nuclear power plants for heat supply. Initial data are presented for this...boilers by two-pipe system, from nuclear electric power plant single-pipe system. Table 1; references 3. 69 USSR UDC 621.311.22:621.039.001.5 ANALYSIS ...engineering materials and equipment. 17. Key Words and Document Analysis . 17a. Descriptors USSR Eastern Europe Aeronautics Industrial Engineering Marine

  14. "Scholarship of Impact" Framework in Engineering Education Research: Learnings from the Institute for Scholarship on Engineering Education. Research Brief

    ERIC Educational Resources Information Center

    Lande, Micah; Adams, Robin; Chen, Helen; Currano, Becky; Leifer, Larry

    2007-01-01

    The Institute for Scholarship on Engineering Education (ISEE) program is one element of the NSF-sponsored Center for the Advancement of Engineering Education (CAEE). Its primary goal is to build a community of engineering education scholars who can think and work across disciplines with an ultimate aim of improving the engineering student…

  15. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  16. Engineering Education Research in "European Journal of Engineering Education" and "Journal of Engineering Education": Citation and Reference Discipline Analysis

    ERIC Educational Resources Information Center

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of "European Journal of Engineering Education" ("EJEE") and "Journal of Engineering Education" ("JEE") in 1973 ("JEE," 1975 "EJEE"), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become…

  17. Enhancement of Teaching and Learning of the Fundamentals of Nuclear Engineering Using Multimedia Courseware.

    ERIC Educational Resources Information Center

    Keyvan, Shahla A.; Pickard, Rodney; Song, Xiaolong

    1997-01-01

    Computer-aided instruction incorporating interactive multimedia and network technologies can boost teaching effectiveness and student learning. This article describes the development and implementation of network server-based interactive multimedia courseware for a fundamental course in nuclear engineering. A student survey determined that 80% of…

  18. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  19. Engine System Model Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  20. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  1. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  2. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified asmore » the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.« less

  3. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

  4. Reformulating General Engineering and Biological Systems Engineering Programs at Virginia Tech

    ERIC Educational Resources Information Center

    Lohani, Vinod K.; Wolfe, Mary Leigh; Wildman, Terry; Mallikarjunan, Kumar; Connor, Jeffrey

    2011-01-01

    In 2004, a group of engineering and education faculty at Virginia Tech received a major curriculum reform and engineering education research grant under the department-level reform (DLR) program of the NSF. This DLR project laid the foundation of sponsored research in engineering education in the Department of Engineering Education. The DLR…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Salvador B.

    SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.

  6. Game Imaging Meets Nuclear Reality

    ScienceCinema

    Michel, Kelly; Watkins, Adam

    2018-01-16

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  7. Nuclear Engine System Simulation (NESS). Version 2.0: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman

    1993-01-01

    This Program User's Guide discusses the Nuclear Thermal Propulsion (NTP) engine system design features and capabilities modeled in the Nuclear Engine System Simulation (NESS): Version 2.0 program (referred to as NESS throughout the remainder of this document), as well as its operation. NESS was upgraded to include many new modeling capabilities not available in the original version delivered to NASA LeRC in Dec. 1991, NESS's new features include the following: (1) an improved input format; (2) an advanced solid-core NERVA-type reactor system model (ENABLER 2); (3) a bleed-cycle engine system option; (4) an axial-turbopump design option; (5) an automated pump-out turbopump assembly sizing option; (6) an off-design gas generator engine cycle design option; (7) updated hydrogen properties; (8) an improved output format; and (9) personal computer operation capability. Sample design cases are presented in the user's guide that demonstrate many of the new features associated with this upgraded version of NESS, as well as design modeling features associated with the original version of NESS.

  8. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Science Foundation's Nuclear Physics Office. Technical Talk on Deep Underground Science and Engineering... Energy's Office of Nuclear Physics Web site for viewing. Rachel Samuel, Deputy Committee Management...

  9. Advanced Nuclear Technologies

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research of the nuclear energy age, scientists and engineers have conceived and developed advanced

  10. Engineering Ethics in the Subject of Engineering History

    NASA Astrophysics Data System (ADS)

    Isohata, Hiroshi

    Engineering ethics has been focused in the field of engineering education since the introduction of accreditation system of engineering education. In this paper, contents of the subject of engineering history are examined and discussed from the viewpoints of education of engineering ethics through a practical case of civil engineering history in a college. For the first step, codes of engineering ethics regulated in various engineering organizations are analyzed and the common contents are extracted to set the requirements for the education of engineering ethics. Then contents of the subject of engineering history are examined according to the requirements. Finally, conditions of engineering history for engineering ethics are discussed.

  11. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    NASA Astrophysics Data System (ADS)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  12. NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Hundal, Rolv

    1994-07-01

    Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.

  13. Nuclear science and society: social inclusion through scientific education

    NASA Astrophysics Data System (ADS)

    Levy, Denise S.

    2017-11-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.

  14. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  15. Proceedings of the American Power Conference. Volume 60-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  16. Proceedings of the American Power Conference. Volume 60-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  17. Abstracts for student symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    Lawrence Livermore National Laboratory Science and Engineering Research Semester (SERS) students are participants in a national program sponsored by the DOE Office of Energy Research. Presented topics from Fall 1993 include: Laser glass, wiring codes, lead in food and food containers, chromium removal from ground water, fiber optic sensors for ph measurement, CFC replacement, predator/prey simulation, detection of micronuclei in germ cells, DNA conformation, stimulated brillouin scattering, DNA sequencing, evaluation of education programs, neural network analysis of nuclear glass, lithium ion batteries, Indonesian snails, optical switching systems, and photoreceiver design. Individual papers are indexed separately on the Energy Data Base.

  18. Educating the Engineer of 2020: Adapting Engineering Education to the New Century

    ERIC Educational Resources Information Center

    National Academies Press, 2005

    2005-01-01

    "Educating the Engineer of 2020" is grounded by the observations, questions, and conclusions presented in the best-selling book "The Engineer of 2020: Visions of Engineering in the New Century." This new book offers recommendations on how to enrich and broaden engineering education so graduates are better prepared to work in a…

  19. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  20. Nuclear medicine training and practice in Poland.

    PubMed

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular postgraduate training for physicians working in NM. Educational programs are comprehensive, covering both diagnostics and current forms of radioisotope therapy. They are aimed not only at physicians specialized/specializing in NM, but also at other medical professionals employed in radionuclide departments as well as physicians of other specialties.

  1. PREFACE: 7th International Conference on Quantum Theory and Symmetries (QTS7)

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Navrátil, Ondřej; Pošta, Severin; Schnabl, Martin; Šnobl, Libor

    2012-02-01

    The Seventh International Conference Quantum Theory and Symmetries (QTS7), organized by the Departments of Mathematics and Physics, Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague, the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research and the Institute of Physics at the Academy of Sciences of the Czech Republic, belongs to a successful series of conferences which began at Goslar, Germany in 1999. More recent QTS conferences were held in Poland, Bulgaria, USA and Spain. QTS7 gathered around 300 scientists from all over the world. 136 of the plenary lectures and contributions presented at QTS7 are published in this issue of Journal of Physics: Conference Series. We acknowledge support from the Commission for co-operation with JINR Dubna and grant LA-08002 from the Ministry of Education of the Czech Republic. Čestmír Burdík Chairman Local Organizing Committee

  2. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  3. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.

  4. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  5. Marketing Strategy and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report documents the marketing campaign that has been designed for middle and high school students in New Mexico to increase interest in participation in national security careers at the National Nuclear Security Administration. This marketing campaign builds on the research that was previously conducted, as well as the focus groups that were conducted. This work is a part of the National Nuclear Security Preparedness Project (NSPP) being performed under a Department of Energy (DOE) / National Nuclear Security Administration (NNSA) grant. Outcome analysis was performed to determine appropriate marketing strategies. The analysis was based upon focus groups with middlemore » school and high school students, student interactions, and surveys completed by students to understand and gauge student interest in Science, Technology, Engineering, and Math (STEM) subjects, interest in careers at NNSA, future job considerations, and student desire to pursue post-secondary education. Further, through the focus groups, students were asked to attend a presentation on NNSA job opportunities and employee requirements. The feedback received from the students was utilized to develop the focus and components of the marketing campaign.« less

  6. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  7. Globalization and Organizational Change: Engineers' Experiences and Their Implications for Engineering Education

    ERIC Educational Resources Information Center

    Lucena, Juan C.

    2006-01-01

    The demand for flexible engineers presents significant challenges to engineering education. Among these is the need for engineers to be prepared to understand and deal with organizational change. Yet engineering education and research on engineers have overlooked the impact of organizational change on engineering work. After outlining the impact…

  8. The philosophical and pedagogical underpinnings of Active Learning in Engineering Education

    NASA Astrophysics Data System (ADS)

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving engineering education through active learning (http://www.ale-net.org/). The paper reiterates themes from those keynotes, namely, the philosophical and pedagogical underpinnings of Active Learning in Engineering Education, the scholarly questions that inspire engineering educators to go on improving their practice and exemplary models designed to activate the learning of engineering students. This paper aims to uncover the bedrock of established educational philosophies and theories that define and support active learning. The paper does not claim to present any new or innovative educational theory. There is already a surfeit of them. Rather, the aim is to assist Engineering Educators who wish to research how they can best activate the learning of their students by providing a readable, reasonable and solid underpinning for best practice in this field.

  9. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  10. The influence of engineers' training models on ethics and civic education component in engineering courses in Portugal

    NASA Astrophysics Data System (ADS)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-03-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its historical roots. In Portugal, engineer education is done based on two different higher education subsystems, the university and the polytechnic. This study analyses how engineers' educational models, present in the two Portuguese higher education subsystems, influence and are reflected in the importance attached to students' ethic and civic education and in the role that this training plays. Although the data suggest the prevalence of the distinction between the two training models and the corresponding distinction of ethic and civic education that is incorporated in the curricula, it is also noted the existence of mixed feature courses in university education.

  11. Nuclear Science and Society: Social Inclusion through Scientific Education

    ERIC Educational Resources Information Center

    Levy, Denise S.

    2017-01-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers,…

  12. MCEER, from Earthquake Engineering to Extreme Events | Home Page

    Science.gov Websites

    Center Report Series Education Education Home Bridge Engineering Guest Speaker Series Connecte²d Teaching CSEE Graduate Student Poster Competition Earthquake Engineering Education in Haiti Earthquakes : FAQ's Engineering Seminar Series K-12 STEM Education National Engineers Week Research Experiences for

  13. Teaching Engineering Habits of Mind in Technology Education

    ERIC Educational Resources Information Center

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  14. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. Several topical reports are being prepared on the materials and processes required for the LIFE engine. Specific materials of interest include: (1) Baseline TRISO Fuel (TRISO); (2) Inert Matrix Fuel (IMF) & Other Alternative Solid Fuels; (3) Beryllium (Be) & Molten Lead Blankets (Pb/PbLi); (4) Molten Salt Coolants (FLIBE/FLiNaBe/FLiNaK); (5) Molten Salt Fuels (UF4 + FLIBE/FLiNaBe); (6) Cladding Materials for Fuel & Beryllium; (7) ODS FM Steel (ODS); (8) Solid First Wall (SFW); and (9) Solid-State Tritium Storage (Hydrides).« less

  15. Investigation of a Tricarbide Grooved Ring Fuel Element for a Nuclear Thermal Rocket

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2017-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the temperature limitations of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment.

  16. Russian engineering education in the era of change

    NASA Astrophysics Data System (ADS)

    Vladimirovich Pukharenko, Yurii; Vladimirovna Norina, Natalia; Aleksandrovich Norin, Veniamin

    2017-03-01

    The article investigates modern issues of engineering education in Russia related to introduction of the Bologna system. The author shows that the situation in the education in general gives reasons for concern; the issue of qualitative enrolment of students for engineering specialties escalates; graduates with masters and bachelors' degrees are not in demand in industries or agriculture due to poor training for work in the real life. The main cause of problems in the engineering personnel training in Russia (lacking effective relationship with employers and universities) is discussed. The ways to overcome such issues in quality engineering training were investigated. The author has considered new requirements to engineering education and have briefly compare the Russian model of engineering education with the European and American models. The prospects of the Russian engineering education (transiting to the sixth technological mode) and issues of NBIC-convergent engineering education have been examined.

  17. Student Reactions to Nuclear Education.

    ERIC Educational Resources Information Center

    Christie, Daniel J.; Nelson, Linden

    1988-01-01

    Reports on a study that focused on the psychological impact of nuclear education curriculum on middle school students. Concluded that instruction about nuclear issues rarely increases students' fear or worry about nuclear war. (RT)

  18. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    ERIC Educational Resources Information Center

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  19. An Overview of the Literature: Research in P-12 Engineering Education

    ERIC Educational Resources Information Center

    Mendoza Díaz, Noemi V.; Cox, Monica F.

    2012-01-01

    This paper presents an extensive overview of preschool to 12th grade (P-12) engineering education literature published between 2001 and 2011. Searches were conducted through education and engineering library engines and databases as well as queries in established publications in engineering education. More than 50 publications were found,…

  20. Development of a Leadership, Policy, and Change Course for Science, Technology, Engineering, and Mathematics Graduate Students

    ERIC Educational Resources Information Center

    Cox, Monica F.; Berry, Carlotta A.; Smith, Karl A.

    2009-01-01

    This paper describes a graduate level engineering education course, "Leadership, Policy, and Change in Science, Technology, Engineering, and Mathematics (STEM) Education." Offered for the first time in 2007, the course integrated the perspectives of three instructors representing disciplines of engineering, education, and engineering education.…

  1. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  2. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less

  3. Why Nuclear Education? A Sourcebook for Educators and Parents.

    ERIC Educational Resources Information Center

    Alexander, Susan

    This guide is designed as a resource for individuals and groups who are considering why and how to implement teaching about nuclear issues in the classroom. Section I presents some questions frequently asked about nuclear education and responses based upon the experience and research of Educators for Social Responsibility. Section II highlights…

  4. Current Status of Engineering Education in America

    NASA Astrophysics Data System (ADS)

    Barr, Ronald E.

    Many faculty believe that engineering education in America is at a crossroads and much change is needed. International competition in engineering and the global economy have major potential impact on the engineering workforce of the future. We must find ways to educate U.S. engineers to be competitive and creative contributors in the worldwide arena. Recent national reports are sounding the alarm that the U.S. is losing it leadership in technology and innovation, with consequences for economic prosperity and national security. The report Rising Above the Gathering Storm discusses this dilemma in detail and offers four recommendations to U.S. policymakers. The report Educating the Engineer of 2020 discusses new ways to prepare American engineers for the 21st Century. Furthermore, changes in ABET accreditation, along with new paradigms of teaching and new technology in the classroom, are changing the scholarship of engineering education. We must find ways to promote change in engineering faculty for this new opportunity in engineering educational scholarship. Future engineering students are now in K-12, which is becoming an increasingly diverse population that in the past has not been fully represented in engineering education. Current trends show disaffection for pursuing studies in science and engineering in the youth of our U.S. society. We must find new ways to portray engineering as an exciting and rewarding career, and certainly as an educational platform for professional careers beyond the baccalaureate degree.

  5. Ethical Risk Management Education in Engineering: A Systematic Review.

    PubMed

    Guntzburger, Yoann; Pauchant, Thierry C; Tanguy, Philippe A

    2017-04-01

    Risk management is certainly one of the most important professional responsibilities of an engineer. As such, this activity needs to be combined with complex ethical reflections, and this requirement should therefore be explicitly integrated in engineering education. In this article, we analyse how this nexus between ethics and risk management is expressed in the engineering education research literature. It was done by reviewing 135 articles published between 1980 and March 1, 2016. These articles have been selected from 21 major journals that specialize in engineering education, engineering ethics and ethics education. Our review suggests that risk management is mostly used as an anecdote or an example when addressing ethics issues in engineering education. Further, it is perceived as an ethical duty or requirement, achieved through rational and technical methods. However, a small number of publications do offer some critical analyses of ethics education in engineering and their implications for ethical risk and safety management. Therefore, we argue in this article that the link between risk management and ethics should be further developed in engineering education in order to promote the progressive change toward more socially and environmentally responsible engineering practices. Several research trends and issues are also identified and discussed in order to support the engineering education community in this project.

  6. Engineering education in Bangladesh - an indicator of economic development

    NASA Astrophysics Data System (ADS)

    Chowdhury, Harun; Alam, Firoz

    2012-05-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although limited progress was made in humanities, basic sciences, agriculture and medical sciences, a vast gap is left in technical and engineering education. This paper describes the present condition of engineering education in the country and explores ways to improve engineering education in order to meet the national as well as global skills demand.

  7. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.« less

  8. A Renaissance in Engineering PhD Education

    ERIC Educational Resources Information Center

    Akay, Adnan

    2008-01-01

    This paper addresses the role of engineering PhD education and its relationship to innovation and technology, and the need to reconsider how we educate PhD engineers. Much of the effort on engineering education in the last two decades focused on undergraduate education with a few exceptions that relate to master degree programs. Doctoral education…

  9. Dialogue on sustainable development as part of engineering education: the relevance of the Finnish case : commentary on "a national collaboration process: Finnish engineering education for the benefit of people and environment".

    PubMed

    Geerts, Robert

    2013-12-01

    Society invests in the education of engineers because it is expected that the works of engineers will bring good results for society. Because the work of engineers is not value free or neutral, it is important that engineers are educated in the important principles of the social sciences and humanities. This education is essential for the awareness and understanding of what is good for society. Therefore the concept of sustainable development should be part of an education in engineering but only when the social sciences are also a part of it.

  10. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    NASA Technical Reports Server (NTRS)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  11. Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1971-01-01

    Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.

  12. The Tokaimura Nuclear Accident: A Tragedy of Human Errors.

    ERIC Educational Resources Information Center

    Ryan, Michael E.

    2001-01-01

    Discusses nuclear power and the consequences of a nuclear accident. Covers issues ranging from chemical process safety to risk management of chemical industries to the ethical responsibilities of the chemical engineer. (Author/ASK)

  13. Radiological controls integrated into design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindred, G.W.

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facilitymore » from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.« less

  14. Paired peer learning through engineering education outreach

    NASA Astrophysics Data System (ADS)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  15. The Role of Education in Preventing Nuclear War.

    ERIC Educational Resources Information Center

    Markusen, Eric; Harris, John B.

    1984-01-01

    Examines the role of education in the Holocaust of Nazi Germany, discusses U.S. nuclear weapons policy and factors of psychological resistance that have limited citizen participation in decision making, and explores the potential of education to help prevent nuclear war. (Author/SK)

  16. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  17. Engineering thinking in emergency situations: A new nuclear safety concept

    PubMed Central

    Guarnieri, Franck; Travadel, Sébastien

    2014-01-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for “engineering thinking in emergency situations.” This is a new concept that emphasizes adaptability and resilience within organizations—such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015

  18. Engineering thinking in emergency situations: A new nuclear safety concept.

    PubMed

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  19. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  20. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  1. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  2. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  3. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  4. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration and Supervision 13.05Educational/Instructional Media Design 13.06Educational Evaluation, Research, and Statistics 13.07International and Comparative Education 13.08Educational Psychology 13.09Social....27Systems Engineering 14.28Textile Sciences and Engineering 14.29Engineering Design 14.30Engineering...

  5. Feminist Methodologies and Engineering Education Research

    ERIC Educational Resources Information Center

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  6. Shipment of spent nuclear fuel from U.S. Navy ships and submarines to the Idaho National Engineering Laboratory (INEL). Hearing before the Subcommittee on Nuclear Deterrence, Arms Control and Defense Intelligence of the Committee on Armed Services, United States Senate, One Hundred Third Congress, First Session, July 28, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The purpose of the hearing was to review the impact of the U.S. District Court of Idaho ruling prohibiting receipt of spent nuclear fuel by the Department of Energy (DOE). The court`s ruling enjoined the DOE from receiving spent nuclear fuel, including nuclear fuel from naval surface ships and submarines, at the Idaho National Engineering Laboratory until such time as the DOE completes an environmental impact statement on the transportation, shipment, processing, and storage of spent fuel. Statements of government officials are included. The text of the Court ruling is also included.

  7. Effects of globalisation on higher engineering education in Germany - current and future demands

    NASA Astrophysics Data System (ADS)

    Morace, Christophe; May, Dominik; Terkowsky, Claudius; Reynet, Olivier

    2017-03-01

    Germany is well known around the world for the strength of its economy, its industry and for the 'German model' for higher engineering education based on developing technological skills at a very high level. In this article, we firstly describe the former and present model of engineering education in Germany in a context of the globalisation of the world economy and of higher education, in order to understand how it covers the current demand for engineering resources. Secondly, we analyse the impact of globalisation from a technological perspective. To this end, we describe initiatives for innovation driven by the German federal government and engineering societies, and summarise the first impacts on engineering education and on social competence for engineers. Thirdly, we explore to what extent engineering education in Germany trains engineers in social and intercultural competency to comply with the future demands of the challenge of globalisation.

  8. Computerized engineering logic for nuclear procurement and dedication processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulay, M.P.

    1996-12-31

    In an attempt to better meet the needs of operations and maintenance organizations, many nuclear utility procurement engineering groups have simplified their procedures, developed on-line tools for performing the specification of replacement items, and developed relational databases containing part-level information necessary to automate the procurement process. Although these improvements have helped to reduce the engineering necessary to properly specify and accept/dedicate items for nuclear safety-related applications, a number of utilities have recognized that additional long-term savings can be realized by integrating a computerized logic to assist technical procurement engineering personnel. The most commonly used logic follows the generic processes containedmore » in Electric Power Research Institute (EPRI) published guidelines. The processes are typically customized to some extent to accommodate each utility`s organizational structure, operating procedures, and strategic goals. This paper will discuss a typical logic that integrates the technical evaluation, acceptance, and receipt inspection and testing processes. The logic this paper will describe has been successfully integrated at a growing number of nuclear utilities and has produced numerous positive results. The application of the logic ensures that utility-wide standards or procedures, common among multi-site utilities, are followed.« less

  9. Engineering Design Education Program for Graduate School

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Yoshifumi; Iida, Haruhiko

    The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.

  10. Experimental investigations of a uranium plasma pertinent to a self-sustaining plasma source

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.

    1971-01-01

    The research is pertinent to the realization of a self-sustained fissioning plasma for applications such as nuclear propulsion, closed cycle MHD power generation using a plasma core reactor, and heat engines such as the nuclear piston engine, as well as the direct conversion of fission energy into optical radiation (nuclear pumped lasers). Diagnostic measurement methods and experimental devices simulating plasma core reactor conditions are discussed. Studies on the following topics are considered: (1) ballistic piston compressor (U-235); (2) high pressure uranium plasma (natural uranium); (3) sliding spark discharge (natural uranium); (4) fission fragment interaction (He-3 and U-235); and (5) nuclear pumped lasers (He-3 and U-235).

  11. Present and Future in Quality Assurance of Engineering Education in Japan

    NASA Astrophysics Data System (ADS)

    Aoki, Kyosuke; Nozawa, Tsunenori

    The quality of engineering education in our country should be assured by the self-assessment of the institution that conducts education. Recent evaluation and/or accreditation are intended to assist and promote such achievement. The certified evaluation and accreditation for colleges of technology and the audit by the Japan Accreditation Board for Engineering Education (JABEE) have been carried out on the engineering education. In this article we will discuss the ways of accreditation of both systems and try to consider future for the quality assurance of the engineering education in Japan.

  12. 78 FR 47014 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses, with clarifications... Electrical and Electronic Engineers (IEEE) Standard 828-2005, ``IEEE Standard for Software Configuration...

  13. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  14. Quality assurance and accreditation of engineering education in Jordan

    NASA Astrophysics Data System (ADS)

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-06-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.

  15. Nuclear rocket using indigenous Martian fuel NIMF

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert

    1991-01-01

    In the 1960's, Nuclear Thermal Rocket (NTR) engines were developed and ground tested capable of yielding isp of up to 900 s at thrusts up to 250 klb. Numerous trade studies have shown that such traditional hydrogen fueled NTR engines can reduce the inertial mass low earth orbit (IMLEO) of lunar missions by 35 percent and Mars missions by 50 to 65 percent. The same personnel and facilities used to revive the hydrogen NTR can also be used to develop NTR engines capable of using indigenous Martian volatiles as propellant. By putting this capacity of the NTR to work in a Mars descent/acent vehicle, the Nuclear rocket using Indigenous Martian Fuel (NIMF) can greatly reduce the IMLEO of a manned Mars mission, while giving the mission unlimited planetwide mobility.

  16. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    NASA Astrophysics Data System (ADS)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  17. A Contemporary Preservice Technology Education Program

    ERIC Educational Resources Information Center

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  18. Peace Education, Domestic Tranquility, and Democracy: The Fukushima Daiichi Nuclear Disaster as Domestic Violence

    ERIC Educational Resources Information Center

    Ide, Kanako

    2014-01-01

    This article is an attempt to develop a theory of peace education through an examination of the Fukushima Daiichi nuclear disaster. It examines why Japan did not avoid this terrible nuclear disaster. This is an educational issue, because one of the major impacts of Fukushima's catastrophe is that it indicates the failure of peace education. In…

  19. The changing face of women in physics in Ghana

    NASA Astrophysics Data System (ADS)

    Andam, Aba Bentil; Amponsah, Paulina Ekua; Nsiah-Akoto, Irene; Gyamfi, Kwame; Hood, Christiana Odumah

    2013-03-01

    Ghana is said to be the first independent sub-Saharan African country outside South Africa to promote science education and the application of science in industrial and social development. It has long been recognized that many schools' science curricula extend the extracurricular activities of boys more than those of girls. In order to bridge this gap, efforts have been made to give girls extra assistance in the learning of science by exposing them to science activities through specific camps, road shows, exhibitions, and so on. The best known of such efforts is the Science, Technology, and Mathematics Education (STME) camps and clinics for girls, which started in Ghana 23 years ago. Since our attendance at the Third International Conference on Women in Physics in Seoul, Korea, a lot has been achieved to further improve female science education, and this credit goes to STME. The first female nuclear engineer from Ghana graduated from the University of Ghana in March 2010.

  20. End-to-End Demonstrator of the Safe Affordable Fission Engine (SAFE) 30: Power Conversion and Ion Engine Operation

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; VanDyke, Melissa; Houts, Mike; Goodfellow, Keith; Schafer, Charles (Technical Monitor)

    2001-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  1. Contributions Regarding the Aircraft Nuclear Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrica, Bogdan; Petre, Marian; Dima, Mihai Octavian

    2010-01-21

    The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for themore » nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.« less

  2. The Living Textbook of Nuclear Chemistry: A Peer-Reviewed, Web-Based, Education Resource

    ERIC Educational Resources Information Center

    Loveland, W.; Gallant, A.; Joiner, C.

    2004-01-01

    The recent developments in nuclear chemistry education are presented and an attempt is made to collect supplemental materials relating to the study and practice of nuclear chemistry. The Living Textbook of Nuclear Chemistry functions as an authoritative Web site with supplemental material for teaching nuclear and radiochemistry.

  3. Impacts of a Flat World on Engineering Education

    ERIC Educational Resources Information Center

    Chatziioanou, Alypios

    2006-01-01

    This paper discusses the changes to engineering education introduced through the accelerated engineering-related industrial growth in Asian and other developing countries. While the demand for engineering services is increasing, these nations educate a large number of engineers themselves and many are providing lower-cost alternatives for…

  4. Radiochemical data collected on events from which radioactivity escaped beyond the borders of the Nevada test range complex. [NONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.G.

    1981-02-12

    This report identifies all nuclear events in Nevada that are known to have sent radioactivity beyond the borders of the test range complex. There have been 177 such tests, representing seven different types: nuclear detonations in the atmosphere, nuclear excavation events, nuclear safety events, underground nuclear events that inadvertently seeped or vented to the atmosphere, dispersion of plutonium and/or uranium by chemical high explosives, nuclear rocket engine tests, and nuclear ramjet engine tests. The source term for each of these events is given, together with the data base from which it was derived (except where the data are classified). Themore » computer programs used for organizing and processing the data base and calculating radionuclide production are described and included, together with the input and output data and details of the calculations. This is the basic formation needed to make computer modeling studies of the fallout from any of these 177 events.« less

  5. Presentation Stations of the General Atomics Fusion Educational Program

    NASA Astrophysics Data System (ADS)

    Lee, R. L.; Fusion Group Education Outreach Team

    1996-11-01

    The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.

  6. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    NASA Astrophysics Data System (ADS)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  7. EngineSim: Turbojet Engine Simulator Adapted for High School Classroom Use

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth A.

    2001-01-01

    EngineSim is an interactive educational computer program that allows users to explore the effect of engine operation on total aircraft performance. The software is supported by a basic propulsion web site called the Beginner's Guide to Propulsion, which includes educator-created, web-based activities for the classroom use of EngineSim. In addition, educators can schedule videoconferencing workshops in which EngineSim's creator demonstrates the software and discusses its use in the educational setting. This software is a product of NASA Glenn Research Center's Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program.

  8. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  9. Necessity and Role of Introductory Education in the Engineering Education in University Level

    NASA Astrophysics Data System (ADS)

    Endo, Ginro

    In the faculties of “Engineering” or “Science and Technology” of many universities, faculty stuffs are teaching the academic foundations of technology to the students. From the standing point of the students in engineering course, first their study should be started to be accustomed to the new studying situations in their universities or colleges, and then the students proceed to be adjusted to study engineering specialty. The former is or should be realized through liberal arts education in university level and extracurricular activities in the universities. However, the latter needs special education schemes. In the past, educational courses in universities were clearly divided into a liberal arts period and a specialty education period in Japan. In that system, the students in engineering were accustomed to the specialty education after their promotion to their engineering curriculum. At present, the students in the faculties must be engrossed in the study of engineering from their first year of the university education, because the science and technology have been very rapidly progressed and have made increase in the level and quantity of engineering education. In this article, the author discusses how should the faculty give the scholastic ability to the students in engineering from the early years of the university courses, and introduces the case studies of introductory education (or the first-year education) in the engineering education that has been done in a faculty to that the author belongs.

  10. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  11. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  12. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  13. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technologist credentialed in nuclear medicine technology. 2. Instructional Staff—(a) Responsibilities. The...—Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists A. Sponsorship 1... certificate documenting completion of the program. 2. Educational programs may be established in: (a...

  14. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    NASA Astrophysics Data System (ADS)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal social engineering of small-scale, safer and simpler decentralized nuclear heating.

  15. Important Engineering and Technology Concepts and Skills for All High School Students in the United States: Comparing Perceptions of Engineering Educators and High School Teachers

    ERIC Educational Resources Information Center

    Hacker, Michael; Barak, Moshe

    2017-01-01

    Engineering and technology education (ETE) are receiving increased attention as components of STEM education. Curriculum development should be informed by perceptions of academic engineering educators (AEEs) and classroom technology teachers (CTTs) as both groups educate students to succeed in the technological world. The purpose of this study was…

  16. Assessment of Ukranian National Defense Policy

    DTIC Science & Technology

    2012-03-09

    Romanian- Slovakian-Hungarian engineer battalion “Tisa”, as a rapid reaction force with the mission of natural disaster relief in the Carpathian region...threats (Army’s multifunctional NBC protection and engineer units) and experience of their using ( Chernobyl nuclear plant in 1986, humanitarian...man-made disasters was exemplified by the 2011 nuclear catastrophe in Japan. Moreover, based on the results of the Strategic Defense Review in Ukraine

  17. Technology of interdisciplinary open-ended designing in engineering education

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  18. An Alternative Perspective for Malaysian Engineering Education: A Review from Year 2000-2012

    ERIC Educational Resources Information Center

    Jayarajah, Kamaleswaran; Saat, Rohaida Mohd; Rauf, Rose Amnah Abdul

    2013-01-01

    The purpose of this study is to explore the research base of engineering education in the "Journal of Engineering Education" ("JEE") through an analysis review of articles for a 12-year period, from 2000 to 2012. The research base review focuses on identifying five characteristics of engineering education: (a) temporal…

  19. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    ERIC Educational Resources Information Center

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  20. The Philosophical and Pedagogical Underpinnings of Active Learning in Engineering Education

    ERIC Educational Resources Information Center

    Christie, Michael; de Graaff, Erik

    2017-01-01

    In this paper the authors draw on three sequential keynote addresses that they gave at Active Learning in Engineering Education (ALE) workshops in Copenhagen (2012), Caxias do Sol (2014) and San Sebastian (2015). Active Learning in Engineering Education is an informal international network of engineering educators dedicated to improving…

  1. Surmounting the Barriers: Ethnic Diversity in Engineering Education: Summary of a Workshop

    ERIC Educational Resources Information Center

    National Academies Press, 2014

    2014-01-01

    "Surmounting the Barriers: Ethnic Diversity in Engineering Education" is the summary of a workshop held in September 2013 to take a fresh look at the impediments to greater diversification in engineering education. The workshop brought together educators in engineering from two- and four-year colleges and staff members from the three…

  2. Engineering and Technology Education for the 21st Century. A Report from the Regional Colloquium on Engineering and Technology Education for the 21st Century (Nakhon Ratchasima, Thailand, February 11-14, 1997).

    ERIC Educational Resources Information Center

    Kettle, Kevin C., Ed.

    This colloquium was held with the purposes of promoting cooperation and collaboration among engineering education institutions in the Mekong subregion and establishing the linkage with engineering institutions in France; to promote university-industry collaboration in the field of engineering and technology education; to establish a network of…

  3. Research and Innovation of Engineering Education in Europe the contribution of SEFI

    NASA Astrophysics Data System (ADS)

    Graaff, Erik De; Borri, Claudio

    The roots of engineering education lie in the workplace. It was not until the 19th century that higher engineering education moved to a more scholarly environment. True to its origins, research in the applied sciences never aimed at pure understanding alone. The goal of engineering investigations has always been to devise solutions to practice problems with a mixture of design, construction and innovation. If the establishing of a research tradition in engineering has taken quite a long time, the time needed to apply an academic mode of thinking to the approach to teaching and learning has been much longer. In fact, most of the design choices concerning the curricula in higher engineering education were made based on intuition, rather than on insight, until well over the half of the last century. Aiming at to support the development of engineering education in Europe, in 1973 the European Society of Engineering Education was established (labelled SEFI according to the French acronym Société. Européenne pour la Formation des Ingénieurs). Presently the society represents 196 institutional members. SEFI promotes cooperation between higher engineering education institutions and other scientific and international bodies on issues of research and development in Engineering Education, for instance through participating in European network projects such as the SOCRATES Thematic Network “TREE” (Teaching and Research in Engineering Education in Europe). SEFI is also engaged in policy development regarding engineering education publishing statements regarding issues like the Bologna process and the proposed European Institute of Technology. In the future SEFI aims to consolidate and strengthen its role in the European arena and to represent Europe on the Global stage.

  4. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  5. The Influence of Engineers' Training Models on Ethics and Civic Education Component in Engineering Courses in Portugal

    ERIC Educational Resources Information Center

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-01-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…

  6. An historical collection of papers on nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  7. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    ERIC Educational Resources Information Center

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  8. 10 CFR 830.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...

  9. 10 CFR 830.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...

  10. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  11. First-year engineering students' views of the nature of engineering

    NASA Astrophysics Data System (ADS)

    Karatas, Faik O.

    The changing nature of engineering problems and new challenges that result from globalization and new ways of doing business have triggered calls for a revolutionary shift in engineering education. To respond to these challenges, the engineering education paradigm has been revised by adding more design and humanities/social sciences components to it. Philosophy, sociology, and history of engineering are more often cited as a major part of engineering education in this movement. Research on the nature of engineering (NOE), which is derived from philosophy, sociology, and the history of engineering, could have as much potential impact on engineering education as research on the nature of science (NOS) has had on science education. Thus, it is surprising that there has been no noteworthy research on this topic. The purpose of this study is to describe and determine first-year engineering students' views of the NOE and how these students differentiate engineering from science. In this research, an open-ended Views of the Nature of Engineering questionnaire (VNOE) was employed to collect baseline data. Semi-structured interviews based on the VNOE questionnaire were conducted with the second cohort of the participants. Data analysis was guided by a traditional phenomenographic approach, which is a branch of the hermeneutic tradition, coupled to constant comparison technique. The results of this study indicated that the participants' overall views of the nature of engineering were not ill-developed, but rather unarticulated. Moreover, the relationship between engineering and science was considered unidirectional rather than bidirectional. The results of this study could be used to inform engineering educators, first-year engineering coordinators, and policy makers as well as serving as the base for further research and potential implications for future first-year and K-12 engineering education.

  12. Combined Engineering Education Based on Regional Needs Aiming for Design Education

    NASA Astrophysics Data System (ADS)

    Hama, Katsumi; Yaegashi, Kosuke; Kobayashi, Junya

    The importance of design education that cultivates integrated competences has been suggested in higher educational institutions in fields of engineering in relation to quality assurance of engineering education. However, it is also pointed out to lay stress on cooperative education in collaboration with the community because there is a limit to correspond to the design education only by a group of educational institutions. This paper reports the outline of the practical engineering education, which is executing in the project learning of Hakodate National College of Technology, based on regional needs and the result of the activity as a model of education program for fusion and combination.

  13. Engineering Knowledge and Student Development: An Institutional and Pedagogical Critique of Engineering Education

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng

    Educators have recommended the integration of engineering and the liberal arts as a promising educational model to prepare young engineers for global economic, environmental, sociotechnical, and ethical challenges. Drawing upon philosophy of technology, engineering studies, and educational psychology, this dissertation examines diverse visions and strategies for integrating engineering and liberal education and explores their impacts on students' intellectual and moral development. Based on archival research, interviews, and participant observation, the dissertation presents in-depth case studies of three educational initiatives that seek to blend engineering with the humanities, social sciences, and arts: Harvey Mudd College, the Picker Engineering Program at Smith College, and the Programs in Design and Innovation at Rensselaer Polytechnic Institute. The research finds that learning engineering in a liberal arts context increases students' sense of "owning" their education and contributes to their communication, teamwork, and other non-technical professional skills. In addition, opportunities for extensive liberal arts learning in the three cases encourage some students to pursue alternative, less technocentric approaches to engineering. Nevertheless, the case studies suggest that the epistemological differences between the engineering and liberal arts instructors help maintain a technical/social dualism among most students. Furthermore, the dissertation argues a "hidden curriculum," which reinforces the dominant ideology in the engineering profession, persists in the integrated programs and prevents the students from reflecting on the broad social context of engineering and critically examining the assumptions upheld in the engineering profession.

  14. Technology Education Benefits from the Inclusion of Pre-Engineering Education

    ERIC Educational Resources Information Center

    Rogers, Steve; Rogers, George E.

    2005-01-01

    Technology education is being taught today in almost every high school and middle school in America. Over 1000 technology education departments are now including pre-engineering education in their programs. According to these authors, the time has come for the profession to agree that including pre-engineering education in technology education…

  15. Educating Engineers: Designing for the Future of the Field. Book Highlights

    ERIC Educational Resources Information Center

    Sheppard, Sheri D.; Macatangay, Kelly; Colby, Anne; Sullivan, William M.

    2008-01-01

    This multi-year study of undergraduate engineering education in the United States initiated questions about the alignment of engineering programs with the demands of current professional engineering practice. While describing engineering education from within the classroom and the lab, the report on the study offers new possibilities for teaching…

  16. Engineering the Future: Embedding Engineering Permanently across the School-University Interface

    ERIC Educational Resources Information Center

    MacBride, G.; Hayward, E. L.; Hayward, G.; Spencer, E.; Ekevall, E.; Magill, J.; Bryce, A. C.; Stimpson, B.

    2010-01-01

    This paper describes the design, implementation, and evaluation of an educational program. Engineering the Future (EtF) sought to promote a permanent, informed awareness within the school community of high-level engineering by embedding key aspects of engineering within the education curriculum. The Scottish education system is used for a case…

  17. Engineering in K-12 Education: Understanding the Status and Improving the Prospects

    ERIC Educational Resources Information Center

    Katehi, Linda, Ed.; Pearson, Greg, Ed.; Feder, Michael, Ed.

    2009-01-01

    Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects--science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work…

  18. Faculty's Perceptions of Teaching Ethics and Leadership in Engineering Education

    ERIC Educational Resources Information Center

    AlSagheer, Abdullah; Al-Sagheer, Areej

    2011-01-01

    This paper addressed the faculty's perception of engineering ethics and leadership training. The study looks into the present state of and methodologies for teaching engineering ethics and leadership and aims to determine the faculty's perception of an identified gap in this aspect of engineering education. Engineering education has strong ethics…

  19. Educational Encounters of the Third Kind.

    PubMed

    Génova, Gonzalo; González, M Rosario

    2017-12-01

    An engineer who becomes an educator in a school of software engineering has the mission to teach how to design and construct software systems, therein applying his or her knowledge and expertise. However, due to their engineering background, engineers may forget that educating a person is not the same as designing a machine, since a machine has a well-defined goal, whilst a person is capable to self-propose his or her own objectives. The ethical implications are clear: educating a free person must leave space for creativity and self-determination in his or her own discovery of the way towards personal and professional fulfillment, which cannot consist only in achieving goals selected by others. We present here an argument that is applicable to most fields of engineering. However, the dis-analogy between educating students and programming robots may have a particular appeal to software engineers and computer scientists. We think the consideration of three different stages in the educational process may be useful to engineers when they act as educators. We claim that the three stages (instructing, training and mentoring) are essential to engineering education. In particular, education is incomplete if the third stage is not reached. Moreover, mentoring (the third stage aimed at developing creativity and self-determination) is incompatible with an educational assessment framework that considers the goals of the engineer are always given by others. In our view, then, an integral education is not only beyond programming the behavior of students, but also beyond having them reach those given goals.

  20. Nuclear education campaign: on how to eliminate the threat of nuclear war

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markusen, E.; Dunham, J.; Bee, R.

    1981-05-01

    The threat of a nuclear war creates a chronic erosion of moral and intellectual integrity and places the future of humanity in the hands of a few hundred people. The nuclear elite probably requires a degree of psychological numbing and desensitization in order to separate themselves emotionally from decisions that might require exercise of their power. They may also lose the ability to question basic assumptions and may identify themselves with the rightness of their policies and the need to use nuclear technology to preserve those policies. To reform the nuclear-industrial complex, the American public must become educated to givemore » the prevention of nuclear war a higher priority than the economy. Fears and anxieties may underlie apparent apathy, taking the form of denial and a focus on immediate problems. A campaign by knowledgeable people to educate the public should stress the empirical data necessary for objectivity and should use a multidisciplinary approach in the same way that recent death education programs have broken the taboos about discussing the Nazi holocaust. An outline of a nuclear-education program suggests a number of social and economic benefits. 13 references. (DCK)« less

  1. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  2. Closing the gap in systems engineering education for the space industry

    NASA Technical Reports Server (NTRS)

    Carlisle, R.

    1986-01-01

    The education of system engineers with emphasis on designing systems for space applications is discussed. System engineers determine the functional requirements, performance needs, and implementation procedures for proposed systems and their education is based on aeronautics and mathematics. Recommendations from industry for improving the curriculum of system engineers at the undergraduate and graduate levels are provided. The assistance provided by companies to the education of system engineers is examined.

  3. Anticipating Change: An Exploratory Analysis of Teachers' Conceptions of Engineering in an Era of Science Education Reform

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha; Mercado, Janet

    2017-01-01

    While integrating engineering into science education is not new in the United States, technology and engineering have not been well emphasized in the preparation and professional development of science teachers. Recent science education reforms integrate science and engineering throughout K-12 education, making it imperative to explore the…

  4. Past/Forward Policy-Making: Transforming Chinese Engineering Education since the Reform and Opening-Up

    ERIC Educational Resources Information Center

    Zhu, Qin; Jesiek, Brent K.; Gong, Yu

    2015-01-01

    Although engineering education has played important roles in China's growing power and influence on the world stage, engineering education policy since the Reform and Opening-up in the late 1970s has not been well documented in current English-language scholarship. Informed by historical and sociological studies of education, engineering and…

  5. [Prospects of systemic radioecology in solving innovative tasks of nuclear power engineering].

    PubMed

    Spiridonov, S I

    2014-01-01

    A need of systemic radioecological studies in the strategy developed by the atomic industry in Russia in the XXI century has been justified. The priorities in the radioecology of nuclear power engineering of natural safety associated with the development of the radiation-migration equivalence concept, comparative evaluation of innovative nuclear technologies and forecasting methods of various emergencies have been identified. Also described is an algorithm for the integrated solution of these tasks that includes elaboration of methodological approaches, methods and software allowing dose burdens to humans and biota to be estimated. The rationale of using radioecological risks for the analysis of uncertainties in the environmental contamination impacts,at different stages of the existing and innovative nuclear fuel cycles is shown.

  6. Neutrinos and dark matter in the Black Hills

    NASA Astrophysics Data System (ADS)

    McMahan Norris, Margaret; Sayler, Bentley

    2010-02-01

    Where in the U.S. could you walk into a hardware store and be asked about neutrinos? It happens regularly in the Black Hills of South Dakota, where preliminary design is in progress for the Deep Underground Science and Engineering Laboratory (DUSEL), a planned NSF Major Research Experimental Facility Construction (MREFC) initiative to be located at the former Homestake gold mine in Lead, SD. DUSEL has physicists buzzing too, as the particle, astro-, and nuclear physics communities have all identified the need for a new laboratory deep beneath the Earth's surface to address some of the most compelling, transformational science at the frontiers of their disciplines. Elusive particles such as neutrinos and WIMPS (a possible candidate for dark matter) -- though they spark the imagination - are equally elusive when trying to explain to students and the public. That will be the task of the Sanford Center for Science Education, planned to be the education arm of DUSEL. Early prototypes of future programs at the education center are now under development, ranging from professional development for teachers to classroom tours to working with American Indian educators. These programs, which are building capacity for the future education center, will be discussed. )

  7. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less

  8. Math, Science and Engineering Education: A National Need. Hearing Before the Subcommittee on Postsecondary Education of the Committee on Education and Labor. House of Representatives, One Hundred First Congress, First Session (Kansas City, MO, May 1, 1989).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and Labor.

    This is a report on the hearing for solutions to the problems in science, mathematics, and engineering education at the postsecondary level. Topics of prepared statements and the testifiers are: (1) educating scientists and engineers (Daryl E. Chubin); (2) science and engineering education needs viewed from the perspectives of the national…

  9. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.

  10. Historical flight qualifications of space nuclear systems

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.

    1997-01-01

    An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems.

  11. Nuclear Propulsion in Space (1968)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  12. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2018-01-16

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  13. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  14. Australian Engineering Educators' Attitudes towards Aboriginal Cultures and Perspectives

    ERIC Educational Resources Information Center

    Goldfinch, Thomas; Prpic, Juliana Kaya; Jolly, Lesley; Leigh, Elyssebeth; Kennedy, Jade

    2017-01-01

    In Australia, representation of Aboriginal populations within the engineering profession is very low despite participation targets set by Government departments, professional bodies and Universities. Progressing the Aboriginal inclusion agenda within Australian Engineering Education requires a clearer understanding of engineering educators'…

  15. Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes

    ERIC Educational Resources Information Center

    Bokhonko, Yevhen

    2017-01-01

    The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…

  16. 1980 Rabinowitch Essay: A Nuclear Education Campaign.

    ERIC Educational Resources Information Center

    Markusen, Eric; And Others

    1981-01-01

    Proposes an educational campaign that: (1) provides opportunities for citizens to learn about facts and issues relating to nuclear war; (2) stimulates the search for national security policies likely to lead to nuclear war; and (3) generates a political will to initiate social changes that eliminate threats of nuclear war. (CS)

  17. Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element

    DTIC Science & Technology

    1989-05-25

    Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are

  18. Nuclear electric propulsion mission engineering study development program and costs estimates, Phase 2 review

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second six-month performance period of the Nuclear Electric Propulsion Mission Engineering Study. A brief overview of the program, identifying the study objectives and approach, and a discussion of the program status and schedule are presented. The program results are reviewed and key conclusions to date are summarized. Planned effort for the remainder of the program is reviewed.

  19. Engineering Provision of Assault Crossing of Rivers,

    DTIC Science & Technology

    1983-01-21

    in the first place, in the missile and nuclear weapons warfare sharply they increased frontage and the depth of troop dispositions in the defense...modern missile and nuclear weapons warfare the medium * and wide rivers, reinforced by mine fields and decomposition of water-engineering and other...PMP and transport motor pool PVD -20. The existing pontoon trains make it possible to mechanize labor-consuming fitters work, to the minimum to bring

  20. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  1. Broadening engineering education: bringing the community in : commentary on "social responsibility in French engineering education: a historical and sociological analysis".

    PubMed

    Conlon, Eddie

    2013-12-01

    Two issues of particular interest in the Irish context are (1) the motivation for broadening engineering education to include the humanities, and an emphasis on social responsibility and (2) the process by which broadening can take place. Greater community engagement, arising from a socially-driven model of engineering education, is necessary if engineering practice is to move beyond its present captivity by corporate interests.

  2. African American Adolescent Female Identification with Engineering and Participation in Engineering Education

    ERIC Educational Resources Information Center

    Cornick, Shayla L.

    2012-01-01

    Experiences that females have during middle and high school have been found to influence the perceptions that they have of their ability to be successful as an engineer and the value that they place on participating in engineering education. Engineering education continues to suffer from a lack of female participation. Several efforts have been…

  3. The predicament of aeronautical engineering education and what we can do about it

    NASA Technical Reports Server (NTRS)

    Bryson, A. E., Jr.

    1975-01-01

    An analysis of the aeronautical engineering situation and the relationship to the U.S. aircraft industry is presented. Some of the problems encountered in undergraduate aeronautical engineering education are explained. A reorganization of the educational structure for aeronautical engineering is proposed. The human factors aspect of aeronautical engineering discipline is described.

  4. Engineering Employment Characteristics. Engineering Education and Practice in the United States.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    This panel report was prepared as part of the study of engineering education and practice conducted under the guidance of the National Research Council's Committee on the Education and Utilization of the Engineer. The panel's goal was to provide a data base that describes the engineering work force, its main activities, capabilities, and principal…

  5. A systematic approach to engineering ethics education.

    PubMed

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  6. Educating Engineers for World Development. Proceedings of a World Congress (Estes Park, Colorado, June 10-12, 1975).

    ERIC Educational Resources Information Center

    English, J. Morley, Ed.; Collins, W. Leighton, Ed.

    This report comprises papers commissioned for the World Congress on Educating Engineers for World Development, sponsored by the International Division of the American Society for Engineering Education, and held in Colorado in June 1975. The purpose of the Congress was to bring about significant changes in the education of engineers and in the…

  7. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    NASA Astrophysics Data System (ADS)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  8. A unique nuclear thermal rocket engine using a particle bed reactor

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.

    1992-01-01

    Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.

  9. Paired Peer Learning through Engineering Education Outreach

    ERIC Educational Resources Information Center

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and…

  10. First-year Engineering Education with the Creative Electrical Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takehiko; Sugito, Tetsumasa; Ozeki, Osamu; Ushiroda, Sumio

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects. We introduced the creative electrical engineering laboratory into the first-year engineering education since 1998. The laboratory concentrates on the practice exercise. The final questionnaire of students showed that our first-year education is very effective to promote students motivation and their scholastic ability in engineering.

  11. Educating Civil Engineers for Developing Countries

    ERIC Educational Resources Information Center

    Stanley, D.

    1974-01-01

    Based on engineering teaching experience in Africa and Asia, ideas are presented on educating civil engineers for developing countries, especially those in Africa. Some of the problems facing educational planners, teachers, and students are addressed, including responsibilities of a newly graduated civil engineer, curriculum development, and…

  12. New Perspectives: Technology Teacher Education and Engineering Design

    ERIC Educational Resources Information Center

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident. The National Science Foundation has encouraged and funded opportunities for technology educators and engineers to work collaboratively. However, perspectives regarding the role engineering should play within the discipline of technology…

  13. An Online Graduate Requirements Engineering Course

    ERIC Educational Resources Information Center

    Kilicay-Ergin, N.; Laplante, P. A.

    2013-01-01

    Requirements engineering is one of the fundamental knowledge areas in software and systems engineering graduate curricula. Recent changes in educational delivery and student demographics have created new challenges for requirements engineering education. In particular, there is an increasing demand for online education for working professionals.…

  14. A Nuclear Tech Course = Nuclear Technology in War and Peace: A Study of Issues and Choices.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    A nuclear technology college course for engineering students is outlined and described. The course begins with an historical account of the scientific discoveries leading up to the uranium experiments of Hahn and Strassman in Germany and the subsequent explanation of nuclear fission by Meitner and Frisch. The technological achievements of the…

  15. Enhancing Engineering Education through Engineering Management

    ERIC Educational Resources Information Center

    Pence, Kenneth R.; Rowe, Christopher J.

    2012-01-01

    Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…

  16. Engineering Ethics Education : Its Necessity, Objectives, Methods, Current State, and Challenges

    NASA Astrophysics Data System (ADS)

    Fudano, Jun

    The importance of engineering ethics education has become widely recognized in the industrialized countries including Japan. This paper examines the background against which engineering ethics education is required, and reviews its objectives, methods, and challenges, as well as its current state. In pointing out important issues associated with the apparent acceptance and quantitative development of ethics education, especially after the establishment of the Japan Accreditation Board for Engineering Education in 1999, the author stresses that the most serious problem is the lack of common understanding on the objectives of engineering ethics education. As a strategy to improve the situation, the so-called “Ethics-across-the-Curriculum” approach is introduced. The author also claims that business/organization ethics which is consistent with engineering ethics should be promoted in Japan.

  17. Feminist methodologies and engineering education research

    NASA Astrophysics Data System (ADS)

    Beddoes, Kacey

    2013-03-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory. The paper begins with a literature review that covers a broad range of topics featured in the literature on feminist methodologies. Next, data from interviews with engineering educators and researchers who have engaged with feminist methodologies are presented. The ways in which feminist methodologies shape their research topics, questions, frameworks of analysis, methods, practices and reporting are each discussed. The challenges and barriers they have faced are then discussed. Finally, the benefits of further and broader engagement with feminist methodologies within the engineering education community are identified.

  18. Computerized engineering logic for procurement and dedication processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tulay, M.P.

    1996-12-31

    This paper summarizes the work performed for designing the system and especially for calculating on-line expected performance and gives some significant results. In an attempt to better meet the needs of operations and maintenance organizations, many nuclear utility procurement engineering groups have simplified their procedures, developed on-line tools for performing the specification of replacement items, and developed relational databases containing part-level information necessary to automate the procurement process. Although these improvements have helped to reduce the engineering necessary to properly specify and accept/dedicate items for nuclear safety-related applications, a number of utilities have recognized that additional long-term savings can bemore » realized by integrating a computerized logic to assist technical procurement engineering personnel.« less

  19. The Responsibility of Adult Educators in the Nuclear Age. TECHNIQUES.

    ERIC Educational Resources Information Center

    Rosenblum, Sandra; Goldberg, Joan Carol

    1984-01-01

    The task of adult educators is to provide students with information as well as opportunities to explore alternatives to the arms race. As a starting point to raising nuclear issues in the classroom and incorporating them into the curriculum, the adult educator can administer a survey or questionnaire to students about nuclear weapons and the…

  20. Peace and Nuclear War. ERIC Digest No. 21.

    ERIC Educational Resources Information Center

    Zola, John; Zola, Jaye

    This ERIC Digest examines the nature of peace and nuclear war education, rationales for its inclusion in public school programs, and ways to deal with the controversial nature of the topics. A distinction between peace education and nuclear war education is followed by a description of four basic themes offered as a rationale for peace and nuclear…

  1. Career preference theory: A grounded theory describing the effects of undergraduate career preferences on student persistence in engineering

    NASA Astrophysics Data System (ADS)

    Dettinger, Karen Marie

    This study used grounded theory in a case study at a large public research university to develop a theory about how the culture in engineering education affects students with varying interests and backgrounds. According to Career Preference Theory, the engineering education system has evolved to meet the needs of one type of student, the Physical Scientist. While this educational process serves to develop the next generation of engineering faculty members, the majority of engineering undergraduates go on to work as practicing engineers, and are far removed from working as physical scientists. According to Career Preference Theory, students with a history of success in mathematics and sciences, and a focus on career, enter engineering. These students, who actually have a wide range of interests and values, each begin seeking an identity as a practicing engineer. Career Preference Theory is developed around a concept, Career Identity Type, that describes five different types of engineering students: Pragmatic, Physical Scientist, "Social" Scientist, Designer, and Educator. According to the theory, each student must develop an identity within the engineering education system if they are to persist in engineering. However, the current undergraduate engineering education system has evolved in such a way that it meets only the needs of the Physical Scientist. Pragmatic students are also likely to succeed because they tend to be extremely goal-focused and maintain a focus on the rewards they will receive once they graduate with an engineering degree. However, "Social" Scientists, who value interpersonal relationships and giving back to society; Designers, who value integrating ideas across disciplines to create aesthetically pleasing and useful products; and Educators, who have a strong desire to give back to society by working with young people, must make some connection between these values and a future engineering career if they are to persist in engineering. According to Career Preference Theory, "Social" Scientists, Designers, and Educators are likely to leave engineering, while Pragmatics and Physical Scientists are likely to persist.

  2. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  3. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  4. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  5. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    NASA Astrophysics Data System (ADS)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  6. Comparison of Engineering Education in Norway and China

    ERIC Educational Resources Information Center

    Sun, Xiaodong; Jia, Yanrui; Li, Zhenchun; Song, Yu

    2018-01-01

    The Washington Accord is an internationally recognized agreement in engineering education of undergraduates. China joined the agreement as the 18th member country in 2016. The exploration technology and engineering major of China University of Petroleum has obtained the professional certification from international engineering education system and…

  7. Analysis of Engineering Content within Technology Education Programs

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  8. Active Learning in Engineering Education: A (Re)Introduction

    ERIC Educational Resources Information Center

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  9. Soaring to New Heights in Engineering Education. Frontiers in Education (FIE) Conference Proceedings (42nd, Seattle, Washington, October 3-6, 2012)

    ERIC Educational Resources Information Center

    Frontiers in Education Conference (MS), 2012

    2012-01-01

    The lifetime of Frontiers in Education (FIE), 42 years and counting, has been a time of many innovations in engineering and computing education. The FIE Conference has become the premiere conference for presentation and discussion of excellent educational research and innovative curricula in engineering education. This accomplishment would not…

  10. Practical Strategy on the Subject of “Science and Ethics” for Overcoming Hybrid Engineering Ethics Education

    NASA Astrophysics Data System (ADS)

    Yasui, Yoshiaki

    The issue of economic globalization and JABEE (Japan Accreditation Board for Engineering Education) mean that education on engineering ethics has now become increasingly important for science-engineering students who will become the next generation of engineers. This is clearly indicated when engineers are made professionally responsible for various unfortunate accidents that happen during daily life in society. Learning hybrid engineering ethics is an essential part of the education of the humanities and sciences. This paper treats the contents for the subject of “Science and Ethics” drawing on several years of practice and the fruits of studying science and engineering ethics at the faculty of science-engineering in university. This paper can be considered to be a practical strategy to the formation of morality.

  11. Educating the humanitarian engineer.

    PubMed

    Passino, Kevin M

    2009-12-01

    The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.

  12. Military Engineers and Chemical Warfare Troops (Inzhenernye Voiska Khimicheskie Voiska),

    DTIC Science & Technology

    MILITARY FORCES(FOREIGN), *MILITARY ORGANIZATIONS, MILITARY ENGINEERING , INFANTRY, AMPHIBIOUS OPERATIONS, MINELAYING, ARMORED VEHICLES, NUCLEAR...RADIATION, DOSIMETERS, CHEMICAL WARFARE, PROTECTIVE CLOTHING, DECONTAMINATION, HEALTH PHYSICS.

  13. Resistances to Knowing in the Nuclear Age.

    ERIC Educational Resources Information Center

    Mack, John E.

    1984-01-01

    Explores psychological reasons why educators and parents resist dealing with the issue of nuclear war. Describing individual resistance (avoidance) and collective resistance (commitment to a nation's economic and political assumptions), the author discusses implications for nuclear education. (SK)

  14. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  15. A Physicist's Journey In The Nuclear Power World

    NASA Astrophysics Data System (ADS)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  16. About, for, in or through Entrepreneurship in Engineering Education

    ERIC Educational Resources Information Center

    Mäkimurto-Koivumaa, Soili; Belt, Pekka

    2016-01-01

    Engineering competences form a potential basis for entrepreneurship. There are pressures to find new approaches to entrepreneurship education (EE) in engineering education, as the traditional analytical logic of engineering does not match the modern view of entrepreneurship. Since the previous models do not give tangible enough tools on how to…

  17. 75 FR 36715 - Final Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision..., Chief, Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear Regulatory...

  18. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  19. The Ten Outstanding Engineering Achievements of the Past 50 Years.

    ERIC Educational Resources Information Center

    Hightower, George

    1984-01-01

    Describes the outstanding achievement in each of 10 major engineering categories. These categories include synthetic fibers, nuclear energy, computers, solid state electronics, jet aircraft, biomedical engineering, lasers, communications satellites, the United States space program, and automation and control systems. (JN)

  20. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  1. Comparison of cross culture engineering ethics training using the simulator for engineering ethics education.

    PubMed

    Chung, Christopher

    2015-04-01

    This paper describes the use and analysis of the Simulator for Engineering Ethics Education (SEEE) to perform cross culture engineering ethics training and analysis. Details describing the first generation and second generation development of the SEEE are published in Chung and Alfred, Science and Engineering Ethics, vol. 15, 2009 and Alfred and Chung, Science and Engineering Ethics, vol. 18, 2012. In this effort, a group of far eastern educated students operated the simulator in the instructional, training, scenario, and evaluation modes. The pre and post treatment performance of these students were compared to U.S. Educated students. Analysis of the performance indicated that the far eastern educated student increased their level of knowledge 23.7 percent while U.S. educated students increased their level of knowledge by 39.3 percent.

  2. Nuclear thermal source transfer unit, post-blast soil sample drying system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew J

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less

  3. Engineering Ethics Education Having Reflected Various Values and a Global Code of Ethics

    NASA Astrophysics Data System (ADS)

    Kanemitsu, Hidekazu

    At the present day, a movement trying to establish a global code of ethics for science and engineering is in activity. The author overviews the context of this movement, and examines the possibility of engineering ethics education which uses global code of ethics. In this paper, the engineering ethics education which uses code of ethics in general will be considered, and an expected function of global code of ethics will be also. Engineering ethics education in the new century should be aimed to share the values among different countries and cultures. To use global code of ethics as a tool for such education, the code should include various values, especially Asian values which engineering ethics has paid little attention to.

  4. Engineering education and a lifetime of learning

    NASA Technical Reports Server (NTRS)

    Eisley, J. (Editor)

    1974-01-01

    The result of an eleven-week study by the National Aeronautics and Space Administration (NASA) and the American Society of Engineering Education is presented. The study was the ninth of a series of programs. The purposes of the programs were: (1) to introduce engineering school faculty members to system design and to a particular approach to teaching system design, (2) to introduce engineering faculty to NASA and to a specific NASA center, and (3) to produce a study of use to NASA and to the participants. The story was concerned with engineering education in the U.S., and concentrated upon undergraduate education and teaching, although this bias was not meant to imply that research and graduate study are less important to engineering education.

  5. Positioning Technology and Engineering Education as a Key Force in STEM Education

    ERIC Educational Resources Information Center

    Strimel, Greg; Grubbs, Michael E.

    2016-01-01

    As the presence of engineering content and practices increases in science education, the distinction between the two fields of science and technology education becomes even more vague than previously theorized. Furthermore, the addition of engineering to the title of the profession raises the question of the true aim of technology education. As a…

  6. Developing the European Center of Competence on VVER-type nuclear power reactors

    NASA Astrophysics Data System (ADS)

    Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily

    2017-09-01

    This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for VVER-technology is focused on master's degree programmes. The specifics of a systematic approach to training in the area of VVER-type nuclear power reactors technologies are analysed. This paper discusses enhancement of the training opportunities of the European Center that have arisen from advances in methodology and distance education. With a special attention paid to the European Nuclear Education Network (ENEN), the possibilities of further development of the international cooperation between European countries and educational institutions are examined.

  7. A Strategy for Sourcing Continuing Engineering Education

    ERIC Educational Resources Information Center

    Baukal, Charles E., Jr.

    2012-01-01

    Many are calling for increased continuing education for engineers, but few details are provided as to how to source that education. This paper recommends a strategy for sourcing continuing engineering education (CEE). Providers of CEE are categorized here as internal (the organization itself), external (universities, professional/trade…

  8. Would Increasing Engineering Literacies Enable Untapped Opportunities for STEM Education?

    ERIC Educational Resources Information Center

    Redman, Christine

    2017-01-01

    The main focus here is to examine the benefits of defining and developing an engineering curriculum for elementary schools. Like many other international educational systems, Australian educational settings have been seeking to effectively implement science, technology, engineering, and mathematics (STEM) education. However, current assumptions…

  9. The Pre-Engineering Curriculum Proceedings of the Annual CSU Conference on Innovation in Engineering Education. (1st, San Jose, California, April 26, 1991).

    ERIC Educational Resources Information Center

    California State Univ., Engineering Council for Teaching and Learning.

    This document provides the keynote address and papers delivered at the 1991 California State University Conference on Innovation in Engineering Education which focused on the pre-engineering curriculum. The conference was convened as a collaborative effort by faculty to address the following issues in engineering education: (1) the attraction and…

  10. Implementing Sustainable Engineering Education through POPBL

    NASA Astrophysics Data System (ADS)

    Lioe, D. X.; Subhashini, G. K.

    2013-06-01

    This paper presents the implementation of sustainable engineering education to undergraduate student in Asia Pacific University of Technology and Innovation, Malaysia (APU) through Project-Oriented Problem Based Learning (POPBL). Sustainable engineering has already been the paramount term where it is no longer limited to environment, but also to the entire lifetime of the individual engineer. To inculcate every engineering individual with sustainability, education is the way to start off.

  11. Industrial Education. "Small Engines".

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  12. Progress in reforming chemical engineering education.

    PubMed

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  13. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for many hours - a much longer period than the approximately one hour burn time for MITEE. Using this cermet fuel, and technology available from other nuclear propulsion programs, MITEE could be developed and ready for implementation in a relatively short time, i.e., approximately seven years. An overview description of the MITEE engine and its performance capabilities is provided.

  14. The importance of scientific literacy to OCRWM's mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.P.

    1990-01-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (CRWM) has the unique mission of finding a permanent solution to the nation's high-level radioactive waste management problems. This paper explores a vital question: will OCRWM have sufficient scientific and technical resources as well as a sufficient level of public support to carry out its mission An affirmative answer to this question will require that adequate numbers of science and engineering students enter the field of radioactive waste management and that overall scientific literacy also be enhanced. This paper outlines current activities and programs within DOE and OCRWMmore » to increase scientific literacy and to recruit and develop scientists and engineers. While this paper offers only a summary inspection of the issues surrounding the solution of developing and maintaining the human technical capabilities to carry forth OCRWM's mission, it is meant to initiate a continuing examination by the American Nuclear Society, DOE, and professional and technical societies of fundamental scientific education issues.« less

  15. Evaluating the Effectiveness of Integrative STEM Education: Teacher and Administrator Professional Development

    ERIC Educational Resources Information Center

    Havice, William; Havice, Pamela; Waugaman, Chelsea; Walker, Kristin

    2018-01-01

    The integration of science, technology, engineering, and mathematics (STEM) education, also referred to as integrative STEM education, is a relatively new interdisciplinary teaching technique that incorporates an engineering design-based learning approach with mathematics, science, technology, and engineering education (Sanders, 2010, 2012, 2013;…

  16. Integration of Sustainability in Engineering Education: Why Is PBL an Answer?

    ERIC Educational Resources Information Center

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies used to integrate sustainability in engineering…

  17. Elementary Students' Engagement in Failure-Prone Engineering Design Tasks

    ERIC Educational Resources Information Center

    Andrews, Chelsea Joy

    2017-01-01

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in…

  18. The Landscape of Prek-12 Engineering Online Resources for Teachers: Global Trends

    ERIC Educational Resources Information Center

    Bagiati, Aikaterini; Yoon, So Yoon; Evangelou, Demetra; Magana, Alejandra; Kaloustian, Garene; Zhu, Jiabin

    2015-01-01

    Background: The newly formed discipline of engineering education is addressing the need to (a) enhance STEM education for precollege students and (b) identify optimum ways to introduce engineering content starting, perhaps, from the early ages. Introducing engineering at the Prekindergarten through 12th grade (PreK-12) education level requires…

  19. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    ERIC Educational Resources Information Center

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  20. A Literature Review of Indexing and Searching Techniques Implementation in Educational Search Engines

    ERIC Educational Resources Information Center

    El Guemmat, Kamal; Ouahabi, Sara

    2018-01-01

    The objective of this article is to analyze the searching and indexing techniques of educational search engines' implementation while treating future challenges. Educational search engines could greatly help in the effectiveness of e-learning if used correctly. However, these engines have several gaps which influence the performance of e-learning…

  1. Engineering Education for Leadership in the 21st Century.

    ERIC Educational Resources Information Center

    Wirasinghe, Chan

    The engineering profession and, consequently, the education process for engineers must respond to several new realities in order to be successful in the 21st century. Some aspects of the new reality that are relevant to engineering education are as follows: the globalization of commerce; the information revolution; innovations in technology; the…

  2. The Technology of Forming of Innovative Content for Engineering Education

    ERIC Educational Resources Information Center

    Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.

    2016-01-01

    The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…

  3. Materials Coating Techniques

    DTIC Science & Technology

    1980-03-01

    applications from decorative to utilitarian over significant segments of the engineering, chemical, nuclear , microelectronics, and related Industries. PVD...Thermal-control coating. Boron 2430 Cermet component, nuclear shielding and controlrod material; Carbide wear- and temperature-resistant. Calcium...Zirconium Oxide (Hafnia-Pree � Thermal-barrier coatings for nuclear applications. Lime Stabi!Aed) Zirconium 2563 Resistant to high-temperature

  4. A Nuclear Ramjet Flyer for Exploration of Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Maise, G.; Powell, J.; Paniagua, J.; Lecat, R.

    2001-01-01

    We investigated the design, operation, and data gathering possibilities of a nuclear-powered ramjet flyer in the Jovian atmosphere. The MITEE nuclear rocket engine can be modified to operate as a ramjet in planetary atmospheres. (Note: MITEE is a compact, ultra-light-weight thermal nuclear rocket which uses hydrogen as the propellant.) To operate as a ramjet, MITEE requires a suitable inlet and diffuser to substitute for the propellant that is pumped from the supply tanks in a nuclear rocket engine. Such a ramjet would fly in the upper Jovian atmosphere, mapping in detail temperatures, pressures, compositions, lightning activity, and wind speeds in the highly turbulent equatorial zone and the Great Red Spot. The nuclear ramjet could operate for months because: (1) the Jovian atmosphere has unlimited propellant, (2) the MITEE nuclear reactor is a (nearly) unlimited power source, and (3) with few moving parts, mechanical wear should be minimal. This paper presents a conceptual design of a ramjet flyer and its nuclear engine. The flyer incorporates a swept-wing design with instruments located in the twin wing-tip pods (away from the radiation source and readily shielded, if necessary). The vehicle is 2 m long with a 2 m wingspan. Its mass is 220 kg, and its nominal flight Mach number is 1.5. Based on combined neutronic and thermal/hydraulic analyses, we calculated that the ambient pressure range over which the flyer can operate to be from about 0.04 to 4 (terrestrial) atmospheres. This altitude range encompasses the three uppermost cloud layers in the Jovian atmosphere: (1) the entire uppermost visible NH3 ice cloud layer (where lightning has been observed), (2) the entire NH4HS ice cloud layer, and (3) the upper portion of the H2O ice cloud layer.

  5. Researching primary engineering education: UK perspectives, an exploratory study

    NASA Astrophysics Data System (ADS)

    Clark, Robin; Andrews, Jane

    2010-10-01

    This paper draws attention to the findings of an exploratory study that critically identified and analysed relevant perceptions of elementary level engineering education within the UK. Utilising an approach based upon grounded theory methodology, 30 participants including teachers, representatives of government bodies and non-profit providers of primary level engineering initiatives were interviewed. Three main concepts were identified during the analysis of findings, each relevant to primary engineering education. These were pedagogic issues, exposure to engineering within the curriculum and children's interest. The paper concludes that the opportunity to make a real difference to children's education by stimulating their engineering imagination suggests this subject area is of particular value.

  6. Historically Black Colleges and Universities Nuclear Energy Training Program: Summary of program activities, fiscal year 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-27

    The Historically Black Colleges and Universities Nuclear Energy Training (HBCU NET) Program, funded by DOE, Office of Nuclear Energy and administered by ORAU, began in February 1984. The program provides support for training, study, research participation, and academic enrichment of students and faculty at designated HBCUs in nuclear science, nuclear engineering, and other nuclear-related technologes and disciplines. The program is composed of undergraduate scholarships, graduate fellowships, student and faculty research participation, and an annual student training institute.

  7. Department of Defense In-House RDT&E Activities

    DTIC Science & Technology

    1980-10-30

    FOPCeS;C TO ,DEVELOP PRFVFNTIVE & THERAPEUTIC METHO"DS TO PROTECT PERSONNFL FROnM SUCH rnRCFS, .,,CURRENT IMPOPTANT PROGRAMS LONG-TERM EcEFCTS OF...Plant Quarantine & Pest 819 Sanitary Engineering Control 830 Mechanical Engineering 437 Horticulture 840 Nuclear Engineering 440 Genetics 850

  8. NERVA 400E thrust train dynamic analysis

    NASA Technical Reports Server (NTRS)

    Vronay, D. F.

    1972-01-01

    The natural frequencies and dynamic responses of the NERVA 400E engine thrust train were determined for nuclear space operations (NSO), and earth-orbital shuttle (EOS) during launch and boost conditions. For NSO, a mini-tank configuration was analyzed with the forward end of the upper truss assumed fixed at the stage/mini-tank interface. For EOS, both a mini-tank and an engine only configuration were analyzed for a specific engine assembly support (EAS) stiffness. For all cases the effect of the shield on dynamic response characteristics was determined by performing parallel analyses with and without the shield. Gimbaling loads were not generated as that effort was scheduled after the termination date. The analysis, while demonstrating the adequacy of the engine design, revealed serious deficiencies in the EAS. Responses at the unsupported ends of the engine are excessive. Responses at the nuclear subsystem interface appear acceptable. It is recommended that additional analysis and design effort be expended upon the EAS to ensure that all engine responses stay within reasonable bounds.

  9. Space rocket engine on the base of the reactor-pumped laser for the interplanetary flights and earth orbital applications

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.

    2000-01-01

    In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .

  10. Nuclear and Solar Energy: Implications for Homeland Security

    DTIC Science & Technology

    2008-12-01

    of New Nuclear Plants?" Nuclear Engineering International, March 31, 2004, 14. 10 Gwyneth Cravens, Power to Save the World: The Truth about...Pueblo West, CO: Vales Lake Pub, 2004), 98. 12 Cravens, Power to Save the World: The Truth about Nuclear Energy, 249. 13 Jerry Taylor, "Powering...Cravens, Power to Save the World: The Truth about Nuclear Energy, 152. 30 William Langewiesche, The Atomic Bazaar: Dispatches from the Underground World

  11. Education and Research Laboratories as a Means of Enhancing the Quality of Professional Engineering Education in Design and Production of Composite Parts

    ERIC Educational Resources Information Center

    Khaliulin, Valentin I.; Gershtein, Elena M.

    2016-01-01

    Relevance of this research is determined by quality improvement of professional engineering education. The purpose of this paper is to offer practical recommendations for those interested in establishment of education and research laboratories as a means of enhancing the quality of professional engineering education in design and production of…

  12. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    NASA Astrophysics Data System (ADS)

    Beygel‧, A. G.; Kutsenko, K. V.; Lavrukhin, A. A.; Magomedbekov, E. P.; Pershukov, V. A.; Sofronov, V. L.; Tyupina, E. A.; Zhiganov, A. N.

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given.

  13. Engineering Ethics Education: A Comparative Study of Japan and Malaysia.

    PubMed

    Balakrishnan, Balamuralithara; Tochinai, Fumihiko; Kanemitsu, Hidekazu

    2018-03-22

    This paper reports the findings of a comparative study in which students' perceived attainment of the objectives of an engineering ethics education and their attitude towards engineering ethics were investigated and compared. The investigation was carried out in Japan and Malaysia, involving 163 and 108 engineering undergraduates respectively. The research method used was based on a survey in which respondents were sent a questionnaire to elicit relevant data. Both descriptive and inferential statistical analyses were performed on the data. The results of the analyses showed that the attainment of the objectives of engineering ethics education and students' attitude towards socio-ethical issues in engineering were significantly higher and positive among Japanese engineering students compared to Malaysian engineering students. Such findings suggest that a well-structured, integrated, and innovative pedagogy for teaching ethics will have an impact on the students' attainment of ethics education objectives and their attitude towards engineering ethics. As such, the research findings serve as a cornerstone to which the current practice of teaching and learning of engineering ethics education can be examined more critically, such that further improvements can be made to the existing curriculum that can help produce engineers that have strong moral and ethical characters.

  14. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are discussed. The authors demonstrated success in reaching desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and define a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  15. Methodology discourses as boundary work in the construction of engineering education.

    PubMed

    Beddoes, Kacey

    2014-04-01

    Engineering education research is a new field that emerged in the social sciences over the past 10 years. This analysis of engineering education research demonstrates that methodology discourses have played a central role in the construction and development of the field of engineering education, and that they have done so primarily through boundary work. This article thus contributes to science and technology studies literature by examining the role of methodology discourses in an emerging social science field. I begin with an overview of engineering education research before situating the case within relevant bodies of literature on methodology discourses and boundary work. I then identify two methodology discourses--rigor and methodological diversity--and discuss how they contribute to the construction and development of engineering education research. The article concludes with a discussion of how the findings relate to prior research on methodology discourses and boundary work and implications for future research.

  16. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  17. The advisability of prototypic testing for space nuclear systems

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.

    2005-07-01

    From October 1987 until 1993, the US Department of Defense conducted the Space Nuclear Thermal Propulsion program. This program's objective was to design and develop a high specific impulse, high thrust-to-weight nuclear thermal rocket engine for upper stage applications. The author was the program manager for this program until 1992. Numerous analytical, programmatic and experimental results were generated during this period of time. This paper reviews the accomplishments of the program and highlights the importance of prototypic testing for all aspects of a space nuclear program so that a reliable and safe system compliant with all regulatory requirements can be effectively engineered. Specifically, the paper will recount how many non-prototypic tests we performed only to have more representative tests consistently generate different results. This was particularly true in area of direct nuclear heat generation. As nuclear tests are generally much more expensive than non-nuclear tests, programs attempt to avoid such tests in favor of less expensive non-nuclear tests. Each time this approach was followed, the SNTP program found these tests to not be verified by nuclear heated testing. Hence the author recommends that wherever possible, a spiral development approach that includes exploratory and confirmatory experimental testing be employed to ensure a viable design.

  18. Nuclear education in public health and nursing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, A.E.; Stanitis, M.A.

    Twenty-three public health schools and 492 university schools of nursing were surveyed to gather specific information on educational programs related to nuclear war. Twenty public health schools and 240 nursing schools responded. Nuclear war-related content was most likely to appear in disaster nursing and in environmental health courses. Three schools of public health report that they currently offer elective courses on nuclear war. Innovative curricula included political action projects for nuclear war prevention.

  19. Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.

    PubMed

    Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami

    2009-06-01

    Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.

  20. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    NASA Technical Reports Server (NTRS)

    Ramsthaler, J. H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.

  1. Nuclear Fuel Depletion Analysis Using Matlab Software

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Nematollahi, M. R.

    Coupled first order IVPs are frequently used in many parts of engineering and sciences. In this article, we presented a code including three computer programs which are joint with the Matlab software to solve and plot the solutions of the first order coupled stiff or non-stiff IVPs. Some engineering and scientific problems related to IVPs are given and fuel depletion (production of the 239Pu isotope) in a Pressurized Water Nuclear Reactor (PWR) are computed by the present code.

  2. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  3. Construction of Engineering Education Program based on the Alumni's Evaluation of the Educational Outcome

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takehiko; Nishizawa, Hitoshi

    The Department of Electrical and Electronic Engineering in Toyota National College of Technology has put great emphasis on fundamental subjects, such as “electrical and electronic circuit" and “electromagnetism" more than 40 years. On the other hand, several issues of our college were clarified by the alumni's evaluation of the educational outcome in 2002. The most serious issue was low achievement of English and Social education. The alumni of all generation are dissatisfied with their low skill in English communication. As a part of the educational reforms, our department has constructed a new engineering education program focusing on fundamental ability. We introduced many problem-based-learning experiments and the compulsory subjects such as “English communication for electrical engineers" and “Engineering Ethics" into this program. Great educative results are obtained by these improvements. As a typical example, the scores of all 2nd grade students of advanced engineering course in TOEIC tests became 450 points or more. Our program has been authorized by JABEE since 2004.

  4. Design process of the nanofluid injection mechanism in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  5. Design process of the nanofluid injection mechanism in nuclear power plants

    PubMed Central

    2011-01-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner. PMID:21711896

  6. Design process of the nanofluid injection mechanism in nuclear power plants.

    PubMed

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-27

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  7. Study on the continuing education innovative talents training mode of civil engineering major

    NASA Astrophysics Data System (ADS)

    Sun, Shengnan; Su, Zhibin; Cui, Shicai

    2017-12-01

    According to the characteristics of civil engineering professional continuing education, continuing education of innovative talents training mode suitable for the characteristics of our school is put forward in this paper. The characteristics of the model include: the education of professional basic courses and specialized courses should be paid attention to; engineering training should be strengthened and engineering quality should be trained; the concept of large civil engineering should be highlighted, the specialized areas should be broadened, and the curriculum system should be reconstructed; the mechanism of personnel training program should be constructed by the employers, the domestic highlevel institutions and our university. It is hoped that the new training model will promote the development of continuing education of civil engineering specialty in our university.

  8. 75 FR 43207 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to an existing.... Jervey, Acting Chief, Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear...

  9. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  10. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  11. Understanding Engineers' Responsibilities: A Prerequisite to Designing Engineering Education : Commentary on "Educating Engineers for the Public Good Through International Internships: Evidence from a Case Study at Universitat Politècnica de València".

    PubMed

    Murphy, Colleen; Gardoni, Paolo

    2017-07-18

    The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.

  12. A 1050 K Stirling space engine design

    NASA Technical Reports Server (NTRS)

    Penswick, L. Barry

    1988-01-01

    As part of the NASA CSTI High Capacity Power Program on Conversion Systems for Nuclear Applications, Sunpower, Inc. completed for NASA Lewis a reference design of a single-cylinder free-piston Stirling engine that is optimized for the lifetimes and temperatures appropriate for space applications. The NASA effort is part of the overall SP-100 program which is a combined DOD/DOE/NASA project to develop nuclear power for space. Stirling engines have been identified as a growth option for SP-100 offering increased power output and lower system mass and radiator area. Superalloy materials are used in the 1050 K hot end of the engine; the engine temperature ratio is 2.0. The engine design features simplified heat exchangers with heat input by sodium heat pipes, hydrodynamic gas bearings, a permanent magnet linear alternator, and a dynamic balance system. The design shows an efficiency (including the alternator) of 29 percent and a specific mass of 5.7 kg/kW. This design also represents a significant step toward the 1300 K refractory Stirling engine which is another growth option of SP-100.

  13. IEEE Conference on Software Engineering Education and Training (CSEE&T 2012) Proceedings (25th, Nanjing, Jiangsu, China, April 17-19, 2012)

    ERIC Educational Resources Information Center

    IEEE Conference on Software Engineering Education and Training, Proceedings (MS), 2012

    2012-01-01

    The Conference on Software Engineering Education and Training (CSEE&T) is the premier international peer-reviewed conference, sponsored by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) Computer Society, which addresses all major areas related to software engineering education, training, and professionalism. This year, as…

  14. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  15. A New Introductory Course in the Engineering Education at the University of Tromsø

    ERIC Educational Resources Information Center

    Arne, Gjengedal; Tor, Schive

    2016-01-01

    In 2011 a new national curriculum for the education of engineers was established in Norway. The objective of the curriculum is to ascertain that engineering education is professionally oriented, integrated, research-based and has a high academic standard. Institutions are instructed to facilitate a holistic approach to the engineering profession,…

  16. The Engineering of Engineering Education: Curriculum Development from a Designer's Point of View

    ERIC Educational Resources Information Center

    Rompelman, Otto; De Graaff, Erik

    2006-01-01

    Engineers have a set of powerful tools at their disposal for designing robust and reliable technical systems. In educational design these tools are seldom applied. This paper explores the application of concepts from the systems approach in an educational context. The paradigms of design methodology and systems engineering appear to be suitable…

  17. Peculiarities of Design Competence Formation in Future Clothing Engineering Educators in Ukraine and Foreign Countries

    ERIC Educational Resources Information Center

    Bilyk, Victoria

    2015-01-01

    The importance of engineering pedagogical education for the global labour market has been characterized. The peculiarities of modern engineering pedagogical education formation in foreign countries consisting in economy globalization, transition to a high quality education and international cooperation enhancing have been presented. The essence of…

  18. Quality Assurance and Accreditation of Engineering Education in Jordan

    ERIC Educational Resources Information Center

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-01-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the…

  19. Preparing the Future Workforce: Science, Technology, Engineering and Math (STEM) Policy in K-12 Education

    ERIC Educational Resources Information Center

    Dickman, Anneliese; Schwabe, Amy; Schmidt, Jeff; Henken, Rob

    2009-01-01

    Last December, the Science, Technology, Engineering, and Mathematics (STEM) Education Coalition--a national organization of more than 600 groups representing knowledge workers, educators, scientists, engineers, and technicians--wrote to President-elect Obama urging him to "not lose sight of the critical role that STEM education plays in…

  20. Digital dissemination platform of transportation engineering education materials.

    DOT National Transportation Integrated Search

    2014-09-01

    National agencies have called for more widespread adoption of best practices in engineering education. To facilitate this sharing of practices we will develop a web-based system that will be used by transportation engineering educators to share curri...

  1. WMD Forecasting in Historical and Contemporary Perspective

    DTIC Science & Technology

    2010-03-01

    a nuclear weapon; Use of a nuclear weapon; Withdrawal from the NPT; Emergence of a nuclear-exports grey market; Widespread dissemination of...Many studies saw technology diffusion and the globalization of commerce as ineluctable forces that contribute to the spread of nuclear (and other...engineering diffuses , the spread of biological weapon capabilities among state actors can be expected to expand in advanced and developing states. This

  2. IEEE Nuclear and Space Radiation Effects Conference: Notes on the Early Conferences

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Galloway, Kenneth F.

    2013-01-01

    This paper gathers the remembrances of several key contributors who participated in the earliest Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conferences (NSREC).

  3. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.

  4. Source Book of Educational Materials for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  5. Nursing education and the nuclear age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, S.

    As reflected in the nursing literature, nurses have only recently begun discussing professional responsibilities for avoidance of nuclear war. The literature of the 1950s and 1960s focused on issues of civil defense. The 1970s were mostly silent, but with the onset of the 1980s a few articles identified the need for the nursing profession to recognize the importance of nuclear war prevention. The responsibility of nursing education for including content about nuclear issues has not been discussed in the professional literature. The author surveyed baccalaureate programs of nursing education to determine whether this lack of discussion was reflected in nursingmore » curricula. Responses indicated that the literature does not adequately reflect the level of activity and interest occurring within nursing education about nuclear issues. Nevertheless, because there is so little discussion in the professional literature, an implicit message is sent that nuclear issues are not of importance and that nurses should not openly address them.24 references.« less

  6. Engine management during NTRE start up

    NASA Technical Reports Server (NTRS)

    Bulman, Mel; Saltzman, Dave

    1993-01-01

    The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.

  7. Nuclear education in public health and nursing.

    PubMed Central

    Winder, A E; Stanitis, M A

    1988-01-01

    Twenty-three public health schools and 492 university schools of nursing were surveyed to gather specific information on educational programs related to nuclear war. Twenty public health schools and 240 nursing schools responded. Nuclear war-related content was most likely to appear in disaster nursing and in environmental health courses. Three schools of public health report that they currently offer elective courses on nuclear war. Innovative curricula included political action projects for nuclear war prevention. PMID:3389435

  8. Curriculum planning for the development of graphicacy capability: three case studies from Europe and the USA

    NASA Astrophysics Data System (ADS)

    Danos, Xenia; Barr, Ronald; Górska, Renata; Norman, Eddie

    2014-11-01

    Curriculum planning for the development of graphicacy capability has not been systematically included in general education to coincide with the graphicacy needs of human society. In higher education, graphicacy curricula have been developed to meet the needs of certain disciplines, for example medical and teacher training and engineering, among others. A framework for graphicacy curricula, anticipating the graphicacy needs in higher education, has yet to be strategically planned for general education. This is partly a result of lack of research effort in this area, but also a result of lack of systematic curriculum planning in general. This paper discusses these issues in the context of graphicacy curricula for engineering. The paper presents three broad individual case studies spanning Europe and the USA, brought together by the common denominator, graphicacy. The case studies are based on: an analysis of graphicacy within general education curricula, an analysis of graphicacy for engineering education in Europe and an analysis of graphicacy for engineering education in the USA. These three papers were originally presented in a plenary session at the American Society for Engineering Education, Engineering Design Graphics Division at the University of Limerick in November 2012. The case studies demonstrate the potential for strategic curriculum planning in regard to the development of graphicacy in general education and an overview of a methodology to achieve that. It also offers further evidence towards the importance of the systematic classification of graphics capabilities in Engineering and how the lack of a developed theoretical framework in this area undermines the case for the importance of graphics within engineering education.

  9. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  10. Engineering education research: Impacts of an international network of female engineers on the persistence of Liberian undergraduate women studying engineering

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Reddivari, Sahithya; Cotel, Aline

    2015-11-01

    As international efforts to educate and empower women continue to rise, engineering educators are in a unique position to be a part of these efforts by encouraging and supporting women across the world at the university level through STEM education and outreach. For the past two years, the University of Michigan has been a part of a grassroots effort to encourage and support the persistence of engineering female students at University of Liberia. This effort has led to the implementation of a leadership camp this past August for Liberian engineering undergraduate women, meant to: (i) to empower engineering students with the skills, support, and inspiration necessary to become successful and well-rounded engineering professionals in a global engineering market; and (ii) to strengthen the community of Liberian female engineers by building cross-cultural partnerships among students resulting in a international network of women engineers. This session will present qualitative research findings on the impact of this grassroots effort on Liberian female students? persistence in engineering, and the future directions of this work.

  11. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  12. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  13. Green engineering education through a U.S. EPA/academia collaboration.

    PubMed

    Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert

    2003-12-01

    The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.

  14. Knowledge Integration and Wise Engineering

    ERIC Educational Resources Information Center

    Chiu, Jennifer L.; Linn, M. C.

    2011-01-01

    Recent efforts in engineering education focus on introducing engineering into secondary math and science courses to improve science, technology, engineering, and math (STEM) education (NAS, 2010). Infusing engineering into secondary classrooms can increase awareness of and interest in STEM careers, help students see the relevance of science and…

  15. Transformation of engineering education: Taking a perspective for the challenges of change

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid Abdul Wahid

    There are a variety of imperatives which call us to transform engineering education. Those who have made attempts to facilitate a change in engineering education have experienced slow or no progress. The literature on change has suggestions and strategies related to educational change but most of them are not able to guide the conversations and actions effectively. People interested in understanding the challenges often ask 'what makes educational change so difficult?' This research is an effort towards finding an answer to this question. The study adopted a transdisciplinary approach while taking a systems perspective on educational change in order to examine the challenges. Instead of exploring the effectiveness of change strategies and interventions, this study sought to understand the basic nature of change in engineering education organizations. For this purpose, the study adopted an integrated theoretical framework consisting of systems thinking, complexity theory, and transformative learning theory. The methodology was designed on the complexity research paradigm with interpretive qualitative methods used for data analysis. This approach enabled understanding the social and human conditions which reduce or enhance the likelihood of change in the context of an engineering education organization. The context for this study to investigate the challenges of transformation in engineering education is efforts around educating the Engineer of 2020. Four institutional initiatives at various stages in the transformation process provided cases for investigation in the study. The engineering educators at the four institutions participating in the study had experiences of active engagement in educational change. The interpretive qualitative analysis of the participants' accounts induced a systems perspective of the challenges which faculty face in their educational transformation efforts. The inertia which educational organizations experience against change appears to be caused by the commitment which the faculty members have to the educational paradigm prevalent in the organization and by the organizational structures and culture established in this paradigm. A condition that seems essential for the emergence of a new educational formation within an organizational context is the formation of a neighborhood of faculty who have a commitment for innovative education. The new ways of education seem to emerge in sustained, serendipitous, and long-term communicative interactions among the inhabitants of a neighborhood.

  16. Department of Defense In-House RDT&E Activities. Management Analysis Report

    DTIC Science & Technology

    1987-10-30

    AIRCRAFT BY NAVY PERSONNEL; ESTABLISH HUMAN TOLERANCE LIMITS FOR THESE FORCES, DEVELOP PREVENTIVE AND THERAPEUTIC METHODS TO PROTECT PERSONNEL FROM...Engineering 436 Plant Protection and 830 Mechanical Engineering Quarantine 840 Nuclear Engineering 437 Horticulture S50 Electrical Engineering 440...Technician 648 Therapeutic Radiological 1311 Physical Science Technologist Technician 649 Medical Machine Technician 1316 Hydraulic Technician 650 Medical

  17. 78 FR 37721 - Approval of American Society of Mechanical Engineers' Code Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ...-0359] RIN 3150-AI72 Approval of American Society of Mechanical Engineers' Code Cases AGENCY: Nuclear... mandatory American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (BPV) Code and... Guide'' series. In a notice of proposed rulemaking, ``Approval of American Society of Mechanical...

  18. Examining the Extent to Which Select Teacher Preparation Experiences Inform Technology and Engineering Educators' Teaching of Science Content and Practices

    ERIC Educational Resources Information Center

    Love, Tyler S.

    2015-01-01

    With the recent release of the "Next Generation Science Standards" (NGSS) (NGSS Lead States, 2014b) science educators were expected to teach engineering content and practices within their curricula. However, technology and engineering (T&E) educators have been expected to teach content and practices from engineering and other…

  19. Using Teaching Portfolios to Revise Curriculum and Explore Instructional Practices of Technology and Engineering Education Teachers

    ERIC Educational Resources Information Center

    Lomask, Michal; Crismond, David; Hacker, Michael

    2018-01-01

    This paper reports on the use of teaching portfolios to assist in curriculum revision and the exploration of instructional practices used by middle school technology and engineering education teachers. Two new middle school technology and engineering education units were developed through the Engineering for All (EfA) project. One EfA unit focused…

  20. Education for Sustainable Development: Assessment of the Current Situation at the Faculty of Engineering of Notre Dame University--Louaize

    ERIC Educational Resources Information Center

    Salem, Talal; Harb, Jacques

    2012-01-01

    There is a growing need to incorporate educational sustainable development (ESD) principles into engineering education. This paper identifies engineering competencies within the Faculty of Engineering at Notre Dame University--Louaize and the means to shift towards sustainability. ESD tools are used to carry the analysis, keeping in mind the…

  1. Engineering Skills Education: The Bachelor of Engineering Programme of the "Vrije Universiteit Brussel" as a Case Study

    ERIC Educational Resources Information Center

    Van Biesen, Leo Pierre; Rahier, Hubert; Vanherzeele, Herman; Willem, Rudolph; Hubin, Annick; Veretennicoff, Irina; Deblauwe, Nico; Ponet, Mireille

    2009-01-01

    The Bologna process has triggered an important change in the course outline towards a sustainable, transparent and quality-driven European education system. In Belgium, engineering education had to be completely revised. The transformation of the former system, leading to the degree of academic engineer after five years of study, into the typical…

  2. Relationships, variety & synergy: the vital ingredients for scholarship in engineering education? A case study

    NASA Astrophysics Data System (ADS)

    Clark, Robin; Andrews, Jane

    2014-11-01

    This paper begins with the argument that within modern-day society, engineering has shifted from being the scientific and technical mainstay of industrial, and more recently digital change to become the most vital driver of future advancement. In order to meet the inevitable challenges resulting from this role, the nature of engineering education is constantly evolving and as such engineering education has to change. The paper argues that what is needed is a fresh approach to engineering education - one that is sufficiently flexible so as to capture the fast-changing needs of engineering education as a discipline, whilst being pedagogically suitable for use with a range of engineering epistemologies. It provides an overview of a case study in which a new approach to engineering education has been developed and evaluated. The approach, which is based on the concept of scholarship, is described in detail. This is followed by a discussion of how the approach has been put into practice and evaluated. The paper concludes by arguing that within today's market-driven university world, the need for effective learning and teaching practice, based in good scholarship, is fundamental to student success.

  3. Environmental engineering education at Ghent University, Flanders (Belgium).

    PubMed

    Demeestere, K; Dewulf, J; Janssen, C; Van Langenhove, H

    2004-01-01

    Since the 1980s, environmental engineering education has been a rapidly growing discipline in many universities. This paper discusses the history, the current status and the near future of environmental engineering education at Ghent University. This university, with about 50% of the Flemish university environmental engineering students, can be considered as representative for the situation in Flanders, Belgium. In contrast to many other universities, environmental engineering education at Ghent University does not have its historical roots in civil engineering, but has been developed from the curricula organized by the former Faculty of Agricultural Sciences. As part of a reorganisation of the education and research activities at this faculty, a curriculum leading to the degree of "bio-engineer in environmental technology" was established in 1991. This curriculum covers a 5-year study and is constructed around 8 main components. Exchange of students with other European universities, e.g. within the Socrates framework, has become a prominent aspect of student life and education. This paper also briefly describes the employment opportunities of graduated bio-engineers in environmental technology. Finally, the current implementation of the bachelor's-master's structure, leading to a "master of science in environmental technology" degree is summarized.

  4. Identifying and Verifying Earthquake Engineering Concepts to Create a Knowledge Base in STEM Education: A Modified Delphi Study

    ERIC Educational Resources Information Center

    Cavlazoglu, Baki; Stuessy, Carol L.

    2017-01-01

    Stakeholders in STEM education have called for integrating engineering content knowledge into STEM-content classrooms. To answer the call, stakeholders in science education announced a new framework, Next Generation Science Standards, which focuses on the integration of science and engineering in K-12 science education. However, research indicates…

  5. How to Be an Ethical Engineer in an Often Unethical World: Integrated Interdisciplinary Education in the Sciences and Humanities

    ERIC Educational Resources Information Center

    Maurice, Patricia Ann; Peterson, Brian

    2015-01-01

    Catholic colleges and universities traditionally are grounded in liberal arts education, yet many Catholic institutions also educate future scientists and engineers. We propose that a distinctively Catholic science and engineering education should include an emphasis on Catholic concepts of the common good and social justice, liberal arts…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Darrell; Poinssot, Christophe; Begg, Bruce

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less

  7. Nuclear design of a vapor core reactor for space nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.

    1993-01-01

    Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.

  8. Nuclear Education and Training Programs of Potential Interest to Utilities.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    This compilation of education and training programs related to nuclear applications in electric power generation covers programs conducted by nuclear reactor vendors, public utilities, universities, technical institutes, and community colleges, which were available in December 1968. Several training-program consultant services are also included.…

  9. "Cloud" functions and templates of engineering calculations for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Orlov, K. A.; Ko, Chzho Ko

    2014-10-01

    The article deals with an important problem of setting up computer-aided design calculations of various circuit configurations and power equipment carried out using the templates and standard computer programs available in the Internet. Information about the developed Internet-based technology for carrying out such calculations using the templates accessible in the Mathcad Prime software package is given. The technology is considered taking as an example the solution of two problems relating to the field of nuclear power engineering.

  10. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the vehicles are very large, they are primarily made up of a habitat payload on one end, the engine on the opposite end and a connecting spine containing radiator acreage needed to reject the heat of this powerful, but inefficient engine. These studies concluded that the engine and spacecraft are within today's technology, could be built, tested, launched on several SLS launchers, integrated, checked out, maintained at an in-space LEO base, and operated for decades just as Caribbean cruise ships operate today. The nuclear issues were found to be far less daunting that [than for] current nuclear engines. The FFRE produces very small amounts of radioactive efflux compared to their impulse, easily contained in an evacuated "bore-hole" test site. The engine poses no launch risk since it is simply a structure containing no fissionable material. The nuclear fuel is carried to orbit in containers highly crash-proofed for launch accidents from which it, in a liquid medium, is injected into the FFRE. The radioactive exhaust, with a velocity above 300 kilometers per second rapidly leaves the solar system.

  11. Engineering students' and faculty perceptions of teaching methods and the level of faculty involvement that promotes academic success

    NASA Astrophysics Data System (ADS)

    Karpilo, Lacy N.

    Student academic success is a top priority of higher education institutions in the United States and the trend of students leaving school prior to finishing their degree is a serious concern. Accountability has become a large part of university and college ratings and perceived success. Retention is one component of the accountability metrics used by accreditation agencies. In addition, there are an increasing number of states allocating funds based in part on retention (Seidman, 2005). Institutions have created initiatives, programs, and even entire departments to address issues related to student academic success to promote retention. Universities and colleges have responded by focusing on methods to retain and better serve students. Retention and student academic success is a primary concern for high education institutions; however, engineering education has unique retention issues. The National Science Board (2004) reports a significant decline in the number of individuals in the United States who are training to become engineers, despite the fact that the number of jobs that utilize an engineering background continues to increase. Engineering education has responded to academic success issues by changing curriculum and pedagogical methods (Sheppard, 2001). This descriptive study investigates the perception of engineering students and faculty regarding teaching methods and faculty involvement to create a picture of what is occurring in engineering education. The population was the engineering students and faculty of Colorado State University's College of Engineering. Data from this research suggests that engaging teaching methods are not being used as often as research indicates they should and that there is a lack of student-faculty interaction outside of the classroom. This research adds to the breadth of knowledge and understanding of the current environment of engineering education. Furthermore, the data allows engineering educators and other higher education professionals to gain insight into the teaching methods currently being utilized in engineering and reinforces the importance of student-faculty interaction and thus facilitating the creation of programs or initiatives to improve student academic success.

  12. Generic Engineering Competencies: A Review and Modelling Approach

    ERIC Educational Resources Information Center

    Male, Sally A.

    2010-01-01

    This paper puts forward the view that engineering educators have a responsibility to prepare graduates for engineering work and careers. The current literature reveals gaps between the competencies required for engineering work and those developed in engineering education. Generic competencies feature in these competency gaps. Literature suggests…

  13. Epistemic Practices of Engineering for Education

    ERIC Educational Resources Information Center

    Cunningham, Christine M.; Kelly, Gregory J.

    2017-01-01

    Engineering offers new educational opportunities for students, yet also poses challenges about how to conceptualize the disciplinary core ideas, crosscutting concepts, and science and engineering practices of the disciplinary fields of engineering. In this paper, we draw from empirical studies of engineering in professional and school settings to…

  14. How Engineers Perceive the Importance of Ethics in Finland

    ERIC Educational Resources Information Center

    Taajamaa, Ville; Majanoja, Anne-Maarit; Bairaktarova, Diana; Airola, Antti; Pahikkala, Tapio; Sutinen, Erkki

    2018-01-01

    Success in complex and holistic engineering practices requires more than problem-solving abilities and technical competencies. Engineering education must offer proficient technical competences and also train engineers to think and act ethically. A technical "engineering-like" focus and demand have made educators and students overlook the…

  15. 76 FR 14107 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision... Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2011-5967 Filed 3-14-11...

  16. Developing Ultra-small Scale Mechanical Testing Methods and Microstructural Investigation Procedures for Irradiated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosemann, Peter; Kaoumi, Djamel

    Nuclear materials are an essential aspect of nuclear engineering. While great effort is spent on designing more advanced reactors or enhancing a reactor’s safety, materials have been the bottleneck of most new developments. The designs of new reactor concepts are driven by neutronic and thermodynamic aspects, leading to unusual coolants (liquid metal, liquid salt, gases), higher temperatures, and higher radiation doses than conventional light water reactors have. However, any (nuclear) engineering design must consider the materials used in the anticipated application in order to ever be realized. Designs which may look easy, simple and efficient considering thermodynamics or neutronic aspectsmore » can show their true difficulty in the materials area, which then prevents them from being deployed. In turn, the materials available are influencing the neutronic and thermodynamic designs and therefore must be considered from the beginning, requiring close collaborations between different aspects of nuclear engineering. If a particular design requires new materials, the licensing of the reactor must be considered, but licensing can be a costly and time consuming process that results in long lead times to realize true materials innovation.« less

  17. Viewpoints on Nuclear Education.

    ERIC Educational Resources Information Center

    Social Education, 1983

    1983-01-01

    The Committee on the Present Danger, Inc., the Committee of Atomic Bomb Survivors in the United States, the World Friendship Center in Hiroshima, two authors, physics and education professors, an English and history teacher, and a high school student comment on nuclear education. (RM)

  18. Functions of an engineered barrier system for a nuclear waste repository in basalt

    NASA Astrophysics Data System (ADS)

    Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.

    1980-01-01

    The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.

  19. Historical flight qualifications of space nuclear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, G.L.

    1997-01-01

    An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems. {copyright} {italmore » 1997 American Institute of Physics.}« less

  20. Employing Liberative Pedagogies in Engineering Education.

    ERIC Educational Resources Information Center

    Riley, Donna

    2003-01-01

    Motivates the use of feminist, critical, and radical pedagogies in engineering education and presents their application in an engineering thermodynamics course. Discusses assessment approaches and the limitations of liberative pedagogies in an engineering context. (Contains 40 references.) (Author/NB)

  1. Australian engineering educators' attitudes towards Aboriginal cultures and perspectives

    NASA Astrophysics Data System (ADS)

    Goldfinch, Thomas; Prpic, Juliana Kaya; Jolly, Lesley; Leigh, Elyssebeth; Kennedy, Jade

    2017-07-01

    In Australia, representation of Aboriginal populations within the engineering profession is very low despite participation targets set by Government departments, professional bodies and Universities. Progressing the Aboriginal inclusion agenda within Australian Engineering Education requires a clearer understanding of engineering educators' preparedness for increased numbers of students from this non-traditional cohort. This research stems from a recently completed project that explored Aboriginal perspectives in engineering education and proposed a model for embedding perspectives in curricula. Nine engineering academics were interviewed to explore attitudes towards Aboriginal perspectives in engineering and the viability of the proposed model. Results of the interviews indicate efforts to embed Aboriginal perspectives are starting from a small base of knowledge and experience. Individuals' motivations and values indicate that there is significant support for improving this, but that efforts can be hampered by conceptions of Aboriginal perspectives that do not consider how Aboriginal knowledges may change engineering itself.

  2. ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)

  3. Energy Systems | Argonne National Laboratory

    Science.gov Websites

    Materials Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Keeping the balance: How flexible nuclear operation can help add more wind and solar to the grid MIT News

  4. JPRS report: Science and technology. USSR: Engineering and equipment

    NASA Astrophysics Data System (ADS)

    1991-10-01

    A bibliography is given of U.S.S.R. research in engineering and equipment. Topics covered include aviation, space technology, optics, high energy devices, nuclear energy, and industrial technology, planning, and productivity.

  5. Students' attitudes towards interdisciplinary education: a course on interdisciplinary aspects of science and engineering education

    NASA Astrophysics Data System (ADS)

    Gero, Aharon

    2017-05-01

    A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.

  6. An Educational Program of Mechatronics for Multidisciplinary Knowledge Acquisition

    NASA Astrophysics Data System (ADS)

    Watanuki, Keiichi; Kojima, Kazuyuki

    Recently, as the technologies surrounding mechanical engineering have improved remarkably, the expectations for students who graduate from departments of mechanical engineering have increased. For example, in order to develop a mechatronics system, a student needs to integrate a wide variety of technologies, such as mechanical engineering, electrical and electronics engineering, and information technology. Therefore, from the perspective of educators, the current education system, which stresses expertizing each technology, should be replaced by an education system that stresses integrating multidisciplinary knowledge. In this paper, a trial education program for students of the department of mechanical engineering in our university, in which students are required to integrate multidisciplinary knowledge in order to develop a biologically-based robot, is described. Finally, the efficacy of the program is analyzed.

  7. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  8. Industrial Partners in the Education of an Engineer

    ERIC Educational Resources Information Center

    Smith, Barnard E.

    1973-01-01

    Discusses the theory, operation, and practical problems encountered in conducting a professional program which emphasizes close contact with industrial engineers in engineering education. Indicates that the partnership program provides one means for firms to participate in educational activities while serving their own interests. (CC)

  9. Teaching about Nuclear Disarmament. Fastback 229.

    ERIC Educational Resources Information Center

    Becker, James, M.

    Background information to help educators teach about nuclear disarmament is presented. There are six sections. The first section, "Nuclear Arms Education: Avoiding the Final Catastrophe," discusses the national priority of preparing for war, militarism as a value, and the mushroom cloud and spaceship earth as symbols of a global age. The second…

  10. Development of Key Performance Indicators for the Engineering Technology Education Programs in Taiwan

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Lai, Chun-Chin

    2004-01-01

    In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…

  11. What Do Engineers Want? Examining Engineering Education through Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Goel, Sanjay; Sharda, Nalin

    2004-01-01

    Using Bloom's taxonomy as the basis for an empirical investigation, this paper examines what engineering students and professionals want from engineering education. Fifty engineering students, from Computer Science and Information Technology courses, were asked to rank activity verbs in order of their impression about frequency of their occurrence…

  12. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  13. Engineering Background: Modern Formats and Challenges of Conceptual Engineering

    NASA Astrophysics Data System (ADS)

    Khamidullina, A. F.; Kuzmina, M. A.; Khusnutdinova, E. M.; Konakhina, I. A.

    2017-09-01

    This paper describes the analysis of problems and development perspectives of engineering education in our and other countries. Special attention is given to modern formats of education that motivate creative efforts of engineers-to-be as well as issues of conceptual engineering taking the challenges of modernity into account.

  14. Developing Leadership Skills of Undergraduate Engineering Students: Perspectives from Engineering Faculty

    ERIC Educational Resources Information Center

    Cox, Monica F.; Cekic, Osman; Adams, Stephanie G.

    2010-01-01

    The engineering education community (motivated by internal and external factors) has begun to focus on leadership abilities of college students in engineering fields via reports from ABET, the National Academy of Engineering, and the National Research Council. These reports have directed criticism toward higher education institutions for their…

  15. The criteria of optimization of training specialists for the nuclear power industry and its implementation in the educational process

    NASA Astrophysics Data System (ADS)

    Lavrinenko, S. V.; Polikarpov, P. I.

    2017-11-01

    The nuclear industry is one of the most important and high-tech spheres of human activity in Russia. The main cause of accidents in the nuclear industry is the human factor. In this connection, the need to constantly analyze the system of training of specialists and its optimization in order to improve safety at nuclear industry enterprises. To do this, you must analyze the international experience in the field of training in the field of nuclear energy leading countries. Based on the analysis criteria have been formulated to optimize the educational process of training specialists for the nuclear power industry and test their effectiveness. The most effective and promising is the introduction of modern information technologies of training of students, such as real-time simulators, electronic educational resources, etc.

  16. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    ERIC Educational Resources Information Center

    Kersten, Jennifer Anna

    2013-01-01

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student…

  17. Institute of Electrical and Electronics Engineers, Nuclear Science Symposium, 18th, and Nuclear Power Systems Symposium, 3rd, San Francisco, Calif., November 3-5, 1971, Proceedings.

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.

  18. Beyond Diversity as Usual: Expanding Critical Cultural Approaches to Marginalization in Engineering Education

    NASA Astrophysics Data System (ADS)

    Secules, Stephen

    In general, what we think of as "diversity work" in undergraduate engineering education focuses in the following ways: more on the overlooked assets of minority groups than on the acts of overlooking, more on the experiences of marginalized groups than on the mechanisms of marginalization by dominant groups, more on supporting and increasing minority student retention than on critiquing and remediating the systems which lead minority students to leave engineering. This dissertation presents a series of arguments which push beyond a status quo understanding of diversity in engineering education. The first approach the dissertation takes up is to problematize educational facts around failure by interrogating their roots in interactions and cultural norms in an engineering classroom. In another argument, the dissertation places the engineering classroom cultural norms of competition, whiteness, and masculinity in a critical historical context of the discipline at large. Finally, I demonstrate how engaging students in a critique of marginalizing educational culture can be an important source of agency. In addition to applying and demonstrating the value of specific novel approaches in engineering education, the dissertation contributes to the research community by discussing the respective affordances between these and other possible scholarly approaches to culture and marginalization in education. I also suggest how a consideration of the taken-for-granted culture of engineering education can be an important tool for instructors seeking to gain insight into persistent educational problems. In addition, this dissertation makes implications for diversity support practice, envisioning new forms of support programming rooted in intersectionality and critical praxis.

  19. Incorporating global components into ethics education.

    PubMed

    Wang, George; Thompson, Russell G

    2013-03-01

    Ethics is central to science and engineering. Young engineers need to be grounded in how corporate social responsibility principles can be applied to engineering organizations to better serve the broader community. This is crucial in times of climate change and ecological challenges where the vulnerable can be impacted by engineering activities. Taking a global perspective in ethics education will help ensure that scientists and engineers can make a more substantial contribution to development throughout the world. This paper presents the importance of incorporating the global and cross culture components in the ethic education. The authors bring up a question to educators on ethics education in science and engineering in the globalized world, and its importance, necessity, and impendency. The paper presents several methods for discussion that can be used to identify the differences in ethics standards and practices in different countries; enhance the student's knowledge of ethics in a global arena.

  20. Motivational factors, gender and engineering education

    NASA Astrophysics Data System (ADS)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Egelund Holgaard, Jette

    2013-06-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering programmes, we further show that these overall gender differences are subtle and that motivational factors are unequally important across the different educational programmes. The findings from this study clearly indicate that intrinsic and social motivations are the most important motivational factors; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education.

  1. Quantifying the Metrics That Characterize Safety Culture of Three Engineered Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Julie; Ernesti, Mary; Tokuhiro, Akira

    2002-07-01

    With potential energy shortages and increasing electricity demand, the nuclear energy option is being reconsidered in the United States. Public opinion will have a considerable voice in policy decisions that will 'road-map' the future of nuclear energy in this country. This report is an extension of the last author's work on the 'safety culture' associated with three engineered systems (automobiles, commercial airplanes, and nuclear power plants) in Japan and the United States. Safety culture, in brief is defined as a specifically developed culture based on societal and individual interpretations of the balance of real, perceived, and imagined risks versus themore » benefits drawn from utilizing a given engineered systems. The method of analysis is a modified scale analysis, with two fundamental Eigen-metrics, time- (t) and number-scales (N) that describe both engineered systems and human factors. The scale analysis approach is appropriate because human perception of risk, perception of benefit and level of (technological) acceptance are inherently subjective, therefore 'fuzzy' and rarely quantifiable in exact magnitude. Perception of risk, expressed in terms of the psychometric factors 'dread risk' and 'unknown risk', contains both time- and number-scale elements. Various engineering system accidents with fatalities, reported by mass media are characterized by t and N, and are presented in this work using the scale analysis method. We contend that level of acceptance infers a perception of benefit at least two orders larger magnitude than perception of risk. The 'amplification' influence of mass media is also deduced as being 100- to 1000-fold the actual number of fatalities/serious injuries in a nuclear-related accident. (authors)« less

  2. Challenges and Opportunities in Nuclear Science and Radiochemistry Education at the University of Missouri

    NASA Astrophysics Data System (ADS)

    Robertson, J. David; Etter, Randy L.; Miller, William H.; Neumeyer, Gayla M.

    2009-08-01

    Over the last thirty years, numerous reports and workshops have documented the decline in nuclear and radiochemistry education programs in the United States. Practitioners and stakeholders are keenly aware of the impact this decline will have on emerging technologies and critical research and are fully committed to rebuilding programs in nuclear and radiochemistry. The challenge is, however, to persuade our academic peers and administrations to invest in nuclear and radiochemistry education and training programs in view of multiple competing priorities. This paper provides an overview of the expansion of the radiochemistry program and the creation of the Nuclear Energy Technology Workforce (NETWork) Center at the University of Missouri, Columbia and the lessons learned along the way.

  3. BENCHMARKING SUSTAINABILITY ENGINEERING EDUCATION

    EPA Science Inventory

    The goals of this project are to develop and apply a methodology for benchmarking curricula in sustainability engineering and to identify individuals active in sustainability engineering education.

  4. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  5. Engineer's Notebook--A Design Assessment Tool

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2011-01-01

    As technology education continues to consider a move toward an engineering design focus as proposed by various leaders in technology education, it will be necessary to employ new pedagogical approaches. Hill (2006) provided some new perspectives regarding pedagogical approaches for technology education with an engineering design focus. One…

  6. Research on the Undergraduate Financial Engineering Education in China

    ERIC Educational Resources Information Center

    Ma, Haiyong; Zhang, Weiwei

    2011-01-01

    The rapid development of modern economy has put forward higher requirements for financial engineering education. This paper analyzes the status and problems in undergraduate financial engineering education in china, such as indistinct training objective, rigid curriculum structure, and superficial teaching methods, etc. and puts forward…

  7. Environmental Engineering Talent Demand and Undergraduate Education in China

    ERIC Educational Resources Information Center

    Zhang, Huan-zhen; Li, Jian-bo; Luo, Xiang-nan; Zhao, Bin-yan; Luo, Ren-ming; Wang, Qiao-ling

    2004-01-01

    In Chinese higher environmental education, undergraduate education of environmental engineering starts earliest and develops fastest. The undergraduate has been playing an important role in controlling pollution for more than twenty years. The setting and distribution of the environmental engineering major was analyzed, the conditions of the…

  8. Integrating Engineering Design into Technology Education: Georgia's Perspective

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…

  9. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  10. 77 FR 12884 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... colleges, universities, K-12 school systems, businesses, informal science organizations and other research... welfare by supporting research and education in all fields of science and engineering.'' NSF has had a... scientists, engineers, and science and engineering educators. NSF funds research and education in most fields...

  11. Experience gained from engineering, construction, and maintenance of nuclear power plants in the Federal Republic of Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, G.; Huempfner, P.

    From the very beginning of nuclear power engineering in the Federal Republic of Germany (FRG), the main objective was to achieve a high degree of reliability for all safety systems, the nuclear steam supply systems, and the balance of plant. Major measures of a general nature included the following: (1) provision of the same redundancy for all parts of systems related to safety or availability; (2) introduction of appropriate quality assurance programs for design, development, manufacture, erection, testing, operation, and maintenance; and (3) optimization of design, not with the aim of reducing plant costs but in order to improve operationmore » and safety. A few examples are provided of improvements that Kraftwerk Union AG, as a supplier of turnkey nuclear power plants, has incorporated in its plants over the past years.« less

  12. 75 FR 69711 - STP Nuclear Operating Company, South Texas Project Nuclear Power Plant, Units 3 and 4; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Rocks for Engineering Analysis and Design of Nuclear Power Plants.'' In this exemption request, the... the design of the wall. Hence, the staff concludes that, the resulting static and dynamic earth pressures will be bounded by the lateral earth pressures used in design. Bearing Capacity The applicant...

  13. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  14. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  15. Educating the Engineer.

    ERIC Educational Resources Information Center

    Wallace, Melanie; Wallace, Mack

    2003-01-01

    Presented as a conversation between a teacher and engineer about school design, addresses educators' preferences and engineers' perspectives on issues, such as windows, sustainable design, sinks, acoustics, and natural ventilation. (EV)

  16. Educating More Engineers

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    Indicates that there will be a substantially increased demand for environmental engineers during the next few years, especially in the areas of water pollution control and sanitary engineering. Educators see the need for additional engineering graduates and for improved environmental training programs in schools. (JR)

  17. Chemical Engineering in Education and Industry.

    ERIC Educational Resources Information Center

    Wei, James

    1986-01-01

    Provides an historical overview of the origins, developments, and contributions of chemical engineering. Reviews the roles of the university and industry in the education of chemical engineers. Includes a listing of the major advances of chemical engineering since World War II. (ML)

  18. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    NASA Technical Reports Server (NTRS)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  19. The Fourth Revolution: Educating Engineers for Leadership.

    ERIC Educational Resources Information Center

    Mark, Hans; Carver, Larry

    1988-01-01

    Urges a change in engineering education for developing leaders. Describes three previous revolutions in American higher education which responded to the needs of the community. Suggests lifelong education as the fourth revolution. (YP)

  20. Intensive Nuclear War Education: Inducing Attitude and Behavior Changes.

    ERIC Educational Resources Information Center

    Mayton, Daniel M., II

    Nuclear war education has become a topic of concern among educators who, on one side, see it as an essential component of undergraduate education or, on the other, see it as political indoctrination dominated by direct and indirect Soviet interests. This study assessed the affective impact of an intensive (eight hours per day for five straight…

Top